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General Abstract 

While the impact of various components of light have been studied in broilers and egg production 

hens, little is known about the impact that light wavelength and duration have on embryo 

development and welfare in the incubation phase. The overall objective of this research was to 

evaluate the effect of light wavelength and photoperiod during the incubation of fertile egg 

production hen eggs. In experiment 1, 640 Lohmann LSL (LSL) and 640 Lohmann Brown (LB) 

eggs were randomly distributed in 8 incubators. Two incubators per treatment were outfitted with 

red, blue, or white LED lights, and a 12L (Light):12D (Dark) photoperiod was used throughout 

incubation. The final two incubators remained dark. At hatch, 144 LSL and 144 LB pullets were 

placed in 3 brooding rooms under a Near Continuous (NC) or 3 rooms under an Intermittent (INT) 

lighting photoperiod. Post-hatch, pullet behaviour was video recorded on days 0, 2 and 4. The use 

of differing light wavelengths during incubation did not affect pullet behaviour post-hatch. A 

genotype effect was observed, as LSL pullets spent a greater percentage of time at the drinker on 

days 0 (P=0.012) and 2 (P=0.031), and at the feeder on days 2 (P<0.001) and 4 (P=0.005) 

compared to LB pullets. Brooding photoperiod also affected early behaviour, as pullets brooded 

under an INT photoperiod spent a greater percentage of time at the feeder on days 0 (P=0.036) and 

2 (P=0.022), less percentage of time resting on days 0 (P=0.005), 2 (P<0.001) and 4 (P=0.004), 

and a higher percentage of time walking on days 2 (P=0.039) and 4 (P=0.041) than pullets under 

a NC photoperiod. 

Experiment 2 was conducted with the objective of determining the effects of in-ovo photoperiod 

on hatch traits, growth and behaviour post-hatch. During incubation, 400 LSL eggs (n=3) were 

randomly distributed and exposed to one of 4 photoperiod treatments ((6L:18D (6L), 12L:12D 

(12L), 18L:6D (18L)) or 0L:24D (0L). At the hatch endpoint, males were evaluated for hatch traits 

(n=20/treatment), response to stress (heterophil to lymphocyte ratio (H/L), n=15 chicks/treatment) 

and composite asymmetry (sum of the difference between right and left; femur, tibiotarsus and 

metatarsus, n=20/treatment). Females (n=30/treatment) were evaluated for hatch traits at the hatch 

endpoint, and post-hatch growth to 21 days of age, early behavioural output, presence or absence 

of behaviour rhythms, H:L ratio, and composite asymmetry. Incubation time was reduced (P<0.05) 

with the use of light during incubation, with the greatest reduction occuring under 18L. However, 

the spread of hatch and hatchability were not affected. Stress tests (H/L ratio and composite 

asymmetry) of the male chicks were not affected by treatment. Body weight of female chicks at 
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day 0 (P<0.001), 7 (P=0.001), 14 (P=0.017) and 21 (P=0.027) was higher for chicks hatched from 

0L incubation, but flock uniformity did not differ. Stress indicators (composite asymmetry and 

H:L ratio) at day 21 did not differ. On hatch day the percentage of time chicks from 18L spent 

walking (P=0.029) was higher than chicks from 6L. Standing (P=0.015) was also higher in chicks 

from 18L compared to chicks from 0L and 12L incubation. Running (P=0.003) on hatch day was 

higher in chicks from 18L than chicks from 0L, 6L, and 18L incubation. Time spent at the feeder, 

drinker, preening, performing aggressive and low incidence behaviours at day 0 were not affected 

by in-ovo photoperiod. Behaviour rhythm was present in chicks post-hatch for the following 

behaviours: resting (P=0.035) and walking (P<0.001) during the photophase on day 0; walking on 

day 1 (P=0.023), resting (P=0.001), and foraging (P=0.017) on day 2, regardless of exposure to 

light during incubation. In conclusion, regardless of light wavelength used during incubation, 

provision of darkness such as in the INT brood photoperiod used in this study at an early age, 

increased chick activity compared to those reared under near-constant light. Overall light 

wavelength does not affect chick behaviour post-hatch, and the greatest impact with the use of 

lighting on chick behaviour is due to photoperiod length. A photoperiod up to 18L under red light 

can be used during incubation without negative effects on stress measures and chick’s behaviour, 

but it might reduce chick weight at hatch.  

  



 

v 

 

Acknowledgements 

I would like to thank to my supervisor Dr. Karen Schwean-Lardner, for the opportunity to 

be one of her graduate students, for her support and guidance. Thanks to advisory committee 

members, Dr. Hank Classen and Dr. Denise Beaulieu, for your knowledgeable advice during and 

after the committee meetings. Thanks to graduate committee chair Dr. Ryan Brooks. Thanks to 

Dr. Yolande Seddon for serving as my external examiner. Thanks to Dr. Bruce Rathgeber for 

designing the in-ovo wavelength experiment and MSc student Nilakshi Abeysinghe for helping 

with data collection at the Dalhousie University Poultry Centre research unit in Truro, NS. Thanks 

to the University of Saskatchewan Poultry Centre staff for their assistance with the research in 

Saskatoon. Robert Gonda, Mark Meier, Jason Marshall, Jocelyn Fournier thank you for helping in 

prepare the incubators and taking care of the birds. Thanks to Dr. Trever Crown, for your insights 

and valuable engineering skills in helping install the lights in the incubators. Thanks to all 

University of Saskatchewan graduate students that have been involved somehow in the project for 

their help and support during data collection.  

I would like to acknowledge and thanks the funding agency Egg Farmers of Canada for financially 

supporting this research and Clark’s hatchery in Brandon, Manitoba for the donation of the eggs 

used for the in-ovo photoperiod study. 

I also want to thanks to my mother and sisters for their patience in waiting and encouragement to 

finish the program. A special thanks to my father for the lessons taught and support given 

throughtout life.   



 

vi 

 

Table of Contents 

Permission to Use ........................................................................................................................... i 

Disclaimer ...................................................................................................................................... ii 

General Abstract .......................................................................................................................... iii 

Acknowledgements ....................................................................................................................... v 

List of Tables ................................................................................................................................ ix 

List of Figures ............................................................................................................................... xi 

List of Abbreviations .................................................................................................................. xii 

1.0 Chapter 1: General introduction ........................................................................................... 1 

2.0 Chapter 2 Literature review: Impact of light during laying hen egg incubation on hatch 

traits, growth, and behaviour ...................................................................................................... 2 

 Lighting in poultry production ......................................................................................... 3 

2.1.1 Light ............................................................................................................................. 3 

2.1.2 Light intensity ............................................................................................................. 3 

2.1.3 Light photoperiod ....................................................................................................... 3 

2.1.4 Light wavelength ........................................................................................................ 3 

2.1.4.1 White lighting ....................................................................................................... 3 

2.1.4.2 Coloured lighting ................................................................................................. 4 

2.1.4.3 Ultraviolet and infrared light .............................................................................. 4 

2.1.5 Light source ................................................................................................................. 4 

 Bird biological characteristics impacted by light ............................................................ 5 

2.2.1 Embryo development ................................................................................................. 5 

2.2.2 Photoreceptors ............................................................................................................ 6 

2.2.3 Melatonin synthesis, secretion and biological effects .............................................. 6 

 Impact of in-ovo lighting (wavelength) vs standard dark incubation ........................... 7 

2.3.1 Hatch traits.................................................................................................................. 8 

2.3.1.1 Temperature ......................................................................................................... 8 

2.3.1.2 Duration and pattern of incubation .................................................................... 8 

2.3.1.3 Spread of hatch .................................................................................................... 9 

2.3.1.4 Embryo and chick mortality .............................................................................. 10 

2.3.1.5 Hatchability ........................................................................................................ 10 

2.3.2 Chick quality ............................................................................................................. 12 

2.3.2.1 Navel quality ...................................................................................................... 12 

2.3.2.2 Body weight ........................................................................................................ 13 

2.3.2.3 Chick length ....................................................................................................... 14 

2.3.2.4 Organ and GIT absolute and relative weights .................................................. 15 

2.3.2.5 Growth post hatch .............................................................................................. 15 

2.3.3 Health and welfare ................................................................................................... 17 

2.3.4 Behaviour .................................................................................................................. 17 



 

vii 

 

 Impact of in-ovo lighting incubation (photoperiod) vs standard dark incubation .... 18 

2.4.1 Hatch traits................................................................................................................ 18 

2.4.1.1 Temperature ....................................................................................................... 18 

2.4.1.2 Incubation time .................................................................................................. 19 

2.4.1.3 Spread of hatch .................................................................................................. 20 

2.4.1.4 Embryo and chick Mortality .............................................................................. 20 

2.4.1.5 Hatchability ........................................................................................................ 21 

2.4.2 Chick quality ............................................................................................................. 22 

2.4.2.1 Navel healing ..................................................................................................... 22 

2.4.2.2 Chick weight ....................................................................................................... 22 

2.4.2.3 Chick length ....................................................................................................... 23 

2.4.2.4 Organ absolute and relative weights ................................................................. 24 

2.4.2.5 Growth post-hatch.............................................................................................. 24 

2.4.3 Health and welfare ................................................................................................... 25 

2.4.3.1 Heterophil to lymphocyte ratio .......................................................................... 25 

2.4.3.2 Composite asymmetry ........................................................................................ 26 

2.4.4 Behaviour .................................................................................................................. 26 

 Diurnal rhythm ................................................................................................................. 26 

 Impact of photoperiod on chicken during the brooding period .................................. 28 

 Welfare or stress indicators in poultry........................................................................... 31 

2.7.1 Heterophil to Lymphocyte ratio .............................................................................. 31 

2.7.2 Morphological asymmetry ....................................................................................... 31 

2.7.2.1 Fluctuating asymmetry ...................................................................................... 31 

2.7.2.2 Directional Asymmetry ...................................................................................... 32 

2.7.2.3 Antisymmetry ..................................................................................................... 32 

2.7.2.4 Composite Asymmetry........................................................................................ 33 

2.7.3 Behavioural expression ............................................................................................ 33 

2.7.3.1 Junglefowl Behaviour........................................................................................ 33 

2.7.3.2 Exploratory behaviour ....................................................................................... 34 

2.7.3.3 Aggressive behaviour ......................................................................................... 35 

2.7.3.4 Nutritive behaviours .......................................................................................... 35 

2.7.3.5 Active behaviours ............................................................................................... 37 

2.7.3.6 Resting behaviour .............................................................................................. 38 

2.7.3.7 Comfort behaviours ........................................................................................... 38 

 Conclusion ......................................................................................................................... 39 

 Objectives .......................................................................................................................... 40 

2.9.1 Experiment I ............................................................................................................. 40 

2.9.2 Experiment II ............................................................................................................ 40 

 Hypothesis ....................................................................................................................... 40 

2.10.1 Experiment I ........................................................................................................... 40 

2.10.2 Experiment II .......................................................................................................... 41 



 

viii 

 

3.0 Chapter 3: Effects of light wavelength during incubation on early life behavioural 

expression of egg production chicks .......................................................................................... 42 

 Abstract ............................................................................................................................. 43 

 Introduction ...................................................................................................................... 44 

 Materials and methods .................................................................................................... 45 

3.3.1 Data collection ........................................................................................................... 47 

3.3.2 Behaviour analyses ................................................................................................... 47 

3.3.3 Statistical analyses .................................................................................................... 48 

 Results ............................................................................................................................... 48 

 Discussion .......................................................................................................................... 51 

 Conclusion ......................................................................................................................... 56 

 Tables ................................................................................................................................ 57 

4.0 Chapter 4: Effect of photoperiod length during incubation on hatch traits, growth, and 

behaviour of Leghorn chicks to 21 days of age ........................................................................ 68 

 Abstract ............................................................................................................................. 69 

4.2 Introduction ...................................................................................................................... 70 

4.3 Material and methods ...................................................................................................... 72 

4.3.1 Experiment 2a: Hatch traits .................................................................................... 73 

4.3.2 Experiment 2b: Pullets growth, uniformity health and behaviour ...................... 76 

4.3.2.1 Pullets housing and management ..................................................................... 76 

4.3.2.2 Pullet data collection ......................................................................................... 77 

4.3.3 Statistical analyses .................................................................................................... 78 

4.4 Results ............................................................................................................................... 79 

4.4.1 Experiment 2a: Hatch traits ......................................................................................... 79 

4.4.2 Experiment 2b: Pullets growth, uniformity health and behaviour ...................... 82 

4.5 Discussion .......................................................................................................................... 86 

4.6 Conclusion ......................................................................................................................... 93 

4.7 Tables ................................................................................................................................ 94 

5.0 Chapter 5: Overall discussion and conclusion ................................................................. 115 

 Introduction .................................................................................................................... 116 

 Objectives ........................................................................................................................ 117 

 Overall discussion and conclusion ................................................................................ 117 

6.0 References ............................................................................................................................ 121 



 

ix 

 

List of Tables 

Table 3.1. Lohmann LSL diet starter composition with calculated nutrient levels ..................... 57 

Table 3.2. Ethogram description of behaviours for measurement in egg production pullets ...... 58 

Table 3.3. Main effects of in-ovo lighting wavelength on the behaviour of egg production pullets 

at day 0 post-hatch ................................................................................................................. 59 

Table 3.4. Main effects of in-ovo lighting wavelength on the behaviour of egg production pullets 

at day 2 post-hatch ................................................................................................................. 60 

Table 3.5. Main effects of in-ovo lighting wavelength on the behaviour of egg production pullets 

at day 4 post-hatch ................................................................................................................. 61 

Table 3.6. Main effects of the genotype on the behaviour of egg production pullets at day 0 

(n=3) ...................................................................................................................................... 62 

Table 3.7. Main effects of the genotype on the behaviour of egg production pullets at day 2 

(n=3) ...................................................................................................................................... 63 

Table 3.8. Main effects of the genotype on the behaviour of egg production pullets at day 4 

(n=3) ...................................................................................................................................... 64 

Table 3.9. Main effects of brooding photoperiod on the behaviour of egg production pullets at 

day 0 (n=3) ............................................................................................................................ 65 

Table 3.10. Main effects of brooding photoperiod on the behaviour of egg production pullets at 

day 2 (n-3) ............................................................................................................................. 66 

Table 3.11. Main effects of brooding photoperiod on the behaviour of egg production pullets at 

day 4 (n=3) ............................................................................................................................ 67 

Table 4.1. Ingredients and nutrients composition of diets diet fed to Lohmann LSL from 

placement to 21 days old ....................................................................................................... 94 

Table 4.2.  Ethogram description of behaviours for measurement in egg production pullets ..... 95 

Table 4.3. Effects of in-ovo photoperiod on average (0-21.5 days of incubation) overall 

incubator temperature (n=3) .................................................................................................. 96 

Table 4.4. Effects of in-ovo photoperiod on Lohmann LSL embryo mortality (n-3) .................. 96 

Table 4.5. Effects of in-ovo photoperiod on time in hours to reach a specific percentage of 

Lohmann LSL eggs hatching (set time to hatch time) (n=3) ................................................. 97 



 

x 

 

Table 4.6. Effects of in-ovo photoperiod on the spread of hatch (time to hatch a specific 

percentage of Lohmann LSL chicks in hours) (n=3) ............................................................. 97 

Table 4.7. Effects of in-ovo photoperiod on the percentage hatch of set and fertile Lohmann LSL 

eggs (n=3) .............................................................................................................................. 98 

Table 4.8. Effects of in-ovo photoperiod on navel scores of male and female Lohmann LSL 

chicks at hatch (n=3) ............................................................................................................. 98 

Table 4.9. Effects of in-ovo photoperiod on body weight and length1 of female and male 

Lohmann LSL chicks at hatch endpoint (n=3) ...................................................................... 99 

Table 4.10. Effects of in-ovo photoperiod on Lohmann LSL chick yolk-sac and yolk-free body 

absolute weights and weights relative to live body weight at hatch endpoint (n=3) ............. 99 

Table 4.11. Effects of in-ovo photoperiod on liver, heart and gastrointestinal tract segments 

weight of male Lohmann LSL hatchlings (n=3) ................................................................. 100 

Table 4.12. Effects of in-ovo photoperiod on stress indicators (Heterophil: Lymphocyte (H: L) 

ratio and composite asymmetry of male Lohmann LSL on the day of hatch (n=3) ............ 101 

Table 4.13. Effects of in-ovo photoperiod during incubation on Lohmann LSL pullets body 

weight (Wt.) and body weight uniformity at day 0, 7, 14 and 21 (n=3) .............................. 101 

Table 4.14. Effects of in-ovo photoperiod on Lohmann LSL pullets stress indicators Heterophil: 

Lymphocyte ratio (H: L) and composite asymmetry at day 21 (n=3) ................................. 102 

Table 4.15. Effects of in-ovo photoperiod on Lohmann LSL pullet’s organ and GIT segment 

weights at 21 days of age (n=3) ........................................................................................... 103 

Table 4.16. Effects of In-ovo photoperiod during incubation on LSL pullet’s behaviour post-

hatch at day 0 (n=3) ............................................................................................................. 104 

Table 4.17. Effects of In-ovo photoperiod during incubation on LSL pullet’s behaviour post-

hatch at day 1 (n=3) ............................................................................................................. 105 

Table 4.18. Effects of in-ovo photoperiod during incubation on LSL pullet’s behaviour post-

hatch at day 2 (n=3) ............................................................................................................. 106 

Table 4.19. Effects of in-ovo photoperiod during incubation on LSL pullet’s behaviour post-

hatch at day 3 (n=3) ............................................................................................................. 107 

 



 

xi 

 

List of Figures 

Figure 2.1. Light wavelength. Picture source (Pratti, 2016). ......................................................... 4 

Figure 3.1. LED lights outfitted into a Master G09 incubator. .................................................... 46 

Figure 4.1. LED lights outfitted into a 1502 Sportsman incubator. ............................................. 72 

Figure 4.2. View of the room where the chicks were housed post-hatch .................................... 76 

Figure 4.3. Resting behaviour over the photophase at the age 0 post-hatch from LSL pullets 

exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar on top 

of the graphs represents the scotophase period during incubation. ..................................... 108 

Figure 4.4. Resting behaviour over the photophase at the age 1 from LSL pullets exposed to 

various in-ovo lighting photoperiod. The horizontal bar on top of the graphs represents the 

scotophase period during incubation. .................................................................................. 109 

Figure 4.5. Resting behaviour over the photophase at the age of 2 post-hatch from LSL pullets 

hatched from various photoperiod during incubation. The horizontal bar on top of the graphs 

represents the scotophase period during incubation. ........................................................... 110 

Figure 4.6. Walking behaviour over the photophase at the age 0 post-hatch from LSL pullets 

exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar on top 

of the graphs represents the scotophase period during incubation. ..................................... 111 

 Figure 4.7. Walking behaviour over the photophase at the age of 1 post-hatch from LSL pullets 

exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar on top 

of the graphs represents the scotophase period during incubation. ..................................... 112 

Figure 4.8. Foraging behaviour over the photophase at the age of 2 post-hatch from LSL pullets 

exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar on top 

of the graphs represents the scotophase period during incubation. ..................................... 113 

Figure 4.9. At the feeder behaviour over the photophase at the age of 2 post-hatch from LSL 

pullets exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar 

on top of the graphs represents the scotophase period during incubation. .......................... 114 

   



 

xii 

 

List of Abbreviations 

 
D   Dark 

G   Genotype 

H   Hour 

H: L   Heterophil to Lymphocyte 

INT   Intermittent 

L   Light 

LSL   Lohmann LSL Lite 

LB   Lohmann Brown 

LED   Light Emitting Diode 

Min   Minute 

Nm   Nanometer 

NC   Near Continuous 

Wk   Week 

 

   



 

1 

 

1.0  Chapter 1: General introduction 

Artificial lighting is a management tool that can be used to improve the welfare and 

increase production efficiency of commercial poultry (Olanrewaju et al., 2006; Schwean-Lardner 

et al., 2013). This lighting can be provided by a number of sources, including fluorescent, light-

emitting diode (LED) and incandescent. All these sources have been discussed in the literature 

with regards to bird development, growth, production efficiency and animal welfare (Rozenboim 

et al., 1999ab; Borille et al., 2013; Mendes et al., 2013; Olanrewaju et al., 2018).  

The idea of using lighting during incubation of fertile eggs is not new. In-ovo lighting 

studies can be found in the literature as far back as the late 1960s (Tamimie, 1967; Tamimie and 

Fox, 1967; Siegel et al., 1969), but these studies contain many inconsistencies regarding the 

lighting benefits and efficiency of the hatch. These inconsistencies may be due to a combination 

of components used in the study, such as the source of light, intensity, wavelength, photoperiod, 

the timing of the onset of light during incubation, and genotype of the bird. Another possible reason 

for the discrepancies in results may be related to the varying combinations of these variables. The 

industry has not widely implemented this technology, and one of the reasons may be the lack of 

information about the effects of these parameters, either individually, or in combination. In 

addition, few studies have examined the effects of light during incubation on behaviour of chick’s 

post-hatch. Therefore, two objectives were set out for the current work: 1) to identify how 

wavelength affects post-hatch chick behaviour, and 2) to determine how the duration of 

photoperiod in-ovo impact hatch traits, bird well-being behaviour and growth. 
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2.0 Chapter 2 Literature review: Impact of light during laying hen egg 

incubation on hatch traits, growth, and behaviour
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 Lighting in poultry production 

2.1.1 Light  

Light is electromagnetic waves distributed in a range from short to long wavelengths (Ryer, 

1998). Light is used in commercial poultry production to control development, reproductive 

maturity, and improve production efficiency. Avian species have a tetrachromatic colour vision 

(Osorio et al., 1999), and are very sensitive to light, and capable of perceiving ultraviolet lights 

(Prescott and Wathes., 1999; Osorio et al., 1999; Lewis and Morris, 2006) which is outside of the 

visible light range. The main components that can be adjusted when using artificial lights are light 

intensity, photoperiod, and wavelength, and can be adjusted accordingly to production objectives.  

2.1.2 Light intensity  

Refers to the brightness of light. Some light sources such as LED lights can be dimmed (the 

brightness of light can be regulated). Light intensity can affect chicken behaviour, dim light can 

decrease, and bright light can increase birds’ activities (Blatchford et al., 2009), and can accelerate 

sexual maturity (Lewis et al., 2004, 2008).  

2.1.3 Light photoperiod  

Photoperiod is the length of light period received in a day. Photoperiod affects various 

production variables such as growth and reproductive maturity in chicken. Photoperiod in poultry 

production can be categorized in continuous (24L:0D), near continuous (23L:1D), intermittent 

(alternate periods of light and dark within a 24-hour period), or ahemeral (the day length cycle can 

be short or long, and can also differ from a 24-hour period).  

2.1.4 Light wavelength 

2.1.4.1 White lighting  

White light has a broader spectrum distribution than coloured lights (Warrant and Nilsson, 

1998), and this light is commonly used in poultry units because of previously available sources 

such as incandescent light bulbs. Although white light is composed of different wavelengths, its 

absorption by photoreceptors is lower than specific wavelengths produced by monochromatic 

lights (Warrant and Nilsson, 1998), and the reason behind the lower absorption of white light is 

due to the shape of the white light photoreceptors (Warrant and Nilsson, 1998). 
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2.1.4.2 Coloured lighting  

The colour of light is dependent on the wavelength, and it operates on a sliding scale. For 

example, as shown in figure 2.1, violet light is seen when the wavelength ranges from 400-450 nm, 

blue from 450-500 nm, yellow from 570-590 nm, orange from 570-590 nm, and red 610-760 nm. 

Figure 2.1. Light wavelength. Picture source (Pratti, 2016). 

Prescott and Wathes (1999) used chicken behaviour to test bird sensitivity to light. The 

authors exposed the broilers to a panel with a specific light wavelength and another panel without 

light, and allowed the bird to make a choice to whether to peck the lit or the dark panel to receive 

a feed reward. The authors found that the perception of broiler birds to light was higher under 

wavelengths in the range 533 – 577 nm and lower under the wavelengths 415 nm and 600 nm.  

2.1.4.3 Ultraviolet and infrared light 

Ultraviolet and infrared lights are found on opposite sides of the visible light spectrum. 

Ultraviolet light is a short wavelength light distributed in three wavelength categories, UV-C  from 

100 - 280 nm, UV-B  from 280 - 315 nm and UV-A from 315 - 400 nm (Ryer, 1998). Of these, 

UV-A is the least harmful to the body due to lower emission of energy (Ryer, 1998). The infrared 

spectrum has the lowest energy of all wavelengths, and it is not visible but can be sensed as heat 

(Ryer, 1998).  

2.1.5 Light source 

The most common artificial light sources used in the past in poultry barns were 

incandescent. However, these lighting systems are no longer available commercially for purchase 

(Blackwell, 2015), so it is necessary for producers to change. There are many choices for lighting 

systems including fluorescent and light emitting diode (LED) lighting systems.  
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The use of LED lights has increased in popularity due to the durability, low cost, and improved 

energy efficiency of the bulbs (Tabler and Wells, 2015). The LED bulbs are available in both white 

and monochromatic colours. The potential to use varying wavelengths is interesting from a 

production and welfare point of view. Many LED light bulbs are capable of being dimmed to allow 

the provision of a dawn-dusk transition period and control intensity of light. 

 Bird biological characteristics impacted by light 

2.2.1 Embryo development  

There is increasing interest regarding the use of lighting programs during incubation of 

fertile poultry eggs, as it is thought that light during incubation can influence the bird during 

embryogeneses (Özkan et al., 2012a; Dishon et al., 2017) and beyond (Rogers and Krebs, 1996; 

Archer et al., 2009; Özkan et al., 2012b; Huth and Archer, 2015). However, it is important to 

mention that before the light reaches the embryo it has to penetrate through the eggshell. Shell 

thickness affects the transmission (i.e. light passing through the shell) of light through the shell and 

the degree of effect is affected by light wavelength. The greatest transmission of light through the 

eggshell occurs in the equator portion of the egg from the wavelength range 200-800 nm, while the 

visible and near-infrared lights have a higher transmission of light through the small pole of the 

egg compared to the large pole. But there is no difference in near ultraviolet light transmission 

between the eggshell`s large and small poles (Shafey et al., 2004). The eggshell itself impacts how 

the embryo utilizes light, as the shell pigmentation can influence the amount of light directed onto 

the shell surface that is reflected and the amount of light that passes through the shell (Shafey et 

al., 2002; Maurer et al., 2015). The blue-green wavelengths have higher reflectance on the shell 

and lower light transmission (Maurer et al., 2015), and the transmission of light through the 

eggshell is higher as wavelength increases (Shafey et al., 2002; Maurer et al., 2015). 

Light transmission through eggshells is affected by eggshell pigments and thickness, which 

are affected by bird`s genotype (Shafey et al., 2002, 2004, 2005; Maurer et al., 2015), and other 

factors. In some studies, dark pigmented (Shafey et al 2004, 2005; Maurer et al., 2015) and thick 

eggshells (Maurer et al., 2015) showed lower light transmission. The pigmentation of the eggshell 

also acts as a protective layer for the embryo against ultraviolet radiation (Maurer et al., 2015). 

Another interesting factor is that the timing of the onset of exposure of the fertile eggs to 

light seems to play an important function on the impact of light on embryo development (Siegel et 
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al., 1969). These authors observed higher multiplication and differentiation of somite cells (primary 

cells in which originates tissues and organs) when White Rock heritage chicken embryos were 

exposed to light throughout the early stages of development compared to embryos exposed at a 

later phase. Other studies reported that exposing embryos to light during the last three days of 

incubation stimulated physical and functional lateralization of the brain (Rogers and Krebs, 1996). 

The differentiated results observed when embryos were exposed to light at an early developmental 

stage might relate to effects at a cellular level (Siegel et al., 1969; Coleman and McDaniel, 1976). 

Exposure of eggs to white light (18L:6D) throughout incubation increased metabolism in house 

sparrow embryos (Cooper et al., 2011), exposure to green light (15 minutes (min) L:15 min D ) 

increased plasma growth hormone (GH), insuline growth factor (IGF-1) (Zhang et al., 2014), 

prolactine hormone levels (Dishon et al., 2017), and increased growth hormone-releasing hormone 

(GHRH), liver growth hormone receptor (GHR), and IGF-1 gene expressions in broiler embryos 

(Dishon et al., 2017).  

2.2.2 Photoreceptors 

Photoreceptors are the functional cells capable of receiving light stimuli and transmitting it 

through neural pathways to the brain. Photoreceptors are concentrated in specific areas of the body 

such as the retinae, hypothalamus, and pineal gland (Csernus and Mess, 2004a; Lewis and Morris, 

2006). The eye is a pathway for light to enter the retinae, where photoreceptors are responsible for 

absorbing light. The development and maturation of photoreceptors starts during embryo 

incubation. The first signs of photoreceptor development in the broiler embryo retinae can be 

observed on the 8th day of incubation, and by the 10th day those photoreceptors can be differentiated 

from single and double cones or rods. By the 19th day, the photoreceptors are mature and functional 

(Wai and Yew, 2002; Wai et al., 2006).  

2.2.3 Melatonin synthesis, secretion and biological effects 

Melatonin synthesis occurs in many body organs, including in the pineal gland, 

hypothalamus and the retinae (Gwinner and Hau, 2000). Melatonin is a hormone that influences 

many physiological and behavioural patterns such as thermoregulation (Zeman and Herichová, 

2011), behaviour (Golombek et al., 1996), the immunity (Xie et al., 2008; Markowska et al., 2017), 

oxidative stress (Escribano et al., 2014), and the cardiopulmonary system (Farias et al., 2012). The 

enzymes involved in the syntheses of melatonin in the chicken retinae are NAT (N- 
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acetyltransferase) and HIOMT (hydroxyindole-O-methyltransferase) (Espinar et al., 1994). These 

enzymes develop and become functional during incubation. During incubation, retinal NAT 

activity in chicken embryos can already be observed by day 7 and 8. Embryonic retinae (NAT) 

activities on the 7th and 8th day of incubation are equally high in either light or dark incubated 

chicks suggesting that retinae melatonin enzyme activity is not controlled by light during this 

period (Espinar et al., 1994). The NAT and HIOMT enzymes are at their lowest activity on day 13, 

and the highest activity on day 21 of incubation (Espinar et al., 1994). The enzyme HIOMT, which 

is also responsible for synthesis of melatonin, exhibits higher activity from day 17, reaching its 

maximal level by day 21 of incubation (Espinar et al., 1994). These authors found melatonin 

hormone in chicken embryo retina on day 19 of incubation, but observed that the highest 

concentration of melatonin was present on day 21. The visual processes in chicken embryos 

becomes functional around the 18th day (Tong et al., 2013), which coincides to the time the 

enzymes responsible to the production of melatonin increases its activities. On the last two days of 

incubation, NAT enzyme and melatonin syntheses in the embryo retinae can be inhibited by light 

(Espinar et al., 1994). In summary, the synthesis of melatonin in the embryos’ retinae at the end of 

incubation is regulated by light and exposure of the embryos to light in the last two days of 

incubation decreased the retinae synthesis of melatonin (Espinar et al., 1994). 

 Impact of in-ovo lighting (wavelength) vs standard dark incubation 

According to Shafey et al. (2002) who measured light wavelength (ranging from 200 to 

1100 nm), absorption through non-pigmented (White Leghorn eggs) and pigmented eggshells 

(broilers), found that, in the pigmented shell, the lowest light absorption (99.93%) occurred under 

a 590<λ<630 nm and the highest (99.96%) under a 380≤λ<470 nm. The highest (99.91%) light 

absorption in non-pigmented eggs occurred under a light wavelength equal or lower than 380 nm 

and the lowest (99.85%) light absorption under a 630<λ<780 nm. The highest light absorption 

occurs in pigmented broiler eggs and at lower wavelengths. However, the light transmission is 

lower in brown shelled eggs at higher wavelengths, while for non-pigmented shells the light 

transmission is higher compared to brown shelled eggs but the light transmission in non-pigmented 

eggshells reduces at lower wavelengths (Shafey et al., 2002). These results show that less than 

0.15 % of light gets through the eggshell, and the percentage of light transmitted is eggshell 

pigmentation and light wavelength dependent. 
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2.3.1 Hatch traits 

2.3.1.1 Temperature  

Light exposure can affect the temperature of incubating eggs and the degree of effects is 

dependent on the length of exposure to the light (Rozenboim et al., 2004) and the distance of the 

light bulbs to the eggs (Gold and Kalb, 1976). Rozenboim et al. (2004) reported that the exposure 

of broiler eggs to green (560 nm, LED) light for 15 min increased the egg yolk temperature by 

0.01% within 1 min of exposure to the light. The effects of light on egg yolk temperature, however, 

can vary depending on the position and distance of the lamps in the incubator to the egg position 

and the source of light used (Gold and Kalb, 1976). The increment of heat on the yolk or air cell is 

related to the area of the eggshell surface that received the direct light. For example, when the lights 

were positioned parallel to the eggs, the increment of heat on the egg yolk was higher compared to 

when the light was directed towards the air cell (Gold and Kalb, 1976).  

The incandescent (140-350 lux) light has a greater impact on the increase in egg yolk and air sac 

temperature during incubation than warm white fluorescent (700-1100 lux) lamps (Gold and Kalb, 

1976). These authors reported that maintaining the fertile eggs at a minimum distance of 15 

centimetres (cm) from the light bulbs minimizes the heat effect on the yolk and air sac. However, 

Coleman et al. (1977) observed that for light to influence White Leghorn embryo development, the 

distance of the light source to the egg should not be over 12 cm from the top of the eggs, and the 

light source should be from cool white fluorescent lamps.  

2.3.1.2 Duration and pattern of incubation 

The pattern of light does not appear to have significant impacts on incubation. For example, 

the use of intermittent (INT) lighting with a 3 min L (Light): 3 min D (Dark) photoperiod under 

green light did not affect fertile turkey eggs incubation length in relation to those eggs incubated 

in a dark environment (Rozenboim et al., 2003). Extending the INT photoperiod length to a 15 min 

L: 15 min D still did not affect the incubation length of turkey eggs’ under green or white light 

incubation in comparison to dark incubation (Rozenboim et al., 2003). Exposure of broiler eggs to 

a 15 min L: 15 min D photoperiod under green light from day 5 to 21 of incubation also did not 

affect the incubation length compared to those eggs incubated in a dark environment (Rozenboim 

et al., 2004). But white (fluorescent, Biolux) light reduced the incubation length of broiler eggs 

when they were continuously photostimulated on the last week of incubation compared to exposure 
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of the fertile eggs to yellow, green, red, or blue colours, or dark during incubation (Hluchý et al., 

2012). 

Comparing monochromatic colours, broiler eggs under yellow light hatched earlier than the 

eggs incubated under green or red lighting, and the most lengthy incubation occurred for chicks 

incubated under blue light or without light (dark) (Hluchý et al., 2012). Additionally, the use of 

green (fluorescent) light for the first 18 days of broiler egg incubation reduced the incubation length 

compared to those eggs incubated under darkness (Shafey and Al-mohsen, 2002). Other poultry 

species were also affected by the lighting condition during incubation. Green lighting also reduced 

the incubation length of Japanese quail chicks in comparison to dark or blue lighting (Sabuncuoğlu 

et al., 2018). Quail eggs incubated in darkness had a shorter hatch window than eggs exposed to 

green and blue lighting (Sabuncuoğlu et al., 2018). However, Shutze et al. (1962) observed a 

reduction in incubation time for White Leghorn eggs when continuously photostimulated by white 

(incandescent) light throughout the incubation than eggs incubated under blue, yellow, red lighting, 

or without light.  

2.3.1.3 Spread of hatch 

The incubation length and hatching time are controlled by environmental (temperature, 

humidity), physiological, and behavioural mechanisms (Tong et al., 2013). The time needed from 

start to end of hatch is approximately 24 to 48 hours in a standard dark incubation (Løtvedt and 

Jensen, 2014). The mechanisms involved in determining the hatching time are related to 

vocalization synchrony, and the levels of thyroid and corticosterone hormones (Romanini et al., 

2013). The thyroid and adrenal gland are already functional in the chicken by the 7th day of 

incubation (De Groef et al., 2008). The exposure of broiler eggs to a monochromatic wavelength 

(continuous green light) during incubation did not affect the concentration of plasma thyroid 

hormones triiodothyronine (T3) and thyroxine (T4) on embryos during incubation (embryonic days 

15, 17 and 19) nor post-hatch (days 1,3,5,7,21,35, or 42) (Zhang et al., 2014). Sabuncuoğlu et al. 

(2018) reported a shorter hatch window for quail chicks hatched from a dark incubation than the 

chicks hatched from a green or blue lighting incubation. There are minimal information in the 

literature regarding in-ovo lighting and hormonal responses, and, to date, the author has no 

knowledge of  in-ovo lighting wavelengths studies regarding the impact of monochromatic or white 

light colours on the production of thyroid hormones, or the effects of hormonal changes on the 

spread of hatch of fertile eggs photostimulated by various wavelengths of light. 
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2.3.1.4 Embryo and chick mortality 

The exposure to in-ovo lighting appears to have varying impacts on embryonic mortality. 

As an example, the continuous use of white (incandescent) light to incubate White Leghorn egg 

incubation did not affect embryonic mortality on the first 4.5 days of incubation compared to those 

embryos incubated under dark (Lauber, 1975). In contrast, broiler embryos incubated under dim to 

blue or dim to red ((dim to blue/red technology have capabilities to shift the spectrums of light 

when dimmed (Once®, n/a) wavelengths (12L:12D) had a lower percentage of mortality at the 

early stage of incubation compared to embryos incubated in dark conditions (Archer, 2018). 

However, broiler embryonic mortality in the middle, at the end of incubation, and total mortality 

at hatch were not affected by exposure to 12L:12D dim to red or dim to blue (LED) lighting for the 

first 18 days of incubation (Archer, 2018). This author also had previously reported that using a 

red (LED) light under the same conditions mentioned above to incubate broiler and White Leghorn 

eggs resulted in no differences in mid and late embryo mortality when compared to embryos from 

dark incubation (Archer, 2015b). The use of a white (LED) light emitting high levels of red 

wavelength reduced White Leghorn, broiler and Pekin ducks’ embryos’ mortality at the early phase 

of incubation and decreased total embryo mortality of Leghorn and Pekin duck embryos at hatch 

(Archer et al., 2017).  

Higher mortality appears with the use of blue, or green (LED) lights. Sabuncuoğlu et al. 

(2018) observed that using blue (480 nm), or green (560 nm) (LED) lights, or no light continuously 

throughout incubation of Japanese quail fertile eggs resulted in higher mortality at the early stage 

for those incubated under blue light followed by embryos incubated in the dark. The lowest 

mortality among all treatments occurred under green light incubation (Sabuncuoğlu et al., 2018). 

But a decrease in mortality occurred at the end of incubation, when those quail eggs were exposed 

to green light or incubated under no light (dark incubation), while the embryos under blue lighting 

incubation had the lowest percentage of dead embryos (Sabuncuoğlu et al., 2018). However, the 

overall mortality at the end of hatch did not differ among the lighting treatments (Sabuncuoğlu et 

al., 2018).  

2.3.1.5 Hatchability 

Hatchability off eggs is affected by environmental and physiological factors, including bird 

genotype, breeder health, egg contamination, embryo developmental stage during oviposition, and 
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egg storage (Reijrink et al., 2008). The exposure of the eggs to light during incubation also affect 

hatchability and the level of impact is affected by light source, intensity, and wavelength. More 

recently, it was published that when combining light wavelengths, a white (LED) light with a high 

red wavelength output used on the first 18 days of incubation (12L:12D) resulted in an increased 

percentage of fertile White leghorn, broiler, and Pekin duck eggs hatched compared to the 

hatchability of their counterparts incubated in darkness (Archer et al., 2017). The use of only white 

(fluorescent) light during incubation of broiler eggs also increased the percentage of eggs hatched 

compared to eggs incubated in darkness (Hluchý et al., 2012; Archer, 2015b; Huth and Archer, 

2015) or red lighting environment (Archer, 2015b).  

In some cases, bird type has impacted results when using only one wavelength during 

incubation. Hatchability of layer eggs given red lighting (12L:12D), from day 0 to 18 of incubation 

increased compared to eggs from white light or dark incubation (Archer, 2015b). On the other 

hand, white light (12L:12D), from day 0 to 18 increases fertile broiler eggs hatchability in 

comparison to red light or dark incubation (Archer, 2015b).  

Exposure of broilers eggs during the first 18 days of incubation to ‘dim to red’ or ‘dim to blue’ 

light (12L:12D) also increased the percentage of eggs hatched compared to those eggs from dark 

incubation, however, blue and red lighting treatments did not differ in the percentage of hatched 

chicks (Archer, 2018). Those findings disagree with Copper (1972) where the author reported that 

the onset of exposure of eggs (turkey) to light affected hatchability. For example, when the eggs 

were incubated under dark and transferred to an hatcher under cool white (fluorescent) light 

(24L:0D) the hatchability of those eggs increased compared to eggs exposed to light during the 

incubation period and left without light during the hatching phase. However, Hluchý et al. (2012) 

observed that exposure of fertile leghorn eggs to cool white (fluorescent) light during the last week 

of incubation increased the percentage of hatched chicks compared to eggs exposed to yellow, 

green, red, or blue lighting or dark incubation.  

The use of green light from day 0 to 18 of broiler egg incubation increased the percentage 

of hatched chicks compared to incubation under dark (Shafey and Al-mohsen, 2002). However, 

green or blue lights did not affect hatchability of fertile quail eggs compared to hatchability of eggs 

from dark incubation (Sabuncuoğlu et al., 2018). Additionally, green (LED) light under an INT 

(Intermittent) lighting schedule (3 min L: 3 min D) used during incubation of fertile turkey eggs 

did not impact the percentage of hatched poults when compared to turkey eggs incubated in 
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darkness (Rozenboim et al., 2003). Even when the length of time that light is on under an INT 

lighting schedule is increased (15 min L:15 min D), fertile turkey eggs hatchability was not affected 

compared to eggs incubated in dark or white lighting (Rozenboim et al., 2003). Exposure of fertile 

broiler eggs to the green (LED) light (15 min L:15 min D) from day 5 to 21 of incubation also did 

not affect hatchability when compared to broiler eggs incubated under dark conditions (Rozenboim 

et al., 2004). This finding suggests that the combination of factors such as composition of light and 

onset of exposure of the eggs to light might play an important role on the level of in-ovo lighting 

effect on the hatchability. In addition, the intensity of light can also affect hatchability, as high 

(1430-2080 lux) light intensity decreases hatchability compared to lower (900-1380 lux) light 

intensities (Shafey et al., 2005). 

2.3.2 Chick quality 

2.3.2.1 Navel quality 

The condition of the chick navel at hatch is critical. Broiler chicks that hatch with unhealed 

navels can impact productivity by reduced final body weight and increased mortality over the 

production cycle (Fasenko et al., 2003). Additionally, increasing automation used in hatcheries can 

result in a higher difficulty in identifying chicks with unhealed navels (Fasenko et al., 2003). 

Therefore, it is very important that all chicks hatch with a well-healed navel to decrease 

susceptibility to diseases and improve efficiency in all stages of production. In reviewing the 

literature, some studies suggest an improvement in navel healing with the use of specific light 

wavelengths during poultry eggs incubation. The exposure of fertile broiler eggs to white light 

(12L:12D) or exposure of leghorn eggs to white or red (LED) light (12L:12D) during the first 18 

days of incubation, increased the percentage of hatched chicks with healed navels over chicks from 

0L:24D incubation (Archer, 2015b). White Leghorns tested in the same study, reacted similarly, 

but photostimulation under white light resulted in the greatest percentage of chicks with healed 

navels as compared to red light photostimulation, or dark incubation (Archer, 2015b). However, 

exposure of broiler embryos to white or red wavelength under a 12L:12D photoperiod increased 

the percentage of chicks with healed navels at hatch compared to chicks from dark incubation 

(Archer, 2015b). No differences between light wavelengths for broilers were observed, indicating 

a different response by bird type. The exposure of the eggs to dim to red and dim to blue (LED) 

lights from day 0 to 18 during incubation under a 12L:12D photoperiod also appeared to improve 
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navel healing over chicks hatched from a 0L:24D incubation (Archer, 2018). The better healing in 

navels may result from the increased bird development due to the exposure to in-ovo lighting, as 

the early hatched chicks reached maturation earlier.  

2.3.2.2 Body weight 

Reports on the effect of light wavelength during incubation on embryo/chick weight are 

contradictory. Some results showed that exposure to specific wavelength of light can affect 

chick/embryo weight. The photostimulation of White Leghorn embryos during incubation by white 

light (incandescent) increased embryo weight by day 4.5 of incubation compared to embryos 

incubated under dark (Lauber, 1975). The use of green light during incubation also resulted in an 

increased percentage of breast muscle to body weight from day 9 to 21 in broiler embryos compared 

to embryos incubated under dark (Rozenboim et al., 2004). The use of red (LED) (12L:12D) light 

from day 0 to 18 of incubation reduced White Leghorn chicks’ weight at hatch compared to chicks 

incubated under white lighting or dark incubation (Archer, 2015b). The exposure of White Leghorn 

embryos continuously to green (566 nm) or blue-violet (400 nm) lighting during incubation 

resulted in higher embryo weight on the 4th day of incubation compared to embryos incubated 

under the wavelengths of 433 nm or 500 nm (Lauber, 1975). Continuous photostimulation of 

broiler embryos with green (fluorescent) light from set (day 0) to day 18 of incubation stimulated 

weight gain in embryo at 11, 13 and 15 days of age in contrast to embryos from dark incubation, 

however, at hatch broiler chicks from green lighting incubation presented a lower absolute body 

weight and relative body weight to egg weight (Shafey and Al-mohsen, 2002). Green (560nm, 

LED) light (15 min L: 15 min D) exposure from day 5 to 21 of incubation increased broiler embryo 

weight at days 14, 15, 17, and 20 compared to those embryos incubated under a dark environment 

(Rozenboim et al., 2004). However, at hatch there were no differences in male chick weight from 

neither green or dark incubation (Rozenboim et al., 2004). Huth and Archer (2015b) found no 

difference in chick weight at hatch for broiler eggs incubated for 21 days under white (LED) light 

or incubated under daknesss. Additionally, an in-ovo photostimulation from 0 to 18 days through 

red or white (LED) lighting (12L:12D) had no affect on broiler chick weight at hatch compared to 

dark incubated eggs (Archer, 2015b). Similarly, exposure of White Leghorn or broiler eggs to white 

light with high red wavelength output for 12 hours per day from 0 to 18 day of incubation had no 

affect on chick weight at hatch (Archer et al., 2017). However, Pekin duck eggs’ incubated under 

the same variables, the ducklings hatched with lower body weight than ducklings hatched from a 
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dark environment (Archer et al., 2017). The use of continuous blue or green lighting, as compared 

to no lighting during incubation of Japanese quail eggs did not affect chick weight at hatch 

(Sabuncuoğlu et al., 2018). Suggesting that bird species may be important. The continuous 

photostimulation of various sized broiler fertile eggs from flocks of different ages with cool white 

(fluorescent) light for the first 18 days of incubation did not affect chick weight at hatch compared 

to chicks from eggs incubated in complete darkness (Zakaria, 1989). A photostimulation using dim 

to red or dim to blue (LED, 12L:12D) lighting from day 0 to 18 of incubation also did not affect 

broiler chick weight at hatch compared to dark incubation (Archer, 2018). Most of the literature 

reported no effects of light on chick weight at hatch with the exception of a few contrasting results 

showing increased chick weight under white or green lighting and reduced chick weight at hatch 

when exposed to red light. These results appear to be species-specific. The mechanisms behind the 

impact of light on chick weight is not clear. However, the increase in body weight might result 

from the increase in multiplication and growth of myofiber and myoblast cells due to light 

stimulation (Halevy et al., 2005).  

2.3.2.3 Chick length 

Chick length at hatch has been suggested as a predictor for meat yield potential at slaughter 

age (Molenaar et al., 2008; Petek et al., 2010). Willemsen et al. (2008) reported that chick length 

and weight at hatch were correlated regardless of breeder flock. However, at slaughter age 

Willemsen et al. (2008) did not note any correlation between chick length at hatch and final body 

weight in broilers at 42 days of age.  

The use of different lighting during incubation does not seem to affect the length of the 

chick at hatch as observed from studies of different wavelengths of light and the different onset of 

exposure of the embryo to the light wavelengths (Rozenboim et al., 2004; Archer, 2015b). For 

example, the exposure of fertile broiler eggs to green (LED) light (15 min L:15 min D) from day 

5 to 21 did not affect chick length at hatch compared to chicks derived from dark incubation 

(Rozenboim et al., 2004). Not even exposure of fertile broiler eggs to white or red (LED) lighting 

from day 0 to 18 of incubation affected the length of chicks at hatch when compared to chicks from 

dark incubation (Archer, 2015b). Results from in-ovo wavelength research show that light 

wavelength does not influence the developmental length of the embryo.  
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2.3.2.4 Organ and GIT absolute and relative weights 

Organs smaller than normal in proportion to the size of the body decreases the welfare of 

the chicken and compromises production efficiency. For example, a proportionally smaller heart 

relative to body size may not supply enough blood and oxygen to the body, increasing the 

susceptibility of the chicken to diseases, and increasing bird mortality (Molenaar et al., 2011). 

Intestine size can affect metabolism, retention and excretion of nutrients affecting feed efficiency 

(Metzler-Zebeli et al., 2018). The liver has a critical function in regulation of the metabolism of 

proteins (Zheng et al., 2016), lipids (Nguyen et al., 2008), and carbohydrates (Zheng et al., 2016). 

Therefore, a liver size proportional to the body size is essential to maintain normal metabolic 

demands of the organism. In-ovo lighting does not appear to affect these parameters, as white or 

green (LED) lighting photostimulation did not affect broilers relative heart and liver weights to 

body weight at days 15, 17 or 19 of incubation or past incubation at days 1, 3, and 6 compared to 

chicks from dark incubation (Zhang et al., 2016). Additionally, photostimulation by green (560 nm) 

or blue (480 nm, LED) lighting during the entire incubation of Japanese quail eggs did not affect 

the absolute and relative weights to slaughter weights of liver, gizzard, heart, wings, legs, and 

breasts at 56 days of age post-hatch compared to quails hatched from dark systems (Sabuncuoğlu 

et al., 2018). The impact of lighting wavelength on the embryo during development should be 

further studied as the current literature is scarce. Therefore, solid conclusions are difficult to be 

made regarding the potential benefits or harms of light wavelength on organ development and its 

impact on the birds’ post-hatch.  

2.3.2.5 Growth post hatch 

Incubation conditions can affect hatchling growth beyond hatch (Molenaar et al., 2008) 

therefore, it is crucial to provide the best environment during incubation to ensure healthy day-old 

chicks to maximize production efficiency post-hatch. The use of different lighting wavelengths 

during incubation has shown positive effects regarding the development of in-ovo lighting on birds’ 

post-hatch. Rozenboim et al. (2003) exposed fertile turkey eggs to a green (560 nm, LED) light 

under an INT (3 min L: 3 min D) photoperiod during the entire incubation, they observed an 

increase in body weight gain from the age of 28 to 59 days post-hatch compared to white turkeys 

hatched from dark incubation. Furthermore, when exposure of the fertile turkey eggs to light 

increased to a 15 min L:15 min D (INT) photoperiod, the hatched poults from green (LED) light 



 

16 

 

incubation increased weight gain from day 28 until day 79 in comparison to those turkey poults 

from dark or white lighting incubation independent of gender (Rozenboim et al., 2003). 

The incubation condition also seems to affect the quality of the carcass of turkeys, and in 

this case gender may be important. Male turkeys hatched from a dark incubation showed a decrease 

in absolute breast muscle weight in relation to light incubated birds. When considering the 

proportion of breast muscle weight relative to body weight in males, the white turkeys from green, 

white, or dark incubations resulted in no differences in relative breast muscle weight to body weight 

(Rozenboim et al., 2003). The female turkeys from green (560 nm) lighting incubation showed an 

increase in absolute breast muscle weight and relative breast muscle weight to body weight in 

comparison to those breast traits from the female turkey’s hatched from a white lighting or dark 

incubation (Rozenboim et al., 2003).  

Bird type may also result in differences in reaction to in-ovo lighting. The photostimulation 

of broiler eggs by green (LED, 560 nm) light under a 15 min L: 15 min D (INT) photoperiod from 

day 5 to 21 during incubation showed higher body weight at one-week post-hatch than those 

broilers hatched from dark incubation (Rozenboim et al., 2004). On the other hand, a continuous 

photostimulation using blue or green light during incubation of Japanese quails, did not affect the 

quails body weight from the age of 7 to 42 days post-hatch in comparison to quails from dark 

incubation (Sabuncuoğlu et al., 2018).  

The stimulus in the growth of chicks incubated under specific lighting wavelengths might 

be related to hormonal changes stimulated by light (Zhang et al., 2014; Dishon et al., 2017). These 

authors observed stimulation of growth hormone (GH), insulin-like growth factor 1 (IGF-1) (Zhang 

et al., 2014), and IGF-1 gene expression (Dishon et al., 2017) when embryos were exposed to green 

lighting during incubation. Additionally, an additive effect might exist between in-ovo lighting and 

brood lighting wavelength for broiler chicks. For example, increased body weight throughout the 

growth period was observed for male broilers photostimulated by green (560 nm, LED) lighting  

(INT schedule of 15 min L:15 min) from day 5 to 21 of incubation, and brooded post-hatch under 

a white lighting schedule in comparison to those broilers hatched from dark incubation and brooded 

under a white lighting environment post-hatch, or hatched from green in-ovo lighting and brooded 

under a green lighting environment (Rozenboim et al., 2004). However, for females the increase in 

body weight was only observed on the last three weeks of the grow out period when they hatched 

from green in-ovo lighting and were brooded under white lighting (Rozenboim et al., 2004).    
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2.3.3 Health and welfare 

Composite asymmetry and immunity 

The impact of light wavelength during incubation on composite asymmetry and immunity 

is still limited. However, results reported by Archer (2017) showed that white or red (630 nm) light 

wavelength used during incubation can decrease composite asymmetry and increase humoral 

immunity response in broiler chicks at hatch compared to broiler chicks incubated under green 

(520 nm) light or dark incubation. 

2.3.4 Behaviour  

The use of lighting during incubation can impact functional lateralization of the brain 

causing changes in chicks’ behaviour post-hatch (Rogers and Krebs, 1996; Riedstra and Groothuis, 

2004). As a response to the exposure of the right eye to the light, which might affect behaviour 

post-hatch, chicks hatched from an in-ovo lighting incubation increased the use of the right eye 

over the left eye to investigate the surrounding and increased cognitive behaviour performance 

(Rogers and Krebs, 1996). However, this behavioural lateralization might come with a cost, as 

White Leghorn eggs exposed to light during incubation increased the early pecking behaviour post-

hatch in relation to chicks that were not exposed to light during incubation (Riedstra and Groothuis, 

2004). This increase in early pecking behaviour in chicks exposed to light during incubation 

occurred due to the incapacity of the chicks in recognizing their counterparts, choosing to peck at 

any bird in the cage while chicks that were not exposed to light during incubation pecked more at 

foreigner birds (Riedstra and Groothuis, 2004). The stimulus in functional lateralization of the brain 

is light wavelength dependent, and chicks exposed to white light showed higher lateralization than 

chicks exposed to green or red light (Rogers and Krebs, 1996). In addition to behaviour expression, 

birds can communicate via expression of a wide range of sounds (territoriality, fear etc.). In-ovo 

lighting wavelength affected quail response to threats, and these changes included communication. 

Japanese quails that hatched from green (560 nm, LED) lighting incubation reacted differently to 

a novel field challenge compared to those quails hatched from a blue (480 nm, LED) lighting or 

dark incubation (Sabuncuoğlu et al., 2018). Quails hatched from green (560 nm, LED) lighting 

showed higher vocalization in an open field test at the ages of 21 and 42 days of age than quails 

hatched from dark incubation, and quails hatched from blue lighting were intermediate 

(Sabuncuoğlu et al., 2018). The green or blue lighting incubation, however, did not affect the time 
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the birds spent in tonic immobility or a frozen state (related to fear) (Sabuncuoğlu et al., 2018). 

The time to produce the first noise, the time for the first movement, or the time to enter a novel 

space in an open field test was also not affected compared to those quails from dark incubation 

(Sabuncuoğlu et al., 2018). These confounding results make it difficult to conclude if those 

Japanese quails incubated under different in-ovo lighting wavelengths were more anxious or fearful 

than dark incubated quails. Additionally, Japanese quail chicks hatched from blue (480 nm) 

lighting incubation showed higher fearful behaviours (jumping activity and excretes elimination) 

when in a novel environment than those quails from green light incubation (Sabuncuoğlu et al., 

2018).   

 Impact of in-ovo lighting incubation (photoperiod) vs standard dark 

incubation 

The concept of using light during incubation has not been widely researched but has shown 

some promising results. One of the very early studies reported advanced development of the 

embryo as early as the first 10 hours of incubation in relation to embryos that were not exposed to 

light (Siegel et al., 1969). Other benefits that have been reported include stimulation of the 

multiplication of breast muscle cells, increase embryo weight, and reduction in incubation time 

(Shutze et al.,1962; Isakson et al., 1970; Cooper et al., 2011). The impact of a range of photoperiods 

during incubation of poultry, however, has not been widely studied, and the available literature has 

given limited conclusions.  

2.4.1 Hatch traits 

2.4.1.1 Temperature 

 A large increase or decrease of the standard temperature used in commercial incubation 

(37.8 °C) could result in increased embryo mortality and a decline in the quality of the hatched 

chicks (Lourens et al., 2005). The research discussing the increment of heat caused by the addition 

of light during incubation of fertile eggs is contradictory, and there are very few studies reporting 

the temperature among the eggs or the egg yolk temperature during incubation as impacted by light 

photoperiod. Previous research indicated that exposure of broiler eggs to green (560 nm, LED) 

light for over 15 min increased the egg yolk temperature (Rozenboim et al., 2003). Fairchild and 

Christensen (2000), however, did not observe any effect of incandescent light under a 12L:12D 
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photoperiod on the incubator temperature during incubation of fertile turkey eggs compared to an 

incubation under 0L:24D. Both studies cited above showed contradictions, although in each 

experiment a different light source was used. An incandescent and fluorescent light (Gold and 

Kalb, 1976), and even LED light (Rozenboim et al., 2003) have been reported as potentially able 

to emit some heat, although LED does not produce the same level of heat as other light systems. In 

their methodology, the authors (Fairchild and Christensen, 2000; Rozenboim et al., 2003) did not 

mention the distance between the light lamps and the eggs. As a previous study observed, a 

minimum distance of 15 cm from the egg to the light bulb is essential to avoid heating the egg yolk 

when using either incandescent or fluorescent bulbs (Gold and Kalb, 1976). To date, there are no 

reports of what should be the minimum distance of the egg to LED lamps during in-ovo lighting to 

minimize heat effects on the embryo during incubation.  

2.4.1.2 Incubation time 

Photoperiod used in-ovo may impact the time required for hatching to occur. Evidence in 

the literature suggested that use of an in-ovo photoperiod accelerated embryo development and 

shortened incubation time of fertile eggs exposed to light during incubation and hatching period 

compared to those eggs incubated and hatched under dark (Siegel et al., 1969; Copper et al., 2011). 

The exposure of the embryos to light on the 1st and 2nd week of incubation, or on the 1st and on the 

3rd week of incubation accelerated embryo maturation and reduced incubation time (Siegel et al., 

1969). This suggests that the exposure of the embryos to light on the first week of incubation is 

crucial to acceleration of the embryo development (Siegel et al., 1969). However, the embryos 

exposed to light on 3rd, 10th , and 15th day, or 5th, 12th , and 19th day for a 5 minutes/hour lighting 

cycle developed faster and reduced incubation time. But when the embryos were exposed to light 

on 1st, 8th , and 15th day of incubation there were no reduction in incubation time (Adam and 

Diamond, 1971). These data suggested a timing dependency of the embryo developmental stage 

and light exposure to speed embryo maturation.   

The incubation photoperiod may also impact the speed of hatch. Cooper et al. (2011) 

studied incubation of House Sparrow (Passer domesticus) eggs and noted a decrease in 10% of 

incubation time when they were given an 18L:6D photoperiod length over a 12L:12D using 

fluorescent UVB lighting. A 12L:12D photoperiod under incandescent light, however, reduced 

incubation time for turkey poults in relation to incubation under 0L:24D (Fairchild and Christensen, 

2000). Walter and Voilte (1972) reported that a photoperiod of 24L:0D under incandescent light 
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reduced broiler eggs incubation time over an incubation under a 12L:12D or 0L:24D photoperiod. 

This evidence suggested that photoperiod length can reduce incubation period in birds (Siegel et 

al., 1969; Walter and Voilte, 1972; Fairchild and Christensen, 2000; Cooper et al., 2011). The 

acceleration in development stimulated by light might be related to the increase in metabolism as 

the metabolism of the embryo during an in-ovo lighting incubation increases during the photophase 

compared to the scotophase (Cooper et al., 2011). Additionally, the literature suggests that light 

stimulates the divisions of cells that gives formation to body structures (Siegel et al., 1969) and 

proliferation of muscle cells (Halevy et al., 2006). Özkan et al. (2012a), however, did not find 

differences for incubation time when incubating broiler eggs under a 16L:8D photoperiod 

illuminated by white (fluorescent) light for 21 days or exposing the eggs to light only at the last 

week of incubation in comparison to incubation of embryos under dark. In general, most of the 

literature compares only two photoperiods, so the determination of an optimal in-ovo photoperiod 

is difficult based on published research. 

2.4.1.3 Spread of hatch 

No information was found in the literature up to this date regarding the effects of in-ovo 

photoperiod on the spread of hatch.  

2.4.1.4 Embryo and chick Mortality 

Embryo mortality during incubation could be affected by several factors such as egg storage 

time, hen age, hen health, eggshell conductance, and factors affecting incubator environment such 

as rotation of the eggs, temperature, humidity, and ventilation. Another potential could be 

photostimulation length, as daylength impacts mortality of live birds (Schwean-Lardner et al., 

2013; Vermette et al., 2016a). The currently available data to date does not support this, and in-

ovo lighting photoperiod length does not seem to impact embryo mortality (Archer et al., 2009; 

Özkan et al., 2012a; Archer and Mench, 2014b; Archer, 2015a, 2015b; Huth and Archer, 2015b). 

For example, a 16L:8D photoperiod illuminated by cool fluorescent light for 21 days or only during 

the last week of incubation of broiler embryos did not affect embryo mortality in relation to 

embryos incubated under a 0L:24D photoperiod (Özkan et al., 2012a). A photostimulation 

provided by fluorescent light under a photoperiod of 24L:0D or 12L:12D during incubation also 

did not affect broiler chick mortality compared to broiler chicks from 0L:24D incubation (Archer 

et al., 2009). The photoperiods 1L:23D, 6L:18D, or 12L:12D illuminated by white (fluorescent) 
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light used during 21 days of incubation of broiler egg did not affect broiler chicks’ mortality 

(Archer and Mench, 2014b). Additionally, a 12L:12D photoperiod under white (LED) light did not 

affect early, mid, and late White Leghorn and broilers embryos’ mortality compared to mortality 

in those embryos from 0L:24D incubation (Huth and Archer, 2015b). 

2.4.1.5 Hatchability 

Hatchability is one of the most critical parameters of fertile eggs’ incubation and several 

studies reported, however, that in-ovo lighting photoperiod length does not affect the percentage 

of chicks’ hatch. For example, photoperiods 24L:0D or 12L:12D under incandescent light did not 

affect the hatchability of set and fertile broiler eggs compared to a 0L:24D incubation (Walter and 

Voitle, 1972; Archer et al., 2009). Additionally, a 12L:12D photoperiod used during incubation of 

turkeys eggs did not affect the percentage of hatched poults when compared to the percentage of 

poults from a 0L:24D incubation (Fairchild and Christensen, 2000). Not even White Leghorn eggs 

under a 12L:12D in-ovo lighting photoperiod illuminated by white (LED) light was effective to 

change the percentage of chicks hatched in relation to a 0L:24D photoperiod (Huth and Archer, 

2015b). The timing of the provision of light has also been considered in some studies. But the 

majority of studies still showed no effects of in-ovo photoperiod on hatchability of birds. For 

example, the use of light under a 16L:8D photoperiod in different stages of incubation either from 

day 14 to 21 or from day 0 to 21 did not affect hatchability of broiler chicks (Özkan et al., 2012a).  

Archer and Mench (2014b) observed that broiler eggs incubated under a 12L:12D light photoperiod 

provided from day 0 to 21, 7 to 21, or day 14 to 21 of incubation or incubated under a 1L:23D, or 

6L:18D photoperiod had no effect on hatchability when compared to the percentage of hatched 

broiler chicks from a 0L:24D incubation. Adam and Diamond (1971), however, found that the 

addition of 5 minutes of light per hour during embryogeneses at specific days such as 3rd, 10th, and 

17th day, or a 5 minutes exposure to light per hour on days 5, 12 and 19 of incubation improved 

hatchability of the eggs. These authors also reported that exposure of the eggs to light on days 1, 

8, and day 15 of incubation was not enough to impact the eggs hatchability. The authors concluded 

that embryos might only be stimulated by light after the development of the visual functions, which 

occur after the 17th day of incubation.  
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2.4.2 Chick quality  

2.4.2.1 Navel healing 

The in-ovo lighting photoperiod length could influence health parameters of chicks. This influence 

on health parameters could improve navel condition at hatch. As an example, a 12L:12D (white 

light) photoperiod during the entire incubation of White Leghorn fertile eggs, resulted in a tendency 

for a lower percentage of hatchlings with unhealed navel at hatch compared to hatchings from 

0L:24D incubation (Huth and Archer, 2015b). The use of a 12L:12D photoperiod under white light 

decreased the percentage of White Leghorn chicks hatched with unhealed navels in comparison to 

the hatchlings incubated under a 12L:12D photoperiod under red light, and hatchlings incubated 

under 0L:24D photoperiod (Archer, 2015b). Additionally, broiler chicks showed a higher 

percentage of navel healed when incubated under a 12L:12D photoperiod photostimulated by either 

white or red light in comparison to hatchlings from a 0L:24D incubation (Archer, 2015b). A 

photoperiod of 12L:12D under white light with high red wavelength output also decreased 

unhealed navels in broilers and White Leghorns at hatch in relation to those chicks from 0L:24D 

incubation (Archer et al., 2017). The authors, however, reported that the same effects were not 

observed in ducklings incubated under the same conditions as mentioned for broilers and White 

Leghorns. In addition, a study by Walter and Voitle (1972) found that exposure of broiler embryos 

during the entire incubation process to a 12L:12D or a 24L:0D photoperiod illuminated by an 

incandescent bulb did not affect navel quality at hatch when compared to a 0L:24D incubation 

(Walter and Voitle, 1972).  

2.4.2.2 Chick weight 

The timing of exposure of the fertile eggs to light during incubation appears to be an 

essential aspect of embryonic development. The exposure of broiler eggs to cool white 

(fluorescent) light under a 16L:8D photoperiod from day 0 to 21 of incubation increased the relative 

embryo weight to egg weight (Özkan et al., 2012a). A 24L:0D or a 12L:12D photoperiod 

illuminated by incandescent light also increased broiler embryos weight on the 5th day of 

incubation, further the broiler embryos incubated under a 24L:0D photoperiod had a higher body 

weight on days 12 and 18 of incubation than broiler embryos from a 0L:24D photoperiod (Walter 

and Voitle,1972). However, embryos under a 12L:12D photoperiod at the age of 12 and 18 days 

did not differ in weight from either the embryos incubated under 0L:24D or 24L:0D photoperiod 
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(Walter and Voitle,1972). Although these authors observed an effect of in-ovo lighting photoperiod 

on embryo weight during incubation, chicks hatched from a 24L:0D or 12L:12D photoperiod did 

not differ in body weight from those chicks incubated under a 0L:24D photoperiod. Rozenboim et 

al. (2004) observed the same pattern of heavier embryo weight during incubation. In their study 

the authors incubated broiler eggs under green (560 nm, LED) light on a 15 min L:15 min D (INT) 

photoperiod from day 5 to 21 of incubation. Their results showed that the embryos had a higher 

relative body weight to egg weight compared to embryos incubated in the dark. The mechanisms 

regarding the acceleration of embryonic development and increased body weight are still not very 

clear. However, these results showed increased embryo weight, which might be a response from 

the increased plasma growth hormone found in embryos from the age 14 to 18 days of incubation 

(Dishon et al., 2017). Growth hormone has been linked to an increased deposition of fat in young 

broilers (Moellers and Cogburn, 1995). It appears, however, that the chicks’ absolute body weight 

at hatch does not show the same effects of increased body weight as observed on embryos in 

response to a photoperiod length stimulation (Rozenboim et al.,2004; Özkan et al., 2012a). As an 

example, turkey poults weight at hatch was not affected by a 12L:12D in-ovo photoperiod 

photostimulated by an incandescent light compared to those poults incubated under a 0L:24 

photoperiod (Fairchild and Christensen, 2000). These findings are supported by Huth and Archer 

(2015b) and Archer’s (2015a) findings, whom observed that a 12L:12D photoperiod illuminated 

by white (LED) light from day 0 to 18 or from day 0 to 21 of incubation did not influence chick 

weight at hatch.  

2.4.2.3 Chick length 

Light during incubation has the potential to stimulate bone development, as it was reported 

that broiler chickens incubated under a 12L:12D photoperiod illuminated by cool white (LED) light 

had increased femur and tibia length in contrast to the femur length of broilers incubated under 

0L:24D or 24L:0D photoperiods (van der Pol, nd). Additionally, bone mineral characteristics might 

be affected by in-ovo photoperiod with a carry-over effect lasting up to the 35 days of age in 

broilers, as those chicken hatched from a 24L:0D photoperiod incubation showed a higher mineral 

density on the femurs at 35 days of age compared to those femurs of broilers hatched from a 0L:24D 

incubation (van der Pol et al., 2017). Those broiler femurs hatched from a 16L:8D photoperiod, 

however, did not differ from the femurs of birds hatched from a 24L:0D, nor a 0L:24D incubation, 

but the broilers hatched from a 16L:8D showed a higher mineral density in the tibia compared to 
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the tibias of broilers hatched from 24L:0D or 0L:24D photoperiod (van der Pol et al., 2017). 

However, at the age of 35 days, broilers hatched from a 24L:0D, 16L:8D, or a 0L:24D incubation 

program neither differed in femur nor tibia length (van der Pol et al., 2017). 

2.4.2.4 Organ absolute and relative weights 

Results from the literature showed that a 12L:12D in-ovo photoperiod had no impact on 

organ development, as turkey poults’ absolute liver and heart weights did not differ from the organs 

absolute weight of poults hatched from a 0L:24D incubation (Fairchild and Christensen, 2000). A 

16L:8D photoperiod under white (fluorescent) light also did not affect broiler embryos’ relative 

liver and heart weights at days 13 and 18 of incubation in comparison to 0L:24D photoperiod 

(Özkan et al., 2012a). The exposure of broiler embryos to an intermittent photoperiod (15 min L:15 

min D) under green light throughout the incubation was also innefective in affecting the embryos 

absolute liver weights on days 10 to 20 of incubation compared to a 0L:24D photoperiod (Dishon 

et al., 2017). 

2.4.2.5 Growth post-hatch 

The use of different photoperiod lengths during incubation does not appear to affect growth 

post-hatch (Walter and Voitle, 1972; Archer et al., 2009). Commercial fertile broiler eggs incubated 

under a 24L:0D or a 12L:12D photoperiod throughout incubation with lighting provided by an 

incandescent bulb had similar body weights at 4 and 8-weeks post-hatch compared to broiler chick 

weights from a control 0L:24D incubation (Walter and Voitle, 1972). Additionally, incubation of 

fertile broiler eggs under a 0L:24D, 12L:12D, or a 24L:0D (fluorescent light) photoperiod did not 

affect chicks feed consumption, growth, and gain to feed over 42 days of the growth period post-

hatch when those birds were reared under a 12L:12D photoperiod (Archer et al., 2009). A 16L:8D 

or 24L:0D photoperiod, provided by a cool white (LED) light, or a 0L:24D incubation did not 

impact broilers’ body weight from day 7 to 35 post-hatch, when reared under a similar or a 

mismatched incubation photoperiod indicating no interactions between in-ovo lighting photoperiod 

and post-hatch brood photoperiod (van der Pol et al., 2017). If not considering post-hatch 

photoperiod, however, at week 4, broilers hatched from a 24L:0D incubation were heavier than 

broilers hatched from 16L:0D or 0L:24D incubation (van der Pol et al., 2017). Not all research is 

consistent in these findings, however. Despite no effects of photoperiod during incubation on 
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growth post-hatch, an interaction of in-ovo photoperiod and rearing photoperiod have been 

suggested in the literature.  

Özkan et al. (2012b) observed that broilers hatched from a 16L:8D photoperiod incubation 

photostimulated from day 0 to 21 or day 14 to 21 by cool white (fluorescent) light , showed higher 

body weight at 35 days post-hatch when reared under a similar photoperiod as the one used during 

incubation compared to broilers reared under a mismatched lighting schedule such as incubated 

under dark and raised under 16L:8D photoperiod. However, when these chicks were reared under 

1L:23D photoperiod post-hatch, the body weight gain from hatch to 35 days did not differ 

regardless of incubation treatment. It is not clear how and why a photoperiod during incubation 

would affect the development of the broilers reared under a matched or mismatched photoperiod 

post-hatch. But behavioural change could be a factor as photoperiod during incubation can change 

early feeding activity of broilers post-hatch (Archer et al., 2009).  

2.4.3 Health and welfare 

2.4.3.1 Heterophil to lymphocyte ratio 

Lighting photoperiod can increase the chicken immune system response through activation 

of lymphocyte B and T cells from lymphoid organs (Kliger et al., 2000; Abbas et al., 2008). The 

relation between photoperiod and immunity is linked to melatonin hormone regulation 

(Markowska et al., 2017). For example, the photoperiod impact on the immune system was 

observed in broilers hatched from a 12L:12D photoperiod incubation program, with lower levels 

of stress expressed, monitored via reduction in corticosterone levels, and a decrease in the 

heterophil to lymphocyte (H:L) ratio tested before and post crating the broilers and compared to 

broilers hatched from continuous dark incubation (Archer et al., 2009; Archer and Mench, 2013, 

2014b). The ratio of H:L is a good indicator of bird’ stress (Gross and Siegel, 1983) as the H:L 

ratio can increase due to an increase in the corticosterone hormones circulating in the bloodstream 

(Gross and Siegel, 1983; Scanes, 2016).  

Further evidence of an improvement in stress resilience as impacted by in-ovo lighting was 

reported by Özkan et al. (2012a). These authors observed a lower concentration of 

malondialdehyde (an organic by-product derived from lipid peroxidation) in the chicken brain 

tissues, indicating a decrease in oxidative stress on chickens incubated under a 16L:8D compared 

to chicks from dark incubation. The oxidative stress can occur when the amount of toxic and 
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reactive substances accumulated in the body is higher than the body`s capacity to release it 

(Halliwell and Whiteman, 2004) which can lead to a decrease in growth, production and meat 

quality (Fellenber and Speisky, 2006).  

2.4.3.2 Composite asymmetry 

Morphological asymmetry can also be indicative of stress during development. Broiler 

chickens hatched from in-ovo lighting 12L:12D photoperiod incubation showed lower levels of 

physical asymmetry than broilers incubated under a 0L:24D photoperiod (Bradley et al., 1994; 

Huth and Archer, 2015b). These results could indicate that incubation of fertile eggs under lighting 

might improve the environment for the embryo during incubation, consequently increasing embryo 

welfare. Özkan et al. (2012a), however, did not find any differences for physical body asymmetry 

resulting from the use of a 16L: 8D photoperiod when eggs were exposed to light either from day 

0 to 21 or day 14 to 21 of incubation compared to physical body asymmetry in broilers from 0L:24D 

incubation. Additionally, the exposure of broiler embryos to a 12L:12D photoperiod under cool 

white (LED) light from day 0 to 18 or day 0 to 21 of incubation did not affect chicken physical 

asymmetry at 45 days of age post-hatch in relation to hatchlings from 0L:24D incubation (Archer, 

2015a). 

2.4.4 Behaviour 

Broiler chicks hatched from an in-ovo lighting incubation (12L:12D photoperiod) showed 

lower fear response at 35 and 42 days of age, when measured through an inversion and tonic 

immobility test compared to broiler chicks hatched from in-ovo lighting under a 24L:0D, 6L:18D, 

1L:23D, or a 0L:24D photoperiod incubation (Archer and Mench, 2017). This result indicates that 

a longer photoperiod in addition to a dark period are needed to impact behaviour, which might be 

a response to corticosterone hormone level changes due to the length of exposure to light and dark. 

For example, Özkan et al. (2012a) observed a decrease in corticosterone levels at hatch in broiler 

chicks incubated for 21 days under a 16L:8D photoperiod compared to incubation under a 0L:24D, 

or a 16L:8D (exposure to light from day 14 to 21) photoperiod.  

 Diurnal rhythm 

A diurnal rhythm is a synchronized circadian rhythm that follows a day/night pattern, 

(Csernus and Mess, 2004a). Diurnal rhythms are triggered by factors including photoperiod length 
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(Schwean-Lardner et al., 2014), light wavelength (Di Rosa et al., 2015), social interaction 

(Mistlberger and Skene, 2004), and temperature (Kadono et al., 1981). A diurnal rhythm can affect 

syntheses of hormones such as growth hormone, corticosterone, and melatonin (Karatsoreos et al., 

2011; Kronfeld-Schor et al., 2013). Regulate body temperature (Kadono et al., 1981), behaviour 

(Fonken et al., 2013), metabolic, and neural functions (Karatsoreos et al., 2011; Fonken et al., 

2013). 

The pineal gland functions as a biological pacemaker that controls the diurnal rhythms in 

chickens (Bailey et al., 2003; Piesiewicz et al., 2012). The synthesis of the melatonin hormone in 

the pineal gland is controlled primarily by photoperiod length (Zawilska et al., 2006). During 

incubation, the effects of photoperiod length on melatonin synthesis rhythm are already present at 

pipping and hatching in broiler embryos incubated under 16L:8D photoperiod (cool white 

fluorescent light) from day 0 to 21 of incubation compared to chicks from 0L:24D incubation 

(Özkan et al., 2012a). The lighting program used in in-ovo can impact the diurnal rhythms in 

chicks’ behaviour. For example, chicks incubated under 12L:12D, 6L:18D, or a 1L:23D 

photoperiod expressed a higher level of feeding behaviour, and consumed more feed during the 

first three hours after the lights were switched on in comparison to chicks incubated under dark 

environment (Archer and Mench, 2014b). A second trial conducted by the same group of authors 

compared incubation under 0L:24D or 12L:12D during three different phases of incubation (days; 

0-21, 7-21 and 14-21). The authors found similar behavioural patterns in feeding. Regardless of 

weather the chicks were exposed to light from day 0 to 21 or day 7 to 21 the chicks under the 

12L:12D cycle consumed more feed on the first hour of the day compared to chicks hatched from 

dark incubation (Archer and Mench, 2014b). In both trials, the chicks from all treatments were 

raised under the same photoperiod (12L:12D), suggesting entrainment of circadian rhythm from 

incubation which remained for at least a short time past hatch. Interesting evidence of melatonin 

synthesis resulting from an in-ovo lighting photoperiod was observed. At day 19 of incubation the 

embryos were tested for melatonin hormone levels, and the results showed a higher plasma 

melatonin rhythm in embryos from 12L:12D (day 0-21) and 6L:18D (day 0-21) in comparison to 

embryos from 0L:24D (day 0-21) and 1L:23D (day 0-21) incubation. However, when tested again 

at 5 weeks past hatch, no melatonin rhythm was found (Archer and Mench, 2014b). 

Although photoperiod appears to influence embryos and birds in general, the change in 

light does not evoke an immediate response in chickens. For example, in in-vitro White Leghorn 
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chicken pineal glands under natural and monochromatic wavelengths, a complete shift of the 

melatonin rhythm from one photoperiod to another took up to three days (Csernus et al., 1999). 

However, the speed at which the shift occurs is wavelength dependent. When comparing red (690-

800 nm), blue (420-560 nm), or green (480-620 nm) wavelengths, the red wavelength presented 

the fastest melatonin rhythm reversal shift, while green and blue light delayed the melatonin rhythm 

shift under the new photoperiod (Csernus et al.,1999).  

 Impact of photoperiod on chicken during the brooding period 

2.6.1 Stress indicators 

Photoperiod length during brooding and rearing period may also affect fear and stress 

levels. Broilers and laying hens reared under continuous or near continuous photoperiods had 

higher H:L ratios and higher response levels to fear than birds raised under a 12L:12D or 14L:10D 

photoperiods (Zulkifli et al., 1998; Campo and Dávila, 2002). Bayram and Özkan (2010) reported 

that broilers reared under a 24L:0D photoperiod remained in a tonic state for a longer period, took 

a longer time to emerge from a box and spent more time isolated from other birds than broilers 

from 16L:8D photoperiod (Bayram and Özkan, 2010). Suggesting that broilers reared under long 

daylengths were more fearful than broilers reared under a 16L:8D photoperiod. Broilers also 

showed a longer tonic immobility duration when reared under a 16L:8D photoperiod than broilers 

reared under an INT lighting program (Møller et al., 1999). 

Additionally, broilers reared under a 24L:0D, had higher adrenal gland absolute and relative 

weights to body weight at 35 days of age than broilers reared under a 12L:12D photoperiod. 

However, these authors did not observe changes in the plasma levels of corticosterone and glucose 

(Freeman et al., 1981).  

2.6.2 Health 

Photoperiod during brooding and rearing has been identified as playing an important part 

in bird health, particularly for metabolic and skeletal health. A shorter 6L:18D photoperiod during 

the first two weeks of brooding reduced the incidence of leg abnormalities, and mortality caused 

by sudden death syndrome (SDS) later in life compared to broilers reared under a near-continuous 

lighting schedule (NC) (23L:1D) (Classen and Riddel, 1989). Lewis et al. (2009) observed that 

deaths caused by SDS decreased as photoperiod increased between 2 to 10 hours of light, but SDS 
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increased if the photoperiod was extended to 24L:0D. Schwean-Lardner et al. (2012, 2013) also 

reported increased skeletal and metabolic abnormalities, increased mortality and eye weight, and a 

decrease in mobility in broilers reared under a NC (23L:1D) photoperiod relative to broilers reared 

under a 20L:4D, 17L:7D, or 14L:10D photoperiods.  

These findings supported the conclusions of Brickett et al. (2007) who observed lower 

mortality caused by SDS and other infectious causes in birds reared under a 12L:12D compared to 

those reared under a longer photoperiod (20L:4D). This appears to be related to cellular immune 

stimulation in the body. For example, INT (2L:2D) lighting programs were found to stimulate the 

production of lymphocytes, T cells, B cells and antibodies compared to 23L:1D and 12L:12D 

photoperiods (Abbas et al., 2008). Moreover, under an INT (2L:2D) photoperiod, broilers had a 

higher T3 plasma level and white blood cell count than broilers under an NC (23L:1D) photoperiod. 

These results suggest an improvement in the immune system of broilers. The improvement in the 

immune system was also observed by the reduced mortality and improved body weight and feed 

conversion in broilers reared under an INT (2L:2D) photoperiod relative to broilers raised under 

an NC (23L:1D) photoperiod (Abbas et al., 2008). Furthermore, broilers improved feed conversion 

when reared under an INT (2L:2D) photoperiod in relation to broilers under an NC (23L:1D) 

photoperiod (Abbas et al., 2008). 

2.6.3 Behaviour 

The use of artificial lights in poultry production can stimulate physiological and 

behavioural changes. Weaver and Siegel (1968) studied feeding behaviour in live commercial male 

broilers and observed a shift in the behaviour affected by the length of the day. Birds reared under 

a continuous photoperiod spent less time feeding throughout the day than broilers raised under an 

8L:16D photoperiod. Those findings agree with observations reported by Schwean-Lardner et al. 

(2012) who found that broilers reared under a 23L:1D spent less time at the feeder than broilers 

under shorter photoperiod length (14L, 17L, 20L). To compensate for the shorter day length 

available for feeding behaviour, birds might learn to eat in the dark. However, the amount of feed 

consumed at night when under photoperiods equal to or over 18L is minimal (Weaver and Siegel, 

1968). Feeding behaviour at night is correlated to the length of the photoperiod, when broilers are 

reared under a 2L:22D or 21L:3D photoperiod, the feeding is higher at night relative to broilers 

given an 18L:6D photoperiod (Lewis et al., 2009). The increase in feeding in broilers under a 

2L:22D photoperiod might be related to the absence of enough daytime to do all primary 
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maintenance activities, while an increase in feeding at night under a 21L:3D photoperiod could be 

correlated to the absence in diurnal rhythm. As reported by Schwean-Lardner et al. (2014) broilers 

reared under a 20L:4D or a 23L:1D photoperiod did not present diurnal rhythm for feeding 

behaviour at the age of 27 and 42 days.  

The highest feeding before dark in birds reared under shorter photoperiods is related to the 

need to fill the crop for the long nights (Weaver and Siegel, 1968; Duve et al., 2011; Shynkaruk et 

al., 2019). Providing a day-night cycle for birds also alters morning feeding behaviour. A 16L:8D 

photoperiod increased broiler feeding activity in the morning but reduced the performance of other 

behaviours such, as stretching, compared to broilers reared under a 24L:0D photoperiod (Bayram 

and Özkan, 2010). Under a 16L:8D photoperiod, broilers increased pecking and foraging behaviour 

in the afternoon compared to those reared under a 24L:0D photoperiod (Bayram and Özkan, 2010). 

A 16L:8D lighting program also increased activity in broilers such as standing, walking, drinking, 

pecking, preening, and wing flapping while resting and sleeping behaviour decreased compared to 

broilers reared under a 24L:0D photoperiod (Bayram and Özkan, 2010). These effects of longer 

and shorter photoperiods on broiler behaviour agree with observations reported by Schwean-

Lardner et al. (2012). These authors observed reduced standing, walking, running, litter pecking, 

preening and stretching behaviour in broilers reared under an NC (23L:1D) photoperiod than in 

broilers raised under shorter photoperiods (14L, 17L, 20L). A decrease in activities might increase 

locomotor problems. A 24L:0D photoperiod increased tibial dyschondroplasia and gait score in 35-

day old broilers chicken (Møller et al., 1999), which could be indicative of poorer mobility. 

Broilers at 48 days of age that were fearful (high levels of tonic immobility) and in pain 

(high levels of tibial dyschondroplasia and a high degree of lameness) performed less dustbathing 

than broilers that did not present the same locomotory and fear abnormalities (Vestergaard and 

Sanotra, 1999). Dustbathing is a behaviour performed when all the other needs have been met, 

therefore, it is categorized as a comfort behaviour (Duncan, 1998). Photoperiod length can impact 

the incidence of expression of comfort behaviours. For example, in 27-day old broilers, the 

percentage of time spent performing dustbathing behaviour decreased as photoperiod length 

increased up to 23L:1D (Schwean-Lardner et al., 2012). However, at 42 days of age for those 

broilers under the 23L:1D photoperiod the dustbathing behaviour was absent, but broilers reared 

under 14L:10D, 17L:7D, or 20L:4D still showed a reduction in dustbathing behaviour as 

photoperiod length increased (Schwean-Lardner et al., 2012). Other studies have different results. 
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Birds reared under a 16L:8D or 24L:0D photoperiod did not differ in dustbathing behaviour at 11 

or 35 days old (Bayram and Özkan, 2010).  

 Welfare or stress indicators in poultry 

There are many objective and subjective methods for measurements of stress and the 

evaluation of welfare in poultry. In the current thesis, three of these measures were used: the 

proportion of heterophils to lymphocytes, physical asymmetries of paired traits, and bird behaviour. 

2.7.1 Heterophil to Lymphocyte ratio 

Heterophil to lymphocyte ratio (H: L) is used as an index measure in poultry to evaluate 

levels of stress. This ratio can increase during stressful situations including environmental changes 

such as social stress (Gross and Siegel, 1983) or even lighting programs (Huth and Archer, 2015b). 

Increased levels of corticosterone, which occurs under stressful periods, influence this ratio 

(Scanes, 2016). A primary regulator of stress in birds is the hypothalamic pituitary adrenal axis 

(HPA) (Scanes, 2016). In a stressful situation, the production of corticotropin-releasing-hormone 

is stimulated, and glucocorticoids are released into the bloodstream to prepare the birds for the 

fight or flight reaction. High levels of glucocorticoids in the body can cause depression of the 

immune system and can increase the proportion of heterophils to lymphocytes (Gross and Siegel, 

1983; Scanes, 2016). 

2.7.2 Morphological asymmetry 

2.7.2.1 Fluctuating asymmetry  

Fluctuating asymmetry is the variability of the difference in size between the right and the 

left side of a bilateral symmetrical trait in an individual, caused by an environmental stressor.  

The fluctuating asymmetry can occur due to severe environment disturbances such as food 

deprivation (Swaddle and Witter, 1994), high stocking density (Møller et al., 1995), polluted 

environment (Jentzsch et al., 2003) lighting schedule (Møller et al., 1999), bird selection for higher 

production (Nestor et al., 2000), or thermal stress (Grell, 1978; Parsons, 1992; Yalçin et al., 2001; 

Yalçin and Siegel, 2003). These stressors can cause physiological instability at molecular and 

cellular levels (Parsons, 1990). For example, genetic modification based on the selection of birds 

for fast growth, high production and higher body weight can be very demanding for the body and 
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increase relative fluctuating asymmetry (Nestor et al., 2000). Another example includes the impact 

of heat stress. Changes in the organism at a molecular and cellular level can be found for heat stress 

which is very common in poultry production. Heat stress can alter the concentration of electrolytes 

causing a destabilization of homeostasis and cellular malfunction (Han et al., 2010; Akbarian et 

al., 2016). All these reactions are very costly to the organism and are examples of how the organism 

can deviate energy from one function to another. This could potentially lead the organism to 

develop asymmetric features in symmetric parts of the body due to developmental instability 

caused by overwhelming the energy requirement in the body with reactions that are abnormal, thus 

reducing the availability of energy for normal body development and growth.  

2.7.2.2 Directional Asymmetry  

When directional asymmetry occurs, one side of the bilateral trait develops larger than the 

other side, and the occurrences are not random as all members of the population develop 

asymmetry. Directional asymmetry is thought to be caused by genetic origin (Van, 1962; Leamy 

et al., 2000). An example of directional asymmetry of genetic origin is homozygosis (Leamy et al., 

2000). For example, crossing a wild and a domestic strain of mice and cross crossing the progenies 

back with the domestic strain increased the mandibula phenotypic differences in the second 

generation of mice (Leamy et al., 2000). Additionally, some speculate that behavioural 

lateralization also triggers directional asymmetry (Galatius, 2006). Behaviour lateralization is the 

tendency to continually choose one side over the other during the performance of a task (Rogers 

and Krebs, 1996; Galatius, 2006). In the case of behavioural lateralization, it was noted with chicks 

exposed to light on the last three days of incubation, where at this stage the right eye is exposed to 

the light. These chicks post-hatch tended to use the right eye over the left during a pecking choice 

test (Rogers and Krebs, 1996). Another example of directional asymmetry is the tendency in a 

population of white-beaked dolphins to use the right flippers more than the left ones, leading to a 

larger and broader humerus and larger radius on the right side than the left side (Galatius, 2006).  

2.7.2.3 Antisymmetry 

Antisymmetry is also related to genetic factors, but it differs from directional asymmetry 

because the organism develops a tendency to grow one side of a bilateral trait towards one direction 

more than the other by chance. This trait occurs randomly within a population (Van, 1962; Graham 
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et al., 1993). An example of an antisymmetric feature is lobster claws, where one claw is over 

developed. In that case, the tendency to develop one side larger than the other is caused by neural 

pathways triggered by exercising the claw at a specific stage of the development (Govind and 

Pearce, 1992). The lobster is stimulated to exercise the claws when substrates are available, 

however, if substrates are available but the sensory mechanoreceptors and tendons fail to function, 

the lobster fails to respond to the presence of a substrate and does not exercise one claw more than 

the other, leading to symmetrical development of the right and left claws (Govind and Pearce, 

1992). 

2.7.2.4 Composite Asymmetry  

Composite asymmetry is the total of all asymmetries combined. A significant number of 

articles published to date present the fluctuating asymmetry results as a combination of all 

asymmetries, because of the difficulties in differentiating each asymmetry at a low level (Archer 

et al., 2009; Archer and Mench, 2013; Archer and Mench, 2014 ab). 

 2.7.3 Behavioural expression 

2.7.3.1 Junglefowl Behaviour 

 Red Junglefowl are the ancestral species of the domestic chicken. As in many wild species, 

domestic birds such as the chicken perform similar behavioural patterns as do the wild conspecifics, 

although because of different circumstances (commercial chickens do not need to move far to find 

food sources for example), the time budgets of the behaviour output might differ (Ericsson et al., 

2014). Feral Red Junglefowl (Gallus Gallus) birds spent most of their time performing walking, 

pecking, vigilant behaviour and ground scratching and allocate a lower amount of time for 

preening, sitting, and roosting, while the least amount of time is spent standing (Dawkins, 1989).  

Behaviour is often used as an assessment tool for understanding poultry welfare. Some of 

the most common behaviours that can be helpful to evaluate the state of an animal include 

exploratory (object pecking, foraging, gentle feather pecking), aggressive (aggressive feather 

pecking), nutritive (at the feeder, at the drinker), active (walking, standing, running), resting 

(inactive), and comfort behaviours (dustbathing, preening). Literature regarding the behaviour of 

chickens from in-ovo lighting wavelength or day length is scarce, since the majority of literature 



 

34 

 

exploring the effects of light (wavelength or day length) on behaviour is based on live birds reared 

under the specific wavelength or day length. 

2.7.3.2 Exploratory behaviour  

Object pecking. Object pecking is an action of repeatedly pecking at things other than food. When 

performed repeatedly without any apparent function, this can be considered a stereotypical 

behaviour (review by Mellor et al., 2018). However, pecking at anything that contrasts in colour to 

the environment at a young age is a form of learning to aid in distinguishing objects (Rogers and 

Krebs, 1996). Light wavelength during rearing may impact pecking behaviour (Huber-Eicher et 

al., 2013). These authors observed brown hens from 18 to 22 weeks of age under green (520 nm, 

LED) lighting environment, and found that they performed more pecking behaviour than brown 

hens reared under red (640 nm) or white LED lighting environments. However, Prayitno et al. 

(1997a) observed higher pecking behaviour in broilers reared from 7 to 28 days under red lighting 

wavelength than broilers reared under green or blue lighting wavelengths and intermediate pecking 

behaviour when those birds were reared under the white wavelength. This suggests there may be 

species differences. 

 

Foraging. Foraging behaviour consists of the chicken scratching the floor and moving the feet 

backwards and forward, then pecking at the scratched area (Appleby et al., 2004). Foraging is a 

behaviour that precedes feeding; however, if a cost is imposed to perform foraging, the chicken 

might not perform this behaviour (Bubier, 1996). Therefore, the expression of foraging behaviour 

might be positive and indicate that all basic needs are met. Light wavelength appears to affect the 

performance of this behaviour. Brown hens reared under green (520 nm, LED) light from the age 

of 18 to 20 weeks spent more time performing foraging behaviour than hens reared under red (640 

nm, LED) light, whereas hens reared under white (LED) lights did not differ in foraging behaviour 

from hens raised under green or red lights (Huber-Eicher et al., 2013). 

 

Gentle feather pecking. Gentle feather pecking occurs when the bird gently pecks the other bird 

as if it was performing allopreening, and the pecks are directed to specific parts of the body such 

as the frontal area (Vestergaard et al., 1993). Gentle feather pecking is an exploratory, social type 

of behaviour and can already be observed in one-day-old chicks (Riedstra and Groothuis, 2002). 
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Chickens will dedicate time in this behaviour once all the other needs are met, but the incidence 

might decrease if an effort to perform the behaviour is required (Bubier, 1996). An increase in 

gentle feather pecking post-expression of specific behaviour’s such as dustbathing was suggested, 

as a result of particles left on the feathers from dustbathing, motivating other birds to gently peck 

counterpart’s feathers (Savory, 1995). The light wavelength can alter this behavioural expression. 

Brown laying hens exposed to green (520 nm, LED) light from 18 to 22 weeks of age spent more 

time gently pecking cage mates than chicks raised under white or red (640 nm, LED) light (Huber-

Eicher et al., 2013) 

2.7.3.3 Aggressive behaviour 

Aggressive feather pecking. Aggressive feather pecking is a redirected behaviour motivated at 

least in part by the bird`s state of frustration when unable to perform behaviour such as foraging 

(Huber-Eicher and Wechsler, 1997; Dixon et al., 2008). It can also be motivated by the process of 

hierarchy establishment or maintenance (Daigle et al., 2015). During aggressive feather pecking, 

the bird aggressively pecks at a cage mate, possibly resulting in damaged feathers (Huber-Eicher 

and Wechsler, 1997) and injury to the skin (Klein et al., 2000). The occurrences of aggressive 

feather pecking increase as chicks’ age (Huber-Eicher and Wechsler, 1997), and lighting conditions 

can alter these levels. Brown hens exposed to white (LED) light from week 18 to 22 of age 

performed more vigorous pecks against conspecifics than hens reared under red (640 nm, LED) 

lights. However, hens exposed to green (520 nm, LED) light over the same period do not differ in 

aggressive pecking behaviour from the hens in the white or red environment (Huber-Eicher et al., 

2013). These results are not consistent in all studies. Prayitno et al. (1997a) reported that broilers 

reared under red light from 7 to 28 days of age performed more aggressive interactions than broilers 

reared under white, blue, or green (incandescent filtered) light. The difference in results between 

Hubber-Eicher et al. (2013) and Prayitno et al. (1997a) might be related to bird genotype, as the 

contrast of the brown and white feathers in relation to the red lighting environment might be 

perceived differently by the birds and stimulate pecking when the contrast in colour is high.  

2.7.3.4 Nutritive behaviours 

Feeding behaviour. Feeding behaviour is stimulated by physiological processes leading to 

acquiring energy for maintenance, growth and reproduction (De Ruiter, 2015). Feeding behaviour 
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can be affected by many factors, including bird genotype (Savory, 1980), reproductive state 

(Savory, 1977), age (Asahida and Mimura, 1972), type of diet (Fujita, 1973), photoperiod 

(Schwean-Lardner et al., 2014) and light wavelength (Sultana et al., 2013ab). The photoperiod 

length can affect feeding behaviour rhythm in chicks. For example, when the broiler is reared under 

a continuous lighting schedule, the peak in feeding behaviour occurs in the morning, while when 

raised under dark and light cycle the peak occurs in the morning and before the dark period (Weaver 

and Siegel, 1968). These findings are supported by Schwean-Lardner et al. (2014), as the authors 

noted an increase in broiler feeding activity in the morning and before dark when the birds were 

reared under a photoperiod of either 14L:10D or 17L:7D. However, when those birds were under 

a near continuous or a 20L:4D lighting photoperiod, a diurnal behaviour rhythm for feeding activity 

was lacking at 27 and 42 days of age (Schwean-Lardner et al., 2014).  

Light wavelength also affects feeding behaviour. Brown layer hens observed from 18 to 22 

weeks of age under the red (640 nm) or white lighting spent more time at the feeder, and the least 

while reared under a green (520 nm) lighting (Huber-Eicher et al., 2013). For broiler birds, feeding 

behaviour seems to be affected differently depending on gender. Male birds spent the highest 

amount of time feeding when reared under green (550 nm) or blue (450 nm) lights, while female 

birds spent the highest percentage of time feeding when reared under white or red (650 nm) lighting 

colours (Prayitno et al., 1997b). 

 

Drinking behaviour. Drinking behaviour can differ depending on the type of drinker system used. 

It is an essential behaviour expressed even when a cost is imposed (Bubier, 1996). In open water 

situations (bell waterers for example), the bird approaches the water (open drinker), lowers its head 

and inserts the beak into the water. It then raises its head vertically to swallow the water (Ross and 

Hurnik, 1983). Drinking water from nipples consists of the chick raising their head in an angled 

vertical position and drinking from a droplet of water that shines from the nipple. As the chick 

ages, it learns that by applying pressure on the nipple, water is released. Chicks do not hatch with 

the ability to drink - they must learn (Hunt and Smith, 1967), and they do this by pecking surfaces 

that contrast in colour to the environment (Appleby et al., 2004). For that reason, open drinkers are 

supplemented on the first week post-hatch in commercial barns to facilitate chicks learning to 

drink. 



 

37 

 

However, it appears that wavelength does not affect drinking ability in adult birds. Rearing brown 

hens for 4 weeks under green (520 nm), red (640 nm), or white (LEDs) light did not result in 

alterations of drinking behaviour among hens in any of the lighting treatments (Huber-Eicher et 

al., 2013). This study does not mention however, if wavelength impacts the ability to drink at a 

very young age. 

2.7.3.5 Active behaviours 

Walking. Walking is a behaviour where the bird makes forward movements with one foot in front 

of the other (Hurnik et al., 1995). It is important to move the birds from place to place but can also 

be important in bone and muscle development. The time spent walking can be affected by many 

factors as well, including photoperiod (Schwean-Lardner et al., 2012, 2014), light intensity 

(Newberry et al., 1988), the colour of light (wavelength) (Prayitno et al., 1997a) and combinations 

of these and other factors (Prayitno et al., 1997b). Regarding light wavelength, broiler chicks at the 

2nd and 3rd week of age spent more time performing walking behaviour when reared under white 

light and less time when reared under green (550 nm) light (Prayitno et al., 1997a). Ducks reared 

under blue (460 nm) light decreased walking activities compared to ducks under green (560 nm) 

and yellow (600 nm) light (Sultana et al., 2013b). On the other hand, Huber-Eicher et al. (2013) 

did not find a difference regarding walking behaviour in laying hens reared under red (640 nm) 

green (520 nm), or white (LED) light at 18 to 22 weeks of age. 

 

Standing. Standing is a behaviour where the bird stands on its feet in a still position (Hurnik et al., 

1995). Broiler chickens observed at the age of 7 to 28 days showed the highest percentage of time 

allocated to standing behaviour when reared in a blue (415 nm) light environment compared to 

broilers reared in a red (635 nm) light environment. A light cofactor might also exist as those birds 

performed most of the standing behaviour when raised under high-intensity blue light as compared 

to low and medium light intensity blue light (Prayitno et al., 1997b). However, Huber-Eicher et al. 

(2013) did not find differences in standing behaviour for brown layer chickens reared under red 

(640 nm), green (520 nm), or white lighting at weeks 18 to 22. 

 

Running. A bird runs when it performs movements forward with one foot in front of the other at 

high speed (Hurnik et al., 1995). Running behaviour can be restricted in cages and when the 
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stocking density is high due to space restriction. However, as chicks post-hatch are housed in floor 

pens or brooding cages with more space than conventional laying cages, a short distance of running 

behaviour can still be performed. An animal can run for different reasons, including during playing 

behaviour which could indicate good welfare. For example, piglets increased running when excited 

due to a novelty in the rearing environment (Wood-Gush and Vestergaard, 1991; Reimert et al., 

2013). Running could also occur for other reasons such as a fear response to escape from fights or 

predators (Burghardt, 2005).  

2.7.3.6 Resting behaviour 

Resting. Resting behaviour is an extended period of inactivity, where movements are stopped or 

reduced to lower energy expenditure and prevent energy depletion or regain strength (Hurnik et 

al., 1995). The lighting wavelengths can affect energy requirements during resting. Chickens reared 

under green lighting spent more energy while resting during the light period than chickens under 

red, blue, or white lighting, which was measured through oxygen consumption and carbon dioxide 

production (Kim et al., 2014). Prayitno et al. (1997a) observed broiler chickens from day 7 to 28 

under incandescent light with wavelength filters that output various spectrums of light. The authors 

reported that the chicken spent more time in a sleeping state when raised under red light or white 

light, those raised under green light spent more time sitting, while birds reared under blue light 

spent more time in a dozing state (ʽʽneck reclining with the eyes half closedʼʼ). Sultana et al. 

(2013b) reported that when ducks were raised under various wavelengths of light for 42 days, most 

of the ducks performing inactive behaviour were the ones raised under blue light as compared to 

those reared under white, green, or yellow lights (fluorescent lamps). However, Huber-Eicher et 

al. (2013) did not observe changes in resting behaviour among brown hens reared from week 18 to 

22 under green (520 nm), red (640 nm), or white LEDs lighting. 

2.7.3.7 Comfort behaviours 

Dustbathing. Dustbathing is a behaviour performed by the bird to aid in the maintenance of 

feathers conditions and to reduce parasite infestation (Borchelt and Duncan, 1973). It can be 

expressed when the birds are provided with a proper substrate as litter (Colson et al., 2007), but 

also can occur in more barren environments such as cages (sham-dustbathing). However, birds in 

cages have a lower incidence of this behaviour due to space and substrate availability (Appleby et 

https://www.sciencedirect.com/science/article/pii/S000334720580243X#!
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al., 1993). Lighting wavelength during rearing resulted in no effects on dustbathing behaviour of 

brown hens over week 18 to 22 when exposed to green (520 nm), red (640 nm), or white (LED) 

lights (Huber-Eicher et al., 2013). 

 

Preening. Preening is a self-maintenance behaviour performed with the beak to spread oil from 

the uropygial gland into the feathers (Sandilands et al., 2004). It is used to aid in removing parasites 

from the body (Ostfeld and Lewis, 1999). Additionally, preening behaviour could be also a signal 

of frustration (Duncan and Wood-Gush, 1972). Preening is a behaviour which the bird would 

perform even when an effort is required (Bubier, 1996). Indeed, a decrease in preening behaviour 

might indicate poor welfare, as the essential behaviour needs are not met. However, lighting 

wavelength does not seem to affect this behaviour as brown hens did not differ in preening 

behaviour when exposed to green (520 nm), red (640 nm), or white lighting at the age of 18 to 22 

weeks (Huber-Eicher et al., 2013). 

 Conclusion 

Most of the in-ovo wavelength studies focus only on production traits; the information 

regarding behaviour post hatch is very limited. In addition to wavelength, a study using graded 

levels of daylength in-ovo has not been examined. Work published to date often compared two 

photoperiods only. Graded photoperiod helps to understand the variability of results between 

studies. Brood lighting photoperiod length can affect a bird`s behaviour with consequences on 

production and health variables. However it has not been evaluated in chicks hatched from in-ovo 

lighting. Finally, it is of interest to understand if various genotypes react post-hatch differently due 

to exposure of various light wavelength during incubation. This is particularly true of in-ovo 

lighting, as various shell characteristics, such as colour, could certainly affect the amount of light 

penetrating through to the embryo. In conclusion, the movement towards using light or light/dark 

cycles in commercial incubation systems appears to be growing. Therefore, understanding the 

characteristics of that light, as well as the effect of lighting programs post-hatch on various 

genotypes, could improve both production and welfare traits in commercial poultry species. 
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 Objectives 

2.9.1 Experiment I 

The objective of the first experiment was to determine the behaviours of Lohmann White 

and Brown pullets hatched from various in-ovo light (wavelengths) incubation and brooded under 

either an intermittent (INT) or an near continuous (NC) lighting schedule.  

2.9.2 Experiment II 

The second study was designed to investigate the impact of a range of photoperiod lengths 

using red (644 nm, LED) lighting systems on White Leghorn fertile eggs during incubation. 

Measures included hatch traits, growth, behaviour and presence or absence of behavioural rhythm 

over the photophase post-hatch. 

 Hypothesis 

2.10.1 Experiment I 

1. Behaviour output from white in-ovo lighting will differ from pullets incubated under red, 

blue, or dark conditions because of the stimulus of light on functional lateralization of the 

forebrain (Rogers and Krebs, 1996). 

2. The provision of white light will improve adaptation of the hatchlings to a new environment, 

resulting in higher expression of comfort behaviours. This will result from a decrease in 

fear response and a reduction of stress levels in a new environment (Archer and Mench, 

2013; Archer and Mench, 2014a), and possibly as a result of brain lateralization (Rogers 

and Krebs, 1996). 

3. Lohmann Brown pullets will be less affected by incubation lighting than Lohmann White 

birds. This is due to the pigmentation of brown shelled eggs and its effects on light 

transmission through the eggshell (Maurer et al., 2015 and Shafey et al., 2002, 2004, 2005).  
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2.10.2 Experiment II 

1. A reduction in incubation time possibly related to the increase in metabolism in the diurnal 

phase (Copper et al., 2011) speeding up embryo development (Isakson et al., 1970; Lauber., 

1975; Copper et al., 2011). 

2. An increase in chick quality at hatch, as it is possible that physiological rhythm exists under 

day/night in-ovo photoperiod that do not occur under constant dark. The photoperiod length 

can affect the rhythm of melatonin hormone syntheses (Zawilska et al., 2006) and the 

melatonin hormone can have beneficial effects on the immune system. 

3. Behavioural changes, including decreased aggressive and increased comfort behavioural 

expression. These changes may be a result of a reduction in fear responses, resulting in a 

decrease in stress levels. (Archer and Mench, 2013; Archer and Mench, 2014a). 

4. All L:D incubated flocks (6L:18D, 12L:12D and 18L:6D) will show the presence of a 

diurnal behaviour rhythm over the photophase while a behaviour rhythm over the day for 

pullets from 0L:24D will be lacking. 
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3.0 Chapter 3: Effects of light wavelength during incubation on early life 

behavioural expression of egg production chicks  

This thesis focuses on the impact that lighting during incubation has on embryonic 

development, chick health, and bird behaviour. This chapter in particular focuses on the effects of 

incubating Lohmann White and Lohmann Brown fertile eggs under monochromatic wavelengths 

of light that provide red, white, or blue light in comparison to incubation without light (dark), on 

early behavioural output over the photophase of hatchlings reared under a NC and an INT lighting 

program. This project was conducted in co-operation with the poultry group at Dalhousie 

University, where another MSc. student focused on the production and health impacts from these 

incubation systems
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 Abstract 
This study investigated the impact of in-ovo lighting wavelength on early behaviour of two 

Leghorn strains reared under an Intermittent (INT) or a Near Continuous (NC) photoperiod. A 

total of 144 Lohmann LSL (LSL) and 144 Lohmann Brown (LB) pullets hatched from one of four 

treatments: white, blue or red lighting under a 12L(Light):12D (Dark) photoperiod or a dark 

incubation (control), were reared under either an INT photoperiod from day 1 to 3 

(17L:2D:0.5L:2D:0.5L:2D) and day 4 (16L:3D:0.5L:2D:0.5L:2D) or a NC photoperiod 23L:1D  

from day 0 to 3 and day 4 a 20L:4D. Behaviour was video recorded on days 0, 2 and 4, and the 

behaviour over the photophase data analysed through a 20 minutes scan sampling technique, 

followed by a statistical analyses using a nested factorial design on Glimmix SAS 9.4. Significance 

was declared when P<0.05 and a trend when 0.10>P>0.05. Post-hatch, no interactions were 

observed between incubation lighting wavelengths, pullet genotypes and brooding lighting. The 

chicks hatched from dark incubation tended to spend a higher percentage of time standing 

(P=0.059) than chicks from incubators provided lighting. Bird strain affected the behaviour output, 

as LSL pullets spent a higher percentage of time in nutritive behaviours; at the drinker (P=0.012) 

on day 0 and day 2 (P=0.031), at the feeder on day 2 (P<0.001) and 4 (P=0.005) and lower 

percentage of time expressing walking on day 0 (P=0.001), and increased resting on day 0 

(P<0.001) than LB pullets. The brooding lighting also impacted the pullet’s behaviour, pullets 

reared under an INT brooding photoperiod spent more time at the feeder on day 0 (P=0.036) and 

2 (P=0.022) and performing more walking behaviour on day 2 (P=0.039) and 4 (P=0.01) than 

those from NC photoperiod. Overall, these results indicate that in-ovo light wavelength does not 

impact hatchlings behaviour post-hatch. However, post-hatch behaviour is affected by bird strain 

and brood lighting program. Additionally, no benefit or detrimental effects were observed on the 

behaviour of Lohmann White and Brown chicks hatched from a red, white, or blue in-ovo lighting 

wavelength incubations. However, an INT photoperiod during brooding increased chicks mobility 

behaviours, which might be beneficial in encouraging the chicks to find feed and water on the first 

days post-hatch. 

 

Keywords: In-ovo lighting, wavelength, brooding photoperiod, behaviour, Leghorn.
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 Introduction 

Animal behaviour can be influenced by internal factors, such as age (Bizeray et al., 2000), 

strain (Lewis and Hurnik, 1990), hormones and external environmental factors including 

temperature, food availability, stocking density and lighting program (Blokhuis, 1986). Artificial 

lighting programs are widely used in poultry production to control a birds’ growth and 

reproduction. The effects of the lighting program can vary depending on the source of light, 

wavelength, output intensity and daytime length. Birds have a distinct capability to perceive light 

wavelengths (Prescott and Wathes, 1999; Lewis and Morris, 2006) due to their diversity in 

photoreceptors (Maier, 1992; Osorio et al., 1999).  

The light can also penetrate the eggshell and affect the developing embryo. The amount of 

light that gets through the eggshell can be affected by its pigmentation (Shafey et al., 2004; Maurer 

et al., 2015) and thickness (Maurer et al., 2015). Although the transmission of light to the embryo 

is low (Shafey et al., 2002), it can still impact the embryo during incubation. Development of birds 

during incubation utilizing light programs can be affected by white (Copper et al., 2011) or 

monochromatic colours (Ghatepande et al., 1995). The white light is a mixture of all the colours 

commonly used in poultry units because of previously available sources such as incandescent light 

bulbs. However, light emitting diode (LED) lights have now allowed the use of specific 

monochromatic colours in place of white light. Light during the last three days of incubation can 

affect lateralization of the brain, affecting a bird’s cognitive performance and selective pecking 

when exposed to specific wavelengths during the hatcher stage (Rogers and Krebs, 1996). White 

light during incubation reduces chicks response to fear post-hatch compared to incubation under 

darkness (Özkan et al., 2012b; Archer and Mench, 2013). But it also increases competitive 

behaviour among counterparts compared to chicks from dark incubation (Rogers and Workman, 

1989). White light increases feeding behaviour in broiler chicks during the first few hours of the 

lights on period compared to chicks from dark incubation (Archer et al., 2009). 

Despite some evidence of in-ovo light effects on birds behaviour post-hatch, the impact of 

light wavelength on multiple behaviours post-hatch is limited, and there is no information about 

the possible interaction of in-ovo lighting wavelength and photoperiods during brooding in both 

brown and white feathered birds. Therefore, the objective of this study was to investigate the impact 

of three different lighting wavelengths used during incubation and compared to a incubation 
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without light (dark) on the behavioural output of the hatchlings of two egg production strains reared 

under NC and INT lighting programs. The general experimental hypothesis was that wavelength 

and strain impact on the time the birds spend performing specific behaviours which may be related 

to the eggshell pigmentation and capacity of light to reach the embryo during incubation: 

 

1. Behaviour output from white in-ovo lighting will differ from pullets incubated under red, 

blue, or dark conditions because of the stimulus of light on functional lateralization of the 

forebrain (Rogers and Krebs, 1996). 

2. The provision of white light will improve adaptation of the hatchlings to a new environment, 

resulting in higher expression of comfort behaviours. This will result from a decrease in 

fear response and a reduction of stress levels in a new environment (Archer and Mench, 

2013; Archer and Mench, 2014a), and possibly as a result of brain lateralization (Rogers 

and Krebs, 1996). 

3. Lohmann Brown pullets will be less affected by incubation lighting than Lohmann White 

birds. This is due to the pigmentation of brown shelled eggs and its effects on light 

transmission through the eggshell (Maurer et al., 2015 and Shafey et al., 2002, 2004, 2005).  

 

 Materials and methods 

The research and experimental procedures were approved by the Dalhousie University 

Animal Care and Use Committee (ACUC) on the Truro Campus and the University of 

Saskatchewan’s Animal Care Committee in accordance with the Canadian Council of Animal Care 

guidelines (2009). This portion of the experiment included the early behavioural responses of 

hatched pullets as affected by incubation wavelength lighting, genotype and early brooding 

photoperiod. All production data, including incubation mortality, pullet growth and productivity 

traits, were analyzed by the Dalhousie group and will form a second thesis. 

This experiment was designed using a nested factorial structure. Eight Master® G09 

incubators located at the Atlantic Poultry Research Centre in Truro, Nova Scotia were used. Six of 

the eight incubators were equipped with four light emitting diodes (LEDs) light strips each, with 

the lights attached to the left side of the incubator wall in a vertical position.  
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            Figure 3.1. LED lights outfitted into a Master G09 incubator. 

Two incubators were outfitted with white lights (Canarm®,4100K), two incubators with blue 

(AgriShift® TLP, 120 V) and two incubators with red (LED) light strips (AgriShift® TLL, 120 

V). The photoperiod throughout the incubation for white, blue and red lighting treatments was 12 

hours light on and twelve hours light off (12L:12D) with 220-260 lux intensity at egg level  

(measured using light data loggers (OMYL-M62, Omega® Engineering, Quebec, Canada)). The 

remaining two incubators were left without lights for a control treatment (0L:24D).  

A total of 640 Lohmann LSL Lite (LSL) and 640 Lohmann Brown (LB) fertile eggs, 

originating from parent stocks at 48 weeks of age, were purchased from a commercial hatchery. 

The eggs were randomly assigned to one of the eight incubators (160 eggs per incubator). The 

temperature of the incubator was maintained at 37.5°C and relative humidity at 85.0% from time 

of set until 18 days of incubation. Egg trays were turned at a 90-degree arc every 15 minutes from 

0 to 18 days of incubation as recommended by the incubator’s manufacturer. Eggs were candled at 

18 days of incubation, and infertile eggs and eggs with dead embryos were removed before 

transferring to individual labelled hatch boxes and placed inside the hatch baskets. The incubator 

temperature was dropped to 37.0°C and relative humidity increased to 94.5%. At 512 hours post 
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set, the relative humidity was reduced to 55.0%. After hatch, chicks were feather sexed. The female 

chicks 144 Lohmann LSL Lite and 144 Lohmann Brown were housed in groups of 6 birds per in-

ovo lighting treatment (each cage measuring 60 x 48 cm), with 48 cages in total in 6 separate rooms 

(12.57 m2 each room). Pullets were reared under one of two photoperiods, with three rooms per 

brooding light treatment: a near-continuous lighting program (NC) (based on common husbandry 

practices used on farms which received a photoperiod of 23L:1D from day 0 to 3 and at day 4  

reduced to 20L:4D), or intermittent lighting program (INT) (chosen to stimulate chicks’ early feed 

consumption), chicks received 18L:6D (17L:2D:0.5L:2D:0.5L:2D) for day 0 to 3, then 17L:7D 

(16L:3D:0.5L:2D:0.5L:2D), on day 4. Illumination for all the rooms was produced by blue (LED) 

light strips (Once Innovations, Plymouth, MN – USA). The light strips were installed on the top 

front of the cages above the feeders. The light intensity ranged from 20 to 40 lux (from front to 

back of cage) at bird level post-hatch from day 0 to 3, and 20 - 30 lux from day 4.  

The pullets were provided ad libitum water through nipple drinkers (2 nipples per cage) and 

ad libitum feed (Table 3.1) in metal troughs (56.52 cm length x 12.7 cm width) installed at the front 

of each cage. Supplemental water in ice cube trays and supplemental feed on paper was provided 

for the first four days. Environmental temperature was adjusted as recommended by the breeder's 

growers management guide (Tierzucht, nd).  

3.3.1 Data collection 

The behaviour of the pullets during the early brooding period was video recorded 

continuously (24 h periods) for days 0, 2 and 4 post-hatch with the use of 32 infrared video cameras 

(Speco Technologies® 4-Channel 4MP HD-TVI DVR, Amityville NY-USA) (one camera per two 

cages). The cameras were placed above the cages, supported by a metal stick positioned to capture 

a 360 ͦ view of the birds. One camera recorded two cages. After recording, the recordings were 

downloaded onto eight storage drives (WD My Passport™ Ultra 259D USB 2TB Portable Device 

- San Jose, CA) at the end of the recording period for further viewing and analyses. 

3.3.2 Behaviour analyses 

The behaviour data was video recorded in 24 h periods, however only the photophase data 

were analyzed. The behaviour data from days 0, 2 and 4 during the photophase were assessed using 

scan sampling techniques at 20 min intervals. This allowed the calculation of the percentage of 

time spent performing behaviours outlined in a pre-defined ethogram (Table 3.2). If a behaviour 
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could not be determined on a still screen, the video was reversed for 3 seconds then allowed to run 

so the activity could be identified. The behaviour output was determined by the averaged data for 

the photophase period (daily percentage of behaviour over time) analyzed from the 20 minutes scan 

samples. The presence or absence of a diurnal rhythm over the photophase in specific behaviours 

was determined from all representative data from the 20 minutes scan samples, and the 

determination of a presence or absence of a diurnal rhythm analyzed through an ANOVA followed 

by a regression analysis.  

3.3.3 Statistical analyses 

The statistical software SAS 9.4 was used to analyze the behaviour data. Data normality 

was checked using the univariate procedure (Shapiro Wilk test) prior to analyses. The behaviour 

output data were analyzed using a nested factorial structure. Strain, in-ovo wavelength and brood 

lighting were set as fixed effects, and room within brood lighting as a random effect, the statistical 

analyses were performed with a 3 room (experimental unit) replications per brood lighting 

treatment. Proc Glimmix, using a negative binomial distribution, link log and the degrees of 

freedom obtained from a Contain method was used to determine significance of the main effects 

and their interactions. Significance was declared when P<0.05 and a trend was noted when 

0.10>P>0.05.  

 Results 

There were no interaction between in-ovo lighting wavelength, pullet genotype, nor 

brooding lighting program for the data collected.  

Behaviour  

Percent of time spent walking 

In-ovo lighting wavelength treatment had no impact on the percentage of time pullets spent 

walking at day 0, 2 or 4 (Tables 3.3 to 3.5) post-hatch. At 0 day of age, LB pullets spent more time 

walking (P=0.001, Table 3.6) than did LSL pullets, but no differences were noted past that time. 

Brooding lighting program had no effect on the percentage of time pullets spent walking at 0 day 

of age (Table 3.9), but at 2 (P=0.039, Table 3.10) and 4 (P=0.041, Table 3.11) days of age, pullets 
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reared under an INT programs walked a greater percentage of time than those reared on the NC 

program.   

Percentage of time spent running 

In-ovo lighting program (Table 3.3-3.5) did not impact running behaviour at days 0, 2 and 

4. Genotype did affect the percentage of time pullets spent running on days 0 and 4 only, as higher 

values noted for the LB pullets for day 0 (P=0.003, Table 3.6) and for day 4 (P=0.040, Table 3.8). 

Brooding lighting program (Table 3.9, 3.10, or 3.11) did not impact the percentage of time running 

in pullets for days 0, 2 or 4.  

Percentage of time spent standing  

In-ovo lighting wavelength treatment had little impact on the percent of time spent standing, 

with only a tendency noted at day 0 (P=0.059, Table 3.3), where pullets from dark incubation 

showed a higher percentage of time standing than pullets from white, blue, or red incubation. No 

effects were noted on days 2 (Table 3.4) and 4 (Table 3.5). Bird genotype affected the percentage 

of time pullets spent standing (P<0.001, Table 3.6) on day 0 post-hatch, LSL pullets spent a higher 

percentage of time standing compared to LB pullets. No genotype influences were found for 

standing behaviour on day 2 (Table 3.7) and day 4 (Table 3.8). Brooding photoperiod showed a 

trend for a greater percentage of time spent standing on day 0 post-hatch (P=0.093, Table 3.9) when 

pullets from INT photoperiod stood more. On day 2 and 4 there were no differences in standing 

behaviour (Table 3.10-3.11). 

Percentage of time spent resting 

Resting behaviour post-hatch was not affected by incubation wavelength in any of the 

observation periods (Tables 3.3, 3.4 and 3.5). Resting behaviour was not affected by pullet 

genotype at day 0 and 4, but at day 2 (P<0.001, Table 3.7), LB pullets rested more than LSL pullets. 

Brooding lighting schedule consistently affected the percentage of time pullets spend resting for 

days 0 (P=0.005, Table 3.9) , 2 (P<0.001, Table 3.10) and 4 (P=0.004, Table 3.11) post-hatch, with 

pullets from NC brooding photoperiod spending a higher percentage of their time resting compared 

to pullets from the INT program.  

Percentage of time spent at the drinker 

In-ovo lighting wavelength did not affect time pullets spent at the drinker at days 0, 2 and 

4 (Table 3.3-3.5). The percentage of time spent at the drinker was affected by pullet genotype at 

day 0 (P=0.012, Table 3.6), day 2 (P=0.001, Table 3.7) and showed a trend on day 4 (P=0.060, 
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Table 3.8) with LSL pullets spending more time at the drinker than LB pullets. Brooding lighting 

program did not affect the time pullets spent at the drinker on day 0, 2 and 4 (Table 3.10).  

Percentage of time spent at the feeder 

In-ovo lighting wavelength did not affect the percentage of time pullets spent at the feeder 

on days 0, 2 and 4 post-hatch. The percentage of time pullets spent at the feeder was not affected 

by pullet`s strain at day 0 (Table 3.6), but at day 2 (P<0.001, Table 3.7) and 4 (P=0.005, Table 

3.8), LSL pullets spent a greater percentage of time at the feeder than did LB pullets.  

Pullets from INT brooding photoperiod spent a higher percentage of the photophase at the feeder 

at day 0 (P=0.036, Table 3.9), day 2 (P=0.022, Table 3.10); and at day 4 a trend (P=0.052, Table 

3.11) only was found. 

Percentage of time spent preening 

In-ovo lighting wavelength did not affect the percentage of time pullets spent performing 

preening behaviour on day 0, 2 and 4 (Tables 3.3, 3.4 and 3.5). The percentage of time spent 

performing preening behaviour was not affected by pullets genotype at days 0, and day 2, but 

showed a tendency on day 4 (P=0.065, Table 3.8), LB preened for a greater period than LSL pullets. 

No impact of brooding lighting program was noted at days 0, 2, and 4 (Tables 3.9, 3.10 and 3.11).  

Percentage of time spent in exploratory behaviours 

Incubation lighting treatment did not affect exploratory behaviours at day 0, 2 and 4 which 

include gentle feather pecking, ground scratching, object pecking, and ground pecking while 

sitting. Exploratory behaviour tended to occur for a greater percentage of time at day 0 (P=0.074, 

Table 3.6), with LSL pullets being more active. At day 2 and 4 no effects were observed. Brood 

photoperiod did not have any impact on exploratory behaviour in any day. 

Percentage of time spent in comfort behaviours 

Comfort behaviours which included stretching, dustbathing and wing flapping was not 

affected by in-ovo lighting wavelength, the bird strain or brood lighting post-hatch for any of the 

observed days. 

Percentage of time spent in low incidence behaviours  

Low incidence behaviour is a category that includes all low-performance behaviours such 

as unknown, expelling excrements, head shaking, beak wiping, and vigorous feather pecking 

observed at day 0, 2 and 4. No effects of in-ovo lighting wavelength, bird strain or brooding lighting 

program were found.  
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 Discussion 

Behaviour can be a good indicator of a birds’ welfare in their environment (Broom, 1986). 

Expression of comfort behaviours, including dustbathing, preening, wing flapping and stretching 

might indicate that the basic needs of the birds have been met (Bubier, 1996; Albentosa and Cooper, 

2004). As bird’s motivation to perform a behaviour might be affected due to environment space 

availability (Albentosa and Cooper, 2004), photoperiod (Schwean-Lardner et al., 2012, 2014) or 

even effort required to perform the behaviour (Bubier, 1996). The birds might reduce comfort 

behaviour expressions (luxury behaviours), to favour behaviours with a more critical function such 

as essential behaviours or so-called need behaviours that are behaviours necessary for survival of 

the species (Dawkins, 1983; Hughes and Duncan, 1988; Bubier, 1996). However, comfort 

behaviour can also have a more practical function, as an example, dustbathing and preening, which 

are behaviours performed to help with feather maintenance, have also been indicated as essential 

behaviours (Weeks and Nicol, 2006).  

Preening behaviour could also be a signal of frustration (Duncan and Wood-Gush, 1972). The 

current study hypothesized that light wavelengths during incubation of brown and white feathered 

egg production chicks would affect the early behaviour expression differently, due to eggshell 

colours and light wavelength factors. Further, the hatchlings would be more adaptable to the new 

environment independent of brooding day length, therefore, presenting a higher expression of 

comfort behaviours and lower aggressive responses than those hatchlings from dark incubation.  

Previous research showed that light wavelength could be a factor that affects the behaviour 

of live birds due to the bird`s sensitivity to specific wavelengths (Prescott and Wathes, 1999). In 

the current study, the fertile brown and white shelled eggs were photostimulated with the use of 

red, white, or blue light during incubation. Although temperature in this work was not tested, other 

works indicate that some wavelengths may alter incubator temperature. For example, Xujie et al. 

(unpublished data) noted that red light used during incubation reduced air cell temperature in 

broiler eggs, compared to white, blue, or dark incubation. Changes in the environment temperature 

during incubation can affect chick’s behaviour (Bertin et al., 2018; Belnap et al., 2019), and 

exposure to low temperature during incubation has been associated with an increase in 

corticotropin-releasing factor receptor expression in the amygdala, resulting in increased fear 

response in chicks post-hatch (Bertin et al., 2018). An incubation environment temperature higher 
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than the standard (37.5 ֯C) can reduce bone development and affect mobility in quail chicks (Belnap 

et al., 2019). The addition of light, however, did not impact the behaviour of the pullets for the 

short-term post-hatch. Standing behaviour only tended to lower with the addition of any light 

wavelength applied to the incubator as compared to dark incubation, but this result was just noted 

for the initial 0-day period. This lack of different outcomes is similar to what is found in the 

literature focusing on post-hatch birds, where the percentage of time brown feathered laying hens 

spent performing standing behaviour was not affected when those birds were reared under red, 

white, green, or blue light for four weeks (age 18 - 22 weeks old) (Huber-Eicher et al., 2013). These 

findings may indicate the wavelength of light not being as important in influencing the bird’s 

behaviour as factors such as bird strain and photoperiod. Despite indication in the literature that 

light used during incubation affects cognitive functions in chicken, causing changes in behaviour 

performance (Rogers and Krebs, 1996; Johnston et al., 1997) the current study did not observe in-

ovo lighting wavelength effects on active and inactive behaviours post-hatch. These results concur 

with results Sultana et al. (2013c) reported on behaviour of live brown hens reared under red, white, 

or green light. Rearing brown hens under blue lighting, however, decreased the hen`s active 

behaviour (Sultana et al., 2013c).  

In addition to the lack of impact of light wavelength during incubation on mobility 

behaviours, effects on early nutritive behaviour post-hatch were also absent. The effect of light 

wavelength on nutritive behaviour, however, is very clear in live birds. The results from the current 

in-ovo lighting wavelength study are similar to the findings reported by Campbell et al. (2015) on 

the nutritive behaviour of Pekin ducks reared under white, red, or blue lighting. These findings 

support Praytino et al.’s (1997a) results which showed an absence of light wavelengths (white, 

green, red, or blue) effects in nutritive behaviour of live broilers reared under those specific light 

wavelengths for four weeks. However, as mentioned earlier, contrasting results in the literature on 

light wavelength impact on live birds can be found. For example, Sultana et al. (2013a) noted that 

green, red, or altering red/yellow light increased broiler’ feeding behaviour whereas Huber-Eicher 

et al. (2013) observed that green light decreased feeding behaviour of brown laying hens (Huber-

Eicher et al., 2013). The contrasting results of light wavelength effects on birds’ feeding behaviour 

observed in the cited literature might be due to the different lamps used to provide the illumination. 

Light sources can output different wavelength spectrum range in addition to the differences in 

illumination intensity. Hence the birds might perceive the light wavelength output differently 
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depending on the light source. This information is often not reported. Furthermore, the mechanisms 

behind the wavelength effects on live birds’ behaviour are not very clear. However, the 

mechanisms behind light effects during incubation are thought to be caused by exposure of the 

embryo’s right eye to light during the development of visual functions around the 17th to 19th day 

of incubation. This exposure is believed to increase the densities of glutamatergic and GABAergic 

neurotransmitter receptors in the forebrain (Johnston et al., 1997), which might be the mechanism 

behind the physical and functional asymmetry changes of the brain resulting in changes in cognitive 

functions and behaviour (Rogers and Krebs, 1996). However, the changes in brain asymmetry 

observed when the right eye is photostimulated (Rogers and Krebs, 1996; Johnston et al. 1997) are 

dependent on light wavelength, with the white light or an alternation of red and green light having 

the most significant impact on asymmetrical and functional changes in the brain (Rogers and Krebs, 

1996).  

Additionally, as stated earlier the transmission of light to the embryo during incubation can 

be affected by the pigmentation of the eggshell (Shafey et al., 2002), and this might suggest we 

should find an interaction between genotype and in-ovo lighting. However, the interaction was not 

present in the current study. But, within each chicken strain, behaviour differed significantly, as 

LSL pullets at an early age engaged more in nutritive related behaviours (feeding and drinking) 

and less in locomotor (walking, running) and resting behaviours than LB pullets. The differences 

in nutritive and active behaviours between strains might relate to genetic selection for growth and 

production. Although the percentage of time spent at the feeder and drinker at an early age for LSL 

pullets was higher, it does not mean they were consuming feed, as the observed behaviour was 

simply the percentage of time the birds were present at the feeder and drinker manipulating the 

feed or water independent of consumption. These findings agree with the results from another 

research group related to the same in-ovo wavelength study and birds. It showed that the LSL 

pullets had higher weight gain than LB pullets six hours post first access to feed, which supports 

our findings, indicating that those LSL pullets were more active feeding (Abeysinghe et al., data 

unpublished). Although LSL pullets showed the highest weight gain, LB pullets were heavier than 

LSL pullets at 7 days post-hatch (Abeysinghe et al., data unpublished). Drinking and feeding 

behaviour is essential for the maintenance of homeostasis and development of the organism. 

Maintenance behaviour such as feeding and drinking can be dependent on locomotor behaviour as 

the minimum mobility performed by the chicken is to reach feed and water (Lewis and Hurnik, 
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1990). In the current study, LSL pullets were less mobile (walking, running), but spent a higher 

percentage of time standing than LB pullets on day zero, LSL pullets spent more time resting on 

day two, and decreased mobility (running) again on day four. Other research has also reported 

genotype differences in behaviour. Kozak et al. (2016) observed that LSL leghorns performed more 

inactive behaviours than LB and Dekalb White strains, while nutritive behaviours were performed 

more by LB than the LSL strain. In the current study, the opposite effect was observed, as LSL 

pullets spent a higher percentage of time at the drinker and the feeder than LB pullets. Comfort and 

exploratory behaviours did not differ among pullet strains at an early age on the days observed 

under the environment studied, which might indicate the selection for production among the studied 

strains had no impact on those behaviours at an early age. However, at day two post-hatch LB 

pullets spent a greater percentage of time preening than LSL pullets. In the context of this study it 

is difficult to say if that represents a comfort/displacement behaviour or just an isolated event as it 

only occurred at day two during the observed period and no other comfort or aggression related 

behaviour differences were observed to support a conclusion about distress or comfort among the 

two chicken lines. However, at an older age differences in temperament have been found among 

white and brown laying hens (Duncan and Wood-Gush, 1972), which could be related to genetic 

selection and differences in hormonal production during the laying phase (Navara and Pinson, 

2010).  

The most significant impact on pullet behaviour post-hatch was from the brooding lighting 

program. Pullets reared under the INT lighting schedule spent a higher percentage of time at the 

feeder than birds from the NC lighting program. These findings agree with the studies by Schwean-

Lardner et al. (2012, 2014) in broilers and by Vermette et al. (2016b) in turkeys, where the authors 

reported birds reared under a NC photoperiod spent a lower percentage of time at the feeder during 

the photophase period than birds reared under a shorter photoperiod. However, in the current study 

when determining the absolute time spent at the feeder, it was observed that the chicks under the 

NC lighting schedule on day 0 spent a similar amount of absolute time (239.29 minutes) at the 

feeder than birds under an INT lighting program (230.90 minutes). The same tendency was 

observed on day 2 and 4 when pullets under NC photoperiod spent 319.61 and 306.24 minutes at 

the feeder and those under INT lighting spent 307.37 and 301.72 minutes there. The percentage of 

time the birds spent at the drinker did not differ statistically, however, chicks under the NC lighting 
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schedule spent 39.88 (d0), 27.88 (d2), and 40.8 (d3) minutes at the drinker over the observed period 

while chicks under the INT spent 34.56 (d0), 31.10 (d2), and 36.82 (4) minutes at the drinker.  

The program involving darkness also impacted other activity behaviours. An INT lighting 

program post-hatch increased the percentage of time pullets spent walking and standing, reducing 

the percentage of time spent resting over the photophase. This result suggests that INT lighting 

programs could stimulate chicks to increase mobility behaviour, as it encourages the birds to stand 

and move when the light is switched on. Under a NC brooding lighting program, pullet spent a 

higher percentage of the photophase time resting. These findings agree with Malleau et al. (2007) 

who compared an NC and a periodic lighting schedule for broilers and leghorn chicks. These 

authors found similar results. It is possible that the reason for greater resting behaviour over the 

photophase for chicks under longer photoperiods might be related to the desynchronization in 

diurnal rhythms due to an absence of a minimum scotoperiod required for the birds to adequately 

rest in synchrony (Schwean-Lardner et al., 2014). 

There is a negative aspect of a very long period of inactivity, laying or sitting in the same 

position, which could reduce birds’ welfare, particularly in older birds, due to increased contact of 

the skin with the litter leading to an increase in dermatitis lesions (Vermette at al., 2016b). Mobility 

behaviours (standing, walking, running) are important for many reasons, as they may positively 

impact bone and muscle strength (Lewis and Hurnik, 1990). Therefore, at an early age, the higher 

mobility of chicks reared under an INT lighting schedule observed in the current study might help 

to stimulate and strengthen skeletal development that is crucial for laying hen strains. It was 

hypothesized that the hatchlings in the current study would increase expression of comfort 

behaviours independent of rearing environment; but the lighting wavelengths used during 

incubation in this study did not affect the expression of comfort related behaviours post-hatch. 

However, the lights were outfitted on the incubator wall on a vertical position parallel to the egg 

trays. Therefore, the embryo might not have received direct light on the right eye, which would 

have resulted in the absence of light wavelength effects on brain functional lateralization (Rogers 

and Krebs, 1996) impacting the hatchlings early behaviour. Additionally, the embryos might not 

have received light equally (intensity) during incubation as the light bulbs parallel to the eggs on 

one side of the incubator might have had a greater impact on those closer to the light bulbs than on 

the far side of the tray. This may have an impact by reducing the transmission of light through the 

eggshell when further from the light source (reduced intensity) (Shafey et al., 2002). The 



 

56 

 

distribution of light within the incubator and position of the eggs in relation to the light bulbs could 

have increased variability resulting in the low impact of light wavelength observed in the current 

study. A future study using the light bulbs placed above the eggs might show a different outcome 

for behavioural expression of pullets hatched from specific in-ovo lighting (wavelength) 

incubation. 

 Conclusion 

The wavelength of light during incubation tested in this study did not define hatchling early 

behavioural output over the early brooding photophase. In contrast, the brooding photoperiod, 

independently of incubation lighting wavelength and bird genotype, did. Therefore an INT lighting 

schedule post-hatch might be beneficial for the pullets to stimulate feeding and drinking as the 

pullets increased the percentage of time spent in mobility behaviours and the percentage of time 

spent at the feeder and drinker under that brooding photoperiod. 
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 Tables 

Table 3.1. Lohmann LSL diet starter composition with calculated nutrient levels  

Ingredients (%) Starter 

Corn  59.92 

Soybean meal  23.03 

Canola meal  11.72 

Limestone  1.79 

Dicalcium phosphate  1.41 

Animal/Vegetable fat  1.00 

Mineral and vitamin premix1  0.50 

Salt  0.40 

Methionine premix  0.20 

Lysine HCL  0.02 

  

Nutrients  

Metabolizable energy (kcal/kg)  2900.03 

Crude protein (%)  20.00 

Calcium (%) 1.05 

Digestible lysine (%) 0.98 

Digestible threonine (%) 0.75 

Digestible methionine and cysteine (%) 0.68 

Available phosphorus (%) 0.48 

Digestible tryptophan (%) 0.21 

Sodium (%) 0.18 
1Supplied per kilogram of feed:  vitamin A, 10000 IU; vitamin D3, 2000 IU; vitamin E, mg 

20-30; menadione, mg 3; thiamine, mg 1; riboflavin, mg 6; niacin, mg 30; pyridoxine, mg 3; 

vitamin B12, mcg 20; pantothenic acid, mg 8; folic acid, mg 1.0; and biotin, mcg 50; choline, 

mg 300; iron, mg 25; zinc, mg 60; manganese, mg 100; copper, mg 5; iodine, mg 0.5; and 

selenium, mg 0.2. 
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Table 3.2. Ethogram description of behaviours for measurement in egg production pullets 

Behaviour 

Category 

 

Behaviour Description 
Active Walking Moving around the cage at a slow pace by 

putting one foot in front of the other 

 Running Moving around the cage at a fast speed by 

putting one foot in front of the other 

 Standing Still position and not performing any other 

behaviour 

Resting Resting Sitting position with the breast touching the 

ground in an inactive state 

Aggressive Forceful feather 

pecking 

Forceful pecking feathers from conspecifics 

directed to any part of the body  

 
Comfort Wing flapping Running or just standing with both wings 

flapping  

 Dustbathing Lying on the side with the feathers fluffed while 

making movements with the body against the 

litter and shaking wings, moving the head and 

scratching the ground  

Preening Preening Grooming the feathers with the beak  

Exploratory Gentle feather 

pecking  

Gently pecking gently at plumage of a cage-

mate 

 
 Object pecking Pecking at physical objects including cage 

walls, water lines with the exception of the 

nipples and water cups. 

 Ground scratching Scratching the ground with the feet and making 

movements forward and backward  

Nutritive Eating Head extended into the feeder, manipulating or 

ingesting feed 

 Drinking Head extended to the water line, manipulating 

water nipple or water cups  

 
Other Beak wiping Head lowered and in movements from side to 

side with the beak touching the ground  

 Head shaking Movements of the head from side to side in the 

air 

 Expelling 

excrements 

Expulsing wastes from the body 

 Unknown Chick out of the field of view 

Adaptated from Hurnik et al., (1995). 
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Table 3.3. Main effects of in-ovo lighting wavelength on the behaviour of egg production pullets at day 0 post-hatch 

 Percentage of time over the photophase  P value 

Behaviour Dark Blue White Red  H H5 x G6 

xx4xG5 

HxB7 GxB HxGxB 

Walking 16.69±0.869 6.91±0.850 7.24±0.869 7.90±0.922  0.632 0.44 0.88 0.56 0.93 

Running 1.04±0.293 1.55±0.357 2.38±0.446 2.35±0.444  0.130 0.98 0.85 0.73 0.60 

Standing 25.86±1.468 21.58±1.342 21.69±1.345 21.13±1.327  0.059 0.49 0.97 0.21 0.85 

Resting 41.36±1.857 41.45±1.858 39.03±1.803 38.35±1.787  0.378 0.91 0.17 0.52 0.90 

At the drinker 2.49±0.460 2.76±0.487 3.22±0.525 3.69±0.562  0.421 0.20 0.32 0.78 0.82 

At the feeder 16.69±1.180 19.69±1.281 20.48±1.307 20.57±1.309  0.164 0.58 0.26 0.66 0.57 

Preening 3.69±0.582 3.97±0.598 3.87±0.594 3.39±0.554  0.948 0.59 0.41 0.48 0.78 

Exploratory2 0.82±0.277 0.64±0.248 1.10±0.305 0.72±0.247  0.551 0.94 0.36 0.65 0.78 

Comfort3 0.64±0.236 0.48±0.202 0.33±0.165 0.59±0.223  0.704 0.62 0.92 0.90 0.76 

Low incidence4 0.69±0.239 0.81±0.260 0.67±0.238 1.31±0.329  0.300 0.78 0.76 0.96 0.93 
abMeans within a row with different letters differ significantly (P<0.05). 1Mean ± Standard error. 
  2Exploratory behaviours = Gentle feather pecking, ground scratching, object pecking, ground pecking while sitting. 
  3Comfort behaviours = Stretching, dustbathing, wing flapping. 
  4Low incidence behaviours= Unknown, eliminating excretes, head shaking, beak wiping, forceful feather pecking.

 

  5H = Hatch (in-ovo wavelength). 

  6G = Genotype. 

  7B = Brooding lighting program. 
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Table 3.4. Main effects of in-ovo lighting wavelength on the behaviour of egg production pullets at day 2 post-hatch 
 

Percentage of time over the photophase  P value 

Behaviour Dark Blue White Red  H H5 

xG6 

G 

xG5 

HxB7 GxB HxGxB 

Walking 18.68±0.851 7.40±0.786 7.95±0.813 8.14±0.824  0.747 0.93 0.89 0.76 0.52 

Running 1.73±0.379 2.16±0.423 2.40±0.447 2.41±0.448  0.650 0.34 0.75 0.42 0.96 

Standing 17.40±1.365 17.04±1.350 17.36±1.366 15.51±1.270  0.610 0.26 0.73 0.13 0.59 

Resting 39.47±1.814 38.61±1.793 37.47±1.767 38.39±1.788  0.909 0.40 0.75 0.79 0.84 

At the drinker 2.49±0.455 2.22±0.430 2.42±0.456 2.69±0.479  0.956 0.73 0.79 0.38 0.92 

At the feeder 24.35±1.424 27.28±1.509 25.51±1.459 26.10±1.474  0.416 0.29 0.85 0.61 0.53 

Preening 4.18±0.592 3.58±0.547 4.65±0.622 4.66±0.624  0.593 0.90 0.85 0.20 0.78 

Exploratory2 0.52±0.431 0.57±0.529 0.68±0.618 0.84±0.756  0.796 0.45 0.87 0.50 0.98 

Comfort3 0.48±0.200 0.53±0.210 0.72±0.245 0.82±0.262  0.786 0.86 0.91 0.44 0.86 

Low incidence4 0.70±0.260 0.60±0.238 0.86±0.302 0.44±0.200  0.708 0.70 0.82 0.28 0.95 
1Mean ± Standard error.  

   2Exploratory behaviours
 

=
 

Gentle feather pecking, ground scratching, object pecking, ground pecking while sitting.
 

  3Comfort behaviours= Stretching, dustbathing, wing flapping. 
  4Low incidence behaviours= Unknown, eliminating excretes, head shaking, beak wiping, forceful feather pecking.

 

  5H= Hatch (in-ovo lighting wavelength). 
  6G= Genotype. 
  7B= Brooding photoperiod. 
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Table 3.5. Main effects of in-ovo lighting wavelength on the behaviour of egg production pullets at day 4 post-hatch 
 

Percentage of time over the photophase  P value 

Behaviour Dark Blue White Red  H H5 xG6 Hx

B7 

GxB HxGxB 

Walking 19.80±0.923 8.10±0.837 9.23±0.894 9.37±0.902  0.564 0.61 0.94 0.14 0.55 

Running 2.45±0.451 2.40±0.447 2.26±0.439 2.98±0.501  0.670 0.59 0.87 0.94 0.41 

Standing 17.11±1.195 18.06±1.227 18.13±1.229 15.37±1.131  0.295 0.27 0.73 0.81 0.23 

Resting 33.07±1.725 31.92±1.692 32.25±1.701 32.50±1.709  0.981 0.70 0.94 0.85 0.42 

At the drinker 3.88±0.574 3.23±0.519 3.66±0.552 3.25±0.520  0.827 0.46 0.28 0.69 0.64 

At the feeder 26.33±1.481 28.76±1.548 26.56±1.489 28.55±1.542  0.452 0.18 0.96 0.64 0.77 

Preening 4.55±0.616 5.31±0.665 5.45±0.673 4.99±0.645  0.833 0.94 0.74 0.48 0.99 

Exploratory2 1.13±0.307 0.83±0.263 0.65±0.230 1.35±0.335  0.304 0.62 0.66 0.83 0.99 

Comfort3 0.90±0.273 0.96±0.284 0.87±0.270 0.94±0.280  0.991 0.73 0.93 0.43 0.99 

Low 

incidence4 

occurence3 

0.77±0.258 0.44±0.192 0.94±0.298 0.70±0.243  0.782 0.86 0.38 0.58 0.35 
abMeans within a row with different letters differ significantly (P<0.05). 1Mean ± Standard error. 
2Exploratory behaviours= Gentle feather pecking, ground scratching, object pecking, ground pecking while sitting.

 

3Comfort behaviours= Stretching, dustbathing, wing flapping. 
4Low incidence

 

behaviours= Unknown, eliminating excretes, head shaking, beak wiping, forceful feather pecking.
 

5H= Hatch (in-ovo lighting wavelength). 
6G= Genotype. 
7B= Brooding photoperiod. 
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Table 3.6. Main effects of the genotype on the behaviour of egg production pullets at day 

0 (n=3) 
 

Percentage of time over the photophase 
 

Behaviour Lohmann LSL Lohmann Brown P value 

Walking 5.73±0.583b 8.64±0.773a 0.001 

Running 1.10±0.215b 2.56±0.329a 0.003 

Standing 25.29±1.027a 19.84±0.909b <0.001 

Resting 38.98±1.275 41.11±1.309 0.281 

At the drinker 3.73±0.405a 2.36±0.320b 0.012 

At the feeder 19.02±0.8901 19.70±0.906 0.600 

Preening 3.50±0.415 3.96±0.444 0.183 

Exploratory2 1.07±0.216 0.57±0.163 0.074 

Comfort3 0.53±0.157 0.49±0.145 0.923 

Low incidence4 1.04±0.208 0.69±0.170 0.169 

abMeans within a row with different letters differ significantly (P<0.05) 

1Mean ± Standard error. 

2Exploratory behaviours=Gentle feather pecking, ground scratching, object pecking, 

ground pecking while sitting. 

3Comfort behaviours=
 
Stretching, dustbathing, wing flapping.  

4Low incidence= Unknown, eliminating excretes, head shaking, beak wiping, forceful 

feather pecking. 
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Table 3.7. Main effects of the genotype on the behaviour of egg production pullets at day 2 

(n=3) 

 
Percentage of time over the photophase 

 

Behaviour Lohmann LSL Lohmann Brown P value 

Walking 8.57±5981 7.51±560 0.252 

Running 2.03±0.291 2.32±0.312 0.661 

Standing 16.20±975 17.46±1.024 0.317 

Resting 34.06±1.191b 42.90±1.337a <0.001 

At the drinker 2.95±0.351a 1.96±0.287b 0.031 

At the feeder 30.50±1.127a 21.12±0.938b <0.001 

Preening 3.88±0.402 4.65±0.440 0.210 

Exploratory2 0.79±0.183 0.51±0.145 0.285 

Comfort3 0.53±0.148 0.74±0.175 0.388 

Low incidence4 0.48±0.166 0.82±0.232 0.316 

abMeans within a row with different letters differ significantly (P<0.05). 

1Mean ± Standard error. 

2Exploratory behaviours= Gentle feather pecking, ground scratching, object pecking, 

ground pecking while sitting. 

3Comfort behaviours= Stretching, dustbathing, wing flapping. 

4Low incidence behaviours= Unknown, eliminating excretes, head shaking, beak wiping, 

forceful feather pecking. 
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Table 3.8. Main effects of the genotype on the behaviour of egg production pullets at day 

4 (n=3) 
 

Percentage of time over the photophase 
 

Behaviour Lohmann LSL Lohmann Brown P value 

Walking 18.79±0.627 9.45±0.653 0.322 

Running 2.01±0.290b 3.03±0.358a 0.040 

Standing 16.26±0.823 18.07±0.868 0.130 

Resting 32.15±1.201 32.73±1.212 0.758 

At the drinker 4.01±0.409 3.00±0.354 0.060 

At the feeder 29.81±1.114a 25.29±1.027b 0.005 

Preening 4.42±0.429 5.73±0.488 0.065 

Exploratory2 0.96±0.204 1.02±0.207 0.693 

Comfort3 0.80±0.183 1.04±0.208 0.422 

Low incidence4 0.79±0.184 0.64±0.166 0.546 

abMeans within a row with different letters differ significantly (P<0.05). 

1Mean ± Standard error. 

2Exploratory behaviours= Gentle feather pecking, ground scratching, object pecking, ground 

pecking while sitting. 

3Comfort behaviours=  Stretching, dustbathing, wing flapping. 

4Low incidence behaviours= Unknown, eliminating excretes, head shaking, beak wiping, 

forceful feather pecking. 
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Table 3.9. Main effects of brooding photoperiod on the behaviour of egg production 

pullets at day 0 (n=3) 
 

Percentage of time over the photophase 
 

Behaviour NC INT P value 

Walking 16.60±0.734 7.77±0.832 0.345 

Running 1.65±0.267 2.01±0.286 0.677 

Standing 21.14±0.939 23.99±1.000 0.093 

Resting 45.06±1.370a 35.03±1.208b 0.005 

At the drinker 2.89±0.365 3.20±0.379 0.621 

At the feeder 17.34±0.850b 21.38±0.944a 0.036 

Preening 3.14±0.419 4.32±0.510 0.183 

Exploratory2 0.76±0.194 0.88±0.193 0.455 

Comfort3 0.41±0.133 0.61±0.173 0.610 

Low incidence4 1.00±0.210 0.74±0.175 0.552 

abMeans within a row with different letters differ significantly (P<0.05). 

1Mean ± Standard error. 

2Exploratory behaviours= Gentle feather pecking, ground scratching, object pecking, 

ground pecking while sitting. 

3Comfort behaviours= Stretching, dustbathing, wing flapping. 

4Low incidence behaviours= Unknown, eliminating excretes, head shaking, beak wiping, 

forceful feather pecking. 
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Table 3.10. Main effects of brooding photoperiod on the behaviour of egg production 

pullets at day 2 (n-3) 

 Percentage of time over the photophase  

Behaviour NC INT P value 

Walking 16.80±0.532b 9.28±0.622a 0.039 

Running 1.94±0.285 2.41±0.317 0.361 

Standing 16.10±1.067 17.56±1.132 0.445 

Resting 44.22±1.358a 32.75±1.168b <0.001 

At the drinker 2.02±0.292 2.88±0.347 0.112 

At the feeder 23.16±1.089b 28.46±0.983a 0.022 

Preening 4.08±0.412 4.46±0.431 0.485 

Exploratory2 0.55±0.151 0.76±0.179 0.523 

Comfort3 0.62±0.160 0.66±0.165 0.947 

Low incidence4 0.52±0.210 0.79±0.257 0.720 

abMeans within a row with different letters differ significantly (P<0.05). 

1Mean ± Standard error. 

2Exploratory behaviours= Gentle feather pecking, ground scratching, object pecking, 

ground pecking while sitting. 

3Comfort behaviours= Stretching, dustbathing, wing flapping. 

4Low incidence= Unknown, eliminating excretes, head shaking, beak wiping, forceful 

feather pecking. 
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Table 3.11. Main effects of brooding photoperiod on the behaviour of egg production 

pullets at day 4 (n=3) 

 
Percentage of time over the photophase 

 

Behaviour NC INT P value 

Walking 17.76±0.605b 10.48±0.719a 0.041 

Running 2.13±0.298 2.92±0.349 0.141 

Standing 16.23±0.822 18.10±0.869 0.191 

Resting 37.65±1.309a 27.22±1.100b 0.004 

At the drinker 3.40±0.377 3.61±0.389 0.715 

At the feeder 25.52±1.110 29.58±1.032 0.052 

Preening 4.71±0.443 5.44±0.476 0.380 

Exploratory2 0.91±0.198 1.07±0.212 0.547 

Comfort3 0.97±0.201 0.88±0.191 0.880 

Low incidence4 0.72±0.179 0.70±0.177 0.834 

abMeans within a row with different letters differ significantly (P<0.05). 

1Mean ± Standard error. 

2Exploratory behaviours= Gentle feather pecking, ground scratching, object pecking, 

ground pecking while sitting. 

3Comfort behaviours= Stretching, dustbathing, wing flapping.  

4Low incidence behaviours= Unknown, eliminating excretes, head shaking, beak wiping, 

forceful feather pecking, dustbathing, wing flapping. 
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4.0 Chapter 4: Effect of photoperiod length during incubation on hatch traits, 

growth, and behaviour of Leghorn chicks to 21 days of age 

The aim of this study was to evaluate the impact of photoperiod length during incubation 

of Lohmann LSL-Lite eggs on embryo mortality, hatch traits including the spread of hatch, 

incubation time, hatchability, chick quality traits including navel closure, body length, body 

weight, developmental traits including weights of the heart, liver and gastrointestinal tract (GIT) 

segments measures, and stress indicators by evaluating the composite asymmetry and heterophil 

to lymphocyte ratio, and finally growth and uniformity.
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 Abstract 

This study determined the effects of photoperiod length during incubation of Lohmann LSL eggs 

on hatch traits, and pullets’ growth and behaviour. A total of 100 eggs were randomly assigned to 

one of four treatments: 0L (Light):24D(Dark)(0L), 6L:18D (6L), 12L:12D (12L) or 18L:6D (18L). 

Data was collected to measure embryo mortality, incubation time, spread of hatch, chick weight, 

heterophil to lymphocyte ratio (H: L), yolk-free body weight, yolk sac residue, organ weights 

((liver, heart and gastrointestinal (GIT) segments)) and composite asymmetry. Data were analyzed 

using SAS 9.4 with one-way ANOVA in an RCBD. The behaviour rhythm was analyzed through 

repeated measures followed by REG and RSREG regressions. Significance was declared when 

P<0.05. In-ovo lighting did not affect embryo mortality, hatchability and spread of hatch. 

Incubation time was affected, as 10% to 75% of hatched chicks under 18L (P=0.001; P<0.019) 

hatched earlier than chicks from 0L, 6L, and 12L. Male chicks, from 0L (P<0.001) were heavier 

than chicks from 12L and 18L. Female chicks from 0L (P<0.001) were heavier than females from 

6L, 12L and 18L. Incubation treatment did not affect navel closure, female body length, H: L ratio, 

composite asymmetry, relative yolk-free body weight and relative yolk sac residue. Chick relative 

liver (P<0.001), heart (P=0.004), duodenum (P<0.001), ileum (P<0.001) and cecum (P=0.013) 

weights to body weight under 18L were heaviest. Relative colon weight was not affected by 

photoperiod length. Pullets weight at days 7 (P=0.001), 14 (P=0.017) and 21 (P=0.027) differed; 

however, flock uniformity was not affected. No effects were observed on composite asymmetry 

or H:L ratio at day 21 post-hatch. Behaviour output, longer photoperiods such as 18L during 

incubation increased pullet’s mobility behaviours walking (P=0.029), running (P=0.003), standing 

(P=0.015) on day 0; walking (P=0.037) and running (P=0.023) on day 1; and standing (P=0.014) 

on day 3 and decreased resting (P=0.039) on day 0; day 1 (P=0.001), and day 2 (P=0.020) post-

hatch in comparison to pullets from dark incubation. Behaviour rhythms over the photophase were 

present in resting behaviour on day 0 (P<0.035), day 2 (P=0.001), walking day 0 (P<0.001) and 

day 1 (P=0.023) and foraging on day 2 (P=0.017) under all four treatments. In conclusion, in-ovo 

photoperiod impacted LSL incubation time without negatively affecting the development of the 

embryo or increasing the stress levels at hatch or 21 days post-hatch. 

KEYWORDS: Incubation, photostimulation, stress, the spread of hatch, H:L ratio, asymmetry. 
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4.2 Introduction 

The past decades have shown progress in understanding the benefit of using in-ovo lighting 

to improve bird development and health (Rogers and Krebs, 1996; Özkan et al., 2012a, 2012b; 

Archer and Mench 2014a). Evidence suggests that the effects of in-ovo lighting on the embryo can 

differ with the length of the photoperiod. For example, longer photoperiods resulted in increased 

multiplication of cells and accelerated embryo development and metabolism (Siegel et al., 1969; 

Walter and Voitle, 1972; Copper et al., 2011). Exposure of fertile eggs to a daily 18L:6D 

photoperiod during incubation accelerated house sparrow (Passer domesticus) embryonic 

development and metabolism and reduced incubation time (Copper et al., 2011). Accelerated 

development and reduced metabolism during incubation were also noted on White Leghorn 

embryos exposed to a 24L:0D photoperiod during the first week of incubation (Siegel et al., 1969).  

Additionally, light can stimulate an increase in White Leghorn embryo weight as early as 

the first 4.5 days of incubation with a 24L:0D (incandescent light) photoperiod (Lauber, 1974). 

The exposure of broiler eggs to a 16L:8D (fluorescent light) photoperiod from day 0 to 21 also 

increased embryo weight relative to egg weight and reduced yolk residue weight compared to eggs 

exposed to light on the last week of incubation only or a 0L:24D incubation photoperiod (Özkan 

et al., 2012a).  

A photoperiod length during incubation can also affect stress levels. Archer and Mench 

(2013) reported impacts on bird health. These authors exposed fertile broiler eggs to a 12L:12D 

photoperiod during incubation, and this resulted in a stimulated immune system showing higher 

production of antibodies measured 3 weeks post-hatch compared to chicken incubated under a 

0L:24D or 1L:23D photoperiod. Additionally, 12L:12D (fluorescent light) photoperiod during 

broiler eggs incubation reduced the levels of corticosterone in 4 weeks old broilers as a post stress 

response (Archer and Mench., 2013). Furthermore, a lower asymmetry level was observed in 

seven-week old birds hatched from a 12L:12D in-ovo incubation (Archer and Mench., 2013). 

However, the timing of light exposure could potentially be a cofactor. For instance broiler eggs 

incubated under a 12L:12D photoperiod from day 0 to 21, showed reduced fear level, lowered 

body asymmetry, decreased corticosterone and increased antibodies in the hatched chicks 

compared to chicks incubated under the same illumination and photoperiod from day 7 to 21, or 

from day 14 to 21 or incubated without light from day 0 to 21 (Archer and Mench, 2014a). These 



 

71 

 

changes signal a reduction in stress, through actions of the body’s stress system. Specifically, a 

primary regulator of stress in birds is the hypothalamus-pituitary-adrenal (HPA) axis (Scanes, 

2016). Under stress, birds stimulate the release of glucocorticoids, adrenocorticotropic hormone, 

and corticotropin-releasing hormone into the bloodstream in response to a stressor. High levels of 

glucocorticoids in the body can result in depression of the immune system and elevate the 

proportion of heterophils to lymphocytes (Scanes, 2016).  

The most common types of light sources in previous in-ovo lighting studies were either 

incandescent, fluorescent, or light emitting diode (LED). The incandescent light has become less 

common, while the LED light bulbs have increased in popularity due to the availability of 

monochromatic options and durability. Red light is among the monochromatic options for in-ovo 

lighting incubation, and it may potentially be a good fit for White Leghorn egg incubation (Archer, 

2015b), as it may result in improvements in hatchability and chick quality compared to chicks 

incubated under white light (Archer, 2015b).  

Despite the available evidence, there appears to be no research focusing on the 

determination of the optimal length of photoperiod using red-light spectrum LEDs for hatch and 

early brooding parameters in chicks. Therefore, the objectives of this work were to investigate the 

impact of a range of photoperiod lengths using red (644 nm) LED lighting systems on Lohmann 

LSL-Lite (LSL) fertilized eggs during 21.5 days of incubation, on hatch traits, and chick growth, 

and behavioural expression (in percentage of time). A further objective was to determine if the use 

of various photoperiods during incubation results in diurnal expression of behaviour during the 

photophase. It was hypothesized that as photoperiod increased under red light, the following would 

occur:  

1) A reduction in incubation time because of increased metabolism in the diurnal phase 

(Copper et al., 2011) and accelerated embryo development (Isakson et al., 1970; Lauber., 

1975; Copper et al., 2011). 

2) An improvement in chick quality at hatch, as it is possible that physiological rhythms exist 

under day/night in-ovo photoperiods that do not occur under constant dark. Photoperiod 

length affects the rhythm of melatonin hormone syntheses (Zawilska et al., 2006) and the 

melatonin hormone can have beneficial effects on the immune system. 

3) Behavioural changes, including decreasing aggressive behavioural performance and 

increasing comfort behavioural expression. The changes may be a result of a reduction in 
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fear responses, resulting in a decrease in stress levels. (Archer and Mench, 2013; Archer 

and Mench, 2014a). 

4) All of the L:D incubated (6L:18D, 12L:12D and 18L:6D) flocks will show the presence of 

a diurnal behaviour rhythm over the photophase while a behaviour rhythm will be lacking 

for pullets from the 0L:24D.  

4.3 Material and methods 

The research and experimental procedures were approved by the University of Saskatchewan’s 

Animal Care Committee following the guidelines set out by the Canadian Council on Animal Care 

(2009). 

Experimental Design 

Four incubators (1502 Sportsman, GQF Manufacturing Co., Savannah, GA) with windows 

blocked to eliminate outside light were outfitted with dim to red LED lighting tubes (1 tube 72.6 

cm. 7W from AgriShift® TLL, Once Inc., Plymouth, MN) placed under the turning trays. Three 

lighting Dim to Red tubes (red; 641 nm at full intensity) were used per incubator.   

 

Figure 4.1. LED lights outfitted into a 1502 Sportsman incubator. 

Each incubator was outfitted with an automatic lighting timer (Noma® Outdoor Heavy-Duty 

Timer) to create the possibility of providing one of four in ovo-photoperiods in each machine: 0 
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hr of light and 24 hours of dark (0L:24D), 6L:18D, 12L:12D or 18L:6D at an intensity of 535-568 

lux at eggs level. The photoperiods were in place from the day of the set until hatch. Exposing 

embryos to light during incubation occurred under the following photoperiod schedules 0L:24D, 

6L:18D (lights on at 7 am and off at 1 pm), 12L:12D (lights on 7 am and off 7 pm), or 18L:6D 

(light on 7 am and off 1 am). Post-hatch, chicks from all incubation photoperiods were housed in 

the same room separate by pens and exposed to the following lighting schedule; day 0 - 24L:0D, 

day 1- 2 - 23L:1D (light off 6 am and on 7 am), and day 3-4 - 20L:3D (light off 3 am and on 7 

am).  

A total of 1200 Lohmann LSL-Lite fertile eggs were used for this work (Clark’s Hatchery, 

Brandon Manitoba). Upon arrival at the University of Saskatchewan’s Poultry Research Centre, 

the eggs were stored in a cooler at 13.3 °C, then incubated within a maximum of 4 days past day 

of lay. The trial included three replicated hatches, set in a completely randomized block (hatch) 

design. In each hatch, 400 eggs were randomly distributed between the four incubators (100 eggs 

per treatment per hatch). The breeder flock age variability was minimized as much as possible to 

reduce the effect of age; block one breeder flock age was 46 weeks, block two 35 weeks and block 

three 45 weeks of age.  

4.3.1 Experiment 2a: Hatch traits 

Incubation management 

At the set day of incubation, the eggs were removed from the cooler 2 to 3 hours before 

setting in incubators, individually identified (pencil mark), weighed as a group and placed with the 

air cell end of the egg facing up in the incubator trays. One temperature and humidity miniature 

data logger (HygrochronTM DS1923-F5#, Maxim Integrated, San Jose, CA), set to record every 20 

minutes, was placed among the eggs on the top shelf near the back of the machine of each incubator 

to record temperature and humidity among the eggs.  

The incubation temperature was set to 37.8°C and relative humidity (RH) of 50% to 55% 

from 0 to 18 days of incubation. At 18 days of incubation, the eggs were transferred to hatch trays 

located at the lower level of the incubator. The temperature was maintained at 37.8°C and RH was 

increased to 55% - 65% until the hatch endpoint, as recommended by the incubator’s manufacturer. 

Incubator temperature and humidity were monitored daily via machine readouts in the morning 

and evening. 
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4.3.1.2 Hatch data collection 

Embryo mortality - On the 9th and 18th day of incubation, all eggs were weighed and individually 

candled for removal of clear eggs and dead embryos. After removal, clear eggs and those with 

identifiable dead embryos were carefully opened through the air cell for identification of infertile 

eggs and classification of the age of embryo death if present. This was repeated at the hatch 

endpoint when all non-hatched eggs were checked for identification of dead embryo and the stage 

that the death occurred.  

Spread of hatch, duration of incubation and hatchability - On the 20th day (480 hours) of 

incubation, the incubators were checked for hatchlings. Checks started from 8 pm on the 20th day 

until 8 am on the 21.5nd (516 hours) day. During this time, incubators were checked every 4 hours, 

and hatched chicks were counted, then moved to a labelled drawer in an external hatcher (without 

light) until the completion of 21.5 days of incubation (considered the end of the hatch). Lights in 

the hatchery room were switched off during the hatch check when doors needed to be opened, with 

light for checks provided only by a small headlamp worn by the operator. At the hatch endpoint, 

all hatched chicks were counted, and the numbers applied on the Equations 4.1 and 4.2 to calculate 

the hatching percentage of the set and fertile eggs. 

𝐻𝑎𝑡𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑡 𝑒𝑔𝑔𝑠 % =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑡𝑐ℎ𝑒𝑑 𝑐ℎ𝑖𝑐𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡 𝑒𝑔𝑔𝑠
 𝑥 100 = 

 

𝐻𝑎𝑡𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑒𝑟𝑡𝑖𝑙𝑒 𝑒𝑔𝑔𝑠 % =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑡𝑐ℎ𝑒𝑑 𝑐ℎ𝑖𝑐𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑟𝑡𝑖𝑙𝑒 𝑒𝑔𝑔𝑠
 𝑥100 = 

Navel score - At the end of the hatch (516 hours of incubation), all chicks were separated by 

gender using the feather sexing technique described in the Lohmann Tierzucht, Hatchery 

Management Guide (Tierzucht, 2014) and were wing banded for individual identification. Chicks 

(30 female and 30 male) were scored for navel quality using the technique developed by Hatchtech, 

(nd). In this system, the scores ranged from 1 to 3, with a score of 1 meaning the navel was closed 

and clean, 2 indicating the navel had a swollen or dried button to 2 mm resquicious of the umbilical 

cord, and 3 indicating a swollen or dried button larger than 2 mm or an open navel. 

Body weight and length – Thirty male and thirty female chicks were individually weighed using 

a precision scale (Mettler Toledo Pj-3600 Delta Range®). The chick length (30 chicks/treatment) 
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was measured using a standard manual ruler, measuring from the end of beak to the end of the 

middle toe (not including the nail) (Hatchtech, nd).  

Heterophil to lymphocyte ratio - Blood samples (0.3 ml) were taken from the jugular vein of 15 

male chicks right after the hatch endpoint using one cc syringes and EDTA tubes. Blood smears 

were then made using the standard two slide technique (Campbell, 1988), where one slide is used 

to spread out the drop of blood onto the slide. The slides were left for 24 hours before staining 

using Hema 3 stain set (Fisher Scientific Company L.L.C. Kalamazo, MI-USA). The blood smear 

slides were covered with stain in sufficient quantity to cover the whole slide, left for 1 minute and 

rinsed, then left to dry. The slides were observed using a microscope (B-290 TB Optika 

Microscopies® - Italy) at a resolution of 100x /1.25 oil immersion. A total of 100 heterophil or 

lymphocyte cells were counted per slide. The number of heterophils was divided by the number of 

lymphocytes to obtain the H/ L ratio as in equation 4.3 (Vleck et al., 2000). 

𝐻: 𝐿 𝑟𝑎𝑡𝑖𝑜 =
𝐻𝑒𝑡𝑒𝑟𝑜𝑝ℎ𝑖𝑙𝑠

𝐿𝑦𝑚𝑝ℎ𝑜𝑐𝑦𝑡𝑒𝑠
= 

Yolk sac residue, yolk-free body weight - After the blood sampling, 20 male chicks were 

euthanized via cervical dislocation. Dissection then took place to remove yolk sac residue and to 

harvest organs. The yolk-free body weight and yolk sac residue were weighed separately using a 

precision digital scale (PB3002-S Mettler Toledo®). Equations 4.4 and 4.5 were used to calculate 

yolk sac residue and yolk-free body weight relative to live body weight: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑦𝑜𝑙𝑘 𝑓𝑟𝑒𝑒 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 =  
𝑌𝑜𝑙𝑘 − 𝑓𝑟𝑒𝑒 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 

𝐿𝑖𝑣𝑒 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 𝑥 100 = 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑦𝑜𝑙𝑘 𝑠𝑎𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 =
𝑌𝑜𝑙𝑘 𝑠𝑎𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒

𝐿𝑖𝑣𝑒 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 𝑥 100 =  

Heart, liver and GIT (Gastrointestinal tract) segment weights - The heart, liver and GIT 

segments were collected from the male chicks. The GIT was then separated into sections 

duodenum (pancreas loop without the pancreas), jejunum, (from pancreatic loop to Meckel’s 

diverticulum) ileum (from Meckel`s diverticulum to the ileum-cecal junction), cecum and colon. 

The length of each tissue was measured with a ruler, and the weight of the GIT segment was 
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recorded using a two-decimal digital scale (PB3002-S Mettler Toledo®). Organ weight relative to 

live body weight was calculated using the following equation 4.6: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑜𝑟𝑔𝑎𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑂𝑟𝑔𝑎𝑛  𝑤𝑒𝑖𝑔ℎ𝑡

𝐿𝑖𝑣𝑒 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 𝑥 100 = 

Morphological asymmetry - Asymmetry of the left and right femur, tibiotarsus and metatarsus 

of the 20 male chicks were measured post-hatch using an electronic calliper (±0.1 mm) 

(Mastercraft®). For the femur length, the calliper was positioned from the Trochanter major to the 

Gondylus fibularis (Driesch, 1979). The tibiotarsus length was measured with the calliper 

positioned from the Processus cnemialis to the Trochlea tibiotarsi (Driesch, 1979), and the 

tarsometatarsus length from the proximal end to the distal end (Driesch, 1979). 

4.3.2 Experiment 2b: Pullets growth, uniformity health and behaviour  

4.3.2.1 Pullets housing and management  

Post-hatch, females (30 per pen based on in-ovo treatment) were placed in pens (Figure 

4.1) within one room at the University of Saskatchewan Poultry Research Centre (246.43 m2) (four 

pens in total, 4.6 m2 per pen). Before placement, each pen was bedded using wheat straw to 

approximately 10 cm in height, and a cardboard ring was used on the first week to contain the 

chicks for ease of video observation.   

 

 

Figure 4.2. View of the room where the chicks were housed post-hatch  

The temperature was maintained at 34°C from day 0 to 2 and dropped to 33°C from day 3 

to 4. From day 5 to 7, the temperature was maintained at 31°C and from the second week to day 
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21 was kept at 28 °C. The photoperiod in the room (all treatments) during the rearing phase was 

23L:1D from day 0 to 2 with a light intensity of 30 lux, 20L:4D from day 3 to 6 with a light 

intensity of 30 lux, 16L:8D from day 7 to 14 with a light intensity 20 lux, and 13L:11D from day 

15 to 21 with a light intensity of 20 lux. The light was provided with incandescent bulbs, and light 

intensity measured at the bird’s level with a LT-Lutron® LM-8000 (Lutron Electronic Enterprise 

Co., LTD, Taiwan) lux meter.  

Birds were fed commercial chick starter (Table 4.1) ad libitum in tubular feeders (36 cm 

in diameter) with a 20 kg feed capacity (one per pen). Water was available through lubing drinking 

nipples (6 nipples per pen). Supplemental feed (one paper egg tray) and water (one ice cube tray) 

were available in each pen for the first four days. 

4.3.2.2 Pullet data collection  

Growth and uniformity  

Weekly body weight - Female chicks were monitored weekly and weighed individually (to allow 

calculation of flock body weight uniformity) every week up to 21 days of age.  

Behaviour 

Behaviour - The behaviour of the pullets was video recorded for analyses from days 0 to 3 using 

infrared cameras (Panasonic WV-CF224FX; Panasonic Corporation of North America, One 

Panasonic Way 7D-4, Secaucus, NJ – USA) mounted on the ceiling above each pen (4 pens per 

block). The videos were then downloaded to storage drives and later observed using software 

provided by Genetec Omnicast (Genetec Inc., Montreal, Quebec, Canada). At a later date, videos 

were observed using a 20 minutes scan sampling technique, which measures the incidence of each 

behaviour (described on the ethogram on Table 4.2) at each time point in the group and is expressed 

as a percentage of time-frequency of each behaviour. 

Health 

Heterophil to lymphocyte ratio (21 days of age) - The procedures required to calculate heterophil 

to lymphocyte ratio were completed for all pullets at 21 days of age using the same technique used 

on the male at hatch described above.  

Morphological asymmetry (21 days of age) - At 21 days of age, the females were euthanized by 

cervical dislocation and dissected to remove the femur, tarsometatarsus, and tibiotarsus from both 
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legs. The bones were identified according to bird and position of the leg (right) or (left). They were 

then stored in a refrigerator at a temperature of 3.33°C and measured within five days post-

sampling date. The bones measurements were repeated twice, using the technique described above 

for the males at the hatch endpoint.  

Liver, heart and GIT segments sampling (21 days of age) - Twenty pullets per treatment were 

euthanized via cervical dislocation for the collection of heart, liver and GIT segments 

measurements. The GIT was separated into sections including the pancreas, duodenum (pancreas 

loop), jejunum (from pancreatic loop to Meckel`s diverticulum) ileum (from the Meckel`s 

diverticulum to the end of ileum-cecal junction), cecum both sides in longitudinal length and colon 

from the end of ileum to the beginning of the cloaca measured with a ruler. GIT segment weights 

were also recorded using a two-decimal digital scale (PB3002-S Mettler Toledo®). 

4.3.3 Statistical analyses 

A randomized complete block design (hatch period as the block) was used in this study 

with photoperiod as a fixed effect and hatch as the random effect. All statistical analyses were 

performed using SAS® 9.4. Proc Univariate (Shapiro Wilk test) was used to check the data for 

normality. If the data were not normally distributed, a log (y+1) transformation was applied before 

analyses. The incubation duration and spread of hatch were analyzed using non-linear regression, 

based on a 3-parameter logistic growth model:  

Y =
𝜃1

1+𝑒
(−

(𝑥−𝜃2)
𝜃3

)

 

 

Where:  

Y: Photoperiod  

θ1: Maximum hatchability for the experimental unit (incubator). 

θ2: Hours of incubation when reaching 50% of the hatch. 

θ3: Interval from 50 to 75% of the maximum hatchability. 

The parameter estimates were calculated by applying the Gauss-Newton method. 
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Asymmetry data were analyzed using a two-sample comparison t-test to verify differences 

between left and right side, then as ANOVA with Proc Mixed to test for differences between 

treatment means.  

All other data were tested with a one-way ANOVA in Proc Mixed including the spread of 

hatch, duration of incubation, percentage of the hatch of set eggs, percentage of the hatch of fertile 

eggs, navel score, chick length, heterophil to lymphocyte ratio, yolk sac residue absolute and 

relative weight, yolk-free body absolute and relative weight, and organs (liver, heart and GIT 

segments) absolute and relative weights.  

The daily behaviour means output was analyzed using Proc Glimmix with a Gaussian 

distribution, and Identity link function. The daily mean of behaviour output was normally 

distributed. Results were declared significantly different when P<0.05 and a trend was noted when 

0.10>P>0.05. The Tukey test was used to separate the means when the differences were 

significant. 

Behaviour rhythm during the photophase were analyzed using two way ANOVA repeated 

measures (fixed effects photoperiod and time) in a RCBD design (blocked by hatch). If an 

interaction between photoperiod and time showed significant differences (P<0.05) or a trend 

(0.10>P>0.05) within a measured variable, then each treatment was analyzed separately using 

regression linear (REG) and quadratic (RSREG) model to check if behaviour rhythm over the 

photophase was present or absent.  

4.4 Results 

4.4.1 Experiment 2a: Hatch traits 

Incubator temperature 

In-ovo photoperiod had no impact on incubator ambient temperature (Table 4.3). 

Embryo mortality 

In-ovo photoperiod did not impact embryo mortality (Table 4.4) during the early, mid or 

late stages of incubation.  

Duration of incubation spread of hatch and hatchability 

Eggs incubated under 18L reached 5% of chicks hatched at 481.6 hours of incubation 

(P=0.001) starting hatch earlier compared to those incubated under 0L (489.2 h) or 6L (485.6 h). 
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Chicks hatched from 12L (484.6h) did not differ from 6L or 18L incubation, but the chicks still 

hatched earlier compared to incubation without light. When examining the time taken to reach 

10%, 25%, 50% or 75% of eggs hatched, those incubated under 18L reached that level the soonest 

(P<0.05) compared to 0L, 6L, and 12L. In addition, the time to 90% of the chicks to hatch differed 

with in-ovo photoperiod, but only eggs incubated under 18L differed from those incubated under 

0L. Photoperiod length did not impact the spread of hatch (Table 4.6), nor hatchability of set and 

fertile eggs (Table 4.7).  

Navel score 

Chicks navel scores for navel healing at hatch did not differ (Table 4.8) between 

photoperiods for score 1, 2 or 3 for either the male or female chicks. 

Body length and weight 

Body length of hatchlings was affected by photoperiod (P<0.05, Table 4.9).  

Photostimulation under 18L increased male chick length (P=0.023) compared to those chicks from 

12L and 6L incubation but did not differ from chicks hatched from 0L incubation. Female chick 

length tended (P=0.091) to be longer for chicks hatched from 12L compared to chicks hatched 

from a 18L, 6L or 0L incubation.  

A significant difference was observed for male chick weight (P<0.001, Table 4.9) with 

male chicks from 0L incubation being heavier at hatch endpoint than chicks from the 6L or 18L 

incubation photoperiods. The chicks hatched from the 12L photoperiod were heavier than 18L 

chicks but lower than 0L hatched chicks. Female chick weight at hatch endpoint (P<0.001, Table 

4.9) were heavier for 0L hatched chicks than those hatched from the 6L, 12L, and 18L treatments. 

Female body weight from 18L incubation chicks were the lowest compared to 6L chicks, and 12L 

chicks’ weight were intermediate. 

Yolk sac residue and yolk-free body weight 

In-ovo lighting photoperiod affected absolute yolk sac residue weight (P=0.006) and 

absolute yolk-free body weight (P=0.001, Table 4.10). Yolk residue weight was lower in chicks 

incubated under 18L compared to yolk residues of chicks from 0L incubation, while yolk sac 

residue from chicks incubated under 6L and 12L were intermediate. The absolute yolk-free body 

weight was heavier in chicks hatched from 0L incubation compared to chicks from 12 and 18L in-

ovo lighting incubation, and absolute yolk-free body weight from chicks incubated under 6L was 
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intermediate. On the other hand, no differences were observed for relative yolk sac residue and 

yolk-free body weights to live body weight (P>0.05, Table 4.10).  

Liver, heart and GIT segment weights 

Absolute weight 

No differences were observed as a result of in-ovo lighting photoperiods for male chicks’ 

liver, heart, jejunum, ileum, cecum, and colon (P>0.062, Table 4.11). However, in-ovo 

photoperiod did impact duodenum weight (P=0.004), with lower duodenum weight for chicks 

from 18L compared to chicks hatched from a 0L, 6L, and 12L photoperiods.  

Relative weight 

When comparing organs and GIT segment weights relative to live body weight (Table 

4.13), incubation photoperiod resulted in significant differences for percentage of liver weight 

(P=<0.001), with 18L photoperiod chicks having greater relative weight compared to chicks from 

0L and 6L photoperiods. The chick relative liver weight from photoperiod 12L did not differ from 

chicks derived from the 18L photoperiod. Chick relative heart weight differed significantly 

(P=0.004) with a higher percentage noted in chicks from 18L in-ovo lighting photoperiod 

compared to chicks from the 0L and 6L in-ovo lighting photoperiods. Chicks incubated under 12L 

had an intermediate relative heart weight. Chick relative duodenum weight to live body weight 

was higher (P≤0.001) under 18L compared to those hatched from 0L, 6L and 12L treatments. 

Relative ileum weight to live body weight was also greater (P≤0.001) for chicks hatched from an 

18L photoperiod compared to chicks from 0L. The relative ileum weight for chicks under 6L and 

12L photoperiods were intermediate. Relative cecum weight differed (P=0.013) between chicks 

from differing in-ovo photoperiods. For chicks incubated under 18L, the relative cecum weight 

was heavier (P=0.013) compared to chicks incubated under 0L and 6L photoperiods. However, 

the relative cecum weight of hatchlings from 18L in-ovo photoperiod did not differ from chicks 

incubated under a 12L photoperiod. Relative jejunum weight was not affected by in-ovo graded 

photoperiod.  

Welfare and stress indicators 

Heterophil and lymphocyte ratio (male at hatch) 

Incubation photoperiod did not impact chick stress as measured by heterophil to 

lymphocyte ratio (Table 4.12).  
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Morphological asymmetry (male at hatch) 

Incubation photoperiod did not impact chick stress as measured by composite asymmetry 

(Table 4.12).  

4.4.2 Experiment 2b: Pullets growth, uniformity health and behaviour  

Weekly body weight and uniformity 

During incubation, photoperiod did not influence female weight uniformity, as measured 

by the coefficient of variation of individual weights taken at 0, 7, 14 or 21 days of age (Table 4.13). 

It did, however, result in significant differences in body weight at day 0 (P<0.001) and day 7 

(P=0.001), with pullets hatched from a 0L photoperiod having a greater body weight than those 

hatched from the 6L and 18L treatments. Pullets from the 12L were intermediate. At day 14, the 

average pullets body weight or chicks from the 0L photoperiod incubation remained heavier 

(P=0.013) compared to pullets hatched from a 6L and 12L photoperiod. However, pullets hatched 

from the 18L photoperiod incubation resulted in an intermediate body weight value. At day 21, 

pullets hatched from the 0L incubation photoperiod continued to have a greater body weight 

(P=0.018) compared to those hatched from a 12L and 18L incubation photoperiods, and pullets 

hatched from a 6L photoperiod incubation had intermediate body weight values.  

Welfare and stress indicators  

Heterophil to lymphocyte ratio (21 days old) 

Incubation photoperiod did not influence stress in LSL pullets as measured by heterophil 

to lymphocyte ratio at 21 days of age (Table 4.14).  

Morphological asymmetry (21 days old) 

Morphological asymmetry, analyzed as composite asymmetry, did not significantly differ 

as a result of in-ovo photoperiod incubation. However, a trend (P=0.060) was noted, with 12L 

incubated birds having a higher score for asymmetry compared to 18L, 0L, and 6L incubation 

photoperiods (Table 4.14). 
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Liver, heart and GIT segments weights (21 days old) 

Absolute weights 

The absolute weight of organ and GIT segments (liver, heart, pancreas, duodenum, 

jejunum, ileum, cecum and colon) measured in female pullets at 21 days of age (Table 4.15) did 

not differ as a result of in-ovo photoperiods length.  

Relative Weights 

When corrected for body weight, no treatment differences were observed for the relative 

heart, duodenum, jejunum, cecum and colon weights (Table 4.15). However, relative liver weight 

to live body weight was different (P=0.036) due to incubation photoperiod, with lower relative 

weights resulting when incubated under 18L compared to 6L. The relative liver weights from 

chicks incubated under 0L and 12L were intermediate. A trend was noted for relative pancreas 

weight (P=0.055) with LSL pullets hatched from 0L having a lower relative weight compared to 

those hatched from 18L, 6L, and 12L incubation. Additionally, another tendency was observed for 

relative ileum weight (P=0.051), as pullets hatched from 6L photoperiod had a higher relative 

weight compared to pullets hatched from 0L, 12L, and 18L incubation photoperiods. 

Behaviour output of LSL pullets hatched from various in-ovo lighting photoperiod 

Day 0 – Female chick behaviour was monitored on the first four days post-hatch. No, 

differences (P>0.05) were noted at day 0 for the percentage of time chicks were foraging, at the 

feeder, at the drinker, preening, aggressive or low incidence behaviours (including beak wiping, 

unknown, stretching, dustbathing, ground pecking and object pecking) (Table 4.16). However, 

active behaviours differed among the flocks. Chicks incubated under 18L photoperiod (P=0.029) 

walked the most and those under 0L the least. Pullets from the 0L and 12L photoperiod were 

intermediate. 

The flocks also differed significantly in the percentage of time spent running (P=0.003) as 

a result of in-ovo photoperiods, pullets from 18L in-ovo lighting spent a higher percentage of time 

performing running behaviour compared to chicks from 0L, 6L and 12L incubation photoperiods. 

The percentage of time spent standing differed (P=0.015), as pullets hatched from an 18L spent a 

higher percentage of their time standing when compared to 0L and 12L, while pullets hatched from 

a 6L photoperiod were intermediate.  
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Additionally, resting behaviour differed significantly among pullets from different in-ovo 

photoperiod length (P=0.039). Pullets hatched from an 18L incubation photoperiod spent a lower 

percentage of their time performing resting behaviour compared to pullets hatched from a 0L, 6L 

and 12L incubation photoperiod.  

Day 1 - On day one post-hatch (Table 4.17) no differences were observed as a response to 

incubation photoperiods for a percentage of time at the feeder, at the drinker, or performing 

standing, preening, aggressive, or low incidence behaviours. Walking behaviour remained 

different (P=0.037), and pullets from an 18L incubation photoperiod spent a higher percentage of 

time performing walking behaviour than the pullets hatched from 0L incubation photoperiod; 

pullets hatched from 6L and 12L incubation photoperiod were intermediate. Furthermore, running 

behaviour differed (P=0.023) among pullets, with chicks hatched from an 18L incubation 

photoperiod spending a higher percentage time expressing running behaviour compared to those 

hatched from a 6L incubation photoperiod. Chicks hatched from the 0L, and 12L incubation 

photoperiods were intermediate. Pullets hatched from an 18L incubation photoperiod still spent a 

lower percentage of the time performing resting behaviour (P=0.001) than pullets from 0L, 6L and 

12L treatments. Foraging behaviour was affected by in-ovo lighting (P=0.034) at day one, as 

pullets from 18L spent a greater percentage of time performing foraging than pullets from 0L, 

chicks from 6L and 12L incubation were intermediate. 

Day 2 - On day two post-hatch (Table 4.18) no differences were noted among pullets 

hatched from the various in-ovo lighting photoperiods for the percent of time spent at the feeder 

or drinker, walking, running, standing, preening, and performing aggressive, and low incidence 

behaviours. Differences were observed for the percent of time pullets spent perform resting 

behaviour (P=0.020). The 0L incubation photoperiod still resulted in chicks that spent a greater 

percentage of time resting as compared to pullets hatched from the 18L incubation photoperiod, 

while the pullets hatched from 6L and 12L incubation photoperiods were intermediate. Foraging 

behaviour differed (P=0.016) among pullets incubated under different in-ovo lighting 

photoperiods, as pullets from the 0L incubation treatment spent a lower percentage of time 

performing foraging behaviour compared to chicks hatched from 18L photoperiod, while pullets 

hatched from 6L and 12L were intermediate.  

Day 3 - On the third-day post-hatch (Table 4.19) no differences in behavioural performance 

over the diurnal period were seen for the percentage of time spent at the feeder, at the drinker, or 
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performing walking, running, resting, foraging, preening, aggressive, or low incidence behaviours 

among all treatments. However, at day three a shift in standing behaviour was observed, as flocks 

incubated under 6L photoperiod spent a higher percentage of the photophase time performing 

standing behaviour (P=0.014), compared to chicks hatched from 0L and 12L photoperiod 

incubation, while chicks from 18L photoperiod were intermediate. A trend was observed for flock 

resting behaviour (P=0.065), with the chicks hatched from a 12L incubation treatment spending 

the highest percentage of their time resting, and those from the 6L the least. Additionally, a trend 

was noted for the percentage of time spent at the feeder (P=0.087), where chicks incubated under 

the 6L treatment spent the greatest percentage of the time, and those from the 12L the least. 

Pullet behaviour rhythm over the photophase 

Behavioural data that showed significant differences in the repeated ANOVA measures 

were then tested for the presence or absence of a diurnal rhythm during the photoperiod. The results 

are shown in Figures 4.2 – 4.7.  

Resting  

On the day of the hatch (day 0), the resting behaviour of chicks housed in floor pens over 

the brooding photophase followed a quadratic fashion for pullets from all four-incubation 

treatments (P<0.001) regardless of the in-ovo lighting duration) (Figure 4.2).  

On day one post-hatch resting behaviour over the diurnal photophase period still followed 

a quadratic model (P<0.001), for 0L, 6L, 12L, and 18L (Figure 4.3).  

On day two, the resting behaviour over the photophase still followed a quadratic mode for 

0L (P<0.001), 6L (P<0.001), 12L (P=0.003), and 18L (P<0.001) (Figure 4.4), with highest resting 

behaviour performance at the end and beginning of the day for all four groups.  

Walking  

On day zero pullets from all in-ovo treatments performed walking behaviour in a quadratic 

fashion, 0L (P=0.001), and 6L, 12L and 18L (P<0.001) over the photophase (Figure 4.6). On day 

one walking activity still followed a quadratic model (P<0.001) for all four treatments (0L, 6L, 

12L, and 18L ) Figure 4.7. The graphs suggest that timing of the behaviours differs, with birds 

incubated under 0L walked most for a short period in the late afternoon, while those from 6L 

treatments showed a higher level of walking through the major part of the day.  
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Foraging 

On day two post-hatch 0L hatched pullets did not perform foraging in a diurnal rhythm 

during the photophase, but chicks from all other incubation treatments did (P<0.001 for all 

treatments) Figure 4.13. Visual interpretation of the graphs suggests that pullets hatched from a 

6L and 12L incubation photoperiods expressed foraging behaviour over the day in a wider spread 

distribution over the photophase, while pullets hatched from an 18L incubation photoperiod 

showed an increase in foraging behaviour at the end of the day, with the highest peak in the 

percentage of the behaviour performed between 10 pm and 4 am just one hour before the lights off 

period. The 12L highest percentage of behaviour was performed between 7 pm and 3 am, which 

decrease 3 hours before the lights off period. On the other hand, pullets from 6L and 12L showed 

lowest foraging activity about three hours before the lights went off. 

At the feeder 

Times spent at the feeder during the photophase on day two showed a trend (P=0.061) 

between in-ovo photoperiod and time of day post-hatch. The behaviour rhythm over the 

photophase was performed in a quadratic mode for all four groups 0L, 6L, 12L (P<0.001), and 

18L (P=0.001).  

4.5 Discussion 

Previously researchers have published evidence of in-ovo lighting photostimulation 

impacts on embryo development (Siegel et al., 1969; Copper et al., 2011). The majority of that 

work that examined photoperiod during incubation focused on white light, with a comparison of 

only two photoperiods. The current research differs, as it has compared four photoperiods, using 

red light when provided, to allow an understanding of the relationships between light duration and 

the measured parameters.  

In the current research, photoperiod length primarily affected the duration of incubation, 

when comparing standard dark incubation to in-ovo lighting photoperiods, longer daylength 

resulted in faster hatching, and the addition of dark (i.e. from 18 to 12 or 6) slowed the hatch. 

Copper et al. (2011) reported similar data in their study of House Sparrows (Passer domesticus). 

Their experimental design incubated these eggs under an 18L and a 12L photoperiod and found 

that the incubation time was reduced under 18L. Additionally, Walter and Voitle (1972) observed 
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that broiler eggs incubated (incandescent light) under a 24L photoperiod hatched earlier than those 

eggs incubated under a 0L or 12L photoperiod. It appears this is not species specific, as Fairchild 

and Christensen (2000) observed acceleration in turkey embryo development, which resulted in a 

reduced incubation time when those turkey eggs were incubated under a 12L (incandescent light) 

in comparison to a 0L photoperiod. Shafey and Al-mohsen (2002) also reported reduced incubation 

time for fertile broiler eggs incubated under a 24L photoperiod, however these authors used green 

fluorescent light as illumination source. The mechanism(s) whereby longer daylength increases 

the speed of embryonic development has not been confirmed. Cooper et al. (2011) reported higher 

metabolism in embryos during the light phase, which may contribute to acceleration in the 

development of the embryo and an earlier hatch. Another possible reason for an earlier hatch 

initiation could be an increase in incubator temperature as a result of an addition of lighting systems 

to the incubation equipment. This is more likely to occur with the use of incandescent lighting, 

which produce heat, LED bulbs are reported to produce minimal heat. Rozenboim et al. (2004) 

observed that the use of continuous lighting (green 560 nm LED) during incubation increased 

broiler egg yolk temperature by 0.01% for every 1 minute of eggs exposure to the light and 

suggested that an intermittent lighting program would suppress the addition of heat caused by 

lighting. These authors did not report if this heat was a response to the bulb, or if a higher 

metabolism from eggs incubated under lighting, as suggested by Cooper et al. (2011) could be the 

reason. Walter and Voitle (1972) and Fairchild and Christensen (2000), using incandescent light 

bulbs, incubated fertile broiler and turkeys’ eggs and did not observe the increase in heat from in-

ovo lighting. Not all studies agree, however, Özkan et al. (2012a) did not find differences for an 

incubation duration of broiler eggs under a 16L photoperiod (cool white fluorescent) to a 0L 

photoperiod incubation. The incubation of broiler eggs under a 15 min L:15 min D (INT) 

photoperiod using green LED light as illumination source also did not affect the incubation 

duration and hatch time (Rozenboim et al., 2004). The majority of in-ovo lighting studies do not 

include incubation time in their reports, or temperature of the incubators other than the temperature 

on the machine readouts, resulting in a limited number of studies reporting effects of light on 

incubation time. 

In the current study, our results mimicked those found by Walter and Voitle (1972) and 

Fairchild and Christensen (2000), in that the temperature among the incubating eggs did not differ 

statistically between the photoperiods. Although photoperiod length under red (LED) light in the 
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current research affected incubation length, it did not affect the spread of hatch, meaning that 

variability in time from start to end of hatch did not differ. 

The literature suggests that the use of in-ovo lighting impacts the hatchability of set and 

fertile eggs. Adam and Diamond (1971), reported an increase in hatchability of broiler eggs by 

providing peaks of light (incandescent light) at critical stages of development (17 or 19 days of 

incubation). Archer (2015b), using red (LED) light on a 12L schedule noted an improvement in 

hatchability of fertile White Leghorn eggs, and the use of white (LED) light under a 12L 

photoperiod improved the hatchability of fertile broiler eggs (Archer, 2015b; Huth and Archer, 

2015). In the current trial, using a red (LED) light, hatchability of either fertile or set eggs were 

not affected by the photoperiod tested. The differences in studies could be a result of the timing of 

light exposure or could be related to the minimal number of replicates used in the current study 

(3).  

Despite the earlier hatch with the use of a light-dark cycle, particularly the 18L 

photoperiod, chick health did not suffer. No effect on mortality or navel healing was noted in the 

current research. This agrees with the data reported by Huth and Archer (2015), who tested two 

photoperiods (0L or 12L, LED light) and found no differences in embryonic death. Other studies 

reported an increase in navel healing when chicks hatched from a 12L photoperiod compared to a 

0L photoperiod (Walter and Voitle, 1972; Archer, 2015b). Walter and Voitle (1972) observed 

increased development and maturation of embryos as a result of longer day length during 

incubation, thereby reducing incubation time and as consequence possibly increasing navel 

healing.  

It is thought that the length of the chick at hatch can impact meat yield (Molenaar et al., 

2008; Petek et al., 2010). However, female chicks hatched from 18L photoperiod showed a 

tendency in having a longer length at hatch in photoperiods >12L but showed a lower body weight 

at hatch and 21 days old. If chicks hatch earlier, does it impact the body weight of the hatchling? 

Walter and Voile, (1972) did not observe any differences in broiler chicks body weight at hatch 

when embryos were exposed to 0L, 12L, or 24L (incandescent bulb) during the incubation process. 

Huth and Archer (2015) also did not find a difference in body weight at hatch for chicks incubated 

under 0L and 12L (white LED light) photoperiods. In the current work, however, the body weight 

of chicks was measured at hatch endpoint (516 hours post start of incubation period) for all 

treatments independent of hatching time, and chicks that hatched sooner were lighter. These 
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differences could be attributed to experimental methodology, and it can be speculated that the 

reduction in body weight was likely related to the length waiting time without feed and water from 

hatch to processing resulting in dehydration and weight loss. However, Shafey and Al-mohsen 

(2002) did observe lower chick weight in hatchling`s exposed to a 24L green light for the first 18 

days of incubation. Their study design differed from the current research as these authors weighed 

the hatchlings at the same time they checked for hatched chicks, whereas in the current study we 

waited to weigh all the chicks at the hatch endpoint. Future work should consider this and weigh 

all chicks as they hatch. 

Along with the reduction in incubation time, and the decrease in absolute body weight at 

hatch, a reduction in absolute yolk sac residue at the hatch endpoint was observed with increased 

day length in this study. Chicks incubated under 18L had lower yolk sac residue and lower yolk-

free body weight compared to those exposed to a 0L incubation treatment. In contrast, the relative 

yolk sac residue and relative yolk-free body weight at hatch endpoint were not different among 

photoperiods. Özkan et al. (2012a) reported similar results, and these authors observed a lower 

yolk sac residue weight in broiler embryos at 18 days of incubation when under a 16L photoperiod. 

They did not mention yolk sac residue at hatch. The relative weights of the duodenum, jejunum 

and cecum (in relation to live body weight) at the end of hatching process for chicks incubated 

under ≥12L photoperiods were heavier than those chicks from in-ovo lighting photoperiods ≤6L. 

Heavier relative intestine weight at hatch has been linked to an improvement in bird performance 

through improvements in weight gain and feed conversion in broiler chicks (Ipek and Sozcu, 2015; 

Villanueva et al., 2016). Increasing in-ovo lighting day length in the current study increased the 

relative weights (to body weight) of the heart, liver and some segments of the GIT at hatch. Liver 

and heart weight relative to body weight was also heavier in chicks from in-ovo lighting 

photoperiods ≥12L. The increase in relative weight to body weight in some of the variables 

measured might be due to the reduction in absolute yolk sac weight in chicks that hatched earlier 

in addition to dehydration as those chicks that hatched earlier spent longer waiting time without 

feed and water to be processed, which could affect the proportional weights. The in-ovo 

photoperiod incubation had minimal impact for absolute weights; as only the duodenum weight 

was affected by in-ovo lighting photoperiod. This differs from the findings of Fairchild and 

Christensen (2000), who observed effects on absolute liver and heart weights for chicks hatched 

from 0L and 12L photoperiods. These authors noted a hatching time effect on liver and heart 
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weights, and despite hatching later, the chick`s body weight did not differ when compared to chicks 

that hatched earlier. It was noted that absolute heart and liver weights of the chicks, increased as 

the timing of hatch increased (Fairchild and Christensen, 2000), which is opposite to the results 

from the current study, where an increase in relative heart and liver weights was observed in 

hatchlings. The artificial light in the incubator might accelerate these physiological processes as 

the requirements for maintenance energy increases under the light. As an example, an increase in 

the embryo’s metabolism during the photophase of the L:D cycle was observed in embryos 

incubated under an 18L photoperiod (Copper et al., 2011). Additionally, the energy expenditure in 

live broiler birds is also higher during the photophase when reared under an L:D cycle (Kim et al., 

2014). However, Özkan et al. (2012a) found that a 16L photoperiod incubation illuminated by 

white (fluorescent) light does not affect broiler chick`s relative liver and heart weights at the 

embryonic age 13 and 18 compared to embryos incubated under dark. However, the current 

research observed increased in relative liver and heart weights in hatchlings when embryos were 

exposed to 12 > photoperiod during 21 days of incubation. These findings suggest that if a change 

in relative liver weight to live body weight occurs, it could be during the last three days of 

incubation, when the yolk sac absorption is increased due to changes in metabolism processes, 

increased energy requirements and increased need for mobilization of glucose. The chicks from 

12L and 18L photoperiods started the hatching process earlier and had lower yolk free body weight 

at hatch. This suggests that a different metabolic state in the chicks may have been due to the 

photoperiod length impact on embryo development. 

During the grow-out period up to day 21 post-hatch, pullets hatched from a 0L incubation 

were heavier than those incubated under 18L. Of note, difference in body weight was already 

present at the hatch. It would be of interest to use a longer research study period to observe the 

development of pullets until they reach a mature age. Other published studies have not observed 

body weight effects on birds hatched from various in-ovo photoperiods. For example, broilers 

hatched from 0L, 12L, and 24L (fluorescent light) photoperiods and reared under a 12L schedule 

did not differ in body weight from hatch to 42 days of age (Archer et al., 2009). In addition, no 

differences in body weight were seen in broiler chicks hatched from 0L and 12L (cool white LED) 

incubation photoperiods and reared under a 12L lighting schedule (Huth and Archer, 2015) 
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In the current study at 21 days of age, only relative liver weight was affected by in-ovo 

photoperiod length, with the percentage weight lower for livers from pullets hatched from 18L 

incubation.  

Stress does not seem to be impacted by in-ovo photoperiod, as no effect was noted on H:L 

ratio or composite asymmetry levels in males at hatch or pullets at 21 days of age. However, at 21 

days old, pullets from 12L showed a tendency for higher asymmetry level which would indicate 

an increased stress level. This is contrary to Huth and Archer (2015) who observed a reduction in 

physical asymmetry scores and H:L ratio in 14 days old leghorn chicks compared to those chicks 

from dark incubation. In agreement with Archer et al. (2009), Archer and Mench (2013) also 

observed reduced composite asymmetry in 42 day of age chickens hatched from a 12L incubation 

compared to chicks incubated under 6L, 1L, or 0L, and Archer and Mench (2014a) observed 

reduced composite asymmetry in broilers hatched from a 12L photoperiod incubation compared 

to 0L incubation. However, when the eggs were exposed to light just on the first or last week of 

incubation, the chicks showed intermediate values for composite asymmetry, suggesting that an 

exposure to light during the entire incubation could be beneficial in minimizing environmental 

stress during incubation. Low asymmetry levels and a lower H: L ratio might indicate good 

welfare. However, in the current study, the tendency for increase of composite asymmetry in 21 

days of age pullets hatched from a 12L incubation appears random rather than a strong indicator 

of stress. 

It is known that photoperiod length provided to birds can cause significant changes to their 

behaviour (Schwean-Lardner et al., 2012). With evidence that light can reach embryos through the 

shell (Shafey et al., 2002), it is of interest to know whether adjusting daylengths during incubation 

can alter chick behaviour soon after hatch. In this study, there was little impact on nutritive and 

comfort behaviour of pullets from the day of hatch to three days of age. For example, no effect 

was found on the percentage of time the pullets spent at the feeder, at the drinker, preening and 

other low occurrence behaviours post-hatch.  

However, the impact of in-ovo photoperiod on hatchlings active and inactive behaviours is 

similar to the effects seen on birds reared under different photoperiods. Furthermore, the most 

significant effects on pullet’s locomotor activities were observed from photoperiods ≥ 12L which 

increased active behaviours, and the use of shorter ≤ 6L photoperiods during incubation decreased 

active behaviours on the first-day post-hatch. Visually, it appears that post-hatch, the time pullets 
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began resting on days 0, 1 and 2 under a NC brooding photoperiod coincides with the in-ovo 

lighting scotoperiod time. Pullets showed lower resting in the middle of the day, with resting post-

hatch decreasing as in-ovo lighting photoperiod increased. As those longer photoperiods ≥ 12L 

delayed pullets resting behaviour, those pullets spent more time performing other behaviours such 

as standing, running, walking and foraging when compared to pullets hatched from photoperiods 

6L or 0L (standard dark incubation). The higher percentage of time spent in foraging behaviour 

observed from pullets hatched from an 18L incubation could be a result of the earlier hatch and 

higher consumption of yolk sac that was observed at the hatch endpoint. Those pullets that 

expressed higher percentage of active behaviours could possibly be hungrier, however no 

alterations in at the feeder or at the drinker were observed. These results are similar to what has 

been observed in broilers and turkeys reared under various photoperiod length where locomotor 

activities decrease and inactive behaviour increase as day length increased (Schwean-Lardner et 

al., 2012; Vermette et al., 2016b). The increase in locomotor behaviour might be positive for bird 

development and wellbeing as an increase in physical activities can increase bone health and 

strength. As an example, Hy-line pullets reared in an environment that allows more activities 

demonstrated an increase in bone strength, due to an increase in the bone cortical and medullary 

area, trabecular fitness and bone volume compared to hens reared in more restricted environment 

cages with limited opportunities for locomotor behaviours (Shipov et al., 2010).  

Photoperiod also impacts diurnal rhythms of many behaviours in broiler birds, such as 

feeding, resting etc. (Schwean-Lardner et al., 2014). In the current study, however, the expression 

of a behaviour rhythm over the photophase was noted across all incubation treatments for specific 

behaviour up to an age of 2 days, and only at 2 days old did birds incubated under 0L not 

demonstrated a rhythm for one behaviour (foraging). It is unclear why this occurred. All chicks 

were housed under one lighting program. It could be a chance occurrence that these rhythms were 

not found on day 2 for foraging behaviour in the 0L incubation treatment. It could be possible that 

the rhythm in the 0L birds was not as strong and reached free running status sooner. Further studies 

are needed to evaluate diurnal rhythm over a 24 hour period, in the current study behaviour over 

the scotophase was recorded, however, as the infrared cameras were installed at the room ceiling, 

the distance from the ceiling to the bird level was too high (height 2.90 meters) and clear 

visualization of the chicks become difficult at night due to the small size of the birds on top of a 

wheat straw bedding, even though videos were recorded using an infrared camera. 
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4.6 Conclusion 

This research indicates that the use of longer photoperiods (18L in this case) can alter the 

time to hatch in White Leghorn chicks, by initiating hatch sooner and ending sooner. This did not 

appear to have detrimental impacts on embryonic or chick health. Although chick weight was 

lower in these hatchlings, it is possible that this was a result of experimental design rather than a 

true change in weight. Behaviourally, chicks from the longer photoperiods are more active, which 

could be beneficial in finding feed and water and stimulate bone development and strength in 

commercial situations. 

Interestingly, no effects on measurements of stress were noted, suggesting in-ovo 

photoperiod has little impact. All flocks demonstrated rhythms in many behaviours post-hatch up 

to day 2, but the behaviour rhythm over the photophase in pullets from dark-incubated flocks 

started disappearing earlier. To conclude, using a longer day-night cycle could have beneficial 

impacts for hatcheries and young pullets due to reduction in incubation time without affecting 

stress measures, but would require earlier processing time for the chicks at the hatchery due to 

potential reduction in body weight possible caused by over waiting time without feed and water at 

the hatchery. 
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4.7  Tables 
Table 4.1. Ingredients and nutrients composition of diets diet fed to Lohmann LSL from 

placement to 21 days old 

Ingredients Starter 

21147 
Wheat  42.90 
Corn  12.0 

Barley  10.0 

Peas/lentils  10.0 

Meat meal  9.50 

Canola meal  7.00 

Corn distillers’ dried grains with soluble  5.52 

Tallow  1.00 

Limestone  0.79 

Choline chloride  0.08 

DL-Methionine  0.08 

L-Lysine HCL  0.16 

Mono calcium carbonate  0.28 

Potassium chloride  0.08 

Biotin  0.02 

Enzyme1  0.02 

Amprolium 25%2 0.05 

DG-200 mg selenium  0.04 

Vitamin premix3  0.08 

Mineral premix4  0.07 

Nutrients  

Metabolizable energy (kcal/kg) 2738.00 

Crude protein (%) 19.20 

Arginine (%) 1.13 

Lysine (%) 0.99 

Calcium (%) 0.96 

Methionine and cysteine (%) 0.73 

Chloride (mg/kg) 0.70 

Isoleucine (%) 0.66 

Threonine (%) 0.64 

Non-phytate P (%) 0.43 

Methionine (%) 0.39 

Tryptophan (%) 0.18 

Sodium % 0.17 
11β-glucanase, 700 activity units/g and xylanase enzymes 2,250 activity units/g (GNC 

Bioferm Inc., Bradwell, Canada).  2Coccodiostat. 3 Supplied per kilogram of diet: vitamin A 

(retinyl acetate + retinyl palmitate), 11,750 IU; vitamin d, 3,000 IU; vitamin E (dl--topheryl 

acetate), 30 IU; 

 

vitamin D3 2200 IU; menadione, 2.0 mg; thiamine, 1.5 mg; riboflavin, 6.0 mg; niacin, 60 mg; 
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pyridoxine, 4 mg; vitamin B12, 0.02 mg; pantothenic acid, 10.0   mg; folic acid, 0.6 mg; and 

biotin, 0.15 mg. 4 Supplied per kilogram of feed: iron, 80 mg; zinc, 80 mg; manganese, 80 

mg; copper, 10 mg; iodine, 0.8 mg; and selenium, 0.3 mg.                                    

  

Table 4.2.  Ethogram description of behaviours for measurement in egg production pullets 

Category Behaviour Description 
 

Active 

Walking Movement of the foot one in front of the other towards 

any direction 

Running Accelerated motion of movements of one foot in front of 

the other in any direction. 

Standing Still position 

Resting Resting Sitting with both feet covered 

 

Comfort 

Wing flapping The action of fast-moving  both  wings at the same time  

speed 

 

Dustbathing Lying on the side while head rubbing, bill raking, wing 

shaking and scratching on the floor 

Preening Using the beak to groom the feathers  

 
Stretching Stretching legs or wings or both at the same time 

Nutritive At the feeder Head extended into the feeder, manipulating or ingesting 

feed 

 
At the drinker Head extended to the water line towards the nipple, 

manipulating or not water nipple 

 
 

Exploratory 

Ground 

pecking 

Movement of the head downwards with the beak touching 

the ground  

Foraging Scratching the ground with the foot and at the same time 

making movements forward and backwards 

Object pecking Pecking pen walls, feeder walls, top of the drinker’s line 

Gentle feather 

pecking 

Pecking at plumage of a cage-mate 

  

Aggressive 

Fighting Engaged in an aggressive act with a cage mate with both 

birds in a frontal position to each other and investing 

aggressively towards one another. 

Forceful 

feather pecking 

Forceful pecked directed to another bird 

 

Others Beak wiping Movement with the head side to side with the beak 

touching the ground 

 Head shaking Fast movements of the head from side to side without any 

clear reason. 

 Unknown  Behaviour not able to be identified by the observers 

because the bird is out of the field of view  

Adapted from Hurnik et al., (1995). 
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Table 4.3. Effects of in-ovo photoperiod on average (0-21.5 days of incubation) overall incubator 

temperature (n=3) 

Photoperiod Temperature ͦ C 

0L:24D 37.86 

6L:18D 38.16 

12L:12D 37.49 

18L:6D 38.08 

SEM1 0.052 

P value 0.440 

1Standard Error of the Mean.  

 

 

Table 4.4. Effects of in-ovo photoperiod on Lohmann LSL embryo mortality (n-3) 

 Mortality (%)  
Photoperiod Early1 Mid2 Late3  

0L:24D 4.84 0.69 2.76  

6L:18D 4.49 0.68 2.76  

12L:12D 5.29 0.00 2.80  

18L:6D 5.60 1.78 3.16  

SEM4 1.445 0.752 0.866  

P value 0.912 0.447 0.958  
1Early=0 to 9 days of incubation. 
2Mid=10 to 18 days of incubation. 
3Late=19 to 21.5 days of incubation. 
4SEM=Standard Error of the Mean. 
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Table 4.5. Effects of in-ovo photoperiod on time in hours to reach a specific percentage of 

Lohmann LSL eggs hatching (set time to hatch time) (n=3) 

 

 % Chicks hatched  
Photoperiod 5% 10% 25% 50% 75% 90% 95% 

0L:24D 489.2a 491.5a 494.9a 498.7a 502.3a 505.1a 510.1 
6L:18D 485.6b 487.7b 490.8b 494.1b 498.5b 501.2ab 507.3 

12L:12D 484.6bc 487.0b 490.4b 494.2b 499.7b 503.5ab 508.1 

18L:6D 481.6c 483.8c 487.1c 490.6c 495.2c 498.2b 503.5 

SEM1 0.71 0.68 0.66 0.71 0.56 1.10 2.19 

P value 0.001 <0.001 <0.001 <0.001 <0.001 <0.019 0.256 
1Standard Error of the Mean 
a-c Means within a column with different letters differ significantly (P<0.05). 

 

 

 

Table 4.6. Effects of in-ovo photoperiod on the spread of hatch (time to hatch a specific percentage of 

Lohmann LSL chicks in hours) (n=3) 

 % Chicks hatched 
Photoperiod 5-95% 10-90% 25-75% 50-75% 

0L:24D 20.9 13.6 7.4 3.6 
6L:18D 21.7 13.5 7.7 4.4 

12L:12D 23.5 16.6 9.2 5.4 

18L:6D 21.9 14.4 8.1 4.6 

SEM 2.72 1.36 0.70 0.68 

P value 0.921 0.406 0.354 0.361 
 1Standard Error of the Mean. 
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Table 4.7. Effects of in-ovo photoperiod on the percentage hatch of set and fertile Lohmann LSL eggs 

(n=3) 

Photoperiod Hatch of the set (%) Hatch of fertile (%) 
0L:24D 84.33 87.25 
6L:18D 89.33 92.09 

12L:12D 84.00 88.41 

18L:6D 86.33 90.57 

SEM1 2.614 2.566 

P value 0.191 0.522 
1Standard error of the Mean. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.8. Effects of in-ovo photoperiod on navel scores of male and female Lohmann LSL chicks at 

hatch (n=3) 

 Male (%)  Female (%) 
Photoperiod 11 22 33  11 22 33 

0L:24D 76.81 19.85 3.33  86.66 12.22 1.11 
6L:18D 78.89 15.56 5.55  88.89 11.11 0.00 

12L:12D 77.78 21.11 1.11  83.33 14.44 2.22 

18L:6D 85.29 11.34 3.37  88.66 11.34 0.00 

SEM4 0.096 0.552 0.580  0.065 0.726 0.345 

P value 0.639 0.449 0.413  0.892 0.972 0.189 
1Score 1 = Button is closed and clean.  
2Score 2 = Black button up to 2 mm or black string. 

3Score 3 = Black button over 2 mm or an open navel. 

4 Standard Error of the Mean. 
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Table 4.9. Effects of in-ovo photoperiod on body weight and length1 of female and male Lohmann LSL 

chicks at hatch endpoint (n=3) 

 Live body weight (g)  Length (cm)  
Photoperiod Female Male  Female Male  

0L:24D 41.14a 41.62a  16.95 17.16ab  

6L:18D 40.07b 41.13ab  16.95 17.04b  

12L:12D 39.97bc 40.31bc  17.10 17.03b  

18L:6D 39.03c 39.38c  17.03 17.20a  

SEM2 0.456 0.378  0.436 0.431  

P value <0.001 <0.001  0.091 0.023  
a-c Means within a column with different letters differ significantly (P<0.05).  

 1Length measured from the tip of beak to end of the mid toe.  

 2Standard Error of the Mean.  
 

 

Table 4.10. Effects of in-ovo photoperiod on Lohmann LSL chick yolk-sac and yolk-free body absolute 

weights and weights relative to live body weight at hatch endpoint (n=3) 

Photoperiod Yolk sac (g.) Yolk sac (%) Yolk-free body weight 

(g.) 

Yolk-free body weight (%) 

0L:24D 4.92a 11.70 36.90a 88.30 

6L:18D 4.68ab 11.34 36.36ab 88.66 

12L:12D 4.55ab 11.32 35.59bc 88.68 

18L:6D 4.24b 10.75 34.96c 89.25 

SEM1 0.218 0.565 0.514 0.565 

P value 0.006 0.127 0.001 0.127 
a-c Means within a column with different letters differ significantly (P<0.05). 
1Standard Error of the Mean. 
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Table 4.11. Effects of in-ovo photoperiod on liver, heart and gastrointestinal tract segments weight of 

male Lohmann LSL hatchlings (n=3) 

Photoperiod Liver Heart Duo Jejunum Ileum Ceca Colon 
 Absolute organs and GIT segment weights (g) 
0L:24D 0.89

 0.29 

0.29 0.35b 0.31 0.27 0.17 0.10 

6L:18D 0.92 0.28 0.35b 0.32 0.27 0.17 0.10 

12L:12D 0.91 0.29 0.35b 0.32 0.28 0.17 0.10 

18L:6D 0.92 0.29 0.37a 0.31 0.29 0.18 0.10 

SEM1 0.018 0.007 0.007 0.006 0.007 0.007 0.006 

P value 0.062 0.426 0.004 0.799 0.131 0.338 0.955 

 Relative organs and GI tract segment weights to live body weight (%) 

0L:24D 2.13c 0.70b 0.83b 0.75 0.66b 0.42b 0.24 

6L:18D 2.25b 0.70b 0.85b 0.78 0.67b 0.42b 0.25 

12L:12D 2.27ab 0.71ab 0.87b 0.79 0.70ab 0.43ab 0.24 

18L:6D 2.35a 0.75a 0.95a 0.79 0.74a 0.46a 0.25 

SEM1 0.033 0.020 0.018 0.014 0.014 0.014 0.013 

P value <0.001 0.004 <0.001 0.154 <0.001 0.013 0.798 
a-b Means within a column with different letters differ significantly (P<0.05). 
1Standard Error of the Mean. 
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Table 4.12. Effects of in-ovo photoperiod on stress indicators (Heterophil: Lymphocyte (H: L) ratio and 

composite asymmetry of male Lohmann LSL on the day of hatch (n=3) 

Photoperiod H:L ratio  Composite asymmetry1 

0L:24D 0.36 0.90 

6L:18D 0.42 0.99 

12L:12D 0.38 0.94 

18L:6D 0.41 0.85 

SEM2 0.086 0.105 

P value 0.367 0.117 
1Composite asymmetry length and width=Femur + Tibiotarsus + Metatarsus. 
2Standard Error of the Mean. 

 

 

 

 

 

 

 

 

 

 

  

Table 4.13. Effects of in-ovo photoperiod during incubation on Lohmann LSL pullets body weight (Wt.) and 

body weight uniformity at day 0, 7, 14 and 21 (n=3) 

  Wt. (g)    
Day  Wt0 CV%2 Wt7 CV% Wt14 CV% Wt21 CV%  

0L:24D  141.1±0.470a 6.13 73.5±3.735a 6.81 128.0±4.538a 5.94 205.1±3.518a 6.57  
6L:18D  40.1±0.470b 6.24 70.6±3.735b 8.04 124.5±4.538b 7.66 200.1±3.511ab 6.99  

12L:12D  40.0±0.471b 6.24 71.9±3.735ab 7.68 124.2±4.540b 7.50 200.1±3.521ab 7.11  

18L:6D 39.0±0.470c 6.34 70.7±3.736b 7.14 125.0±4.539ab 7.24 199.6±3.518b 6.50  

P-value   <0.001 0.985 0.001 0.539 0.017 0.200 0.027 0.755  
a-e Means with different letters differ significantly (P<0.05). 

 1Mean ± Standard Error of the Mean. 
2Coefficient of variation. 
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Table 4.14. Effects of in-ovo photoperiod on Lohmann LSL pullets stress indicators Heterophil: 

Lymphocyte ratio (H: L) and composite asymmetry at day 21 (n=3) 
Photoperiod H:L ratio (%) 1Composite asymmetry (mm) 

0L:24D 0.44 1.21 

6L:18D 0.39 1.11 

12L:12D 0.45 1.27 

18L:6D 0.40 1.21 

SEM2 0.062 0.065 

P value 0.536 0.060 
1Composite asymmetry length and width=Femur + Tibiotarsus + Metatarsus. 
2Standard Error of Mean. 
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Table 4.15. Effects of in-ovo photoperiod on Lohmann LSL pullet’s organ and GIT segment weights at 21 

days of age (n=3) 

Photoperiod  Liver Heart Pancreas Duodenum Jejunum Ileum Ceca Colon 
 Absolute organs and GI tract segment weights (g) 
0L:24D 6.26 1.30 1.11 2.40 3.40 2.65 1.21 0.62 

6L:18D 6.31 1.27 1.14 2.38 3.40 2.68 1.17 0.62 

12L:12D 6.10 1.26 1.13 2.34 3.38 2.60 1.16 0.58 

18L:6D 6.13 1.24 1.12 2.39 3.49 2.57 1.19 0.61 

SEM1 0.332 0.095 0.028 0.086 0.076 0.039 0.042 0.059 

P value 0.141 0.105 0.647 0.701 0.444 0.135 0.634 0.316 

 Relative organs and GI tract segment weights to live body weight (%) 

0L:24D 3.08ab 0.64 0.55 1.18 1.68 1.30 0.59 0.30 

6L:18D 3.17a 0.64 0.57 1.20 1.71 1.34 0.59 0.31 

12L:12D 3.07ab 0.64 0.57 1.19 1.71 1.31 0.58 0.29 

18L:6D 3.05b 0.62 0.56 1.19 1.74 1.29 0.59 0.30 

SEM1 0.127 0.057 0.014 0.064 0.066 0.037 0.015 0.033 

P value 0.036 0.284 0.055 0.905 0.300 0.051 0.937 0.418 

1 a-bMeans within a column with different letters differ significantly (P<0.05). 
2 1Standard Error of the Mean. 
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Table 4.16. Effects of In-ovo photoperiod during incubation on LSL pullet’s behaviour post-hatch at day 

0 (n=3) 
 Photoperiod      
Behaviour 0L 6L 12L 18L SEM1 P value    

Walking 3.62ab 3.19b 4.74ab 4.78a 0.346 0.029    
Running 0.81b 0.85b 1.20b 2.63a 0.406 0.003    

Standing 14.89b 16.46ab 14.34b 20.20a 1.033 0.015    

Resting 59.01a 60.3a 56.59a 44.99b 3.117 0.039    

Foraging 2.95 5.28 4.06 6.30 0.986 0.168    

At the feeder 12.68 9.95 12.18 13.23 2.265 0.651    

At the drinker 1.39 1.06 1.78 2.38 0.339 0.110    

Preening 1.41 1.56 1.45 1.86 0.493 0.913    

Aggressive2 0.39 0.44 0.31 0.67 0.112 0.209    

Low incidence3 2.84 2.61 3.35 2.97 0.668 0.843    
a-bMeans within a row with different letters differ significantly (P<0.05). 

1Standard Error of the Mean. 
2Aggressive = Fighting + forceful feather pecking. 

 3Low incidence = Beak wiping + unknown + stretching + dust bathing + ground pecking + object pecking. 
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Table 4.17. Effects of In-ovo photoperiod during incubation on LSL pullet’s behaviour post-hatch at day 

1 (n=3) 

 Photoperiod  
Behaviour 0L 6L 12L 18L SEM1 P value 

Walking 6.35b 6.87ab 6.95ab 8.85a 0.761 0.037 
Running 3.86ab 3.02b 3.93ab 4.30a 0.363 0.023 

Standing 16.19 19.51 17.16 19.79 1.313 0.224 

Resting 48.50a 43.74a 43.57a 35.76b 1.182 0.001 

Foraging 4.35b 5.19ab 6.13ab 7.72a 0.939 0.034 

At the feeder 12.23 12.49 11.78 13.79 0.723 0.184 

At the drinker 2.03 2.46 2.25 2.30 0.359 0.559 

Preening 2.35 2.46 2.57 3.25 0.544 0.657 

Aggressive2 0.37 0.31 0.43 0.29 0.078 0.600 

Low incidence3 3.76 3.95 5.23 3.95 1.257 0.748 
a-bMeans within a row with different letters differ significantly (P<0.05). 

1Standard Error of the Mean. 
2Aggressive = Fighting + forceful feather pecking. 

 3Low incidence = Beak wiping + unknown + stretching + dust bathing + ground pecking + object pecking. 
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Table 4.18. Effects of in-ovo photoperiod during incubation on LSL pullet’s behaviour post-hatch at day 

2 (n=3) 
 Photoperiod  

Behaviour 0L 6L 12L 18L SEM1 P value 

Walking 7.89 7.38 8.48 8.77 0.390 0.130 
Running 3.37 3.81 3.93 4.30 0.770 0.859 

Standing 11.00 13.15 12.20 10.46 1.189 0.329 

Resting 47.52a 42.55ab 42.52ab 40.25b 1.437 0.020 

Foraging 5.31b 7.41ab 8.18ab 11.79a 1.067 0.016 

At the feeder 16.07 17.33 15.26 15.79 0.898 0.457 

At the drinker 1.84 2.09 1.84 2.21 0.297 0.373 

Preening 2.85 2.22 2.82 2.63 0.325 0.526 

Aggressive2 0.31 0.44 0.16 0.28 0.075 0.154 

Low 

incidence3 

3.83 3.63 4.61 3.53 1.150 0.837 
a-bMeans within a row with different letters differ significantly (P<0.05). 

1Standard Error of the Mean. 
2Aggressive = Fighting + forceful feather pecking. 

 3Low incidence = Beak wiping + unknown + stretching + dust bathing + ground pecking + object pecking. 
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Table 4.19. Effects of in-ovo photoperiod during incubation on LSL pullet’s behaviour post-hatch at day 

3 (n=3) 
 Photoperiod  
Behaviour 0L 6L 12L 18L SEM1 P value 

Walking 8.55 7.41 7.31 7.28 0.542 0.350 
Running 2.98 2.58 2.77 2.14 0.642 0.819 

Standing 10.81b 13.55a 9.87b 10.90ab 0.779 0.014 

Resting 42.82 38.58 45.21 44.26 2.199 0.065 

Foraging 6.87 7.87 8.27 7.93 0.870 0.706 

At the feeder 20.55 22.80 18.27 19.69 1.452 0.087 

At the drinker 1.58 2.11 2.10 1.70 0.283 0.472 

Preening 3.05 2.31 2.99 2.89 0.368 0.286 

Aggressive2 0.24 0.13 0.17 0.21 0.090 0.829 

Low incidence3 2.54 2.66 3.04 3.10 0.637 0.890 
a-bMeans within a row with different letters differ significantly (P<0.05). 

1Standard Error of the Mean. 
2Aggressive = Fighting + forceful feather pecking. 

 3Low incidence = Beak wiping + unknown + stretching + dust bathing + ground pecking + object pecking. 
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Behaviour rhythm over the photophase 

Figure 4.3. Resting behaviour over the photophase at the age 0 post-hatch from LSL pullets 

exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar on top of 

the graphs represents the scotophase period during incubation.   
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Figure 4.4. Resting behaviour over the photophase at the age 1 from LSL pullets exposed to 

various in-ovo lighting photoperiod. The horizontal bar on top of the graphs represents the 

scotophase period during incubation.  
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Figure 4.5. Resting behaviour over the photophase at the age of 2 post-hatch from LSL pullets 

hatched from various photoperiod during incubation. The horizontal bar on top of the graphs 

represents the scotophase period during incubation.  
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Figure 4.6. Walking behaviour over the photophase at the age 0 post-hatch from LSL pullets 

exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar on top of 

the graphs represents the scotophase period during incubation.  
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 Figure 4.7. Walking behaviour over the photophase at the age of 1 post-hatch from LSL pullets 

exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar on top of 

the graphs represents the scotophase period during incubation.  
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Figure 4.8. Foraging behaviour over the photophase at the age of 2 post-hatch from LSL pullets 

exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar on top of 

the graphs represents the scotophase period during incubation.  
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Figure 4.9. At the feeder behaviour over the photophase at the age of 2 post-hatch from LSL 

pullets exposed to various in-ovo lighting photoperiod during incubation. The horizontal bar on 

top of the graphs represents the scotophase period during incubation.  
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5.0 Chapter 5: Overall discussion and conclusion
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 Introduction 

The increase in consumer awareness and changes in legislation have suggested that new 

pathways for poultry production management be considered, with particular attention focusing on 

the animal’s wellbeing in their rearing environment. These changes are also impacting how chicks 

are managed at the hatchery. An example is the “HatchCare system” introduced by Hatchtech, a 

company based in the Netherlands with clients all over the world. The HatchCare system is based 

on providing light and feed at the hatching stage. This new technology is being implemented 

worldwide to improve the quality of chicks delivered to growers (Hatchtech, nd). However, the 

light has not yet been applied commercially in setters (Carla van der Pol, personal communication). 

The literature suggests that the use of light during incubation (setters) impacts embryo 

development (Shafey and Al-mohsen, 2002; Shafey, 2004; Cooper et al., 2011; Huth and Archer, 

2015; Archer, 2015b). Those findings from various studies showed that in-ovo lighting improves 

the quality of chicks at hatch (Shafey, 2004; Archer, 2015a, 2015b; Huth and Archer, 2015), 

enhances the hatchlings’ health and resilience to stress from new environments (Huth and Archer, 

2015, Archer, 2015b) and improves growth post-hatch (Özkan et al., 2012b).  

Those studies also showed contrasting results, which might be due to differences in 

experimental design and variables such as the source of light, light wavelength, light intensity, 

photoperiod and chicken genotype, resulting in difficulties standardizing the best in-ovo lighting 

management practices to use during poultry species incubation. Additionally, the genotype can 

impact the characteristics of the eggs, such as eggshell pigmentation (Shafey et al., 2005). The 

eggshell protects the embryo against threats such as environment adversities including light 

(Maurer et al., 2015) and can affect how light is transmitted and absorbed by the eggshell (Shafey 

et al., 2005; Maurer et al., 2015). Currently, there is no information to the author's knowledge 

regarding the behaviour output post-hatch of hatchlings impacted by in-ovo lighting wavelengths. 

Furthermore, most of the in-ovo lighting photoperiod studies looked into different photoperiods 

under white light, and the comparison of impacts on the embryo for graded in-ovo photoperiods 

under red light is limited. The evaluation of graded photoperiod is important to explain the 

variability in response to day length effects on embryo and chick post-hatch variables. 
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 Objectives 

The first study aimed to determine the behaviour output post-hatch of two strains of laying 

hen chicks impacted by in-ovo lighting wavelength during incubation, and evaluate the effects and 

interactions of the hatchlings under a near continuous (NC) and an intermittent (INT) photoperiod. 

The second study objective was to evaluate graded photoperiod lengths under dim to red (red) 

LED light and determine the impact on hatch traits, chick quality, chick health, chick development 

and behaviour post-hatch of those chicks reared under a singular photoperiod. 

 Overall discussion and conclusion 

Although live chickens have a high sensitivity to light (Prescott and Whathes, 1999), the 

use of various light spectrums red, white, or blue during incubation of brown and white egg 

production layer eggs did not affect pullets early behaviour post-hatch. However, brooding the 

chicks under an INT photoperiod increased pullets activities regardless of in-ovo lighting 

wavelength (red, blue, or white).  

The photoperiod length during incubation proved to have a more significant impact on 

post-hatch behaviour than light spectrum. Photoperiod length under red (LED) light impacted the 

timing of the start and end of the hatch, but it did not affect the time interval between the first and 

last chicks to hatch. Indeed, it can be concluded by the current research findings that light itself 

affected the incubation duration, however, the greatest impact was under a longer photoperiod 

(18L).  

Although light duration affected the incubation time, the graded photoperiod length (red 

LED light) did not affect the percentage of the set and fertile White Leghorn eggs hatched. In 

disagreement with Archer`s (2015b) findings where the exposure of White Leghorn eggs to red 

(LED) light under a 12L photoperiod increased hatchability. However, incubation of White 

Leghorn eggs in a 12L photoperiod under white LED light (Huth and Archer, 2015b) or under a 

white fluorescent light for 21 days of incubation (Shafey, 2004) did not affect the percentage of 

chicks hatched. These contradictory findings might result from the differences in light sources 

and/or light intensity used during incubation. Although using the same variables such as LED`s 

light, red light wavelength and White Leghorn fertile eggs, the current study differed from Archer’s 

(2015b) study, since that study applied a light intensity of 250 lux at eggs level, whereas the current 
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study applied 535-568 lux at the eggs level. Shafey et al. (2005) noted that high (1430-2080 lux) 

light intensity reduced the percentage of hatch from broiler eggs with light and medium eggshell 

pigmentation compared to low (90-138 lux) light intensities. However, light intensity did not 

impact hatchability of broiler eggs with darker pigmentation in their study.  

The photoperiod length under red (LED) light impacted other White Leghorn chick traits 

such as body weight at hatch; it was noted that a photoperiod ≥ 6L under red light decreased chick 

weight at hatch. A similar result was reported by Archer (2015b) who observed reduced body 

weight at hatch endpoint in chicks exposed to red (LED) light under a 12L:12D photoperiod during 

the first 18 days of incubation compared to the chicks from a 12L photoperiod under white (LED) 

light or dark (0L) incubation. Additionally, exposure of White Leghorn eggs to a 12L photoperiod 

under white light for 21 days did not affect chick weight at hatch (Huth and Archer, 2015; Archer, 

2015a). These findings could be an indication of red light affecting early hatching, and affecting 

chick weight which might be related to yolk sac residue absorption, the waiting time from hatch 

to the endpoint of the hatching process might have contributed to the increase in the difference in 

yolk sac residue observed at the hatch endpoint among early and late hatchers. The state of yolk 

sac residue right after hatch needs to be clarified in future research as the current study only 

evaluated yolk sac residue at the endpoint of the hatching process. Therefore measuring the 

residual weight of the yolk sac right after hatch might decrease variablity in weight when 

comparing to chicks incubated under dark, as chicks from lit incubation hatched sooner than dark 

incubated chicks which may increase consumption of yolk sac in comparison to chicks from dark 

incubation.  

Embryo mortality was not affected by in-ovo photoperiod, the current study results are 

supported by Archer (2015a, 2015b) the author reported that exposure of broiler and White 

Leghorn eggs to 12L photoperiod under white or red (LED) light for the first 18 days of incubation 

did not impact embryo mortality. Even exposure of the White Leghorn eggs to white (LED) light 

on a 12L photoperiod for 21 days did not affect embryo or chick mortality at hatch (Huth and 

Archer, 2015). Additionally, as mentioned previously navel healing was not affected by in-ovo 

lighting under red light. Even though chicks from the longer photoperiod hatched earlier, the navel 

of the early hatchlings showed the same healing level as chicks incubated under 0L photoperiod. 

Our findings concur with Archer (2015b) as the author did not observed effects of a 12L 

photoperiod under red light on White Leghorn chick’s navel healing. However, exposure of White 
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Leghorn eggs to a 12L photoperiod under white (LED) light provided during the first 18 days 

(Archer, 2015b) or 21 days (Huth and Archer, 2015b) of incubation showed improvement in chicks 

navel healing at hatch. This suggests that the effects of light on navel healing are wavelength 

specific, as the current study used red wavelength and no effects were observed for any lighting 

treatment. Although in-ovo photoperiod under red light did not impact stress measure H: L and 

composite asymmetry at hatch nor at 21 days of age. A decrease in H:L ratio from 14 days old 

broilers exposed to white (LED) light under a 12L:12D photoperiod for 21 days of incubation have 

been reported (Huth and Archer, 2015).  

Chicks’ weight at hatch differed between in-ovo photoperiod in the current study, as 18L 

chicks were the lightest and 0L chicks were the heaviest with minimal changes over the 21 days 

growing period. In contrast broilers incubated for 21 days under a 12L photoperiod illuminated by 

white (LED) light did not differ in body weight at hatch nor 14 days post-hatch (Huth and Archer, 

2015). Not even exposure to light in either the first 18 or 21 days of incubation under a 12L white 

(LED) light impacted broilers body weight at 45 days post-hatch (Archer, 2015a). The lower chick 

weight at hatch observed in the current study could be a result of experimental design, as chicks 

were weighed at the hatch endpoint, therefore chicks that hatched early had to wait longer without 

feed and water to be processed which could have resulted in body weight reduction due to the 

prolonged waiting time at the hatchers. Additionally, regardless of the differences in body weight 

in the current study the uniformity of the pullets up to day 21 post-hatch did not differ between 

treatments. 

The length of the photoperiod during incubation affected chicks early behaviours. 

Incubation using ≥12 photoperiods increased chicks’ locomotor behaviour post-hatch. A longer 

photoperiod such as 18L used during incubation increased activities such as standing, running, 

walking and foraging, on the other hand, a photoperiod  ≤12L increased resting behaviour. Archer 

and Mench (2014b) did not observe an impact of 0L, 1L, 6L, or 12L photoperiods on chicken 

activities over the photophase post-hatch. Additionally, behaviour differences that initially were 

noted to occur in a diurnal rhythm were no longer found by 3 days of age, sugesting that an in-ovo 

lighting photoperiod entrainment might exist and that by the 3rd day the chicks are entrained to the 

new photoperiod. 

It can be concluded that the variables of light wavelength and photoperiod might be used 

during incubation and is dependant on bird genotype. Red light under a daily photoperiod of 



 

120 

 

between 12 and 18 hours of light can be applied in laying hen white eggs incubation. This amount 

of light during incubation can decrease the incubation time without adverse effects on the hatched 

chick health and welfare. However, that reduction in incubation time might also impact chick 

weight at hatch when under red light. Photoperiod length also impacted chicken behaviour post-

hatch, increased activities as day length increased while chicks hatched from a dark incubation 

spent a higher percentage of time resting. The hatchlings spent a higher percentage of the time 

during the photophase more active on the first day’s post hatch when incubated under a longer 

photoperiod of up to 18L or providing an INT photoperiod post-hatch, which might stimulate 

finding feed and water due to the increased mobility on the first day’s post-hatch. In short, the 

impact of light on some traits is wavelength, photoperiod, and genotype dependent. However light 

wavelength stimulus during incubation has minimum impact on early behaviour of pullets.  
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