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ii



Abstract

This thesis develops various aspects of Algebraic Geometry and its applications in different
fields of science.

In Chapter 2 we characterise the feasible set of an optimisation problem relevant in
chemical process engineering. We consider the polynomial dynamical system associated
with mass-action kinetics of a chemical reaction network. Given an initial point, the at-
tainable region of that point is the smallest convex and forward closed set that contains the
trajectory. We show that this region is a spectrahedral shadow for a class of linear dynamical
systems. As a step towards representing attainable regions we develop algorithms to com-
pute the convex hulls of trajectories. We present an implementation of this algorithm which
works in dimensions 2,3 and 4. These algorithms are based on a theory that approximates
the boundary of the convex hull of curves by a family of polytopes. If the convex hull is
represented as the output of our algorithms we can also check whether it is forward closed
or not.

Chapter 3 has two parts. In this first part, we do a case study of planar curves of
degree 6. It is known that there are 64 rigid isotopy types of these curves. We construct
explicit polynomial representatives with integer coefficients for each of these types using
different techniques in the literature. We present an algorithm, and its implementation in
Mathematica, for determining the isotopy type of a given sextic. Using the representatives
various sextics for each type were sampled. On those samples we explored the number of
real bitangents, inflection points and eigenvectors. We also computed the tensor rank of the
representatives by numerical methods. We show that the locus of all real lines that do not
meet a given sextic is a union of up to 46 convex regions that is bounded by its dual curve.

In the second part of Chapter 3 we consider a problem arising in molecular biology. In a
system where molecules bind to a target molecule with multiple binding sites, cooperativity
measures how the already bound molecules affect the chances of other molecules binding. We
address an optimisation problem that arises while quantifying cooperativity. We compute
cooperativity for the real data of molecules binding to hemoglobin and its variants.

In Chapter 4, given a variety X in Pn we look at its image X◦r under the map that
takes each point [x0 : . . . : xn] in X to its coordinate-wise r-th power [xr0 : . . . : xrn]. We
compute the degree of the image. We also study their defining equations, particularly for
hypersurfaces and linear spaces. We exhibit the set-theoretic equations of the coordinate-
wise square of a linear space L of dimension k embedded in a high dimensional ambient
space. We also establish a link between coordinate-wise squares of linear spaces and the
study of real symmetric matrices with degenerate eigenspectrum.
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1 Introduction

Understanding dynamical systems has been the focus of research for a very long time. It was
being deliberated upon when Aristotle wanted to understand “change”. Leibniz and Newton
founded calculus to formalise the mathematics of dynamics. Poincaré and Lyapunov used
the methods of topology and geometry towards understanding chaos and the stabilities of
equilibria. This field has a very complex history. Until recently, the main motivation for
dynamics and dynamical systems came from the want of understanding the physical systems.
Results originated from various research areas in engineering, physics, mathematics, and their
interfaces. The past century has seen a surge of activities at the interface of dynamics and
biology. Among the systems studied, polynomial dynamical systems are now widely explored
in systems biology and chemical reaction networks.

In applications, dynamical systems and optimisation problems come together in numer-
ous ways. The field of optimisation by itself is a very vast and an active research area.
Optimisation problems appears in various fields ranging from algebra, combinatorics, com-
puter science, computational biology, chemical engineering, financial mathematics, operation
research, control theory and many others. These problems can be extremely challenging.
Polynomial optimisation forms a major class of these problems. These have been of purely
mathematical interest since Hilbert’s 17th problem. The discussion of sum of squares and
non-negativity that Hilbert started in 1900 has led us today to the methods in sum-of-squares
optimisation. In recent years, dynamical systems and polynomial optimisation have come
together in interesting ways and at their interface new research problems and exciting results
are being developed.

I work at the Max-Planck Institute dedicated to Mathematics in the Sciences. Being
a member of the Non-Linear Algebra group at the institute, I was motivated to connect
algebra in a truly meaningful way with the new challenges and opportunities of the data
science era. This thesis, as a result, presents work at the interface of polynomial dynamical
systems and optimisation problems. The focus lies on algebraic and numerical methods with
a view towards applications in biology and chemistry. The thesis provides an insight into
how the problems in biology and chemistry can benefit from the tools developed in algebraic
geometry and polynomial optimisation. It is divided into three parts, led by my interest in
the problems of different flavours. The subsequent sections give the layout of the thesis.

1.1 Algebraic Geometry and Chemical Reaction Networks

Chemical reaction networks have now gathered a lot of attention in the mathematics com-
munity [16, 35, 38, 70], and is a fast growing field. In Chapter 2 we focus on the optimisation
problem that has been of interest in chemical process engineering for over half a century now.
This part of the thesis is based on two works [30, 71]. Given a set of chemical reactions, a
chemical reactor is a system where a set of reactions and their mixing takes place. Our aim
is to find the most cost-efficient reactor for any given reactions. Fritz Horn in 1964 was the
first to attempt to describe the feasible set of this optimisation problem [65]. He termed this
feasible set the attainable region. This optimisation problem has been foremostly worked

1



upon by Martin Feinberg, Roy Jackson, David Glasser, and Diane Hildebrandt [46, 47, 66].
For detailed exposition of the problem from a chemical point of view, the reader is referred
to the book [95].

Driving motivation for Chapter 2 has been to describe the attainable region. This re-
gion is a convex set. The chapter is titled Chemistry and Convexity and we aim to find
a representation of the convex object that appears in an application in chemistry. The
layout of the chapter is as follows: We first explain the basic set up of chemical reaction
networks as graphs and describe the dynamics associated with mass action kinetics. We
present a rigorous mathematical treatment of attainable regions and formalise the definition
for these in Subsection 2.1.1. As a first case, in Subsection 2.1.3 we characterise them for
linear systems. We show that, for certain subclasses of linear systems, the attainable regions
are spectrahedral shadows. These objects are feasible sets of semidefinite programming in
convex optimisation and are widely studied in polynomial optimisation and real algebraic
geometry.

As a next step, we look at the problem of computing the convex hull of the trajectory
of a dynamical system. This problem is of general interest in convex algebraic geometry
[10]. Our results also apply to the convex hulls of algebraic curves and parts of algebraic
curves since every curve can be locally expressed as a trajectory of a polynomial dynamical
system. In Section 2.2, we develop a theory of approximating the convex hull of curves by
polytopes. The main idea is to use inner approximations by convex polytopes to the actual
convex body. The boundary of the convex body in n-dimensional space is stratified into
(n− k − 1)-dimensional families of k-dimensional faces. These strata are called patches and
are defined using the notion of normal cycles [53]. We present a general numerical algorithm
and its implementation in dimension 3 and 4 for finding these patches. Our implementation
is based on the software Bensolve Tools [31]. In [102] the authors give a description of the
boundary of the convex hull of space curves. In particular, they give the number of complex
tritangent planes and degree of the edge surface (1-dimensional family of 1-dimensional faces)
forming the boundary of the convex hull of degree d and genus g generic space curve. Using
our implementation, we experimented on trigonometric curves and report in Subsection 2.2.3
on the number of real tritangents and the number of patches of the edge surface observed.

The vector field at every boundary point of the attainable regions points inwards for
every supporting hyperplane. Such regions are called forward closed. In Section 2.3 we give
an algorithm to decide whether a convex hull is forward closed. The algorithm finds the
points that partition the facets into the areas where the vectorfield is pointing inwards or
outwards. If there is no such region where the vector field points outwards then we say that
the convex hull is forward closed. We implemented this and used it to resolve a conjecture
which was stated in the author’s earlier works in [71].

1.2 Optimisation and Polynomials

Classical optimisation problems include computing eigenvectors and finding tensor rank de-
composition of a given polynomial. These problems appear in numerous emerging applic-
ations. These applications, notably in the analysis of data from the life sciences, now rely
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on computational tools from topology and algebraic geometry. The most basic objects in
algebraic geometry are plane curves. Section 3.1 of Chapter 3 is a case study of homogen-
eous polynomials of degree 6 in three variables using such tools. This section is based on the
article [72] which is published online in Experimental Mathematics.

Hilbert’s 16th problem is a classical problem in real algebraic geometry regarding the
topological types of planar curves of degree d. For d = 6, the classification of these curves is
known due to Rokhlin and Nikulin (Theorem 3.1.1). There are 56 topological types that are
distinguished by the number of ovals ranging from 0 to 11 and their placement in the plane.
We explore the 27-dimensional space of plane sextic curves. In Subsection 3.1.1 we present a
method for computing the discriminant in that space. The complement of the discriminant
has 64 connected components. These correspond to 64 rigid isotopy types. A real curve may
or may not divide the corresponding complex Riemann surface into two components. There
are 6 of the 56 types which always divide the Riemann surface. Eight of those can be of
either kind and the rest are always non-dividing. The numbers of types add up to 64.

We then use various constructions in the literature to give explicit polynomials with in-
teger coefficients for each type. Their constructions have been worked on by various mathem-
aticians [54, 59, 119]. The constructed polynomials are listed in Subsection 3.1.6. In Subsec-
tion 3.1.3 we present an implementation called SexticClassifier written in Mathematica

that classifies a ternary sextic. It takes a homogeneous degree 6 polynomial in 3 variables
as an input and if it is nonsingular, returns its topological type. This program is based on
Cylindrical Algebraic Decomposition which is an important tool in real algebraic geometry.
It partitions Rn into semialgebraic sets depending on the signs of polynomials on each set.

In Subsection 3.1.4 we report on experimental results concerning the real geometric prop-
erties of the curves. We sample the curves from probability distributions on the coeffi-
cients of the sextic and use the SexticClassifier to find the empirical distribution of the
curves. Once we have these representatives, we explore in their neighbourhood to obtain
more samples around them of the same type. For each of the types, the observed number
of bitangents, inflection points and eigenvectors are recorded in Table 8. We use numerical
methods to compute the real tensor rank for each of the representatives listed in Subsec-
tion 3.1.6.

In Section 3.2 we shift gears and focus on an optimisation problem coming from the want
of a better measure to quantify a phenomenon in molecular biology. This part of Chapter
3 is based on the article [73]. In chemistry and biology, a ligand is a substance that binds
to a target molecule inside a bigger system. When a target molecule has multiple binding
sites, cooperativity measures how the already bound ligands affect the chance of other ligands
binding to the still open sites. If the chances increase then cooperativity is said to be positive,
else negative.

In Subsection 3.2.1 we setup the notations and give the mathematical framework of the
problem. We explain the background and the optimisation problem that we consider in
Subsection 3.2.2. We mainly focus on the case where the target molecule has 4 sites. The
original optimisation problem poses various challenges. We elaborate on the steps taken
to simplify the problem. In Subsection 3.2.3 we experiment on various molecules listed in
the literature. We compute the upper bounds and the lower bounds on the measure of
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cooperativity using the software SCIP [56].

1.3 Understanding Powers of Varieties

Chapter 4 is based on the article [41] and delves into the product of varieties. Hadamard
products of varieties arise from multiplying coordinate-by-coordinate any two points x ∈ X,
y ∈ Y in given subvarieties X, Y of Pn. In applications, they first appeared in [36], where
the variety associated to the restricted Boltzmann machine was described as a repeated
Hadamard product of the secant variety of P1 × . . .× P1 ⊂ P2n−1 with itself.

The original motivation for this work was to understand the variety of orthostochastic
matrices. An orthostochastic matrix is a matrix arising by squaring each entry of an ortho-
gonal matrix. In other words, they are points in the coordinate-wise square of the variety
of orthogonal matrices. Orthostochastic matrices play a central role in the theory of ma-
jorization [88] and are closely linked to finding real symmetric matrices with prescribed
eigenvalues and diagonal entries, see [64] and [96]. Recently, it has also been shown that
studying the variety of orthostochastic matrices is central to the existence of determinantal
representations of bivariate polynomials and their computation, see [39].

We, therefore, consider a projective variety X ⊂ Pn and we study its r-th coordinate-
wise power X◦r. This is the image of X under the rational map ϕr : Pn → Pn given by
[x0 : . . . : xn] 7→ [xr0 : . . . : xrn]. In Section 4.1 we derive a formula for computing the degree
of X◦r given the degree of X. In combinatorics, a matroid abstracts the notion of bases in
vector spaces. For a linear space L ⊂ Pn we relate the degree of L◦r and the combinatorial
information given by the associated linear matroid.

For hypersurfaces we give an explicit way to find the defining equation of the image in
Section 4.2. We define the notion of r-th power basis. We prove the existence of such a
power basis for all r and pose the question whether there exists a power basis for a given
ideal which is same for all r and how to compute it if it does.

For a general variety it is hard to find the ideal that describes its coordinate-wise power.
In Section 4.3 we worked on the case of coordinate-wise square of a linear space. We consider
a linear space L of dimension k embedded in Pn for n� k. The linear equations that describe
the embedding are considered as points in the dual of the linear space. When these points lie
on a unique quadric of rank s, we exhibit the set-theoretic equations for the coordinate-wise
square L◦2. We also remark that the problem of finding the ideal of L◦2 for arbitrary L can
be reduced to a certain problem of matrix completion.
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2 Chemistry and Convexity

This chapter is based on two articles [30, 71]. Article [30] is a joint work with Daniel Ciripoi,
Andreas Löhne, and Bernd Sturmfels. This has been submitted to Revista de la Unión
Matemática Argentina for publication. Article [71] is a single author paper and has been
accepted for presentation at MEGA: Effective Methods in Algebraic Geometry, 2019.

2.1 The Attainable Region

The term attainable region finds its origin in the paper [65] by Fritz Horn. He coined this
term to denote the feasible set of an optimisation problem in chemical process engineering.
For a given chemical reaction network, a chemical reactor is where the chemical reactions take
place. The problem is to find an optimum reactor under the conditions that chemical species
are allowed to react amongst themselves as well as can be mixed. For detailed exposition of
this problem from chemical point of view, the reader is referred to [95]. Subsection 2.1.1 gives
the basic setup of chemical reaction network and the dynamics that we considered. We follow
the notations for chemical reaction networks set up in Anne Shiu’s PhD dissertation [112].
Subsection 2.1.2 recalls some basic notions in semidefinite programming. In Subsection 2.1.3
we describe the attainable region for the linear systems.

2.1.1 Chemical Reaction Networks

Let X1, . . . , Xn be chemical species. A chemical reaction takes place when these species
combine together in certain ratio to form another set of species. For instance, consider a
units of species X1 and b units of species X2 that combines as follows

aX1 + bX2
κ

cX3 + dX4

to give c and d units of X3 and X4 respectively. The coefficients a, b, c and d are positive
integers. We call the linear combinations aX1 + bX2 and cX3 + dX4 chemical complexes.
The transformation of these complexes from one to the other represented by weighted arrow
is called a chemical reaction. The weight κ measures how fast the reaction takes place and
is called the rate of reaction. One or more such reactions together form a chemical reaction
network.

Definition 2.1.1 (Chemical Reaction Networks). A chemical reaction network (CRN) is a
graph whose vertices are chemical complexes and edges are the chemical reactions weighted
by their reaction rates.

Example 2.1.2. We now illustrate a network of chemical reactions amongst 5 chemical
species in Figure 1. We denote the concentration of each species Xi by xi. Throughout, we
consider that the concentration of the species evolve according to the laws of mass action
kinetics. In each reaction the species react proportional to their concentration in the system
and the rates of reaction are the proportionality constants. In the figure note that one unit
of X1 is consumed in reactions X1 + X3

κ1
X4 and X1 + X3

κ5
X2 + 2X5.
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X2 + 2X5

κ
5κ

6

X1 + X3

κ 3

κ 4

X4
κ1
κ2

Figure 1: Three vertices are the chemical complexes. The labels κi are the rates of reactions.

One unit of X1 is produced by X4
κ2

X1 + X3 and X2 + 2X5
κ6

X1 + X3.

Therefore, the change in concentration of X1 is given by

ẋ1 =
dx1

dt
= −1 · κ1x1x3 − 1 · κ5x1x3 + 1 · κ2x4 + 1 · κ6x2x

2
5

(1)

Similarly, computing for other species with respect to each reaction, we get

ẋ2 =
dx2

dt
= κ5x1x3 + κ4x4 + (−κ3 − κ6)x2x

2
5

ẋ3 =
dx3

dt
= (−κ1 − κ5)x1x3 + κ2x4 + κ6x2x

2
5

ẋ4 =
dx4

dt
= κ1x1x3 + (−κ2 − κ4)x4 + κ3x2x

2
5

ẋ5 =
dx5

dt
= 2(κ5x1x3 + κ4x4 + (−κ3 − κ6)x2x

2
5).

(2)

We now give the general notation for the dynamics associated with a given CRN. For a
chemical reaction network with n species and s complexes consider a s×n matrix Y = (yij)
where yij is the coefficient of the jth species in the ith complex. With each vertex associate
the monomial xyi = xyi11 xyi22 · · ·xyinn . Let Aκ = (κij) be the s × s matrix with ij-th entry
given by the rates of reactions from the i-th complex to the the j-th complex for i 6= j. The
diagonal entry {ii} of Aκ is the negative of the sum of the rest of the entries in the row
i and therefore,

∑
j κij = 0 for all i. This matrix is the negative of the Laplacian of the

weighted digraph that represents the CRN. The above dynamics can then also be written as
the product of matrices in the following manner

ẋ =
dx

dt
= Ψ(x) · Aκ · Y (3)

where Ψ(x) =
[
xy1 xy2 · · · xys

]
.

The main focus in this thesis is on dynamical systems given by a system of ordinary
differential equations (ODE’s). We consider

ẋ =
dx

dt
= f(x) (4)

where x : R −→ Rn is an unknown function of time and f : Rn −→ Rn is a known
polynomial map. Given an initial starting point this system always have a unique solution.
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We particularly focus on the dynamics of the chemical reaction networks (CRN). In that
case f(x) = Ψ(x) · Aκ · Y. The image of the solution of the given ODE with an initial point
x(0) = (x1(0), . . . , xn(0)) at time t = 0 in the state space is called the trajectory. We will
denote the trajectory by C and the initial point x(0) by x0. In (3) the matrix Y is called
the stoichiometric matrix. Let yj be the vector given by the j-th row of the matrix Y . The
linear subspace in Rn spanned by the vectors yj − yi for i 6= j is called the stoichiometry
subspace and we will henceforth denote it by P.

Definition 2.1.3 (Forward Closed). A subset S ⊂ Rn is said to be forward closed for a
given ODE if for all points y ∈ S as the initial point x0 = y, all the resulting trajectories lie
in S, i.e. x(t) ∈ S for all t > 0.

In this work, we aim to characterise all the possible sets of the species concentrations
attainable from the continuous reaction, according to the dynamics, and mixing of the con-
centrations of the species at all times. This approach to the reactor optimisation problem
has been explored and discussed in [95]. We approach this problem by building on a new
mathematical definition of this attainable region, and we study these regions for various
kinds of dynamical systems.

Definition 2.1.4 (Attainable Region). The attainable region, A(x0) is the smallest convex
forward closed subset of Rn that contains the point x0.

By definition, for CRNs the attainable region is a convex subset in the positive orthant
of real space Rn of the chemical species. Note that the attainable region contains the convex
hull of the trajectory and is unique. In the Subsection 2.1.3 we first discuss the attainable
regions of linear dynamical systems.

2.1.2 Spectrahedra

In the next subsection we give a condition on the Laplacian of linear systems for which
the attainable region can be represented as the feasible set of a semidefinite programming.
These sets are called spectrahedral shadows. In this subsection we review some definitions and
results. For more information on these objects the reader is referred to [10]. A real symmetric
n × n matrix A is said to be positive definite if all its eigenvalues are strictly positive. It
is positive semidefinite if the eigenvalues are non-negative. We use the symbol A < 0 to
denote that the matrix A is positive semidefinite. The set of real positive semidefinite n×n
matrices is a convex cone. We denote this cone by S+

n .

Definition 2.1.5 (Spectrahedron). Let A0, . . . , Am be real symmetric n × n matrices. The
spectrahedron is a convex set S ⊂ Rm which can be expressed as

S = {(x1, . . . , xm) ∈ Rm|A0 +
m∑
i=1

xiAi < 0}.

In other words, a spectrahedron is the intersection of an affine linear subspace with the
cone S+

n . The condition A0 +
∑m

i=1 xiAi < 0 is also termed as linear matrix inequality.
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Definition 2.1.6 (Spectrahedral Shadow). A convex set is S a spectrahedral shadow if there
exists a spectrahedron S ′ and a linear map φ : Rn −→ Rm such that φ(S ′) = S.

A semi-algebraic set in Rn is the solution set of finitely many polynomial inequalities as:
S = {x ∈ Rn| f1(x) ≥ 0, . . . , fm(x) ≥ 0} where fi ∈ R[x1, . . . , xn] for all i ∈ 1, . . . ,m. These
sets are important objects in real algebraic geometry and can sometimes be represented as
a spectrahedral shadow. The following theorem is due to Scheiderer in [110].

Theorem 2.1.7. Let C ⊂ Rn be the closed convex hull of a semi-algebraic set of dimen-
sion ≤ 1. Then C has a semidefinite representation.

By the theorem above, the convex hull C of an algebraic curve C can be represented as
a spectrahedral shadow. Next, we discuss linear chemical reactions and use Theorem 2.1.7
to give results on their attainable region.

2.1.3 Linear Systems

A dynamical system is said to be a linear dynamical system if in (4) the polynomial map is
linear. A chemical reaction network is linear when the chemical complexes at each vertex
are single unit species. Equivalently, the matrix Y in (3) is an identity matrix. Note that
for a linear dynamical system matrix Aκ does not necessarily have to be the negative of the
Laplacian of a graph.

Let Aκ be an n× n matrix. The linear dynamical system is then written as[
ẋ1 ẋ2 . . . ẋn

]
=
[
x1 x2 . . . xn

]
· Aκ

If Aκ is diagonalisable, the solution to such a system is given by

x(t) =
n∑
k=1

(x0 · rk)lk exp(λkt) (5)

where lk and rk are the left and the right eigenvectors of Aκ corresponding to the eigenvalues
λk, respectively, and y = x(0) is the initial starting point. In the theorem below we show
that the convex hull of the trajectory for such a system is forward closed.

Theorem 2.1.8. The convex hull of the trajectory of a linear dynamical system is forward
closed.

Proof. Any point c in the convex hull, conv(C) = C ⊂ Rn, of the trajectory C can be
expressed as c =

∑
i µici, where ci are points on the trajectory, µi ≥ 0, and

∑n+1
i=1 µi = 1

for i ∈ {1, 2, · · · , n+ 1}. First let us consider the case where the Laplacian is diagonalisable.
With c as the starting point, the new trajectory, as in (5), is given by

x(t) =
∑
k

(
(
∑
i

µici) · rk

)
lk exp(λkt) =

∑
i

µi

(∑
k

(ci · rk)lk exp(λkt)

)
(6)
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and right hand side is the convex sum of trajectories in S. Thus, S is forward closed.
For the dynamical system ẋ = x · Aκ where Aκ is not diagonalisable we perform a

coordinate change by the matrix U such that the matrix UAU−1 is in its Jordan canonical
form. It is enough to consider a single Jordan block J of the matrix UAU−1. The solution
of a single Jordan block form is given by x(t) = x U−1 exp(tJ) U . Proceeding same as above
with c as the starting point, we have

x(t) = (
∑
i

µici) U
−1 exp(tJ) U

= (
∑
i

µi(x U
−1 exp(tiJ) U)) U−1 exp(tJ) U

=
∑
i

µi(x U
−1 exp((ti + t)J) U)

(7)

Hence, the convex hull of the trajectory of a linear dynamical system is forward closed.

Any convex set that contains the trajectory with a given starting point also contains the
convex hull of the trajectory. Since the convex hull of the trajectory for a linear dynamical
system is forward closed, it is also the attainable region.

We now turn our attention to linear chemical reaction networks. In the following theorems
we give a sufficient condition on the Laplacian of the graph such that the convex hull of the
trajectory is a spectrahedral shadow.

Proposition 2.1.9. For a linear chemical reaction network if non-zero eigenvalues of the
Laplacian are in rational ratio then the convex hull of the trajectory is a spectrahedral shadow.

Proof. Consider a rational curve C : I −→ Rs given by t 7→ (ta1 , ta2 , . . . , tas) in Rs over an
interval I ⊂ R where ai are positive rational numbers for i ∈ {1, 2, . . . , s}. For 0 ≤ t ≤ 1 the
image is a semialgebraic set S of dimension 1. By Theorem 2.1.7, the closure of the convex
hull of S is a spectrahedral shadow.

For a linear chemical reaction network, let r be the number of eigenvalues of the Laplacian
equal to 0. Let a1, . . . , ar be equal to 0 and an−r, . . . , an be in rational ratio same as the
ratio of non-zero eigenvalues of the Laplacian. The trajectory of the dynamical system is
the image of S under the map φ : S −→ Rn for 0 ≤ t ≤ 1, given by the matrix whose i-th
column vector is given by the transpose of the row vector ((x0 · ri)li).

The convex hull of the trajectory of a linear chemical reaction network is the linear image
of convex hull of S and therefore, it is a spectrahedral shadow.

We now give an example for a linear CRN such that the Laplacian has non-zero eigen-
values in rational ratio.

Example 2.1.10. The following graph illustrates the linear system of three species.

X3

κ
13κ

31

X1

κ 32

κ 23

X2
κ12

κ21
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Let now κ12 = 6, κ21 = 1, κ32 = 6, κ23 = 1, κ13 = 3, κ31 = 3. From (3), we can express the
dynamics of this system as

[
ẋ1 ẋ2 ẋ3

]
=
[
x1 x2 x3

]
·

−9 6 3
1 −2 1
3 6 −9


The solution to such a system by equation (5) is

[
x1 x2 x3

]
=

9/4e−8t − 3/2e−12t + 5/4
−9/2e−8t + 15/2

9/4e−8t + 3/2e−12t + 5/4

>

with x0 =
[
2 3 5

]
as the starting vector. For t = 0, we see that

[
x1 x2 x3

]
=
[
2 3 5

]
and as t→∞, this system tends to the stationary point

[
5/4 15/2 5/4

]
. We can replace

e−t by variable u such that u varies from 0 to 1 and get the parametric equation in u. After
eliminating the variable u we obtain:

x1 + x2 + x3 − 10 = 0 and 8x3
2 − 99x2

2 + 324x2x3 + 324x2
3 − 270x2 − 3240x3 + 4725 = 0. (8)

These two equations cut out a curve. The trajectory of the linear system from x0 to the
stable point on the plane cut out by x1 + x2 + x3 − 10 = 0 is part of that curve. This linear
equation is the conservation law for the system.

Using Theorem 2.1.8 and Proposition 2.1.9, in the theorem below, we can characterise
the class of linear system for which the attainable region is a spectrahedral shadow.

Theorem 2.1.11. The attainable region of linear chemical reaction networks for which the
Laplacian has non-zero eigenvalues in rational ratio is a spectrahedral shadow.

Proof. By Proposition 2.1.9 the convex hull of the trajectory of a linear chemical reaction
network for which the Laplacian has non-zero eigenvalues in rational ratio is a spectra-
hedral shadow. Also, for linear dynamical systems the convex hull is forward closed by
Theorem 2.1.8. Therefore, the attainable region is the convex hull of the trajectory and is a
spectrahedral shadow.

This result enables us to employ the techniques from real algebraic geometry that were
originally developed to understand spectrahedral shadows to the applications associated with
chemical reaction networks for the first time. In particular, we can use those techniques
to understand the geometry of attainable regions. In the next subsection we discuss some
experiments conducted on weakly reversible chemical reactions to understand their attainable
region.
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2.1.4 Weakly Reversible Chemical Reaction Networks

Following [35], a chemical reaction network is called weakly reversible if each connected
component of the underlying graph is strongly connected. Following the usual terminology
from graph theory, a directed graph is strongly connected if there is a directed path between
any two of its vertices. In this section we will restrict ourselves to weakly reversible systems
whose underlying graph has only one strongly connected component. These are called one
linkage class systems. The following question naturally arises:

Question 2.1.12. Consider a weakly reversible systems with one linkage class, and a tra-
jectory that approaches a positive stable point. Is the convex hull of this trajectory forward
closed?

In the first version of the paper [71], we conjectured that the answer to this is affirmative.
This was supported by computations in SAGE [108] that is explained below.

We generate a random digraph with s vertices. This graph is usually not strongly con-
nected. Next add edges randomly between the strongly connected components to make the
graph strongly connected. To each vertex associate a monomial in s indeterminates of degree
≤ d. This represents the chemical complex as in Subsection 2.1.1. These monomials are the
entries of a matrix Ψ(x) and the powers in the monomials give the matrix Y in (3). We
obtain the matrix Aκ by assigning random positive edge weights. These three matrices now
fully specify a random dynamical system for a weakly reversible CRN.

We numerically integrate the obtained dynamical system in SAGE using the Runge-Kutta 4
method. In order for it to effectively integrate we keep the degree of monomials below 5.
For higher values of d, one may use a higher order Runge-Kutta method for integration.
This integration gives us points that lie on the trajectory C of the system. Because we want
to make a statement about the convex hull of the trajectory, we construct a polytope in
dimension n which is the convex hull of the points obtained. SAGE uses the cdd library for
this.

In our computations, we computed 10, 000 points per trajectory. The tailing points are
closer to each other than the initial points, so we tailored the set of points for which we
compute the convex hull C. Using a random point c in C as the initial point, for the same
system we integrate again to get a new set of points on the new trajectory C ′ and ask if C
contains the points on C ′. This was done for various trajectories in Rn for n = 2, 3, 4, 5, 6.

During these computations we faced various challenges. Most of these pertained to the
fact that the computations were numerical, and also, to the large number of points. In
particular, the computations were not always feasible in dimensions higher than n = 6.

It was proven in [38] and elaborated upon again in [16] that every weakly reversible
chemical reaction network has at least one positive steady state. During our experiments
in step one, all systems converged to a steady state. Moreover, the trajectories starting
from any interior point also converged to the same point. This may, however, be due to
the fact that the random graph we generated almost always had single stationary point.
Since the computations were numerical, in higher dimensions it was difficult to compute the
polytope for more than 200 points. We then double checked the points which in step one
of the computations were found to not be in the convex hull, possibly due to error while
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integration or computing the convex hull of floating point numbers. This led to the inclusion
of additional points from C ′, and to a new polytope that was often larger than the first one.

In our subsequent work [30], we developed an improved algorithm (Algorithm 2.2.18) for
the above procedure. This was implemented in the software Bensolve Tools [31]. We then
found in [30, Example 8.4] that the answer to Question 2.1.12 is negative. This example
is explained later in Subsection 2.4. The counterexample is in dimension three. After the
posting of [30], Gheorghe Craciun and Yida Ding found another counterexample in dimension
two. We thank them for their permission to include this example here.

Example 2.1.13. We consider the following reaction network

3X1
0.5
1.51

X1

0.
02

0.
1

0
0.40.1

X2
2.1
1

2X2.

2

0.
01

X1 +X2

0.7
1

The dynamics corresponding to this network is

ẋ1 =
dx1

dt
= 3x1 − x3

1 − 2x1x2 + 0.01x2 + 0.1

ẋ2 =
dx2

dt
= 2x2 − x2

2 − x1x2 + 0.7x1 + 0.4.

(9)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

Figure 2: Trajectory and its convex hull

For the initial point (x0, y0) = (2, 0.05), the figure above shows the trajectory in blue.
The grey region is its convex hull bounded by the curve and segments coloured red and
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green. We computed this using the implementation of algorithms in [30]. The red segment is
the boundary of the convex hull where the vector field is pointing outwards. Any trajectory
starting from a point on the line will go outside the convex hull and therefore, the convex
hull is not forward closed.

2.1.5 Facial Structure

Let C be a convex set. Then F ⊂ C is a face of C if for all points p ∈ F whenever p is
written as convex combination of points in C, those points must belong to F [118, Definition
1.1.2]. To understand convex objects using convex algebraic geometry it is imperative to
study their faces. For parametrised curves, one such approach was suggested by Cynthia
Vinzant in Section 5.2 of her PhD dissertation [118]. We give the details of this below.

Let C be a parametrised curve given by g = (g1(t), . . . , gm(t)) for t ∈ D. Here, D ⊆ R
is a closed interval and gi(t) are univariate polynomials in t for i ∈ {1, 2, . . . ,m}. The r-th
face-vertex set Face(r) of the curve C is defined to be

{(d1, . . . , dr) ∈ Dr| g(d1), . . . ,g(dr) are the vertices of a face of the convex hull of C}.

For k ≤ r, let {d1, . . . , dk} ∈ int(D) be interior and {dk+1, . . . , dr} ∈ ∂D be the boundary
points. As di varies in D, the face-vertex set Face(r) is always contained in the variety cut
out by

minors

(
n+ 1,

(
1 . . . 1 0 . . . 0

g(d1) . . . g(dr) g′(d1) . . . g′(dk)

))
. (10)

This describes a variety in Dr that contains the set Face(r) for the convex hull of C.
We apply this approach to the dynamical systems and illustrate them in the examples

below. This method has not been previously used to understand the convex hulls. For any
curve C, let c1, . . . , cr be the points on the curve such that they define the vertex set of some
face of the convex hull of C. The equations given by

minors

(
n+ 1,

(
1 . . . 1 0 . . . 0
c1 . . . cr c′1 . . . c′p

))
(11)

vanish where c′i denote the tangent vector at the point ci. We will exploit this fact and give
a representation of the faces.

In our case, we only had points on the curve and this makes it difficult to express faces
as a variety. For a curve in n dimension we were able to look at the following cases:

• Face(n+1
2

) if n is odd.

• Face(n
2

+ 1) if n is even.

The above two conditions make the matrix in (11) a square matrix and the corres-
ponding faces are then given by the vanishing of the determinant. We used the software
Mathematica [92] to plot the sign of the determinant for all combinations of points on the
curve. We illustrate this for curves in dimensions 3, 4 and 5 below. These curves are given
by the ODE’s which satisfy the condition in the following lemma due to [60].

13



Figure 3: Face(2) of a curve in 3-space.
Figure 4: Face(3) with initial point as one ver-
tex of the 3-face for a curve in 4-space.

Lemma 2.1.14. A dynamical system ẋ = f(x) where each fi is a polynomial in n variables
arises from a CRN with mass-action kinetics if and only if every monomial in fi with negative
coefficient is divisible by xi for all i ∈ {1, 2, . . . , n}.

By this lemma there exists a chemical reaction network for each of the systems in the
examples below.

Example 2.1.15. Consider the following system with initial point as x0 = (10, 8, 9, 2),

ẋ1 = −2x2
1 − 6x1x4 + 10x3x4

ẋ2 = x2
1 − 8x2x3

ẋ3 = x2
1 + 6x1x4 − 9x3x4

ẋ4 = 8x2x3 − x3x4.

(12)

The trajectory of this system lies in the stoichiometry subspace of dimension 3 and hence
the convex hull has dimension 3. To find the curve of Face(2), we consider the matrix
given by (

1 1 0 0
c3i c3j c′3i c′3j

)
(13)

as in (11) for i, j ∈ {2, 3, . . . , 2000} and i ≤ j. We plot this in Fig. 3 where blue and
red represents that the sign of the determinant is negative and positive, respectively. The
separating boundary of the red and blue area represents the Face(2) of this system. �

Next, we consider a curve with a 4-dimensional convex body.

Example 2.1.16. Consider the following system with initial point as x0 = (5, 8, 6, 2),

ẋ1 = −10x2
1 + 12x2x3 + 6x2

3 + 4x3x4 − 5x1

ẋ2 = 2x2
1 − 8x2x3 + x1

ẋ3 = 8x2
1 − 8x2x3 − 6x2

3 + 5x1

ẋ4 = −8x3x4 + 4x1.

(14)
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Figure 5: Face(3) of a 5-dimensional convex body

For this system we consider the representation of faces that has initial point as always
one of the vertex. This is given by considering the matrix in Eq. (15) with the initial point
as the boundary point (

1 1 1 0 0
c3i c3j x0 c′3i c′3j

)
(15)

for i, j ∈ {2, . . . , 2000} and i ≤ j. The boundary of the red and the blue area in Fig. 4 gives
the curve describing the Face(3) of the system such that every point on this curve represents
the face of the convex hull such that initial point is one of the three vertices of that face. �

The following example will depict the Face(3) of a trajectory in 5 dimensional space.

Example 2.1.17. The system given by

ẋ1 = 4x3x4x6 − 8x1x
2
6 + 2x2

2 + 4x3x5

ẋ2 = −10x2
2x4 + 4x3x4x6 + 4x1x

2
6 − 12x2

2 + 6x2
6

ẋ3 = 5x2
2x4 − 6x3x4x6 + 6x1x

2
6 − 4x3x5 + 2x2

6

ẋ4 = −4x2
2x4 − 4x3x4x6 + 2x1x

2
6 + 2x2

6

ẋ5 = 4x2
2x4 + 4x1x

2
6 − 4x3x5

ẋ6 = x2
2x4 + 2x3x4x6 − 14x1x

2
6 + 12x2

2 + 8x3x5 − 8x2
6

(16)

has stoichiometry space of dimension 5. The Fig. 5 shows the sign of determinant of(
1 1 1 0 0 0
c5i c5j c5k c′5i c′5j c′5k

)
(17)

for i, j, k ∈ {2, . . . , 200} and i < j < k. �

Using this adaptation for understanding the convex hulls is not sufficient. This approach
when applied to the trajectories could not be used to give a representation of all the faces and
therefore, for the curves coming from a dynamical system this adaptation could not give a
general description. In the next section we develop another method to give a representation
for the convex hull of trajectories. We present an algorithm and give its implementation in
lower dimensions
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2.2 Representing Convex Hulls

The main aim of this chapter has been to describe the geometric set which is the attainable
region for a given system of ODE with respect to some initial starting point. For linear
systems, the attainable region is the convex hull of the trajectory. With some assumptions
we could describe this convex hull in Theorem 2.1.11 as a spectrahedral shadow. However,
for non-linear system ODE it is a nontrivial task to represent the convex hull of a trajectory.

In this section we work towards representing the convex hull of a trajectory. This problem
is also of general interest in convex algebraic geometry. We consider a general polynomial
dynamical system as in equation (4)

d

dt
x(t) = f

(
x(t)

)
,

where x : R → Rn is an unknown function, and f : Rn → Rn is a given polynomial map.
By the Picard-Lindelöf theorem, each initial value problem for (4) has a unique solution on
a local interval. Although f is assumed to be polynomial, for most of the techniques we
develop it suffices for f to be locally Lipschitz continuous. Any starting point x(0) in Rn

gives rise to a unique trajectory C := {x(t) | t ∈ [0, a) for a > 0}. This curve may or may
not converge to a stationary point, and its dynamics can be chaotic. We are interested in
conv(C). The convex hull of the trajectory need not be bounded and even if it is bounded, it
need not be closed. In the latter case, we usually replace conv(C) by its topological closure
so that the convex hull of the trajectory becomes a compact convex body.

Since the trajectory is typically an analytic curve, we adopt numerical methods to ap-
proximate the actual convex hulls by polyhedra. We numerically integrate the equation (4)
using solver ode45[103] in Matlab[93]. Using this we get the set of points A on the actual
trajectory.

Let A = conv(A) be the convex hull of the points on the trajectory. The finer the sample
set A, the better is the approximation A to the actual convex hull C = conv(C).

Let us first consider the planar case, i.e. when n = 2 in (4). We consider the pair
of polynomials f = (f1, f2) along with a starting point y = (y1, y2) in R2. The resulting
trajectory of (4) is a plane curve C that is parametrised by time t.

The boundary ∂C of the convex hull C consists of arcs on the curve C and of edges that
connect them. Each edge of C is a line segment between two points on C. These are either
points of tangency or the endpoints of the curve. This partitions ∂C into patches, described
in general in Subsection 2.2.3. Here, k-patches are edges (for k = 1) and arcs (for k = 0).

If we had an exact algebraic representation of the curve C then we could use symbolic
methods to compute its bitangents and derive from this a description of ∂C. For instance,
if C is an algebraic curve of degree four, as in Example 2.3.2, then it has 28 bitangent lines
(over C) which can be computed using Gröbner bases. But, such algebraic representations
are not available when we study dynamical systems. Each trajectory is an analytic curve
t 7→ x(t). This parametrisation is given indirectly, namely by the differential equation (4) it
satisfies.

We now assume that a polygonal approximation is given for the curve C. Our input is
a finite list A of points x(ti) on C. In our computations we solve (4) numerically using the
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versatile solver ode45 in Matlab. This generates the sample points A which we assume to
be reliably accurate. Using ode45 also allows us to control the quality of the approximation.

Algorithm 2.2.1 computes a representation of the boundary ∂C of the convex hull C of
the trajectory from a polygonal approximation A of the trajectory C. The key idea is the
identification of long edges in A. In Subsection 2.2.3 we generalise to curves in Rn. Algorithm
2.2.1 is a special case of Algorithm 2.2.18. It takes the set of points on the curve and δ > 0 as
the input. In step 1 it computes the convex polytope of those points. We use Bensolve [85]
to compute the polytope in step 1 and returns the V -representation and H-representation
of A = conv(A). In the next step, a graph G is constructed with vertices as an element in
the set of edges H. The vertices of G are connected if the corresponding edges H1 and H2

have length less than the input threshold δ and have a common vertex as an end point. In
step 3, we get the number of long edges and the number of cluster of short ones. From step
4 to 6 outputs the short edges and vertices corresponding to their clusters. The long edges
and the arcs represented by the cluster of short edges fully describe the convex hull in the
plane.

Algorithm 2.2.1. (Detection of edges and arcs for n = 2)

input : A list A of points on a curve C in R2; a threshold value δ > 0
output: The numbers #0 and #1 of arcs and edges of C = conv (C)

For each i: list of curve points that represent the ith arc of ∂C.
List of line segments that represent the edges of C.

1 Compute the vertices V and edges H of A = conv (A)
2 Build a graph G with node set H such that two distinct edges H1, H2 of A form an

edge of G if H1 ∩H2 6= ∅ and both H1 and H2 have length ≤ δ.
3 Output the number #1 of isolated nodes of G and the number #0 of remaining

connected components Gi.
4 foreach nonsingleton connected component Gi do
5 Output a list of curve points that are endpoints of those edges of A, that belong to

Gi. This represents the ith arc of ∂C.
6 end
7 The edges Hj of A that correspond to isolated nodes of G represent edges of C.

In the following subsection we develop a theory on approximating the convex hull of a
curve by a family of polytopes generated by sampling points on the curve. We then use this
theory to generalise the above algorithm in Subsection 2.2.3.

2.2.1 Limiting Faces

We want to compute the boundary structure of C using a sequence of inner approximations
by convex polytopes, each obtained as the convex hull of a path that approximates C. Let
B1 and B2 be two compact sets in Rn. The Hausdorff distance of two compact sets B1 and
B2 in Rn is defined as

d(B1, B2) = max
{

max
x∈B1

min
y∈B2

‖x− y‖ , max
y∈B2

min
x∈B1

‖x− y‖
}
.
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A sequence {Bν}ν∈N of compact sets is Hausdorff convergent to B if d(B,Bν)→ 0 for ν →∞.
A point x of a compact convex set B is extremal if it is not a proper convex combination

of elements of B, that is, {x} is a zero-dimensional face of B. Extremal points of a polytope
are called vertices. Even if {Bν}ν∈N is a sequence of polytopes that Hausdorff converges to
a polytope B, the limit of a convergent sequence of vertices xν of Bν is not necessarily a
vertex of B. For instance, consider Bν = conv({(0, 0), (1, 1

ν
), (2, 0)}). However, the converse

holds as shown by the following lemma.

Lemma 2.2.2. Let {Bν}ν∈N → B be a Hausdorff convergent sequence of compact convex
sets in Rn. For every extremal point x of B there exist extremal points xν of Bν converging
to x.

Proof. Let x be an extremal point of the limit body B. By Hausdorff convergence, there
exists a sequence {xν}ν∈N with xν ∈ Bν that converges to x. By Carathéodory’s Theorem,
each xν is a convex combination of at most n+ 1 extremal points vν0 , v

ν
1 , . . . , v

ν
n of Bν .

Fix some ε > 0. Assume there is an infinite subset N of N such that

∀ν ∈ N ∀i ∈ {0, 1, . . . , n} : ‖x− vνi ‖ ≥ ε.

By compactness, there is a subsequence N ′ of N such that, for each i, the sequence {vνi }ν∈N ′
converges to some vj. Hence x is a proper convex combination of v0, v1, . . . , vn ∈ B. This
contradicts x being extremal in B. Therefore, for every ε > 0 there exists ν0 ∈ N such that

∀ν ≥ ν0 ∃i ∈ {0, 1, . . . , n} : ‖vνi − x‖ < ε.

In this manner we obtain a sequence {xν} of extremal points xν of Bν converging to x.

Definition 2.2.3 (ε-Approximation). An ε-approximation of a given curve C is a finite
subset Aε ⊂ C such that

∀y ∈ C ∃x ∈ Aε : ‖y − x‖ ≤ ε.

We consider a sequence {Aε}ε↘0 of ε-approximations, where ε↘0 stands for a decreasing
sequence {εν}ν∈N of positive real numbers εν . The polytopes Aε = conv(Aε) can be described
by their facets. Our goal is to study convergent sequences of facets Fε of Aε in order to get
information about the facial structure of the convex hull C of the curve C by developing an
algorithm in the Subsection 2.2.3.

Proposition 2.2.4. Let {Fε}ε↘0 be a Hausdorff convergent sequence of proper faces Fε of
the polytopes Aε. Then its limit F is contained in an exposed face of C.

Proof. We write the face Fε of the polytope Aε in the form Fε = {x ∈ Aε | yTε x = γε},
where ‖yε‖ = 1 and yTε x ≤ γε for x ∈ Aε. Since C is compact, the sequence {γε} is bounded.
Choose accumulation points y and γ, respectively, of {yε}ε>0 and {γε}ε>0. Since y 6= 0,
H := {x ∈ Rn | yTx = γ} is a hyperplane. By Lemma 2.2.2, any extremal point x of F
is the limit of a sequence {xε}ε↘0 for xε a vertex of Fε. Every vertex of Fε belongs to C.
Thus F is contained in C ∩ H. It remains to show that C is contained in the halfspace
H− := {x ∈ Rn | yTx ≤ γ}. Assume there exists x ∈ C with d := yTx− γ > 0. Then there
exists a sequence {xε} with xε ∈ Aε converging to x and such that {yTε xε− γε} converges to
d. This contradicts that the halfspace

{
x ∈ Rn | yTε x ≤ γε

}
contains Aε.
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The limit F in Proposition 2.2.4 may not be a face of C. This is shown in Figure 6 on
the left. The following genericity assumptions on C will ensure that a Hausdorff convergent
sequence of proper faces Fε of the polytopes Aε converges to a proper face F of the body C:

(H1) Every point on the curve C that is in the boundary of C is an extremal point of C.

(H2) Every polytope face of C is a simplex.

(H3) Intersecting the curve C with a hyperplane always results in a finite set.

F

y

C Aε

F

C

Aε

Figure 6: A Hausdorff convergent sequence of facets Fε of Aε need not converge to a face F
of C. The face F in the left diagram contains a curve point y ∈ C which is not extremal in
C. The endpoint F of the curve C on the right is an exposed face of C but it is not uniquely
exposed. There is no sequence of facets Fε of Aε that Hausdorff converges to exposed face F .

We now give a sufficient condition that proper faces of C are polytopes.

Proposition 2.2.5. If C satisfies assumption (H3), then every proper face of C is a polytope.

Proof. A proper face F of C belongs to some hyperplane. By (H3), the set C ∩ F is finite.
Since F is a face of C, an extremal point of F is also an extremal point of C. All extremal
points of C belong to C, since they cannot be expressed as a proper convex combination of
curve points. Thus, F is a polytope as it has only finitely many extremal points.

Proposition 2.2.6. Suppose that (H1), (H2) and (H3) hold. Let {Fε}ε↘0 be a Hausdorff
convergent sequence of proper faces Fε of Aε. Then its limit F is a proper face of C.

Proof. By Proposition 2.2.4, F is contained in an exposed face G of C, in particular, in a
proper face of C. Let G be the smallest face of C containing F . By assumption (H3) and
Proposition 2.2.5, G is a polytope. The extremal points of F belong to C. The subset F
of G is in the boundary of C. By assumption (H1), the extremal points of F are extremal
points of C. Since F ⊂ G ⊂ C, they are also extremal points of G. Thus either F = G or
F is a sub-simplex of G by assumption (H2). The latter case contradicts the minimality of
G.
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Let F be a proper face of C. We seek a sequence Fε of facets of Aε that is Hausdorff
converging to F . In general, such a sequence does not exist, even under the assumptions
(H1), (H2) and (H3). We need to additionally require the face F to be uniquely exposed,
that is, there is a uniquely defined halfspace H+ such that C ⊂ H+ and F = C ∩−H+. For
a counter example see Figure 6 (right).

Theorem 2.2.7. Let assumption (H1) be satisfied and let F be a simplex which is a uniquely
exposed face of C. Then F is the Hausdorff limit of a sequence {Fε}ε↘0 of facets of Aε.

Proof. For k ≤ n, denote by v0, . . . , vk the vertices of F . Without loss of generality,
1

k+1

∑k
i=0 vi = 0. The halfspace which defines F has the form H+

γ := {x ∈ Rn | hTx ≥ γ},
where γ = 0 and h ∈ Rn with ‖h‖ = 1 is unique. We claim that for every δ > 0 there exists
γ > 0 such that

∀ y ∈ C\H+
γ ∃ i ∈ {0, 1, . . . , k} : ‖y − vi‖ < δ. (18)

We prove this by contradiction. Suppose there exists δ > 0 such that for all γ > 0 there
exists y ∈ C\H+

γ with ‖y− vi‖ ≥ δ for all vertices vi of F . Thus we can construct a sequence
of curve points approaching −H+ = −H+

0 but maintain a distance of at least δ from each vi.
By compactness of C, this sequence can be assumed to converge to some z ∈ −H+ ∩ C ⊂ F .
Since the curve point z belongs to the boundary of C, assumption (H1) ensures that z is an
extremal point of C. Hence, z is a vertex of F different from v0, . . . , vk, a contradiction.

For ε > 0, we consider the linear program

minµ s.t. µh ∈ Aε. (19)

We claim that the following holds for sufficiently small ε > 0:

spanh ∩ intAε 6= ∅ (20)

Assume the contrary. Then, for all ε > 0, spanh and Aε can be separated weakly by a
hyperplane H(ε) = {x ∈ Rn | hTε x = γε} with ‖hε‖ = 1. By a compactness argument, a
subsequence of {(hε, γε)}ε↘0 converges to (h̄, γ̄) with ‖h̄‖ = 1. The hyperplane H̄ = {x ∈
Rn | h̄Tx = γ̄} weakly separates spanh and C. Since 0 is contained in both C and spanh,
we have γ̄ = 0. Since 0 is a relative interior point of F , we must have F ⊂ H̄. Hence, F is
exposed with respect to a halfspace H̄+ := {x ∈ Rn | h̄Tx ≥ γ̄} corresponding to H̄. Since
H+ 6= H̄+, this contradicts the assumption that F is uniquely exposed with respect to H+.

Let µε be the optimal value of (19). We have {µε}ε↘0 = 0. We will use linear program-
ming duality to show that, for ε > 0 sufficiently small, µεh belongs to some facet of Aε of
the form

Fε = Aε ∩ {x ∈ Rn | yTε x = µε} where hTyε = 1.

Indeed, the linear program dual to (19) is

max η s.t. MT
ε y − eη ≥ 0 and hTy = 1, (21)

where Mε is the matrix with columns Aε and e = (1, . . . , 1)T is the all-one vector. Let (yε, ηε)
denote an optimal solution of (21). By duality, µε = ηε. We conclude that Fε is a face of Aε.
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To see that Fε is even a facet of Aε, we replace (19) and (21) by the pair of dual problems

min 0µ s.t. µh ∈ Aε, (22)

max η s.t. MT
ε y − eη ≥ 0 and hTy = 0. (23)

Using complementary slackness, we conclude from (20) that (y, η) = (0, 0) is the unique
optimal solution of (23). Hence the set of optimal solutions of (21) is bounded, and we can
choose (yε, ηε) to be a vertex. At least n linearly independent inequalities in (21) hold with
equality at (y, η) = (yε, ηε). These correspond to n affinely independent points in Aε, all
belonging to the hyperplane {x ∈ Rn | yTε x = µε}. This shows that Fε is a facet of Aε.

From (18), we conclude that, for sufficiently small ε > 0, the point µεh ∈ Fε (which
approaches the mean of the vertices of F ) can be represented only by elements y ∈ Aε with
‖y − v‖ < δ for some vertex v of F . Since F is a simplex, each vertex v of F is used in this
representation. Hence, for each vertex v of F there exists a vertex y of Fε with ‖y− v‖ < δ.

We claim that, if ε > 0 is sufficiently small then for every vertex y of Fε there exists a
vertex v of F with ‖y − v‖ < δ. Assume the contrary. Then, by (18), for any small ε > 0,
there is a vertex yε of Fε with yε ∈ C ∩ H+

γ . By compactness of C, we may assume that
{yε}ε↘0 converges to some ȳ ∈ C ∩ H+

γ . By Proposition 2.2.4, conv (F ∪ {ȳ}) belongs to
an exposed face of C. Since ȳ 6∈ −H+, this contradicts the assumption that F is uniquely
exposed.

We conclude that for every δ > 0 we find ε0 > 0 such that d(Fε, F ) < δ for all 0 < ε ≤ ε0.
Hence, the simplex face F of C is the Hausdorff limit of the sequence {Fε}ε↘0, as desired.

Remark 2.2.8. In the proof of Theorem 2.2.7, we construct a sequence {Fε}ε↘0 of facets of
Aε whose vertices converge to the vertices of F . This is stronger than Hausdorff convergence.

2.2.2 Convex Hulls in Bensolve

To represent the convex hull of the curve we compute the convex hull of an ε-approximation
of a curve C. There are many methods and implementations for convex hulls. We used
the software Bensolve Tools [31]. We next discuss this software, its underlying methodo-
logy, and how we apply it. Bensolve [85] is a solver for multiple objective linear programs
(MOLP). In Bensolve Tools it is utilised to perform many polyhedral calculus operations,
among them convex hull. The key insight behind this is that multiple objective linear pro-
gramming is equivalent to polyhedral projection [84]. Convex hull computation is a special
case of polyhedral projection. This follows from [124, Chapter 1]:

Lemma 2.2.9. The convex hull of a finite set V = {v1, v2, . . . , vk} in Rn is the polytope

conv(V) = {y ∈ Rn | ∃λ ∈ Rk : λ ≥ 0, eTλ = 1, y = V λ},

where V ∈ Rn×k is the matrix with set of columns V and e = (1, . . . , 1)T denotes the all-one
vector of length k. Hence, the convex hull of V is a projection into Rn of the polytope

Q = {(y, λ) ∈ Rn × Rk | λ ≥ 0, eTλ = 1, y = V λ}.
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To understand the computation of conv(V) from Q, let us turn to an arbitrary polyhedral
projection problem. By Fourier-Motzkin Elimination, every linear projection of a polyhedron
is a polyhedron. This leads to the concept of a P-representation of a polyhedron. Let
M ∈ Rn×k, B ∈ Rm×k, a ∈ Rm be given. The triple (M,B, a) represents the polyhedron

P = {Mx | Bx ≥ a} = {y ∈ Rn | ∃x ∈ Rk : y = Mx, Bx ≥ a}. (24)

In what follows, we restrict to polytopes (bounded polyhedra). Given a P-representation
(24) of a polytope, the polyhedral projection problem is to compute an irredundant V-
representation, i.e. a representation as convex hull of finitely many points, and an irredund-
ant H-representation, i.e. a representation by finitely many linear inequalities (cf. [124]).

Given a triple (M,B, a) as above, the associated multiple objective linear program is

min Mx s.t. Bx ≥ a (MOLP)

The upper image of the program (MOLP) is the polyhedron

P =
{
y ∈ Rn | ∃x ∈ Rk : y ≥Mx, Bx ≥ a

}
. (25)

A solution of (MOLP) consists of both an irredundant V- and H-representation of P . This
concept of solution can be used to address the polyhedral projection problem as follows:

Proposition 2.2.10 (cf. [84, Theorem 3]). The solution of the MOLP

min

(
M
−eTM

)
x s.t. Bx ≥ a, (26)

yields an irredundant V- and H-representation of the P-represented polyhedron (24).

The upper image of the MOLP in (26) is the polyhedron

P̄ =
{

(y, z) ∈ Rn × R | y ≥Mx, z ≥ −eTMx, Bx ≥ a
}
. (27)

Corollary 2.2.11. The polytope P = {Mx | Bx ≥ a} is obtained from P̄ by setting

P = {y ∈ Rn | ∃z : (y, z) ∈ P̄ , eTy + z = 0}.

An irredundant V-representation of P derives from the set of vertices of P̄ by deleting their
last components. An H-representation of P̄ gives an H-representation of P by adding the
equation z = −eTy.

Bensolve computes a V-representation and an H-representation of the upper image (27)
using Algorithm 2.2.12. This is a version of Benson’s algorithm. It applies to upper images
satisfying P ⊆ y + Rn

≥0 for some y ∈ Rn. This version suffices for handling projections
of polytopes including the representation of the convex hull of finitely many points. Since
the algorithm is numerical, we work with a prescribed tolerance ε > 0. The output is an
ε-approximation to the upper hull P , i.e. it is a polyhedron O satisfying εe+O ⊆ P ⊆ O.
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Algorithm 2.2.12. (Benson’s algorithm)

input : (MOLP) given by the matrices M , B and vector a; a tolerance ε ≥ 0.
output: ε-approximated V-representation V and H-representation H of P in (25).

1 T ← ∅
2 Compute the H-representation H of a polyhedral outer approximation of P having

the same recession cone as P . Also compute the corresponding V-representation V
3 while (V \ T ) 6= ∅ do
4 Choose a vertex v ∈ V \ T
5 Compute the solution t∗ of the linear program min {t | v + te ∈ P}
6 Compute the solution (u∗, w∗) of the dual linear program

max
{
aTu− vTw | BTu = MTw, eTw = 1, w ≥ 0, u ≥ 0

}
7 if t∗ ≥ ε then
8 Refine H by adding

{
y | (w∗)Ty ≥ aTu∗

}
to the description

9 Update V by performing vertex enumeration on H
10 else
11 T ← T ∪ {v}
12 end

13 end

One starts with an initial outer polyhedral approximation of P . Both an H-representation
and a V-representation are stored. Until the tolerance ε is reached, each iteration adds
a linear inequality to refine the outer approximation of P . An iteration step starts by
choosing a vertex v of the current polyhedron. The V-representation is updated after adding
an inequality. From v one moves in direction e = (1, . . . , 1)T to the boundary point y =
v + t∗e of P . To this end, a linear program has to be solved. The solution of the dual
linear program yields the desired linear inequality which cuts off v and holds with equality
in y. Algorithm 2.2.12 terminates and computes both V- and H-representation of an ε-
approximation of P . For the computations we use the dual Benson algorithm [44]. It is
related to Benson’s algorithm by duality and provides an inner approximation scheme for
the upper hull P .

We employ Bensolve for computing a polyhedral approximation of the convex hull of a
smooth curve C in Rn. This is done by computing the convex hull of a sufficiently large finite
subset A of C. The output gives both an irredundant H- and V-representation of an inner
ε-approximation CA of conv(A), and this is our approximation to conv(C). All facets and all
vertices of CA are known after such a computation. The output also contains the incidence
matrix IA for facets and vertices of CA and the adjacency matrix AA for vertices of CA.

The algorithm is output sensitive. This means that the runtime is mainly dependent on
the number of facets and vertices of the P-represented polytope and the projection dimension.
In particular, the number of sampled points in the interior of CA only marginally influences
the computation time. Another advantage of Benson’s algorithm is the possibility to set
the parameter ε. This feature enables the approximative representation of highly complex
convex hulls in a reasonable amount of time. In addition, the process can be aborted at
any point while still providing an outer approximation. For sufficiently small values of ε, we
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obtain exact solutions, up to numerical inaccuracy of the vertex enumeration routine.

Figure 7: A sample of points (left) from a space curve and its convex hull (right)

Example 2.2.13. Let C be the trigonometric space curve parametrically given by

θ 7→ (cos(θ), sin(2θ), cos(3θ)) . (28)

Its convex hull C = conv(C) is shown in [102, Figure 1]. We select N sample points by
taking

A =
{(

cos
(

2kπ
N

)
, sin

(
4kπ
N

)
, cos

(
6kπ
N

)) ∣∣ k = 0, . . . , N − 1
}
. (29)

Using Bensolve, as described above, we can compute irredundant V- and H-representations
of the inner approximation CA of the polytope conv (A) for various values of N and with
specified accuracy ε. For instance, let N = 100 and ε = 10−9. The sample (29) is shown on
the left in Figure 7. Its convex hull is the polytope CA on the right in Figure 7. It has 70
vertices and 102 facets, so, by Euler’s relation, it has 170 edges. Thus the incidence matrix
IA is of size 102 × 70 and has 340 nonzero entries. The 70 × 70 adjacency matrix AA also
has 340 nonzero entries. The polytope CA in Figure 7 already looks like [102, Figure 1] and
Figure 8. The picture of CA reveals the edge surfaces of C and the two triangles in ∂C. The
identification of such patches from the Bensolve output is our theme in the next subsection.

2.2.3 Boundary of Convex Hulls

Let C be a full-dimensional compact convex body in Rn. The boundary of ∂C is an (n− 1)-
dimensional set whose subset ∂Csm of smooth points is dense. We shall stratify ∂Csm into
finitely many manifolds we call patches. Each patch is an (n− k − 1)-dimensional family of
k-faces of C. For a typical convex body of dimension n = 3, the boundary is comprised of
surfaces of extreme points (k = 0), curves of edges (k = 1), and finitely many facets (k = 2).

For the general definition, we use the concept of the normal cycle of a convex body. Let
Sn−1 denote the unit (n− 1)-sphere. Following [53, eqn (10)], the normal cycle of C equals

N(C) =
{

(u, v) ∈ Rn × Sn−1 : v · (u− u′) ≥ 0 for all u′ ∈ C
}
.
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If ∂C is smooth then N(C) is a Legendrian submanifold of dimension n − 1. If C is not
smooth then we can approximate C by nearby smooth convex bodies Cε, for ε > 0. By
[53, Theorem 3.1], the normal cycle N(C) is the Hausdorff limit of the manifolds N(Cε) for
ε→ 0. The normal cycle N(C) is pure (n−1)-dimensional, and its smooth points are dense.

There are several other ways of defining the normal cycle. The one we like best uses the
dual convex body C∨. Assuming the origin is in the interior of C, we make the identification

N(C) =
{

(u, v) ∈ ∂C × ∂C∨ : v · (u− u′) ≥ 0 for all u′ ∈ C
}
. (30)

The normal cycle comes naturally with two surjective maps

π1 : N(C)→ ∂C, (u, v) 7→ u and π2 : N(C)→ ∂C∨, (u, v) 7→ v. (31)

Let E ⊆ ∂C∨ be the set of exposed points of C∨. We have v ∈ E if and only if there exists
u ∈ C such that π−1

1 (u) = {(u, v)}.
Definition 2.2.14 (Patches). A subset ψ of N(C) with π2(ψ) ⊂ E is called a patch if ψ is
a connected differentiable manifold, dim(π1(ψ)) = n − 1, the fibers of π2 vary continuously
in the Hausdorff metric, and ψ is maximal with these properties.

Definition 2.2.15 (k-Patches). Let ψ ⊂ N(C) be a patch. We say that ψ is a k-patch if
dim(π2(ψ)) = n− k − 1.

This means that π2(ψ) is an (n− k − 1)-dimensional manifold of exposed points of C∨,
and these exposed points support continuously varying k-faces of C.

Remark 2.2.16. If the trajectory C is algebraic then its convex hull C is semialgebraic. Also
the normal cycle N(C) and all its patches ψ are semialgebraic. This follows from Tarski’s
theorem on quantifier elimination, and we find that the number of patches of C is finite.

We believe that finiteness holds more generally for compact trajectories. But we do not
yet know the precise statement. Real analytic geometry is much more delicate than real al-
gebraic geometry. For instance, the family of semianalytic sets is not closed under projection.
We refer to [4] for a recent account. The concept of C-semianalytic sets, introduced in [4]
and named after Cartan, could be the appropriate one for our setting. One might hope that
the convex trajectories and their patches are C-semianalytic when f in (4) is polynomial.

Example 2.2.17. Consider the dynamical system[
ẋ1 ẋ2 ẋ3

]
=
[
2x2 12x3

1 − 5x2 + x3 −24x2
1x2 + 6x2

]
with the starting point at

[
0, 0.1, 0

]
. Its convex hull is shown in the Fig. 8. This convex body

has six patches. There are two 2-patches, namely the two triangles. Each of these 2-patches
are surrounded by the four 1-patches. The 1-dimensional patches are separated by the curve
in blue and the plane.

We now come back to the problem of computing the convex hull boundary in general.
The planar case was dealt with Algorithm 2.2.1. We start with the ε-approximation of the
actual curve. For the algorithm we assume the conditions (H1), (H2) and (H3) on the curve.
Such a curve is called simplicial. Our goal is to identify the patches of the convex hull of the
curve C. The following algorithm computes the patches for n ≥ 3.
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Figure 8: Patches on the convex hull.

Algorithm 2.2.18. (Detection of patches for n ≥ 3)

input : Finite list A of points on a curve C in Rn; a threshold value δ > 0
output: For each k ≥ 1: the expected number #k of k-patches of C = conv (C)

For each i: list of k-polytopes that represent the k-patch Gi

1 Compute vertices V , facets H, incidence list IA and adjacency list AA of conv (A)
2 Build a graph G with node set H as follows: two facets H1, H2 form an edge if their

unit normals v(Hi) have distance ≤ δ, dim(H1 ∩H2) = n− 2, and d(H1, H2) ≤ δ.
3 foreach connected component Gi of the graph G do
4 foreach facet H ∈ Gi do
5 Find representatives U = {u0, . . . , uk} of the δ-proximity clusters

6 of vertices of H such that F = conv (U) is a k-face of conv
(
A
)

7 Associate the tuple (u0, . . . , uk; v) with that node of Gi

8 end
9 Gi represents a k-patch of C if k is the largest index encountered in the loop above

10 Adjust all tuples with smaller indices found in step 7 to that common value of k

11 end
12 Output (#1, . . . ,#n−1), where #k is the number of graphs Gi representing k-patches

The Algorithm 2.2.18 takes the ε- approximation of the curve C, and a positive δ as the
input. It uses Bensolve Tools to compute the convex hull of the points. In the next step,
similar to Algorithm 2.2.1, it builds a graph G where vertices are the facets of the polytope
A = conv(A). Each facet H comes with its unit normal vector v(H). Step 2 reflects the
conditions in the definition of patches. For instance, the criterion d(H1, H2) ≤ δ, stating
that H1 and H2 are close in Hausdorff distance, reflects the continuous variation of k-faces.
The exposed points in π2(ψ) ⊂ E are represented by the vectors v(Hi). The requirement
that they are δ-close along the edges of G is our discrete version of the smoothness of ψ. In
step 3 we identify the connected components of G, and these represent the patches of C.

The inner loop in steps 5–7 reflects our results in Subsection 2.2.1. By Theorem 2.2.7,
every k-face of C is approximated by a facet H ∈ G. Here, for each vertex of the k-face, the
algorithm chooses a nearby vertex ui of H. In the loop between steps 4 and 8, it can happen
that a δ-proximity cluster corresponds to more than one vertex of the k-face. This happens
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for k-faces with an edge shorter than δ. For that reason, we take the maximum in step 9. In
a connected component of the graph not all facets may be classified as the same dimensional
face after step 9. They represent k-faces of C, but step 5 identifies less than k+ 1 proximity
clusters at the fixed tolerance level δ. For such facets, step 10 adds additional points ui from
an existing cluster to get up to the correct value of k for that patch.

We implemented this algorithm for n = 3 and n = 4. A detailed theoretical analysis of
this algorithm is left for future work. The task is to identify the precise conditions under
which the output detects the true patches when applied to ε-approximations with ε → 0.
The code for dimensions 2, 3 and 4 is made available at

http://tools.bensolve.org/trajectories. (32)

Example 2.2.19. We illustrate the output of Algorithm 2.2.18 when C is a random trigo-
nometric curve of degree six in R4 and A ⊂ C is a finite approximation. Figure 9 shows the
graph G. Each node in G is a face of the polytope conv(A). We find #3 = 0. There are
#1 = 3 patches for k = 1, represented by the three connected components of G on the right
in Figure 9. These three connected graphs encode surfaces worth of edges. The number of
patches for k = 2 is #2 = 2. These two components of G are shown on the left in Figure 9.
Each node represents a triangle face of conv(C). So, the picture on the left shows two curves
worth of triangle faces in the boundary of our 4-dimensional convex body.

Figure 9: Two 2-patches (left) and three 1-patches (right) in the boundary of a 4-dimensional
convex body, obtained as the convex hull of a trigonometric curve of degree six. The
picture shows the graph G, with five connected components Gi, that is computed by Al-
gorithm 2.2.18.

Trigonometric curves also arise from linear dynamical systems. Here (4) takes the form
ẋ = Ax, where A is a real n × n-matrix. We tested our convex hull algorithms on linear
systems for n = 3, 4. We sampled matrices A with no real eigenvalues. This ensures that
the trajectories are bounded in Rn. They can be written in terms of trigonometric functions.
It was shown in Theorem 2.1.8 that convex hull of every trajectory of a linear dynamical
system is forward-closed. Thus, computing the convex hull is equivalent to computing the
attainable region.
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Consider the generalised moment curve, whose convex hull was studied by Smilansky
[114, Theorem 1]. Let z = (1, 0, 1, 0) and consider the linear dynamical system given by

A = 2π ·

 0 −p 0 0
p 0 0 0
0 0 0 −q
0 0 q 0

 ,

where p and q are relatively prime positive integers. The trajectory is the closed curve

x(t) =
(

cos(2πpt) , sin(2πpt) , cos(2πqt) , sin(2πqt)
)
.

We can restrict to 0 ≤ t < 1. The convex hull of the curve is a 4-dimensional convex body.
By [114, Theorem 1], there are no 3-dimensional faces. Assuming p, q ≥ 3, there are two
1-patches and two 2-patches. The explicit description in [114] makes this a useful test case.

Example 2.2.20 (p = 3, q = 4). The line segment conv
{
x(s), x(t)

}
is an edge if and only if

1

4
< |s− t| < 1

3
or

2

3
< |s− t| < 3

4
.

In addition to this surface of edges, there are two curves of 2-faces, namely the triangles

conv
{
x
(
t
)
, x
(
t+ 1

3

)
, x
(
t+ 2

3

)}
for 0 ≤ t < 1

3

and the squares

conv
{
x
(
t
)
, x
(
t+ 1

4

)
, x
(
t+ 1

2

)
, x
(
t+ 3

4

)}
for 0 ≤ t < 1

4
.

These are all the exposed faces of the convex hull of the trajectory. Even though the curve is
not simplicial, Algorithm 2.2.18 works well, and we verified Smilansky’s findings [114] using
our software.

For a space curve, an edge surface is ruled irreducible surface that forms the boundary of
the convex hull of the curve. It is the union of all stationary bisecants. A tritangent plane
is a plane that is tangent to the curve at 3 or more points. In [102] the authors proved the
following theorem for a smooth compact space curve.

Theorem 2.2.21. Let C be a general smooth compact curve of degree d and genus g in
R3. The algebraic boundary ∂C of its convex hull C is the union of the edge surface and
the tritangent planes. The edge surface is irreducible of degree 2(d− 3)(d + g − 1), and the
number of complex tritangent planes equals 8

(
d+g−1

3

)
− 8(d+ g − 4)(d+ 2g − 2) + 8g − 8.

We will now report on the experiments conducted using our implementation on random
trigonometric space curves and compare our findings with the above result. The trigono-
metric space curves can be represented as:

xj(t) =
d∑

k=1

Ajk · cos(2πkt) +
d∑

k=1

Bjk · sin(2πkt) + Cj for j = 1, . . . , n.
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The coefficients of cos and sin can be written as n× d matrices A and B. The matrix C is
a column matrix of constants. If A, B, and C are general matrices then the resulting curve
is algebraic curve of degree 2d. We randomly sampled the matrices A, B, and C. We used
our implementation on this sample of trigonometric curves for various degrees and computed
the number of patches and tritangent planes. Table 1 records the data for curves of various
degree. In the first row we record the maximum number of one dimensional patches observed
for each degree. In the second row we record the maximum number of real tritangent planes
observed in the boundary of the convex hull of the sampled trigonometric curves. For each
degree the fourth and the fifth row gives the degree of the edge surface and number of
complex tritangents for a generic curve computed using the previous theorem.

degree 2d 6 8 10 12 14 16 18 20 22 24 26 28
max #1 10 16 24 26 30 32 35 38 41 44 46 50
max #2 6 10 16 17 20 21 24 26 28 30 34 34

edge surface 30 70 126 198 286 390 510 646 798 966 1150 1350
tritangents 8 80 280 672 1320 2288 3640 5440 7752 10640 14168 18400

Table 1: Census of random trigonometric curves in 3-space
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Figure 10: The convex hull of a trigonometric curve of degree 14 in 3-space. The boundary
of this convex body consists of triangles and of 1-patches in a ruled surface of degree 286.

Example 2.2.22 (2d = 14). We consider the curve defined by the following 3× 7 matrices

A =

 0.28561 −0.024204 −0.07664 0.43593 0.15244 −0.24464 0.41538
−0.37439 −0.30106 0.32118 0.38410 0.29990 −0.14990 −0.45481
−0.17997 −0.16046 −0.23522 0.47912 −0.08084 0.19628 0.46895
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and B =

−0.39109 0.06742 −0.12451 0.44073 −0.20822 −0.03646 −0.01034
0.48646 0.38580 −0.13216 0.36184 0.30633 −0.14131 0.48650
−0.15326 0.32591 0.02569 0.23351 −0.34972 0.04772 0.42441

 ,

along with the vector C =
(
0.39768 0.42346 0.23797

)T
. The convex hull of this curve has

20 triangle facets. It is shown in Figure 10. The planes that define the triangles are tritangent
planes. The curve is generic and has 1320 tritangent planes over C. The nonlinear part of
the boundary is the edge surface [102]. This is an irreducible ruled surface of degree 286.

2.3 Forward Closed Convex Sets

In previous section we numerically computed and represented the convex hulls of curves
and trajectories. The attainable region is a convex hull that is also forward closed. In this
section, we answer the question if the convex hull, given as the output of Algorithm 2.2.18,
is forward closed. To do that we check if the vector field on the boundary of the convex
hull points outside or inside. If it points inside at all points then the convex hull is forward
closed. Let v be an outward pointing unit normal vector at the face of C containing the
point u. We say that the right hand side of (4) points inward at u ∈ ∂C if f(u) · v ≤ 0. It
points outward otherwise.

First we note that every algebraic curve can be locally represented as a trajectory of a
polynomial dynamical system. Let C be an algebraic curve in Rn and let y be a regular point
on C. We construct an appropriate vector field f(x) on Rn as follows. Let g1, g2, . . . , gn−1

be polynomials in x = (x1, x2, . . . , xn) that cut out the curve C locally near its point y. Let
J denote their Jacobian matrix. Thus, J is the (n − 1) × n matrix whose entry in row i
and column j is the partial derivative ∂gi/∂xj. Let Ji be (−1)i+1 times the determinant
of the submatrix of J obtained by deleting the ith column. Fix the vector of polynomials
f = (J1, J2, . . . , Jn)T . Locally at y, the kernel of J is the line spanned by the vector f . This
follows from Cramer’s rule, and it implies that f(y) is a tangent vector to the curve C at its
point y. The system then we are interested in is the dynamics given by ẋ = f(x) when the
starting point is y ∈ C.

2.3.1 Planar Case

We now first look at the planar case, i.e n = 2. The boundary of the convex hull C
is composed of arcs and long edges given by Algorithm 2.2.1. However, if the curve C
is algebraic, we can explicitly compute the boundary by computing the bitangents of the
curve. For each point y on an arc of C, the vector f(y) is tangent to the curve, so there is
nothing to be checked at the arcs. To decide whether C is forward closed with respect to
the dynamics (4), we must examine the edges of C. Consider the relative interior points of
an edge joining the points p and q on the curve,

y = λ · p + (1− λ) · q where 0 < λ < 1. (33)

The following 2× 2 determinant is a polynomial in the parameter λ:

g(λ) = det
(
f(y) , p− q

)
. (34)
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We compute all real zeros of the polynomial g(λ) in the open interval (0, 1). The zeros
partition the edge of C into segments where f(y) points either inward or outward, relative
to the convex region C. If there are no zeros then the entire edge of C is either inward
pointing or outward pointing. In this manner we partition ∂C. If there are no points that
point outwards C is forward closed.

Figure 11: The Hamiltonian vector field defined by the Trott curve and two of its trajectories.

Let C be the curve in R2 defined by a polynomial equation h(x, y) = 0. The associated
dynamics is given by

ẋ =
∂h

∂y
(x, y) and ẏ = − ∂h

∂x
(x, y). (35)

For planar case this system is called Hamiltonian system. At any point that is not a critical
point of h, the right hand side of (35) is orthogonal to the gradient vector of h. This means
that the vector field is tangent to the level curves h(x, y) = c, where c ranges over R. From
this we infer the following well-known result.

Proposition 2.3.1. Every trajectory of (35) is a piece of a level curve of the polynomial
h(x, y).

We next illustrate a Hamiltonian system and compute the attainable region for a curve
that is familiar in computational algebraic geometry.

Example 2.3.2 (n = 2). The Trott curve is the quartic curve in the plane R2 defined by

h(x, y) = 144(x4 + y4)− 225(x2 + y2) + 350x2y2 + 81.

This curve consists of four non-convex ovals, which implies that it has 28 real bitangents.
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The vector field for the Hamiltonian system (35) is shown in Figure 11, along with two
of its trajectories. Fix any point (u, v) in R2 and set c = h(u, v). Then the trajectory of
(35) that starts at (u, v) travels on the quartic curve defined by h(x, y) = c. Consider the
starting point (0,−1), which lies on the original Trott curve h(x, y) = 0. Its trajectory is
one of the four ovals, namely the oval at the bottom that is red in Figure 12 (left) and blue
in Figure 11.
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Figure 12: A pair of ellipses encloses the Trott curve and bounds the attainable region.

The region bounded by that oval is not convex. Its convex hull has one bitangent edge,
namely the segment from (−a, b) to (a, b) where

a = 0.4052937596229429488 and b = −0.7125251813139792270.

This convex hull is not forward closed. This can be seen by taking any starting point
(x, b) where 0 < x < 0.239173943. The resulting trajectory is a convex curve that lies above
the original oval. It is shown in red in Figure 11. The set of all trajectories as x ranges from
0 to a sweeps out the attainable region for (0,−1). This region is a semialgebraic set. Its
boundary consists of parts of two ellipses. Their union is the zero set of h(x, y)− 1053

638
.

The containment of the Trott curve in the ellipse is shown on the left in Figure 12.
The attainable region of the lower oval in the Trott curve is the convex set of the right in
Figure 12.

2.3.2 General Case

We will now discuss the case when the convex hull is given as the output of Algorithm 2.2.18.
We partition the boundary ∂C into two regions. The region where the vector field points
outwards is coloured red and where it points inwards is coloured green. From equation (31)
the set {u ∈ Rn | π2(π−1

1 (u)) = {v}} is dense in ∂C and the boundary between inward and
outward pointing vectors f(y) is the image under the projection π1 : N(C)→ ∂C of the set{

(u, v) ∈ N(C) : φ(u) · v = 0
}

. This is an analytic set of dimension n − 2 inside the
(n− 1)-dimensional normal cycle N(C).
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The output of Algorithm 2.2.18 represents a k-patch by a connected graph Gi. We refer
back to the Definition 2.2.15 for the definition of ψ as a k-patch. Each node of Gi is a face
F = conv{u0, . . . , uk} along with a normal vector v at C. We are interested in the restriction
of the boundary above to the patch of interest:

π1

({
(u, v) ∈ ψ : f(u) · v = 0

})
. (36)

Algorithm 2.3.3 computes a partition of the approximation computed by Algorithm 2.2.18
into inward and outward pointing regions.

Algorithm 2.3.3. (Partitioning the boundary of the convex hull of a trajectory)

input : The graphs Gi representing the patches of the convex hull of a trajectory of
(4)

output: Partition of the boundary into inward and outward pointing regions
1 foreach connected graph Gi in the output of Algorithm 2.2.18 do
2 foreach node ({u0, . . . , uk}, v) of the graph Gi do

3 Set u =
∑k

i=0 λjuj where λj are nonnegative unknowns satisfying
∑k

j=0 λj = 1

4 Compute the (k − 1)-dimensional hypersurface in ∆k defined by f(u) · v = 0
and identify inward and outward pointing regions

5 end

6 end

For each node of the connected component Gi, we have the approximated k vertices of
the face represented by the node. Inner loop of the above algorithm then computes the zero
set of the polynomial that separates the face into regions where vector field points inwards
and the regions where it points outwards. This is done for each face. This zero set is given
by f(u) · v = 0 where v is the normal vector of the face which is also given as the output of
Algorithm 2.2.18.

When the curve is an algebraic curve, recall that the associated dynamical system is
locally given by ẋ = f(x) = (J1, J2, . . . , Jn)T . Analogous to Proposition 2.3.1 we have the
following result:

Proposition 2.3.4. The trajectory of the dynamical system ẋ = f(x) that starts at a point
y on the algebraic curve C remains on the curve C. It either cycles around one nonsingular
oval of C, or it diverges towards infinity in Rn, or it converges to a singular point of C.

In this case, we are solving the following polynomial equation

f(u) · v =
n∑
l=1

Jl
(
λ0u0 + · · ·+ λkuk

)
· vl = 0 for l = 1, 2, . . . , n.

In some situations, we might know the equation g = 0 that holds on the hypersurface
π1(ψ) in Rn. Here g is analytic or polynomial, depending on the instance. With this, we can
write

vl =
∂g

∂xl

(
λ0u0 + · · ·+ λkuk

)
for l = 1, 2, . . . , n.
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This formula allows us to solve the equation f(u) · v = 0 simultaneously on the entire and
exact k-patch, and not just on each approximated k-face of ψ individually, as it is done in
line 4 of Algorithm 2.3.3.

Example 2.3.5 (n = 3). We partition the boundary of the convex body of the curve given
by z− 4x3 + 3x = 0 and x2− y2−xz = 0. The associated dynamical system is then given by

ẋ = −2y and ẏ = 12x3 − 5x+ z and ż = −24x2y + 6y. (37)

Its edge surface has two irreducible components, of degrees 3 and 16, each of which contrib-
utes two patches. The cubic is g2 = z − 4x3 + 3x, same as one of the defining polynomials.
The degree 16 polynomial g1 is displayed in [102, §1]. On the cubic patches, the equation
∇g2 · f = 0 holds identically, so these patches are not partitioned. Hence, every trajectory
that starts on a cubic patch remains in that patch. The two degree 16 patches are partitioned
by a curve of degree 262, obtained by intersecting the patches with the surface defined by
∇g1 · f = 0. The two triangle facets lie in the planes z = ±1. They are partitioned by the
lines y = 0 and x = ±1/2.

2.4 Applications

Given an arbitrary polynomial dynamical system (4), it is natural to ask whether it arises
from some chemical reaction network G. The solution to this inverse problem was given by
Hárs and Tóth [60]. They showed that f = (f1, . . . , fn) is realised by a graph G as above if
and only if each monomial with negative coefficient in fi is divisible by xi, for i = 1, 2, . . . , n.

We discussed Hamiltonian systems in Subsection 2.3.1. The following result characterises
chemical reaction dynamics in R2 that is Hamiltonian. It would be interesting to study such
reaction networks, along with the higher-dimensional versions arising from Proposition 2.3.4.

Proposition 2.4.1. Let h(x, y) be a polynomial in two variables. The Hamiltonian system
(35) can be realised as a mass action system (3) if and only if the coefficients of all powers
of y in h(x, y) are non-negative and the coefficients of all pure powers of x are non-positive,
i.e.

h(x, y) = xy · a(x, y) − b(x) + c(y), where b and c have nonnegative coefficients.

Proof. This is immediate from Theorem 3.2 in [60].

We now apply the algorithms in Subsection 2.2.3 and Subsection 2.3.2 to two interesting
chemical reaction networks.

Example 2.4.2 (n = 4,m = 5). We revisit the Van de Vusse reaction which has been
studied extensively in the chemistry literature (cf. [95, Chapter 6]). The network equals

X2
1

X1
1

X3

X4 .
10

2X1

34



The rate constants κij are written over the edges. The mass action system in (3) equals

f(x) =
[
x1 x2 x3 x2

1 x4

]
·


−1 1 0 0 0
0 −1 1 0 0
0 0 0 0 0
0 0 0 −10 10
0 0 0 0 0

 ·


1 0 0 0
0 1 0 0
0 0 1 0
2 0 0 0
0 0 0 1

 , (38)

where xi is the concentration of species Xi. Explicitly, this is the dynamical system (4) with

f(x1, x2, x3, x4) =
[
−x1 − 20x2

1 , x1 − x2 , x2 , 10x2
1

]
.

Computations of the critical reactors of this system are discussed in [95, Section 5.3].
Fix the starting point y = (1, 0, 0, 0). The trajectory starting at y converges to the steady

state y∗ = (0, 0, 0.1522, 0.4238). The dynamics takes place in R4, but the stoichiometry space
has dimension 3. In our analysis we use the projection onto the first three coordinates. With
this, the trajectory is an arc in a 3-dimensional space, shown in blue in Figure 13.

Figure 13: Convex hull of a trajectory of the Van de Vusse reaction and the partition of its
boundary

We computed the convex hull of the trajectory starting at y for (3) using Algorithm
2.2.18, and we then partitioned its boundary using Algorithm 2.3.3. The result is shown
in Figure 13. The convex body has two 1-patches, obtained by joining each of the two
endpoints with each point on the curve. One of the patches is entirely green. This means
that the vector field is pointing inward on that patch. The other patch is partitioned into a
green region and a red region, as shown on the right in Figure 13. Red color indicates that
the vector field points outward. In particular, the convex hull of the trajectory is strictly
contained in the attainable region.

The mass action system (3) is called weakly reversible if every connected component of
the underlying directed graph is strongly connected in G, i.e. there is a directed path from
any node in the component to any other node. It was conjectured in the first version of [71]
that convex trajectories of weakly reversible systems are forward closed. We here numerically
disprove that conjecture.
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Proposition 2.4.3. Not all convex trajectories of weakly reversible systems are forward
closed.

The proof is by direct computation using our algorithms. Here is the counterexample:

Example 2.4.4 (Weakly Reversible System). Consider the following weakly reversible net-
work

2X1 + X2
2
2

X1 + X3
4
4

2X2 + X3
2
4

X1 + X2.

The three coordinates for (4) are explicitly given by

f1 = −10x2
1x2 + 10x2

2x3 − 4x1x2 + 2x1x3,
f2 = 2x2

1x2 − 6x2
2x3 + 4x1x2 + 2x1x3,

f3 = 6x2
1x2 − 6x2

2x3 + 4x1x2 − 2x1x3.

This system has deficiency zero, and it is a toric dynamical system [35]. There are no con-
servation relations and therefore, the trajectories are curves that span the ambient space R3.

Figure 14: Convex hull of a trajectory of a weakly reversible system that is not forward
closed

Let y = (4, 4, 2). The convex body C = convtraj(y) was computed using Algorithm
2.2.18 and is shown in Figure 14. The triangle shown in gray is a 2-patch of C. The vector
field given by (f1, f2, f3) points inward at all points on that triangle facet. We also show
the partition of the 1-patches of C, as computed by Algorithm 2.3.3. One of the patches is
partitioned into a green region and a red region. As before, the vector field points outward
at each red point. We conclude that the convex hull C of the trajectory that starts at y is
not forward closed.
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3 Optimisation and Real Algebraic Geometry

The contents in this chapter is based on [72, 73]. Section 3.1 is a joint work with Mario
Kummer, Daniel Plaumann, Mahsa Sayyary, and Bernd Sturmfels published online in Ex-
perimental Mathematics. Section 3.2 is an ongoing joint work with Yue Ren, Mohab Safe El
Din, and Johannes W. R. Martini. It tackles an optimisation problem relevant to biology.

3.1 Sixty Four Curves

A classical theme in real algebraic geometry is the topological classification of algebraic
curves in the real projective plane P2

R. Hilbert’s 16th problem asks for the topological types
of smooth curves of a fixed degree d. In this section we denote a curve by C, unlike the
last chapter where it was denoted by C. Two curves C and C ′ have the same type if some
homeomorphism of P2

R → P2
R restricts to a homeomorphism CR → C ′R. This problem has

been solved upto d = 7, thanks to contributions by many mathematicians, including Hilbert
[61], Rohn [106], Petrovsky [100], Rokhlin [105], Gudkov [59], Nikulin [97], Kharlamov [76],
and Viro [119, 120, 121]. We particularly focus on the case d = 6.

For a smooth curve C in plane P2
R, each of its connected component C0 is homeomorphic

to a circle. If the complement P2
R\C0 is disconnected, then C0 is called an oval, otherwise a

pseudoline. An odd degree curve always has exactly one pseudoline. If C has even degree,
then all connected components are ovals. The two connected components of the complement
of an oval are called the inside and the outside. The former is homeomorphic to a disk, the
latter to a Möbius strip. An oval C0 contains another oval C1 if C1 lies in the inside of C0.
In that case, we refer to C0 and C1 together as nested ovals. We call an oval empty if it
contains no other oval. The topological type of the curve C is determined by the number of
ovals together with the information of how these ovals contain each other. We denote the
type of a smooth plane sextic C in the real projective plane P2

R by

• k if C consists of k empty ovals;

• (k1) l if C consists of an oval C0 containing k empty ovals and of l further empty ovals
lying outside C0;

• (hyp) if C consists of three nested ovals (where ’hyp’ stands for ’hyperbolic’).

Consider the set of non real points CC\CR on the Riemann surface given by the irreducible
curve C. If this set has two connected components then the curve C is said to be of dividing
type, else non-dividing. A finer notion of equivalence of types of curves comes from the
discriminant ∆. This is an irreducible hypersurface of degree 3(d − 1)2 in the projective

space Pd(d+3)/2
R of curves of degree d. Points on ∆ are singular curves. The rigid isotopy

classes are the connected components of the complement Pd(d+3)/2
R \∆. If two curves C and

C ′ are in the same rigid isotopy class, then they have the same topological type. The converse
is not true in general, as shown by Kharlamov [76]. The rigid isotopy type of a smooth plane
sextic determines whether it is dividing or not. The following is the well known classification
of sextics, found in Viro’s survey article [120, §7].
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Theorem 3.1.1 (Rokhlin–Nikulin). The discriminant of plane sextics is a hypersurface of
degree 75 in P27

R whose complement has 64 connected components. The 64 rigid isotopy types
are grouped into 56 topological types, with the number of ovals ranging from 0 to 11. The
distribution is shown in Table 2. The 56 types form the partially ordered set in Figure 15.

The 64 types in Theorem 3.1.1 were known to Rokhlin [105]. The classification was
completed by Nikulin. It first appeared in his paper [97] on the arithmetic of real K3
surfaces.

Number of ovals 0 1 2 3 4 5 6 7 8 9 10 11 total
Count of rigid isotopy types 1 1 2 4 4 7 6 10 8 12 6 3 64
Count of topological types 1 1 2 4 4 5 6 7 8 9 6 3 56

Table 2: Rokhlin–Nikulin classification of smooth sextics in the real projective plane

Figure 15 is a refinement of Viro’s diagram in [121, Figure 4]. It shows all possible to-
pological types of degree six planar curves. These form a partially ordered set with cover
relations corresponding to either fusing two ovals together or shrinking an oval until it van-
ishes (cf. Theorem 3.1.6). We know from [97, p. 107] that all but eight of the 56 topological
types correspond to exactly one rigid isotopy class. The types shown in red in Figure 15
are topological types that always divide their corresponding Riemann surface. The top row
contains the three types with 11 ovals. These are denoted (91)1, (51)5 and (11)9. Any degree
6 curve with 11 ovals always divides the Riemann surface into two connected components.
Any curve of the type shown in blue in Figure 15 is of non dividing nature. The following
eight types consist of two rigid isotopy classes:

(41) (21)2 (51) 1 (31)3 (11)5 (81) (41)4 9. (39)

These are shown in purple in the figure. Note that the maximal elements in the poset of
sextics are necessarily of dividing type:

(91)1 (51)5 (11)9 (61)2 (21)6 (hyp). (40)

In summary, of the 56 topological types of smooth plane sextics, precisely 42 types are non-
dividing. The six types in (40) are dividing, and the eight types in (39) can be dividing or
non-dividing. Hence, there are 14 rigid isotopy types that are dividing. The subset of P27

R
consisting of all dividing sextics is the closure of the union of these 14 rigid isotopy types.
This accounts for all 64 rigid isotopy types (connected components of P27

R \∆) in the census
of Theorem 3.1.1.

Many new results and questions can be derived by the computational framework de-
veloped in this section. We give an example concerning reducible sextic curves that consists
of six distinct lines. This 12-dimensional family in P27

R is the Chow variety of factorisable
forms.

Proposition 3.1.2. Configurations of six general lines appear in the closure of precisely
35 of the 64 rigid isotopy classes. These are the classes that meet the Chow variety in a
generic point. These 35 classes are marked with an asterisk in Table 8, in the column on
eigenvectors.
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Figure 15: The 56 types of smooth plane sextics form a partially ordered set. The colour
code indicates whether the real curve divides its Riemann surface. The red curves are
dividing, the blue curves are non-dividing, and the purple curves can be either dividing or
non-dividing.
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3.1.1 Discriminantal Transitions

Ternary sextics are written as

f =
∑

i+j+k=6

cijkx
iyjzk. (41)

The discriminant ∆ of f is an irreducible hypersurface of degree 75 in P27
R . We identify ∆

with its defining irreducible polynomial over Z in the 28 unknowns cijk. Each point on ∆
corresponds to a singular curve of degree 6. Each connected component of the complement
R[x, y, z]6\∆ corresponds to one of our 64 types. For all systematic constructions, it is then
imperative to work with the discriminant.

We evaluate ∆ using Sylvester’s formula, as stated by Gelfand, Kapranov and Zelevinsky
[55, Theorem 4.10, Chapter 3]. This expresses ∆ as the determinant of a 45× 45-matrix Sf .
Each entry in the first 30 columns of Sf is either 0 or one of the coefficients cijk. The entries
in the last 15 columns are cubics in the cijk. So, the degree of det(Sf ) is 75, as required.
The Sylvester matrix Sf is the representation in monomial bases of an R-linear map

Sf : (R[x, y, z]3 )3 ⊕ R[x, y, z]4 −→ R[x, y, z]8

that is defined as follows. On the first summand, it maps a triple of cubics to an octic via

Sf : (a, b, c) 7→ a
∂f

∂x
+ b

∂f

∂y
+ c

∂f

∂z
.

On the second summand, the map Sf takes a quartic monomial xryszt to the octic det(Mrst),
where Mrst is any 3× 3-matrix of ternary forms that satisfies the homogeneous identity∂f/∂x∂f/∂y

∂f/∂z

 = Mrst ·

xr+1

ys+1

zt+1

 .

The entries of Mrst are linear in the cijk, so det(Mrst) is an octic in x, y, z whose coefficients
are cubics in the cijk. These are the entries in the column of Sf that is indexed by xryszt.

Proposition 3.1.3. The discriminant ∆ equals the determinant of the 45× 45-matrix Sf .

Proof. We use Sylvester’s formula for the resultant of three ternary quintics. This is [55,
Theorem III.4.10] for d = 5 and k = 4. If we take the three quintics to be the three partial
derivatives of f , then we get the matrix Sf above. That resultant equals our discriminant
because both are non-zero homogeneous polynomials of the same degree 75 in the cijk.

A general point in the discriminant is curve f that has precisely one ordinary node.
If f is in the real locus ∆R, then that node is a point in the real plane P2

R. Two of the
64 types are connected by a discriminantal transition if there is a curve in the closure of
both of the components having only one singular point which is an ordinary node. These
transitions form the cover relations of the poset in Figure 15. There are three different
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types of discriminantal transitions. If the singular curve has an isolated real point (acnode),
defined locally by x2 + y2 = 0, then the transition corresponds to removing one of the empty
ovals. We call this operation shrinking of ovals. Itenberg [69] uses the term contraction. The
inverse operation is adding an empty oval.

By the way of the following lemma and the subsequent theorem, well-known to the
experts, we make observations regarding the adjacencies of different connected components
in the complement of the ∆.

Lemma 3.1.4. Shrinking an oval always leads to a curve of non-dividing type.

Proof. Consider a real plane curve C with only one singularity p that is an acnode. Since
being of non-dividing type is an open condition, we can assume that C is of dividing type.
Then p is in the closure of both connected components of CC\CR. In particular, (CC\CR)∪{p}
is connected. Therefore, after shrinking an oval we get a curve of non-dividing type.

The other type of ordinary node consists of two crossing real branches (crunode), defined
locally by x2−y2 = 0. There are two possibilities: The connected component containing the
node is either two ovals intersecting in one point, or two pseudolines intersecting in one point.
The case of one oval and one pseudoline cannot occur in even degree. In the following we
describe the topology of small perturbations of the nodal curve in each of these two cases.
In the former case, the transition consists of two ovals coming together and forming one
oval. This happens in one connected component of the complement of all other ovals. We
call this transition fusing of ovals. Itenberg [69] uses the term conjunction. This operation
reduces the number of ovals by one. In the case when two pseudolines intersect, every small
perturbation of the nodal curve has the same number of ovals but the interior and exterior
of one outermost oval are exchanged. We call this operation turning inside out. An example
of turning inside out is shown in Figure 16. For plane conics, turning inside out is the only
possibility. For quartics, all three transitions are possible. We summarise our discussion in
the following theorem.

Theorem 3.1.5. For curves of even degree, every discriminantal transition between rigid
isotopy types is one of the following: shrinking of ovals, fusing of ovals, and turning in-
side out.

Proof. Let C be a real plane curve of even degree with exactly one ordinary singularity p. If
p is an acnode, then C corresponds to shrinking. Let p be a crunode. There are two subsets
C1, C2 ⊂ CR, both homeomorphic to the circle, such that C1 ∩ C2 = {p}. Let π : C̃ → C be
the normalisation map. The fiber π−1(p) consists of exactly two points p1, p2 ∈ C̃R.

Suppose that p1 and p2 belong to the same connected component of C̃R. If C1 or C2 does
not disconnect P2

R, there would be a small deformation of C to a smooth curve having (at
least) one pseudoline as one of the connected components of its real part. Since this is not
possible, both C1 and C2 disconnect P2

R. This case corresponds to fusing of ovals.
Next suppose that p1 and p2 belong to different connected components of C̃R. For both

bifurcations of the node, the number of connected components of the real part of the curve
stays the same. If C1 or C2 disconnected P2

R, then there would be another intersection point
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of C1 and C2 besides p. Thus, P2
R\Ci is connected for i = 1, 2, and P2

R\(C1 ∪ C2) has two
connected components, both homeomorphic to an open disc. Depending on the bifurcation
of the node, one of these connected components is still homeomorphic to an open disc after
deformation and the other one is not. This corresponds to turning inside out.

Figure 16: Type (21)2d transitions into Type (21)2nd by turning an oval inside out.

It is instructive to examine the diagram in Figure 15 from the perspective of discrim-
inantal transitions. The edges in the poset correspond to shrinking or fusing. There are
three possibilities for what might be geometrically possible: shrinking only, fusing only, or
shrinking and fusing. For instance, Type (11) can become Type 1 by either shrinking the
inner oval, or by fusing the two nested ovals. Both possibilities are geometrically realised
by a singular curve with a single node that lies in the common boundary between the two
types.

Theorem 3.1.6 (Itenberg). Each of the edges in Figure 15 is realised by shrinking an empty
oval, except the one between (hyp) and (2). Not every edge is realised by fusing two ovals.

Proof. The first statement is [69, Prop. 2.1]. Furthermore, it was shown in [69] that the
transition from (11)9 to 10 cannot be realised by fusing.

One possible way of explicitly realising edges by fusing is to use Gudkov’s constructions
[59] and the following lemma which is a special case of a theorem due to Brusotti [25].

Lemma 3.1.7. Let C1, C2 ⊂ P2 be two smooth real curves of degrees 2 and 4 (resp. 1 and 5)
intersecting transversally. By a small perturbation, we can fix any one of the real nodes of
the sextic curve C1 ∪ C2 and perturb all the others independently in any prescribed manner.

Proof. Let q, p1, . . . , p7 ∈ P2
R be eight distinct real points lying on the smooth quadric C1.

We claim that for every tuple ε ∈ {±1}7, there is a sextic which is singular at q and whose
sign at pi is εi. Let L be the linear system of all sextic curves that are singular at q. The
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pull-back of L to C1
∼= P1 is the set of all bivariate forms of degree 12 having a double root at

q. Since for any distinct 7 points in R there is a polynomial of degree 10 that vanishes on all
but one of these points, the claim follows. The other case (degrees 1 and 5) is analogous.

Let us now examine our third discriminantal transition. Turning inside out preserves the
number of ovals, so it is an operation that acts on each of the rows in Figure 15 separately.

Proposition 3.1.8. If we turn an outermost oval of a smooth sextic inside out, then the
topological type of the resulting curve is the mirror image of the original curve when reflected
along the vertical axis in Figure 15. If the curve was dividing, then it is non-dividing after
turning inside out. Curves that are non-dividing can become either dividing or non-dividing.

Proof. Let C be a real plane curve with exactly one ordinary crunode p. In a neighborhood
of p, the Riemann surface CC is homeomorphic to the union of two discs D1 and D2 with
D1∩D2 = {p}. The real part CR divides D1 and D2 into two connected components D+

1 , D−1
and D+

2 , D−2 respectively. One of the two possible smoothenings of the node p connects D+
1

with D+
2 and the other one connects D+

1 with D−2 . Thus, if C is dividing then exactly one
of the two deformations results in a dividing curve. Otherwise, both are non-dividing.

Not every vertical reflection in Figure 15 can be realised geometrically by a discriminantal
transition. For instance, the types (91)1 and (11)9 are related by a vertical reflection. But
both types are dividing, so Proposition 3.1.8 implies that they are not connected by turning
inside out. Put differently, these two components of P27

R \∆ do not share a wall of codimension
one. In fact, turning inside out can only happen for curves with at most 9 ovals. Indeed,
consider a plane sextic curve with exactly one crunode and r connected components, one of
which is the intersection of two pseudolines. The normalisation of such a curve has genus 9
and r + 1 connected components. By Harnack’s inequality this implies that r ≤ 9.

3.1.2 Construction of Representatives

In this subsection we elaborate on different techniques employed to come up with the 64
representatives. These are listed in Subsection 3.1.6. To construct our list of 64 representat-
ives, we relied on various methodologies. Firstly, small coefficient size is a natural criterion
for desirable representatives. We say that a sextic f as in (41) is optimal if its coefficients
cijk are integers, its complex curve VC(f) is smooth, and the largest absolute value |cijk| is
minimal among all such sextics in the same rigid isotopy class. For instance, the Fermat
sextics x6 + y6 ± z6 are optimal. One approach to finding optimal sextics is to sample at
random from sextics with |cijk| ∈ {0, 1, . . . ,m} with m very small. One might also do a
brute force search that progressively increases the sum of the absolute values |cijk|. Such
strategies work for some of the types seen with highest frequency in Table 3. For instance,
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sampling with m = 1 yields these four optimal sextics:

2 nd x6 − x5y − x5z − x4yz + x3y3 + x3yz2 − x2y4 − x2y2z2 + xy4z
−xy3z2 − xy2z3 − xyz4 + y6 + y5z + y4z2 + y3z3 − yz5 + z6

3 nd x6 − x5y − x4y2 + x4z2 + x3y3 + x3y2z + x3yz2 + x2y3z − x2y2z2 + x2yz3 + x2z4

+xy4z + xy3z2 + xy2z3 + xyz4 − xz5 + y6 + y5z + y4z2 − y2z4 − yz5 + z6

(11) nd x5y + x5z + x4y2 + x4yz − x3y3 + x3yz2 − x3z3 − x2y4 + x2y3z + x2y2z2 − x2yz3

+x2z4 − xy4z + xy3z2 − xyz4 + xz5 − y5z − y4z2 + y3z3 + y2z4 − yz5 − z6

4 nd −x6 + x5y + x4y2 − x3y3 + x2y4 + xy5 − y6 + x5z + x4yz + xy4z
+y5z + x4z2 + y4z2 − x3z3 − y3z3 + x2z4 + xyz4 + y2z4 + xz5 + yz5 − z6

However, this approach is not useful for constructing the vast majority of types, since these
seldomly occur in a random sample, and never appear for small m.

Next, we used an established and powerful technique for constructing real varieties with
prescribed topology is Viro’s patchworking method [121]. All 56 topological types of smooth
sextics can be realised by a version of patchworking known as combinatorial patchworking,
which can also be interpreted in the language of tropical geometry [121]. In that guise, one
records the signs of the 28 coefficients cijk and represents their magnitudes by a regular
triangulation of the Newton polygon. However, transitioning from that representation to
actual polynomials in Z[x, y, z]6 yields integer coefficients cijk whose absolute values tend to
be very large. We experimented with some of these sextics, but in the end we abandoned
them for all but three types, because symbolic computation became prohibitively slow. This
method was particularly helpful for sextics with larger number of ovals. For example, we
employed Viro’s method in [119, §3.2] and built a curve of type (51)5 using patchworking on
three touching ellipses.

We then employed geometric constructions that are described in the literature on topology
of real algebraic curves. Such constructions are found in many of the articles, from Harnack
and Hilbert to Gudkov and Viro. Many types, especially the sextics with 3 to 7 ovals, can
be found by perturbing the union of three quadrics intersecting transversally. This process
is shown in Figure 17. Some of the types with 8 and 9 components could also be constructed
in a similar fashion. This is reflected in our representatives in Subsection 3.1.6.

For most other types, we carried out the classical constructions of Harnack and Hilbert,
as explained by Gudkov [59]. We start with two quadrics intersecting in four real points, pick
eight points on the curves, and perturb the reducible quartic with the product of four lines
through these points. The smooth quartic is intersected with one of the original quadrics
and perturbed again to get a smooth sextic. The different ways in which the original curves
and the points on them are selected give the different types. This method worked for almost
all types. For larger numbers of ovals, these constructions led to polynomials whose integer
coefficients were too big. In those cases, we needed to improve the coefficients. For the
construction of type (51)5, Gudkov’s method was too complicated to carry out explicitly.

Another approach is to start with especially nice, but possibly singular, ternary sextics
seen in the literature. This method is exemplified by the Robinson curve. This is the
symmetric sextic

R(a, b, c) = a(x6 +y6 + z6) + bx2y2z2 + c(x4y2 +x4z2 +x2y4 +x2z4 +y4z2 +y2z4), (42)
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Figure 17: A sextic of Type (11)7 is constructed by perturbing the union of three quadrics.

where (a : b : c) is any point in P2
R. For (a : b : c) = (19 : 60 : −20), this degree six curve is

smooth and its real locus consists of ten non-nested ovals. The curve R(19, 60,−20) is listed
as representative for the Type 10 nd in Subsection 3.1.6.

2.0 2.5 3.0 3.5 4.0 4.5

-1.3
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-0.8

-0.7

Figure 18: The discriminant divides the Robinson net (42) into 15 components that realise
four topological types. The green region represents smooth sextics with 10 non-nested ovals.

We named this net of sextics after R.M. Robinson, who showed in 1973 that the special
sextic R(1, 3,−1) is non-negative but is not a sum of squares. The reason is geometric: its
real locus consists of 10 isolated singular points in P2

R, given by the columns of the matrix 1 −1 1 1 0 0 1 −1 1 1
1 1 −1 1 1 1 0 0 1 −1
1 1 1 −1 1 −1 1 1 0 0

 . (43)

To understand how the topology of R(a, b, c) varies with (a : b : c), we examine the com-
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plement of the discriminant in P2
R. The discriminant is given by the following reducible

polynomial of degree 75:

a3(a+ c)6(3a− c)18(3a+ b+ 6c)4(3a+ b− 3c)8(9a3 − 3a2b+ ab2 − 3ac2 − bc2 + 2c3)12 (44)

The complement of the discriminant in P2
R has 15 connected components. These realise the

following topological types of smooth sextics: 10, 4, 3 and 0. These types are found in 1,
3, 5 and 6 connected components respectively. The most interesting part of the partition
is shown in Figure 18. The green region is the component corresponding to curves with 10
ovals. Smooth curves in the orange, red and blue region have 0, 3 and 4 ovals respectively.

Figure 18 is a two-dimensional slice of the partition of a 27-dimensional real projective
space into 64 connected components by an irreducible hypersurface of degree 75.

These constructions enabled us to find representatives for the 56 topological types. What
remained was the issue of distinguishing between dividing and non-dividing curves. In par-
ticular, we needed to find two representatives for the pairs of rigid isotopy types in the eight
Nikulin cases (39). To construct those, we considered dividing curves of degree d1 and d2,
with prescribed orientations, that intersect in d1· d2 real points. The singular points of the
reducible curve can be made smooth in two ways, shown in red in Figure 19. According to
Fiedler [49, §2], if all intersections are perturbed either using only A or using only B then
it is dividing. However, if the smoothening is done via A at some crossings and via B at
other crossings, then the resulting smooth curve does not divide its Riemann surface. In
particular, for the construction of types (41)4d and (41)4nd we followed [54, page 273].

Figure 19: Using local perturbations to create sextics that are dividing or non-dividing

At this point, we had 64 representative sextics, and each of them was certified by our code
SexticClassifier. However, the coefficient size for most of them was still unsatisfactory.
To improve the representatives, and to arrive at the list that is displayed in Subsection Sec-
tion 3.1.6, Sylvester’s formula for the discriminant (Proposition 3.1.3) proved again to be
very helpful.
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A pencil of sextics is a line {f + tg} in the space P27 of all sextics. Its discriminant
∆(f + tg) is a univariate polynomial in t of degree 75. We can compute that polynomial
as the determinant of the Sylvester matrix Sf+tg. For two sextics f and g in Z[x, y, z]6
with reasonable coefficients, we obtain the discriminant ∆(f + tg) in a few seconds. This
method works, in principle, also for evaluating ∆ on families with more than one parameter.
For instance, we get the output (44) from the input (42) in under one second. However,
that output (44) factors and is small. In our experience, the symbolic evaluation of the
45 × 45 determinant in Proposition 3.1.3 works well for pencils of sextics, but generally
fails for nets of sextics. We use the discriminant ∆(f + tg) to shrink the absolute value of
each coefficient separately of a given representative as far as possible without crossing the
discriminant locus. The other way to reduce the coefficient size is to choose a prime number
p and vary the polynomial without crossing the discriminant locus so that every coefficient
of the resulting polynomial is divisible by p. In our experience, a combination of the two
methods yields the best results.

3.1.3 Identifying the Type

Determining the topology of a real plane curve from its equation is a well-studied problem
in computational geometry. The main idea is to ascertain the topology of plane curves
by constructing isotopic graphs whose nodes are the critical points (singular and extreme).
Authors who studied this problem include Jinsan Cheng, Sylvain Lazard, Luis Peñaranda,
Marc Pouget, Fabrice Rouillier, Elias Tsigaridas, Laureano González-Vega, Ioana Necula,
M’hammed El Kahoui, Hoon Hong, Raimund Seidel, and Nicola Wolpert. See [29, 45, 57,
111].

The algorithm in [29] is called ISOTOP. It is implemented in Maple using certain packages
written in C. We refer to [29, Table 1, page 28] for comparisons between ISOTOP and Top, as
well as with INSULATE, AlciX [45], and Cad2d [23]. The latter two are implemented in C++.

After initial experiments with these packages, we came to the conclusion that it is prefer-
able for us to have our own specialised implementation for curves of degree six in P2

R. In
particular, all of the mentioned packages compute the topology of the curve in the affine
chart {z = 1}. It was not obvious how to extract the topological type of the curve in the
projective plane from the output with a reasonable amount of coding effort.

We wrote a program in Mathematica called SexticClassifier. It relies heavily on the
built-in quantifier elimination techniques of Mathematica. The code can be obtained from
our supplementary materials website (48). The input to SexticClassifier is a ternary
sextic with integer coefficients, f ∈ Z[x, y, z]6. The code checks whether f defines a non-
singular curve in P2

C. If not, then the output is “singular”. Otherwise, our program identifies
which of the 56 topological types the real curve VR(f) belongs to. We next explain how it
works.

First we compute a Cylindrical Algebraic Decomposition (CAD; see e.g. [12, 23]) of the
curve VR(f) in the affine chart z = 1. From this we build a graph whose nodes are the
critical points of the projection along the y-axis. Two nodes are connected by an edge if
an arc of the curve connects the corresponding points. We also keep track of the relative
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positions of these arcs. In order to get the correct topology in P2
R, we add further edges

corresponding to arcs crossing the line at infinity. We end up with a graph whose connected
components are in one-to-one correspondence with the connected components of the curve.
Finally, for each pair of connected components of the graph, we have to check whether one of
the corresponding ovals lies in the inside of the other. This is done by first deciding whether
the center of projection lies inside the ovals or not. Knowing this, detecting a nesting of two
ovals only amounts to looking at the parity of the number of branches of one oval lying above
the other oval. The program terminates correctly in less than four seconds for all sextics in
Subsection 3.1.6. If the coefficients are between −108 and 108, then it takes less than one
second.

Example 3.1.9. Here is an instance that will be of interest in Subsection 3.1.5. Let f be
the sextic

7(x+y+2z)(x+2y+z)(2x+y+z)(x−2y+3z)(y−2z+3x)(z−2x+3y)+xyz(x3 +y3 +z3).

After checking that the complex curve VC(f) is smooth, our code reveals that the real curve
VR(f) consists of three separate non-nested ovals. Thus, the input to SexticClassifier is
the polynomial f and the output is the label 3. In particular, VR(f) is non-dividing.

The sextic f has the property that every real line in P2 meets VC(f) in at least one real
point. Thus, VR(f) is not compact in any affine chart of P2

R, regardless of which line serves
as the line at infinity. While such non-compact curves may cause difficulties in some of the
other programs discussed above, SexticClassifier has been designed to handle them well.

Forty-eight of the fifty-six topological types determine whether the curve is dividing
or not. However, the remaining eight were found by Nikulin [97] to split into two rigid
isotopy types. Suppose that the output of SexticClassifier is one of the eight labels
in (39). At present, we have no easy tool for deciding whether the given f is dividing or
non-dividing. That decision requires us to build a model of the Riemann surface VC(f) in
order to ascertain whether VC(f)\VR(f) has one or two connected components. A method for
making that decision was developed and implemented by Kalla and Klein [74], but presently
their code is not suitable for curves of genus 10. One of our goals for the future is to extend
SexticClassifier so that it decides rapidly between ‘d’ and ‘nd’ when the output is in
(39).

3.1.4 Probability Distribution and Experiments

As a first application of SexticClassifier, we computed the empirical distributions of
the topological types over the space of ternary sextics. In other words, we ask: what is
the probability that a particular topological type arises when we pick a sextic curve at
random? Of course, the answer will depend on the choice of a probability distribution
on the sextics. A theoretical study for curves of large degree was carried out recently by
Lerario and Lundberg [83], who employed the real Fubini-Study ensemble and the Kostlan
distribution. The experiments below are meant to inform this line of inquiry with some
empirical numbers.
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The first distribution we consider is U(3)-invariant. The 28 coefficients cijk are chosen
independently from a univariate normal distribution, centered at 0, with variance equal to the
multinomial coefficient 6!/(i!j!k!). According to [26, §16.1], this is the unique U(3)-invariant
probability measure on R[x, y, z]6. We selected 1, 500, 000 samples, ran SexticClassifer

on these sextics, and then tallied the topological types. The result is shown in Table 3.
We see that the empirical distribution is very skewed. Only 14 of the 56 types were

observed at all. Only six types had an empirical probability of ≥ 1%. No curve with more
than six ovals was observed. In our sample, the average number of connected components
is approximately 1.50. Another numerical invariant of the topological type of a smooth real
plane curve introduced in [83, page 8] is the energy. This nonnegative integer measures the
nesting of the ovals. For sextics, the maximal energy is 38 and attained by the Harnack-type
curve (91)1. The average energy of the sextics in the sample above is approximately 2.99.

We experimented with several other distributions on R[x, y, z]6, each time drawing
500,000 samples and running SexticClassifier. In the following tables, we report per-
centages, and we only list topological types with empirical probability at least 0.01%.

If we naively sample our sextics having uniformly distributed integer coefficients, then
the empirical distribution is even more skewed (Table 4). In Table 5 we see the empirical
distribution obtained from sampling symmetric sextic polynomials. We do this by taking
linear combinations of the monomial symmetric polynomials with coefficients being uniformly
distributed integers between −1012 and 1012. We see that the distribution now looks rather
different from the two distributions considered before. For example, Type 7 appears with
probability 0.01% whereas it did not appear among the 1, 500, 000 samples from the U(3)-
invariant distribution. The largest variation of types is observed when we sample sextics of
the form det(xA+yB+zC) where A,B and C are symmetric 6×6-matrices whose entries are
uniformly distributed random integers between −1000 and 1000 (Table 6). This is also the
only distribution we considered where the type with only one oval is not the most common
type. Several types appear that did not show up among the 1, 500, 000 samples in Table 3.

Our most skewed distribution was from sampling signed sums (with the signs chosen
uniformly at random) of ten sixth powers of linear forms whose coefficients are uniformly
distributed integers between −1000 and 1000. Thus, here we are restricting to sextics of real
rank 10, the case considered in [94, §6]. Table 7 reveals that more than 90% of the samples
have one oval. After passing to eleven summands, we observe more curves of Type 2 than
empty curves. Going to sums of twelve sixth powers of linear forms increases this effect.

The experiments demonstrate that it is extremely rare to observe many ovals when sextic
curves are generated at random. We never encountered a sextic with 8, 9, 10 or 11 ovals.
Only few types occurred in our samples. This underscores the importance of having the
explicit polynomials in Z[x, y, z]6 that are listed above, to serve as seeds for local sampling.

1 2 3 (11) 4 (11)1 (21) 5 ∅ (11)2 (21)1 6 (31) (hyp)
875109 423099 97834 90316 7594 4360 1180 245 127 118 8 7 2 1

Table 3: Counts of topological types sampled from the U(3)-invariant distribution
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1 2 3 (11) ∅ 4
77.52% 18.19% 2.11% 1.46% 0.66% 0.06%

Table 4: Sextics with coefficients in {−1012, . . . , 1012} uniformly distributed

1 ∅ 3 (11) 4 6 (31) (11)3 7 (hyp)
45.69% 28.38% 16.15% 7.40% 2.17% 0.13% 0.03% 0.03% 0.01% 0.01%

Table 5: Symmetric sextics with coefficients in {−1012, . . . , 1012} uniformly distributed

2 3 1 4 (11) (11)1 5 (21) (11)2 6 (11)3 (21)1 (31) 7
29.12% 25.77% 16.44% 11.06% 8.02% 4.30% 2.46% 1.19% 0.98% 0.30% 0.13% 0.12% 0.07% 0.02%

Table 6: Sextics that are determinants of random symmetric matrices with linear entries

n 1 ∅ 2 (11) 3
10 90.17% 5.14% 4.50% 0.09% 0.09%
11 89.95% 4.75% 5.06% 0.12% 0.12%
12 89.90% 4.28% 5.53% 0.15% 0.15%

Table 7: Sextics that are signed sums of n sixth powers of linear forms

We now report on the real properties of each of the topological type. We use Sylvester’s
formula to sample from a fixed rigid isotopy class. Namely, we start with a representative f
with ∆(f) 6= 0, like one of the 64 sextics in Subsection 3.1.6. We then pick a random sextic g
and we compute the univariate polynomial ∆(f+tg). This has 75 complex roots. We extract
the real roots, and we identify the largest negative root and the smallest positive root. For
any t in the open interval between these two roots, the sextic f + tg has the same rigid
isotopy type as f . Repeating this many times, we sample from the connected component of
R[x, y, z]6\∆ that contains f . This gives us access to all sextics in the largest star domain
with center f contained in that component. We call this process the local exploration method.

Certified samples were drawn in the vicinity of each of our current 64 representatives. For
the sampled curves, Table 8 summarises experimental data on the numbers of real features
associated with real sextics in P2

R. Each row of Table 8 has five entries: the name of the
rigid isotopy type, numbers of real inflection points, numbers of real eigenvectors, numbers
of real bitangents, and one real rank. The numbers are ranges of integers that were observed
in our experiments. For instance, for Type (11)1, we found numbers ranging between 20 and
66 of real bitangents among 324 complex ones. In some cases, all samples gave the same
number of real solutions. For instance, all our Type (71) sextics had 108 real bitangents.
Each entry in Table 8 can be regarded as a conjecture. For example, we conjecture that
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every smooth sextic of Type (71) has exactly 108 real bitangents. For real inflection points
and real eigenvectors we performed exact computations. That means that we are sure that
all numbers listed in the table actually occur. However, we do not know whether there are
more possible numbers. For bitangents the calculations are more involved and we applied
numerical methods. This means that, for some instances, the number of real solutions might
be undercounted. This can happen when two or more real bitangents lie very close to each
other. The computations for estimating the real rank are even more delicate and were also
accomplished numerically.

Bitangents and their applications are discussed in detail in Subsection 3.1.5. We now
give the definitions needed to understand the other three columns in Table 8.

The second column concerns inflection points of a smooth sextic VC(f) ⊂ P2. There are
72 = 6 · 12 complex inflection points. They are computed as the solutions of the equations

f(x, y, z) = det


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂x∂y

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂z2

 = 0.

A curve of degree d has 3d(d − 2) complex inflection points. A classical result due to Felix
Klein states that the number of real inflection points is at most d(d−2). Brugallé and López
de Medrano [24] showed that this upper bound is tight for all degrees d. Hence, for a general
sextic in P2

R, the number of real inflection points is an even integer between 0 and 24. The
column labeled “Flex” shows the empirical distribution on the 64 rigid isotopy types.

The third and fifth column pertain to the study of tensors in multilinear algebra. Here
we identify the space R[x, y, z]6 of ternary sextics with the space of symmetric tensors of
format 3×3×3×3×3×3. Such a symmetric tensor f has 28 distinct entries, and these are
the coefficients cijk of the sextic. A vector v ∈ C3 is an eigenvector of f if v is parallel to the
gradient of f at v. Thus the eigenvectors correspond to the solutions in P2

C of the constraint

rank

(
x y z
∂f
∂x

∂f
∂y

∂f
∂z

)
= 1. (45)

A general ternary form f of degree d has d2 − d + 1 eigenvectors [3, Theorem 2.1]. The
eigenvectors are the critical points of the optimisation problem of maximising f on the unit
sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. Since f attains a minimum and a maximum
on S2, the number of real eigenvectors is at least 2. We note that the upper bound d2−d+1 is
attained over R. If f is a product of d general linear forms, then all its complex eigenvectors
are real. This was shown in [3, Theorem 6.1]. For d = 6, we conclude that the number
of real eigenvectors of a general ternary sextic is an odd integer between 3 and 31. The
column labeled “Eigenvec” shows the empirical distribution on the rigid isotopy types. For
many rigid isotopy types we found instances that attain the maximal number 31 of real
eigenvectors. Among them are the 35 types that have unions of six real lines in general
position in their closure. These types are marked with an asterisk next to the number 31.
We found these by perturbing each of the four combinatorial types of arrangements of six
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Type Flex Eigenvec Bitang Rank
0 0 3−31 12 3
1 0−12 3−31∗ 12−56 3

(11) 0−14 11−31∗ 12−66 10
2 0−8 5−31∗ 12−52 13

(21) 0−10 7−31∗ 16−86 14
(11)1 2−6 7−31∗ 20−66 15

3 0−8 7−31∗ 24−94 13
(hyp) 0−14 11−31∗ 12−52 13
(31) 2−10 19−31∗ 24−90 13
(21)1 0−6 11−31∗ 28−72 14
(11)2 0−4 11−31∗ 32−82 13

4 0−2 11−31∗ 36−54 11
(41)nd 14−16 21−31∗ 48−90 16
(41)d 12−14 27−31∗ 98−104 14
(31)1 2−8 15−31∗ 40−86 14

(21)2nd 10−16 17−31∗ 54−82 20
(21)2d 8−16 19−31∗ 60−70 17
(11)3 8−12 19−31∗ 48−94 14

5 2−10 19−31∗ 52−112 15
(51) 12−16 21−31∗ 54−64 14
(41)1 22 27−31∗ 90−104 14
(31)2 14−18 27−31∗ 126−130 14
(21)3 16 27−31∗ 112−116 14
(11)4 6−10 25−31∗ 76−106 15

6 10−12 23−31∗ 78−108 14
(61) 16 27−31∗ 78−88 14

(51)1nd 16 23−25 110−124 15
(51)1d 20−24 29 136 16
(41)2 16−20 29−31 126−128 14

(31)3nd 12 25−31∗ 124−148 15
(31)3d 20−22 29 132 16
(21)4 14−20 27−31∗ 138−142 15

Type Flex Eigenvec Bitang Rank
(11)5nd 6−16 29−31∗ 116−122 16
(11)5d 8−16 25−31∗ 120−128 16

7 4−14 25−31∗ 96−124 14
(71) 20−24 29 108 16
(61)1 20−22 25 104−214 15
(51)2 22 25−31 226−228 15
(41)3 20 23−25 154−214 14
(31)4 22 21 162−214 14
(21)5 16−20 29−31 168 13
(11)6 12−14 27−31∗ 172−176 14

8 0−12 23−31∗ 124−142 13
(81)nd 18−22 23 122−196 14
(81)d 18−24 29 124−132 12
(71)1 14−18 21−31 104−240 13
(61)2 18−20 23−31 228−276 13
(51)3 22 25 192−254 13

(41)4nd 14−16 25 188−220 9
(41)4d 18 25 194−230 11
(31)5 20 25−31 198−260 13
(21)6 20 23−31 242−258 15
(11)7 14−16 29−31 216 14
9nd 8−16 25−31∗ 162−172 15
9d 4−16 29−31∗ 156 15

(91) 18−22 23 124−236 13
(81)1 16−20 23−31 162−240 14
(51)4 20 27 232−234 10
(41)5 18−20 27−31 232 10
(11)8 14−18 25−31 142−210 13

10 0−24 21−31∗ 192 12
(91)1 18−22 25−31 200−284 14
(51)5 20−22 25−31 276−306 10
(11)9 16−20 25−31 174−250 14

Table 8: Computational results for the number of real solutions for inflection points, eigen-
vectors, bitangents and real rank among the 64 rigid isotopy classes of smooth sextics in P2

R.
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lines in general position in P2
R. This search process resulted in 35 of the rigid isotopy types.

This is the result stated in Proposition 3.1.2. The computation we described is the proof.
A theoretical study of real eigenvectors was undertaken by Maccioni in [86]. He proved

that the number of real eigenvectors of a ternary form is bounded below by 2ω + 1, where
ω is the number of ovals. Our findings in the third column of Table 8 confirm this theorem.
Moreover, there are seven types where our computations prove the converse, namely that all
values between this lower bound and the upper bound 31 are realised in these types.

Every tensor is a sum of rank one tensors. The smallest number of summands needed in
such a representation is the rank of that tensor. This notion depends on the underlying field.
Symmetric tensors of rank 1 are powers of linear forms (times a constant). Hence, the rank
r of a ternary form f of degree d is the minimum number of summands in a representation

f(x, y, z) =
r∑
i=1

λi(aix+ biy + ciz)d. (46)

The exact determination of the real rank of a sextic f is very difficult. The task is to decide
the solvability over R of the equations in the unknowns λi, ai, bi, ci obtained by equating
coefficients in (46). This computation is a challenge for both symbolic and numerical meth-
ods. There is no known method that is guaranteed to succeed in practice. If f is a generic
sextic in R[x, y, z]6 then the complex rank of f is 10, and the real rank of f is an integer
between 10 and 19. This was shown in [94, Proposition 6.3]. This upper bound is probably
not tight.

We experimented with the software tensorlab [117]. This is a standard package for
tensors, used in the engineering community. This program furnishes a local optimisation
method for the following problem: given f and r, find a sextic f ∗ of rank r that is closest
to f , with respect to the Euclidean distance on the tensor space (R3)⊗6. If the output f ∗ is
very close to the input f , we can be confident that f has real rank ≤ r. If f ∗ is far from
f , even after many tries with different starting parameters, then we believe that f has real
rank ≥ r+ 1. However, tensorlab does not furnish any guarantees. One needs to rerun the
same instance many times to achieve a lower bound on the real rank with high confidence.

The last column of Table 8 suggests the real rank for each of the 64 sextics listed in
Subsection 3.1.6. In each case, we report our best guess on the lower bound, based on
numerical experiments with that instance. Obtaining these numbers with high confidence
proved to be difficult. We had considerable help from Anna Seigal and Emanuele Ventura in
carrying this out. Most puzzling is the real rank 20 we found for our representative of type
(21)2nd, as this seems to contradict [94, Proposition 6.3]. This is either an error arising in
our numerical method, or the sextic lies on some exceptional locus. Clearly, some further
study is needed.

We did not yet attempt the same calculation for a larger sample of sextics in each rigid
isotopy class. This would be a very interesting future project at the interface of numerics
and real algebraic geometry. The guiding problem is to find the maximal generic real rank
among sextics. To underscore the challenge, here is another open question: the real rank of
the monomial x2y2z2 is presently unknown. It is either 11, 12 or 13, by [94, Example 6.7].
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We now shift gears and turn to the construction of real K3 surfaces. Two basic models
of algebraic K3 surfaces are quartic surfaces in P3 and double-covers of P2 branched at a
sextic curve. Thus, each of our ternary sextics in Subsection 3.1.6 represents a K3 surface
over Q. Suppose we can write f = v2

3 − v2v4 where vi is a form of degree i in x, y, z. Then
F = v2w

2 + 2v3w + v4 is a quartic in four variables that realises the K3 surface with one
singular point at (0 : 0 : 0 : 1). Blowing up that singular point gives the K3 surface encoded
by f . Perturbing the coefficients of F gives a smooth quartic surface with similar properties.

The topology of the real surface VR(F ) is determined by the topological type of the real
curve VR(f) and its sign behavior. By perturbing F to a polynomial F̃ , we can obtain a
smooth quartic surface whose real part VR(F̃ ) has the desired topology. See [116] for details.

The construction methods in Subsection 3.1.2 reveal that many of the 64 types can be
realised by adding a positive sextic to the product of a quartic and a conic. For such types,
the sextic has the desired form f = v2

3 − v2v4. The resulting quartic F has nice coefficients
in Q.

The real part of a smooth K3 surface is always an orientable surface. It has at most one
connected component with nonpositive Euler characteristic — and therefore is determined
(up to homeomorphism) by its total Betti number and its Euler characteristic — except when
it is the union of two tori. If it is nonempty, by the Smith-Thom inequality, then its total Betti
number ranges between 2 and 24. Furthermore, according to the Comessatti inequalities its
Euler characteristic ranges between −18 and 20. There are 64 possible combinations of these
two numbers; they are displayed in [113, Table (3.3), page 189]. All these 64 possibilities
can be realised as a quartic surface in P3. These topological classifications were studied by
G. Utkin in [116] and the isotopic, and rigid isotopic classifications were completed by V.
Kharlamov ([75],[77]). For proofs and further information we refer to Silhol’s book [113,
Section VIII.4]. We conclude by presenting two explicit quartic surfaces that realise the
minimal and the maximal Euler characteristic.

Example 3.1.10. Consider the smooth quartic surface VC(F̄ ) ⊂ P3 defined by the polyno-
mial

F̄ = 100w4 − 12500w2x2 + 104x4 − 12500w2y2 + 1640x2y2 + 1550y4 + 12500w2yz
−75x2yz − 1552y3z + 9375w2z2 − 487x2z2 − 1533y2z2 + 354yz3 + 314z4.

Its real locus VR(F̄ ) is a connected orientable surface of genus 10. The Euler characteristic of
that surface is −18. This is the smallest possible Euler characteristic for a real K3 surface.

We constructed the quartic F̃ from a sextic f with ten non-nested ovals. Namely, f =
v2

3−v2v4, where v4 = 33001x4 +131227x2y2 +30980y4−11842x2yz−62072y3z−155986x2z2−
122652y2z2 + 56672yz3 + 100672z4, v3 = 10−3z3 and v2 = −4x2 − y2 + 2yz + 3z2. Our code
SexticClassifier easily confirms that VR(f) has Type 10. The quartic F = v2w

2+2v3w+v4

has a node at (0 : 0 : 0 : 1). The projection from this node is ramified at VC(f). The K3
surface defined by F̃ = F + εw4 has the desired properties for ε = 10−10. Starting from F̃ ,
we constructed F̄ using the techniques discussed in Subsection 3.1.2 for improving integer
coefficients.

Our final example is dedicated to the algebraic geometer Karl Rohn, whose article [106]
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inspired the work in [72]. Rohn was a professor at the University of Leipzig from 1904 until
1920.

Example 3.1.11. We start with Rohn’s imaginary symmetroid in [106, §9]. This is the
quartic

G = τ(s2
1 − 6s2)2 + (s2

1 − 4s2)2 − 64s4,

where si is the ith elementary symmetric polynomial in x, y, z, w and τ = (16
√

10−20)/135.
This is a nonnegative form with exactly 10 real zeros. Subtracting a positive definite form
multiplied with a small positive scalar gives a quartic surface with ten connected compon-
ents. Using the techniques in Subsection 3.1.2 we get the following quartic with nice integer
coefficients:

Ḡ = 6s4
1 − 53s2

1s2 + 120s2
2 − 320s4.

The surface VR(Ḡ) is the disjoint union of ten spheres, so it has Euler characteristic 20.

3.1.5 Avoidance Locus

Many software packages for plane curves, such as those discussed at the beginning of Subsec-
tion 3.1.3, work with affine coordinates. They often assume that the given curve is compact,
so its closure in P2

R is disjoint from a distinguished line, namely, the line at infinity. We
saw in Example 3.1.9 that no such line exists for some sextics. This motivates the concept
of the avoidance locus, to be introduced and studied in this subsection. This will lead us
naturally to computing dual curves and bitangent lines, and to investigating the reality of
these objects.

Let C be a smooth real curve of even degree d in P2. Its avoidance locus is the set AC of
all lines in P2

R that do not intersect the real curve CR. Thus, AC is a semi-algebraic subset
of the dual projective plane (P2)∨R. We write C∨ for the curve of degree d(d − 1) in (P2)∨

that is dual to C. The points on C∨ correspond to lines in P2 that are tangent to C. The
real dual curve C∨R divides the real projective plane (P2)∨R into connected components.

Proposition 3.1.12. Up to closure, the avoidance locus AC is a union of connected com-
ponents of (P2)∨R\C∨R . Each component appearing in AC is convex, when regarded as a cone
in R3.

Proof. Points in (P2)∨R\C∨R correspond to real lines that intersect C transversally. Whether
that intersection contains real points or not does not change unless the curve C∨R is crossed.
Hence AC\C∨R is a union of connected components of (P2)∨R\C∨R . Each of these components
is convex: it is the convex dual of the convex hull of CR in the affine space P2

R\L, where
L ∈ AC . The prefix “up to closure” is needed because AC also contains some points in C∨R ,
corresponding to real lines that do not meet CR but are tangent to C at complex points.

Example 3.1.13. Let d = 4 and consider the Edge quartic C, taken from [101, equa-
tion (1.5)]:

25
(
x4 + y4 + z4

)
− 34

(
x2y2 + x2z2 + y2z2

)
= 0.
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Figure 20: The Edge quartic C and its dual C∨; the avoidance locus AC is coloured.

This curve C ⊂ P2 served as a running example in [101]. It is shown on the left in Figure 20.
We choose coordinates (u : v : w) for points in the dual projective plane (P2)∨. Such a point
represents the line L = {ux+ vy+wz = 0} in the primal P2. The dual curve C∨ is given by

10000u12 − 98600u10v2 − 98600u10w2 + 326225u8v4 + 85646u8v2w2 + 326225u8w4 − 442850u6v6

−120462u6v4w2 − 120462u6v2w4 − 442850u6w6 + 326225u4v8 − 120462u4v6w2 + 398634u4v4w4

−120462u4v2w6 + 326225u4w8 − 98600u2v10 + 85646u2v8w2 − 120462u2v6w4 − 120462u2v4w6

+85646u2v2w8 − 98600u2w10 + 10000v12 − 98600v10w2 + 326225v8w4 − 442850v6w6 + 326225v4w8

−98600v2w10 + 10000w12 = 0.

The dual curve C∨R divides (P2)∨R into 21 open regions. Seven of the regions comprise the
avoidance locus AC . They are coloured in Figure 20, and they represent the seven ways of
bipartitioning the four ovals of CR by a straight line. The convex body dual to the convex
hull of CR, in our affine drawing on the left, is the innermost yellow region on the right.

The number seven of yellow regions seen in Figure 20 attains the following upper bound.

Proposition 3.1.14. Let C be a smooth real curve of even degree d in P2. The number of
open convex sets in the dual plane that make up the avoidance locus AC is bounded above by

9

128
d4 − 9

32
d3 +

15

32
d2 − 3

8
d+ 1. (47)

Proof. By Harnack’s inequality, the real curve CR can have at most
(
d−1

2

)
+ 1 ovals in P2

R.
However, for our count we only care about the outermost ovals, i.e. those not contained
inside any other oval. By a result of Arnold in [6], which is a more precise version of a
classical inequality due to Petrovsky’s [100], the number of outermost ovals of the curve CR
is at most

m =
3

8
d2 − 3

4
d+ 1.

Pick a generic point in each oval. Then the configuration of points has
(
m
2

)
+ 1 bipartitions

that can be realised by a straight line. Indeed, dually, this is the number of regions in the
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complement of a general arrangement of m lines in the plane P2
R. The quartic polynomial

in (47) is simply
(
m
2

)
+ 1 with Petrovsky’s expression for m. It remains to be seen that this

number is the desired upper bound. Indeed, every connected component of AC is uniquely
labeled by a bipartition of the set of non-nested ovals. The number of such bipartitions that
are realised by a straight line is bounded above by the said bipartitions of the points.

The upper bound in (47) evaluates to 46 for d = 6. Here is a sextic that attains the
bound.

Example 3.1.15. Let t and ε be parameters, and consider the following net of sextics:

Ft,ε = 60x6 − 750x5z − 111x4y2 + 1820x4z2 + 700x3y2z − 2250x3z3 + 20x2y4

− 1297x2y2z2 + 960x2z4 − 56xy4z + 1440xy2z3 − y6 − 576y2z4

+ t(x3 + xz2 − y2z)2 + ε(x2z4 + y2z4 + z6)

For t0 = −1645
2
− 150

√
34 and ε = 0 , the sextic Ft0,0 has 10 isolated real singular points:(

(3−
√

34)/5 : 0 : 1
)
, (0 : 0 : 1), (1 : ±

√
2 : 1), (2 : ±

√
10 : 1), (3 : ±

√
30 : 1), (4 : ±2

√
17 : 1).

No three of these 10 points lie on a line. For any sufficiently small ε > 0 and t sufficiently
close to t0, the sextic Ft,ε is smooth with 10 small ovals arranged around the singular points of
Ft0,0. When these ovals are small enough, the avoidance locus will have the maximum number
46 of connected components, by the argument given in the proof of Proposition 3.1.14. This
example was found using the construction developed by Kunert and Scheiderer in [79].

We now describe an algorithm for computing the avoidance locusAC of a smooth curve C.
The first step is to find all bitangents of C. A bitangent of C is a line L in P2 that is tangent to
C at two points. Note that bitangents of C correspond to nodal singularities of the dual curve
C∨. By the Plücker formulas, the expected number of bitangents is (d− 3)(d− 2)d(d+ 3)/2,
which is 324 for d = 6. A bitangent L is called relevant if the real part of the divisor L ∩ C
is an even divisor on the curve C. For generic curves C, this means that L has no real
intersection points with C except possibly the two points of tangency. If these two points
are real, then L is an extreme point of a convex connected component of AC .

Remark 3.1.16. Let C be a smooth curve in P2
R of degree d ≥ 4. If C contains at least

two outermost ovals or has a non-convex outermost oval, then every connected component
of the avoidance locus AC has a relevant bitangent in its closure. If C does not satisfy
this hypothesis then AC is connected; we do not know whether it always contains a real
bitangent. In the case of quartics, this follows from the Zeuthen classification [123]. In that
case, however, the number of bitangents only depends on the topological type. In higher
degrees, when this is not the case, not much seems known. (See Conjecture 3.1.19 below.)

We now assume that C satisfies the hypothesis in Remark 3.1.16. Our algorithm for
computing AC is as follows. First we compute linear forms representing all real bitangents
of C, and we discard those that are not relevant. Next, we compute a graph GC whose nodes
are the relevant bitangents, as follows: two linear forms L1 and L2 form an edge if and only if
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(a) L1 + L2 lies in the avoidance locus AC , and

(b) the open line segment {tL1 + (1− t)L2 : 0 < t < 1} is disjoint from the dual curve C∨R .

Here the sign of the linear forms L1 and L2 for the bitangents has to be chosen carefully.

Remark 3.1.17. The graph GC is a disjoint union of cliques, one for each connected com-
ponent of AC . This follows from Remark 3.1.16 and convexity of the connected components.

In summary, given a smooth curve C = VC(f) of even degree d, our algorithm computes
the avoidance graph GC . We represent the avoidance locus AC by the connected components
(cliques) of GC . Midpoints of the segments in (b) furnish sample points in the components.

We made a proof-of-concept implementation of this algorithm for the case of sextics. Its
two main ingredients are computing the dual curve and computing the bitangents. For the
former task we solve a linear system of equations in the

(
30+2

2

)
= 496 coefficients of C∨. The

equations are derived by projecting C from random points p ∈ P2. The ramification locus
of this projection reveals (up to scaling) the binary form of degree 30 that defines C∨ ∩ p⊥.

To compute the bitangents, we employ the variety of binary sextics with two double roots.
The prime ideal of this variety is defined by 13 forms of degree 7; see the row labeled 2211 in
[81, Table 1]. Substituting the binary form f(x, y,− 1

w
(ux+vy)) into that ideal, and clearing

denominators, yields the ideal in Q[u, v, w] that defines the 324 bitangents (u:v:w) ∈ (P2)∨.

Example 3.1.18. Let C be the representative for Type 8nd displayed in Subsection 3.1.6.
This sextic curve has 324 distinct complex bitangents of which 124 are real. Of the real
bitangents,

• 8 are tangent at non-real points and meet the curve in two more non-real points;

• 60 are tangent at real points and meet the curve in two more non-real points;

• 4 are tangent at non-real points and meet the curve in two more real points;

• 52 are tangent at real points and meet the curve in two more real points.

Only the first two types are relevant, so C has 68 relevant bitangents. The avoidance graph
GC is found to consist of 14 cliques: four K6’s, five K5’s, four K4’s and one K3. Hence AC
consists of 14 convex components. The curve C together with its 68 relevant bitangents is
shown in Figure 21. There are 14 ways to bipartition the 8 ovals by a line that avoids CR.

While the nodes on C∨ are bitangents of C, the cusps on C∨ are the flex lines of C. The
number of inflection points is 3d(d − 2) for a general curve of degree d. A classical result
due to Felix Klein states that at most one third of the complex inflection points of a real
plane curve can be real. Brugallé and López de Medrano [24] proved, using tropical methods,
that Klein’s upper bound d(d − 2) is attained for all d ≥ 3. Hence, for smooth sextics, the
number of real inflection points can be any even integer between 0 and 24. The distribution
of the numbers of real bitangents and real inflection points over the 64 rigid isotopy types is
presented in the previous subsection. Based on our experiments, we propose the following
conjecture:
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Figure 21: A sextic curve C with 8 non-nested ovals; its 68 relevant bitangents represent AC .

Conjecture 3.1.19. The number of real bitangents of a smooth sextic in P2
R ranges from 12

to 306. The lower bound is attained by curves in the following four types: empty, 1, 2, (11)
and (hyp). The upper bound is attained by certain 11-oval curves of Gudkov-type (51)5.

The numbers of real inflection points and bitangents of a sextic C often change when
passing through the discriminant hypersurface. However, they may also change within the
same rigid isotopy type. If C is smooth then the total number of complex inflection points
resp. bitangents drops below the bounds 72 resp. 324 in the following three exceptional cases:

(411) C has an undulation point, in which the tangent meets C with multiplicity at least 4.

(222) C has a tritangent line, i.e. a line that is tangent to C in three distinct points.

(321) C has a flex-bitangent, i.e. a line that meets C with multiplicity 3 in one point and is
tangent at another point.

In each case, the stated property defines a hypersurface in V = R[x, y, z]6. The number of
real inflection points or bitangents changes only when passing through the discriminant or
one of these hypersurfaces. When generic sextics approach these hypersurfaces, three lines
come together: a bitangent and two flex lines for an undulation point (411), three bitangents
for a tritangent line (222), and two bitangents and a flex line for a flex-bitangent (321).

Theorem 3.1.20. Let T be the Zariski closure in PV = P27 of the set of smooth sextics
with a tritangent line and let F be the locus of smooth sextics with a flex-bitangent. Then:
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1. The loci T and F are irreducible hypersurfaces of degree 1224 and 306 respectively.

2. Their union B = T ∪ F is the bitangent discriminant, i.e. the Zariski closure of the
set of smooth sextics in PV having fewer than 324 bitangent lines.

Proof. The variety of binary sextics with three double roots is irreducible of codimension 3
in R[x, y]6. (It is defined by 45 quartics [81, Table 1].) Let X be the incidence variety of all
pairs (L, f) in (P2)∨×PV where L is a tritangent of VC(f). The locus T is the projection of
X onto PV . The intersection of X with any subspace of the form {L}×PV for L ∈ (P2)∨ has
codimension 3 in PV . Taking the union over all L, we conclude that T has codimension 1.
Since the projection of X onto the first factor is surjective with irreducible fibers of constant
dimension, X is irreducible, hence so is T . The same argument applies to F . The degrees
of the hypersurfaces F and T were computed for us by Israel Vainsencher with the Maple

package schubert. The relevant theory is described by Colley and Kennedy in [32].
To prove (2), we first note that a tritangent splits into three bitangents, and a flex-

bitangent into two bitangents and a flex line, for any smooth deformation of a sextic in T or
F , respectively. This shows that T and F are both contained in the bitangent discriminant.
For the reverse, we argue in the dual picture, with degenerations of singularities on C∨.

Figure 22: A smooth sextic with 10 non-nested ovals whose avoidance locus is empty

We conclude this subsection with the following result on the avoidance loci of plane
sextics.

Corollary 3.1.21. For any integer m between 0 and 46, there exists a smooth sextic C in
P2
R whose avoidance locus AC comprises exactly m convex connected components.

Proof. Let f1 be a sextic of Type 10nd whose avoidance locus has 46 components, as in
Example 3.1.15. Let f0 be a sextic of Type 10nd with empty avoidance locus, for instance

f0 =
(
20x2− (y+10z)2 + z2

)(
21y2− (x−10z)2 + z2

)(
20(x− 5z+ y)2− (y+10z)2 + z2

)
+ z6.
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The real picture of such a curve is shown in Figure 22. Let U be the connected component
of P27

R \∆ that contains both f0 and f1. Consider the bitangent discriminant B of Theorem
3.1.20. There is an open dense subset B0 of B, whose points represent curves with a single
tritangent line or a single flex-bitangent. The exceptional locus Z = B \B0 has codimension
at least 2 in P27

R , hence V = U\Z is path-connected. Fix a path γ : [0, 1] → V with γ(0) =
f0, γ(1) = f1. Let {γ(t1), . . . , γ(tk)} be its intersection points with B. Since γ(ti) lies in B0,
the number of connected components of the avoidance locus of VR(γ(t)) cannot change by
more than 1 in a neighborhood of ti. Indeed, at a point where that number drops by one,
exactly three relevant bitangents come together, giving a sextic with a single tritangent in
B0. Hence any number of convex avoidance components between 0 and 46 is realised along
the path γ.

3.1.6 List of Representatives

We now give the explicit polynomial representatives and thence, proving the following result.

Proposition 3.1.22. Each of the 64 rigid isotopy types can be realised by a ternary sextic
in Z[x, y, z]6 whose integer coefficients have absolute value less than 1.5× 1038.

We list 64 polynomials with integer coefficients that represent the 64 rigid isotopy types
of smooth sextic curves in P2

R. This list is available in a computer-algebra-friendly format at

https://software.mis.mpg.de/planeSexticCurves/index.html (48)

Each of our sextics is labeled by its topological type and whether it is dividing (d) or
non-dividing (nd) in its Riemann surface. We begin with the 35 types that have at most
7 ovals:

0 nd x6 + y6 + z6

1 nd x6 + y6 − z6

(11) nd 6(x4 + y4 − z4)(x2 + y2 − 2z2) + x5y
2 nd (x4 + y4 − z4)((x+ 4z)2 + (y + 4z)2 − z2) + z6

(21) nd 16((x+z)2 + (y+z)2 − z2)(x2 + y2 − 7z2)((x−z)2 + (y−z)2 − z2) + x3y3

(11)1 nd ((x+ 2z)2 + (y + 2z)2 − z2)(x2 + y2 − 3z2)(x2 + y2 − z2) + x5y
3 nd (x2 + y2 − z2)(x2 + y2 − 2z2)(x2 + y2 − 3z2) + x6

(hyp) d 6(x2 + y2 − z2)(x2 + y2 − 2z2)(x2 + y2 − 3z2) + x3y3

(31) nd (10(x4 − x3z + 2x2y2 + 3xy2z + y4) + z4)(x2 + y2 − z2) + x5y
(21)1 nd (10(x4 − x3z + 2x2y2 + 3xy2z + y4) + z4)((x+ z)2 + y2 − 2z2) + x5y
(11)2 nd (10(x4 − x3z + 2x2y2 + 3xy2z + y4) + z4)(x2 + (y − z)2 − z2) + x5y

4 nd x6 + y6 + z6 − 4x2y2z2

(41) nd ((x2 + 3y2 − 20z2)(4x2 + y2 − 16z2) + 18x2z2)(x2 + y2 − 10z2)− 2z6

(41) d 10(((x2+2y2−16z2)(2x2+y2−16z2) + x2y2)(10x+ y + 5z) + xz4)(10x− y − 8z)− xz5

(31)1 nd ((x2 + 3y2 − 17z2)(3x2 + y2 − 10z2) + 15x2z2)(x2 + 4(y + z)2 − 25z2) + x3y3

(21)2 nd ((x2+3y2−20z2)(4x2+y2−16z2) + 18x2z2)((x+ y)2 + 20(x−y−3z)2 − 24z2) + (y−x)z5

(21)2 d ((x2 + 3y2 − 20z2)(4x2 + y2 − 16z2) + 18x2z2)(x2 + 8y2 − 16z2)− 4z6

(11)3 nd ((x2 + 2y2 − 30z2)(3x2 + y2 − 20z2) + 15x2z2)(x2 + (4y + 16z)2 − 15z2) + x3y3

61

https://software.mis.mpg.de/planeSexticCurves/index.html


5 nd 4((x2 + 2y2 − 4z2)(2x2 + y2 − 4z2) + z4)(x2 + y2 − z2) + x3y3

(51) nd (3x2 + 4xy + 2y2 − 4z2)(x2 + 2(y − z)2 − 8z2)(2x2 + y2 − 3z2)− z6

(41)1 nd (4x2 + 6x(y−z) + 3(y−z)2 − 14z2)(x2 + 5(y−2z)2 − 9z2)(2x2 + (y−z)2 − 15z2)− yz5

(31)2 nd ((x+z)2 + 4y2 − 4z2)(7(x+z)2 + y2 − 10z2)((x+z)2 + 4(2(x+y)+3z)2 − 8z2) + xz5

(21)3 nd ((x+z)2 + 3y2 − 4z2)(7(x+z)2 + y2 − 12z2)((x+z)2 + 3(2(x+y)+3z)2 − 5z2) + xz5

(11)4 nd ((x2 + 3y2 − 20z2)(4x2 + y2 − 16z2) + 18x2z2)(8x2 + y2 − 16z2) + (x+y)z5

6 nd (3x2 + 5xy + 2y2 − 7z2)(x2 + 2(y − z)2 − 8z2)(2x2 + y2 − 5z2)− z6

(61) nd (4x2 + 4xy + 3y2 − 4z2)(x2 + 3y2 − 4z2)(4x2 + y2 − 4z2)− z6

(51)1 nd 30(((x−z)2 + 3y2 − 5z2)(3(x−z)2+y2−5z2) + xz3)((x−z)2 + y2 − 2z2) + (x−2z)z5

(51)1 d 7((x2 + 3(y + z)2 − 48z2)(3(x+ z)2 + y2 − 48z2)− z4)(x2 + y2 − 26z2) + xz5 + yz5

(41)2 nd 15(4x2 + y2 − 3z2)(x2 + 3y2 − 3z2)((4x− z)2 + 16y2 − 22z2) + (5xz5 + (y − z)3z3)
(31)3 nd 34((3x2 + y2 − 3z2)(x2 + 8y2 − 3z2) + x2y2)(2x2 − yz − 2z2) + (x− 4z)yz4

(31)3 d ((x2 + 3y2 − 28z2)(4x2 + y2 − 20z2)− z4)((x+ z)2 + y2 − 12z2)− xz5

(21)4 nd 27(2xz − 6y2 + 2yz + 3z2)(−(x+ y)2 − 4y2 + 2z2)(5(x+ y)2 + y2 − 4z2)− xz5

(11)5 nd ((x2 + 3y2 − 20z2)(4x2 + y2 − 16z2) + 18x2z2)(16x2 + y2 − 20z2)− (x+ y)z5

(11)5 d ((x2+3y2−20z2)(4x2+y2−16z2) + 18x2z2)((x+y)2 + 20(x−y−3z)2 − 24z2) + (x+y)z5

7 nd 2(4x2 + y2 − 4z2)(x2 + 4y2 − 5z2)(x2 + y2 − 4z2) + 3x4y2 + xy5

Next, we have eight topological types with eight ovals, all of which are non-dividing:

(71) nd 2(x2 + y2 − 26z2)(x2 + 3(y + z)2 − 48z2)(3(x+ z)2 + y2 − 48z2)− z6

(21)5 nd 40(3x2 + y2 − 3z2)(x2 + 8(y − z)2 − 3z2)(2x2 − yz − 2z2)− (y3z3 + 2xz5 − 2z6)
(11)6 nd 19(4x2 + y2 − 4z2)(x2 + 8(y − z)2 − 3z2)(2x2 − yz − 2z2)− (2y − 3z)z5

8 nd 12(x4 + 2x2y2 + y4 − x3z + 3xy2z)(7(8x+ 3z)2 + 8y2 − 10z2) + x5y + 2z6

(61)1 nd (160075(5yz−x2)(8(xz+15z2)− (y−12z)2) + 109(17x+5y+72z)(13x+5y+42z)(9x+5y+20z)(2x+5y))(5yz−x2)− (x + 3z)z5

(51)2 nd (5435525((y+z)z − x2)((x+2z)z − 2(y−x)2) + 5(25x−25y−31z)(5x−50y−49z)(15x+25y+27z)(35x+25y+37z))((y+z)z − x2) + x5y

(41)3 nd (14460138((y+z)z−x2)((x+2z)z − 2(y−x)2) + 5(25x−25y−31z)(5x−50y−49z)(15x+25y+27z)(37z+35x+25y))((y+z)z−x2) + x5y

(31)4 nd (27867506((y+z)z − x2)((x+2z)z − 2(y−2x)2) + 61(6x+8y+9z)(64y+63z)(15x−25y−27z)(35x−25y−37z))((y+z)z − x2) + x5y

Among the 12 rigid isotopy types with 9 ovals, two are from (40) and three pairs are from (39):

(11)7 nd 23(3x2 + y2 − 3z2)(x2 + 8(y − z)2 − 3z2)(2x2 − yz − 2z2)− (2y − 3z)z5

9 nd ((x2+3y2−20z2)(4x2+y2−16z2) + 18x2z2)((x+y)2 + 20(x− y − 3z)2 − 24z2) + y2z4

9 d ((x2 + 3y2 − 20z2)(4x2 + y2 − 16z2) + 18x2z2)(16x2 + y2 − 20z2) + z6

(81) d ((x2 + 3y2 − 28z2)(4x2 + y2 − 20z2)− z4)(2x2 + y2 − 12z2)− z6

(81) nd (1920981(yz−x2)(57(x+z)z − (6x−y+6z)2) + 48(10x+7y+3z)(11x+25y+z)(11x−23y−z)(10x−8y−3z))(x2−yz) + x2y4 − 61y6

(71)1 nd (529321083(yz−x2)(53(x+z)z − (6x−y+6z)2) + 25(10x+8y+3z)(12x+30y+z)(12x−32y−z)(10x−8y−3z))(x2−yz)− y6

(61)2 d (19157935(5yz−x2)(8(xz+15z2)− (y−12z)2) + 1185(17x+5y+72z)(13x+5y+42z)(9x+5y+20z)(2x+5y))(5yz−x2)− (x+3z)z5

(51)3 nd (28920269((y+z)z − x2)((x+2z)z − 2(y−x)2) + 10(25x−25y−31z)(5x−50y−49z)(15x+25y+27z)(35x+25y+37z))((y+z)z−x2) + x5y

(41)4 nd 6761249083262(68794627464(1095368(118(x2 + y2 − 3z2)y + (x−2z)(x−12z)(x− 13z))y + (x− 4z)(x− 9z)(x− 10z)(x− 11z))y

+(x− 3z)(x− 5z)(x− 6z)(x− 7z)(x− 8z))y − z6

(41)4 d 13278270242890(52982089012(1610519(149(x2 + y2 − 4z2)y + (x−3z)(x−13z)(x− 14z))y + (x− 5z)(x− 10z)(x− 11z)(x− 12z))y

+(x− 4z)(x− 6z)(x− 7z)(x− 8z)(x− 9z))y − (x− 5z)z5

(31)5 nd (26894836459((y+z)z−x2)((x+2z)z − 2(y−2x)2) + 1880(6x+8y+9z)(64y+63z)(15x−25y−27z)(35x−25y−37z))((y+z)z − x2) + x5y

(21)6 d (93678589978((y+z)z−x2)((x+2z)z − 2(y−2x)2) + 50949(6x+8y+9z)(18x−72y−73z)(5x−6y−7z)(−27x+18y+28z))((y+z)z−x2)+x5y
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The six topological types with ten ovals are all non-dividing:

(91) nd (40008(yz − x2)(57(x + z)z − (6x− y + 6z)2) + (10x + 7y + 3z)(11x + 25y + z)(11x− 23y − z)(10x− 8y − 3z))(x2 − yz)− y6

(81)1 nd (622771068(yz−x2)(57(x+z)z − (6x−y+6z)2) + 35(10x+8y+3z)(12x+30y+z)(12x−32y−z)(10x−8y−3z))(x2−yz)− y6

(51)4 nd −3401397120x6 − 3195251840x5y − 2164525440x4y2 − 869728640x3y3 + 332217600x2y4 + 316096000xy5 + 53760001y6

+1597625920x5z+36848468800000000000x4yz+7988129600000000000x3y2z−3373286400000000000x2y3z+3824761600000000000xy4z

+23425600000000000000000000000y4z2−1199390720x4z2−7988129600000000000x3yz2−127552392000000000000000000000x2y2z2

+1618496000000000000y5z + 764952320x3z3 + 141724880000000000000000000000000000000y3z3 + 3654393600000000000x2yz3

−3824761600000000000xyz4 − 130099200x2z4 + 11712800000000000000000000000y2z4 + 650496000000000000yz5 − 2z6

(41)5 nd −3401397120x6−3195251840x5y−2164525440x4y2−869728640x3y3+332217600x2y4+316096000xy5+53760002y6+1597625920x5z

+36848468800000000000x4yz + 7988129600000000000x3y2z − 3373286400000000000x2y3z + 3824761600000000000xy4z

+1618496000000000000y5z − 1199390720x4z2 − 7988129600000000000x3yz2 − 127552392000000000000000000000x2y2z2

+23425600000000000000000000000y4z2+764952320x3z3+3654393600000000000x2yz3−3824761600000000000xyz4−130099200x2z4

+141724880000000000000000000000000000000y3z3 + 11712800000000000000000000000y2z4 + 650496000000000000yz5 − z6

(11)8 nd (227693(yz − x2)((x + 2z)z − 2(y − 2z)2) + (10x− 8y − 3z)(10x− 23y − z)(11x + 22y + z)(10x + 7y + 3z))(x2 − yz) + y6

10 nd 19x6 − 20x4y2 − 20x2y4 + 19y6 − 20x4z2 + 60x2y2z2 − 20y4z2 − 20x2z4 − 20y2z4 + 19z6

Finally, here are representatives for the three types with the maximum number of ovals:

(91)1 d (1941536164(yz−x2)(60(x+z)z − (6x+6z−y)2) + 118(10x+8y+3z)(12x+32y+z)(12x−32y−z)(10x−8y−3z))(x2 − yz)− y6

(51)5 d −3401397120x6 − 3195251840x5y − 2164525440x4y2 − 869728640x3y3 + 332217600x2y4 + 316096000xy5 + 53760001y6

+1597625920x5z + 36848468800000000000x4yz + 7988129600000000000x3y2z − 3373286400000000000x2y3z − 130099200x2z4

−1199390720x4z2−7988129600000000000x3yz2−127552392000000000000000000000x2y2z2+23425600000000000000000000000y4z2

+764952320x3z3 + 3654393600000000000x2yz3 + 141724880000000000000000000000000000000y3z3 + 3824761600000000000xy4z

+1618496000000000000y5z − 3824761600000000000xyz4 + 11712800000000000000000000000y2z4 + 650496000000000000yz5 − z6

(11)9 d (340291(yz − x2)((x + 2z)z − 2(y − 2z)2) + (10x− 8y − 3z)(12x− 27y − z)(12x + 28y + z)(10x + 7y + 3z))(x2 − yz) + y6

The correctness of the 64 polynomials above was verified using the tools to be described
in Subsection 3.1.3. The underlined coefficient is closest to the bound 1.5× 1038 in Subsec-
tion 3.1.22.

In this section we worked with planar curves of degree 6 and experimentally recorded
some of their real properties. Computing the properties like real eigenvectors and tensor real
ranks for polynomials are useful in optimisation problems. As mentioned earlier, developing
techniques for those problems is one of the main features of this thesis. In the next section,
we will look closely at an optimisation problem relevant in biology.
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3.2 Biology and Optimisation

This section is a based on an ongoing work with Yue Ren, Mohab Safey El Din, and Jo-
hannes Martini. We look at the interaction between components that is a key concept in
the functionality of biological systems. In chemistry and biology, a ligand is a substance
that purposefully binds to a target molecule inside a bigger system. Examples for ligands
and their target molecules are oxygen and the hemoglobin in blood [13], nicotine and the
nicotinic receptors inside the brain [19], or glutamate and the umami receptors on the tongue
[18]. Usually target molecules have multiple binding sites, which means that multiple lig-
ands may bind to a single molecule, and cooperativity is a phenomenon in which already
bound ligands affect the chances of other ligands binding to the still open sites. We call
cooperativity positive if the chances increase and negative if the chances decrease.

Cooperativity is ubiquitous in nature. It makes the molecule prefer the states in which
either all or none of its sites are occupied, which is useful if its purpose is to transport or
detect the ligand. This effect is best observed in the binding curve, which relates the ligand
concentration Λ outside the system with the ligand saturation Ψ(Λ) inside the system.

Figure 23 is taken from a classical work in biology [13]. It visualises the oxygen binding to
hemoglobin in dog blood and horse blood. Binding curves reveal a distinct S-shape instead
of a steady linear increase for systems with independent sites [7, 62]. In the figure, this shape
indicates that more the sites are occupied by oxygen, it becomes likely for more oxygen to
bind to the hemoglobin till all the sites are occupied.

Figure 23: The effect of cooperativity on a binding curve

The most comprehensive model for ligand binding is based on the grand canonical en-
semble of statistical mechanics [9, 122]. It describes the target molecule by assigning each
site a variable which encodes the difficulty of binding to it and each subset of sites a variable
which encodes the interaction between them. In this model, the binding curve arises from
the Adair equation [5, 115]

Ψ(Λ) =
nanΛn + (n− 1)an−1Λn−1 + ...+ a1

anΛn + an−1Λn−1 + ...+ a1 + 1
.

The coefficients ai depend on the variables of the molecule. The binding polynomial is the
denominator of Ψ(Λ), and it uniquely determines the shape of the binding curve. For the
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characterisation of the binding behavior, the roots of the binding polynomial have been the
objects of investigations [20, 21, 22, 98]. In particular, it has been pointed out that the
criterion of having non-real roots is the generally relevant aspect indicating that a binding
process relies on non-neglectable interactions [91].

Despite its prominence, there is no universal definition for cooperativity. It is well-studied
for many important classes of molecules, usually molecules with some internal symmetry such
as having indistinguishable binding sites [2, 107]. However, it has been shown that in the
framework of the grand canonical ensemble of statistical mechanics, different definitions of
cooperative binding do not coincide when general asymmetric systems with more than two
binding sites are considered [91, 89]. For the case when the binding sites are not considered
indistinguishable, it has been proposed to use the minimal absolute interaction between the
sites which is required to generate the overall binding behavior as a general measure of
cooperativity [90]. As cooperativity emerges from the individual interactions between the
sites, it makes sense to study the internal interactions of molecules with the given binding
curve. However, it has not been clear how to explicitly calculate this measure of cooperativity
for larger systems.

In the following subsections, we show that looking for the minimal interaction required
to generate a given overall titration behavior leads to an algebraic optimisation problem.
In Subsection 3.2.1 we describe the mathematical problem and the software that can be
used to address it. We will discuss the challenge of computing a target molecule with
prescribed binding curve that globally minimises the overall interaction between its sites in
Subsection 3.2.2. Our main focus is the classical system of hemoglobin with its four binding
sites for oxygen or other ligands such as carbon monoxide. Hence, we usually consider
the case when the molecule has four binding sites. In Subsection 3.2.3 we calculate the
minimal interaction energies and hence, cooperativity for native hemoglobin and some of its
modified variants [34]. For our examples, the minimal interaction reduces when the molecule
structure, on which the cooperative mechanism relies, is disturbed. However, our results rank
the degree of cooperativity in differently treated hemoglobin differently than other measures
of cooperativity.

3.2.1 The Mathematical Framework

In this subsection, we briefly review the model for ligand binding based on the grand canon-
ical ensemble of statistical mechanics and recall the notion of minimal absolute interaction
from [90]. We refer the reader to the books [9, 122] for detailed exposition on the model.

Definition 3.2.1 (Molecule). A molecule W with n sites is a positive real point, whose
coordinates are indexed by the subsets of [n] := {1, . . . , n} and with w∅ = 1:

W = (wI)I⊆[n] ∈ (R>0)2n .

For the sake of brevity, we abbreviate w{i1,...,ir} to wi1...ir such that i1 < · · · < ir (see
Fig. 24). We refer to wI as binding energy if |I| = 1 and interaction energy if |I| > 1.
The binding energies wi encode the energy required to bind to the sites, and the interaction
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energies wi1...ir encode the discrepancy between the energy required for r ligands to bind
to the sites i1, . . . , ir and the energies required to bind to its smaller subunits. Note that,
contrary to their names, our binding energies are exponentials of the binding energies in
[9, 122].

1

2

3

4

binding energy w3

interaction energy w12

w134

Figure 24: A molecule with 4 binding sites.

Definition 3.2.2 (Binding Polynomial). Given a molecule W = (wI) with n sites, its binding
polynomial Φ(W) is a univariate polynomial of degree n,

Φ(W) := anΛn + · · ·+ a1Λ + a0,

whose positive real coefficients ak are given by

ak :=
∑
|I|=k

∏
I′⊆I

wI′ ∈ R>0.

Example 3.2.3. Let W = (wI)I⊆[3] ∈ (R>0)23 be a molecule with 3 sites. The binding
polynomial Φ(W) = a3Λ3 +a2Λ2 +a1Λ+a0 is a real univariate polynomial of degree 3 whose
coefficients are given by

a0 = w∅ = 1,

a1 = w1 + w2 + w3,

a2 = w1w2w12 + w1w3w13 + w2w3w23,

a3 = w1w2w3w12w13w23w123.

Note that different molecules may have the same binding polynomial and thus, the same
binding curve. Hence, the map Φ which maps a molecule with n sites to its binding polyno-
mial is not injective.

Definition 3.2.4 (Absolute interaction). The absolute interaction of a molecule W = (wI) ∈
(R>0)2n is given by

‖W‖ :=
∏
|I|>1

max
(
wI , w

−1
I

)
. (49)
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Definition 3.2.5 (Minimal absolute interaction). Given a binding polynomial P of degree
n, the minimal absolute interaction is

‖P‖ := min {‖W‖ | W ∈ (R>0)2n with Φ(W) = P}. (50)

We call a molecule W a minimal molecule, if ‖W‖ = ‖Φ(W )‖.

In words, the minimal absolute interaction ‖P‖ is the minimum of all absolute interactions
of molecules with a fixed binding polynomial P , or equivalently with a fixed binding curve.
This notion is well defined by the following proposition.

Proposition 3.2.6 ([90, §4]). For any univariate polynomial P of degree n with positive
coefficients there exists a molecule W ∈ (R>0)2n with n sites such that Φ(W) = P and
‖W‖ = ‖P‖.

Since cooperativity is an emerging property of the interaction between the sites and is
usually deduced from the binding curve, the minimal absolute interaction of the binding
polynomial is a natural candidate for quantifying cooperativity. In addition, [90, §4] shows
that it has several properties that could be considered desirable in such a quantifier.

Remark 3.2.7. We view molecules as points in a Euclidean space. It is possible to interpret
molecules as hypergraphs or tensors. In a different context, one can also draw a comparison
between these molecules and biallelic n-loci genes [8]. In that setting cooperativity corres-
ponds to epistasis.

Example 3.2.8. Consider the following binding polynomials:

P1 :=4Λ3 + 3Λ2 + 2Λ + 1,

P2 :=6Λ3 + 7Λ2 + 4Λ + 1 = (2Λ + 1)(3Λ2 + 2Λ + 1),

P3 :=Λ3 + 3Λ2 + 3Λ + 1 = (Λ + 1)(2Λ + 1)(3Λ + 1).

A brief computation reveals that the minimal absolute interactions are

‖P1‖ = 13.50, ‖P2‖ = 3, ‖P3‖ = 1.

The computation for ‖P1‖ is explicitly shown in Example 3.2.9. Figure 25 illustrates the
minimal molecules for each binding polynomial. This figure can also be seen as the diagram-
matic representation of 2x2x2 tensors. Since P3 factorises into three real linear factors, its
minimal molecule has only trivial interactions.

3.2.2 The Algebraic Optimisation Problem

In this subsection we consider the computation of the minimal absolute interaction (50) as
an optimisation problem. The absolute interaction is the objective function and the set of
all molecules that share the same binding polynomial constitutes the feasible set:
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0.667
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1.00

4.75

1.00

2.83

‖W1‖ = 13.50

2.00

1.00

1.00

1.00

3.00

1.00

1.00

‖W2‖ = 3.00

1.00

2.00

3.00

1.00

1.00

1.00

1.00

‖W3‖ = 1.00

Figure 25: Minimal molecules for binding polynomial P1, P2, P3

minimise
W

‖W‖

subject to Φ(W) = P
(51)

This problem seems simple and its concept can be understood easily. However, it be-
comes quickly complicated if larger systems are considered. For small n it can be worked
out by methods of algebraic optimisation. For n = 4 explicitly, the problem for given
a1, a2, a3, a4 ∈ R>0 is as follows:

minimise
(wI)

∏
|I|>1

max
(
wI , w

−1
I

)
subject to a1 = w1 + w2 + w3 + w4,

a2 = w1w2w12 + w1w3w13 + w1w4w14

+w2w3w23 + w2w4w24 + w3w4w34,
a3 = w1w2w3w12w13w23w123 + w1w2w4w12w14w24w124

+w1w3w4w13w14w34w134 + w2w3w4w23w24w34w234,
a4 = w1w2w3w4w12w13w14w23w24w34w123w124w134w234w1234.

One intuitive way for computing the minimal absolute interaction ‖P‖ is to decompose
the space of molecules (R>0)2n . We look at 22n−n−1 regions on which for |I| > 1 either wI ≥ 1
or wI ≤ 1 holds. Each wI with I ⊆ [n] and |I| > 1 denotes an interaction. For each set of
interactions I ⊆ {I ⊆ [n]}, we can define a region

OI :=
{

(wI)I⊆[n] | for all |I| > 1, wI ≥ 1 if I /∈ I and wI ≤ 1 if I ∈ I
}

(R>0)2n =
⋃

I⊆{I⊆[n]|}

OI (52)

On each region OI , the absolute interaction ‖W‖ is a rational function in the interaction
energies which we denote fI(W ),

‖W‖ =
∏
I∈I

w−1
I

∏
|I|>1
I 6∈I

wI =: fI(W ) for W ∈ OI . (53)
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Finding the minimal absolute interaction inside OI is a straight-forward problem in polyno-
mial optimisation:

minimise
W∈OI

fI(W)

subject to Φ(W) = P.
(54)

However, this approach requires solving 22n−n−1 polynomial optimisation problems, one
for each region OI , which is simply not practical as n becomes large. Instead, we preprocess
the optimisation problem. Note that we can rewrite (51) as the following minimax form:

minimise
W

max
I⊆{I⊆[n]||I|>1}

fI(W )

subject to Φ(W ) = P.
(55)

On each region OI the function fI(W ), as defined in (53), dominates all other fI′(W ) with
I ′ 6= I. Moreover, observe that (55) can be lifted to a problem with a linear objective
function and non linear constraints.

minimise
W

r

subject to

{
fI(W ) ≤ r for all I ⊆ {I ⊆ [n] | |I| > 1},
Φ(W ) = P.

(56)

Given a fixed binding polynomial P , the polynomial system Φ(W ) = P poses a serious
computational problem. To sidestep this issue we now introduce new coordinates sI :=∏

I′⊆I wI′ . In [9, Section 2.2], the sI are referred to as intrinsic binding constant if |I| = 1

or conditional binding constant if |I| > 1. On the positive orthant (R>0)2n , this defines a
bijection

(R>0)2n (R>0)2n

(wI)W =
(∏
I′⊆I

wI′
)

(sI) = S
(∏
I′⊆I

s
(−1)|I\I

′|

I′

)

ϕ

ϕ−1

∈

∈

∈

∈

(57)

In the new coordinates, the formerly polynomial constraints ak =
∑
|I|=k

∏
I′⊆I wI′ are sim-

plified to linear constraints ak =
∑
|I|=k sI for k = 1, . . . , n. However, the functions fI

become more complicated. For example, for n = 4 and I = {{123}}

fI(W ) = w−1
123 ·

∏
|I|>1,

I 6={1,2,3}

wI becomes fI ◦ ϕ−1(S) =
s1234s

2
12s

2
13s

2
23

s2
123s

3
1s

3
2s

3
3s4

=: gI .
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Since the gI remain monomials (with possibly negative exponents), this complication is of
little consequence for the resulting problem:

minimise
S

r

subject to

{
fI ◦ ϕ−1(S) ≤ r for all I ⊆ {I ⊆ [n] | |I| > 1},∑
|I|=k sI = ak for all k = 1, . . . , n.

(58)

Example 3.2.9. Consider the binding polynomial P1 of Example 3.2.8. We use SCIP [56]
to solve the resulting polynomial optimisation problem (58), which is currently one of the
fastest solvers for nonlinear programming. It uses branch and bound method to solve the
optimisation problem with non-linear constraints.

Figure 26 shows the full input on the left and the partial output on the right. In the
input, the first constraints c1, c2, c3 enforce

∑
|I|=k sI = ak for i = 1, 2, 3. The remaining

constraints c4 to c19 enforce fI ◦ ϕ−1(S) ≤ r. For example, c19 states that s1s2s3/s123 ≤ r
which is equivalent to f∅(W ) = (w123w12w13w23)−1 ≤ r in the coordinates wI . The output
states an approximate optimal value of y = 13.5 and clearly lists all values of sI of the
minimal molecules, which gave rise to the values of wI in Example 3.2.8.

Since the number of constraints when n = 3 are less, SCIP works well. However, for n = 4
there are 211 constraints which makes it a hard problem to solve directly. Therefore, we
consider a relaxed problem with fewer constraints. We do that by exploiting the symmetry
in our problem. We look at the natural action of the symmetric group Sn on the space
of molecules (R>0)2n which permutes the binding sites and the corresponding interaction
energies:

Sn × (R>0)2n −→ (R>0)2n , (σ, (wI)) 7−→ σ · (wI) := (wσ(I)).

Proposition 3.2.10. The binding polynomial and the absolute interaction of a molecule are
invariant under the group action of Sn i.e., Φ(σ ·W) = Φ(W) and ‖σ ·W‖ = ‖W‖ for all
W ∈ (R>0)2n and all σ ∈ Sn.

We can consider this action on the regions OI . For example, for 1 ≤ i < j ≤ n the
permutation (1i)(2j) ∈ Sn induces a binding polynomial and absolute interaction preserving
bijection O{{1,2}} ↔ O{{i,j}}, which is why we have

min{‖(wI)I⊆[n]‖ | (wI)I⊆[n] ∈ O{{1,2}} with Φ(wI) = P}
= min{‖(wI)I⊆[n]‖ | (wI)I⊆[n] ∈ O{{i,j}} with Φ(wI) = P}.

To solve our problem and avoid the calculation of the 211 different cases, we compute the
upper bound b+ and lower bound b− for the minimal absolute interaction of a given binding
polynomial. To compute the upper bound we minimise the absolute interaction in a single
orthant. For the experiments in Subsection 3.2.3 we consider the orthant O∅. The result may
not be the global minimum - since the minimum may lie in another orthant - but it gives an
upper bound. For the lower bound, we consider the relaxed problem by looking at a problem
with less constraints. We consider the Sn group action. We then pick a representative of the
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Minimize

obj: r

Subject to

c1: s1+s2+s3=2

c2: s12+s13+s23=3

c3: s123=4

c4: s123 -r*s1*s2*s3 <=0

c5: s1*s2*s123 -r*s3*s12^2<=0

c6: s1*s3*s123 -r*s2*s13^2<=0

c7: s2*s3*s123 -r*s1*s23^2<=0

c8: s12 ^2*s13^2* s23^2

-r*s1^3*s2^3*s3^3*s123 <=0

c9: s1^3*s2*s3*s123 -r*s12^2*s13^2<=0

c10: s1*s2^3*s3*s123 -r*s12^2* s23^2<=0

c11: s13^2* s23^2-r*s1*s2*s3^3*s123 <=0

c12: s1*s2*s3^3*s123 -r*s13^2* s23^2<=0

c13: s12^2* s23^2-r*s1*s2^3*s3*s123 <=0

c14: s12^2* s13^2-r*s1^3*s2*s3*s123 <=0

c15: s1^3*s2^3*s3^3* s123

-r*s12^2* s13^2*s23^2<=0

c16: s1*s23^2-r*s2*s3*s123 <=0

c17: s2*s13^2-r*s1*s3*s123 <=0

c18: s3*s12^2-r*s1*s2*s123 <=0

c19: s1*s2*s3 -r*s123 <=0

Bounds

0<s1 <2

0<s2 <2

0<s3 <2

0<s12 <3

0<s13 <3

0<s23 <3

4<=s123 <=4

1<=r

End

SCIP version 6.0.0

Copyright (C) 2002 -2018 ZIB Berlin

SCIP > read input.pip

SCIP > opt

SCIP Status : problem is solved

Solving Time : 2.32

Solving Nodes: 587

Primal Bound : +1.349997004816e+01

Dual Bound : +1.349997004816e+01

Gap : 0.00 %

SCIP > display solution

objective value: 13.4999700481621

y 13.4999700481621

s1 0.666630230040994

s2 0.66617295525322

s3 0.667196814705786

s12 0.444091987464541

s13 0.444773633975962

s23 2.1111343785595

s123 4

[...]

Figure 26: Computing cooperativity for a molecule with 3 sites using SCIP
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orbits of R2n and consider the corresponding region. We only consider the constraints given
by functions fI dominant in those regions. This new problem gives the lower bound on the
true optimisation problem. Where the gap between upper and lower bound is sufficiently
small, we assume to have found a molecule minimising the problem and also consider the
respective molecule minimising the interaction magnitude.

Remark 3.2.11. Note that the number of orbits remains asymptotically large, which is
why computing the minimal interaction magnitude remains a hard task. If we restrict to the
case wI = 1 for |I| > 2, each necessary case corresponds to a (unlabeled) graph on n nodes,
whose numbers are known to be superexponential in n:

n 4 5 6 7 8 9 10 · · ·
11 34 156 1044 12346 274668 12005168 · · ·

For general molecules, the number of necessary cases equals the number of (unlabeled)
hypergraphs on n nodes with edges of cardinality 2 or higher.

3.2.3 Experimental Results

We now report on some computational experiments conducted on data from [68, 67] which
is also summarised in [34]. The first data set [68] consists of eight binding polynomials of
human adult hemoglobin both chemically treated and untreated and under two different
environmental conditions. The second data set [67] contains five binding polynomials of
native hemoglobin HbII of Scapharca inaequivalvis. Both works have studied cooperativity
through the maximal slope of the Hill plot nmax, which relates the variance of the probability
distribution on the macrostates {0, 1, 2, 3, 4} at the respective ligand activity to the variance
of a binomial distribution with the same mean [1, 63, 91]. Table 9 describes the experiments
from which binding polynomials 1 to 8 were obtained and illustrates the relation of nmax.
Table 10 describes the temperature conditions under which polynomials P9 to P13 were
obtained. The corresponding values of nmax have been reported to vary between 2.08 and
2.12 [67, Table 3].

Table 11 lists the coefficients a1, a2 and a3 of all binding polynomials and a4 is set to 1.
We list upper b+ and lower bounds b− for the minimal absolute interaction ‖Pi‖. Table 11
shows that for most binding polynomials our upper and lower bound allows for a sufficient
approximation of the absolute minimal interaction. However, there remains a nontrivial gap
between both bounds for P2, P3, P4, which makes a comparison of the degree of cooper-
ativity according to the minimal absolute interaction difficult. Fig. 27 shows all molecules
realising the upper bound of the minimal absolute interaction. For all but P2, P3, P4, P7, P8

the molecules are minimal.
Let us assume that the correct value for P2 is close to the upper bound which we de-

termined. Then, nearly all relations of the degree of cooperativity described by the maximal
slope of the Hill plot nmax (Table 9) are found again. The only exception is the very drastic
difference between P4 and P6. Whereas, P4 describes a more cooperative system than P6

according to nmax, we obtain a different image when using the minimal absolute interaction.
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Human Hb
in the absence in the presence
of 2mM DPG of 2mM DPG

untreated P1 ≺ P2

g g
treated with

P3 ≺ P4iodoacetamide
g g

treated with
P5 ≺ P6N-ethylmaeimide
g g

treated with
P7 ≺ P8carboxypeptidase A

Table 9: Binding polynomials 1 to 8 and the relation of their degree of cooperativity according
to the maximal slope of the Hill plot nmax (� = bigger nmax, DPG = 2,3-diphosphoglycerate)

Clam HbII at 10◦ at 15◦ at 20◦ at 25◦ at 30◦

P9 P10 P11 P12 P13

Table 10: Binding polynomials 9 to 13
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0.2

3.7 1.0
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0.5 0.5
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4.2 1.0

1.7

1.0

1.3

0.1

0.1 0.1

0.1

45 1.0

2.5

1.0

1.00

Figure 27: Minimal molecules for binding polynomials P1, P5, P6

Among the polynomials P9 to P13, in the second data set, a small variation in the
same coefficients of different binding polynomials leads to a relatively big difference in the
minimal interaction magnitude. To interpret these differences, recall that wij are expo-
nentials of interaction energies. Already small differences in the energies may lead to the
observed differences on the level of interaction magnitude. Moreover, considering the beha-
vior (66.60, 66.60, 123.00, 66.60, 175.0) for the temperatures (10◦,15◦,20◦,25◦,30◦), there is a
counter-intuitive fluctuation with increasing magnitude from 15◦,20◦, decreasing interaction
from 20◦,25◦ and increasing interaction from 25◦,30◦. This observation suggests that the de-
scribed variation is the result of measurement errors and rounding effects of the coefficients,
which is also supported by the fact that the nmax criterion shows a similar pattern [67].
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a1 a2 a3 b+ b−
P1 0.835 0.379 0.541 527.00 527.00
P2 0.789 0.154 0.0648 3320.00 1600.00
P3 1.42 2.42 0.752 111.00 63.00
P4 0.647 0.568 0.0986 1950.00 1460.00
P5 2.0 2.31 2.04 16.00 16.00
P6 0.539 0.909 0.554 3030.00 3030.00
P7 3.47 4.74 2.76 2.27 1.68
P8 3.26 5.36 2.23 7.63 2.19

P9 1.4 1.0 0.62 66.60 66.60
P10 1.4 0.96 0.60 66.60 66.60
P11 1.2 0.93 0.70 123.00 123.00
P12 1.4 0.95 0.62 66.60 66.60
P13 1.1 0.98 0.59 175.00 175.00

Table 11: Bounds on the minimal absolute interaction

The standard interpretation of a high Hill coefficient is “if one side is occupied, the affin-
ity of other sites to the ligand is increased”. These types of relations are easy to infer when
the molecule is composed of physically indistinguishable sites. For instance, given a binding
polynomial, we can calculate all interaction energies easily when we assume that wij = wkl,
wijk = wlmn, etc. A more difficult mathematical problem appears when we would like to
characterise the binding behavior of a transporter without assuming it to be symmetrical
that is to be composed of physically identical units. We addressed a criterion mapping a
polynomial to the minimal interaction which is required to generate the observed equilibrium
binding behavior. The corresponding mathematical algebraic optimisation problem can be
worked out using the method explained in Subsection 3.2.2. However, the setup of looking
for the minimal absolute interaction by this method becomes complicated rapidly with the
increase in the number of binding sites. Ligand binding theory possess a lot of interest-
ing question related to algebraic optimisation and algebraic geometry, in particular when
different types of ligands and polynomials in several variables are considered [104].
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4 Coordinate-wise Powers

The content in this chapter is a joint work with Papri Dey and Paul Görlach [41] and has been
submitted for publication. Hadamard products of algebraic varieties are given by multiplying
coordinate-by-coordinate any two points x ∈ X, y ∈ Y in given subvarieties X, Y of Pn. We
focus on the r-th Hadamard power X?r := X ? . . . ? X of an algebraic variety X and study
the subvariety of X?r given by coordinate-wise r-th powers of points in X ⊂ Pn. Formally,
for a projective variety X ⊂ Pn and an integer r ∈ Z, we are interested in studying its image
under the rational map

ϕr : Pn 99K Pn, [x0 : . . . : xn] 7→ [xr0 : . . . : xrn].

We denote the image of X under ϕr by X◦r and call it the r-th coordinate-wise power of
X ⊂ Pn.

We investigate these coordinate-wise powers X◦r with a main focus on the case r > 0.
These varieties show up naturally in many applications. For the Grassmannian variety
Gr(k,Pn) in its Plücker embedding, the intersection with its r-th coordinate-wise power
Gr(k,Pn)∩Gr(k,Pn)◦r was described combinatorially in terms of matroids in [82] for even r.
In [15], highly singular surfaces in P3 have been constructed as preimages of a specific singular
surface under the morphism ϕr for r > 0. The case r = −1 is the study of reciprocal varieties
which has received particular attention in the case of linear spaces, see [37], [78] and [50].

For r > 0, the coordinate-wise powers X◦r of a variety X ⊂ Pn have the following natural
interpretation: The quotient of Pn by the finite subgroup Zn+1

r of the torus (C∗)n+1 is again
a projective space. The image of a variety X ⊂ Pn in Pn/Zn+1

r
∼= Pn is the variety X◦r, since

ϕr : Pn → Pn is the geometric quotient of Pn by Zn+1
r . In other words, coordinate-wise powers

of algebraic varieties are images of subvarieties of Pn under the quotient by a certain finite
group. The case r = 2 has the special geometric significance of quotienting by the group
generated by reflections at the coordinate hyperplanes of Pn. We are, therefore, especially
interested in coordinate-wise squares of varieties.

In Subsection 4.1 we compute the degree of X◦r. We use this to derive the degree of
the variety of orthostochastic matrices. In Subsection 4.2, we find explicitly the defining
equations of the coordinate-wise powers of hypersurfaces. We also define generalised power
sum hypersurfaces and give relations between their dual and reciprocal varieties.

We study in more detail coordinate-wise powers of linear spaces in the Subsection 4.3.
For low-dimensional linear spaces we give a complete classification. We also describe the
defining ideal for the coordinate-wise square of general linear spaces of arbitrary dimension
in a high-dimensional ambient space, and we link this question to the study of symmetric
matrices with a codimension one eigenspace.

4.1 Degree Formula

Throughout this chapter, we work over C. We denote the homogeneous coordinate ring of
Pn by C[x] := C[x0, . . . , xn]. For any integer r ∈ Z, we consider the rational map

ϕr : Pn 99K Pn, [x0 : . . . : xn] 7→ [xr0 : . . . : xrn].
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For r ≥ 0, the rational map ϕr is a morphism. Throughout, let X ⊂ Pn be a projective
variety, not necessarily irreducible. We denote by X◦r ⊂ Pn the image of X under the
rational map ϕr. More explicitly,

X◦r :=

{
ϕr(X \ V (x0x1 . . . xn)) if r < 0,

ϕr(X) if r ≥ 0.

For r < 0, we will only consider the case that no irreducible component of X is contained
in any coordinate hyperplane of Pn. We call the image X◦r ⊂ Pn the r-th coordinate-wise
power of X. In the case r = −1, the variety X◦(−1) is called the reciprocal variety of X.
We primarily focus on positive coordinate-wise powers, and therefore we will from now on
always assume r > 0 unless explicitly stated otherwise. Observe that ϕr : Pn → Pn is a finite
morphism, and hence, the image X◦r of X under ϕr has same dimension as X.

The cyclic group Zr of order r is identified with the group of r-th roots of unity {ξ ∈ C |
ξr = 1}. We consider the action of the (n + 1)-fold product Zn+1

r := Zr × . . . × Zr on C[x]
given by rescaling the variables x0, . . . , xn with r-th roots of unity. We denote the quotient
of Zn+1

r by the subgroup {(ξ, ξ, . . . , ξ) ∈ Cr | ξr = 1} ⊂ Zn+1
r as Gr := Zn+1

r /Zr. The group
action of Zn+1

r on C[x] determines a linear action of Gr on Pn. In this way, we can also view
Gr as a subgroup of Aut(Pn). For r = 2, this has the geometric interpretation of being the
linear group action generated by reflections at coordinate hyperplanes. Note that Gr does
not act on the vector space C[x]d of homogeneous polynomials of degree d, instead it acts
on P(C[x]d).

Given a projective variety, the following proposition describes the preimage under ϕr of
its coordinate-wise r-th power.

Proposition 4.1.1 (Preimages of coordinate-wise powers). Let X ⊂ Pn be a variety and let
X◦r ⊂ Pn be its coordinate-wise r-th power. The preimage ϕ−1

r (X◦r) is given by
⋃
τ∈Gr τ ·X.

Proof. This follows from X◦r = ϕr(X) and the fact that ϕ−1
r (ϕr(p)) = {τ · p | τ ∈ Gr} for

all p ∈ X.

In particular, for r = 2, we obtain the following geometric description.

Corollary 4.1.2. The preimage of X◦2 under ϕ2 : Pn → Pn is the union over the orbit of X
under the subgroup of Aut(Pn) generated by the reflections in the coordinate hyperplanes.

In the following theorem, we give a degree formula for the coordinate-wise powers of an
irreducible variety.

Theorem 4.1.3 (Degree formula). Let X ⊂ Pn be an irreducible projective variety. Let
Stabr(X) := {τ ∈ Gr | τ ·X = X} and Fixr(X) := {τ ∈ Gr | τ |X = idX}. Then the degree
of the r-th coordinate-wise power of X is

degX◦r =
|Fixr(X)|
| Stabr(X)|

rdimX degX.
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Proof. Let H1, . . . , Hk ⊂ Pn for k := dimX◦r = dimX be general hyperplanes whose com-
mon intersection with X◦r consists of finitely many reduced points. We want to determine
|X◦r ∩

⋂k
i=1 Hi|. By Proposition 4.1.1, we have

ϕ−1
r

(
X◦r ∩

k⋂
i=1

Hi

)
=
⋃
τ∈Gr

τ ·

(
X ∩

k⋂
i=1

ϕ−1
r Hi

)
.

Note that each ϕ−1
r Hi is a hypersurface of degree r and their common intersection with X

consists of finitely many reduced points by a version of Bertini’s theorem (as in [51, 3.4.8]).

By Bézout’s theorem,
∣∣∣X ∩⋂k

i=1 ϕ
−1
r Hi

∣∣∣ = rk degX.

We note that Z := X ∩
(⋃

τ∈Gr\Stabr(X) τ ·X
)

is of dimension < k by irreducibility of X.

Therefore, the common intersection of k general hyperplanes Hi with ϕr(Z) is empty, hence
we can write the above as the following disjoint union:

⋃
τ∈Gr

τ ·

(
X ∩

k⋂
i=1

ϕ−1
r Hi

)
=

⊔
τ∈Gr/ Stabr(X)

τ ·

(
X ∩

k⋂
i=1

ϕ−1
r Hi

)
.

In particular, ∣∣∣∣∣ϕ−1
r

(
X◦r ∩

k⋂
i=1

Hi

)∣∣∣∣∣ =
|Gr|

| Stabr(X)|
rk degX.

For a general point p ∈ X, we have {τ ∈ Gr | τ · p = p} = Fixr(X). Then Proposition 4.1.1
shows that a general point of X◦r = ϕr(X) has |Gr|/|Fixr(X)| preimages under ϕr, so for
general hyperplanes Hi we conclude

degX◦r =

∣∣∣∣∣X◦r ∩
k⋂
i=1

Hi

∣∣∣∣∣ =
|Fixr(X)|
|Gr|

∣∣∣∣∣ϕ−1
r

(
X◦r ∩

k⋂
i=1

Hi

)∣∣∣∣∣ =
|Fixr(X)|
| Stabr(X)|

rk degX.

4.1.1 Orthostochastic Matrices

We use Theorem 4.1.3 to compute the degree of the variety of orthostochastic matrices.
By O(m) ⊂ Pm2

(resp. SO(m) ⊂ Pm2
) we mean the projective closure of the affine variety

of orthogonal (resp. special orthogonal) matrices in Am2
. It was shown in [39] that the

problem of deciding whether a bivariate polynomial can be expressed as the determinant
of a definite/monic symmetric linear matrix polynomial (a determinantal representation)
is closely linked to the problem of finding the defining equations of the variety O(m)◦2.
In the case m = 3, the defining equations of O(3)◦2 are known [28, Proposition 3.1] and
based on this knowledge, it was shown in [40, Section 4.2] how to compute a determinantal
representation for a cubic bivariate polynomial or decide that none exists. For arbitrary m,
the ideal of defining equations may be very complicated, but we are still able to compute its
degree:
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Proposition 4.1.4 (Degree of O(m)◦2). We have O(m)◦2 = SO(m)◦2 and its degree is

degO(m)◦2 = 2(m−1)2 degO(m)

2(m+1
2 )

≤ 2(m−1)2 .

Proof. The variety O(m) consists of two connected components that are isomorphic to
SO(m). The images of these components under ϕ2 : Pm2 → Pm2

coincide. In particu-
lar, O(m)◦2 = SO(m)◦2 and degO(m) = 2 deg SO(m). We determine Fix2(SO(m)) and
Stab2(SO(m)).

Identify elements of G2 with m×m-matrices whose entries are ±1. Then a group element
S ∈ G2 = {±1}m×m acts on the affine open subset Am2 ⊂ Pm2

corresponding to m × m-
matrices M ∈ Cm×m. The action S◦M is the the Hadamard product (i.e. entry-wise product)
of matrices. Clearly, Fix2(SO(m)) is trivial, or else every special orthogonal matrix would
need to have a zero entry at a certain position.

We claim that Stab2(SO(m)) ⊂ {S ∈ {±1}m×m | rkS = 1}. Indeed, assume that
S ∈ {±1}m×m lies in Stab2(SO(m)), but is not of rank 1. Then m ≥ 2 and we may assume
that the first two columns of S are linearly independent. Consider the vectors u, v ∈ Cm

given by

ui :=

{
1 if i < m,

−1 if i = m
and vi :=

{
2i−1 if i < m,

2m−1 − 1 if i = m
for all i ∈ {1, . . . ,m}.

Since u and v are orthogonal, we can find a special orthogonal matrix M ∈ Cm×m whose first
two columns are M•1 = u/‖u‖2 and M•2 = v/‖v‖2. But S ∈ Stab2(SO(m)), so the matrix
S ◦M must be a special orthogonal matrix. In particular, the first two columns of S ◦M
must be orthogonal, i.e.

0 =
m∑
i=1

(Si1ui)(Si2vi) = −(Sm1Sm2)(2m−1 − 1) +
m−1∑
i=1

(Si1Si2)2i−1. (59)

Since Si1Si2 = ±1 for all i, we have |
∑m−1

i=1 (Si1Si2)2i−1| ≤ 2m−1 − 1, and equality in (59)
holds if and only if Si1Si2 = Sj1Sj2 for all i, j ∈ {1, . . . ,m}. However, this contradicts the
linear independence of the first two columns of S. Hence, the claim follows.

Any rank 1 matrix in {±1}m×m can be uniquely written as uvT with u, v ∈ {±1}m and
u1 = 1. Such a rank 1 matrix S = uvT lies in Stab2(SO(m)) if and only if for each special
orthogonal matrix M ∈ Cm×m the matrix

S ◦M = (uvT ) ◦M = diag(u1, . . . , um)M diag(v1, . . . , vm)

is again a special orthogonal matrix. This is true if and only if
∏m

i=1 ui =
∏m

i=1 vi. Therefore,

Stab2(SO(m)) = {uvT | u, v ∈ {±1}m, u1 = 1,
∏

i ui =
∏

i vi},

and, thus, | Stab2(SO(m))| = 22m−2.
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Since SO(m) ⊂ Pm2
is irreducible, applying Theorem 4.1.3 gives

deg SO(m)◦2 =
1

22m−2
2(m

2 ) deg SO(m) = 2(m
2 )−2m+1 degO(m) = 2(m−1)2 degO(m)

2(m+1
2 )

.

Finally, we observe that the affine variety of orthogonal matrices in Am2
is an intersection

of
(
m+1

2

)
quadrics which correspond to the polynomials given by the equation MTM = id

satisfied by orthogonal matrices M ∈ Cm×m. Therefore, its projective closure O(m) ⊂ Pm2

must satisfy degO(m) ≤ 2(m+1
2 ). This shows degO(m)◦2 ≤ 2(m−1)2 .

Remark 4.1.5. The degree of O(m) (resp. SO(m)) is known for all m by [17], namely

degO(m) = 2m det

( (
2m− 2i− 2j

m− 2i

) )
1≤i,j≤bm/2c

.

Table 12 shows the resulting degrees of O(m)◦2 = SO(m)◦2 for some values of m.

m 1 2 3 4 5 6 7 8
deg SO(m) 1 2 8 40 384 4768 111616 3433600

deg SO(m)◦2 1 1 4 40 1536 152576 57147392 56256102400

Table 12: The degrees of SO(m) and SO(m)◦2 in comparison.

4.1.2 Linear Spaces

We now determine the degree of coordinate-wise powers L◦r for a linear space L ⊂ Pn, based
on Theorem 4.1.3. It can be expressed in terms of the combinatorics captured by the matroid
of L ⊂ Pn. We briefly recall some basic definitions for matroids associated to linear spaces
in Pn. We refer to [99] for a detailed introduction to matroid theory.

Let L ⊂ Pn be a linear space. The combinatorial information about the intersection of
L with the linear coordinate spaces in Pn is captured in the linear matroid ML. It is the
collection of index sets I ⊂ {0, 1, . . . , n} such that L does not intersect V ({xi | i /∈ I}).
Formally,

ML := {I ⊂ {0, 1, . . . , n} | L ∩ V ({xi | i /∈ I}) = ∅}.
Different conventions about linear matroids exist in the literature, and some authors take a
dual definition for the linear matroid of L.

The set {0, 1, . . . , n} is the ground set of the matroid. Index sets I ∈ ML are called
independent, while index sets I ∈ Pow({0, 1, . . . , n}) \ML are called dependent. An index
i ∈ {0, 1, . . . , n} is called a coloop of ML if, for all I ⊂ {0, 1, . . . , n}, the condition I ∈ ML

holds if and only if I ∪{i} ∈ ML holds. Geometrically, an index i ∈ {0, 1, . . . , n} is a coloop
of ML if and only if L ⊂ V (xi).

A subset E ⊂ {0, 1, . . . , n} is called irreducible if there is no non-trivial partition
E = E1 t E2 with

I ∈ML ⇔ I ∩ E1 ∈ML and I ∩ E2 ∈ML ∀I ⊂ E.
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The maximal irreducible subsets of {0, 1, . . . , n} are called components of ML and they
form a partition of {0, 1, . . . , n}. Geometrically, a component of ML is a minimal subset of
{0, 1, . . . , n} with the property that L ∩ V (xi | i ∈ I) and L ∩ V (xi | i /∈ I) together span
the linear space L.

In the following result, we determine the degree of L◦r ⊂ Pn as an invariant of the linear
matroid ML.

Theorem 4.1.6. Let L ⊂ Pn be a linear space of dimension k. Let s be the number of
coloops and t the number of components of the associated linear matroid ML. Then

degL◦r = rk+s−t+1.

Proof. By Theorem 4.1.3, we need to determine the cardinality of the groups

Stabr(L) = {τ ∈ Gr | τ · L = L} and Fixr(L) = {τ ∈ Gr | τ |L = idL}.

Consider the affine cone over L, which is a (k + 1)-dimensional subspace W ⊂ Cn+1. We
denote the canonical basis of Cn+1 by e0, . . . , en.

We observe that |Fixr(L)| = |{τ ∈ Zn+1
r | τ |W = id}|. For τ ∈ Zn+1

r , we have

τ |W = id ⇔ W ⊂ 〈ei | i ∈ {0, 1, . . . , n} s.t. τi = 1〉
⇔ L ⊂ V (xi) ∀i ∈ {0, 1, . . . , n} s.t. τi 6= 1

⇔ τi = 1 for all i ∈ {0, 1, . . . , n} which are not a coloop of ML.

From this, we see that |Fixr(L)| = rs.
For the stabiliser of L, we have | Stabr(L)| = 1

r
|{τ ∈ Zn+1

r | τ ·W = W}|. If τ ∈ Zn+1
r ,

then

τ ·W = W ⇔ W =
⊕
ξ∈Zr

W ∩ 〈ei | i ∈ {0, 1, . . . , n} s.t. τi = ξ〉

⇔ For each ξ ∈ Zr, the set {i ∈ {0, 1, . . . , n} | τi = ξ} is a union of

components of ML.

⇔ ∀C ⊂ {0, 1, . . . , n} component of ML, ∃ξ ∈ Zr s.t. τi = ξ for all i ∈ C.

In particular, there are precisely rt elements τ ∈ Zn+1
r with τ ·W = W . We deduce that

| Stabr(L)| = rt−1, which concludes the proof by Theorem 4.1.3.

Corollary 4.1.7. The degree of the coordinate-wise r-th power of a linear space only depends
on the associated linear matroid. If L1, L2 ⊂ Pn are linear spaces such that the linear matroids
ML1 and ML2 are isomorphic (i.e. they only differ by a permutation of {0, 1, . . . , n}), then
L◦r1 ⊂ Pn and L◦r2 ⊂ Pn have the same degree.

Corollary 4.1.8. Let L ⊂ Pn be a linear space of dimension k. Then degL◦r ≤ rk. For
general k-dimensional linear spaces in Pn, equality holds.
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Proof. Every coloop of ML forms a component of ML and the set {0, 1, . . . , n} \ {coloops}
is a union of components, hence t ≤ s + 1. Therefore, by Proposition 4.1.6, degL◦r ≤ rk.
For a general linear space L ∈ Gr(k,Pn), the linear matroid ML has no coloops and only
one component.

Example 4.1.9. We illustrate Theorem 4.1.6 for hyperplanes. Up to permuting and rescal-
ing the coordinates of Pn, each hyperplane is given by L = V (f) with f = x0 + . . .+ xm for
some m ∈ {0, 1, . . . , n}. Its linear matroid is

ML = {∅, {0}, {1}, . . . , {m}}.

The components of this matroid are the set {0, 1, . . . ,m} and the singletons {i} for i ≥ m+1.
The matroid ML has no coloops for m ≥ 1 and the unique coloop 0 if m = 0. Then
Theorem 4.1.6 shows degL◦r = rm−1 for m ≥ 1, and degL◦r = 1 for m = 0. For m = 3,
n = 3 and r = 2, we obtain a quartic surface which we illustrate in Figure 28.

4.2 Hypersurfaces

In this subsection, we study the coordinate-wise powers of hypersurfaces. Here, by a hyper-
surface, we mean a pure codimension 1 variety. In particular, hypersurfaces are assumed to
be reduced, but are allowed to have multiple irreducible components. We describe a way to
find the explicit equation describing the image of the given hypersurface under the morphism
ϕr. We define generalised power sum symmetric polynomials and we give a relation between
duality and reciprocity of hypersurfaces defined by them. Finally, we raise the question
whether and how the explicit description of coordinate-wise powers of hypersurfaces may
lead to results on the coordinate-wise powers for arbitrary varieties.

4.2.1 The Defining Equation

The defining equation of a degree d hypersurface is a square-free (i.e. reduced) polynomial
unique up to scaling, corresponding to a unique f ∈ P(C[x]d). We work with points in
P(C[x]d), i.e. polynomials up to scaling. We do not always make explicit which degree d
we are talking about if it is irrelevant to the discussion. The product of f ∈ P(C[x]d) and
g ∈ P(C[x]d′) is well-defined up to scaling, i.e. as an element fg ∈ P(C[x]d+d′). Equally, we
talk about irreducible factors etc. of elements of P(C[x]d).

Since the finite morphism ϕr preserves dimensions, the coordinate-wise r-th power of a
hypersurface is again a hypersurface, leading to the following definition.

Definition 4.2.1. Let f ∈ P(C[x]d) be square-free and V (f) ⊂ Pn be the corresponding
hypersurface. We denote by f ◦r ∈ P(C[x]d′) the defining equation of the hypersurface V (f)◦r,
i.e.

V (f ◦r) = V (f)◦r.

For a given square-free polynomial f , we want to compute f ◦r. To this end, we introduce
the following auxiliary notion.
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Definition 4.2.2. Let f ∈ P(C[x]d) be square-free. We define sr(f) ∈ P(C[x]d′) as follows:

(i) If f is irreducible and f 6= xi ∀i ∈ {0, 1, . . . , n}, then we define sr(f) ∈ P(C[x]d′) to be
the product over the orbit Gr · f ⊂ P(C[x]d). For f = xi, we define sr(f) := xri .

(ii) If f = f1f2 . . . fm where fi ∈ P(C[x]d) are irreducible, then we define

sr(f) := lcm{sr(f1), sr(f2), . . . , sr(fm)}.

Observe that in case (ii), determining sr(f) = lcm{sr(f1), sr(f2), . . . , sr(fm)} is straight-
forward, assuming the decomposition of f into irreducible factors f1, . . . , fm is known. In-
deed, the irreducible factors of each sr(fi) are immediate from case (i) of the definition, so
determining the least common multiple does not require any additional factorisation.

Lemma 4.2.3. Let f ∈ P(C[x]d) be square-free. Then sr(f) ∈ P(C[xr0, . . . , x
r
n]d′), and the

principal ideal generated by sr(f) in the subring C[xr0, . . . , x
r
n] ⊂ C[x] is (f) ∩ C[xr0, . . . , x

r
n].

Proof. It is enough to show the claim for f irreducible because we can deduce the general
case in the following manner. If f factors into irreducible factors as f = f1f2 . . . fm, then

(f) ∩ C[xr0, . . . , x
r
n] = (f1) ∩ . . . ∩ (fm) ∩ C[xr0, . . . , x

r
n] =

m⋂
i=1

((fi) ∩ C[xr0, . . . , x
r
n])

=
m⋂
i=1

(sr(fi)) = (lcm{sr(f1), sr(f2), . . . , sr(fm)}) = (sr(f)).

We now assume that f is irreducible. If f = xi for some i ∈ {0, 1, . . . , n}, then the
claim holds trivially by the definition of sr(f). Let f 6= xi for all i and g be a polynomial
representing sr(f) ∈ P(C[x]md). By definition, sr(f) is fixed under the action of Gr, hence τ ·g
is a multiple of g for all τ ∈ Zn+1

r . Since g is not divisible by xi, it must contain a monomial
not divisible by xi. This shows that g is fixed by τ (i) = (1, . . . , 1, ζ, 1, . . . , 1) ∈ Zn+1

r , where
the i-th position of τ (i) is a primitive r-th root of unity. Since τ (0), τ (1), . . . , τ (n) generate
the group Zn+1

r , we have τ · g = g for all τ ∈ Zn+1
r . Hence, g lies in the invariant ring

C[x]Z
n+1
r = C[xr0, . . . , x

r
n], i.e. sr(f) ∈ P(C[xr0, . . . , x

r
n]d′).

If h ∈ (f) is a polynomial in C[xr0, . . . , x
r
n], then h is invariant under the action of Zn+1

r

on C[x], so h ∈ (τ · f) for all τ ∈ Gr. By the definition of sr(f) and irreducibility of τ · f ,
this shows h ∈ sr(f). We conclude (f) ∩ C[xr0, . . . , x

r
n] = (sr(f)).

Based on Definition 4.2.2 and Lemma 4.2.3, the following proposition gives a method to
find the equation of the coordinate-wise power of a hypersurface.

Proposition 4.2.4 (Powers of hypersurfaces). Let V (f) ⊂ Pn be a hypersurface. The
defining equation f ◦r of its coordinate-wise r-th power is given by replacing each occurrence
of xri in sr(f) by xi for all i ∈ {0, 1, . . . , n}.

Proof. Since V (f)◦r ⊂ Pn is the image of V (f) under ϕr : Pn → Pn, its ideal (f ◦r) ⊂ C[x] is
the preimage under the ring homomorphism ψ : C[x]→ C[x], xi 7→ xri of the ideal (f) ⊂ C[x].
The claim is therefore an immediate consequence of Lemma 4.2.3.
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For clarity, we illustrate the above results for a hyperplane in P3.

Example 4.2.5. For n = 3 and f := x0 + x1 + x2 + x3 ∈ P(C[x]1), we have

s2(f) = (x0 + x1 + x2 + x3)(x0 + x1 + x2 − x3)(x0 + x1 − x2 + x3)(x0 + x1 − x2 − x3)
(x0 − x1 + x2 + x3)(x0 − x1 + x2 − x3)(x0 − x1 − x2 + x3)(x0 − x1 − x2 − x3).

Expanding this expression, we obtain a polynomial in C[x2
0, x

2
1, x

2
2, x

2
3]. Substituting x2

i by
xi, we obtain by Proposition 4.2.4 that the coordinate-wise square V (f)◦2 ⊂ P3 is cut out
by

f◦2 = x40 − 4x30x1 + 6x20x
2
1 − 4x0x

3
1 + x41 − 4x30x2 + 4x20x1x2 + 4x0x

2
1x2 − 4x31x2 + 6x20x

2
2 + 4x0x1x

2
2 + 6x21x

2
2

− 4x0x
3
2 − 4x1x

3
2 + x42 − 4x30x3 + 4x20x1x3 + 4x0x

2
1x3 − 4x31x3 + 4x20x2x3 − 40x0x1x2x3 + 4x21x2x3 + 4x0x

2
2x3

+ 4x1x
2
2x3 − 4x32x3 + 6x20x

2
3 + 4x0x1x

2
3 + 6x21x

2
3 + 4x0x2x

2
3 + 4x1x2x

2
3 + 6x22x

2
3 − 4x0x

3
3 − 4x1x

3
3 − 4x2x

3
3 + x43.

Figure 28: The coordinate-wise square of the plane V (x0 + x1 + x2 + x3) ⊂ P3.

This rational quartic surface is illustrated in Figure 28. It is a Steiner surface with three
singular lines forming the ramification locus of ϕ2|V (f) : V (f)→ V (f)◦2.

Example 4.2.6 (Squaring the circle). Consider the plane conic C = V (f) ⊂ P2 given by
f := (x1 − ax0)2 + (x2 − bx0)2 − (cx0)2 for some a, b, c ∈ R with c > 0. In the affine chart
x0 = 1, this corresponds over the real numbers to the circle with center (a, b) and radius c.
From Proposition 4.2.4, we show that the coordinate-wise square of the circle C ⊂ P2 can
be a line, a parabola or a singular quartic curve. See Figure 29 for an illustration of the
following three cases:

(i) If the circle C is centered at the origin (i.e. a = b = 0), then sr(f) = f and C◦2 ⊂ P2

is the line defined by the equation f ◦2 = x1 + x2 − c2x0.

(ii) If the center of the circle lies on a coordinate-axis and is not the origin (i.e. ab = 0,
but (a, b) 6= (0, 0)), then C◦2 ⊂ P2 is a conic. Say a = 0, then C◦2 is defined by the
equation f ◦2 = (x1 + x2)2 + 2(b2 − c2)x0x1 − 2(b2 + c2)x0x2 + (b2 − c2)2x2

0. In the affine
chart x0 = 1, C is a circle and C◦2 is a parabola.

(iii) If the center of the circle does not lie on a coordinate-axis, then |Gr · f | = 4. There-
fore, C◦2 is a quartic plane curve. Its equation can be computed explicitly using
Proposition 4.2.4. Being the image of a conic, the quartic curve C◦2 is rational, hence
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it cannot be smooth. In fact, its singularities are the two points [0 : 1 : −1] and
[a2 + b2 : b2(c2 − a2 − b2) : a2(c2 − a2 − b2)] in P2. They form the branch locus of
ϕ2|C : C → C◦2. The point [0 : 1 : −1] ∈ P2 is the image of the two complex points
[0 : 1 : ±i] at infinity lying on all of the four conics τ ·C for τ ∈ G2. The other singular
point of C◦2 is the image under ϕ2 of the two intersection points of the two circles C
and τ · C for τ = [1 : −1 : −1] ∈ G2 inside the affine chart x0 = 1.

−→

Figure 29: Circles and their coordinate-wise squares

Remark 4.2.7 (Newton polytope of f ◦r). Let f ∈ P(C[x]d) be irreducible and f 6= xi. Then
the Newton polytope of f ◦r arises from the Newton polytope of f by rescaling according to
the cardinality of the orbit Gr · f ⊂ P(C[x]d):

Newt(f ◦r) =
|Gr · f |
r
· Newt(f) ⊂ Rn+1.

Indeed, we have Newt(τ · f) = Newt(f) for all τ ∈ Gr, and since Newt(gh) = Newt(g) +
Newt(h) holds for all polynomials g, h, we have Newt(sr(f)) = |Gr · f | · Newt(f) by Defini-
tion 4.2.2. Replacing xri by xi rescales the Newton polytope with the factor 1

r
, so the claim

follows.

4.2.2 Duals and Reciprocals of Power Sum Hypersurfaces

We now highlight the interactions between coordinate-wise powers, dual and reciprocal vari-
eties for the case of power sum hypersurfaces V (xp0+. . .+xpn) ⊂ Pn. Specifically, we determine
explicitly all hypersurfaces that arise from power sum hypersurfaces by repeatedly taking
duals and reciprocals as the coordinate-wise r-th power of some hypersurface. In this sub-
section, we also allow r to take negative integer values.

Recall that the reciprocal variety V (f)◦(−1) of a hypersurface V (f) ⊂ Pn not containing
any coordinate hyperplane of Pn is defined as the closure of ϕ−1(V (f) \ V (x0x1 . . . xn)) in
Pn. We denote it also by RV (f). For linear spaces the reciprocal variety and its Chow form
has been studied in detail in [78].
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We also recall the definition of the dual variety of V (f) ⊂ Pn. Consider the set of
hyperplanes in Pn that arise as the projective tangent space at a smooth point of V (f). This
is a subset of the dual projective space and its Zariski closure is the dual variety of V (f).
Similar to the notation in Subsection 3.1.5 the dual projective space is denoted by (Pn)∨

and the dual variety is written asy V (f)∨ or D V (f). We identify (Cn+1)∨ with Cn+1 via the
standard bilinear form and therefore identify (Pn)∨ with Pn.

Consider the power sum polynomial fp := xp0+. . .+xpn ∈ P(C[x]p) for p ∈ N. As before, we
regard polynomials only up to scaling. For power sums with negative exponents we consider
the numerator of the rational function as

f−p := (x1x2x3 . . . xn)p + (x0x2x3 . . . xn)p + . . .+ (x0x1x2 . . . xn−1)p ∈ P(C[x]np) for p ∈ N.

In particular, f−1 ∈ P(C[x]n) is the elementary symmetric polynomial of degree n.
Recall that the morphism ϕr : Pn → Pn for r > 0 is finite, hence preserves dimension.

Since ϕ−1 : Pn 99K Pn is a birational map, the rational map ϕ−r = ϕ−1 ◦ ϕr also preserves
dimensions: dimV (fp)

◦(−r) = dimV (fp). We therefore extend Definition 4.2.1 to include
the defining equation of V (fp)

◦r by f◦rp for all p, r ∈ Z \ {0}. For the constant polynomial
f0 = 1 ∈ P(C[x]0), we define f◦r0 := 1 for all r ∈ Z \ {0}.

Lemma 4.2.8. For all s ∈ Z and r, λ ∈ Z \ {0}, we have f
◦(λr)
λs = f◦rs .

Proof. For λ > 0, we have ϕ−1
λ (V (fs)) = V (fλs), hence

V (f
◦(λr)
λs ) = ϕr(ϕλ(V (fλs))) = ϕr(V (fs)) = V (f◦rs ),

where we have used the surjectivity of ϕλ : Pn → Pn. For λ < 0, we use the above to see

V (f
◦(λr)
λs ) = (V (fλs)

◦(−λ))◦(−r) = V (f−s)
◦(−r) = (RV (f−s))

◦r.

The reciprocal variety of V (f−s) is V (fs) for all s ∈ Z. Hence, V (f
◦(λr)
λs ) = V (fs)

◦r.

This naturally leads us to the our next definition.

Definition 4.2.9 (Generalised power sum polynomial). For any rational number p = s
r
∈ Q

(r, s ∈ Z, r 6= 0), we define the generalised power sum polynomial fp := f◦rs ∈ P(C[x]d).

By Lemma 4.2.8, the generalised power sum polynomial fp is well-defined. With this
definition, we get the following duality result for hypersurfaces generalising Example 4.16 in
[55].

Proposition 4.2.10 (Duality of generalised power sum hypersurfaces). Let p, q ∈ Q \ {0}
be such that 1

p
+ 1

q
= 1. Then V (fp)

∨ = V (fq).

Proof. Write p = s
r

with r ∈ Z \ {0}, s ∈ Z>0. Let b ∈ V (fp) = ϕr(V (fs)) be a smooth
point of V (fp) \ V (x0x1 . . . xn), and let a ∈ V (fs) \ V (x0x1 . . . xn) be such that b = ϕr(a).
The morphism ϕr : Pn \V (x0x1 . . . xn)→ Pn \V (x0x1 . . . xn) induces a linear isomorphism on
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projective tangent spaces TaPn = Pn → Pn = TbPn given by diag(rar−1
0 , rar−1

1 , . . . , rar−1
n ).

This maps

TaV (fs) = V

(
n∑
i=0

(∂ifs)(a) xi

)
⊂ Pn onto TbV (fp) = V

(
n∑
i=0

(∂ifs)(a)

rar−1
i

xi

)
⊂ Pn.

In particular, V (fp)
∨ ⊂ Pn is the image of the rational map

V (fs) 99K Pn, x 7→
[
∂0fs

rxr−1
0

:
∂1fs

rxr−1
1

: . . . :
∂nfs
rxr−1

n

]
.

From ∂ifs = sxs−1
i we conclude that V (fp)

∨ = ϕs−r(V (fs)) = V (fs/(s−r)) = V (fq).

Remark 4.2.11. This statement can be understood as an algebraic analogue of the duality
theory for `p-spaces (Rn, | · |p). Indeed, let p, q ≥ 1 be rational with 1

p
+ 1

q
= 1. The unit

ball in (Rn, | · |p) is Up := {v ∈ Rn |
∑

i v
p
i = 1} and by `p-duality, hyperplanes tangent to

Up correspond to the points on the unit ball Uq of the dual normed vector space (Rn, | · |q).
The complex projective analogues of the unit balls Up ⊆ Rn are the generalised power
sum hypersurfaces V (fp) ⊆ Pn and Proposition 4.2.10 shows the previous statement in this
setting.

Using Proposition 4.2.4 we can compute fp for any p ∈ Q explicitly. In particular, we
make the following observation:

Lemma 4.2.12. Let s ∈ N and r ∈ Z be relatively prime. Then fs/r arises from f1/r by
substituting xi 7→ xsi for all i ∈ {0, 1, . . . , n}.

Proof. This follows from the explicit description of the polynomials fs/r = f◦rs and f1/r = f◦r1
given by Proposition 4.2.4.

By Lemma 4.2.12, in order to determine the generalised power sum polynomials fp, we
may restrict our attention to f1/r. These have a particular geometric interpretation as re-
peated dual-reciprocals of the linear space V (x0 +x1 + . . .+xn) ⊂ Pn as in Corollary 4.2.14.

Theorem 4.2.13. The repeated dual-reciprocals of generalised power sum hypersurfaces
V (fp) are given by

(DR)k V (fp) = V (fp/(1+kp)) ∀k ∈ N, p ∈ Q \ {0,−1

k
,− 1

k − 1
, . . . ,−1} and

(RD)k V (fp) = V (fp/(1−kp)) ∀k ∈ N, p ∈ Q \ {0, 1

k
,

1

k − 1
, . . . , 1}.

Proof. We show the claim for V (fp) by induction on k. For k = 0, the claim is trivial. For
k > 0, we get by induction hypothesis:

(DR)k V (fp) = DRV (fp/(1+(k−1)p)) = (V (fp/(1+(k−1)p))
◦(−1))∨

(∗)
= V (f−p/(1+(k−1)p))

∨ (∗∗)
= V (fp/(1+kp)),
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where (∗) holds by Lemma 4.2.8 and (∗∗) by Proposition 4.2.10. From this, we also see

(RD)k V (fp) = R(DR)kRV (fp) = R(DR)kV (f−p) = RV (f−p/(1−kp)) = V (fp/(1−kp)),

concluding the proof.

Corollary 4.2.14. For r > 0, the repeated alternating reciprocals and duals of the linear
space V (f1) ⊂ Pn are the coordinate-wise powers of V (f1) given as

DRDR . . .DR︸ ︷︷ ︸
2r−2

V (f1) = V (f1)◦r and RDR . . .DR︸ ︷︷ ︸
2r−1

V (f1) = V (f1)◦(−r).

Example 4.2.15. Let n = 3 and f := x0 +x1 +x2 +x3. The reciprocal variety of the plane
V (f) ⊂ P3 is given by f−1 = x1x2x3+x0x2x3+x0x1x3+x0x1x2. Its dual is V (f1/2) = V (f1)◦2 ⊂
P3 by Proposition 4.2.10. This is the quartic surface from Example 4.2.5. Higher iterated
dual-reciprocal varieties of V (f) can be explicitly computed analogous to Example 4.2.5 via
Theorem 4.2.13. For instance, the surface DRDRV (f) ⊂ P3 is the coordinate-wise cube
of V (f) which is the degree 9 surface illustrated in Figure 30.

Figure 30: The iterated dual-reciprocal DRDRV (f) ⊂ P3

4.2.3 From Hypersurfaces to Arbitrary Varieties?

We briefly discuss to what extent Proposition 4.2.4 can be used to determine coordinate-wise
powers of arbitrary varieties, and mention the difficulties involved in this approach.

If f1, . . . , fm are homogeneous polynomials vanishing on a variety X ⊂ Pn, then their
coordinate-wise powers give rise to the inclusion X◦r ⊂ V (f ◦r1 , . . . , f

◦r
m ). To address the

question when does the equality hold, we will now define power basis. The notion of power
basis is reminiscent of the notion of tropical bases in Tropical Geometry [87, Section 2.6].

Definition 4.2.16 (Power bases). A set of homogeneous polynomials f1, . . . , fm ⊂ C[x] is
an r-th power basis of the ideal I = (f1, . . . , fm) if the following equality of sets holds:

V (f1, . . . , fm)◦r = V (f ◦r1 , . . . , f
◦r
m ).

We show the existence of such power bases for a given ideal in the following proposition.
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Proposition 4.2.17 (Existence of power bases). Let I ⊂ C[x] be a homogeneous ideal. Then
for each r, there exists an r-th power basis of I.

Proof. Let J denote the defining ideal of V (I)◦r ⊂ Pn. If J is generated by homogeneous
polynomials g1, . . . , gm ∈ C[x], we define f1, . . . , fm ∈ C[x] to be their images under the ring
homomorphism C[x]→ C[x], xi 7→ xri . Then fi ∈ I, since

V (fi) = ϕ−1
r (V (gi)) ⊃ ϕ−1

r (V (I)◦r) ⊃ V (I).

On the other hand, we have f ◦ri = gi, since V (fi)
◦r = ϕr(ϕ

−1
r (V (gi))) = V (gi) by surjectivity

of ϕr. Therefore, f ◦r1 , . . . , f
◦r
m generate J . Enlarging f1, . . . , fm to a generating set of I gives

an r-th power basis of I.

Proposition 4.2.17 shows the existence of r-th power bases, but explicitly determining
one a priori is nontrivial. In the following two examples, we will see that even in the case of
squaring codimension 2 linear spaces, obvious candidates for f1, . . . , fm do not form a power
basis.

Example 4.2.18. Let I := (f1, f2) ⊂ C[x] be the ideal defining the line in P3 that is
given by f1 := x0 + x1 + x2 + x3 and f2 := x1 + 2x2 + 3x3. The polynomials f ◦21 and
f ◦22 have degrees 4 and 2, respectively, by Proposition 4.2.4. Note that the polynomial
f3 := 3x2

0 − x2
1 + x2

2 − 3x2
3 = 3(x0 − x1 − x2 − x3)f1 + 2(x1 + x2)f2 also lies in I, so the ideal

of V (I)◦2 contains the linear form f ◦23 = 3x0 − x1 + x2 − 3x3. The polynomials f1, f2 do not
form a power basis of I. In fact, one can check that V (f ◦21 , f ◦22 ) ⊂ P3 is the union of four
rational quadratic curves, one of which is V (I)◦2, see Figure 31 for an illustration. A power
basis of I is given by f1, f2, f3.

Figure 31: Distinction between V (f ◦21 , f ◦22 ) and V (f1, f2)◦2

Example 4.2.19. Another natural choice for polynomials f1, . . . , fm in the ideal of a linear
space X ⊂ Pn consists of the circuit forms, i.e. linear forms vanishing on X that are minimal
with respect to the set of occurring variables. However, for

X := V (x0 + x1 + x2 + x3 + x4, x1 + 2x2 + 3x3 + 4x4) ⊂ P4,

these circuit forms are

f1 = x1 + 2x2 + 3x3 + 4x4, f2 = x0 − x2 − 2x3 − 3x4, f3 = 2x0 + x1 − x3 − 2x4,

f4 = 3x0 + 2x1 + x2 − x4, f5 = 4x0 + 3x1 + 2x2 + x3,
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and one can check that the point [16 : 16 : 1 : 36 : 9] ∈ P4 lies in V (f ◦21 , . . . , f ◦25 ), but not in
X◦2. In particular, f1, . . . , f5 is not an r-th power basis for r = 2.

We have seen in Example 4.2.18 and Example 4.2.19 that even for the case of linear
spaces of codimension 2 it is not an easy task to a priori identify an r-th power basis.

The following proposition shows how one can straightforwardly find a very large r-th
power basis of an ideal I, without first computing the ideal of V (I)◦r.

Proposition 4.2.20. If g1, . . . , gk ∈ C[x]d are forms of degree d, then taking (k − 1)rn + 1
general linear combinations of g1, . . . , gk produces an r-th power basis of (g1, . . . , gk).

Proof. We assume that g1, . . . , gk are linearly independent, or else we can replace them with
a linearly independent subset. For m := (k − 1)rn + 1, let f1, . . . , fm ∈ 〈g1, . . . , gk〉 be
such that no k of them are linearly dependent. For X := V (g1, . . . , gk), we will show that
V (f ◦r1 , . . . , f

◦r
m ) = X◦r by comparing the preimages of both sides under ϕr : Pn → Pn.

By Proposition 4.1.1, we have ϕ−1
r (X◦r) =

⋃
τ∈Gr τ ·X and

ϕ−1
r (V (f ◦r1 , . . . , f

◦r
m )) =

m⋂
i=1

ϕ−1
r (ϕr(V (fi))) =

m⋂
i=1

⋃
τ∈Gr

τ · V (fi).

Let p ∈ ϕ−1
r (V (f ◦r1 , . . . , f

◦r
m )) ⊂ Pn. Then for each i ∈ {1, . . . ,m} there exists some τ ∈ Gr

with p ∈ τ ·V (fi) using the last equality above. Since m > (k−1)|Gr|, by pigeonhole principle
there must exist τ ∈ Gr and i1, i2, . . . , ik ∈ {1, . . . ,m} distinct with p ∈

⋂k
j=1 τ · V (fij) =

τ ·V (fi1 , . . . , fik). Since, by assumption, no k of them are linearly dependent fi1 , . . . , fik span
〈g1, . . . , gk〉. Therefore, V (fi1 , . . . , fik) = X, and hence, p ∈ τ · V (fi1 , . . . , fik) implies that
p ∈ τ ·X ⊂ ϕ−1

r (X◦r). This shows ϕ−1
r (V (f ◦r1 , . . . , f

◦r
m )) ⊂ ϕ−1

r (X). The reverse inclusion is
trivial.

In particular, Proposition 4.2.20 shows that for a subvariety of Pn defined by k forms of
degree d, its coordinate-wise r-th power can be described set-theoretically by the vanishing
of (k − 1)rn + 1 forms of degree ≤ drn−1. However, we will see in Section 4.3 that for linear
spaces this bound is rather weak in many cases and should be expected to allow dramatic
refinement in general. We raise the following as a broad open question:

Question 4.2.21. When does a set of homogeneous polynomials form an r-th power basis?
For a given ideal I, do there exist polynomials f1, . . . , fm ∈ I that simultaneously form an
r-th power basis for all r?

4.3 Linear Spaces

In this subsection, we specialise to linear spaces L ⊂ Pn and study their coordinate-wise
powers L◦r. First, we highlight the dependence of L◦r on the geometry of a finite point
configuration associated to L ⊂ Pn. For r = 2, we point out its relation to symmetric
matrices with degenerate eigenvalues. Based on this, we classify the coordinate-wise squares
of lines and planes. Finally, we turn to the case of squaring linear spaces in high-dimensional
ambient space.
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4.3.1 Point Configurations

We investigate the defining ideal of L◦r for a linear space L ⊂ Pn. The degrees of its minimal
generators do not change under rescaling and permuting coordinates of Pn, i.e. under the
actions of the algebraic torus Gn+1

m = (C∗)n+1 and the symmetric group Sn+1. Fixing a
(k + 1)-dimensional vector space W , we have the identification

{orbits of Gr(k,Pn) under Gn+1
m oSn+1} ↔

{
finite multi-sets Z ⊂ PW∨ with 〈Z〉 = PW∨

of cardinality ≤ n+ 1 up to Aut(PW∨)

}
L = im(PW

[`0:`1:...:`s:0:...:0]
↪−−−−−−−−−→ Pn) ←[

7→ Z = {[`0], [`1], . . . , [`s]} ⊂ PW∨, s ≤ n.

Hence, we may express coordinate-wise powers of a linear space L in terms of the corres-
ponding finite multi-set Z ⊂ PW∨. In fact, it is easy to check that the degrees of the
minimal generators of the defining ideal only depend on the underlying set Z, forgetting
repetitions in the multi-set. We study coordinate-wise powers of a linear space in terms of
the corresponding non-degenerate finite point configuration.

For the entirety of Section 4.3, we establish the following notation: Let L ⊂ Pn be a
linear space of dimension k. We understand L as the image of a chosen linear embedding

ι : PW
[`0:...:`n]
↪−−−−→ Pn, where W is a (k + 1)-dimensional vector space and `0, . . . , `n ∈ W∨ are

linear forms defining ι. Consider the finite set of points Z ⊂ PW∨ given by

Z := {[`i] ∈ PW∨ | 0 ≤ i ≤ n such that `i 6= 0}.

Since `0, `1, . . . , `n ∈ W∨ define the linear embedding ι, they cannot have a common zero
in W . Hence, the linear span of Z is the whole space PW∨. We denote by I(Z) ⊂ Sym•W
the defining ideal of Z ⊂ PW∨. The subspace of degree r forms vanishing on Z is written
as I(Z)r ⊂ SymrW .

The main technical tool is the following observation that L◦r ⊂ Pn equals (up to a
linear re-embedding) the image of the r-th Veronese variety νr(PW ) ⊂ P SymrW under the
projection from the linear space P(I(Z)r) ⊂ P SymrW .

Lemma 4.3.1. The diagram

PW P SymrW

Pn Pn P(SymrW/I(Z)r)

νr

ψ
ϕr◦ι π

ι

ϕr ϑ

commutes, where νr is the r-th Veronese embedding, π is the linear projection of P SymrW
from the linear space P(I(Z)r), ψ is a morphism and ϑ is a linear embedding.

Proof. We observe that the morphism ϕr ◦ ι is given by

ϕr ◦ ι : PW → Pn, [v] 7→ [`r0(v) : `r1(v) . . . : `rn(v)].
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The n + 1 elements `ri ∈ SymrW∨ correspond to a linear map χ : SymrW → Cn+1 via the
natural identification (SymrW∨)n+1 = HomC(SymrW,Cn+1).

The rational map χ̄ between projective spaces corresponding to the linear map χ gives
the following commuting diagram:

PW P SymrW

Pn P(SymrW/ kerχ),

νr

ϕr ◦ ι π

ϑ

χ̄

where ϑ is the linear embedding of projective spaces induced by factoring χ over
SymrW/ kerχ. In particular, νr(PW ) ∩ P(kerχ) = ∅, since ϕr ◦ ι is defined everywhere
on PW . Hence, π|νr(PW ) : νr(PW )→ P(SymrW/ kerχ) is a morphism.

Finally, we claim that kerχ = I(Z)r. Once we know this, defining ψ := π|νr(PW ) ◦ νr
completes the claimed diagram.

Let f ∈ SymrW such that f ∈ I(Z)r. Naturally identifying W and W∨∨, we may
view f as a form of degree r on W∨. Then, the condition that f ∈ I(Z)r translates to
f(`i) = 0 ∀i. Viewing f as a symmetric r-linear form W∨ × . . . × W∨ → C, we have
f(`i, . . . , `i) = 0 ∀i. Also, when f is considered as a linear form on SymrW∨, f(`ri ) = 0 ∀i.
The latter expression is equivalent to f ∈ kerχ, via the identification of W and W∨∨. We
conclude I(Z)r = kerχ.

In particular, we deduce the following:

Proposition 4.3.2. Let L be a linear space such that the finite set of points Z does not lie
on a degree r hypersurface. Then the ideal of L◦r is generated by linear and quadratic forms.

Proof. Since I(Z)r = 0, we deduce from Lemma 4.3.1 that L◦r = ϕr(L) is a linear re-
embedding of the k-dimensional r-th Veronese variety νr(PW ) ⊂ P SymrW . The ideal of
this Veronese variety is generated by quadrics. Since dim SymrW =

(
k+r
r

)
, the linear re-

embedding ϑ : P SymrW ↪→ Pn adds n−
(
k+r
r

)
+ 1 linear forms to the ideal.

4.3.2 Degenerate Eigenvalues and Squaring

We now specialise to the case of coordinate-wise squaring, i.e. r = 2. This case has special
geometric importance, since it corresponds to computing the image of a linear space under
the quotient of Pn by the reflection group generated by the coordinate hyperplanes. In this
subsection through Proposition 4.3.3 we point out that the case of coordinate-wise square of
a linear space is closely related to studying symmetric matrices with a degenerate spectrum
of eigenvalues. Here, we interpret P Sym2 Fk+1 (for F = R or C) as the projective space
consisting of symmetric (k + 1)× (k + 1)-matrices up to scaling with entries in F.
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Proposition 4.3.3. Let X ⊂ P Sym2 Rk+1 be the set of real symmetric (k + 1) × (k + 1)-
matrices with an eigenvalue of multiplicity ≥ k. Then the Zariski closure of X in P Sym2 Ck+1

is projectively equivalent to the projective cone over the coordinate-wise square L◦2 of any k-
dimensional linear space L whose point configuration Z ⊆ PW∨ lies on a unique and smooth
quadric.

Proof. Let L ⊂ Pn be a k-dimensional linear space such that I(Z)2 is spanned by a smooth
quadric q ∈ P Sym2W . Choosing coordinates of W ∼= Ck+1, we identify points in P Sym2W
with complex symmetric (k + 1) × (k + 1)-matrices up to scaling and we can assume q =
id ∈ P Sym2W . The second Veronese variety ν2(PW ) ⊂ P Sym2W consists of rank 1
matrices. Let X0 ⊂ P(Sym2W/〈q〉) be the image of ν2(PW ) under the natural projection.
By Lemma 4.3.1, X0 is the coordinate-wise square L◦2 up to a linear re-embedding.

The projective cone overX0
∼= L◦2 is the subvarietyX1 ⊂ P Sym2W consisting of complex

symmetric matrices M such that the set M+〈id〉 contains a matrix of rank ≤ 1. We observe
that the rank of M − λ id is the codimension of the eigenspace of M with respect to λ ∈ C.
Hence,

X1 = {M ∈ P Sym2 Ck+1 |M has an eigenspace of codimension ≤ 1}.

We are left to show that X1 is the Zariski closure in P Sym2 Ck+1 of X ⊂ P Sym2 Rk+1.
Since real symmetric matrices are diagonalisable, the multiplicity of an eigenvalue is the
dimension of the corresponding eigenspace. Hence, X1∩P Sym2 Rk+1 = X. The set X is the
orbit of the line V := {diag(λ, . . . , λ, µ) | [λ : µ] ∈ P1

R} under the action of O(k + 1). The
action is given by conjugation with orthogonal matrices and the stabiliser is O(k) × {±1}.
Therefore, X has real dimension dimV + dimO(k + 1)− dimO(k) = k + 1. Also, X1 is the
projective cone over X0

∼= L◦2, so it is a (k + 1)-dimensional irreducible complex variety. We
conclude that X1 is the Zariski closure of X in P Sym2 Ck+1.

We illustrate Proposition 4.3.3 in the case of 3× 3-matrices:

Example 4.3.4. Consider the set of real symmetric 3×3-matrices with a repeated eigenvalue.
We denote its Zariski closure in P Sym3 C2 by Y . By Proposition 4.3.3, it can be understood
in terms of the coordinate-wise square L◦2 for some plane L. We make this explicit as follows:
Consider the planar point configuration

Z = {[1 : i : 0], [1 : −i : 0], [1 : 0 : i], [1 : 0 : −i], [0 : 1 : i]} ⊆ P2,

lying only on the conic V (x2 + y2 + z2). Let L be the corresponding plane in P4, given as
the image of

ι : P2 ↪→ P4, [x : y : z] 7→ [x+ iy : x− iy : x+ iz : x− iz : y + iz].

Under the linear embedding

ψ : P4 ↪→ P Sym2 C3,

[a : b : c : d : e] 7→
[

2(a+ b+ c+ d) 3i(−a+ b) 3i(−c+ d)
3i(−a+ b) 6(−2a− 2b+ c+ d) 3i(−a− b+ c+ d− 2e)
3i(−c+ d) 3i(−a− b+ c+ d− 2e) 6(a+ b− 2c− 2d),

]
,
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the plane L gets mapped into Y . Indeed, it is easily checked that a point [x : y : z]
gets mapped to the matrix −4(x2 + y2 + z2) id +12(x, y, z)T (x, y, z) under the composition
ψ ◦ ι : P2 → P Sym2 C3. Note that this matrix has a repeated eigenvalue. More precisely,
Proposition 4.3.3 shows that Y is the projective cone over ψ(L◦2) with the vertex id.

In Subsection 4.3.4 we give an explicit set-theoretic description of the coordinate-wise
square of a linear space in high-dimensional ambient space. We will show the following
result as a special case of Theorem 4.3.11. Given a matrix A ∈ Cs×s, we denote a 2 × 2
minor of A by Aij|k` where i 6= j are the rows and k 6= ` are the columns of the minor.

Corollary 4.3.5. Let s ≥ 4. A symmetric matrix A ∈ Cs×s has an eigenspace of codimen-
sion ≤ 1 if and only if its 2× 2-minors satisfy the following for i, j, k, ` ≤ s distinct:

Aij|k` = 0, Aik|i` = Ajk|j` and Aik|ik − Ai`|i` = Ajk|jk − Aj`|j`.

These equations describe the Zariski closure in the complex vector space Sym2 Cs of the set
of real symmetric matrices with an eigenvalue of multiplicity ≥ s− 1.

4.3.3 Squaring Lines and Planes

In this subsection we consider the low-dimensional cases and classify the coordinate-wise
squares of lines and planes in arbitrary ambient spaces.

Theorem 4.3.6 (Squaring lines). Let L be a line in Pn.

(i) If |Z| = 2, then L◦2 is a line in Pn.

(ii) If |Z| > 2, then L◦2 is a smooth conic contained in a plane inside Pn.

Proof. Since Z ⊂ PW∨ spans the projective line PW∨, we must have |Z| ≥ 2.
If |Z| > 2, then I(Z)2 = 0, since no non-zero quadratic form on the projective line PW∨

vanishes on all points of Z. Then Lemma 4.3.1 implies that L◦2 = (ϕ2 ◦ ι)(PW ) is a linear
re-embedding of ν2(PW ), which is a smooth conic in the plane P Sym2W ∼= P2.

If |Z| = 2, then dim I(Z)2 = 1, since up to scaling there is a unique quadric van-
ishing on the points Z. By Lemma 4.3.1, the image ϕ2(L) lies in a projective line
P1 ∼= ϑ(P(Sym2W/I(Z)2)) ⊂ Pn. On the other hand dimL◦2 = dimL = 1. Hence,
L◦2 = ϕ2(L) is a line in Pn.

Remark 4.3.7. We observe that the two possibilities in Theorem 4.3.6 for the coordinate-
wise square of a line L differ in degree. In particular, Corollary 4.1.7 shows that it only
depends on the linear matroid ML whether L◦2 is a line or a (re-embedded) plane conic.

Remark 4.3.8. In the Grassmannian of lines Gr(1,Pn), consider the locus Γ ⊂ Gr(1,Pn)
of those lines L whose coordinate-wise square L◦2 is a line. Considering Plücker coordinates
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pij on the Grassmannian Gr(1,Pn), we observe that Γ is the subvariety of Gr(1,Pn) given
by the vanishing of pijpjkpki for all i, j, k ∈ {0, 1, . . . , n} distinct:

Γ = V (pijpjkpki | i, j, k ∈ {0, 1, . . . , n} distinct) ⊂ Gr(1,Pn).

Indeed, if L is the image of an embedding P1 B
↪−→ Pn given by a chosen rank 2 matrix

B ∈ C(n+1)×2, then Z ⊂ (P1)∨ is the set of points corresponding to the non-zero rows of B.
Then |Z| = 2 if and only if among any three distinct rows of B there always exist two linearly
dependent rows. In terms of the Plücker coordinates, which are given by the 2 × 2-minors
of B, this translates into the vanishing condition above.

Theorem 4.3.9 (Squaring planes). Let L be a plane in Pn. The defining ideal I ⊂ C[x]
of L◦2 depends on the geometry of the planar configuration of Z ⊂ PW∨ as follows (see
Figure 32):

(i) If Z is not contained in any conic, then I is minimally generated by n− 5 linear forms
and 6 quadratic forms.

(ii) If Z is contained in a unique conic Q ⊂ PW∨, we distinguish two cases:

(a) If Q is irreducible, then I is minimally generated by n− 4 linear forms and 7 cubic
forms.

(b) If Q is reducible, then L◦2 is the complete intersection of n − 4 hyperplanes and
2 quadrics.

(iii) If Z is contained in several conics, we distinguish three cases:

(a) If |Z| = 3, then I is minimally generated by n− 2 linear forms.

(b) If |Z| = 4 and no three points of Z are collinear, then I is minimally generated by
n− 3 linear forms and one quartic form.

(c) If Z contains at least three collinear points, then I is minimally generated by n− 3
linear forms and one quadratic form.

(i) (ii).(a) (ii).(b) (iii).(a) (iii).(b) (iii).(c)

Figure 32: Dependence of L◦2 on the planar point configuration Z

Proof. Notice that k = 2, so dimW = 3.
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(i) If I(Z)2 = 0, then by Lemma 4.3.1 L◦2 ⊂ Pn is a linear re-embedding of the Veronese
surface ν2(PW ) ⊂ P Sym2W . The ideal of the ν2(PW ) is minimally generated by six
quadrics. Indeed, choosing a basis for W , we may understand points in P Sym2W as
symmetric 3×3-matrices up to scaling. Then ν2(PW ) is the subvariety corresponding to
symmetric rank 1 matrices, which is cut out by the six quadratic polynomials imposing
vanishing 2×2-minors. Since dimP Sym2W = 5, the linear re-embedding P Sym2W ↪→
Pn adds n− 5 linear forms to I.

(ii) We can choose a basis {z0, z1, z2} of W such that the unique reduced plane conic
through Z ⊂ PW∨ is with respect to these coordinates given by the vanishing of either
q1 := z2

0 − 2z1z2 ∈ Sym2W or q2 := z1z2 ∈ Sym2W .

We consider the basis {z2
1 , z

2
2 , 2z0z1, 2z0z2, 2z1z2} of Sym2W/〈q1〉 and the basis

{z2
0 , z

2
1 , z

2
2 , 2z0z1, 2z0z2} of Sym2W/〈q2〉. With respect to these choices of bases, the

morphism ψ : PW → P(Sym2W/I(Z)2) is given as

ψ : P2 → P4, [a0 : a1 : a2] 7→ [a2
1 : a2

2 : a0a1 : a0a2 : a2
0 + a1a2]

or ψ : P2 → P4, [a0 : a1 : a2] 7→ [a2
0 : a2

1 : a2
2 : a0a1 : a0a2].

In the first case, we checked computationally with Macaulay2 [58] that the ideal is min-
imally generated by seven cubics. A structural description of these quadrics and cubics
will be given in the proof of Theorem 4.3.11. The image of the second morphism is a
complete intersection of two binomial quadrics. By Lemma 4.3.1, the coordinate-wise
square L◦2 arises from the image of ψ via a linear re-embedding P4 ↪→ Pn, producing
additional n− 4 linear forms in I.

(iii) In case (a), the set Z consists of three points spanning the projective plane PW∨,
so dim Sym2W/I(Z)2 = 3. Then by Lemma 4.3.1, the coordinate-wise square L◦2 is
contained in a plane P2 ∼= ϑ(P(Sym2W/I(Z)2)) ⊂ Pn. On the other hand, dimL◦2 =
dimL = 2, so L◦2 ⊂ Pn must be a plane in Pn.

For case (b), we may assume that

Z = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [−1 : −1 : −1]}

for a suitably chosen basis {`0, `1, `2} of W∨. By Lemma 4.3.1, L◦2 ⊂ Pn is a linear
re-embedding of the image of ψ : PW → P(Sym2W/I(Z)2). On the other hand, the

plane L′ := V (x0 + x1 + x2 + x3) ⊂ P3 is the image of PW
[`0:`1:`2:−`0−`1−`2]
↪−−−−−−−−−−−→ P3, so Z

can also be viewed as the finite set of points associated to L′. Applying Lemma 4.3.1
to L′ ⊂ P3 shows that the image of ψ : PW → P(Sym2W/I(Z)2) is the coordinate-wise
square L′◦2 ⊂ P3. Hence, L◦2 ⊂ Pn is a linear re-embedding of the quartic surface from
Example 4.2.5 into higher dimension.

Finally, we consider the case (c). Consider three points p1, p2, p3 ∈ Z lying on a line
T ⊂ PW∨. Then T must be an irreducible component of each conic through Z. Since
Z spans the projective plane PW∨, there must also be a point p0 ∈ Z outside of T .
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All points in Z \ {p0} must lie on the line T , as otherwise there could be at most one
conic passing through Z. If Z ′ := {p0, p1, p2, p3} ⊂ Z, then each conic passing through
Z ′ also passes through Z, i.e. I(Z)2 = I(Z ′)2.

We may choose a basis z0, z1, z2 of W such that Z ′ ⊂ PW∨ with respect to these
coordinates is given by

Z ′ = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [0 : 1 : 1]}.

The plane L′ := V (x1 + x2 − x3) ⊂ P3 is the image of P2
[z0:z1:z2:z1+z2]
↪−−−−−−−−→ P3, so Z ′

can be viewed as the finite set of points associated to L′. Lemma 4.3.1 shows that
L′◦2 ⊂ P3 coincides with the image of the morphism ψ : PW → P(Sym2W/I(Z ′)2).
On the other hand, Lemma 4.3.1 shows that L◦2 ⊂ Pn is a linear re-embedding of
PW → P(Sym2W/I(Z)2). From I(Z)2 = I(Z ′)2, we deduce that L◦2 ⊂ Pn is a linear
re-embedding of the quadratic surface

L′
◦2

= V (x1 + x2 − x3)◦2 = V (x2
1 + x2

2 + x2
3 − 2x1x2 − 2x2x3 − 2x3x1) ⊂ P3,

as we compute from Proposition 4.2.4.

Remark 4.3.10. Opposed to Remark 4.3.7, the structure of the coordinate-wise square of
a plane L ⊂ Pn does not only depend on the linear matroid of L: For n = 5, it can happen
both in case (i) and case (ii).(a) of Theorem 4.3.9 that ML = {I ⊂ {0, 1, . . . , 5} | |I| ≤ 3}.

4.3.4 Squaring in High Ambient Dimensions

Consider the case of k-dimensional linear spaces in Pn for n � k. For a general linear
space L ∈ Gr(k,Pn), the finite set of points Z does not lie on a quadric. We know from
Proposition 4.3.2 that the coordinate-wise square L◦2 is a linear re-embedding of the k-
dimensional second Veronese variety. In this subsection, we investigate the first degenerate
case where the point configuration Z is a unique quadric.

The following theorem gives the structure of coordinate-wise squares as the one appearing
in Proposition 4.3.3. We will also prove Corollary 4.3.5 by deriving the polynomials vanishing
on the set of symmetric matrices with a comultiplicity 1 eigenvalue. Proposition 4.3.3 shows
that Corollary 4.3.5 is a special case of the theorem stated below.

Theorem 4.3.11. Let L ⊂ Pn be linear space of dimension k. If the point configuration Z
lies on a unique quadric of rank s, then L◦2 can be cut out set-theoretically by n−

(
k+2

2

)
+ 2

linear forms and
(k + 3)(k + 2)(k + 1)(k − 2)/12 quadratic forms, if s ≥ 4,

(k + 3)(k + 2)(k + 1)(k − 2)/12 quadratic and 7 cubic forms, if s = 3,

(k + 3)(k + 2)(k + 1)(k − 2)/12 + 2 quadratic forms, if s = 2.
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In fact, for s ≥ 3, we show that the claim holds scheme-theoretically, see Remark 4.3.17.
We believe that in fact for arbitrary s the claim is even true ideal-theoretically.

The remainder of this subsection is dedicated to the proof of Theorem 4.3.11. It reduces
to the following elimination problem. Let k ≥ 1 and s ≥ 2. Consider a symmetric (k +
1) × (k + 1)-matrix of variables Y := (yij)1≤i,j≤k+1 and the corresponding polynomial ring
C[y] := C[yij]/(yij − yji). Over the polynomial ring C[y, t], we consider the matrix M :=
Y + tIs, where we define the matrix

Is := diag(1, . . . , 1︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
k+1−s

) ∈ C(k+1)×(k+1).

Henceforth, we denote the 2 × 2-minors of Y with rows i 6= j and columns ` 6= m by
Yij|`m := yi`yjm− yimyj` ∈ C[y], and correspondingly Mij|`m ∈ C[y, t] for the 2× 2-minors of
M . Let J0 ⊂ C[y, t] denote the ideal generated by the 2× 2-minors of M . By J := J0 ∩C[y]
we denote the ideal in C[y] obtained by eliminating t from J0. We explicitly describe the
elimination ideal J for all values of k and s.

Proposition 4.3.12. The vanishing set V (J) ⊂ P(k+2
2 )−1 is set-theoretically cut out by

(k + 3)(k + 2)(k + 1)(k − 2)/12 quadratic forms, if s ≥ 4,

(k + 3)(k + 2)(k + 1)(k − 2)/12 quadratic and 7 cubic forms, if s = 3,

(k + 3)(k + 2)(k + 1)(k − 2)/12 + 2 quadratic forms, if s = 2.

First, we observe that Theorem 4.3.11 follows directly from Proposition 4.3.12.

Proof of Theorem 4.3.11. Analogous to the proof of Proposition 4.3.3, we identify P Sym2W
with P Sym2 Ck+1 such that q = Is. By Lemma 4.3.1, the coordinate-wise square L◦2 is a
linear re-embedding of the variety obtained by the projection of ν2(PW ) from the point
q = Is ∈ P Sym2W . Note that V (J) describes the set of points Y ∈ P Sym2W lying on
the line joining q with some point in ν2(PW ). Hence, the projection from q is given by
intersecting V (J) with a hyperplane H ⊂ P Sym2W not containing q = Is.

From Proposition 4.3.12, we know that V (J)∩H is set-theoretically cut out inside H ∼=
P(k+2

2 )−2 by the indicated number of quadrics and cubics. The coordinate-wise square L◦2 is,
by Lemma 4.3.1, obtained as the image of V (J) ∩H under a linear embedding ϑ : H ↪→ Pn,
leading to additional n−

(
k+2

2

)
+ 2 linear forms vanishing on L◦2.

We prove Proposition 4.3.12 in several steps. First, we describe a set X of certain low-
degree polynomials in the ideal J . Secondly, we show that V (X ) = V (J). Finally, we
identify a subset of X providing minimal generators of the ideal (X ) ⊂ C[y], consisting of
the claimed number of quadratic and cubic forms.
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Lemma 4.3.13. The following sets of polynomials in C[y] are contained in the ideal J :

E := {Yij|`m | {i, j} ∩ {`,m} ⊂ {s+ 1, . . . , k + 1}},
F := {Yi`|im − Yj`|jm | i, j ≤ s, {`} ∩ {m} ⊂ {s+ 1, . . . , k + 1}},
G := {Yij|ij − Yj`|j` + Y`m|`m − Ymi|mi | i, j, `,m ≤ s distinct},
H1 := {yi`(Yij|ij − Yi`|i`)− (y`` − yjj)Yij|j` | i, j, ` ≤ s},
H2 := {(yii − yjj)Yij|ij + (yjj − y``)Yj`|j` + (y`` − yii)Y`i|`i | i, j, ` ≤ s}.

Proof. Using that

Yij|ij = Mij|ij − (yii + yjj)t− t2 for all i, j ≤ s distinct and

Yi`|j` = Mi`|j` − tyij for all ` ≤ s, {i} ∩ {j} ⊂ {s+ 1, . . . , k + 1},
(60)

we can check that

Yij|`m = Mij|`m,

Yi`|im − Yj`|jm = Mi`|im −Mj`|jm,

Yij|ij − Yj`|j` + Y`m|`m − Ymi|mi = Mij|ij −Mj`|j` +M`m|`m −Mmi|mi,

yi`(Yij|ij − Yi`|i`)− (y`` − yjj)Yij|j` = yi`(Mij|ij −Mi`|i`)− (y`` − yjj)Mij|j`,

(yii − yjj)Yij|ij + (yjj − y``)Yj`|j` + (y`` − yii)Y`i|`i = (yii − yjj)Mij|ij + (yjj − y``)Mj`|j` + (y`` − yii)M`i|`i

holds for respective indices i, j, `,m. From this, we conclude that these polynomials are
contained in J0 ∩ C[y] = J .

From now on, we denote X := E ∪ F ∪ G ∪H1 ∪H2. These polynomials cut out V (J):

Lemma 4.3.14. Inside P Sym2 Ck+1 = P(k+2
2 )−1, we consider the open sets

U1 := P Sym2 Ck+1 \ {Is} and U2 := P Sym2 Ck+1 \
{( ∗ ∗

∗ ∗ 0

0 0

)}
.

(i) If s ≥ 3, then V (X ) and V (J) agree scheme-theoretically on U1.

(ii) If s = 2, then V (X ) and V (J) agree scheme-theoretically on U2.

(iii) For s arbitrary, V (X ) and V (J) agree set-theoretically.

Proof. For k ≤ 5, we have checked computationally with a straightforward implementation
in Macaulay2 [58] that even the ideal-theoretic equality (X ) = J holds. We now argue that
from this we can conclude the claim for arbitrary k.

(i) Let s ≥ 3. We need to show that the ideal generated by X ⊂ C[y] coincides with
J ⊂ C[y] after localisation at any element in the set

{yij | {i} ∩ {j} ⊂ {s+ 1, . . . , k + 1}} ∪ {yii − yjj | i, j ≤ s},

since the union of the corresponding non-vanishing sets D(yij), D(yii − yjj) is U1.
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In order to show that (X ) and J agree after localisation at yi0j0 for {i0} ∩ {j0} ⊂
{s+1, . . . , k+1}, we may substitute yi0j0 = 1 in both ideals. For a fixed `0 ≤ s distinct
from i0 and j0, we note that t + Yi0`0|j0`0 = Mi0`0|j0`0 ∈ J0|yi0j0=1. Hence, eliminating t

from J0|yi0j0=1 just amounts to replacing t = −Yi0`0|j0`0 in each occurrence of t in the

minors Mij|`m (for i 6= j, ` 6= m) generating the ideal J0.

According to (60), this leads to the following generators of J |yi0j0=1:

• Y 2
i0`0|j0`0 − (yii + yjj)Yi0`0|j0`0 + Yij|ij for i 6= j ≤ s,

• −yijYi0`0|j0`0 + Yi`|j` for ` ≤ s, {i} ∩ {j} ⊂ {s+ 1, . . . , k + 1},

• Yij|`m for {i, j} ∩ {`,m} ⊂ {s+ 1, . . . , k + 1}.

To check that J |yi0j0=1 = (X )|yi0j0=1, we need to check that each of these polynomials

belong to (X )|yi0j0=1. For this, it is enough to see that they can be expressed in terms of

those polynomials in X that only involve variables with indices among {i0, j0, `0, i, j, `}.
This corresponds to showing the claim for a corresponding symmetric submatrix of M
of size at most 6× 6. We conclude that it is enough to check J |yi0j0=1 = (X )|yi0j0=1 for

k ≤ 5.

Similarly, in order to show that J |yi0i0−yj0j0=1 = (X )|yi0i0−yj0j0=1 holds for i0, j0 ≤ s

distinct, we realise that t+ Yi0`0|i0`0 − Yj0`0|j0`0 = Mi0`0|i0`0 −Mj0`0|j0`0 ∈ J0|yi0j0=1 holds

for fixed `0 ≤ s distinct from i0 and j0. Therefore, replacing t = Yj0`0|j0`0 − Yi0`0|i0`0
in the expressions for the 2× 2-minors of M describes generators of J |yi0i0−yj0j0=1. As

before, these polynomials involve variables with at most six distinct indices, so it is
enough to verify the claim for k ≤ 5 by the same argument as above.

(ii) For s = 2, the argument from (i) still shows J0|yi0j0=1 = (X )|yi0j0=1 for {i0, j0} ∩
{3, . . . , k + 1} 6= ∅. For the localisation at y12 and at y11 − y22, the argument does not
apply since we cannot choose `0 distinct from {i0, j0} = {1, 2} as before. Hence, we
have shown the equality of V (X ) and V (J) only on U2.

(iii) We observe that the polynomials in X vanish on the point Is ∈ P Sym2 Ck+1, and that
Is ∈ V (J) by definition of J . Together with (i), this proves the claim for s ≥ 3.

For s = 2, the polynomials in X vanish on all symmetric matrices of the form A =(
a c
c b 0

0 0

)
∈ Sym2 Ck+1. On the other hand, each such matrix is a point in V (J), since

A + t0I2 is a matrix of rank ≤ 1 for t0 ∈ C such that t20 + (a + b)t0 + (ab − c2) = 0.
Together with (ii), we conclude that V (X ) = V (J) holds set-theoretically.

Lemma 4.3.15. The vector spaces spanned by the polynomials in X satisfy:

(i) 〈E ∪ F ∪ G〉 = 〈E〉 ⊕ 〈F〉 ⊕ 〈G〉,

(ii) 〈H1 ∪H2〉 ∩ (E ,F ,G) = ∅ for s = 3,

99



(iii) H1 ∪H2 ⊂ (E ,F ,G) for s 6= 3.

Proof. Let ME ⊂ C[y] denote the set of monomials occurring in one of the polynomials of
E , and analogously for F , G, H1 and H2.

(i) This follows from the observation that ME , MF and MG are disjoint sets.

(ii) For s = 3, note that G = ∅ and none of the monomials in ME ∪MF is of the form
yijy`m with i, j, `,m ≤ 3. On the other hand, the monomials inMH1 ∪MH2 are of the
form yi1j1yi2j2yi3j3 with i1, i2, i3, j1, j2, j3 ≤ 3. Hence, no monomial in MH1 ∪MH2 is a
multiple of any of the monomials in ME ∪MF , so 〈H1 ∪H2〉 ∩ (E ,F ,G) = ∅.

(iii) If s = 2 we haveH1∪H2 = ∅, so the claim is trivial. Let s ≥ 4. Then for all i, j, `,m ≤ s
distinct, we have

yi`(Yij|ij − Yi`|i`)− (y`` − yjj)Yij|j`
= −2yjmYij|`m − yjmYim|j` − yi`(Yi`|i` − Y`j|`j + Yjm|jm − Ymi|mi) + yim(Yj`|jm − Yi`|im)

+ yij(Yij|i` − Ymj|m`) + (yii − yjj)(Yij|`j − Yim|`m)− yj`(Yi`|j` − Yim|jm) ∈ (E ,F ,G),

(yii − yjj)Yij|ij + (yjj − y``)Yj`|j` + (y`` − yii)Y`i|`i
= (yii − yjj)(Yij|ij − Yj`|j` + Y`m|`m − Ymi|mi) + (y`` − yii)(Yi`|i` − Y`j|`j + Yjm|jm − Ymi|mi)

+ y`m(Yi`|im − Yj`|jm)− yjm(Yij|im − Y`j|`m) + yim(Yji|jm − Y`i|`m) ∈ (E ,F ,G).

The equation above show that H1 and H2 lie in the ideal generated by E , F and G.

Next, we identify maximal linearly independent subsets of E , F , G.

Lemma 4.3.16. The following sets form bases for the vector spaces 〈E〉, 〈F〉 and 〈G〉:

BE := {Yij|`m | i < j, ` < m, i ≤ ` ≤ j s.t. {i, j} ∩ {`,m} ⊂ {s+ 1, . . . , k + 1} and j ≤ m if i = `},
BF := {Yi`|im − Y1`|1m | 2 ≤ i ≤ s, 2 ≤ ` ≤ m s.t. i /∈ {`,m}, {`} ∩ {m} ⊂ {s+ 1, . . . , k + 1}}

∪ {Yi1|im − Y21|2m | 3 ≤ i ≤ s, 3 ≤ m ≤ k + 1, i 6= m} ∪ {Yi1|i2 − Y31|32 | i ∈ {4, . . . , s}},
BG := {Y12|12 − Y2`|2` + Y`m|`m − Ym1|m1 | 3 ≤ m ≤ s− 1, ` ∈ {3, 4, . . . ,m− 1} ∪ {s}}

∪ {Y1s|1s − Ys2|s2 + Y2m|2m − Ym1|m1 | 3 ≤ m ≤ s− 1}.

Proof. The polynomials in E not contained in BE ∪ (−BE) are the polynomials Yij|`m for
i < j < ` < m. However, these can be expressed as Yij|`m = Yi`|jm−Yim|j` ∈ 〈BE〉. Hence BE
spans 〈E〉. For i < j, ` < m with i ≤ ` ≤ j such that {i, j} ∩ {`,m} ⊂ {s + 1, . . . , k + 1},
we note that Yij|`m ∈ C[y] is the unique polynomial in BE containing the monomial yimy`j.
In particular, the polynomials in BE are linearly independent, so BE forms a basis of 〈E〉.

If i, j, `,m ∈ {1, . . . , k + 1} with ` < m are such that Yi`|im − Yj`|jm ∈ F \ (BF ∪ −BF),
then

Yi`|im − Yj`|jm =


(Yi`|im − Y1`|1m)− (Yj`|jm − Y1`|1m) if `,m 6= 1,

(Yi1|im − Y21|2m)− (Yj1|jm − Y21|2m) if ` = 1,m 6= 2,

(Yi1|i2 − Y31|32)− (Yj1|j2 − Y31|32) if ` = 1,m = 2,
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and hence, BF spans 〈F〉. Each of the polynomials Yi`|im−Yj`|jm in BF contains a monomial
not occurring in any of the other polynomials of BF , namely yiiy`m. Therefore, the polyno-
mials in BF are linearly independent.

For 3 ≤ m ≤ s− 1 and ` ∈ {3, . . . ,m− 1}∪ {s}, the polynomial Y12|12− Y2`|2` + Y`m|`m−
Ym1|m1 is the unique polynomial in BG containing the monomial y``ymm. In particular, if a
linear combination of polynomials in BG is zero, then none of the above polynomials can occur
in this linear combination. The remaining polynomials in BG are of the form Y1s|1s−Ys2|s2 +
Y2m|2m − Ym1|m1 for 3 ≤ m ≤ s− 1. Among these, the polynomial containing the monomial
y22ymm is unique. We conclude that the polynomials in BG are linearly independent.

We observe that

G ⊂
{ s∑
i,j=1

aijYij|ij | A = (aij) ∈ Cs×s symmetric with aii = 0 and (1, . . . , 1)A = 0
}
.

The vector space of symmetric s× s-matrices with zero diagonal and whose columns all sum
to zero is of dimension

(
s
2

)
− s, so dimC〈G〉 ≤

(
s
2

)
− s. On the other hand, we can count that

|BG| =
(
s−3

2

)
+ 2(s− 3) =

(
s
2

)
− s, so BG is a basis of 〈G〉.

Proof of Proposition 4.3.12. By Lemma 4.3.14, V (J) = V (X ) holds set-theoretically. For
s = 3, we observe that H1 ∪ H2 consists up to sign of seven linearly independent cubics, so
by Lemma 4.3.15, the ideal (X ) is in this case minimally generated by those seven cubics
and the polynomials in BE , BF and BG from Lemma 4.3.16.

For s 6= 3, Lemma 4.3.15 and Lemma 4.3.16 show that (X ) is minimally generated just
by the polynomials BE ∪ BF ∪ BG. Straightforward counting gives:

|BE | = 2
(
k+1

4

)
+ (k − s+ 1)

(
k
2

)
+
(
k−s+1

2

)
= (k4 − 6sk2 + 4k3 + 6s2 − 6sk + 5k2 − 6s+ 2k)/12,

|BF | = (s− 1)
((
k−1

2

)
+ (k − s+ 1)

)
+ (s− 2)(k − 2) +

(
s−3

1

)
=

{
(sk2 − k2 + sk − 2s2 − 3k + 4s− 2)/2 if s ≥ 3,

(sk2 − k2 + sk − 2s2 − 3k + 4s)/2 if s = 2,

|BG| =

{(
s
2

)
− s = (s2 − 3s)/2 if s ≥ 3,

0 if s = 2.

Adding up these cardinalities gives the claimed number of quadratic forms.

Remark 4.3.17. In fact, for s ≥ 3, our proof shows that V (X ) is the same scheme as
V (J) away from the point Is ∈ P Sym2 Ck+1. In the proof of Theorem 4.3.11, we considered
V (J)∩H, where H is a hyperplane not containing Is. Since V (J)∩H = V (X )∩H scheme-
theoretically, we conclude that our equations for L◦2 in Theorem 4.3.11 cut out not only the
correct set, but even the correct scheme. In fact, we believe that we have ideal-theoretic
equality for the specified set of polynomials, but our proof stops short of verifying this.

We now prove the result about eigenspaces of symmetric matrices stated as Corol-
lary 4.3.5. It follows directly from the proof of Proposition 4.3.12.
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Proof of Corollary 4.3.5. A complex symmetric matrix A ∈ Cs×s has an eigenspace of codi-
mension 1 with respect to an eigenvalue λ ∈ C if and only if the matrix A−λ id is of rank 1,
which means that A ∈ V (J) for the case s = k + 1. By Lemma 4.3.14 and Lemma 4.3.15,
this is equivalent to the vanishing of the equations E ∪ F ∪ G, which are the above relations
among 2×2-minors for s = k+1 ≥ 4. The second claim was proved in Proposition 4.3.3.

The proof of Theorem 4.3.11 was based on relating the coordinate-wise square L◦2 in
the case dimC I(Z)2 = 1 to the question when a symmetric matrix can by completed to a
rank 1 matrix by adding a multiple of Is. In the same spirit, for arbitrary linear spaces L (no
restrictions on the set of quadrics containing Z), determining the ideal of the coordinate-wise
square L◦2 boils down to the following problem in symmetric rank 1 matrix completion:

Problem 4.3.18. For a fixed matrix B ∈ C(n+1)×(k+1) of rank k + 1, find the defining
equations of the set{

M ∈ C(k+1)×(k+1) symmetric | ∃P ∈ C(k+1)×(k+1) symmetric such that BPBT

has a zero diagonal and rk(M + P ) = 1

}
.

Indeed, let L be an arbitrary linear space of dimension k and let B ∈ C(n+1)×(k+1) be a
chosen matrix of full rank describing L as the image of the linear embedding Pk ↪→ Pn given
by B. Then the rows of B form the finite set of points Z ⊂ (Pk)∨. Identifying quadratic
forms on Pk with symmetric (k + 1)× (k + 1)-matrices, the subspace I(Z)2 ⊂ Sym2(Ck+1)∨

corresponds to

I(Z)2 = {P ∈ C(k+1)×(k+1) symmetric such that BPBT has a zero diagonal}.

By Lemma 4.3.1, the coordinate-wise square L◦2 is a linear re-embedding of projection of
the second Veronese variety

ν2(Pk) = {rank 1 symmetric (k + 1)× (k + 1)-matrices up to scaling}

from P(I(Z)2). Therefore, describing the ideal of L◦2 corresponds to solving Problem 4.3.18
for the given matrix B. Similarly, describing the coordinate-wise r-th power of a linear space
corresponds to the analogous problem in symmetric rank 1 tensor completion.

By Lemma 4.3.1, determining the coordinate-wise r-th power of a linear space corresponds
to describing the projection of the r-th Veronese variety from a linear space of the form
P(I(Z)r) for a non-degenerate finite set of points Z. We may ask how general this problem
is, and pose the question which linear subspaces of P SymrW are of the form P(I(Z)r):

Question 4.3.19. Which linear subspaces of C[z0, . . . , zk]r can be realised as the set of
degree r polynomials vanishing on some non-degenerate finite set of points in Pk of cardinality
≤ n+ 1?

We envision that an answer to this question may lead to insights into describing which
varieties can occur as the coordinate-wise r-th power of some linear space in Pn.
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[28] O. Chterental and D. Ž. Doković: On orthostochastic, unistochastic and qustochastic matrices,
Linear Algebra and its Applications, 428(4), 1178–1201, (2008).
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[60] V. Hárs and J. Tóth: On the inverse problem of reaction kinetics, Colloquia Math. Societatis
János Bolyai 30, Qualitative Theory of Differential Equations, 363–379, Szeged, (1979).
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[85] A. Löhne and B. Weißing: The vector linear program solver Bensolve – notes on theoretical
background, European Journal of Operational Research, 260, 807–813, (2017).

[86] M. Maccioni: The number of real eigenvectors of a real polynomial, Bollettino dell’Unione
Matematica Italiana, 11, 125–145, (2018).

[87] D. Maclagan and B. Sturmfels: Introduction to tropical geometry, Graduate Studies in Math-
ematics, American Mathematical Society, Providence, RI, (2015).

[88] A. W. Marshall, I. Olkin, and B. C. Arnold: Inequalities: theory of majorization and its
applications, Springer Series in Statistics, Springer, New York, second edition, (2011).

[89] J. W. Martini: On the relation of different definitions of cooperative binding for systems with
two binding sites, Match-Communications in Mathematical and in Computer Chemistry, 78,
739–752, (2017).

[90] J. W. R. Martini: A measure to quantify the degree of cooperativity in overall titration curves,
Journal of Theoretical Biology, 432, 33–37, (2017).

[91] J. W. Martini, L. Diambra, and M. Habeck: Cooperative binding: a multiple personality,
Journal of Mathematical Biology, 72, 1747–1774, (2016).

[92] Mathematica, Wolfram Research, Inc., Version 11.1.1.0, Champaign, IL, 2017

[93] MATLAB R2017a, version 9.2.0. Natick, Massachusetts: The MathWorks Inc., 2017.

[94] M. Michalek, H. Moon, B. Sturmfels and E. Ventura: Real rank geometry of ternary forms,
Annali di Matematica Pura ed Applicata, (2017).

[95] D. Ming, D. Glasser, D. Hildebrandt, B. Glasser and M. Metzger: Attainable Region Theory:
An Introduction to Choosing an Optimal Reactor, John Wiley and Sons, 2016.

[96] L. Mirsky: Results and problems in the theory of doubly-stochastic matrices, Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete, 1, 319–334, (1963).

107



[97] V.V. Nikulin: Integer symmetric bilinear forms and some of their geometric applications,
USSR-Izv. 14, 103–167, (1980).

[98] A. Onufriev and G. M. Ullmann: Decomposing complex cooperative ligand binding into simple
components: connections between microscopic and macroscopic models, The Journal of Phys-
ical Chemistry B, 108, 11157–11169, (2004).

[99] James Oxley: Matroid theory, Oxford Graduate Texts in Mathematics, Oxford University
Press, Oxford, second edition, (2011).

[100] I. Petrovsky: On the topology of real plane algebraic curves, Annals of Mathematics, 39,
189–209, (1938).

[101] D. Plaumann, B. Sturmfels and C. Vinzant: Quartic curves and their bitangents, Journal of
Symbolic Computation, 46, 712–733, (2011).

[102] K. Ranestad and B. Sturmfels: On the convex hull of a space curve, Advances in Geometry,
12, 157–178, (2012).

[103] M. W. Reichelt and L. F. Shampine: The MATLAB ODE Suite, SIAM Journal on Scientific
Computing, 18 (1), (1997).

[104] Y. Ren, J. W. R. Martini, and J. Torres: Decoupled molecules with binding polynomials of
bidegree (n,2), Journal of Mathematical Biology, 78 (4), 879–898, (2019).

[105] V.A. Rokhlin: Complex topological characteristics of real algebraic curves, Russian Math.
Surveys, 33:5, 85–98, (1978).

[106] K. Rohn: Die Maximalzahl und Anordnung der Ovale bei der ebenen Kurve 6. Ordnung und
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