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Sunshine, sunshine reggae  

Let the good vibes get a lot stronger 

„Sunshine reggae“ from Laid Back. 1983.   
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Summary 

Oxygenic photosynthesis constitutes a milestone of natural evolution and manifested in 

phototrophic organisms, such as cyanobacteria, algae, and plants. In nature, photosynthetic 

water oxidation served as new source for activated reduction equivalents while O2, initially a 

by-product, accumulated in the environment. Redox enzymes utilizing O2 as electron 

acceptor and/ or oxygen donor developed and increased the evolutionary fitness of 

microorganisms harnessing these enzymes by providing them access to previously 

inaccessible carbon sources. Today, biocatalysis profits from these enzymes for the selective 

and specific conversion of substrates to fuels and value-added chemicals under mild reaction 

conditions. Thus far, redox biotransformations mainly rely on the application of isolated 

enzymes or chemoheterotrophic whole-cell biocatalysts such as E. coli or Pseudomonas. In 

these organisms, energy and reduction equivalents are accessed by the catabolism of 

carbohydrates such as glucose.  

This thesis builds on a new research field that takes advantage of photosynthesis as the 

milestone of natural evolution. By the use of photoautotrophic organisms as biocatalytic host 

systems, redox reactions such as the reduction of protons to hydrogen or the 

oxyfunctionalization of hydrocarbons are fueled with O2 and/ or reduction equivalents 

deriving from photosynthetic water oxidation. Photobiocatalysis therefore allows atom-

efficient biotransformations and enables catalyst (re)generation based on an inorganic and 

abundant carbon source via CO2 fixation. In the present work, recombinant cyanobacterial 

strains harboring different oxygenases acting as redox enzymes were generated and 

investigated for photosynthesis-driven biocatalysis. Subsequently, biocatalyst, reaction, and 

process engineering strategies were approached for the bioprocess intensification of 

hydrocarbon oxyfunctionalizations.  

A recombinant photobiocatalyst was constructed by the genetic introduction of the three-

component alkane monooxygenase AlkBGT into the cyanobacterium Synechocystis sp. PCC 

6803 (= Syn6803_BGT). The strain catalyzed the hydroxylation of nonanoic acid methyl ester 

(NAME) to 9-hydroxynonanoic acid methyl ester (H-NAME) at a rate of 1.5 U gCDW
-1. Under 

exclusion of external O2 supply, Syn6803_BGT channeled 25% of the photosynthetically 

generated O2 in situ into the hydroxylation of NAME. Thus far, oxygen gas-liquid mass 

transfer constituted a key limitation in O2 dependent bioprocesses. The developed concept of 

in situ O2 generation in the liquid phase overcomes this technical limitation and thus enables 

the implementation of fast hydrocarbon oxyfunctionalization processes that otherwise suffer 

from limited O2 mass transfer. 

After the first proof of catalytic oxyfunctionalization activity, an integrated bioprocess 

engineering strategy comprising reaction and process engineering was pursued. 

Optimization of expression and reaction conditions, e.g., by the supplementation of the 
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reaction medium with NaHCO3, enhanced the initial NAME oxyfunctionalization activity of 

Syn6803_BGT to 3.0 U gCDW
-1. In addition, specific activities were shown to be independent 

of the light-intensity applied during biotransformation. Thus, AlkB was assumed to indirectly 

couple with the photosynthetic water oxidation, potentially via the catabolism of storage 

compounds. Productive biotransformations with a recombinant strain lacking the electron 

transferring enzyme rubredoxin reductase AlkT pointed to an electron transfer from the 

photosynthetic metabolism to AlkBG via endogenous proteins.  

Continuously decreasing oxyfunctionalization activities and low biotransformation stabilities 

with a product yield on biomass of 0.5 mmolH-NAME gCDW
-1 were observed during long-term 

biotransformation with Syn6803_BGT. Growth experiments using non-recombinant 

Synechocystis sp. PCC 6803 cells supplied with pure NAME revealed high rates of substrate 

hydrolysis to nonanoic acid (NA) and severe cell toxification by both reactants NAME and 

NA. Diisononyl phthalate (DINP) was identified as a suitable organic carrier solvent for an in 

situ substrate supply approach, because it did not, in contrast to ethyl oleate, influence the 

cyanobacterial cell growth negatively. Subsequent, two-liquid phase biotransformations 

reduced cell toxification and simultaneously enhanced substrate mass transfer and reduced 

NAME hydrolysis. This resulted in enhanced initial NAME hydroxylation activities of 

5.6 U gCDW
-1 and prolonged biotransformation stabilities with specific yields on biomass of 

3.8 mmolH-NAME gCDW
-1. Finally, scaling of the biocatalyst cultivation and two-liquid phase 

biotransformation from mL scale to a multi-liter photobioreactor demonstrated the technical 

applicability of Syn6803_BGT for photobiocatalytic oxyfunctionalizations of unactivated 

hydrocarbons. 

The scope of photosynthesis-driven hydrocarbon oxyfunctionalization was broadened by the 

construction of another recombinant cyanobacterial strain. A cytochrome P450 cyclohexane 

monooxygenase originating from Acidovorax sp. CHX100 was genetically introduced into 

Synechocystis sp. PCC 6803, resulting in Syn6803_CYP. The strain converted cyclohexane 

to cyclohexanol at high rates of 24 U gCDW
-1, which was as fast as the recombinant 

heterotrophic biocatalyst Pseudomonas sp. VLB120 harboring the very same enzyme 

system. In contrast to the oxyfunctionalization activity of Syn6803_BGT, the 

oxyfunctionalization rate of Syn6803_CYP was shown to be dependent on the light-intensity, 

indicating a direct electron transfer from the photosynthetic light reaction to the CYP enzyme, 

potentially via ferredoxins or ferredoxin reductases. Also here, two-liquid phase 

biotransformations enhanced substrate mass transfer rates and reduced substrate toxicity. 

This resulted in substantially higher initial oxyfunctionalization rates of nearly 40 U gCDW
-1. 

Furthermore, the biotransformation stability was prolonged from 5 to 24 h, yielding 

4.5 g gCDW
-1 of the oxyfunctionalized products cyclohexanol and cyclohexanone. During 

scaling of the reaction system from mL scale to a multi-liter stirred tank photobioreactor, 
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substrate evaporation was overcome by a process operation without aeration. This process 

operation was enabled by the in situ O2 generation from photosynthetic water oxidation. 

Finally, Syn6803_CYP produced 2.6 g cyclohexanol from cyclohexane, water, and light and 

thus for the first time demonstrated the gram-scale production of oxyfunctionalized 

hydrocarbons with a photobiocatalytic host.  

The implementation of bioprocesses on industrial scales requires high productivities and 

titers and thus the generation and utilization of high biomass concentrations. The technical 

requirements for efficient growth and use of photobiocatalysts basically rely on sufficient light 

input and distribution. However, scaling of established standard bioreactors, such as the 

applied stirred tank bioreactor, results in decreased surface to volume ratios which, in turn, 

lead to a diminished light availability within the reactor. Capillary reactors constitute a 

promising alternative reactor technology, providing high surface to volume ratios and thus 

efficient light input. Applying the microbial catalyst in a biofilm format further intensifies this 

technology, featuring self-immobilization, biocatalyst regeneration and high biomass 

retention. However, cultivation of Synechocystis sp. PCC 6803 in a biofilm-based capillary 

reactor was shown to result in low surface coverage and oxidative stress response due to 

elevated O2 concentrations within the aqueous medium. In analogy to microbial mats 

occurring in nature, a new cultivation concept via the co-cultivation of Synechocystis sp. PCC 

6803 with the biofilm supporting, heterotrophic strain Pseudomonas sp. VLB120 was 

established. This technology enabled stable and continuous cultivation at high cyanobacterial 

biomass concentrations. Furthermore, respiration of citrate by the heterotrophic strain 

reduced the oxidative stress resulting from supersaturated O2 concentrations. Finally, 

cultivation of the mixed-species biofilm in a capillary reactor system enabled the retention of 

high biomass concentrations at 48 gBDW L-1 composed of 85% (v/v) cyanobacterial cells. Such 

high biomass concentrations have not been reached before using standard reactor 

technologies like the stirred tank photobioreactor.  

The results of this thesis show that photosynthesis-driven whole-cell oxyfunctionalization 

holds a huge potential to reach high, industrially relevant oxyfunctionalization productivities. 

To quantify the extent of photosynthetic water oxidation contributing to oxyfunctionalization 

bioprocesses, theoretical maximum productivities in the context of in situ O2 supply in the 

liquid phase are discussed. For standard large-scale bioreactors a gas-liquid mass transfer 

constant kLa of 200 h-1 is considered feasible, allowing maximum possible productivities of 

9 g L-1 h-1. Heterotrophic biocatalysts respire O2 and thus inherently reduce this productivity 

to 5.6 g L-1 h-1. In contrast, photoautotrophic biocatalysts alleviate the technical process 

limitation theoretically enabling productivities of up to 30 g L-1 h-1. Thus, O2 evolving 

biocatalysts bear a fundamental advantage over established, O2-respiring heterotrophic 

biocatalysts.  
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In conclusion, Synechocystis sp. PCC 6803 was shown to be a well suited phototrophic 

biocatalytic host, supplying activated reduction equivalents and O2 for hydrocarbon 

oxyfunctionalizations. For the first time, a reaction engineering strategy demonstrated the 

technical applicability of cyanobacteria for the conversion of toxic and volatile compounds. 

The mixed-species biofilm-based capillary reactor system demonstrated a promising process 

technology for the application of photobiocatalysts at high biomass concentrations. Future 

applications may comprise the coupling of other redox reactions with the photosynthetic 

water oxidation. For instance, the reduction of protons using e.g., hydrogenases, constitutes 

a valuable strategy for the eco-efficient production of hydrogen as zero-emission fuel gas 

using the energy of light. By the integration of biocatalyst, reaction, and process engineering 

strategies, this study paves the way for the implementation of photobiocatalysts for 

photosynthesis-driven and eco-efficient redox reactions. 
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Zusammenfassung 

Die oxygene Photosynthese stellt einen Meilenstein in der natürlichen Evolution dar und 

manifestierte sich in phototrophen Organismen wie zum Beispiel Cyanobakterien, Algen oder 

Pflanzen. Die photosynthetische Wasseroxidation diente der Natur als neue Quelle für 

aktivierte Reduktionsäquivalente. Sauerstoff, zunächst ein Nebenprodukt, reicherte sich auf 

der Erde an und bildete somit die Grundlage für die Entwicklung von Redoxenzymen, welche 

O2 als Elektronenakzeptor und/ oder Sauerstoffdonor verwerteten. Die Nutzung dieser 

Enzyme ermöglichte Mikroorganismen zum Beispiel Zugang zu bisher unzugänglichen 

Kohlenstoffquellen, was zu einer Erhöhung ihrer evolutionären Fitness führte. Heute profitiert 

die Biokatalyse von solchen Redoxenzymen für die selektive und spezifische Umsetzung 

diverser Substrate unter milden Reaktionsbedingungen zu Kraftstoffen und hochwertigen 

Chemikalien. Bisher basieren Redoxbiotransformationen hauptsächlich auf dem Einsatz 

isolierter Enzyme sowie chemoheterotropher Ganzzellbiokatalysatoren wie E. coli oder 

Pseudomonas. Diese Organsimen gewinnen Energie und Reduktionsäquivalente aus dem 

Abbau von Kohlenhydraten wie Glukose.   

Die vorliegende Dissertation baut auf einem neuen Forschungsbereich auf, der sich die 

Vorteile der Photosynthese als Meilenstein der natürlichen Evolution zu Nutze macht. Durch 

den Einsatz von photoautotrophen Organismen als Biokatalysoren werden Redoxreaktionen, 

wie die Reduktion von Protonen zu Wasserstoff oder die Oxyfunktionalisierung von 

Kohlenwasserstoffen, mit O2 und/ oder Reduktionsäquivalenten aus der photosynthetischen 

Wasseroxidation angetrieben. Somit ermöglicht die Photobiokatalyse atom-effiziente 

Biotransformationen und Katalysator(re-)generation basierend auf der anorganischen und 

abundant verfügbaren Kohlenstoffquelle CO2. In dieser Arbeit wurden rekombinante 

cyanobakterielle Stämme zur Synthese verschiedener Oxygenase-Enzymsysteme erzeugt 

und anschließend für die Photosynthese-getriebene Biokatalyse eingesetzt. Integrierte 

Biokatalysator-, Reaktions- und Prozessentwicklungsstrategien erzielten anschließend eine 

Intensivierung der Photosynthese-getriebenen Oxyfunktionalisierung von 

Kohlenwasserstoffen.  

Durch die heterologe Expression der Alkanmonooxygenase AlkBGT aus Pseudomonas 

putida GpO1 in das Cyanobakterium Synechocystis sp. PCC 6803 wurde ein rekombinanter 

Photobiokatalysator erzeugt (= Syn6803_BGT). Der Stamm katalysierte die Hydroxylierung 

von Pelargonsäuremethylester (PSME) zu 9-Hydroxypelargonsäuremethylester (H-PSME) 

mit einer Rate von 1.5 U gZTG
-1. Unter Ausschluss externer O2 Zufuhr konnten 25% des 

photosynthetisch erzeugten O2 in situ für die Hydroxylierung von PSME genutzt werden. 

Bisher stellte der Gas-flüssig Massentransfer von O2 eine entscheidende Limitation der 

Skalierung von O2-abhängigen Bioprozessen dar. Das entwickelte Konzept der 

photosynthetischen in situ O2 Erzeugung in der Flüssigphase umgeht diese technische 
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Limitation und ermöglicht somit die Implementierung von bisher O2-Massentransfer limitierten 

Prozessen zur schnellen Oxyfunktionalisierung von Kohlenwasserstoffen.   

Unter Betrachtung eines integrierten Konzeptes zur Bioprozessentwicklung wurden im 

Anschluss die Expressions- und Reaktionsbedingungen, wie zum Beispiel die 

Komplementierung des Reaktionsmediums mit NaHCO3, optimiert. Dies erhöhte die initiale 

Rate der PSME Hydroxylierung auf 3 U gZTG
-1. Syn6803_BGT zeigte unter den eingesetzten 

Reaktionsbedingungen eine von der Lichtintensität unabhängige spezifische Reaktionsrate. 

Demnach wurde eine indirekte Kopplung der photosynthetischen Wasseroxidation mit AlkB 

vermutet, welches möglicherweise über den Abbau von Speicherstoffen wie Glykogen 

erfolgt. Die Hydroxylierung von PSME mit einem AlkB-enthaltenden cyanobakteriellen 

Stamm, welcher das elektronenübertragende Enzym Rubredoxin Reduktase AlkT nicht 

synthetisiert, belegte schließlich, dass endogene Proteine den Elektronentransfer von dem 

photosynthetischen Stoffwechsel zu AlkBG ermöglichen.   

Die PSME Biotransformation mit Syn6803_BGT über einen längeren Zeitraum von 30 min 

bis über 24 h zeigte eine kontinuierlich sinkende spezifische Aktivität und somit 

Reaktionsstabilität mit einem spezifischen Ausbeute von 0.5 mmolH-PSME gZTG
-1. 

Wachstumsversuche mit nicht-rekombinanten Synechocystis sp. PCC 6803 Zellen zeigte 

eine signifikante Substrathydrolyse zu Pelargonsäure (PS), sowie eine starke 

Zelltoxifizierung durch die beiden Reaktanden PSME und PS. Zur Umgehung der 

Substrattoxizität sowie der Substratlimitierung wurde eine Strategie zur in situ Substratzufuhr 

über eine organische Trägerphase entwickelt. Diisononylphthalat (DINP) erwies sich dabei 

als geeignete organische Trägerphase da es, im Gegensatz zu Ethyloleat, keinen negativen 

Einfluss auf das Zellwachstum von Synechocystis sp. PCC 6803 zeigte. Anschließende 

Biotransformation mit organischer Trägerphase reduzierte die Zelltoxifizierung bei 

gleichzeitiger Erhöhung des PSME Massentransfers und reduzierter PSME Hydrolyse. Dies 

führte zu einer hohen initialen, spezifischen Rate der PSME Hydroxylierung von 5.6 U gZTG
-1 

und einer verlängerten Biokatalysatorstabilität mit einer spezifischen Ausbeute von 

3.8 mmolH-PSME gZTG
-1. Letztlich demonstrierte die Skalierung der Biokatalysatorkultivierung 

sowie der Biotransformation mit organischer Trägerphase vom mL-Maßstab in den multiliter 

Rührkessel-Photobioreaktor die technische Anwendbarkeit von Syn6803_BGT für die 

photobiokatalytische Oxyfunktionalisierung von nicht-aktivierten Kohlenwasserstoffen.   

Der Umfang der Photosynthese-getriebenen Oxyfunktionalisierung von Kohlenwasserstoffen 

wurde durch die Entwicklung eines weiteren Photobiokatalysators erweitert. Hierzu wurde 

eine Cytochrom P450 Cyclohexan-Monooxygenase aus Acidovorax sp. CHX100 genetisch in 

Synechocystis sp. PCC 6803 eingebracht (= Syn6803_CYP). Der Stamm katalysierte die 

Hydroxylierung von Cyclohexan zu Cyclohexanol mit einer spezifischen Rate von 24 U gZTG
-1. 

Dies entspricht der Hydroxylierungsrate des rekombinanten heterotrophen Biokatalysators 
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Pseudomonas sp. VLB120, welcher das gleiche Enzymsystem trägt. Im Gegensatz zu 

Syn6803_BGT zeigte Syn6803_CYP eine Lichtintensität-abhängige spezifische Aktivität. 

Dies wies somit auf einen direkten Elektronentransfer von der photosynthetischen 

Lichtreaktion zu der Monooxygenase hin. Auch hier konnte durch die Nutzung einer 

organischen Trägerphase der Substratmassentransfer erhöht und die Substrattoxizität 

reduziert werden. Dies erhöhte die initiale, spezifische Hydroxylierungsrate auf etwa 

40 U gZTG
-1 und verlängerte die Biokatalysatorstabilität von 5 auf 24 h, was in einer 

spezifischen Ausbeute von 4.5 g gZTG
-1 Cyclohexanol und Cyclohexanon resultierte. Während 

der anschließenden Skalierung der Biotransformation in den Rührkessel-Photobioreaktor 

konnte die Evaporation des leicht flüchtigen Substrates Cyclohexan durch eine 

Prozesskontrolle ohne Begasung, ermöglicht durch die in situ O2-Bildung, verhindert werden. 

Schließlich produzierte Syn6803_CYP 2.6 g Cyclohexanol aus Cyclohexan, Wasser und 

Licht und demonstrierte somit erstmals die Produktion von oxyfunktionalisierten 

Kohlenwasserstoffen im Gramm-Maßstab mithilfe eines photobiokatalytischen Hostsystems. 

Die Realisierung von Bioprozessen im industriellen Maßstab benötigt hohe Produktivitäten 

und Titer, und somit die Erzeugung und den Einsatz von hohen Biomassekonzentrationen. 

Die technischen Anforderungen für effizientes Wachstum und Nutzung von 

Photobiokatalysatoren basiert unter Anderem auf einem ausreichenden Lichteintrag. Die 

Skalierung von etablierten Bioreaktoren, wie dem hier eingesetzten Rührkessel Bioreaktor, 

führt jedoch zu einem verringerten Oberflächen zu Volumen Verhältniss, welches im 

Weiteren zu einem verminderten Lichteintrag in den Reaktor führt. Kapillarreaktoren stellen 

eine vielversprechende alternative Reaktortechnologie dar, indem sie ein hohes Oberflächen 

zu Volumen Verhältnis und somit maximalen Lichteintrag ermöglichen. Der Einsatz von 

mikrobiellen Katalysatoren im Biofilmformat erlaubt eine kontinuierliche Prozessführung, die 

durch die selbständige Biokatalysator Immobilisierung und Regenerierung sowie die 

Aufrechterhaltung hoher Biomassekonzentrationen bestärkt wird. Die Kultivierung von 

Synechocystis sp. PCC 6803 im Biofilm-basierten Kapillarreaktor wurde bereits etabliert, 

zeigte jedoch eine niedrige Besiedlung der Kapillaroberfläche und Reaktionen auf oxidativen 

Stress durch die Entwicklung von erhöhten O2 Konzentrationen in der Flüssigphase. In 

Anlehnung an die in der Natur vorkommenden mikrobiellen Matten („microbial mats“) wurde 

ein neues Kultivierungskonzept über die Co-Kultivierung von Synechocystis sp. PCC 6803 

mit dem Biofilm-bildendend, heterotrophen Stamm Pseudomonas sp. VLB120 etabliert. Die 

Veratmung von Citrat durch Pseudomonas sp. VLB120 reduzierte die 

Sauerstoffkonzentration und verhinderte somit den oxidativen Stress auf den phototrophen 

Organismus. Die neue Technologie ermöglichte schließlich die stabile und kontinuierliche 

Kultivierung von Synechocystis sp. PCC 6803 mit einer hohen Biomasse von 48 gZTG L-1 

bestehend aus etwa 85% (v/v) cyanobakteriellen Zellen. Biomassekonzentrationen in dieser 
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Höhe konnten bisher nicht mit Standard-Reaktortechnologien wie dem Rührkessel-

Photobioreaktor erreicht werden.  

Die Ergebnisse dieser Dissertation zeigen, dass die Photosynthese-getriebene Ganzzell-

Oxyfunktionalisierung von Kohlenwasserstoffen ein großes Potential für das Erreichen von 

industriell relevanten Produktivitäten aufweist. In einem übergeordneten Diskussionskapitel 

wurde das Potential der photosynthetischen Wasseroxidation für O2-abhängige Bioprozesse 

im Zusammenhang der in situ O2 Erzeugung in der Flüssigphase diskutiert und über 

theoretisch mögliche maximale Produktivitäten veranschaulicht. Heterotrophe 

Biokatalysatoren veratmen O2 und reduzieren somit die maximal mögliche Produktivität auf 

5.6 gProdukt L-1 h-1 bei einer vorausgesetzten Gas-flüssig Massentransferkonstanten kLa von 

200 h-1 für großtechnische Rührkesselreaktoren. Im Gegensatz dazu erhöhen 

photoautotrophe Biokatalysatoren die maximale Produktivität auf 30 gProdukt L-1 h-1 durch die in 

situ Erzeugung von O2. Damit erhalten O2-generierende Photobiokatalysatoren einen 

fundamentalen Vorteil gegenüber etablierten O2-verbrauchenden heterotrophen 

Biokatalysatoren.   

Zusammenfassend wurde gezeigt, dass Synechocystis sp. PCC 6803 ein geeigneter 

phototropher Biokatalysator für den Zugang zu aktivierten Reduktionsäquivalenten und O2 für 

die Oxyfunktionalisierung von Kohlenwasserstoffen darstellt. Erstmals demonstrierte eine 

Strategie zur Reaktionsentwicklung die technische Anwendbarkeit von Cyanobakterien zur 

Umsetzung von toxischen und leicht-flüchtigen Verbindungen. Der Co-Einsatz zweier 

Spezies aus zwei unterschiedlichen Trophien (heterotroph und phototroph) im System des 

biofilmbasierten Kapillarreaktors schaffte den Zugang zu hohen Biomassekonzentrationen 

des phototrophen Mikroorganismus Synechocystis sp. PCC 6803.  

Zukünftige Anwendungen von Photobiokatalysatoren umfasst die Kopplung der 

photosynthetischen Wasseroxidation mit weiteren Redoxreaktionen. Zum Beispiel stellt die 

Reduktion von Protonen mithilfe von Hydrogenasen und Licht eine wertvolle Strategie zur 

Produktion von Wasserstoff als emissionsfreier Energieträger dar. Durch die Integration von 

Stamm-, Reaktions-, und Prozessentwicklungsstrategien ebnet diese Arbeit den Weg zur 

Implementierung von Photobiokatalysatoren für Photosynthese-getriebene und ökoeffiziente 

Redoxreaktionen.   
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List of abbreviations 

3-HP  3-hydroxypropionic acid 
3-PG  3-Phosphoglycerate 
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1.1 Photosynthesis as a driver for eco-efficient oxygenase-based biotransformations 

Oxygenic photosynthesis triggered a milestone in natural evolution, occurring 2-3 billion 

years ago (Madigan and Martinko, 2006). The photosynthetic water oxidation provided a new 

source for reduction equivalents accessed by the energy of light. Oxygen, initially a by-

product, accumulated in the atmosphere after oxidizing abundant reduced substances such 

as FeS and drove the establishment of aerobic organisms. Various enzymes catalyzing a 

multitude of chemical reactions developed as a result of evolutionary adaptation to the oxic 

atmosphere. Oxygenases make use of O2 as oxygen donor and catalyze the 

oxyfunctionalization of diverse substrates. These enzymes increased the evolutionary fitness 

of microorganisms by enabling them to utilize previously inaccessible molecules as an 

organic carbon source. Today, organic chemistry profits from oxygenases which selectively 

and specifically catalyze, inter alia, hydrocarbon oxyfunctionalization reactions under mild 

conditions, generating value-added chemicals (Bühler and Schmid, 2004). Thus far, 

bioprocesses mainly rely on isolated enzymes or chemoheterotrophic whole-cell biocatalysts 

such as E. coli or Pseudomonads (Wachtmeister and Rother, 2016). In these organisms, 

energy and reduction equivalents are accessed by the catabolism of carbohydrates such as 

glucose. Although high reaction efficiencies, as well as the use of renewable organic 

carbons, contribute to the development of eco-efficient production processes, the 

implementation of such bioprocesses on industrial scales is rare.  

The present study builds on a new research field that takes advantage of photosynthesis as 

the milestone of natural evolution. Photosynthetic water oxidation is coupled with 

oxygenases fueling oxyfunctionalization reactions with reduction equivalents and O2 derived 

from water. The use of photoautotrophic host systems, therefore, enables atom-efficient 

bioprocesses and catalyst (re)generation based on the inorganic and abundant carbon 

source CO2. The following introduction briefly reviews the state of the art of 

oxyfunctionalization bioprocess development and outlines the new concept of 

photosynthesis-driven redox biotransformations. First, types and reaction mechanisms of 

oxygenase enzymes are explained. The following sections specify aspects relevant for 

industrial implementations and introduce the concept of integrated bioprocess design. The 

boundaries of current redox bioprocesses are then defined and followed by sections focusing 

on the new concept of photosynthesis-driven redox biotransformations. Oxygenic 

photosynthesis in general and the photosynthetic light reaction in detail are described, and 

trapping positions for heterologous redox enzymes are specified. Subsequently, the state of 

the art of photo-biotechnology is comprised. In the scope of the thesis, the current lack in 

developing photosynthesis-driven redox bioprocesses leads to the main research question 

and the key strategies used in the present dissertation.  
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1.2. Scope and mechanism of oxygenase enzymes 

In nature, oxygenases ubiquitously occur in microorganisms, plants, fungi, and animals, and 

play a key role in numerous physiological mechanisms. As a subclass of oxidoreductases, 

they catalyze the transfer of electrons and oxygen, resulting in reduction and oxidation of 

atoms within respective substrates (Figure 1.1).  

 

Figure 1.1: Scope of oxyfunctionalization reactions catalyzed by oxygenases. In nature, these 

enzymes harbor ubiquitous roles, e.g., in the synthesis of hormones and secondary metabolites, in the 

degradation/ catabolism of organic compounds, or in the detoxification of otherwise toxifying 

chemicals. 

Organic carbon sources, such as camphor (Jones et al., 1993), octane (van Beilen et al., 

1994), styrene (Mooney et al., 2006), or xylene (Harayama and Rekik, 1990), are accessed 

by the enzymatic activation of hydrocarbon bonds. Plant toxicants, such as the 

furanocoumarin xanthotoxin (Schuler, 2011), or synthetic drugs, such as the neuroleptic 

levomepromazine (Wójcikowski et al., 2014), are deactivated by initiating their catabolism. 

Steroid hormones are synthesized from cholesterol participated by various oxygenase 

enzymes (Payne and Hales, 2004), whereas cholesterol biosynthesis itself comprises an 

oxygenase enzyme (Laden et al., 2000; Michal, 1999). In addition, various secondary 

metabolites, such as rosmarinic acid, are synthesized by this enzyme class (Petersen et al., 

2009). 
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1.2.1 What is the molecular mechanism of oxygenases?  

The first experimental step towards revealing the mechanism of oxygenases took place in 

1955 and was conducted independently by the two scientists Howard S. Mason 

(Monooxygenase Phenolase) (Mason et al., 1955) and Osamu Hayaishi (Dioxygenase 

Pyrocatechase) (Hayaishi et al., 1955). Both proved the introduction of one 

(monooxygenase) or two (dioxygenase) oxygen atoms from O2 into an organic substrate 

yielding oxyfunctionalized hydrocarbon bonds. This was in contrast to the earlier assumption 

that H2O is an exclusive oxygen donor in enzymatic catalysis. The main function of 

oxygenase enzymes lays in the activation of oxygen driven by the donation of electrons. 

These enzymes act as single or as multi-component systems, rely on redox partners, and 

receive electrons from cofactors such as NAD(P)H. Recognition, distance, electrostatic 

interactions between the partners, as well as redox potentials, are essentials for successful 

electron transfer. Nature developed different oxyfunctionalization mechanisms that are 

assigned to different enzyme subclasses by the architecture of their active site (Figure 1.2). 

 

Figure 1.2: Core active sites of heme-dependent, non-heme, and flavin-dependent oxygenases. Next 

to the shown diiron(II, III)-superoxo complex in the non-heme diiron oxygenase active site, also 

diiron(III, IV)-oxo and diiron(IV)-oxo species are possible. Flavin-dependent oxygenases: Riboflavin 

R=H, Flavin mononucleotide FMN R=PO32-, Flavin adenine dinucleotide FAD R=ADP.  

Heme-dependent oxygenases. Iron-coordinated active sites characterize one of the main 

subclasses of oxygenases, although also copper, manganese, cobalt, and nickel-dependent 

oxygenases are known (Fiedler and Fischer, 2017; Liang et al., 2018b; Pazmino et al., 

2010). Heme-dependent monooxygenases are ubiquitous enzymes and occur in eukaryotes, 

archaea, and bacteria. Cytochrome P450 monooxygenases (CYPs) build the major fraction 

in this subclass. They were named by their specific light absorption ability at 450 nm resulting 

from the reduced CO-bound heme-complex which is used for enzyme quantification. In the 
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core of the active site, an iron atom is bound to protoporphyrin IX, while a cysteine acts as 

the fifth ligand. Upon reduction, the iron atom binds and activates O2 and substrate 

oxyfunctionalization can occur. Three-component monooxygenases composed of the heme-

containing hydroxylase, a ferredoxin moiety that transfers electrons via Fe2S2 clusters and a 

FAD-containing ferredoxin reductase that receives electrons from NADH are referred to class 

I CYPs. In contrast, class II type CYPs consist of a membrane-bound hydroxylase and a 

Flavin-containing ferredoxin reductase. Class III CYPs assemble the heme-containing 

hydroxylase as well as the Flavin-containing ferredoxin reductase moiety on a single 

polypeptide forming a self-sufficient protein. Recently, also a class IV CYP category was 

discovered that assembles the three components of heme-hydroxylase, Fe2S2-ferredoxin and 

Flavin-ferredoxin reductase in one protein.   

Peroxygenases constitute another heme-dependent oxygenase subclass that is structurally 

related to CYPs and make use of H2O2 as oxygen donor (Bormann et al., 2015; Wang et al., 

2017). The reaction mechanism is independent of nicotinamide cofactors and other electron 

supplying proteins and resembles the peroxide shunt of CYPs.  

Non-heme iron oxygenases . Non-heme iron oxygenases have evolved in parallel with 

cytochrome P450s (Jasniewski and Que Jr, 2018; Pazmino et al., 2010). Both, mono- and di-

nuclear iron centers coordinated within the enzyme active site are known. Mono-nuclear 

active sites often occur in dioxygenases and lipoxygenases (Salomon et al., 2013). Di-iron 

catalytic centers are bridged, e.g., by a glutamate residue, while glutamate or histidine 

residues arrange the octahedral coordination of the iron atoms and are complemented by 

solvent-derived water and hydroxide ions. Well studied non-heme diiron monooxygenases 

are the three-component soluble methane monooxygenase MMO (Dalton, 1980; Merkx et al., 

2001), the membrane-bound three-component alkane monooxygenase AlkBGT (Austin and 

Groves, 2011; Peterson et al., 1966a), as well as the membrane-bound two-component 

xylene monooxygenases XylMO (Suzuki et al., 1991). 

Flavin-based oxygenases. The active site of oxygenases can also be built on carbon-based 

catalytic centers such as Flavin-containing (covalent = prosthetic) or Flavin-dependent 

(external Flavin = coenzyme) oxygenases (Liang et al., 2018b; Pazmino et al., 2010). Flavin-

based enzymes are abundant in prokaryotic organisms and make use of Flavin 

Mononucleotide (FMN) or Flavin adenine dinucleotide (FAD) as cofactors. Examples are the 

FAD-containing squalene monooxygenase (Laden et al., 2000), the external flavoprotein 

styrene monooxygenase StyAB (Hartmans et al., 1990), and the Baeyer-Villiger 

diketocamphane monooxygenase (Jones et al., 1993).  
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1.2.2 Why are oxygenases interesting for the chemical industry?  

As already highlighted by the physiological mechanisms in nature, both the reaction as well 

as the substrate variety covered by the oxygenase subclass is huge. Non-activated 

hydrocarbons, such as the alkanes octane (Peterson et al., 1966a) and xylene (Suzuki et 

al., 1991) are hydroxylated, while unsaturated hydrocarbons, such as styrene (Hartmans et 

al., 1990) or squalene (Laden et al., 2000) are epoxidized. Aldehydes and ketones are 

converted to the respective esters by Baeyer-Villiger Monooxygenases, as for example 

known for the oxidation of the cyclic ketone diketocamphane (Jones et al., 1993) to the 

corresponding lactone. Next to hydrocarbons, also compounds containing heteroatoms such 

as sulfides or amines can be oxyfunctionalized to sulfoxides (Wójcikowski et al., 2014) or 

oximes (Zhu et al., 2013).   

In addition to the huge chemical variety concerning the substrate scope, oxygenase enzymes 

act incomparably regio-, chemo-, and enantioselective by embedding their substrate in a 

well-aligned binding pocket (Liang et al., 2018b). This, together with the fact that enzymes 

operate under mild conditions (neutral pH, low temperature, low pressure, aqueous 

solvents), turns oxygenases into a highly promising catalyst for the chemical industry. 

Oxyfunctionalized compounds are ubiquitous in all product classes of pharma, fine and bulk 

chemicals. Structural complex molecules are found in pharmaceutical compounds, such as 

the cholesterol-derived anti-inflammatory drug cortisone, and can be accessed by the 

application of oxygenases (Hudlicky and Reed, 2009). Chiral building blocks, such as chiral 

alcohols, complement the fine chemical industry. Oxyfunctionalized hydrocarbons function as 

building blocks for the polymer industry (Evonik Industries AG, 2013; Karande et al., 2017; 

Ladkau et al., 2016). 

1.3 Development of oxyfunctionalization bioprocesses 

1.3.1 Targets for industrial implementation 

Referring to the Darwinian evolutionary theory, the driver for natural evolution is `survival of 

the fittest´. Oxygenase-catalyzed oxyfunctionalization reactions evolved within the framework 

of physiological mechanisms with the target of maximizing the efficiency of maintenance, 

growth, and reproduction. In contrast, chemical synthesis aims at maximum 

(oxyfunctionalized) product formation, irrespective of being driven by chemical, enzymatic or 

whole-cell (bio-) catalysis. Thus, bioprocess development tasks the change of the microbial 

objective from exclusive survival to the maximized production of target compounds. 

The ambition of developing new processes relies on both, economic as well as ecologic 

aspects summarized by the descriptor `eco-efficiency´ as done, e.g., by the World Business 

Council for Sustainable Development (WBCSD, 2000). On the one hand, economic feasibility 

refers to the margin between production cost and product value and is explicitly determined 
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by the capital investment costs (CapEx, e.g., equipment), the operational costs (OpEx, e.g., 

raw materials, utilities, waste, maintenance) and the manufacturability (Tufvesson et al., 

2010). On the other hand, ecologic aspects refer to a sustainable design of a chemical 

production process, being manifested in the twelve principles of Green Chemistry: 

Prevention, Atom Economy, Less Hazardous Chemical Synthesis, Designing Safer 

Chemicals, Safer Solvents and Auxiliaries, Design for Energy Efficiency, Use of Renewable 

Feedstocks, Reduce Derivatives, Catalysis, Design for Degradation, Real-Time Analysis for 

Pollution Prevention, Inherently Safer Chemistry for Accident Prevention (Anastas and 

Eghbali, 2010). Importantly, although often associated with the term “green”, biocatalysis per 

se does not account for green chemistry, and careful quantification of the environmental 

impacts is essential (Ni et al., 2014). In general, process efficiency directly affects the 

production costs and the raw material input, therefore being a crucial parameter in tuning the 

eco-efficiency during process development. Three key metrics determine the process 

efficiency (Straathof et al., 2002): 

• Productivity, space-time yield (g L-1 h-1)  

• product titer (g L-1), and   

• product yield (g gsubstrate
-1 or g gcatalyst

-1) 

The very consideration of economic viability requires productivities and titer of at least 0.001 

g L-1 h-1 and 0.1 g L-1, respectively, for high-priced compounds mainly found in the 

pharmaceutical industries (Julsing et al., 2008). For mid-priced chemicals, seen in the fine 

and the bulk chemical industry, the demand for efficiency further increases. Productivities 

and titers should be as high as 0.1 g L-1 h-1 and 1 g L-1, respectively. Concerning whole-cell 

biocatalytic applications, product yields on biocatalysts should range from 10 g gCDW
-1 

(pharmaceutical compounds) to 2000 g gCDW
-1 (bulk chemicals) (Tufvesson et al., 2010). 

Thus, biocatalytic activity, as well as stability, are two main parameters determining the 

successful implementation of a bioprocess. 

1.3.2 Concept of integrated bioprocess design  

The eco-efficient use of oxygenases, irrespective of applied as isolated enzymes or in whole-

cells, meeting requirements of economy, ecology, and manufacturability is possible with a 

process design taking numerous different aspects into account. In a rational approach, the 

development of a bioprocess can pass four levels of engineering addressing enzyme, host, 

reaction, and process (Figure 1.3) (Karande et al., 2016b; Schmid et al., 2001; Willrodt et al., 

2015b). Within each level, the optimization of distinct targets is addressed by numerous 

strategies/ parameters. Thereby, the selection and technological implementation of these 

strategies is governed by the mutual interconnection of the four engineering levels.   

The transfer of a microbial cell from its natural status to a well-functioning biocatalyst in a  
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technical setting changes the objective from survival to maximizing product formation 

(Volmer et al., 2015). Deciphering these differences and similarities allows the optimization 

and particularly exploitation of technologies that were designed by natures evolution for 

chemical synthesis. 

 

Figure 1.3: Concept of integrated bioprocess design. The development of bioprocesses meeting 

requirements of economy, ecology, and manufacturability necessitates the integrated consideration of 

the four levels of enzyme, host, reaction, and process engineering. Within each level, the optimization 

of distinct targets is addressed by numerous strategies/ parameters. Thereby, the selection and 

technological implementation of these strategies is governed by the mutual interconnection of the four 

engineering levels. Figure adapted from Schmid et al. 2001 (Schmid et al., 2001). 

Holistic biocatalysis cycles were developed guiding towards individual objectives such as 

aligning bioprocess development with physicochemical properties of the reactants or 

hydrocarbon oxyfunctionalization (Bühler and Schmid, 2004; Willrodt et al., 2015b). Although 

each development step requires in-depth knowledge of particular engineering technologies, 

the early integration of analysis as well as optimization strategies on all levels of engineering 

strengthens and accelerates bioprocess design. During (isolated enzyme or whole-cell) 

biocatalyst development, the optimization towards the final reaction and process setting is of 

high importance as, for instance, the microenvironment changes from mL-scale shake flask 

to m3-scale bioreactors which may result in fundamental changes concerning the process 

performance. Today, the process setup is designed to match the biocatalyst requirements. 

However, the reverse handling, e.g., by directed evolution of the biocatalysts under real 

process conditions, allows for selecting and engineering the biocatalyst to match the existing 

process design (Burton et al., 2002; Hibbert et al., 2005; Woodley, 2018). Particular 

technologies such as single-cell analysis support the evaluation of the performance of 

individual cells under reaction and process conditions and enable the identification and 

optimization of bottlenecks in the process efficiency induced for instance by heterogeneity 

and population dynamics (Rosenthal et al., 2017). Systems biology, which is the quantitative 
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description of cellular functions, e.g., using omics tools, becomes an integrating engineering 

tool by implementing the knowledge on reaction and process requirements of a targeted 

bioprocess with the rational engineering of the biocatalyst (Kuhn et al., 2010a). A systematic 

understanding and the ability to address problems on all levels of bioprocess development 

enables prolonged and thus more efficient bioprocesses with enhanced yields and titers 

(Kadisch et al., 2017b).  

The following section introduces engineering strategies applied for improving the oxygenase 

bioprocess efficiency and is clustered according to the four levels of bioprocess design just 

introduced.     

1.3.3 Enzyme selection and engineering   

Selectivity, activity, and stability are the key targets for enzyme selection and engineering 

and are quantified by the product composition, turnover number, and total turnover number. 

When starting bioprocess development, the choice of the right enzymatic catalyst is crucial. 

Screening and isolation of enzymes from natural sources with a microenvironment fitting to 

the intended bioprocess is very promising (Watts et al., 2005). One example is the catalyst 

CYP450chx used for cyclohexane oxyfunctionalization, which was identified from a bacterial 

strain isolated from a biotrickling filter applied for cleaning air containing cyclohexane as 

contaminant (Salamanca and Engesser, 2014; Salamanca et al., 2015). In case, the portfolio 

of the naturally available enzyme does not fit the required reaction requirements concerning 

selectivity, activity, or stability, enzyme engineering can be pursued to optimize the 

performance (Bloom et al., 2005; Bornscheuer et al., 2012; Kuchner and Arnold, 1997). The 

prospects of enzyme engineering technologies are studied extensively at one of the best-

known oxygenases, P450 BM3 (= CYP102A1) (Whitehouse et al., 2012). This class III CYP 

is the third isolated oxygenase from Bacillus megaterium. The non-engineered enzyme 

hydroxylates medium- to long-chain fatty acids (C12-C20) at the sub-terminal positions using 

NADPH as a cofactor. P450 BM3 shows the highest known oxygenase activity (kcat = 285 s-1 

determined via arachidonate-induced NADPH oxidation) (Noble et al., 1999). Protein 

engineering efforts can facilitate broader substrate diversity, higher activities towards non-

natural substrates, and increased catalyst lifetimes (Whitehouse et al., 2012). Rational 

design by molecular modeling and site-directed evolution of P450 BM3, for instance, enabled 

hydroxylation of the aromatic isoflavone daidzein at distinct positions (Ko et al., 2015). 

Random mutagenesis resulted in an enzyme capable of the hydroxylation of alkanes (Glieder 

et al., 2002). Site-directed mutagenesis enhanced the oxidation rate of polycyclic aromatic 

hydrocarbons 200-fold. Increasing product formation rates often goes along with increased 

unproductive NAD(P)H oxidation rates (uncoupling), mainly derived from the un-proper fitting 

of the substrate within the active site (Carmichael and Wong, 2001). Protein engineering can 

enhance the coupling efficiency and therefore the protein stability regarding the total turnover 
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number (Fasan et al., 2007). Another simple but efficient method of protein engineering is the 

design of synthetic fusion proteins (Yu et al., 2015b). Electron transferring components, such 

as the reductase domain of P450 BM3, can be fused to oxygenase enzymes, enhancing the 

electron transfer efficiency (Scheps et al., 2013). Multi-step reactions can profit from 

enzymes brought in spatial proximity resulting in the conversion of otherwise accumulating 

intermediates (Willrodt et al., 2015a). In addition to the protein efficiency-determining metrics, 

the cofactor dependency of oxygenases influences the subsequent bioprocess design. This 

is especially important for whole-cell applications, where the scope of available cofactors 

varies among the microbial species. Using protein engineering, the NADPH – NADH cofactor 

dependency can be modulated as likewise shown for the P450 BM3 (Girvan et al., 2011; 

Neeli et al., 2005).  

1.3.4 Host selection and engineering 

Once an appropriate (oxygenase) enzyme is chosen and, if necessary and successfully 

engineered, subsequent catalysis requires a suitable host system. Thereby, protein 

production, physiological suitability, metabolic efficiency, and cellular chassis, as well as cell 

integrity, are key targets that require special consideration and, if needed, optimization. 

Whether the microbial cell functions as protein production host only or as a whole-cell 

biocatalyst for the catalytic reaction is one of the first choices made during the bioprocess 

development. In the case of oxygenase-based catalysis, numerous advantageous for in vivo 

or in vitro applications, respectively, exist (de Carvalho, 2011). Whole-cells provide an 

endogenous cofactor as well as protein regeneration system. The microbial cell presents a 

natural environment, protecting the proteins from destabilizing conditions such as organic 

solvents. Inherently, in vivo application avoids the purification of, potentially membrane-

bound, (multi-component) oxygenases. In contrast, the use of isolated enzymes provides 

high flexibility, e.g., for combining specific catalytic reactions for multi-step catalysis. 

Substrate and product mass transfer remain unlimited, and no side-reactions occur from 

microbial host intrinsic enzymes. Protein engineering enabled the stable use of oxygenases 

in organic media or ionic liquids. In-situ cofactor regeneration is possible, e.g., by enzymatic, 

chemical or electrochemical approaches. 

Host selection. Natural sources already provide optimized microbial systems as a result of 

elaborate evolution. The native organism synthesizes the enzyme of choice in a correctly 

folded and therefore active conformation. Posttranslational modifications, such as 

glycosylation, and support of protein folding, e.g., by chaperones, are well-established in 

these organisms. In contrast to the natural host systems, the technical use of proteins 

demands high concentrations accompanied by simple cultivation technology (reducing 

production costs) and ease of manipulation (Carvalho, 2017). Typical organisms for 

biocatalytic enzyme production and application are prokaryotic microorganisms such as 
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E. coli, Pseudomonads, Bacillus sp., and eukaryotic yeasts such as Saccharomyces 

cerevisiae or Pichia pastoris. Yeasts possess organelles providing compartmentalization and 

much space for the incorporation of membrane proteins as frequently the case of 

oxygenases. Some extremophile bacteria, often Pseudomonas species, show an increased 

tolerance towards solvents such as cyclohexane or styrene (Sardessai and Bhosle, 2004). 

This is beneficial for the application of such organic solvents as carrier phase for hydrophobic 

and therefore low water-soluble compounds, e.g., testosterone, as they predominantly occur 

as substrates for oxyfunctionalization catalysis (Kuhn et al., 2012a; Ruijssenaars et al., 

2007). Given heme-containing oxygenases, host systems that endogenously synthesize 

aminolevulinic acid for porphyrin biosynthesis are preferred (Julsing et al., 2008; van Beilen 

et al., 2005). Different organisms can provide altered yields of product based on the same 

carbon source. During styrene epoxidation catalyzed by StyAB, for instance, 1.5 times higher 

yields of styrene oxide on glucose was observed using E. coli JM101 as host system in 

comparison to Pseudomonas sp. VLB120 (0.87 vs. 0.55 gproduct gglucose
-1) (Kuhn et al., 2012a). 

Host intrinsic side reactions often occur and can be both adverse as well as beneficial for the 

desired reaction. Limonene hydroxylation using the CYP153A6, for instance, resulted in 

perillyl aldehyde and perillyl acid overoxidation catalyzed by a pseudomonas intrinsic 

dehydrogenase. A change of the biocatalytic chassis to E. coli W3110 supported the 

production of mainly perillyl alcohol by host intrinsic reduction of perillyl aldehyde back to 

perillyl alcohol (Cornelissen et al., 2013).  

Protein production. Genetic manipulation and engineering of the selected microbial host 

system is the basis for successful overexpression of genes for heterologous protein 

production. Knowledge and use of methodologies on all levels of protein biosynthesis, 

including replication, transcription, translation, and posttranslational modification strengthen 

the control over protein production. While the use of plasmids as vectors for foreign genes is 

simple and fast, genome integration enables more stable genetic incorporation. A broad 

range of promoters, comprising constitutive as well as inducible expression systems, allow 

for the defined transcription of the genetic material at desired time-scales. In addition, the 

applied codon usage and ribosomal binding sites control the strength of translation. 

Modularization of genes in different operons tunes the ratio of multi-component protein 

systems. Introduction of specific helper proteins, such as chaperones or the maltose binding 

protein, support the proper and soluble protein folding. Overexpression of the glutamyl-tRNA 

reductase, a key enzyme catalyzing the rate-limiting reaction in heme biosynthesis, allows for 

proper cofactor incorporation also in E. coli (Harnastai et al., 2006).  

Physiological suitability and metabolic efficiency. Biocatalytic applications sometimes 

rely on more than one enzyme and connect to the microbial metabolism in different 

complexity (Schrewe et al., 2013). Whereas the use of isolated enzymes is inherently 
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independent of the microbial host system, whole-cell biotransformations make use of the 

endogenous cofactor- or even co-substrate regeneration. Therefore, the physiological 

background has to suitable to accommodate the desired enzyme performance. When 

applying oxygenases in whole-cells, host-intrinsic side-reactions often interfere with the 

target reaction. In such cases, pathway engineering on endogenous enzymes is required. 

Identification and subsequent knock-out of the esterase BioH in E. coli, for instance, reduced 

the fatty acid methyl ester (FAME) hydrolysis by a factor of 22, enhancing the product yield 

for FAME hydroxylation (Kadisch et al., 2017a).   

The use of oxygenases implies the supply with electrons from respective cofactors. When 

applying whole-cell reaction systems, the supply with cofactors is highly dependent on the 

endogenous consumption of such. Metabolic engineering is a highly useful tool for optimizing 

the catalytic performance of a cell (Lin and Tao, 2017). Systems biology, comprising in silico 

modeling and multi-omics data analysis, allows for the identification of rate-limiting steps and 

following definition of targets for maximizing and balancing the (electron) flux towards the 

desired product. The genetic introduction of additional enzymes can increase fluxes. The co-

expression of the alcohol dehydrogenase AlkJ, for instance, with the alkane monooxygenase 

enzyme system AlkBGT supported the irreversible oxidation of the hydroxylated fatty acid 

methyl ester to the targeted aldehyde compounds (Schrewe et al., 2014). Also, cofactor 

regeneration can be accelerated, e.g., by introducing an orthogonal cofactor re-regeneration 

system. The incorporation of a glucose uptake and NADP+-dependent glucose 

dehydrogenase system in E. coli, for instance, 9-times increased the α-pinene to α-pinene 

oxide oxyfunctionalization rate catalyzed by P450 BM-3 (Schewe et al., 2008). The knock-out 

of non-efficient cofactor generating pathways, such as the glycolytic pathway, increases the 

flux through the pentose phosphate pathway and thus improves the cofactor generation yield 

on glucose (Fasan et al., 2011). The same effect could be achieved by the partial inactivation 

of competing pathways, such as endogenous respiration and fermentative pathways (Fasan 

et al., 2011) .  

Microorganisms often provide either NADH or NADPH as the main cofactor. A simple but 

effective metabolic engineering tool, if the applied oxygenase does not match the cellular 

cofactor supply, is the genetic introduction of a transhydrogenase that catalyzes the hydride 

transfer between the two nicotinamide dinucleotides (Blank et al., 2010). Co-expression of an 

L-lactate dehydrogenase and a soluble transhydrogenase, for instance, increased the lactate 

production rate and yield in the cyanobacterium Synechocystis sp. PCC 6803 (Angermayr et 

al., 2012).  

Cellular chassis & cell integrity. The application of oxygenases in whole-cell biocatalysts 

relies on a biocatalytic host functioning as reaction chassis. Although the microbial 

metabolism can be optimized by metabolic engineering regarding balanced fluxes directing 
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towards the chemical product, the whole-cell embodiment itself affects the reaction 

performance, inter alia, by the presence of cell membranes (and cell walls). Cellular 

engineering re-structures the microbial chassis, e.g., for the improved substrate uptake, 

product secretion, or toxic reactant export. The outer membrane of microbial cells functions 

as a barrier for hydrophobic compounds. Outer membrane pore proteins such as AlkL 

(Julsing et al., 2012b), OprG (Touw et al., 2010), OmpW (Hong et al., 2006), or FadL (van 

Den Berg et al., 2004) facilitate the uptake of oxyfunctionalization substrates by providing 

hydrophobic channels. Co-expression of AlkL in recombinant Pseudomonas putida KT2440 

harboring CYP153A6, for instance, increases the hydroxylation activity of (S)-limonene to 

(S)-perillyl alcohol by a factor of five (Cornelissen et al., 2013). In addition, hydrophobic 

substrate uptake can be enhanced by engineering the lipopolysaccharide acylation state 

(Vorachek-Warren et al., 2002). Thus, lipopolysaccharide mutant strains of E. coli W3110 

harboring P450 BM3 enabled the whole-cell oxyfunctionalization of the hydrophobic 

substrate linoleic acid (Lee et al., 2011). The secretion of oxyfunctionalized products is not 

inherently hampered as the oxyfunctionalization process itself increases the hydrophilicity of 

the respective substrates. In contrast, too much uptake of reactants, e.g. of organic solvents, 

is detrimental to the cells resulting in decreased bioprocess stability by microbial inactivation. 

Solvent extrusion, supported by efflux pumps such as TtgABC, TtgGHI, or SrpABC identified 

in various Pseudomonads, keeps the intracellular toxicant concentration low and therefore 

enables the survival or even growth of microorganisms under exposure of solvent 

compounds. Constitutive synthesis of the efflux pump TtgGHI in Pseudomonas sp. 

VLB120ΔC reduced the adaptation time to respective reaction conditions and, also, doubled 

the specific styrene epoxidation activity (Volmer et al., 2014).  

The application of (oxygenase) enzymes in isolated form overcomes the need for reactant 

mass transfer. A sophisticated way of facilitating the direct contact between the catalyst and 

the substrate by the simultaneous preservation of enzyme stability and regeneration is the 

display of enzymes on the microbial surface (Schüürmann et al., 2014). Also, the well-

studied cytochrome P450BM3 was displayed on the cell surface of E. coli and enabled the 

hydroxylation of lauric acid, palmitic acid and arachidonic acid independent from membrane 

mass-transfer (Yim et al., 2010). Easy separation from the reaction mixture and re-usability 

strengthened this method  (Ströhle et al., 2016). Exclusion of the enzyme from the microbial 

metabolism challenges the cofactor supply, although external supply with NAD(P)H via 

electrochemical, chemical and enzymatic regeneration systems were already developed 

successfully.  

1.3.5 Reaction engineering 

Key optimization targets within the level of reaction engineering are biocatalyst production, 

reaction efficiency, and biocatalyst stability. Nature adapted its mechanisms according to the 
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present microenvironment. In contrast, biocatalyst generation and chemical conversion 

necessitate altered/ optimized growth and reaction conditions. Temperature, pH, and media 

composition (including, inter alia, ionic strength) are of high importance for both, the catalyst 

production and the chemical reaction. In the case of whole-cell biotransformations, the 

reaction medium does not only affect the oxyfunctionalization reaction itself, but also the 

state of the cellular metabolism. The depletion of nutrients, for instance, induces a non-

growing state of the cell. Such resting cells can provide increased cofactor supply on the 

given energy source, as shown for the epoxidation of styrene to (S)-styrene oxide catalyzed 

by recombinant E. coli harboring a styrene monooxygenase (Julsing et al., 2012a).   

Throughout the whole reaction time, reactant concentrations have to match the enzyme or 

whole-cell kinetics, respectively. Michaelis-Menten kinetics, including product inhibition and 

reactant toxicity, are key aspects to be considered (Ringborg and Woodley, 2016). 

Oxyfunctionalization substrates often are hydrophobic and therefore lowly water soluble. 

Intercalation of such chemical compounds in the membranes of whole-cell biocatalysts 

results in cell disintegration, and therefore destabilization of the bioprocess (Sikkema et al., 

1994). Solvents with a logarithmic octanol-water coefficient logP between 1 and 4 are 

considered to be highly toxic to cells (de Bont, 1998). On the one hand, a continuous 

substrate feed can prevent from supplying the toxic substrate in excess. Importantly, the feed 

rate has to match the oxyfunctionalization rate to keep the substrate concentration constantly 

low. In the example of fluorobenzene oxyfunctionalization to fluorocatechol catalyzed by 

Pseudomonas putida whole-cells, reactant inhibition was successfully overcome by such a 

substrate feeding strategy (Lynch et al., 1997). On the other hand, organic carrier solvents 

can be used to continuously provide the substrate to the aqueous phase, regulated by the 

organic:aqueous phase partitioning coefficient. The oxyfunctionalization of α-pinene to α-

pinene-oxide catalyzed by recombinant E. coli harboring a cytochrome P450 BM3 variant, for 

instance, revealed an optimal substrate concentration of 30% (v/v) α-pinene dissolved in the 

organic carrier solvent diisononyl phthalate (DINP) resulting in high initial specific activities 

and prolonged biotransformation stability (Schewe et al., 2009).   

Oxyfunctionalization intermediates and products accumulating at concentrations toxic to the 

biocatalysts constitute another source of reduced biotransformation stability. The 

accumulation of hydrophobic compounds in the microbial membranes was estimated to 

induce cell breakdown at concentrations of 300 - 400 mM (Kratzer et al., 2015). In situ 

product removal (ISPR) is a useful technique to retain low reactant concentrations (Lye and 

Woodley, 1999). Examples for ISPR comprise, amongst many others, liquid-liquid extraction, 

and solid-phase adsorption. Solid-phase in situ product extraction by adsorption to the 

hydrophobic Optipore L-493 resin, for instance, enhanced the rate and yield of the Baeyer-

Villiger oxidation of bicyclo[3.2.0]hept-2-en-6-one to the corresponding lactones catalyzed by 
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recombinant E. coli harboring a cyclohexanone monooxygenase (Simpson et al., 2001). The 

use of bis(2-ethylhexyl)phthalate (BEHP) as liquid extraction solvent during E. coli Xylene 

monooxygenase (XylMO) biotransformation, for instance, allowed for stable 

oxyfunctionalization of pseudocumene to the respective aldehydes and acids at high 

concentrations (Bühler et al., 2002).    

In addition to the prevention of catalyst inactivation and retention of highly volatile reactants 

in the reaction system, in situ substrate supply and product extraction also allow for the 

kinetic control of multi-step oxyfunctionalizations. Thus, the defined use of 2-liquid phase 

biotransformation directed the product formation pattern of the E. coli XylMO reaction system 

to the accumulation of 3,4-dimethylbenzaldehyde (Bühler et al., 2003b). Organic-carrier 

solvents are not only applicable for whole-cell applications, but also for the use of isolated 

oxygenase enzyme systems. Cytochrome P450 BM3 variants, for instance, could 

successfully be applied with cyclohexane as an organic carrier solvent for the hydroxylation 

of octane or myristic acid (Maurer et al., 2005).  

Next to the substrate supply and product extraction, the co-substrate O2 is one of the most 

critical parameters during oxyfunctionalization catalysis. The dissolved oxygen concentration 

influences the oxyfunctionalization rate and can affect the regioselectivity of the reaction. For 

instance, the impact of oxygen on the oxyfunctionalization of pentadecanoic acid catalyzed 

by cytochrome P450 BM-3 was investigated in both, isolated enzyme and whole-cell 

applications (Schneider et al., 1999). Excess of oxygen resulted in the formation of 

hydroxypentadecanoic acids as well as ketohydroxy- and dihydroxypentadecanoic acids with 

an oxyfunctionalization rate of 2.1 U gCDW
-1 (in vivo) and 100 U gprotein

-1 (in vitro), respectively. 

In contrast, oxygen-limited conditions resulted in decreased oxyfunctionalization rates of 1.25 

U gCDW
-1 (in vivo) and 60 U gprotein

-1 (in vitro), respectively, with hydroxypentadecanoic acids 

as the main hydroxy products. 

1.3.6 Process design & engineering 

Process engineering focuses on the transfer of a developed bioprocess into a technical 

setting with special consideration of scaling, process duration, and product recovery. The 

technical setting is highly dependent on whether the process runs continuously or in batch 

mode. Scalability and the scale-up progress maintaining the reaction efficiency are 

prerequisites for the successful process development and, eventually, implementation.    

Scaling & process duration. Optimal growth of the host system and efficient protein 

biosynthesis determine the catalyst production performance. On fermenter-scale, defined 

cultivation conditions of the recombinant expression systems are crucial for generating high 

catalyst concentrations. Development and optimization of a fed-batch strategy, for instance, 

allowed for the synthesis of the cytochrome P450 BM3 to a concentration of ~ 11% per gCDW 

of recombinant E. coli (Pflug et al., 2007). Both, enzymes and whole cells can be applied for 
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catalysis in suspended or immobilized format (Eş et al., 2015). Suspended biocatalysts avoid 

labor and cost-intensive development and preparation techniques. Existing production 

settings can be used for the industrial application. Mixing and therefore mass transfer is not 

limited by supporting materials, and the catalyst preserves its conformational freedom. 

Immobilization often possesses high stability, good storage possibilities, simplified catalyst 

recovery, and recyclability and thus mediates an increased yield on biocatalyst. Various 

immobilization techniques exist and are extensively applied in industry. Immobilization 

materials comprise, e.g., the nature-derived polymers collagen and alginate, or the synthetic 

polymer polyacrylamide. In view of whole-cell biocatalysts, certain bacteria, such as 

Pseudomonas sp. VLB120 (Gross et al., 2007), feature self-immobilization into a biofilm 

format (Halan et al., 2012). High catalyst density and enhanced resistance towards 

destabilizing environmental conditions allow for efficient bioprocessing (Gross et al., 2010). 

During the actual reaction process, the bioreactor facilitates efficient interaction of the 

biocatalyst with the (co-)substrate and, if required during the biotransformation process, 

adequate product extraction. In general, a bioreactor can be operated in batch or continuous 

mode and raises particular demands on the reactor design. Examples of bioreactor types 

comprise, inter alia, stirred tank reactors, fixed-bed reactors, or membrane reactors, mainly 

differing in the biocatalyst application format and the mixing type. Scaling under retention of 

the reaction parameters is crucial. The following paragraphs describe two examples of 

different bioreactor types and operation modes.   

The stirred-tank bioreactor (STR) constitutes an industrial standard for fermentation and 

biocatalytic processes. The core of the STR represents a reaction vessel equipped with a 

stirring device for sufficient mixing of the reaction mixture (agitation). Often, the biocatalyst is 

applied in suspended format. The exchange between the gas and liquid phase mainly occurs 

via aeration. In batch mode, the reaction medium containing all necessary nutrients and, if 

required, the carbon source is provided to the biocatalyst right from the start of the reaction 

process. In a fed-batch mode, the substrate (e.g., an organic carbon source or the reaction 

substrate) is provided during the biotransformation process to avoid inhibition effects. During 

the discontinuous operation, the reactant concentrations continuously change over time. 

Laboratory scaling of a developed two-liquid phase bioprocess to a 30 L stirred-tank 

bioreactor, for instance, enabled the production 3,4-dimethylbenzaldehyde from 

pseudocumene with a productivity of 31  L-1 d-1 and a final product titer of 37 g L-1 catalyzed 

by recombinant E. coli harboring a XylMO (Bühler et al., 2003a).  

Capillary reactors comprise miniaturized reaction chambers combined with microfluidic 

devices. Continuous operation favors the use of biocatalysts immobilized on the inner 

surface of the capillary reactor, e.g., as a self-immobilized biofilm. The reaction medium and 

the substrate are continuously supplied, while the reaction product is continuously obtained 
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at the reactor outlet. The application of air segments (plug flow) facilitates the exchange with 

the gas phase (Karande et al., 2016b). On a laboratory scale, the application of 

Pseudomonas sp. VLB120ΔC in a biofilm-based capillary reactor, for instance, allowed for 

the stable oxyfunctionalization of styrene to styrene-oxide for at least 50 days with an 

average volumetric productivity of 24 g L-1 day-1 (Gross et al., 2010). Scaling takes place by 

numbering-up and comprises a, not yet industrially applied, promising alternative to stirred-

tank reactor processes enabling high product yields on biomass (Gross et al., 2013).   

Product recovery. Downstream processing (DSP) includes the separation of the product 

from the catalyst (cell harvest and disruption for whole-cell applications if the product 

accumulates intracellularly), product recovery, product concentration, product purification, 

and packing (Chmiel, 1991). Next to centrifugation and filtration this comprises, inter alia, 

precipitation, adsorption, solvent extraction, electrophoretic, and chromatographic 

methodologies. Often, in situ product removal (ISPR) strategies such as adsorption or 

solvent extraction are used for a continuous and stabilized bioprocess control. Although the 

DSP is a highly cost intensive (usually more than half of the total costs) part of a bioprocess, 

and therefore an indispensable element for the development of an eco-efficient bioprocess, 

academic research on the systematic optimization of appropriate oxyfunctionalized product 

purification methodologies is rare. 

1.4 Towards photosynthesis-driven redox biotransformations 

1.4.1 Boundaries of current oxyfunctionalization bioprocesses and the potential of 

photosynthesis 

The introduced integration of strategies addressing the key targets for the development of 

efficient bioprocess leads to a complex interconnection of process parameters. In principle, 

constraints of the process efficiency within each process development level go back to 

catalyst activity, product inhibition/ toxicity, catalyst stability, and product recovery. The 

graphical visualization in a window of operation helps to classify the actual state of 

bioprocess development and to define the future engineering targets for achieving an eco-

efficient production process (Figure 1.4) (Woodley and Titchener-Hooker, 1996).    

In general, the left-hand site process boundary arises from the catalyst activity (determined 

by, e.g., the turnover number). The enzyme or whole-cell kinetics for product inhibition and 

product toxicity limit the maximum product titer and form an upper process boundary. The 

biocatalyst stability (determined by, e.g., the total turnover number) restricts the duration of a 

bioprocess. The lower process boundary is defined by the downstream processing 

methodology which becomes viable at a specific minimum product titer and the minimum 

amount of product per volume which is targeted in the process.  

In a detailed view of the left-hand site process boundary of oxygenase biocatalysis, 
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especially the co-substrate supply restricts the maximum catalyst activity. Thus, the limited 

availability of O2 via gas-liquid mass transfer and the regeneration of NAD(P)H cofactors 

challenge the development of viable bioprocesses. Chemoheterotrophic whole-cell reaction 

systems provide reduction equivalents by the catabolism of organic carbon-based sources, 

such as glucose. However, high energy demand for growth and maintenance reduces the 

level of reduction equivalents that are accessible for the catalytic reaction (Blank et al., 2008; 

Bühler et al., 2008). In addition, microbial respiration reduces the amount of O2 available in 

the reaction system and technically challenges the reaction setup (Hilker et al., 2006; Law et 

al., 2006).    

 

Figure 1.4: Window of operation with process boundaries for biocatalytic processes. In 

oxyfunctionalization processes, the catalyst specific activity is confined by the O2 availability and 

NAD(P)H regeneration rate. While heterotrophic whole-cell biocatalysts are prone to limit both, 

photosynthetic water oxidation provides an extensive source of electrons and O2. Figure adapted from 

Schrewe et al. 2013 (Schrewe et al., 2013). 

Oxygenic photosynthesis provides an extensive source of both, O2 and reduction 

equivalents. Thus, by changing the biocatalytic host system from chemoheterotrophic to 

photoautotrophic organisms, in theory, allows for the unlimited exploitation of the oxygenase 

activity. Water serves as a carbon-independent source of both co-substrates accessed by 

the energy of light. The uncoupled fixation of inorganic carbon (CO2) enables cheap and 

sustainable catalyst (re)generation. Coupling of oxygenases to the photosynthetic water 

oxidation is highly promising for the development of eco-efficient production processes that 

are currently O2 and electron-limited but require high productivities. Especially when the 

production costs are essential, e.g., for low-cost products, the replacement of organic carbon 

sources such as glucose by CO2 is favorable. 

1.4.2 The mechanism of oxygenic photosynthesis 

The application and development of photobiocatalytic host systems require an understanding 

of the underlying photosynthetic metabolism. Therefore, the following sections introduce the 
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mechanism of oxygenic photosynthesis, with focus on the photosynthetic water oxidation 

reaction and possible trapping positions for oxygenase enzymes.  

 

Figure 1.5: Schematic representation of the photosynthetic light reaction. With the energy of light 

water is oxidized and electrons are transferred through the electron transport chain towards the 

cofactor NADPH, resulting in a proton motive force and the subsequent generation of ATP. Both, 

NADPH and ATP are used for the fixation of CO2 via the Calvin-cycle. PSII = photosystem II, PQ = 

plastoquinone (PQ), PQH2 = plastoquinol, Cyt b6f = cytochrome b6f complex, PC = plastocyanin, PSI 

= photosystem I, Fd = ferredoxin, FdR = ferredoxin reductase. 

Photoautotrophic organisms such as plants, algae, and cyanobacteria, convert light energy 

into chemical energy by the oxidation of water and fix CO2 for the generation of 

carbohydrates. In the primary, light-driven reaction the energy and electron carrier ATP and 

NADPH are generated via an electron transport chain (Figure 1.5). In the secondary 

reaction, ATP and NADPH are used for the fixation of CO2 and the generation of 

carbohydrates (Figure 1.6). 

 

Figure 1.6: Schematic representation of the Calvin-cycle. ATP and NADPH derived from the 

photosynthetic light reaction and are used to fix CO2.  

The uptake of light quanta (a physical unit for light energy) occurs by photopigments located 

within the thylakoid membranes. Various photopigments with different characteristics and 
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absorption spectra exist, allowing for the efficient usage of the whole range of light energy 

(Madigan and Martinko, 2006). Chlorophyll constitutes one of the main photopigments. It 

assembles a porphyrin scaffold with a coordinated magnesium ion in its centrum. Absorption 

of red and blue light results in a green color. In proteins, chlorophyll forms complexes of 50 to 

300 molecules functioning as energy funnel directed towards the reaction center. The 

electron transport chain of the photosynthetic light reaction comprises two of such protein 

complexes: 

• photosystem PSII containing chlorophyll P680 (absorption of far-red light)  

• photosystem PSI containing chlorophyll P700 (absorption of near red light) 

Phycobilins form another group of light-harvesting and light-energy transferring antenna 

pigments. The aggregates of open-chain tetrapyrroles, such as phycoerythrin (red), 

phycocyanin (blue), or allophycocyanin (blue), are closely linked to chlorophyll reaction 

centers. With decreasing light intensity, the phycobilin content increases. Carotenoids 

conduct a photoprotective role by quenching reactive oxygen species and absorption of 

harmful light. The long chain hydrocarbons with a conjugated double-bond system absorb 

blue light and thus appear yellow, red, brown, or green.   

The photosynthetic light reaction is initiated at the photosystem PSII by the oxidation of water 

into O2, protons and electrons. Subsequent absorption of light facilitates the electron 

excitation and thus transport through the electron transport chain. Second light absorption 

and electron excitation takes place at the photosystem PSI before the electron transfer 

proteins ferredoxin and ferredoxin reductase and finally the cofactor NADP+ are reduced. 

Location of the electron transport chain within the thylakoid membranes results in the 

formation of a proton gradient with high proton concentrations within the thylakoid lumen. 

Finally, this proton motive force drives the ATP synthase.  

Generated ATP and NADPH then are used for the fixation of CO2 by the Calvin-cycle. In the 

first step, CO2 is fixed in ribulose 1,5-bisphosphate (R-1,5-BP) catalyzed by the ribulose 

bisphosphate carboxylase (RubisCO) resulting in two molecules of 3-phosphoglycerate (3-

PG). Subsequently, the C3-molecule 3-PG is reduced to glyceraldehyde 3-phosphate (GAP) 

under consumption of ATP and NADPH. Finally, GAP molecules are either regenerated to R-

1,5-BP by the consumption of ATP or taken up by reversed glycolysis for the generation of 

carbohydrates. Fixed carbon is either directly taken up by the metabolism for growth and 

maintenance or stored in storage compounds such as glycogen. In the absence of light (e.g., 

in the night), these polysaccharides then are catabolized again.  

1.4.3 Trapping electrons from the photosynthetic light reaction for redox biocatalysis 

Redox biocatalysis, such as catalyzed by oxygenase enzymes, requires the efficient coupling 

of the photosynthetic light reaction with the heterologous redox enzyme that makes use of 
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the activated reduction equivalents. The mainly reduced cofactor of photosynthesis is 

NADPH. However, the photosynthetic light reaction offers a multitude of positions for 

trapping the light-excited electrons by redox enzymes (Mellor et al., 2017). Importantly, the 

transfer of electrons necessitates the interaction with electron transferring enzymes that 

match respective redox potentials. The Z-scheme of photosynthesis explains the redox 

pathway of, the by light, excited electrons and discloses the trapping positions for 

heterologous oxygenases (Figure 1.7).      

Due to the spatial accessibility, PSI, ferredoxins, flavodoxins, and ferredoxin reductases are 

the most suitable trapping positions. In contrast, the localization of the copper-containing 

plastocyanin/ heme-containing cytochrome c6 in the thylakoid lumen places these proteins to 

hardly accessible trapping positions for heterologous redox enzymes. The fast exchange 

between electron transferring enzymes occurs if the distance between the central redox 

cofactors is below 14 Å. The relatively weak interactions rely on hydrophobic and 

electrostatic interactions, resulting in an unspecific binding pattern, allow the transfer of 

electrons to various downstream acceptor proteins. Ferredoxins, flavodoxins, plastocyanin, 

and cytochrome c6 are negatively charged and thus interact with the positively charged sites 

of the cytochrome b6f complex and the photosystem PSI.  

 

Figure 1.7: Z-scheme representing the electron transfers within the photosynthetic light reaction. 

Electrons are transferred from proteins with a high redox potential to those with a low redox potential. 

Electrons are excited by the energy of light which takes place in the photosystems PSII and PSI. PSII 

= photosystem II, PQ = plastoquinone, Cyt b6f = cytochrome b6f complex, PC = plastocyanin, PSI = 

photosystem I, Fd = ferredoxin, FdR = ferredoxin reductase. 

Downstream of the photosystem PSI, ferredoxins are the primary electron transferring 

enzymes. They distribute the reducing power within the metabolism of the photosynthetic 

organism. Electron transfer occurs via iron-sulfur clusters (Fe2S2, Fe3S4, Fe4S4). Rubredoxins 

have the same function but contain a single iron center. Both are one electron carriers. Thus 

the reduction of NADPH requires two electron transfer steps. Absent in plants, flavodoxins 

comprise functional homologs to ferredoxins. The FMN-based, one-electron carrier proteins 
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share a comparable redox potential but interact with even lower specificity than ferredoxins.  

Redox enzymes, such as oxygenases, often rely on functionally related electron transferring 

enzyme systems. Thus the exchange of these systems with those derived from the 

photosynthetic machinery is reasonable and facilitated by their promiscuity (Goñi et al., 2009; 

Lacour and Ohkawa, 1999).  

Numerous studies already conceptually investigated the exploitation of the photosynthetic 

water oxidation for redox reactions (Table 1.1). The different possibilities for trapping 

photosynthesis-derived electrons are explained best on the example of hydrogen production, 

which is the take-up of electrons for the reduction of protons to hydrogen. Hydrogenases can 

be coupled to the PSI by localizing both enzymes in spatial proximity (Ihara et al., 2006b). 

Connection of both central Fe4S4 clusters via a thiolated molecular wire enables a direct 

electron transfer (Lubner et al., 2011). Alternatively, mediation of the electrons deriving from 

PSI to the hydrogenase, for instance, results from the fusion of PSI with a cytochrome c3 

(Ihara et al., 2006a). In addition, hydrogen production is facilitated by the fusion of 

hydrogenases with photosynthesis deriving ferredoxins (Yacoby et al., 2011). In general, the 

abstraction of electrons competes with the endogenous metabolism, such as CO2 fixation 

(main part), nitrogen, and sulfur assimilation. Down-regulation of competing pathways and 

orthogonal re-direction of electrons, therefore, might be crucial.   

1.4.4 Current state of photobiotechnology 

Thus far, substantial effort was dedicated to the proof-of-concept studies coupling the 

photosynthetic light reaction with redox enzymes, and great success was achieved. The 

implementation of eco-efficient photosynthesis-driven redox biotransformations into suitable 

process settings, however, requires the identification of key limitations and engineering 

targets. Therefore, the following section briefly reviews the current state-of-the-art in 

photobiotechnology in analogy to the approach of addressing the levels of process 

development described above. 

Selection of phototrophic host systems. The group of phototrophic organisms covers 

plants, algae, and cyanobacteria. Referring to the theory of endosymbiosis, ancestors of 

cyanobacteria stably incorporated into primitive eukaryotic cells, resulting in the development 

of chloroplasts present in plants and algae. Due to enhanced cell growth and genetic 

accessibility in comparison to plants and algae, cyanobacteria comprise promising host 

systems for photosynthesis driven biotechnological applications. Synechocystis sp. PCC 

6803 presents a cyanobacterial model organism for which few engineering methodologies 

were already established (Ruffing, 2011). Synechococcus elongatus PCC 7942 constitutes 

another unicellular model organism, while various filamentous strains such as Anabaena sp. 

or Nostoc sp. are mostly studied in the context of hydrogen production. 
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Table 1.1: Photosynthesis-driven electron demanding reactions. DCMU = 3-(3,4-dichlorophenyl)-1,1-dimethylurea, specific inhibitor of photosystem II (PSII) 

electron transport; IAM = Iodoacetamide; DBMIB = 2,5-dibromo-3-methyl-6-isopropylbenzoquinone; C3H = p-coumarate-3-hydroxylase.  

Reaction Host system Information on mechanism Rate Ref 

 

Synechocystis sp. PCC 6803 

recombinant 

DCMU reduces activity 

Light-dependent activity 

Low activity with DCMU in the absence of light 

123 U gCDW
-1 (Köninger et al., 2016) 

 

Tetraspora sp. CU2551 

wildtype 
- 20 U gCDW

-1 (Maswanna et al., 2018) 

 

Synechocystis sp. PCC 6803 

recombinant 

DCMU reduces activity 

Light-dependent activity 

Low activity with DCMU in the absence of light 

6 U gCDW
-1 (Böhmer et al., 2017) 

 

Synechococcus sp. PCC 7002 

recombinant 

Active without native reductase 

DCMU reduces activity 

Light-dependent activity 

Almost no activity in the absence of light 

31 mU gCDW
-1 (Berepiki et al., 2016) 

 

Synechococcus sp. PCC 7002 

recombinant 

Fused to photosystem I subunit PsaM 

→ localization in the thylakoid membrane 
27 U mgchlorophyll

-1 (Lassen et al., 2014a) 

 
Nostoc sp. PCC 7120 ΔhupW 

knock-out of uptake hydrogenase 
- 14 U mgchlorophyll

−1 (Nyberg et al., 2015) 

 

In vitro 

CYP124 + PSI + Ferredoxin 

Light-driven activity 

Catalase was added to prevent ROS deriving from CYP 
7 U mgchlorophyll

-1 (Jensen et al., 2012) 

 

In vitro 
isolated cactus chloroplasts + yeast microsomes 

containing CYP1A1 fused with ferredoxin reductase 
2.3 U mgchlorophyll

-1 (Hara et al., 1997) 

 

Synechocystis sp. PCC 6803 

recombinant 
Localization of CYP to thylakoid membranes 10 mU mgchlorophyll

-1 
(Wlodarczyk et al., 

2015) 
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Reaction Host system Information on mechanism Rate Ref 

 
In vitro 

Hydrogenase fused to PSI 
Light-driven activity 9.7 mU mgchlorophyll

-1 (Ihara et al., 2006b) 

 

Nicofiana tabacum 

transgenic 
Active only when targeted to chloroplasts 0.012 mU  gleaf

-1 (Okeefe et al., 1994) 

 

Synechocystis sp. PCC 6803 

recombinant 
- 9.4 mU L-1 (Xue et al., 2013) 

 

Synechococcus elongatus PCC 7942 

wildtype 
DCMU inhibits activity active 

(Nakamura and 

Yamanaka, 2002) 

 

Synechococcus elongatus PCC 7942 

wildtype 

Activity inhibited by DCMU (PSII), enhanced by IAM 

(Calvin-cycle) and DBMIB (Cytb6f) 

Low activity in the absence of light 

active (Yamanaka et al., 2011) 

 

In vitro 

Isolated chloroplasts containing 

CYP79A1 fused to Ferredoxin 

active without soluble Ferredoxin active (Mellor et al., 2016) 

 

Synechocystis sp. PCC6803 

wildtype 
Enhanced yield via overexpression of FdR active (Luo et al., 2018) 
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Engineering of photobiocatalytic hosts. Yet, genetic modification of cyanobacteria lacks a 

powerful genetic engineering toolbox. Genetic modifications either rely on a broad host range 

replicative plasmid (RSF origin of replication) or chromosomal integration into several neutral 

sites. Introduction of genetic materials is possible via natural transformation, electroporation 

or conjugation (Ruffing, 2011). Synechocystis sp. PCC 6803 and many other cyanobacteria 

contain multiple genome copies, necessitating full segregation of genetic insertions/ knock-

outs for stable genetic manipulation. In consequence of varying copy numbers and folding 

structures, the different insertion positions result in altered expression strengths. For 

Synechocystis sp. PCC 6803, the highest expression of a fluorescent reporter protein was 

achieved by integration into its endogenous plasmid (Ng et al., 2015). In general, the codon 

usage of Synechocystis sp. PCC 6803 is similar to other bacteria such as E. coli. The 

overexpression of genes can be performed via native promoter systems, such as the light-

inducible PsbA2 promoter (Heidorn et al., 2011). The promoter natively controls the synthesis 

of a photosystem PSII subunit and results in a strong and, under standards cultivation 

conditions, constitutive expression. In addition, metal ion inducible promoter systems are 

used. The PnrsB promoter, for instance, natively controls nickel, cobalt, and zinc efflux pumps, 

and constitutes a highly tunable system with a relatively silent expression under non-induced 

conditions (Englund et al., 2016). Metal ions such as Ni2+ are highly toxic to the bacterial cells 

and necessitate a well-balanced addition to the culture medium. Orthogonal expression 

systems, such as Ptrc (Huang et al., 2010) or Ptac (Albers et al., 2015),  mainly rely on the 

IPTG-inducible lac expression system. However, its functionality is not comparable to 

established heterotrophic host systems such as E. coli, resulting in expression even in the 

absence of the inducing agent.   

Analysis of all native Synechocystis sp. PCC 6803 ribosomal binding site (RBS) sequences 

resulted in an optimized RBS* with 9 base pairs between the Shine-Dalgarno core sequence 

and start codon (Heidorn et al., 2011). Evaluation of RBS* with fluorescent reporter proteins 

showed high translation efficiency. Synthetic biology is required for the development of 

controllable and strong genetic engineering tools.   

In contrast to the use of phototrophic organisms for biotransformation reactions, much 

research was already conducted on the development of fermentative production systems for 

hydrocarbon-based chemicals. Numerous photosynthesis-driven catalysts were generated 

and engineered to produce various compounds, such as ethanol (Liang et al., 2018a), lactate 

(Angermayr et al., 2012), isobutanol (Varman et al., 2013), fatty acids (Ruffing, 2014), 

isoprene (Pade et al., 2016), ethylene (Veetil et al., 2017), itaconic acids (Chin et al., 2015), 

carbohydrates (glucose, fructose) (Niederholtmeyer et al., 2010), glycerol (Savakis et al., 

2015), erythritol (van der Woude et al., 2016), or propandediol (David et al., 2018; Li and 

Liao, 2013),  from CO2. In addition, the feature of naturally synthesizing terpenoids and 
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isoprenoids renders them well suited as biocatalysts for pharmaceuticals, cosmetics, 

colorants, disinfectants, fragrances, flavorings, and agro-chemicals (Pattanaik and Lindberg, 

2015). The production of 3-hydroxypropionic acid (3-HP) represents an example for 

extensive metabolic engineering of a phototrophic metabolism (Wang et al., 2016b). First, the 

heterologous introduction of the malonyl-CoA reductase from Chloroflexus aurantiacus into 

Synechocystis sp. PCC 6803 and optimization of culture conditions enabled the CO2-based 

production of 32 mg L-1 3-HP. Subsequent change of the expression system, including inter 

alia the promoter strength, significantly enhanced the product titer to 692 mg L-1. 

Overexpression of the endogenous acetyl-CoA carboxylase and biotinilase, as well as the 

NAD(P) transhydrogenase, increased the supply of the precursor malonyl-CoA as well as the 

cofactor NADPH, respectively, achieving the production of 745 and 752 mg L-1 3-HP. The 

same product titers were observed after the inactivation of the competing pathways for PHA 

and acetate biosynthesis, respectively. Finally, the combination of these metabolic 

engineering approaches in one strain resulted in the production of ca. 837 mg L-1 3-HP from 

CO2. 

Cultivation and process technologies. Numerous photobiotechnological processes were 

already developed for the generation of algal biomass for animal and human nutrition 

products, cosmetics, or for the extraction of high-value molecules such as fatty acids or 

pigments (Chaumont, 1993; Grobbelaar, 2009; Pulz, 2001; Singh and Sharma, 2012; 

Spolaore et al., 2006; Weissman et al., 1988). Traditional algal cultivation systems comprise 

open pond reactor systems (Figure 1.8 A). The production of lipids as biodiesel using the 

microalgae Graesiella sp. WBG-1, for instance, was carried out in a 40000 L raceway open 

pond bioreactor, comprising a surface area of 200 m2 (20 x 10 x 0.2 m) (Wen et al., 2016). 

After 15 days of cultivation, the final biomass concentration was 138 g m-2 corresponding to 

ca. 0.7 gCDW L-1 and contained ca. 33% of the target lipids. In contrast to open systems, 

closed tubular photobioreactors reduce the risk of contaminations and thus, in theory, 

support the cultivation of genetically modified organisms (Wijffels et al., 2013). In addition, 

tubular photobioreactors, such as built at the AlgaePARC in Wageningen, Netherlands, 

increase the light input by increased surface to volume ratios (Figure 1.8 B) (Wijffels et al., 

2013). A 500 km long tubular photobioreactor (700 m3) in Klötze, Germany, for instance, 

enables the production of 130 – 150 tCDW of the algae Chlorella per year (average 

productivity of 6.2 gCDW m-2 day-1) (Spolaore et al., 2006).  

By further increasing the surface area to volume ratio, an open thin-layer photobioreactor 

was developed recently (Figure 1.8 C) (Apel et al., 2017). With this system, cultivation of the 

saline microalgae Nannochloropsis salina on a technical scale of 8 m2 resulted in high final 

biomass concentrations of 50 gCDW L-1 within 25 days (313 gCDW m-2). In addition to biomass 

production, photosynthetically active algae are applied during waste-water treatment as well. 
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Here, algal biofilms are grown on open surfaces such as polystyrene foam (Johnson and 

Wen, 2010) or concrete (Ozkan et al., 2012) (Figure 1.8 D). Evaluation of the biofilm 

formation of the green alga Botryococcus braunii on concrete with a cultivation area of 0.275 

m2, for instance, showed a biomass formation of ca. 25 g m-2, corresponding to a biomass 

concentration of ca. 96 g L-1 (Ozkan et al., 2012). Recently, the principle of miniaturization 

was intensified further and allowed for the cultivation of the model cyanobacterium 

Synechocystis sp. PCC 6803 as biofilm in a capillary reactor (Figure 1.8 E) (David et al., 

2015). This reaction system now awaits further evaluation of biomass concentrations and 

applicability for biocatalytic purposes.  

 

Figure 1.8: Photobioreactor concepts with increasing surface-to-volume area. A) Open 

raceway pond, figure from (Wen et al., 2016), B) Closed tubular photobioreactor, figure from 

(Wijffels et al., 2013), C) Open thin-layer photobioreactor, figure from (Apel et al., 2017), D) 

Biofilm-based cultivation on concrete, figure from (Ozkan et al., 2012), E) Biofilm-based 

cultivation in a capillary reactor, figure from (David et al., 2015). 
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1.5 Scope of the thesis 

Much success was already achieved for the development of efficient oxyfunctionalization 

bioprocesses by the application of oxygenases in heterotrophic whole-cell host systems. 

However, several restrictions such as the technically limited O2 supply and carbohydrate-

based electron supply still limit their implementation on an industrial scale concerning 

production rates and costs. The use of phototrophic organisms as whole-cell biocatalysts for 

oxygenase-based biotransformations provides an alternative and promising technology for 

the eco-efficient production of oxyfunctionalized value-added chemicals. While numerous 

cyanobacterial or microalgal bioprocesses were already developed for CO2-derived 

fermentations, biotransformation processes relying on the generation of activated reduction 

equivalents as well as O2 derived from photosynthetic water oxidation are rare. In this 

context, research mainly focuses on the demonstration of engineered catalysts with 

emphasis on the production of hydrogen (Das and Veziroǧlu, 2001). Yet, an integrated 

bioprocess design for the application of phototrophic organisms in redox biotransformations 

beyond the proof-of-concept catalyst development is lacking (Fresewinkel et al., 2014).  

This thesis aims at the integrated application of biotechnological methods and strategies for 

the development of eco-efficient photosynthesis-driven oxyfunctionalization processes. The 

main research question combines the conceptual evaluation of photosynthetic electron and 

O2 supply with the technical applicability of cyanobacteria as phototrophic host organisms in 

a hydrocarbon oxyfunctionalization bioprocess. Using the guide of integrated bioprocess 

design depicted in Figure 1.3, biocatalyst, reaction, and process engineering tools are 

applied for the establishment of new, photosynthesis-driven bioprocesses.  

Chapter 3 comprises the development of a Synechocystis sp. PCC 6803 strain, 

heterologously synthesizing the alkane monooxygenase AlkBGT originating from 

Pseudomonas putida GPo1 (Syn6803_BGT). This chapter presents the novel concept of in 

situ supply of O2 from photosynthetic water oxidation for the hydroxylation of nonanoic acid 

methylester (NAME) to 9-hydroxynonanoic acid methylester (H-NAME). Chapter 4 further 

details the Syn6803_BGT photobiocatalyst in long-term biotransformations, exercises 

substrate mass transfer and reactant toxicity in a reaction engineering approach via two-

liquid phase biotransformation and describes the applicability of the photobiocatalyst in a lab-

scale stirred tank photobioreactor. Chapter 5 shows the development and application of a 

Synechocystis sp. PCC 6803 strain, heterologously synthesizing the cytochrome P450 

enzyme system originating from Acidovorax sp. CHX100 (Syn6803_CYP) for the 

hydroxylation of the volatile and toxic substrate cyclohexane to cyclohexanol. Chapter 6 

addresses the key limitation of cultivation systems to achieve high cyanobacterial biomass 

concentrations and focuses on the application of Synechocystis sp. PCC 6803 in a high-cell 

density format. This is realized via a mixed-trophies biofilm-based capillary reactor setting 
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using Synechocystis sp. PCC 6803 in combination with Pseudomonas sp. VLB120. 

Chapter 7 generally discusses the potential of phototrophic bacteria as host organisms for 

O2-dependent reactions with a particular focus on in situ O2 supply via photosynthetic water 

oxidation in relation to other concepts facilitating the in situ O2 generation in the liquid phase. 

Chapter 8 summarizes the outcome of this thesis and provides prospects for the 

development of eco-efficient whole-cell redox processes. In addition, the chapter gives 

further insights into how the results of this thesis may be implemented into a conceptual 

framework addressing O2-sensitive reactions such as the production of hydrogen functioning 

as zero-emission fuel gas. 
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2.1 Chemicals 

Chemicals. Nonanoic acid methyl ester (NAME, ≥ 97%), cyclohexanone (Cone, 99.5%), and 

diisononyl phthalate (DINP, technical grade) were purchased from Sigma-Aldrich (Steinheim, 

Germany). 9-hydroxynonanoic acid methyl ester (H-NAME, > 95%) was purchased from TCI 

Europe N.V. (Zwijndrecht, Belgium). Cyclohexane (Chx, ≥ 99.8%) and cyclohexanol (Col, ≥ 

99%) were purchased from Merck (Darmstadt, Germany). Nonanoic acid (NA, ≥ 97%) was 

obtained from Fluka Chemie GmbH (Buchs, Switzerland). All other chemicals were 

purchased from Carl-Roth GmbH (Karlsruhe, Germany), Merck (Darmstadt, Germany) or 

Sigma-Aldrich (Steinheim, Germany) in the highest purity available.  

2.2 Bacterial strains and cultivation conditions 

Bacterial strains. All cyanobacterial and E. coli strains and plasmids used in this thesis are 

listed in Table 2.1. Kanamycin was used as selection at a final concentration of 50 µg mL-1. 

Table 2.1: Strains/ plasmids used in this thesis.   

Strain/ Plasmid Description Reference 

E. coli DH5α F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 
endA1 hsdR17 (rK–, mK+) phoA supE44 

λB– thi-1 gyrA96 relA1 

(Hanahan, 
1983) 

Synechocystis sp. PCC 6803 Geographical origin: California, USA; 

Received from Pasteur Culture Collection of 
Cyanobacteria (PCC, Paris, France) 

(Stanier et 

al., 1971) 

E. coli W3110 F–, λ-, rph-1, IN(rrnD-rrnE)1 (Bachmann, 
1996) 

Pseudomonas sp. VLB120 Wild-type Pseudomonas; styrene prototroph 
(Panke et 

al., 1998) 

pSB1AC3_Ptrc1O:GFPmut3B pMB1, Ptrc1O promoter, GFPmut3B (BBa_E0040) (Huang et 

al., 2010) 

pSB1AC3_PrnpB:lacI pMB1, PrnpB (constitutive promoter), lac repressor 
(lacI) 

(Huang et 

al., 2010) 

pPMQAK1 Broad host range plasmid (RSF), mob genes, empty 
cloning vector 

(Huang et 

al., 2010) 

pRSF_PrnpB:lacI_Ptrc1O 
(= pAH032) 

RSF, lacI under control of PrnpB promoter, Ptrc1O 
promoter, empty expression vector 

Chapter 3 

pBT10 ColE1, pRO1600, alkane monooxygenase enzyme 
system alkBFG, alkST (originating from Pseudomons 

putida GPo1) under control of Palk promoter 

(Schrewe et 

al., 2011) 

pRSF_Ptrc1O:BGTII 
(= pAH042) 

RSF, lacI under control of PrnpB, alkBGT genes under 
control of Ptrc1O promoter (genes in a row, optimized 
RBS, C-terminal Strep-tag II), with central terminator 
(biobrick #BBa_B0015)  

Chapter 3 
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pSEVA251 Broad host range plasmid (RSF), empty cloning 
vector 

(Martínez-
García et 

al., 2014) 

pRSF_nAlk 
(=pAH010) 

RSF, alkane monooxygenase enzyme system 
alkBFG, alkST under control of Palk promoter 

Chapter 4 

pRSF_PAlk 

(=pAH008) 

RSF, Palk regulatory system Chapter 4 

pRSF_PAlk:BGT 
(=pAH039) 

RSF, alkBGT genes under control of Palk promoter 
(genes in a row, optimized RBS, C-terminal Strep-tag 
II) 

Chapter 4 

pRSF_Ptrc1O:BGT 
(= pAH038) 

RSF, lacI under control of PrnpB promoter, alkBGT 

genes under control of Ptrc1O promoter (genes in a 
row, optimized RBS, w/o C-terminal Strep-tag II), 
with central terminator (biobrick #BBa_B0015) 

Chapter 4 

pRSF_Ptrc1O:BGTII_2x 
 (= pAH048) 

RSF, lacI under control of PrnpB promoter, two copies 
of the operon containing the alkBGT under control of 
Ptrc1O promoter 

Chapter 4 

pRSF_Ptrc1O:BII 
(= pAH044) 

RSF, lacI under control of PrnpB promoter, alkB gene 
under control of Ptrc1O promoter (optimized RBS, C-
terminal Strep-tag II), with central terminator (biobrick 
#BBa_B0015) 

Chapter 4 

pRSF_Ptrc1O:BGII 
(= pAH047) 

RSF, lacI under control of PrnpB promoter, alkBG 

genes under control of Ptrc1O promoter (genes in a 
row, optimized RBS, C-terminal Strep-tag II), with 
central terminator (biobrick #BBa_B0015) 

Chapter 4 

pCom10_capro ColE1, pRO1600, CypP450 monooxygenase 
(CYPchx), ferredoxin reductase (FdR), ferredoxin 
(Fd),  cyclohexanone monooxygenase (CHXON) and 
cyclohexanol dehydrogenase (CDH)  (originating 
from Acidovorax sp. CHX100) under control of Palk 
promoter 

(Karande et 

al., 2017) 

pRSF_Ptrc1O:CYP 
(= pAH050) 

Based on pAH032; CYPchx, FdR, and Fd genes 
under control of Ptrc1O promoter (genes in a row, 
optimized RBS in front of CYP) 

Chapter 5 

pRSF_Ptrc1O:BVMO 

(= pAH049) 

Based on pAH032; BVMO (CHXON originating from 
Acidovorax sp. CHX100) under control of Ptrc1O 
promoter (optimized RBS, C-terminal Strep-tag II) 

Chapter 6 

Cultivation of E. coli strains. Overnight cultures were inoculated from cryo-stocks and 

grown in LB medium at 37 °C and 180 rpm (2.5 cm amplitude) (Sambrook and Russell, 

2001). Pre-cultures were inoculated with 500 µL from this overnight culture and grown in 

50 mL M9* medium (US*Fe trace elements) in a 250 mL baffled shake flask at 30 °C and 

180 rpm (2.5 cm amplitude) (Bühler et al., 2003b; Panke et al., 1999). M9* main-cultures 

were grown as described before by inoculating with the M9* pre-cultures to an OD450 of 0.2. 

Gene expression was induced 4 h after inoculation using 0.025% (v/v) DCPK (Palk promoter 

system) or 1 mM IPTG (Ptrc1O promoter system) for another 4 h. The correlation factor 
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0.166 gCDW L-1 OD450
-1 was used for the calculations of cell dry weight concentrations (Blank 

et al., 2008). 

Standard cultivation of Synechocystis sp. PCC 6803 strains. Synechocystis sp. PCC 

6803 was grown in YBG11 medium based on Shcolnick et al. 2007 containing 50 mM 

HEPES (Shcolnick et al., 2007). Standard cultivation was performed using 20 mL YBG11 

medium in 100 mL baffled Erlenmeyer shaking flasks in an orbital shaker (Multitron Pro 

shaker, Infors, Bottmingen, Switzerland) at 30 °C, 150 rpm (2.5 cm amplitude), 50 μE m-2 s-1 

light intensity (LED), ambient CO2 (0.04%) and 75% humidity. Growth was monitored by 

measuring the optical density at a wavelength of 750 nm using a spectrophotometer (Libra 

S11, Biochrom Ltd, Cambridge, UK). Pre-cultures were inoculated using 200 μL of a cryo-

stock and grown under standard conditions for 4 - 6 days. Main cultures were inoculated 

from this pre-culture, starting with an OD750 of 0.08 and, if not stated otherwise, grown for 3 

days under standard conditions before gene expression was induced using 2 mM IPTG.  

YBG11 medium composition. 1.49 g L-1 NaNO3, 0.074 g L-1 MgSO4 · 7 H2O, 0.031 g L-1 

K2HPO4, 10 mL L-1 YBG11 trace elements (100x) , 0.019 g L-1 Na2CO3, 50 mM HEPES (pH 

7.2); YBG11 trace elements (100x): 3.6 g L-1 CaCl2 · 2 H2O, 0.63 g L-1 citric acid, 0.28 g L-1 

boric acid, 0.11 g L-1 MnCl2 · 4 H2O, 0.02 g L-1 ZnSO4 · 7 H2O, 0.039 g L-1 Na2MoO4 · 2 H2O, 

0.007 g L-1 CuSO4 · 5 H2O, 0.005 g L-1 Co(NO3)2 · 6 H2O, 0.16 g L-1 FeCl3 · 6 H2O, 0.6 g L-1 

Na2EDTA · 2 H2O 

Light intensity and light spectra. The light intensity was measured by means of 

photosynthetically active radiation (PAR) in µE m-2 s-1, determined using a universal light 

meter (ULM-500, Heinz Walz GmbH, Effeltrich, Germany) equipped with a MQS-B mini 

quantum sensor. Light spectra were measured using a light spectrometer (Tristan, m-u-t 

GmbH, Wedel, Germany) in the orbital shaker used for cultivation of Synechocystis sp. PCC 

6803 (LED, Multitron Pro shaker, Infors, Bottmingen, Switzerland), for oxyfunctionalization 

activity measurements (fluorescence light tubes, Multitron, Infors HT, Bottmingen, 

Switzerland) and in the growth chamber used for cultivation on agar plates (fluorescence 

light tubes, poly klima GmbH, Freising, Germany) (Figure 2.1). 

Correlation factor OD750 - cell dry weight (CDW). The correlation of the optical density 

OD750 to the cell dry weight (CDW) was determined for the recombinant strain 

Synechocystis sp. PCC 6803 pAH042 (= Syn6803_BGT) grown under standard conditions. 

At respective time-points 30 mL of grown culture was harvested by centrifugation (15 min, 

3180 g, 4 °C), washed once in 15 mL H2O, resuspended in 1.5 mL H2O, and dried in pre-

dried and pre-weighted glass tubes at 70 °C for 10 days. The cell dry weight was determined 

and correlated to the optical density with a resulting correlation factor of 0.2246 gCDW L-1 

OD750
-1 (Figure 2.2).   
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Figure 2.1. Light spectra measured in incubators equipped with LED panels or fluorescent light tubes, 

respectively. 

 

 

Figure 2.2: Determination of the correlation factor regarding biomass concentrations (gCDW L-1) at 

various optical densities OD750. (A) Growth curve of Synechocystis sp. PCC 6803 

pRSF_Ptrc1O:BGTII, (B) Biomass concentrations measured as gCDW L-1 at various optical densities. 

2.3 Plasmid constructions 

Plasmid constructions were performed via E. coli DH5α using the primer given in Table 2.2 

and the following protocols and cloning steps.  

Restriction endonucleases used in this study were obtained from Thermo Scientific – 

Germany GmbH (Schwerte, Germany) and used according to the manufactures’ user guide. 

Amplification of DNA fragments was performed by PCR applying the Phusion High Fidelity 

(HF) DNA polymerase from Thermo Scientific – Germany GmbH (Schwerte, Germany) 

according to the 3-step protocol described in the manufactures´ user guide using primers 

purchased from Eurofins MWG (Ebersberg, Germany) listed in Table 2.2. Respective 

annealing temperatures (TAn) and elongation times (tElong) are given below. Overlap-

Extension PCR (OE-PCR) was performed by applying 50 ng of each DNA Fragment to be 

fused in 100 µL of the standard PCR mix, initially missing the respective primer as these 
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were added after 5 PCR cycles. Dephosphorylation of plasmid DNA was performed using 

the FastAP Thermosensitive Alkaline Phosphatase from Thermo Scientific – Germany GmbH 

(Schwerte, Germany) according to the manufactures´ user guide. Purification of plasmid 

DNA and amplified DNA fragments was performed using the PCR clean-up gel extraction kit 

from MACHERY-NAGEL GmbH & Co. KG (MACHEREY-NAGEL GmbH & Co. KG, Düren, 

Germany). Gibson cloning was performed by an one-step isothermal in vitro recombinant 

cloning method described by Gibson et al., 2009 (Gibson et al., 2009). Ligation was 

performed using the T4 DNA Ligase from Thermo Scientific – Germany GmbH (Schwerte, 

Germany) according to the manufactures’ user guide. Verification of cloning results was 

performed by sequencing by Eurofins MWG (Ebersberg, Germany).  

Table 2.2: Primer used during cloning procedure for plasmids constructions. binding region, fusion, 

overlap to vector, restriction site, appendix(Ptrc1O), scar, RBS*, Strep-tag II, stop 

Primer# Function Sequence 5´→ 3´ 

PAH006 AlkT rev GCATCATTGCTAATCAGG 

PAH029 AlkG rev TCACTTTTCCTCGTAGAGC 

PAH030 nAlk rev TGCAGGTCGACTCTAGAGGATCCCCGGGTCACTTTTCCTCG
TAGAGC 

PAH037 nAlk fwd CCGCGCGAATTCGAGCTCGGTACCCGCATCATTGCTAATCA
GG 

PAH043 Palk fwd ATAACAATTTCACACAGGAGGCCGCTTAGATAATTCCTTGAC
GC 

PAH044 Palk rev AAGCTTGCATGCCTGCAGGTCGACTCTCAAGCATATGGAATT
CTC 

PAH055 Ptrc1O:Term Part I fwd TCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATT
TCACACATACTAGTACCAGGCATCAAATAAAACG 

PAH056 Ptrc1O:Term PartI rev TATAAACGCAGAAAGGCCC 

PAH057 Ptrc1O:Term Part II 
fwd 

TGATTTCTGGAATTCGCGGCCGCTTTCTAGATTGACAATTAAT
CATCCGGCTCGTATAATGTG 

PAH058 Ptrc1O:Term PartII rev ACACCTTGCCCGTTTTTTTGCCGGACTGCAGTATAAACGCAG
AAAGGCCC 

PAH059 oAlkBII fwd TGAGCGGATAACAATTTCACACATACTAGAGTAGTGGAGGTT
ACTAGATGCTTGAGAAACACAGAG 

PAH060 AlkB rev CTACGATGCTACCGCAG 

PAH061 AlkG fwd GAGTACCTCTGCGGTAGCATCGTAGTACTAGAGTAGTGGAG

GTTACTAGATGGCTAGCTATAAATGCCC 

PAH062 AlkT fwd CTATGTGCTCTACGAGGAAAAGTGATACTAGAGTAGTGGAG

GTTACTAGATGGCAATCGTTGTTGTTG 

PAH063 Fusion oBGTII fwd TGAGCGGATAACAATTTC 

PAH064 AlkBGT fusion rev CTTTCGTTTTATTTGATGCCTGGTACTCTAGTAGCATCATTGC
TAATCAGG 

PAH067 oAlkBII rev CTATTTTTCGAACTGCGGGTGGCTCCAAGCGCTCGATGCTAC
CGCAGAGG 

PAH068 oAlkGII fwd GAGCCACCCGCAGTTCGAAAAATAGTACTAGAGTAGTGGAG
GTTACTAGATGGCTAGCTATAAATGCCC 

PAH069 oAlkGII rev CTTTTCCTCGTAGAGCAC 
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PAH070 oAlkTII fwd GAGCCACCCGCAGTTCGAAAAATAGTACTAGAGTAGTGGAG
GTTACTAGATGGCAATCGTTGTTGTTG 

PAH071 oAlkTII rev ATCAGGTAATTTTATACTCCC 

PAH072 Fusion oBGII rev CTATTTTTCGAACTGCGGGTGGCTCCAAGCGCTCTTTTCCTC
GTAGAGCAC 

PAH073 Fusion oBGTII rev CTTTCGTTTTATTTGATGCCTGGTACTATTTTTCGAACTGCGG
GTGGCTCCAAGCGCTATCAGGTAATTTTATACTCCC 

PAH074 AlkB fwd ATGCTTGAGAAACACAGAG 

PAH075 AlkBGT fusion fwd GCGACTAATTTAATAAAAATTGGAGCTAGAGTAGTGGAGGTT
ACTAGATGCTTGAGAAACACAGAG 

PAH076 AlkBGT fusion rev TGCAGGTCGACTCTCAAGCATATGGCTCTAGTAGCATCATTG
CTAATCAGG 

PAH077 Terminator fwd GGGAGGTATTGGACCGCATTGAACTCTAGTATATAAACGCAG
AAAGGCCC 

PAH078 Terminator rev ACGAGCCGGATGATTAATTGTCAATCTAGAGCCAGGCATCAA
ATAAAACG 

PAH079 AlkB rev CTTTCGTTTTATTTGATGCCTGGTACTATTTTTCGAACTGCGG
GTGGCTCCAAGCGCTCGATGCTACCGCAGAGG 

PAH087 Ptrc1O:BGT fwd ATCAGCTCACTCAAAGGCGGTAATCTTGACAATTAATCATCC
GGC 

PAH090 Ptrc1O:BGT rev ATTTCGGCTGAGGGTAAAAGAACTCAATTGCGAGGAAGCCT
GCATAAC 

PAH091 BVMO fwd 
TGAGCGGATAACAATTTCACACATACTAGAGTAGTGGAGGTT
ACTAGATGAAAAAAACCCAACATCTGG 

PAH092 BVMO rev 
TCGTTTTATTTGATGCCTGGCTGCACTATTTTTCGAACTGCG
GGTGGCTCCAAGCGCTCTGGAATACGAAACCCTCG 

PAH093 CYP fwd 
TGAGCGGATAACAATTTCACACATACTAGAGTAGTGGAGGTT
ACTAGATGACTCAGACTGCTGCGGC 

PAH094 CYP rev CTTTCGTTTTATTTGATGCCTGGTATCAGTGCTGCCCTTGCG 

SPAH017 Verification fwd CCATCAAACAGGATTTTCG 

SPAH023 Verification rev TGCCACCTGACGTCTAAGAA 

Construction of pRSF_Ptrc1O:BGTII (=pAH042) 

a) Construction of empty expression vector pAH032 

Restriction:  pSB1AC3_Ptrc1O:GFPmut3B (XbaI + PstI) → pSB1AC3 (XbaI, PstI) 

Amplification:  Ptrc1O:Term part I from pSB1AC3_Ptrc1O:GFP  

    (PAH055 + PAH056 → 186 BP, TAn: 60 °C, tElong: 10 sec)  

    Ptrc1O:Term part II from part I  

    (PAH057 + PAH058 → 262 BP, TAn: 72°C, tElong: 10 sec)  

Gibson cloning: pSB1AC3 (XbaI, PstI) + Ptrc1O:Term part II  

    → pSB1AC3_Ptrc1O:Term  

Restriction:  pSB1AC3_Ptrc1O:Term (XbaI)  

Dephosphorylation: pSB1AC3_Ptrc1O:Term (XbaI) (FastAP, Thermo)  

Restriction:  pSB1AC_PrnpB:lacI with (XbaI + SpeI)  

Ligation:  pSB1AC3_Ptrc1O:Term (XbaI) + PrnpB:lacI (XbaI_SpeI) (1:2)  

    → pSB1AC3_PrnpB:lacI_Ptrc1O:Term  
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Verification by PCR: Clones with the PrnpB:lacI fragment incorporated in the intended  

    direction were determined by PCR   

    (SPAH017 + SPAH023 → 500 BP, TAn: 61°C, tElong: 15 sec)  

Restriction:  pPMQAK1 (EcoRI + PstI)  

Restriction:  pSB1AC3_PrnpB:lacI_Ptrc1O:Term (EcoRI + PstI)  

Ligation:  pPMQAK1 (EcoRI, PstI) + PrnpB:lacI_Ptrc1O:Term (EcoRI, PstI) ( 1:5) 

    → pPMQAK1_PrnpB:lacI_Ptrc1O:Term = pAH032 

b) Construction of pRSF_Ptrc1O:BGTII (pAH042) 

Restriction:  pPMQAK1_PrnpB:lacI_Ptrc1O:Term (SpeI)  

Amplification:  oAlkBII from pBT10   

    (PAH059 + PAH067 → 1283 BP, TAn: 65°C, tElong: 25 sec)  

     oAlkGII from pBT10  

    (PAH068 + PAH069 → 568 BP, TAn: 60 °C, tElong: 25 sec)  

    oAlkTII from pBT10  

    (PAH070 + PAH071 → 1204 BP, TAn: 65°C, tElong: 25 sec)  

OE-PCR:  oAlkBII+ oAlkGII → oAlkBGII  

    (PAH063 + PAH072 → 1859 BP, TAn: 65°C, tElong: 60 sec)   

   oAlkBGII + oAlkTII → oAlkBGTII  

    (PAH063 + PAH073 → 3096 BP,TAn: 57°C, tElong: 90 sec)   

Gibson cloning: pPMQAK1_PrnpB:lacI_Ptrc1O:Term (SpeI) + oAlkBGTII  

    →pPMQAK1_PrnpB:lacI_Ptrc1O:BGTII_pre (w/o Tcentral) 

Restriction:  pPMQAK1_PrnpB:lacI_Ptrc1O:BGTII_pre (XbaI)  

Amplification:  Term from pSB1AC3_Ptrc1O:GFP  

     (PAH077 + PAH078 → 191 BP, TAn: 60 °C, tElong: 5 sec)  

Gibson cloning pPMQAK1_PrnpB:lacI_Ptrc1O:BGTII_pre (XbaI) + Term  

    → pRSF_Ptrc1O:BGTII = pAH042 

Construction of pRSF_nAlk (= pAH010) 

Restriction:  pSEVA251 with SmaI  

Amplification:  native alk expression system from pBT10 (=nAlk)  

    (PAH037+ PAH030 → 6747 BP, TAn: 58°C, tElong:  210 sec)  

Gibson cloning: pSEVA251 (SmaI) + nAlk → pRSF_nAlk = pAH010 

Construction of pRSF_Palk:BGT (= pAH039) 

a) Construction empty expression vector pAH008 

Restriction:  pSEVA251 with XmaI + XbaJI  

Amplification:  Promoter system PalkSalkS_PalkB from pBT10 (=Palk)  

    (PAH043+ PAH044 → 3157 BP, TAn: 65°C, tElong: 60 sec)  

Gibson cloning: pSEVA251 (XmaI, XbaJI) + Palk → pRSF_Palk = pAH008  



Chapter 2: Materials & Methods 

39 

b) Construction of pRSF_Palk:BGT (= pAH039)  

Restriction:  pRSF_Palk with EcoRI  

Amplification:  AlkB from pBT10  

    (PAH074 + PAH060 → 1206 BP, TAn: 60 °C, tElong: 60 sec)  

   AlkG from pBT10  

    (PAH061 + PAH029 → 571 BP, TAn: 65°C, tElong: 25 sec)  

   AlkT from pBT10  

    (PAH062 + PAH006 → 1216 BP, TAn: 65°C, tElong: 25 sec)  

OE-PCR:  AlkB + AlkG → AlkBG  

    (PAH074 + PAH029 → 1752 BP, TAn: 60 °C, tElong: 35 sec)  

   AlkBG + AlkT → AlkBGT  

    (PAH075 + PAH076 → 3023 BP, TAn: 60 °C, tElong: 80 sec)  

Gibson cloning: pSEVA251_Palk (EcoRI) + AlkBGT → pRSF_Palk:BGT = pAH039  

Construction of pRSF_Ptrc1O:BGT (= pAH038) 

Restriction:  pAH032 with SpeI  

Amplification:  AlkB from pBT10  

    (PAH059 + PAH060 → 1253 BP, TAn: 65°C, tElong: 25 sec)  

    AlkG from pBT10  

    (PAH061 + PAH029 → 571 BP, TAn: 65°C,  tElong: 25 sec)  

   AlkT from pBT10  

    (PAH062 + PAH006 → 1216 BP, TAn: 65°C, tElong: 25 sec)  

OE-PCR:  AlkB + AlkG → AlkBG  

    (PAH063 + PAH029 → 1799 BP, TAn: 65°C, tElong: 60 sec)  

   AlkBG + AlkT → AlkBGT  

    (PAH063 + PAH064 → 3023 BP, TAn: 57°C, tElong: 90 sec)  

Gibson cloning: pAH032 (SpeI) + AlkBGT → pRSF_Ptrc1O:BGT_pre (w/o Tcentral)  

Restriction:  pRSF_Ptrc1O:BGT_pre with XbaI  

Amplification:  Term from pSB1AC3_Ptrc1O:GFPmut3B  

   (PAH077 + PAH078 → 191 BP, TAn: 60 °C, tElong: 5 sec)  

Gibson cloning: pRSF_Ptrc1O:BGT_pre (XbaI) + Term  

    → pRSF_Ptrc1O:BGT = pAH038 

Construction of pRSF_Ptrc1O:BGTII_2x (= pAH048) 

Restriction:  pRSF_Ptrc1O:BGTII with MunI  

Amplification:  Ptrc1O:BGTII from pRSF_Ptrc1O:BGTII  

    (PAH087+ PAH090 → 3387 BP, TAn: 72°C - 0.3°C cycle-1, tElong: 60 sec 

Gibson cloning: pRSF_Ptrc1O:BGTII (MunI) + Ptrc1O:BGTII  

    → pRSF_Ptrc1O:BGTII_2x = pAH048 
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Construction of pRSF_Ptrc1O:BII (= pAH044) 

Restriction:  pAH032 with SpeI  

Amplification:  alkB from pBT10  

    (PAH059+ PAH079 → 1308 BP, TAn: 64 °C, tElong: 40 sec)  

Gibson cloning: pAH032  (SpeI) + AlkB → pRSF_Ptrc1O:BII_pre (w/o Tcentral)  

Restriction:  pRSF_Ptrc1O:BII_pre with XbaI  

Amplification:  Term from pSB1AC3_Ptrc1O:GFPmut3B  

   (PAH077 + PAH078 → 191 BP, TAn: 60 °C, tElong: 5 sec)  

Gibson assembly: pRSF_Ptrc1O:BII_pre (XbaI) + Term → pRSF_Ptrc1O:BII = pAH044 

Construction of pRSF_Ptrc1O:BGII (=pAH047) 

Restriction:  pAH032 with SpeI  

Amplification:  alkB from pBT10  

    (PAH074+ PAH067 → 1236 BP, TAn: 67°C, tElong: 25 sec)  

    alkG from pBT10  

    (PAH068+ PAH069 → 568 BP, TAn: 61°C, tElong: 25 sec)  

OE-PCR:  alkB + alkG → alkBG  

    (PAH059+ PAH072 → 1884 BP, TAn: 56°C, tElong: 45 sec)  

Gibson cloning: pAH032  (SpeI) + alkBG → pRSF_Ptrc1O:BGII_pre (w/o Tcentral)  

Restriction:  pRSF_Ptrc1O:BGII_pre with XbaI  

Amplification:  Term from pSB1AC3_Ptrc1O:GFPmut3B  

   (PAH077 + PAH078 → 191 BP, TAn: 60 °C, tElong: 5 sec)  

Gibson cloning: pRSF_Ptrc1O:BGII_pre (XbaI) + Term  

    → pRSF_Ptrc1O:BGII = pAH047 

Construction of pRSF_Ptrc1O:CYP (= pAH050) 

Restriction:  pAH032 with SpeI  

Amplification:  CYP-FdR-Fd from pCom10_capro  

    (PAH093 + PAH094 →  2970 BP, TAn: 72 °C, tElong:  60 sec)  

Gibson cloning: pAH032 (SpeI) + CYP-FdR-Fd   

    → pRSF_Ptrc1O:CYP_pre (w/o Tcentral)  

Restriction:  pRSF_Ptrc1O:CYP_pre with XbaI  

Amplification:  Term from pSB1AC3_Ptrc1O:GFPmut3B  

   (PAH077 + PAH087 → 191 BP, TAn: 60 °C, tElong: 5 sec)  

Gibson cloning: pRSF_Ptrc1O:CYP_pre (XbaI) + Term  

    → pRSF_Ptrc1O:CYP = pAH050 

  



Chapter 2: Materials & Methods 

41 

Construction of pRSF_Ptrc1O:BVMO (= pAH049) 

Restriction:  pAH032 with SpeI  

Amplification:  BVMO from pCom10_capro  

    (PAH091 + PAH092 →  1689 BP, TAn: 72 °C, tElong: 45 sec)  

Gibson cloning: pAH032 (SpeI) + BVMO → pRSF_Ptrc1O:BVMO_pre (w/o Tcentral)  

Restriction:  pRSF_Ptrc1O:BVMO_pre with XbaI  

Amplification:  Term from pSB1AC3_Ptrc1O:GFPmut3B  

   (PAH077 + PAH087 → 191 BP, TAn: 60 °C, tElong: 5 sec)  

Gibson cloning: pRSF_Ptrc1O:BVMO_pre (XbaI) + Term  

    → pRSF_Ptrc1O:BVMO = pAH049 

Transformation. Transformation of Synechocystis sp. PCC 6803 was performed by 

electroporation based on a method described by Ferreira, 2014 (Ferreira, 2014). Electro-

competent cells were produced by growing a 50 mL YBG11 main culture (in 100 mL baffled 

shaking flask) to an OD750 of 0.5 – 1. Cells were harvested by centrifugation (10 min, 3180 g, 

4 °C), washed three times in 10 mL ice-cold HEPES buffer (1 mM, pH 7.5) and resuspended 

in 1 mL HEPES buffer (1 mM, pH 7.5). Electro-competent cells were stored at -80 °C in 5% 

(v/v) DMSO. For electroporation 0.2 - 1.0 μg of plasmid DNA were added to 60 μL of cells in 

an electroporation cuvette (2 mm electrode gap), pulsed with 2500 V for 5 ms (12.5 kV cm-1) 

(Eppendorf Eporator, Eppendorf Vertrieb Deutschland GmbH, Wesseling-Berzdorf, 

Germany) and subsequently transferred to 50 mL YBG11 medium (100 mL baffled shanking 

flask). After cultivation at standard conditions for 24 h, cells were harvested by centrifugation 

(10 min, 3180g, RT), resuspended in 100 μL YBG11 medium and plated on BG11 agar 

supplemented with 0.3% of sodium thiosulfate and 50 µg mL-1 kanamycin. Plates were 

cultivated in a growth chamber for 4-6 days at 30 °C, 20-50 µE m-2 s-1 light intensity 

(fluorescence light tubes), ambient CO2 (0.04%) and 80% humidity (poly klima GmbH, 

Freising, Germany).  Single colonies were picked, plated on fresh BG11 agar and incubated 

as described before. The grown biomass was used to inoculate a 20 mL YBG11 pre-culture 

until cryo stocks were prepared from this pre-culture and stored in 5% (v/v) DMSO at -80 °C. 

BG11 agar plates: 1.5 g L-1 NaNO3, 0.075 g L-1 MgSO4 · 7 H2O, 0.036 g L-1 CaCl2 · 2 H2O, 

0.006 g L-1 citric acid, 0.04 g L-1 K2HPO4, 0.006 g L-1 ferric ammonium citrate, 0.001 g L-1 

Na2EDTA, 0.02 g L-1 Na2CO3, 1 mL L-1 BG11 trace elements (1000x), 0.3% Na2S2O3, 10 mM 

HEPES (pH 8), 1.5% agar; BG11 trace elements (1000x): 2.86 g L-1 boric acid, 1.8 g L-1 

MnCl2 · 4 H2O, 0.22 g L-1 ZnSO4 · 7 H2O, 0.39 g L-1 Na2MoO4 · 2 H2O, 0.08 g L-1 CuSO4 · 5 

H2O, 0.05 g L-1 Co(NO3)2 · 6 H2O 
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2.4 Biochemical analysis of recombinant strains 

Membrane fractionation of Syn6803_BGT using sucrose density gradient 

centrifugation. Membrane fractionation of Syn6803_BGT was performed using a protocol 

adapted from Omata and Murata et al. (Murata and Omata, 1988; Omata and Murata, 1983; 

Omata and Murata, 1984). If not stated otherwise, all steps were performed on ice. 50 mL of 

cyanobacterial cell culture (OD750 > 40) were washed twice in 50 mL of buffer A (5 mM 

HEPES, pH 7 – sterile filtered, 1 mM phenylmethylsulfonyl fluorid (PMSF) - added just before 

use), resuspended in 100 mL lysis buffer (10 mM HEPES, pH 7, 600 mM sucrose, 5 mM 

EDTA, 50 mM NaCl, 2.5 g L-1 lysozyme – added just before use) and incubated in a 250 mL 

baffled shake flask for 2 h at 50 µE m-2 s-1, 30 °C, and 200 rpm (2.5 cm amplitude). After 

centrifugation (10 min, 5000 g, 4 °C), the pellet was washed twice in 50 mL buffer B (20 mM 

HEPES, pH 7, 600 mM sucrose, 1 mM PMFS – added just before use), resuspended in 50 

mL buffer B and supplemented with 50 µL DNAse I (final 5 U mL-1, stock: 5000 U mL-1, 1.3 

mg mL-1 DNAse I à 3755 U mg-1 in 20 mM Tris pH 7.5, 1 mM MgCl2 · 6 H2O, 50% glycerol). 

Cell disruption was conducted using FrenchPress (3 x 1900 Psi). After centrifugation (5 min, 

5000 g, 4 °C), the supernatant was collected as total protein fraction and supplemented with 

0.74 volumes of 90% sucrose dissolved in buffer B (= 50% total sucrose concentration). 

Sucrose density centrifugation was performed in thin wall polypropylene tubes (total volume 

38.5 mL, Beckmann Coulter GmbH, Krefeld, Germany) using the following gradient: 15 mL of 

sample (50% sucrose), 10 mL 10% sucrose (in buffer B), 3 mL 30% sucrose (in buffer B), 

and 10 mL 10% sucrose (in buffer B). Ultracentrifugation was conducted at 130,000 g and 

4 °C for 18 h. Fractions for plasma membrane (PM), thylakoid membrane (TM), and the red 

fraction were collected as depicted in Figure 2.3.  

 

Figure 2.3: Picture (left) and schematic view (right) of membrane fractions containing respective 

proteins obtained after sucrose density centrifugation. 

The outer membrane (OM) proteins in the pellet were resuspended in 250 µL buffer C 

(20 mM HEPES, pH 7). PM and TM fractions were diluted 3-fold in buffer C, centrifuged 

again at 120,000g, 4 °C for 1 h and resuspended in 250 µL buffer C. The red fraction was 

further separated by centrifugation (30 min, 10,000g, 4 °C). Protein concentrations were 

PM

TM

OM

Unknown orange fraction without protein (free carotenoids etc.)

Plasma membrane: yellow band in 30% fraction

Thylakoid membrane: green band on interface fractions 39-50%

Fraction with high red fluorescence

(many Phycobilisomes, contains soluble proteins and TM)

Outer membrane, cell wall
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measured using Bradford analysis (Bradford, 1976). All samples were stored at -20 °C for 

Western blot analysis.  

Strep-tag purification of recombinant Synechocystis sp. PCC 6803 strains. Ca. 200 mL 

of cyanobacterial cell culture (OD750 ca. 2) were harvested by centrifugation (5000g, 4 °C, 10 

min), washed in 25 mL TBS buffer (100 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM 

phenylmethylsulfonyl fluorid (PMSF) - added just before use), and resuspended in 3 mL TBS 

buffer containing 100 µL of DNAse I (final 167 U, stock: 5000 U mL-1, 1.3 mg mL-1 DNAse I à 

3755 U mg-1 in 20 mM Tris pH 7.5, 1 mM MgCl2 · 6 H2O, 50% glycerol). Cell disruption was 

conducted using FrenchPress (2 x 1200 Psi). The total protein fraction in the supernatant 

was collected by centrifugation (5,000g, 4 °C, 10 min). Protein concentrations were 

quantified by the method of Bradford (Bradford, 1976). AlkB, AlkG, and AlkT were separated 

from the total protein fraction using Strep-Tactin Superflow chromatography according to the 

manufactory manual (IBA GmbH, Göttingen, Germany). 1.5 mL of the total protein sample 

were loaded to a pre-conditioned Strep-Tactin purification column (2 mL of 50% Strep-Tactin 

Superflow suspension, equilibrated with 2 mL buffer W (100 mM Tris-HCl pH 8.0, 150 mM 

NaCl, 1 mM EDTA)). Proteins were washed using 3 x 1 mL TBS buffer before Strep-tag 

proteins were eluted using 2 x 0.75 mL elution buffer (2.5 mM Desthiobiotin in TBS buffer). If 

required, proteins were 5x concentrated by acetone precipitation by adding 800 µL acetone 

to 200 µL of proteins, and incubation at -20 °C for ca. 16 h. Proteins were collected by 

centrifugation (17,000g, 4 °C, 10 min) and resuspended in 20 µL of SDS buffer.  

Cell disruption of Synechocystis sp. PCC 6803 using glass beads. Synechocystis sp. 

PCC 6803 cells were cultivated as described before, harvested by centrifugation (10 min, 

4 °C, 5000g) and stored at -20 °C. Cell disruption was performed with a homogenizer 

(Precellys Evolution Super Homogenizer, BERTIN TECHNOLOGIES, Saint Quentin en 

Yvelines Cedex, France) using glass beads in TBS-buffer (0.1 M Tris, 0.15 M NaCl, pH 7.5) 

containing 1 mM PMSF at an OD750 of 20 (4 x 30 s at 17,000g, cooling with liquid nitrogen). 

Proteins in the supernatant were treated with 2x SDS-buffer at 99 °C for 10 min before 20 µL 

of each sample was loaded on SDS-gels. 

SDS PAGE analysis and Western blot analysis. Protein separation was performed as 

described by Laemmli with a 3.6% acrylamide stacking and a 12% acrylamide separating gel 

(Laemmli, 1970). For Western blot analysis, proteins were transferred from acrylamide gels 

to a nitrocellulose membrane (0.45 µm) using semi-dry blotting for 30 min at 0.8 mA cm-2. 

Detection of Strep-tagII-tagged proteins was performed using a Strep-Tactin-HRP antibody 

(IBA Lifesciences, Göttingen, Germany). Analysis of the purity of the plasma membrane 

protein fraction after membrane fractionation was performed using anti NrtA antibody. 

Visualization was followed using chemiluminescence (SuperSignal West Pico PLUS 

Chemiluminescent Substrate, ThermoFisher Scientific, Waltham, USA) and X-ray 

development.  
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3.1 Abstract 

Gas-liquid mass transfer of gaseous reactants is a major limitation for high space-time yields, 

especially for O2-dependent (bio)catalytic reactions in aqueous solutions. Herein, oxygenic 

photosynthesis was used for homogeneous O2 supply via in situ generation in the liquid 

phase to overcome this limitation. The phototrophic cyanobacterium Synechocystis sp. PCC 

6803 was engineered to synthesize the alkane monooxygenase AlkBGT from Pseudomonas 

putida GPo1. With light, but without external addition of O2, the chemo- and regioselective 

hydroxylation of nonanoic acid methyl ester to 9-hydroxynonanoic acid methyl ester was 

driven by O2 generated through photosynthetic water oxidation. Photosynthesis also 

delivered the necessary reduction equivalents to regenerate the Fe2+ center in AlkB for 

oxygen transfer to the terminal methyl group. The in situ coupling of oxygenic photosynthesis 

to O2-transferring enzymes now enables the design of fast hydrocarbon oxyfunctionalization 

reactions. 
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3.2 Introduction 

Gas-liquid mass transfer defines the performance and efficiency of reactions in liquids with 

gaseous reactants. This is especially true for (bio)catalysts operating in aqueous solutions 

(Chaudhari et al., 1995; Cornils and Herrmann, 2004; Law et al., 2006; Park, 2007; Wachsen 

et al., 1998). O2 is one of the most prominent gaseous reactants. As an oxidant for oxidative 

catalysis, O2 is of great importance for the production of value-added chemicals and 

pharmaceuticals (Bühler et al., 2003a; Gavriilidis et al., 2016; Piera and Bäckvall, 2008; Shi 

et al., 2012). For the efficient use of O2 as a reactant, harsh reaction conditions with high 

temperatures and/or pressures are typically necessary. Such conditions may lead to severe 

safety and selectivity issues, often resulting in low reaction yields. They typically also 

necessitate highly regulated, elaborate, and thus expensive process control regimes 

(Gavriilidis et al., 2016; Osterberg et al., 2014; Schuchardt et al., 2001). Mild reaction 

conditions, high selectivities, and high yields are generally desirable for oxidative production 

processes and achieved most efficiently by enzyme catalysis (Bordeaux et al., 2012; Schmid 

et al., 2001). However, low gas-liquid mass transfer rates unfortunately constitute major 

limitations under such mild conditions (Law et al., 2006). Furthermore, the application of 

enzymes in whole cells, which is advantageous for oxygenases, suffers from a competition 

for O2 between the target reaction and respiration (Duetz et al., 2001; Schrewe et al., 2013). 

A technical solution for increasing the O2 gas-liquid mass transfer rate under ambient 

conditions is the utilization of O2-enriched air (Hilker et al., 2006). Yet, O2 mass transfer is 

basically limiting the space-time yields of processes with high oxidation rates, especially in 

the production of bulk chemicals (Duetz et al., 2001; Garcia-Ochoa and Gomez, 2009; 

Gemoets et al., 2016; Law et al., 2006). To improve O2 mass transfer, various reactor 

concepts with different modes of gaseous reactant supply have been proposed (Gavriilidis et 

al., 2016). Examples include the utilization of bubble columns, gas-permeable membranes, 

segmented flow microreactors, or falling film microreactors (Bolivar et al., 2016; Gemoets et 

al., 2016; Greene et al., 2015; Kantarci et al., 2005; Karande et al., 2011; Tomaszewski et 

al., 2014).  

Herein, we report a novel concept based on oxygenic photosynthesis for the homogeneous 

supply of O2 to an oxidation reaction. To date, several studies have investigated the coupling 

of light-driven electron activation to (enzymatic) reactions, both chemically and 

biotechnologically (Balcerzak et al., 2014; Hisatomi et al., 2014; Hollmann et al., 2007; 

Köninger et al., 2016; Lassen et al., 2014b; Mifsud et al., 2014; Okeefe et al., 1994; Yu et al., 

2013). However, light-driven water oxidation has not been considered for the homogeneous 

supply of O2. Photosynthesis generates O2 in situ within an aqueous liquid phase from water. 

This has the potential to basically overcome gas-liquid mass transfer limitations. Light-driven 

photosynthetic water oxidation is the core of our concept, delivering O2 homogeneously 
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within cells to the catalytically active oxygenase enzyme, thus driving the oxyfunctionalization 

reaction (Figure 3.1). The well-studied phototrophic cyanobacterium Synechocystis sp. PCC 

6803 was chosen as the source for delivering O2. It was engineered for the synthesis of 

alkane monooxygenase AlkBGT originating from Pseudomonas putida GPo1 (hereinafter 

referred to as Syn6803_BGT) (Peterson et al., 1966b). The highly regioselective terminal 

oxyfunctionalization of nonanoic acid methyl ester served as the model oxidation reaction. It 

constitutes an industrially relevant example for the production of polymer building blocks from 

renewables (Figure 3.1) (Evonik Industries AG, 2013; Ladkau et al., 2016; Schaffer and 

Haas, 2014; Schrewe et al., 2014). 

 

Figure 3.1: Homogenous O2 evolution coupled to an oxygenase-catalyzed oxyfunctionalization 

reaction. Water is oxidized by the photosynthetic cyanobacterium Synechocystis sp. PCC 6803, 

yielding O2 and activated reduction equivalents. The heterologously introduced alkane 

monooxygenase system AlkBGT captures both O2 and the reduction equivalents, and catalyzes the 

regiospecific oxyfunctionalization of nonanoic acid methyl ester (NAME) to 9-hydroxynonanoic acid 

methyl ester (H-NAME). 

3.3 Materials and methods 

Chemicals and cultivation procedures. Chemicals and cultivation procedures used in this 

study are described in Chapter 2.  

Bacterial strain. The genetic introduction of the alkBGT genes encoding the alkane 

monooxygenase AlkB, the rubredoxin AlkG and the rubredoxin reductase AlkT into 

Synechocystis sp. PCC 6803 was achieved via an expression system located on the broad 

host range plasmid pPMQAK1 (Huang et al., 2010). The cloning procedure for the resulting 

plasmid pAH042 is given in Chapter 2. Gene expression was based on the IPTG inducible 

Ptrc1O promoter system (Huang et al., 2010) and translation was initiated via optimized 

ribosomal binding sites in front of each gene (Heidorn et al., 2011); each gene sequence 

encoded a C-terminal Strep-tag II (Schmidt et al., 1996) (Figure 3.2). Synechocystis sp. PCC 

6803 harboring the plasmid pAH042 is hereinafter referred to as Syn6803_BGT. 
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Figure 3.2: Schematic representation of the constructed expression system of the plasmid pAH042. 

RBS* = ribosomal binding site optimized for Synechocystis sp. PCC 6803 (Heidorn et al., 2011), STII = 

Strep-tag II (Schmidt et al., 1996), Tdouble = double terminator (biobrick #BBa_B0015). 

Whole-cell oxyfunctionalization using Syn6803_BGT. Oxyfunctionalization activity 

measurements were performed 24 hours after induction of gene expression. Cells were 

harvested by centrifugation (15 min, 2000 g, 4 °C) and resuspended in YBG11 medium 

(50  mM HEPES) to a final cell concentration of ca. 2 gCDW L-1. To 1 mL cell suspension in 

11 mL screw cap glass tubes, the substrate NAME was added to a final concentration of 

10 mM from a 2 M stock in ethanol. The biotransformation reaction was performed at 30 °C, 

220 rpm (2.5 cm amplitude) in an orbital shaker equipped with fluorescence light tubes set to 

a light intensity of 30 µE m-2 s-1 (Multitron, Infors HT, Bottmingen, Switzerland). The 

biotransformation reaction was quenched after respective time-points by addition of 1 mL of 

ice-cold diethylether containing 0.2 mM hexadecane as internal standard. After thorough 

mixing for 1 min (vortex) and phase separation performed by centrifugation (5 min, 3180 g, 4 

°C), the organic phase was dried over anhydrous Na2SO4 and analyzed via gas 

chromatography. Activity assays under anaerobic conditions were performed by degassing 

the cell suspension from oxygen by bubbling with nitrogen gas at 70 mL min-1 for 10 minutes, 

followed by substrate addition in an anaerobic chamber in N2 atmosphere (100 ppm O2, 1.6 

ppm H2, 25 °C, 65% humidity). Afterwards the gas tight screwed glass tubes were treated as 

described above, except for a changed light intensity from 30 to  

50 µE m-2 s-1. The light spectrum applied for the determination of oxyfunctionalization 

activities under anaerobic conditions might vary as light tubes with the same specifications 

were used covered by a plastic hood (L18W/840, Lumilux Cool White, Osram, München, 

Germany). 

Whole-cell oxyfunctionalization using E. coli W3110 (pAH042). Cells were grown as 

described before, harvested by centrifugation (5000g, 4 °C, 10 min) and resuspended in KPi 

buffer containing 1% glucose (pH 7.4) to respective biomass concentrations. Aliquots of 

0.8 mL culture were provided in 2 mL reaction tubes and pre-warmed for 5 min at 30 °C and 

1500 rpm (ThermoMixerC, Eppendorf, Wesseling-Berzdorf). The biotransformation reaction 

was started by adding 5 mM NAME (5 µL of 0.8 M stock in ethanol). After 15 minutes of 

incubation time, the reaction was quenched using 0.8 mL ice-cold diethyl ether containing 

200 µM of hexadecane as internal standard and vortexing for 1 min before centrifugation 

(17000g, 4 °C, 5 min). The supernatant was dried over anhydrous Na2SO4 and applied for 

GC analysis. 
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Quantification of product formation. The oxyfunctionalized product H-NAME was 

quantified using gas chromatoraphy (GC Trace 1310, Thermo Fisher Scientific, Waltham, 

USA) equipped with a TG-5MS capillary column (5% diphenyl / 95% dimethyl polysiloxane, 

30 m, I.D.: 0.25 mm, film thickness: 0.25 μm, ThermoFisher Scientific, Waltham, USA) and a 

flame ionization detector (FID) operating at 320 °C, 350 mL min-1 air flow, 30 mL min-1 

makeup gas flow and 35 mL min-1 hydrogen gas flow. Nitrogen gas was applied as carrier 

gas with a constant flow of 1.5 mL min-1. The injection volume was set to 1 μL using a PTV 

injector, programmed with a temperature gradient of 10 °C s-1 from 90-300 °C. Split transfer 

was applied after 0.5 min with a split ratio of 7. The oven temperature profile was: 1) 80 °C 

for 1 min, 2) 80-160 °C with 50 °C min-1, 3) 160-220 °C with 15 °C min-1, 4) 220-300 °C with 

50 °C min-1 and 5) 300 °C for 3.8 min. 

Oxygen evolution measurement. Oxygen evolution measurements were performed using a 

Clark-type sensor, measuring the oxygen partial pressure (OX-MR microsensor, 400 µm tip 

diameter, Unisense, Aarhus, Denmark) equipped with the respective microsensor amplifier 

(Microsensor multimeter, Unisense, Aarhus, Denmark) applied in gas tight glass chambers 

(MicroRespiration System, Unisense, Aarhus, Denmark). Oxygen evolution rates were 

calculated within 5 minutes of illumination at a light intensity of 50 µE m-2 s-1 (fluorescence 

light tube). 

3.4 Results 

Syn6803_BGT produced ca. 65 μM 9-hydroxynonanoic acid methyl ester (H-NAME) from 

10 mM nonanoic acid methyl ester (NAME) within 20 min under constant illumination. This 

translates into a specific oxidation rate of 1.5 ± 0.2 U gCDW
-1 (Table 3.1) and demonstrates 

the functionality of the biocatalyst. However, a specific oxidation rate of 1.3 ± 0.1 U gCDW
-1 

was still measured in the dark, showing that reduction equivalents were supplied at almost 

the same rate with and without light (Table 3.1). Obviously, the catabolism of storage 

compounds enabled substantial NAD(P)H regeneration in the dark.  

Upon successful construction of the functional phototrophic whole-cell biocatalyst, we 

evaluated the oxidation reaction for exclusive utilization of photosynthetically generated O2. 

The terminal hydroxylation of NAME by Syn6803_BGT was studied under anaerobic, but 

otherwise identical conditions. H-NAME formation depended directly upon illumination and 

thus water oxidation. Product formation was not observed in the absence of light (Figure 

3.3). The specific oxidation rate obtained under anaerobic conditions and illumination was 

0.9 ± 0.1 U gCDW
-1 (Table 3.1) de facto driven by O2 generated in the photosynthetic light 

reaction.  

The specific O2 evolution rate of Syn6803_BGT was determined separately in the absence of 

the substrate NAME, for assessing the fraction of photosynthetically generated O2 captured 

by the monooxygenase (Table 3.1). With an O2 evolution rate of 3.7 ± 0.5 U gCDW
-1, 
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corresponding to 100% of O2 available in the system (assuming no photorespiration), nearly 

25% of the photosynthetically generated O2 was captured for terminal hydroxylation of 

NAME. 

Table 3.1: Specific rates for the hydroxylation of nonanoic acid methyl ester to 9-hydroxynonanoic acid 

methyl ester and O2 evolution of Syn6803_BGT. 

Conditions Specific production reaction rate 
/ U gCDW-1 

Aerobic, irradiated [a] 1.5 ± 0.2 

Aerobic, in the dark [a] 1.3 ± 0.1 

Anaerobic, irradiated [b] 0.9 ± 0.1 

Anaerobic, in the dark [b] 0.0 

Anaerobic, irradiated, OER [c] 3.7 ± 0.5 

Specific product formation rates are given with respect to the product formed after [a] 20 or [b] 30 min. 

[c] The specific O2 evolution rate (OER) was determined within the aqueous phase in a sealed, gas-

free glass chamber in the absence of substrate. U = µmol min-1. Average values and standard 

deviations of at least two independent biological replicates are given. 

 

Figure 3.3. In situ supply of photosynthetically generated O2 to the oxidizing enzyme AlkBGT in 

Syn6803_BGT. The biotransformation experiment was performed under anaerobic conditions under 

irradiation (-▲-) or in the dark (-o-). Average values and standard deviations of two independent 

biological replicates are given. CDW = cell dry weight. 

3.5 Discussion 

Diffusion of photosynthetically generated O2 may affect the reaction efficiency of the terminal 

hydroxylation and theoretically results in gas-liquid mass transfer processes within the assay 

system. The specific O2 accumulation rate in the aqueous phase was calculated to be 

0.01 μmol min-1 gCDW
-1 assuming immediate O2 diffusion from the aqueous to the gaseous 

phase (aqueous/gaseous ratio 1:10, Henry volatility for O2 in water: Hcc=caq/cgas=0.0297 at 

25 °C) (Sander, 2015). Thus the effective O2 concentration does not exceed 0.6 μM within 
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30 min of reaction time (applied biomass concentration: 2 gCDW L-1). In contrast, Michaelis 

constants (KM) of oxygenases with respect to O2 are typically in the range of 10-60 μM 

(Duetz et al., 2001). This, together with the high fraction of O2 captured by the 

monooxygenase (25%), suggests that the photosynthetically generated O2 is concentrated 

within the microbial cell and captured in situ by the monooxygenase before diffusing out of 

the cell. Although O2 can in principle diffuse across cellular membranes, the lipid bilayer 

system seems to pose a physical barrier that is beneficial for the intracellular oxidation 

process. These results are proof of concept for the in situ coupling of photosynthetic O2 

evolution to O2-dependent oxidation reactions. The photosynthetic light reaction was used for 

the intracellular supply of both activated reduction equivalents and O2. 

3.6 Conclusions & Outlook 

These results might be the starting point for the development of various efficient 

photosynthesis-driven oxyfunctionalization reactions. In the present case, future 

optimizations include an increase in the AlkBGT level in the cyanobacterial whole-cell 

biocatalyst (Oliver and Atsumi, 2014; Ruffing, 2011). This is obvious from comparing the 

transformation rates of NAME into H-NAME catalyzed by E. coli W3110 carrying the very 

plasmid pAH042 (10.0 ± 0.1 U gCDW
-1; Figure 10.1) with those of E. coli that strongly express 

alkBGT (104 - 128 U gCDW
-1) (Julsing et al., 2012b; Schrewe et al., 2011). Other targets are 

electron channeling and improved cultivation and bioreactor concepts. The cyanobacterial 

photosynthetic metabolism supports the supply of activated reduction equivalents at high 

rates (123 U gCDW
-1) (Köninger et al., 2016). Yet, the O2 evolution rate determined in this 

study implies a photosynthetic activity of only 3.7 U gCDW
-1. This corresponds to a specific 

NAD(P)H regeneration rate of 7.4 U gCDW
-1. The theoretical maximum of this rate was 

estimated to be 850 U gCDW
-1 (assumptions for PSII: kcat=1000 s-1, 10 mg gCDW

-1, MW = 

350 kDa) (Dismukes et al., 2009; Köninger et al., 2016; Shen, 2015). With high biomass 

concentrations (40 gCDW L-1), a theoretical maximum of 2040 mmol L-1 h-1 would be possible 

for the oxygen supply rate. This translates into a volumetric mass transfer coefficient kLa of 

4533 h-1 for a bioreactor operated at 2.5 atm, 30 °C, and a residual O2 concentration of 

100 μM (typical conditions for large-scale bioreactor operation) (Duetz et al., 2001). In 

contrast, the kLa values of large-scale bioreactors are on the order of 200 h-1 (Duetz et al., 

2001). In addition, the use of photoautotrophic instead of chemoheterotrophic organisms 

largely relieves the competition for O2 between oxygenation and respiration.  

The development of photobioreactors enabling the generation of high biomass 

concentrations with high oxygen evolution activity is key for the future applicability of the 

presented concept (Kumar et al., 2011). Biofilm cultivation in capillary microreactors 

constitutes one possible solution to increase the cyanobacterial biomass concentration 

(David et al., 2015). Stable cyanobacterial biofilm cultivation has recently been achieved over 
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several weeks with retention of the photosynthetic activity throughout the biofilm. Reaction 

optimization addressing the key issue of photobioreactor development has the potential to 

facilitate currently oxygen-transfer-limited selective hydroxylation processes for the 

biocatalytic functionalization of hydrocarbons (Duetz et al., 2001; Schrewe et al., 2013). In 

summary, the in situ coupling of oxygenic photosynthesis to oxidizing enzymes provides a 

novel and safe access to O2 as a reactant for designing new reactions for oxidation catalysis. 
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4.1 Abstract  

Photoautotrophic organisms are promising hosts for biocatalytic oxyfunctionalizations 

because they supply reduction equivalents as well as O2 via photosynthetic water oxidation. 

Thus far, research on photosynthesis-driven bioprocesses mainly focuses on strain 

development and the proof of principle in small-scale biocatalytic reaction setups. This study 

investigates the long-term applicability of the previously developed cyanobacterial strain 

Synechocystis sp. PCC 6803_BGT harboring the alkane monooxygenase system AlkBGT 

catalyzing terminal alkyl group oxyfunctionalization. For nonanoic acid methyl ester (NAME) 

hydroxylation, the biocatalyst showed light intensity-independent hydroxylation activity and 

substantial hydrolysis of NAME to nonanoic acid. Substrate mass transfer limitation, 

substrate hydrolysis, as well as substrate toxicity were overcome via in situ substrate supply 

by means of a two-liquid phase system. Usage of diisononyl phthalate as organic carrier 

solvent enabled 1.7-fold increased initial specific activities (5.6 ± 0.1 U gCDW
-1) and 7.6-fold 

increased specific yields on biomass (3.8 ± 0.1 mmolH-NAME gCDW
-1) as compared to single 

aqueous phase biotransformation. Finally, the whole-cell biotransformation system was 

successfully scaled from 1 mL glass tube to 3 L stirred tank photo-bioreactor scale. This is 

the first study reporting on the application of the two-liquid phase concept for efficient 

phototrophic whole-cell biocatalysis. 
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4.2 Introduction 

Oxygenases are powerful enzymes for regio-, chemo-, and stereoselective C-H 

oxyfunctionalization. Whole-cell biocatalysis systems based on chemoheterotrophic host 

organisms like E. coli or Pseudomonads have successfully been developed reaching titers 

and rates feasible for the chemical industries (Evonik Industries AG, 2013; Ladkau et al., 

2016; Panke et al., 2002). Recently, photoautotrophic organisms such as cyanobacteria have 

been tested as alternative biocatalytic host systems for such biotransformations (Böhmer et 

al., 2017; Lassen et al., 2014b; Wlodarczyk et al., 2015; Yamanaka et al., 2015). 

Photosynthesis-driven NAD(P)H regeneration relies on electrons derived from water 

oxidation empowered by light energy. In contrast to chemoheterotrophic biocatalysts, which 

depend on organic carbon-based electron and energy sources like glucose, cofactor, 

biocatalyst, and enzyme (re)generation in photoautotrophic biocatalysts only requires water, 

inorganic CO2, and light. Furthermore, in situ O2 generation upon photosynthetic water 

oxidation advances the applicability of whole-cell biocatalysts for oxyfunctionalization 

reactions by overcoming gas-liquid O2 mass transfer limitations (Chapter 3, Chapter 7).  

The oxyfunctionalization of fatty acid methyl esters (FAMEs) to respective alcohols, 

aldehydes, and acids, catalyzed by the alkane monooxygenase system AlkBGT, is a well-

developed example for the use of chemoheterotorphic cells as host system for oxygenases. 

This three-component enzyme system originates from Pseudomonas putida GPo1 and 

consists of a rubredoxin reductase (AlkT), a rubredoxin (AlkG), and the monooxygenase 

component AlkB (McKenna and Coon, 1970; Peterson et al., 1966b). In 2011, Schrewe et al. 

developed a recombinant E. coli strain, catalyzing the terminal hydroxylation of nonanoic acid 

methyl ester (NAME) to 9-hydroxynonanic acid methyl ester (H-NAME) at high specific rates 

(100 U gCDW
-1) (Schrewe et al., 2011). Subsequent reaction engineering involving in situ 

product removal via a two-liquid phase approach enabled efficient terminal oxy- and 

aminofunctionalization of FAMEs at bioprocess relevant scales (Evonik Industries AG, 2013; 

Ladkau et al., 2016; Schrewe et al., 2014). Recently, we transferred the AlkBGT system via 

the plasmid pAH042 into the photoautotrophic host Synechocystis sp. PCC 6803 (henceforth 

referred to as Syn6803_BGT) and experimentally proved the concept of photosynthesis-

driven FAME oxyfunctionalization (Chapter 3).   

In this study, the hydroxylation performance of Syn6803_BGT was investigated in more 

detail, focusing on CO2 and light availabilities as influencing factors during biocatalyst growth 

and biotransformation. Further, the long-term operational stability of photosynthesis-driven 

NAME biotransformation was evaluated. In situ substrate supply via a two-liquid phase 

system was tested to enhance and stabilize biocatalyst performance by overcoming reactant 

toxicity as well as mass transfer limitations. Finally, the reaction system is scaled from a 

glass tube to a stirred tank photo-bioreactor setting. 
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4.3 Materials and Methods 

Chemicals, bacterial strains, and plasmids. Chemicals used in this study are given in 

Chapter 2. Syn6803_BGT, i.e., Synechocystis sp. PCC 6803 harboring the alkane 

monooxygenase system AlkBGT on plasmid pAH042, has been constructed in Chapter 3. 

Cloning procedures of this and further plasmids and strains used in this study are given in 

Chapter 2 (Table 2.1).  

Cultivation of Synechocystis sp. PCC 6803. If not stated otherwise, shake flask cultivation 

of Synechocystis sp. PCC 6803 was performed as described in Chapter 2 (YBG11 medium, 

50 mM HEPES, 20 mL in 100 mL baffled Erlenmeyer flasks, 30 °C, 150 rpm, 2.5 cm 

amplitude, 50 µE m-2 s-1, LED, ambient CO2 (0.04%), 75% humidity). Kanamycin was used at 

a final concentration of 50 µg mL-1. Gene expression was induced using 2 mM IPTG or 

0.025% (v/v) DCPK. If required, 50 mM NaHCO3 were supplied to the medium before sterile 

filtration (0.2 µm). Nitrogen source-free YBG11 medium was supplemented with 0.17 µM 

CoCl2 · 6 H2O instead of Co(NO3)2 · 6 H2O. The correlation factor 0.2246 was used for the 

conversion of OD750 values to cell dry weight (CDW) concentrations in gCDW L-1 (Chapter 2, 

Figure 2.2).  

Cultivation of Syn6803_BGT cells in the stirred tank photo-bioreactor Labfors 5 Lux (Infors 

AG, Bottmingen, Switzerland) was performed using 3 L YBG11 medium inoculated to an 

OD750 of 0.08 using pre-cultures obtained via the standard cultivation protocol described 

above. Cultivation in photo-bioreactors was performed at a light intensity of 50 µE m-2 s-1 

from 0 to 30 h, 75 µE m-2 s-1 from 30 to 48 h and 100 µE m-2 s-1 from 48 to 96 h. The agitation 

speed was set to 300 rpm. The aeration rate was set to 3 L min-1 (1 vvm) from 0 to 48 h and 

5 L min-1 (1.7 vvm) from 48 to 96 h using compressed air. The applied light spectrum is 

shown in Figure 10.2.  

Biotransformation procedures. Whole-cell oxyfunctionalization activity assays were 

performed with cells cultivated as described above. Gene expression was induced two days 

after inoculation. At defined time-points, cells were harvested by centrifugation (5000g, 4 °C, 

10 min) and resuspended in YBG11 medium (facultatively amended with nitrate, ammonium, 

and NaHCO3) to a final biomass concentration of ca. 2 gCDW L-1. Exact biomass 

concentrations were determined via OD750 measurement. Long-term oxyfunctionalization 

assays (> 30 min) were performed in YBG11 medium supplemented with 50 µg mL-1 

kanamycin and 2 mM IPTG. Aliquots of  1 mL were transferred to 11 mL screw cap glass 

tubes and pre-adapted for 10 min at 30 °C, 220 rpm (2.5 cm amplitude), and the chosen light 

intensity (typically 30 µE m-2 s-1). The biotransformation reaction was started by adding 

10 mM NAME (5 µL of 2 M stock in ethanol) or DINP containing different NAME 

concentrations. The reaction was quenched at defined time-points either by adding 1 mL ice-

cold diethyl ether containing 200 µM hexadecane as internal standard (followed by extraction 
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for GC analysis) or, in case of two-liquid phase biotransformations, by cold centrifugation 

(4640g, 4 °C, 5 min).  

Whole-cell oxyfunctionalization in the stirred tank photo-bioreactor Labfors 5 Lux (Infors AG, 

Bottmingen, Switzerland) was performed with cells derived from a 3 L photo-bioreactor 

culture three days after inoculation. Cells were harvested via centrifugation (4640g, 4 °C, 

20 min) and resuspended in 0.6 L YBG11 medium containing 50 mM NaHCO3, 50 µg mL-1 

kanamycin, and 2 mM IPTG, resulting in a final biomass concentration of 1.6 gCDW L-1. This 

cell suspension was returned into the photo-bioreactor followed by pre-conditioning at 30 °C, 

300 rpm (impeller) and 100 µE m-2 s-1 irradiation for 30 min. An aeration rate of 1.8 L min-1 

(2.2 vvm) with compressed air was chosen to ensure proper mixing of the two phases 

applied. The biotransformation was started by adding 0.21 L of DINP containing different 

NAME concentrations (10, 25, or 50% (v/v)). Samples were withdrawn at regular time 

intervals and immediately centrifuged (17000g, 4 °C, 10 min) to quench the reaction, 

separate the phases, and remove the cells.  

Analytical procedures. Reactants (H-NAME, NAME, and NA) from aqueous phase samples 

were extracted using equal amounts of ice-cold diethyl ether containing 200 µM hexadecane 

as internal standard. The ether phase was separated by centrifugation (17000g, 4 °C, 

10 min) and dried over anhydrous Na2SO4, and subjected to GC analysis as described in 

Chapter 3. Reactants (H-NAME, NAME and NA) dissolved in DINP were diluted 10-fold in 

ice-cold diethyl ether containing 200 µM hexadecane as internal standard. The ether phase 

was dried over anhydrous Na2SO4 and used for GC analysis. Separation via GC was 

performed as described in Chapter 3 with the modification that a pre-column (deactivated 

silica guard column, 2 m x 0.53 mm, Thermo Fisher Scientific, Milan, Italy), an integrated 

backflush system and a split ratio of 3 was applied. 1.5 min after injection, a backflush 

through the pre-column was applied. 

4.4 Results 

4.4.1 Enhanced biocatalyst growth results in decreased biotransformation activities 

As reported in Chapter 3, the recombinant strain Syn6803_BGT is capable of hydroxylating 

NAME to H-NAME driven by photosynthetically derived O2. To investigate factors influencing 

whole-cell biocatalyst performance in more detail, the impact of growth/ expression 

conditions on the specific hydroxylation activity was analyzed. Standard growth conditions 

comprised an ambient CO2 concentration of 0.04% and a light intensity of 50 µE m-2 s-1 and 

resulted in a maximal specific activity of 2.1 ± 0.1 U gCDW
-1 (Table 4.1, Figure 10.3). CO2 

availability and light intensity are the primary factors defining the cyanobacterial growth rate  

(Beardall and Raven, 2013). In the following experiment, CO2 concentrations and light 

intensity were increased during cell growth to 2% and 100 µE m-2 s-1, respectively. Only the 
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combined increase in CO2 and light intensity significantly enhanced the growth rate in the 

exponential phase from 0.054 to 0.077 h-1 (Table 4.1, Figure 10.3). In all cases, linear 

growth was observed after 48 h (time-point of induction of alkBGT expression), which 

increased from 0.065 to 0.086 and 0.130 OD750 h-1 upon elevation of the CO2 level (2%) and 

both CO2 level (2%) and light intensity (100 µE m-2 s-1), respectively. However, the maximum 

hydroxylation activity decreased by a factor of two from 2.1 to 1.1 U gCDW
-1 (Table 4.1, Figure 

10.3). Next to an altered AlkBGT biosynthesis efficiency, changes in cell physiology may 

have caused this activity decrease.  

Table 4.1: Cell growth rates and maximum oxyfunctionalization activities of Syn6803_BGT cultivated 

under different conditions.  

Growth conditions 
Exp. growth rate 
(until 48 h) / h-1 

Linear growth rate 
(after 48 h) / OD750 h-1 

Expression 
time / h 

Maximum specific 
activity / U gCDW-1 

50 µE, amb. CO2 0.054 0.065 24 2.1 ± 0.1 

50 µE, 2% CO2 0.059 0.086 24 1.4 ± 0.1 

100 µE, amb. CO2 0.059 0.063 7 2.2 ± 0.1 

100 µE, 2% CO2 0.077 0.130 6 1.1 ± 0.1 

Two days after inoculation, gene expression was induced using 2 mM IPTG. Standard 

oxyfunctionalization assays were performed at different time-points after induction of gene expression 

(YBG11, 2 gCDW L-1, 30 µE m-2 s-1). Expression time for maximum specific activities is given. Average 

values and standard deviations of two independent biological replicates are given. Amb. = ambient, 

U = unit = µmol min-1, CDW = cell dry weight.  

4.4.2 NaHCO3 supply but not light intensity influence NAME hydroxylation during 

single phase biotransformation 

To investigate the impact of reaction conditions on the NAME hydroxylation activity, different 

growth media as well as light intensities were tested during whole-cell biotransformations. 

First, the medium composition was changed with respect to carbon and nitrogen content 

from i) standard YBG11 medium to ii) YBG11 + NaHCO3, iii) YBG11 + NaHCO3 w/o nitrate, 

and iv) YBG11 + NaHCO3 + ammonium w/o nitrate. The supplementation of YBG11 with 

NaHCO3 resulted in a 26% increase of the specific activity (Figure 4.1 A). The omission of 

nitrate as well as its replacement by ammonium, while maintaining NaHCO3 

supplementation, resulted in a slight activity decrease. Therefore, YBG11 + NaHCO3 was 

used as reaction medium for NAME hydroxylation in the following experiments with variable 

light intensities. In the absence of light, cells showed a relatively high specific activity of 

2.4 ± 0.1 U gCDW
-1, as it has been observed before under non-optimized conditions (Figure 

4.1 B) (Chapter 3). An increase in light intensity up to 250 µE m-2 s-1 resulted in strongly 

increasing O2 evolution rates, but only a slight increase in specific hydroxylation activities 

with a maximum of 3.0 ± 0.1 U gCDW
-1 reached at 30 µE m-2 s-1 (Figure 4.1 B, Figure 10.4). 
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Figure 4.1: Impact of medium composition (A) and light intensity (B) on the specific 

oxyfunctionalization activity of Syn6803_BGT. Cells were cultivated under standard conditions 

(YBG11, ambient CO2, 50 µE m-2 s-1). Two days after inoculation, alkBGT expression was induced and 

cultivation was continued for 24 h. Oxyfunctionalization assays were performed using a biomass 

concentration of 2 gCDW L-1. (A) Assays were performed using given medium composition at  

30 µE m-2 s-1 using light tubes at light source. (B) Oxyfunctionalization assays were performed in 

YBG11 medium supplemented with NaHCO3 at given light intensities using LEDs as light source. 

Oxygen evolution rates were determined in gas tight glass chambers as described in Chapter 3 

(2 gCDW L-1, YBG11). Average values and standard deviations of two independent biological replicates 

are given. U = unit = µmol min-1, CDW = cell dry weight.  

As expected from the native localization of AlkB (Benson et al., 1979), membrane 

fractionation and Western blot analysis revealed that the monooxygenase AlkB is localized in 

the cytoplasmic membrane of the cyanobacterial cells (Figure 10.5), which may not be 

optimal for efficient electron transfer. Interestingly, experiments with AlkB containing 

Synechocystis sp. PCC 6803 strains lacking AlkT or AlkGT revealed that electron transfer to 

AlkB strictly depends on AlkG but not on NADH-dependent AlkT (Figure 4.2). Obviously, 

AlkT can be replaced by endogenous AlkG reduction, with even slightly higher rates in the 

absence of AlkT. Thus, electron transfer via NADH, which does not constitute a primary 

electron shuttle in phototrophic metabolism (Mellor et al., 2017), can be circumvented. 

Overall, these results indicate that, under the applied reaction conditions, the electron supply 

capacity of photosynthetic water oxidation does not limit the oxyfunctionalization 

performance of Syn6803_BGT and that electron supply via carbohydrate catabolism, which 

may involve storage compounds such as glycogen, can substantially contribute to this 

electron supply.  
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Figure 4.2: Whole-cell NAME biotransformation activity of Synechocystis sp. PCC 6803 cells 

harboring AlkB (pAH044), AlkBG (pAH047), or AlkBGT (pA042). Cells were cultivated at standard 

conditions (YBG11, ambient CO2, 50 µE m-2 s-1). Gene expression was induced two days after 

inoculation for 24 h. Oxyfunctionalization assays were performed at the given light conditions 

(2 gCDW L-1, YBG11 + NaHCO3). Average values and standard deviations of two independent biological 

replicates are given. U = unit = µmol min-1, CDW = cell dry weight.  

4.4.3 Diisononyl phtalate (DINP) as carrier solvent overcomes substrate toxicity for 

Synechocystis sp. PCC 6803 

So far, the biocatalytic performance of Syn6803_BGT has been investigated in short-term 

assays, hiding potential biocatalyst stability issues. Long-term NAME hydroxylation 

experiments revealed a fast decrease in specific activity, resulting in a final specific product 

yield on biomass of 0.5 mmol gCDW
-1 (Figure 4.3, Table 4.2).  

 

Figure 4.3: Long-term NAME biotransformation with Syn6803_BGT. Cells were cultivated under 

standard conditions (YBG11, ambient CO2, 50 µE m-2 s-1). Gene expression was induced two days 

after inoculation for 4 h before cells were harvested and applied for the biotransformation (2 gCDW L-1, 

YBG11 + NaHCO3, 30 µE m-2 s-1). The biotransformation reaction was initiated by the addition of 

10 mM NAME. Each data-point represents the average value of two independent biological samples. 

U = unit = µmol min-1, CDW = cell dry weight.  
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Beside its hydroxylation, NAME was hydrolyzed to nonanoic acid (NA) at a constant rate of 

2.3 ± 0.1 U gCDW
-1, resulting in substrate depletion after 26 h of reaction. The 

biotransformation yield thus was restricted by limited substrate availability, which, however, 

cannot explain the fast activity decrease. The latter may be due to reactant toxicity. Thus, the 

impact of NAME and NA on growth of wildtype Synechocystis sp. PCC 6803 was 

investigated. The addition of 1 mM NAME or NA largely restricted cell growth (Figure 4.4). 

Obviously, low concentrations of NAME and NA lead to cell toxification which may have 

caused biocatalyst instability. In conclusion, both reactant toxicity and substrate hydrolysis 

constitute critical factors affecting the hydroxylation performance of Syn6803_BGT.  

 

Figure 4.4: Cell growth of Synechocystis sp. PCC 6803 (pAH032) (empty expression plasmid) at 

different NAME (A), NA (B), or ethanol (C) concentrations. Cells were cultivated under standard 

conditions (YBG11, ambient CO2, 50 µE m-2 s-1). Addition of reactants is indicated by an arrow. NAME 

concentrations are calculated based on the volume of the aqueous phase, while the solubility limit of 

NAME is 133 µM. Error bars represent the standard deviation of two independent biological replicates.  

To realize efficient substrate supply while maintaning substrate concentrations low but 

constant, in situ substrate supply (ISSS) strategies can be followed (Hilker et al., 2008; 

Schmölzer et al., 2012). Beside substate feeding, two-phase approaches such as organic/ 

aqueous two-liquid phase systems are promising, simultaneously allowing in situ product 

extraction (Leon et al., 1998; Lye and Woodley, 1999). Thereby, a second organic liquid 
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phase serves as substrate reservoir continuously providing the substrate at desired 

concentrations. So far, organic carrier phases were not applied for cyanobacterial processes. 

As information on the compatibility of organic carrier solvents with cyanobacterial growth is 

largely missing, such compatibility was tested for the two solvents ethyl oleate (EO) and 

diisononyl phthalate (DINP), which, together with similar phthalates, have proven highly 

suitable in bioprocesses based on heterotrophic bacteria (Bühler et al., 2003b; Kuhn et al., 

2012b; Schrewe et al., 2014; Willrodt et al., 2014). With YBG11 medium as aqueous phase, 

these solvents were found to provide a similar partitioning behavior, with a partition 

coefficient Porg:aq of (24.5 ± 3.5) x 103 for NAME. To test the compatibility of DINP and EO 

with wildtype Synechocystis sp. PCC 6803, the carrier solvents were added to cultures at a 

1:3 organic/aqueous phase ratio two days after inoculation. EO was found to substantially 

impair cell growth, which was not the case for DINP (Figure 4.5 A). Thus, cell growth with 

DINP containing 0, 5, 10, 25, 50, or 75% (v/v) NAME was evaluated. Concentrations up to 

25% (v/v) NAME dissolved in DINP were found not to affect the cyanobacterial cell growth 

rate and can thus be considered suitable for two-liquid phase setups (Figure 4.5 B, Figure 

10.6). 

 

Figure 4.5: Compatibility of the organic carrier solvents ethyloleate (EO) and diisononyl phtalate 

(DINP) (panel A) and NAME dissolved in DINP at different concentrations (panel B) with 

Synechocystis sp. PCC 6803 cells lacking alkBGT. Cells were cultivated in YBG11 medium 

supplemented with (panel A) or without (panel B) NaHCO3 under standard conditions (ambient CO2, 

50 µE m-2 s-1). Two days after inoculation, 7.5 or 15 mL aliquots were transferred into 100 or 250 mL 

shake flasks and supplemented with 2.5 or 5 mL organic phase, as indicated by the arrow in panel A. 

Cultivation was continued at a reduced shaking frequency of 100 rpm. Panel B shows growth rates 

after the addition of DINP containing different NAME concentrations, determined for day 2 to 4. 

Average values and standard deviations of two independent biological replicates are given.  
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4.4.4 The two-liquid phase approach improves specific activity and product yield of 

Syn6803_BGT 

To investigated if and to what extent the two-liquid phase system improves whole-cell 

biocatalyst stability, DINP containing 25% (v/v) NAME was added to cyanobacterial cultures 

in different organic:aqueous phase ratios of 1:1, 1:3, and 1:10, and product formation was 

followed for 27 h. In all cases, initial specific activities as well as specific product yields were 

enhanced compared to the single aqueous phase system (Figure 4.6, Table 4.2). The best 

results were obtained using a phase ratio of 1:3, which enhanced the initial specific activity 

(from 3.3 to 5.2 U gCDW
-1) as well as the biotransformation stability, resulting in 6-fold 

increased specific product yields (Table 4.2). With a phase ratio of 1:10, the system 

appeared to become substrate mass transfer limited, whereas a high phase ratio of 1:1 lead 

to a reduced biocatalyst stability pointing to toxicity effects possibly mediated by direct 

contact of the cells with organic phase droplets and thus NAME, as it has been reported 

before for similar two-liquid phase systems (Bühler et al., 2006; Park et al., 2006; Schrewe et 

al., 2011).   

 

Figure 4.6: Impact of organic carrier solvent DINP containing 25% (v/v) NAME applied at different 

phase ratios on the long-term biotransformation stability with Syn6803_BGT. Cells were cultivated 

under standard conditions in YBG11 medium for 2 days, induced with 2 mM IPTG for 4 h, harvested, 

and resuspended in YBG11 + 50 mM NaHCO3 to a biomass concentration of 2 gCDW L-1. 

Biotransformations were initiated via the addition of 1, 0.33, or 0.1 mL of organic phase to 1 mL of 

cyanobacterial cultures in glass tubes. Average values and standard deviations are given for two 

independent biological replicates.  

Elevated substrate concentrations have been found to be toxic and are thus expected to 

impare metabolism dependent whole-cell oxyfunctionalization activity and stability. Thus, the 

substrate concentration available in the aqueous phase was fine-tuned by applying different 

substrate concentrations (5%, 10%, 25%, 50%, 75%, and 100% (v/v) NAME) in the organic 

carrier solvent DINP added at an organic/aqueous phase ratio of 1:3. The substrate 

concentration applied significantly influenced the initial specific NAME hydroxylation rate, 
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which was highest at around 5.5 U gCDW
-1 with 25, 50, and 75% (v/v) NAME in DINP (Figure 

4.7). Reduced hydroxylation rates at 5 and 10% (v/v) NAME indicated a substrate limitation, 

whereas high concentrations of 75 and 100% (v/v) NAME led to reduced initial activities 

and/or stabilities again indicating toxification of the cells.  

 

Figure 4.7: Impact of different NAME concentrations within the organic carrier solvent DINP on the 

biotransformation performance of Syn6803_BGT. Cells were cultivated, processed, and applied for 

long-term biotransformations as described in the legend of Figure 4.6. During biotransformations, 

different concentrations of NAME dissolved in DINP were applied at an organic:aqueous phase ratio of 

1:3. Panels A and B show the courses of biomass-specific H-NAME accumulation and activities, 

respectively. Panel C shows initial specific activities calculated for the first 30 min of reaction. The 

dotted lines show the application of Michaelis-Menten kinetics for the data obtained with 5-50% NAME 

(v/v) in DINP. Panel D shows biomass-specific product yields. Average values and standard 

deviations of two independent biological replicates are given. U = unit = µmol min-1, CDW = cell dry 

weight, Vmax =  maximal reaction velocity, Ks = apparent substrate uptake constant.   

Up to 50% (v/v) NAME, initial activities exhibited a Michaelis-Menten type dependency on the 

substrate concentration with an apparent maximal reaction velocity Vmax of 8.1 ± 0.5 U gCDW
-1 

and an apparent substrate uptake constant KS of 22.1 ± 2.5% (v/v) NAME in DINP 

(= 1 Morg ≙ 39 µMaq). The data obtained with higher substrate concentrations did not fit 

classical substrate inhibition kinetics (v = Vmax * [S] / (Ks + [S] * (1 + [S] / Ki)), pointing to 

toxification of the cells rather than enzyme inhibition as the cause for the reduced initial 
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specific activities at high NAME concentrations. In conclusion, the application of NAME in 

DINP at a concentration of up to 50% (v/v) significantly increased biocatalyst performance 

enabling not only a high specific product yield of 3.8 ± 0.1 mmol gCDW
-1, but also an increase 

in specific activity. 

 4.4.5 NAME hydroxylation in a 3 L stirred tank photo-bioreactor 

After successful stabilization of the NAME hydroxylation system, we set out to evaluate its 

scalability by transferring it from 1 mL glass tube- to a 3 L lab-scale stirred tank photo-

bioreactor system. In contrast to cultivation and biotransformation in shake flasks and glass 

tubes, respectively, the photo-bioreactor setting provides an altered light input distribution, an 

aeration system continuously supplying compressed air into the medium, and stirring via 

impeller agitation, potentially affecting biocatalyst growth and physiology. First, the scaling of 

biocatalyst production was evaluated by growing the cells in the photo-bioreactor setting, 

induction 2 days after inoculation, and following oxyfunctionalization activity via short-term 

assays. During cultivation, the light intensity was increased after 30 and 48 h from 50 to 

75 and 100 µE m-2 s-1, respectively, and the aeration rate from 3 to 5 L min-1 after 48 h to 

ensure optimal light and CO2 supply. 

Initial growth rates (0.059 h-1 from 0 to 32 h) in the photo-bioreactor were similar to those 

obtained in shake flasks (Table 4.1). The highest specific oxyfunctionalization activity 

(3.3 ± 0.1 U gCDW
-1) was achieved for a broad time range after induction, i.e., 4 up to 24 h 

(Figure 4.8 A), and was very similar to the maximal activity obtained with cells cultivated in 

shake flasks (Figure 10.7).  

After the successful transfer of Syn6803_BGT cultivation and induction to the photo-

bioreactor scale, this transfer also was tested for the two-liquid phase biotransformation of 

NAME with Syn6803_BGT. For two-liquid phase biotransformations in stirred tank photo-

bioreactors, organic DINP phases containing 10, 25, or 50% (v/v) NAME were applied. The 

highest initial specific activity of 4.5 ± 0.3 U gCDW
-1 was achieved with 25% (v/v) NAME in 

DINP, enabling a final biomass-specific product yield of 2.6 ± 0.1 mmol gCDW
-1 after 45 h of 

biotransformation (Figure 4.8, Table 4.2). In comparison to the small scale experiments, 

biocatalyst performance with 10 and 25% (v/v) NAME in DINP was slightly reduced in terms 

of initial specific activity (by 10 - 20%) and final biomass-specific product yield (by 0 - 20%) 

(Table 4.2). With 50% (v/v) NAME in DINP, this performance was more significantly reduced 

(by 54 and 50% in terms of initial activity and specific yield, respectively) indicating that the 

bioreactor conditions promoted biocatalyst inactivation especially when high NAME 

concentrations were applied (Bühler et al., 2002). Besides this, the successful scaling of 

biocatalyst growth and two-liquid phase biotransformation of NAME demonstrates the 

technical applicability of Syn6803_BGT for two-liquid phase biotransformations in a stirred 

tank photo-bioreactor setting. 
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Figure 4.8: Syn6803_BGT growth and NAME hydroxylation performance using different amounts of 

NAME dissolved in DINP in a stirred tank photo-bioreactor setting. Cells were cultivated in 3 L YBG11 

medium at 50 (0 - 30 h), 75 (30 - 48 h), and 100 µE m-2 s-1 (48 - 96 h), 300 rpm, and aeration with 

compressed air at 3 (0 – 48 h) and 5 L min-1 (48 – 96 h). Gene expression was induced two days after 

inoculation. Panel A shows the growth curve and the course of specific activities determined in short-

term activity assays (2 gCDW L-1, YBG11 + NaHCO3, 30 µE m-2 s-1) for cells harvested at different time 

points. Specific activities are given as average values with standard deviations of two replicates. 

Photo-bioreactor-based biotransformations (panels B-D) were performed with cells harvested 24 h 

after induction and resuspended to 1.6 gCDW L-1 in 0.6 L of YBG11 medium containing 50 mM 

NaHCO3. The biotransformation reaction was started by the addition of 0.21 L DINP containing 10, 25, 

and 50% (v/v) NAME (panels B, C, and D, respectively). Average values and standard deviations 

refer to two analytical replicates. org = measured in the organic phase, aq = measured in the aqueous 

phase, U = unit = µmol min-1, CDW = cell dry weight.  

4.5 Discussion  

4.5.1 Substrate mass transfer, substrate hydrolysis, and reactant toxicity 

Application of the two-liquid phase concept in principle may hamper biocatalysis with 

phototrophs due to shading. However, with phototrophic Syn6803_BGT, two-liquid phase  
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Table 4.1: Overview on NAME biotransformation experiments with Syn6803_BGT applying different NAME concentrations in the organic carrier solvent 
DINP in small-scale or photo-bioreactor settings.  

NAME 
in DINP 

org:aq phase 
ratio 

NAME in 
aq phase1 

/ µM 

NA in 
aq phase2 

/ µM 

H-NAME 
/ mmoltotal Laq phase-1 

Initial specific 
activity3 / U gCDW-1 

Initial hydrolysis 
rate3 / U gCDW-1 

Specific yield4 
/ mmoltotal gCDW-1 

Tube        

10 mM w/o DINP ≤ 1335 17976 0.9 ± 0.1 3.3 ± 0.1 2.3 ± 0.110 0.5 ± 0.1 

25% (v/v) 1:1 58 ± 4 31 3.7 ± 0.3 4.8 ± 0.4 0.10 ± 0.01 2.1 ± 0.2 

25% (v/v) 1:3 54 ± 5 29 5.7 ± 0.3 5.2 ± 0.4 0.47 ± 0.01 3.2 ± 0.2 

25% (v/v) 1:10 53 ± 3 53 4.7 ± 0.1 4.4 ± 1.5 1.74 ± 0.12 2.7 ± 0.1 

5% (v/v) 1:3 10 ± 1 2 2.1 ± 0.1 1.5 ± 0.1 0.06 ± 0.01 1.1 ± 0.01 

10% (v/v) 1:3 22 ± 1 7 3.3 ± 0.3 3.1 ± 0.2 0.15 ± 0.01 1.8 ± 0.2 

25% (v/v) 1:3 44 ± 4 25 5.7 ± 0.2 5.2 ± 0.4 0.36 ± 0.01 3.0 ± 0.1 

50% (v/v) 1:3 81 ± 5 78 7.3 ± 0.1 5.6 ± 0.1 0.92 ± 0.01 3.8 ± 0.1 

75% (v/v) 1:3 120 ± 11 17976 5.9 ± 0.5 5.5 ± 0.1 2.00 ± 0.1 3.0  ± 0.2 

100% (v/v) 1:3 ≤ 1335 17976 2.8 ± 0.3 2.6 ± 0.1 5.23 ± 0.01 1.5 ± 0.2 

STR7        

10% (v/v)8 1:3 29 to 91 5 2.6 ± 0.1 2.3 ± 0.2 0.13 ± 0.02 1.7 ± 0.1 

25% (v/v)9 1:3 64 to 1335 35 ± 2 / 210 ± 3 3.6 ± 0.2 / 4.0 ± 0.1 4.5 ± 0.3 0.49 ± 0.02 2.3 ± 0.1 / 2.6 ± 0.1 

50% (v/v) 1:3 83 to 1335 332 ± 3 3.0 ± 0.1 2.6 ± 0.1 2.16 ± 0.06 1.9 ± 0.1 

Average values with standard deviations are given for independent biological or analytical replicates.  org = organic, aq = aqueous, U = unit = µmol min-1, 
CDW = cell dry weight. 1 Average value or, in case of experiments in photo-bioreactors, concentration ranges referring to the total biotransformation time, 2 
highest value during biotransformation, 3 for the first 30 min of reaction, 4 calculated based on the total amount of product in aqeous and organic phases 
divided by the initially applied biomass assuming no growth, 5 solubility of NAME in water (Chemspider database structure 14846), 6 solubility of NA in water 
(Chemspider database structure 7866), 7 technical replicates, 8 31.5 h of reaction time, 9 26.2/ 45 h of reaction time, 10 rate calculated for 24 h 
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biotransformation resulted in up to 1.7-fold increased initial specific hydroxylation activities 

(Table 4.2). This can be ascribed to reduced cell toxification/ substrate inhibition by 

decreased aqueous phase NAME concentrations or to an enhanced substrate mass transfer 

to the cells, possibly involving direct substrate transfer from organic solvent droplets to the 

cells as it has been observed before (Bühler et al., 2006; Park et al., 2006; Schrewe et al., 

2011). Further, the presence of the organic phase significantly reduced substrate hydrolysis 

leading to only low final NA titers and thus, enabled higher product yields on substrate (Table 

4.2, Figure 10.8). In whole-cell biocatalysis, cell toxification by hydrophobic reactants often 

affects biocatalyst and thus biotransformation performance. Hydrophobic compounds with 

logP(octanol/water) values between 2 and 4 typically impair cell viability via intercalation into 

microbial membranes (Laane et al., 1987; Sikkema et al., 1994). Using the empirical 

equation for predicting the concentration leading to membrane dissociation as reported by 

Sikkema et al. (1994) and Kratzer et al. (2015) for heterotrophic microorganisms, NAME 

(logP = 3.9) and NA (logP = 3.4) are expected to become toxic at aqueous concentrations of 

216 and 617 µM, respectively (Kratzer et al., 2015; Sikkema et al., 1994). Our results show 

an impaired growth at concentrations of 1 mM NAME (solubility in water is 133 µM) and 

100 µM NA (Figure 4.4), indicating a higher sensitivity of Synechocystis sp. PCC 6803 

compared to heterotrophic microorganisms. In addition to plasma membranes, phototrophic 

cells harbor thylakoid membranes containing the photosynthetic machinery of the light 

reaction. The disintegration of respective membranes may directly affect photosynthetic 

water oxidation and electron transport, and thus the energy metabolism and viability of 

phototrophic organisms. Consequently, in situ reactant supply and removal becomes highly 

important for the application of photoautotrophic whole-cell biocatalysts.   

Overall, this study shows that the two-liquid phase concept can successfully be applied in 

light-dependent reaction setups based on phototrophic microorganisms, with benefits ranging 

from mass transfer over the handling of toxic compounds to the avoidance of side reactions. 

4.5.2 Specific oxyfunctionalization activity 

Factors possibly limiting the oxyfunctionalization activity of Syn6803_BGT include O2 supply, 

substrate mass transfer to the cells, substrate transfer over the cellular membranes, cell 

integrity, the intracellularly available AlkB activity, and electron supply. Considering the 

enhanced O2 evolution rates measured with increasing light intensities (Figure 4.1 B) and 

the high NAME hydroxylation activities (100 U gCDW
-1) achieved by recombinant E. coli 

containing AlkBGT (Schrewe et al., 2011), limitations by O2 supply and substrate transfer 

over cellular membranes are improbable. The increase in specific activity in the presence of 

a second liquid organic phase indicated that substrate mass transfer to the cells and/ or 

substrate toxicity were critical factors. Besides and in parallel to NAME availability, the 

intracellular AlkBG(T) amount may constitute a limiting factor. Thus, excluding O2 as limiting 
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factor and knowing about the importance of controlled NAME supply as achieved via the two-

liquid phase approach, intracellular AlkBGT synthesis and electron supply will be discussed 

in the following. 

AlkBGT synthesis. In E. coli W3110 (pBT10), high specific oxyfunctionalization activities 

(100 U gCDW
-1) involved alkBGT overexpression based on a high copy number plasmid 

(pCOM10) and the strong promoter system (Palk) of the alk operon of P. putida GPo1 

(Schrewe et al., 2011). The expression system applied in this study relies on a plasmid with a 

medium copy number in Synechocystis sp. PCC 6803 (RSF orign of replication, 10 - 30 

copies per cell (Huang et al., 2010)) and a promoter system (Ptrc10) showing low specific 

activities in E. coli W3110 in comparison to the Palk promoter system (Figure 10.9). For 

Syn6803_BGT, SDS-PAGE (Figure 10.10) revealed only low specific AlkB concentrations in 

comparison to the total protein amount and to the AlkB amount present in recombinant E. coli 

exhibiting high oxyfunctionalization activities (100 U gCDW
-1) (Schrewe et al., 2011). 

Duplication of the operon within the expression plasmid as a first strategy to increase the 

AlkBGT expression level did not result in increased AlkB concentrations and thus 

hydroxylation rates (Figure 10.11). Controlled and high level expression of recombinant 

genes in cyanobacteria still remains challenging (Camsund and Lindblad, 2014; Englund et 

al., 2016). Thus, the development and application of more efficient expression systems for 

Synechocystis sp. PCC 6803 would be useful to facilitate alkBG(T) overexpression and thus 

possibly enhance oxyfunctionalization activities.  

The photosynthetic electron supply to AlkB. In general, the efficiency of electron supply 

to AlkB is determined by 1) the electron activation rate in the course of the photosynthetic 

light reaction, 2) the competition for reduction equivalents with the primary cellular electron 

demand, and 3) the transport of electrons from the photosynthetic electron transport chain to 

AlkB (Figure 4.9). As discussed before, the presence of a second liquid organic phase 

enhanced specific oxyfunctionalization activities of Syn6803_BGT, indicating a limitation in 

substrate availability in the single aqueous phase system. This and possibly the low AlkB 

amount within the cells obviously constituted the main limiting factors, which explains why 

increased photosynthetic water oxidation induced by increased light intensities (Figure 4.9 i) 

did not result in enhanced NAME oxyfunctionalization rates in single aqueous phase 

biotransformations (Figure 4.1 B). However, specific activities of Syn6803_BGT slightly 

increased upon NaHCO3 supply (Figure 4.1 A). The primary cellular electron demand for, 

e.g., CO2 fixation and nitrate assimilation, constitutes a major electron sink, which may 

compete with oxygenase catalysis, given a high capacity for the latter is present in the cell 

(Figure 4.9 ii). On the other hand, the presence of NaHCO3 may promote enhanced rates of 

photosynthetic water oxidation via different regulatory mechanisms and thus increase 

electron flux towards electron transfer shuttles such as ferredoxin, NADPH, or NADH. The 
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increased electron flux in turn may have caused the slight increase in NAME hydroxylation 

activity upon NaHCO3 supply. The observed oxyfunctionalization activity in the absence of 

light and thus water oxidation (Figure 4.1 B) suggests that electrons for oxygenase catalysis 

were derived from the catabolism of storage compounds under these conditions (Figure 4.9).  

 

Figure 4.9: Possible electron transfer pathways from the photosynthetic electron transport chain to 

AlkB. The circles indicate the three factors determining the electron transfer efficiency: i) rate of water 

oxidation, ii) competition of oxygenase catalysis with cellular metabolism, and iii) transport of 

electrons from the photosynthetic electron transport chain to AlkB. In vitro studies showed that the 

rubredoxin reductase AlkT receives electrons primarily from NADH and not from NADPH (indicated by 

crossed arrow [a]) (Peterson et al., 1967), whereas the replacement of AlkT with a NADPH-dependent 

spinach ferredoxin reductase (indicated by bold line [b]) was functional (McKenna and Coon, 1970). In 

addition, AlkB containing Synechocystis sp. PCC 6803 is shown to require the rubredoxin AlkG 

(indicated by crossed arrows [c]), but not AlkT for NAME oxyfunctionalization. This indicates that 

electron transfer to AlkG and finally AlkB either occurs directly from the photosynthetic electron 

transport chain (bold line [d]) or via endogenous ferredoxin reductases (bold line [b]). 

Further, the native “NADH-AlkT-AlkG-AlkB” electron transfer pathway was bypassed quite 

efficiently in Synechocystis sp. PCC 6803 containing AlkBG but lacking AlkT (Figure 4.2) 

(Benson et al., 1977; McKenna and Coon, 1970; Peterson et al., 1966a). Thereby, AlkG, 

which was required for productive electron transfer to AlkB, may have received electrons 

either directly from the photosynthetic electron transport chain or via the action of 

endogenous ferredoxin reductases (Figure 4.9). Functional replacement of the NADH-

dependent rubredoxin reductase AlkT by an NADPH-dependent spinach ferredoxin 

reductase has been shown in in vitro studies (McKenna and Coon, 1970). The same was 

reported for recombinant CYP450 enzymes actively coupling with ferredoxins/ ferredoxin 

reductases originating from phototrophic species in vitro and in vivo (Hara et al., 1997; 

Jensen et al., 2012; Mellor et al., 2016). Identification and overexpression of enzymes 

involved in this electron transfer might be a powerful strategy to improve the coupling of 

oxyfunctionalization and photosynthetic metabolism. In addition to the availability of proteins 

involved in electron transfer and oxyfunctionalization, their localization also may determine 
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oxyfunctionalization efficiency. AlkB was found to be localized in the cytoplasmic membrane 

of the cyanobacterial cells, as could be expected from its native localization in Pseudomonas 

putida GpO1 (Figure 10.5) (Benson et al., 1979). In contrast, the water oxidation and 

photosynthetic electron transfer are located in the thylakoid membranes (Vermaas, 2001). 

The spatial separation of AlkB and photosynthetic electron transfer chain might impair 

electron transfer to AlkB. Recent studies investigated the anchoring of a recombinant 

cytochrome P450 monooxygenase in cyanobacterial thylakoid membranes, allowing for 

photosynthesis coupled oxyfunctionalization of tyrosine to p-hydroxyphenyl-acetaldoxime 

(Lassen et al., 2014a). Relocalization of AlkB to the thylakoid membrane might be another 

promising strategy to enhance electron supply to AlkB.  

4.5.3 Scaling 

Yet, process concepts specific for photosynthesis-driven biotransformations do not exist and 

are rare for H2 production and product formation from CO2 (Dasgupta et al., 2010; 

Fresewinkel et al., 2014). Light distribution, CO2 supply, as well as substrate supply are 

critical process parameters to establish efficient reactor concepts. As a first step to evaluate 

scaling, the Syn6803_BGT-catalyzed NAME hydroxylation in a two-liquid phase system was 

transferred from 1 mL glass tube to a 3 L stirred-tank photo-bioreactor, which proofed to be 

successful. A similar biocatalyst performance as in the test tube system was achieved. 

However, specific yields were somewhat lower in comparison to the small-scale experiments, 

especially at high NAME concentrations in the organic phase (Table 4.2). The main 

difference to the small-scale setting was the mixing intensity, which was significantly higher 

in the stirred tank photo-bioreactor (2.2 vvm aeration, 300 rpm agitation). Direct contact of 

the cells with organic phase droplets, as discussed above as a possible reason for improved 

specific activities in the two-liquid phase system, may, on the other hand, promote biocatalyst 

toxification as also indicated by the adverse effect of high organic:aqueous phase ratios in 

small scale experiments (Table 4.2). The more intense mixing in the bioreactor leads to more 

frequent collision of cells with solvent droplets and thus can be expected to promote direct 

NAME transfer from the organic phase to the cells (Bühler et al., 2006; Bühler et al., 2002; 

Park et al., 2006). Thus, mixing and the NAME concentration constitute critical parameters in 

stirred tank bioreactors. In addition to such toxification, a pH shift due to intense aeration, 

which promoted degassing of CO2 derived from the NaHCO3 in the medium (Figure 10.12), 

may have affected cell physiology and thus whole-cell biocatalyst performance. Beside pH 

control, strategies to overcome CO2 degassing may become mandatory and include reduced 

agitation and the omission of aeration. Such oxyfunctionalization without aeration is enabled 

by the in situ O2 generation via photosynthetic water oxidation (Chapter 3, Chapter 7). 
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4.6 Conclusions  

Photoautotrophic organisms are promising biocatalysts for oxyfunctionalization catalysis as 

they are capable of supplying reduction equivalents as well as O2 via photosynthetic water 

oxidation. The previously developed whole-cell biocatalyst Syn6803_BGT was found to 

involve endogenous pathways and enzymes in the supply of electrons supporting oxygenase 

catalysis. This included AlkT-independent electron transfer to AlkG and electron supply via 

the catabolism of storage compounds. The whole-cell reaction system was stabilized via a 

two-liquid phase approach enabling bioprocess relevant time scales of >24 h. The application 

of DINP as organic carrier solvent not only stabilized NAME hydroxylation via the attenuation 

of NAME toxicity, but also increased the specific biocatalyst activity most likely via an 

improved substrate mass transfer and reduced by-product formation. Thereby, this study 

demonstrated feasibility of the two-liquid phase approach for photobiotechnology. This and 

the successful transfer of the light-driven two-liquid phase biotransformation to a 3 L stirred 

tank photobioreactor scale paves the way for the technical application of cyanobacteria as 

phototrophic host organisms for efficient oxyfunctionalization biocatalysis. 
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5.1 Abstract 

Oxygenase-based whole-cell biocatalysis enables selective oxyfunctionalizations under mild 

conditions. Phototrophic organisms such as cyanobacteria are promising host systems for 

oxygenase catalysis as the photosynthetic water oxidation gives highly sustainable access to 

the required co-substrates that are activated reduction equivalents and O2. First studies have 

validated the functional coupling of oxygenase-enzyme systems to photosynthetic water 

oxidation. In this study, we developed a recombinant Synechocystis sp. PCC 6803 strain 

showing unprecedentedly high oxyfunctionalization activities for a photoautotrophic strain 

and evaluated its technical applicability. The strain functionally synthesizes a cytochrome 

P450 monooxygenase system originating from Acidovorax sp. CHX100 and enables the 

hydroxylation of cycloalkanes. For cyclohexane, the biocatalyst-specific reaction rate was 

found to be light-dependent reaching 24.0 ± 0.6 U gCDW
-1 at a light intensity of 150 µE m-2 s-1. 

In situ substrate supply via a two-liquid phase system increased the initial specific activity to 

39.2 ± 0.7 U gCDW
-1 and stabilized the biotransformation by preventing cell toxification. This 

resulted in a 10 times increased specific product yield compared to the single aqueous phase 

system up to 4.5 gcyclohexanol gCDW
-1. Subsequently, the developed biotransformation system 

was successfully scaled from shake flask- to a 3 L stirred-tank photo-bioreactor setup. 

Thereby, the in situ generation of O2 via photosynthetic water oxidation allowed non-aerated 

process operation, thus circumventing substrate evaporation as the most critical factor 

limiting process performance and stability. In summary, 2.6 g cyclohexanol were generated 

from water, light, and cyclohexane. This paper exemplifies the technical applicability of 

cyanobacteria for light-driven oxyfunctionalization reactions involving highly toxic and volatile 

substrates. The design of scalable biotransformation technologies for photoautotrophs may 

well develop into promising photosynthesis-driven bioprocesses. 
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5.2 Introduction 

Since a few years, cyanobacteria have gained attention as valuable biocatalysts for 

biotransformation reactions such as the oxyfunctionalization of hydrocarbons to the 

respective value-added compounds (Böhmer et al., 2017; Lassen et al., 2014b; Mellor et al., 

2017). These whole-cell reaction systems utilize photosynthetic water oxidation as a source 

of activated reduction equivalents as well as O2, both co-substrates for oxygenase-catalyzed 

oxyfunctionalizations. Under high light conditions, the light reaction including water oxidation 

is considered not to limit growth, but rather has to be suppressed by phototrophic organisms 

in order to avoid damage by excessive buildup of reduction power, O2, and reactive oxygen 

species (Bailey and Grossman, 2008; Wilhelm and Selmar, 2011). The coupling of 

oxygenase catalysis to photosynthetic water oxidation provides a sink for reduction 

equivalents as well as O2, potentially enabling high oxyfunctionalization rates. Recently, 

several studies demonstrated the functional introduction of oxygenases into diverse 

photosynthetic organisms and their coupling to photosynthetic water oxidation (Chapter 3) 

(Berepiki et al., 2016; Böhmer et al., 2017; Lassen et al., 2014a; Wlodarczyk et al., 2015), 

thus verifying the concept of photosynthesis-driven whole-cell oxyfunctionalization on 

laboratory scale. The applicability of cyanobacteria on technical scale, especially for the 

oxyfunctionalization of highly volatile and toxic substrates, however, has not been 

demonstrated, yet. Although the cultivation and reaction conditions of standard bioprocesses 

have to be modified by lighting systems to enable sufficient water oxidation, our recent study 

showed that established reaction engineering options such as two-liquid phase bioreactor 

setups are in principle applicable for photosynthetic biocatalysts (Chapter 4). The evaluation 

and intensification of such photosynthesis-driven bioprocessing for gram-scale 

hydroxylations, however, remains an open task.  

Cyclohexanol constitutes an example for a high volume chemical produced via 

oxyfunctionalization, in this case from cyclohexane, and is of high commercial interest as a 

precursor for the synthesis of Nylon-6 and Nylon-6,6 building blocks (Schuchardt et al., 

1993). The current industrial production of cyclohexanol and cyclohexanone from 

cyclohexane involves the use of homogenous cobalt catalysts and high temperatures above 

423 K and suffers from low selectivities (Schuchardt et al. 2001). Thus, numerous new 

heterogeneous chemocatalysts are under development. The enzymatic oxyfunctionalization 

of cyclohexane to cyclohexanol is a promising alternative route to the traditional chemical 

approaches as high selectivity can be achieved under mild conditions (Karande et al., 2016a; 

Salamanca et al., 2015). Cyclohexane reveals generic challenges for biocatalysis due to its 

low water solubility (650 µM), high volatility (0.15 atm m³ mol-1), and high toxicity to 

microorganisms. 
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The focus of this work was to evaluate the potential of cyanobacteria as biocatalysts to meet 

these challenges and to develop a process setup suitable for cyclohexane oxidation. A 

recombinant Synechocystis sp. PCC 6803 strain harboring a cyclohexane monooxygenase, 

i.e., the cytochrome P450 monooxygenase from Acidovorax sp. CHX100 (Salamanca et al., 

2015), capable of hydroxylating cyclohexane at high rates was developed and evaluated 

regarding its oxyfunctionalization activity as well as stability under process conditions. An in 

situ substrate supply strategy involving a second liquid organic phase was followed, on the 

one hand, to attenuate cell toxification and thus improve process stability and, on the other 

hand, to improve substrate mass transfer and thus enhance productivity. Finally, the benefit 

of in situ O2 generation via photosynthetic water oxidation for the conversion of volatile 

cyclohexane under non-aerated process conditions was evaluated in a 3L stirred tank photo-

bioreactor setup.  

5.3 Materials and Methods 

Chemicals, bacterial strains and plasmids. Chemicals used in this study are given in 

Chapter 2. Synechocystis sp. PCC 6803 was transformed with the plasmid pAH050 

harboring the cytochrome P450 enzyme system originating from Acidovorax sp. CHX100 

resulting in the recombinant strain Synechocystis sp. PCC 6803 (pAH050) (hereinafter 

referred to as Syn6803_CYP). Respective cloning was based on the broad-host-range vector 

pPMQAK1 (RSF origin of replication) involving transcriptional control by the Ptrc1O promoter 

system (Huang et al., 2010) (for cloning procedure see Chapter 2). 

Cultivation of Synechocystis sp. PCC 6803. If not stated otherwise, shake flask cultivation 

of Synechocystis sp. PCC 6803 was performed as described in Chapter 2 (YBG11 medium, 

50 mM HEPES, 20 mL in 100 mL baffled Erlenmeyer flasks, 30 °C, 150 rpm, 2.5 cm 

amplitude, 50 µE m-2 s-1, LED, ambient CO2 (0.04%), 75% humidity, start OD750 ca. 0.08). 

Kanamycin was used at a final concentration of 50 µg mL-1. Gene expression was induced 

2 days after inoculation using 2 mM IPTG for 24 h. If required, 50 mM NaHCO3 were 

supplied to the medium before sterile filtration (0.2 µm). The correlation factor  

0.2246 gCDW L-1 OD750
-1 was used for the conversion of OD750 values to cell dry weight (CDW) 

concentrations in gCDW L-1 (Chapter 2, Figure 2.2).  

Cultivation of Syn6803_CYP cells in the stirred tank photo-bioreactor Labfors 5 Lux (Infors 

AG, Bottmingen, Switzerland) was performed using 3 L YBG11 medium inoculated to an 

OD750 of 0.08 using pre-cultures obtained via the standard cultivation protocol described 

above. Cultivation in photo-bioreactors was performed at a light intensity of 50 µE m-2 s-1 

from 0 - 30 h, 75 µE m-2 s-1 from 30 - 48 h and 100 µE m-2 s-1 from 48 to 96 h. The agitation 

speed was set to 300 rpm. The aeration rate was set to 3 L min-1 (1 vvm) for 0 - 48 h and 5 L 

min-1 (1.7 vvm) from 48 - 96 h using compressed air. The applied light spectrum is shown in 

Figure 10.2.  
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Biotransformation procedures in shake flasks. Standard oxyfunctionalization activity 

assays were performed by cultivating the cells as described above, harvesting by 

centrifugation (10 min, 5000g, rt) and resuspension in YBG11 medium (50 mM NaHCO3, 

50 µg mL-1 kanamycin, 2 mM IPTG) to a final biomass concentration of ca. 1 gCDW L-1. 

Aliquots of 10 mL culture were provided in 100 mL baffled screw cap shake flasks and pre-

warmed for 10 min at 30 °C, 200 rpm (2.5 cm amplitude) and respective light intensity. The 

biotransformation reaction was started by adding 5 mM cyclohexane (5.17 µL of pure 

substrate). If cyclohexane was supplied via the gas phase, 25 mL culture was provided in 

250 mL baffled screw cap shake flasks equipped with an open glass inlet containing 1 mL 

cyclohexane (Figure 5.2 A). The reaction was quenched at respective time-points by adding 

600 µL reaction mixture to 600 µL ice-cold diethyl ether containing 200 µM of decane as 

internal standard before applied for GC analysis (see GC analysis method 1).  

Two-liquid phase oxyfunctionalization was performed as described before, but with culture 

aliquots of 15 mL applied in 250 mL baffled screw cap shake flasks at 150 rpm (2.5 cm 

amplitude). The biotransformation reaction was started by adding 5 mL of the organic phase 

(5 - 20% cyclohexane in DINP). Samples from the organic phase were taken at respective 

time-points, quenched by centrifugation, and 10 times diluted in ice-cold diethyl ether 

containing 200 µM of decane as internal standards before applied for GC analysis (see GC 

analysis method 2). 

Biotransformation procedures in stirred tank photobioreactor. Whole-cell 

oxyfunctionalization in the stirred tank photo-bioreactor Labfors 5 Lux (Infors AG, 

Bottmingen, Switzerland) was performed with cells derived from a 3 L photo-bioreactor 

culture three days after inoculation. Three days after inoculation, cells were harvested by 

centrifugation (4640, 4 °C, 20 min) and resuspended in 1.2 L YBG11 medium containing 

50 mM NaHCO3, 50 µg mL-1 kanamycin and 2 mM IPTG, to a biomass concentration of 0.5 -

 0.8 gCDW L-1. Pre-conditioning in the photobioreactor was performed at 30 °C, 300 rpm 

(impeller), 150 µmol m-2 s-1, and, if not stated otherwise, at 0.15 L min-1 aeration with 

compressed air for ca. 30 min. The biotransformation reaction was started by adding 400 mL 

of DINP containing 5% (v/v) cyclohexane. Samples were taken at regular time intervals and 

quenched by immediate centrifugation (17000g, 4 °C, 10 min). Organic phase portions were 

diluted 10 times in ice-cold diethyl ether containing 200 µM decane, dried over anhydrous 

Na2SO4, and subjected to GC analysis (see GC analysis method 2). Reactants in the 

aqueous phase were extracted using equal amounts of ice-cold diethyl ether, followed by 

drying over anhydrous Na2SO4 and GC analysis (see GC analysis method 1).  

Determination of org:aq partition coefficients under abiotic conditions in 1.5 mL 

reaction tubes. Partitioning of cyclohexane, cyclohexanol, cyclohexanone between YBG11 

medium and DINP was determined using defined stock solutions in DINP (0.5 and 1 M for 
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cyclohexane, 1 and 5 mM for cyclohexanol and cyclohexanone). 600 µL of this stock solution 

was mixed vigorously with 600 µL of YBG11 medium for 5 min and incubated for 2 h at 30 °C 

and 2000 rpm (ThermoMixerC, Eppendorf, Wesseling-Berzdorf, Germany). Phases were 

separated by centrifugation (10 min, 17,000g, room temperature). The aqueous phase then 

was extracted using an equal volume of diethyl ether (containing 0.2 mM decane as an 

internal standard). The organic phase was diluted in diethyl ether (0.2 mM decane). 

Quantification was performed by GC-FID analysis (see GC analysis methods 1 and 2, 

respectively). 

GC analysis method 1 (Extracted aqueous phase sample). Cyclohexane, cyclohexanol, 

and cyclohexanone extracted from aqueous phase samples using dieethyl ether were 

quantified using a Trace 1310 gas chromatograph (Thermo Fisher Scientific, Waltham, USA) 

equipped with a TG-5MS capillary column (5% diphenyl / 95% dimethyl polysiloxane, 30 m, 

I.D.: 0.25 mm, film thickness: 0.25 μm, ThermoFisher Scientific) and a flame ionization 

detector (FID) operated at 320 °C, 350 mL min-1 air flow, 30 mL min-1 makeup gas flow, and 

35 mL min-1 hydrogen gas flow. Nitrogen gas was applied as carrier gas at a constant flow 

rate of 1.5 mL min-1. The injection volume was set to 1 μL injected by means of a PTV 

injector, programmed for a temperature gradient of 2°C s-1 from 40-250 °C. A split ratio of 7 

was applied. The oven temperature profile was: 1) 40 °C for 1 min, 2) 40-80 °C at 10 °C min-

1, 3) 80-250 °C at 100 °C min-1, and 4) 250 °C for 2 min. 

GC analysis method 2 (Samples containing organic carrier solvent DINP). Cyclohexane, 

cyclohexanol, and cyclohexanone dissolved in DINP were quantified using a Trace 1310 gas 

chromatograph (Thermo Fisher Scientific) equipped with the same column as used in 

method 1, a pre-column (deactivated silica guard column, 2 m x 0.53 mm, Thermo Fisher 

Scientific, Milan, Italy), an integrated backflush system, and a flame ionization detector (FID) 

operated as described for method 1. Nitrogen gas was applied as carrier gas at a constant 

flow of 1.5 mL min-1. The injection volume was set to 1 μL injected by means of a PTV 

injector operating at the following temperature gradient: 1) 2 min at 250 °C, 2) 14.5 °C s-1 

from 250 to 400 °C, and 3) 400 °C for 5 min. A split ratio of 3 was applied. 2 min after 

injection, a backflush through the pre-column was applied. The oven temperature profile was: 

1) 40 °C for 2 min, 2) 40-70 °C with 25 °C min-1, 3) 70-90 °C with 3 °C min-1, 4) 90-310 °C 

with 100 °C min-1 and 5) 310 °C for 5 min. 

5.4 Results 

5.4.1 Syn6803_CYP is active and shows light-dependent activity 

Karande et al. 2016 reported the functional expression of the CYP450 monooxygenase 

genes from Acidovorax sp. CHX100 in recombinant Pseudomonas taiwanensis VLB120, 

enabling efficient cyclohexane hydroxylation driven by reduction equivalents derived from 
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chemoheterotrophic citrate catabolism. With the aim to drive this reaction by reduction 

equivalents (and O2) derived from photosynthetic water oxidation, the genes encoding this 

three-component monooxygenase system (composed of CYP = CYP450 monooxygenase 

component, FnR = FAD-ferredoxin reductase, and Fn = ferredoxin) were introduced into the 

cyanobacterium Synechocystis sp. PCC 6803 by means of the expression plasmid pAH050 

(for cloning procedure see supplemental information). CYP450 synthesis in the resulting 

strain Syn6893_CYP was verified by SDS-PAGE analysis, whereas protein bands for Fn and 

FnR could not be identified (Figure 10.13). At a light intensity of 50 µE m-2 s-1, Syn6803_CYP 

catalyzed cyclohexane hydroxylation at a rate of 17.9 ± 0.2 U gCDW
-1, proving the successful 

construction of a biocatalytically active strain.  

 

Figure 5.1: Cyclohexane hydroxylation activity of Syn6803_CYP in dependence of the light intensity 

applied. Cyclohexane oxidation to cyclohexanol (grey bars) and overoxidation of cyclohexanol to 

cyclohexanone (dashed grey bars) is presented. For whole-cell oxyfunctionalization assays, cells were 

cultivated in YBG11 medium and resuspended in YBG11 supplemented with NaHCO3 to a biomass 

concentration of ca. 1 gCDW L-1. Assays were performed with 10 mL of cell suspension in 100 mL screw 

capped and baffled shake flasks at 30 °C, 200 rpm (2.5 cm amplitude), and the indicated light-

intensities. Reactions were started by adding cyclohexane to a concentration of 5 mM with respect to 

the aqueous phase volume and stopped after 10 min by quenching with diethylether. Each column 

represents average values and standard deviations of two independent biological replicates.  

Increased light intensities resulted in enhanced oxyfunctionalization activities, with a 

maximum specific activity of 26.3 ± 0.6 U gCDW
-1 at 150 µE m-2 s-1 (Figure 5.1). Overoxidation 

of cyclohexanol to cyclohexanone was observed at a portion of ca. 10%. An increase of the 

light-intensity above 150 µE m-2 s-1 did not result in higher, but in slightly decreased specific 

oxyfunctionalization activities, most likely due to photo-inhibition effects (Aro et al., 1993; 

Nagy et al., 1995). In the absence of light, cells showed a basal oxyfunctionalization activity 

of 6.2 ± 0.6 U gCDW
-1 and indicated the supply of reduction equivalents via the catabolism of 

storage compounds such as glycogen as it has been observed previously (Chapter 4). 

These results clearly show that Syn6803_CYP-catalyzed cyclohexane hydroxylation was 
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light-dependent and profited from increasing rates of water oxidation up to a light intensity of 

150 µE m-2 s-1. 

5.4.2 Syn6803_CYP activity is stable for 2 h before decreasing rapidly  

For the development of efficient whole-cell oxyfunctionalization processes, beside high 

biocatalyst activities, biocatalyst and thus process stability constitutes a crucial aspect. In 

order to assess the long-term performance of Syn6803_CYP, the reaction system was 

amended with a glass container containing 1 mL of pure cyclohexane for continuous 

substrate supply via the gas phase (Figure 5.2 A). 

 

Figure 5.2: Long-term oxyfunctionalization by Syn6803_CYP with cyclohexane supplied via the gas 

phase. The experiment was performed using freshly cultivated cells resuspended in 25 mL YBG11 

(+NaHCO3, Km, IPTG) to a biomass concentration of ca 1 gCDW L-1 in 250 mL screw capped baffled 

shake flasks equipped with an open glass inlet (A). The reaction was started by adding 1 mL of pure 

cyclohexane into the glass inlet, followed by cultivation at 30 °C, 150 rpm (2.5 cm amplitude), and 

150 µE m-2 s-1. A) Figure adapted from Karande et al. (2016). B) Each data point represents average 

values of two biological replicates with standard deviations.   

At a light intensity of 150 µE m-2 s-1, the cells showed similar cyclohexanol formation and thus 

initial specific activity (24.0 ± 0.6 U gCDW
-1 for cyclohexanol production) as obtained upon 

5 mM cyclohexane addition (Figure 5.2 B, Table 5.1). In the setting applied, cyclohexanol 

formation was accompanied by overoxidation to cyclohexanone at a comparatively low rate 

(0.2 ± 0.1 U gCDW
-1). The hydroxylation activity remained constant for 2 h, then rapidly 

decreased, and was virtually lost after 5 h of reaction. This activity loss might have been 

caused by toxification or inhibition by the substrate cyclohexane and/or the product 

cyclohexanol. The final specific yield on biomass accounted for 4.1 ± 0.4 mmol gCDW
-1. 

0 6 12 18 24 30
0

1

2

3

4

5

0 6 12 18 24 30
0

5

10

15

20

25

30

 c
yc

lo
he

xa
no

l /
 m

M

incubation time / h

 s
pe

ci
fic

 a
ct

iv
ity

 /
 U

 g
C

D
W

-1A B



Chapter 5: Light-dependent and aeration-independent hydroxylation of cyclohexane  

83 

5.4.3 Cyclohexane provided via gas phase leads to toxification of Synechocystis sp. 

PCC 6803, which can be attenuated applying a two-liquid phase system 

To evaluate the impact of cyclohexane and cyclohexanol on cyanobacterial viability, we 

investigated the growth behavior of Synechocystis sp. PCC 6803 carrying the empty vector 

pAH032 upon reactant exposure.  

 

Figure 5.3: Impact of cyclohexane and cyclohexanol on Synechocystis sp. PCC 6803 (pAH032) 

(empty plasmid) growth. Cells were cultivated under standard cultivation conditions as described in the 

material and methods section. A + B) Cyclohexane toxicity: After 2 days (indicated by arrow), the 

cultures were harvested and resuspended in YBG11 medium (+ 50 mM NaHCO3). Aliquots of 25 mL 

were applied in 250 mL screw cap baffled shake flasks equipped with an open glass inlet containing 

1 mL cyclohexane. B) Cultures after 7 days of incubation. Left flask: control without cyclohexane, right 

flask: with cyclohexane. C + D) Cyclohexanol toxicity: After 2 days (indicated by arrow), 1 - 100 mM 

cyclohexanol was added to the aqueous phase. D) Cell growth rates determined in the linear growth 

phase (days 2-7). Average values and standard deviations of two independent biological replicates are 

given.  

The application of cyclohexane in saturating concentrations (via glass inlet, solubility in 

water: 650 µM) completely inhibited cell growth and led to a culture color change from green 

to blue indicating the lysis of cyanobacterial cells (Figure 5.3 A, B) (Harada et al., 2009). The 

product cyclohexanol inhibited cell growth at concentrations above 10 mM (Figure 5.3 C, D). 
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The maximum product concentration achieved with cyclohexane provided in the gas phase 

did not exceed 4 mM (Figure 5.2 B). These results point out that cyclohexane toxicity 

constitutes a critical factor limiting Syn6803_CYP whole-cell biocatalyst stability.   

Substrate toxicity-related biocatalyst instability can be overcome via continuous substrate 

supply applying a feeding regime or a second liquid or solid phase. Respective concepts are 

widely established for heterotrophic strains to overcome mass transfer and toxicity issues 

(Hilker et al., 2008; Schmölzer et al., 2012). The compatibility of the second liquid phase 

DINP with Synechocystis sp. PCC 6803 has successfully been demonstrated in our previous 

study enabling cell growth and stabilization of the whole-cell biotransformation of toxic 

nonanoic acid methyl ester (Chapter 4). The organic-aqueous partition coefficient Porg:aq for 

cyclohexane in a DINP/YBG11 two-liquid phase system was determined to be 

1775 ± 214 and can be considered appropriate for a 2-liquid phase biotransformation 

approach. Thus, the impact of cyclohexane dissolved in DINP on growth of Synechocystis 

sp. PCC 6803 containing the empty vector pAH032 was tested. Applying 2.5, 5, and 

10% (v/v) of cyclohexane in DINP led to cell agglomeration (hindering OD750 determination) 

and to a visually observable increase in agglomerated biomass concentration (Figure 5.4). In 

contrast, 20% (v/v) of cyclohexane in DINP did not lead to such agglomeration and growth, 

but resulted in a culture color change from green to blue as observed before upon addition of 

cyclohexane via the gas phase. Overall, 2.5 - 10% (v/v) of cyclohexane in DINP appeared to 

constitute a feasible organic phase for two-liquid phase biotransformations. 

 

Figure 5.4: Effect of cyclohexane dissolved in the organic carrier solvent DINP on cultures of 

Synechocystis sp. PCC 6803 (pAH032) (empty vector). Cells were cultivated under standard 

conditions for 2 days, before cultures were harvested and resuspended in YBG11 (+ 50 mM NaHCO3). 

Aliquots of 7.5 mL were applied in 100 mL screw capped baffled shake flasks. To each shake flask, 

2.5 mL of DINP containing 0, 2.5, 5, 10, or 20% (v/v) cyclohexane were added, and cultivation was 

continued for another 5 days. 
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5.4.4 Two-liquid phase approach enhances biotransformation stability and the specific 

activity of Syn6803_CYP 

Next, the biocatalytic performance of Syn6803_CYP in two-liquid phase systems was 

evaluated applying DINP phases containing 2.5, 5, 10, or 20% (v/v) cyclohexane at an 

organic:aqueous phase ratio of 1:3. The product formation performance was found to depend 

on the substrate concentration applied (Figure 5.5 A, B).  The initial specific activity was 

constant for 2 h in all cases and increased with increasing substrate concentration (Figure 

5.5 C). 

 

Figure 5.5: Two-liquid phase biotransformation of cyclohexane using Syn6803_CYP in shaking flasks. 

After 2 days of cultivation under standard conditions, oxygenase gene expression was induced by 

adding 2 mM IPTG, and cultivation was continued for 1 day. Then, cells were harvested, resuspended 

in YBG11 (NaHCO3, Km, IPTG) to a biomass concentration of ca. 1 gCDW L-1, and applied in aliquots of 

18.75 mL in 250 mL screwed capped baffled shake flasks. Biotransformations were performed at 

30 °C, 150 rpm (2.5 cm amplitude), and 150 µE m-2 s-1 and were started by adding 6.25 mL DINP 

containing 2.5, 5, 10, or 20% (v/v) cyclohexane. After phase separation, cyclohexanol and 

cyclohexanone concentrations were determined in the organic phase. Aqueous concentrations were 

calculated based on the separately determined partitioning coefficients Porg:aq for cyclohexanol 

(2.1 ± 0.1) and cyclohexanone (4.4 ± 0.7). Average values and standard deviations of two biological 

replicates are given.  
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The highest specific activity of 39.2 ± 0.7 U gCDW
-1 was observed with 20% (v/v) cyclohexane 

in DINP, being 1.5 times higher than the activity obtained without organic carrier solvent 

(Table 5.1). This indicated an enhanced substrate mass transfer possibly via a direct contact 

of the cells with organic phase droplets (Bühler et al., 2006; Park et al., 2006) or substrate 

toxicity/inhibition in the absence of an organic phase. High cyclohexane levels led to 

impaired biocatalyst stability resulting in a comparatively low specific product (cyclohexanol + 

cyclohexanone) yield on biomass (Figure 5.5 D). The highest specific yield on biomass 

(45.4 ± 0.5 mmol gCDW
-1) was obtained using 10% (v/v) cyclohexane in DINP, constituting a 

10 times increase compared to the single phase biotransformation (Table 5.1).  

With increasing cyclohexane concentrations, cyclohexanol over-oxidation decreased 

indicating a competition of cyclohexane and cyclohexanol for the active site of the oxygenase 

(Figure 5.5 B). The initial specific whole-cell activity exhibited a Michaelis-Menten-type 

dependency on the cyclohexane concentration applied, with an apparent Vmax of 

43.2 ± 2.2 U gCDW
-1 and an apparent KS of 2.9 ± 0.5% (v/v) cyclohexane in DINP. These 

kinetic characteristics of the whole-cell photobiocatalyst can be considered highly promising 

for technical scale biotransformations in photobioreactors.        

5.4.5 Non-aerated bioprocessing facilitates gram-scale hydroxylation of cyclohexane 

in a stirred tank photo-bioreactor  

After successful stabilization of the cyclohexane oxyfunctionalization reaction, scaling from 

shake flasks to a stirred tank photo-bioreactor was conducted. For this purpose, cells were 

cultivated and induced in photobioreactors containing 3 L YBG11 medium, followed by 

harvesting and resuspension in 1.2 L YBG11 (+ NaHCO3). The reaction was started by 

adding 0.4 L DINP containing 5% (v/v) cyclohexane to the photo-bioreactor setup aerated 

with compressed air. Within the first 5 h of reaction time, the specific cyclohexane 

oxyfunctionalization rate of 24.6 ± 0.4 U gCDW
-1 was similar to that obtained in shake flasks, 

proving scalability to stirred tank photo-bioreactor setups (Figure 5.6 A). However, after 5 h 

of biotransformation, the biocatalyst activity started to decrease, resulting in a specific yield 

on biomass of 18 mmol gCDW
-1 after 24 h of reaction, half of the value achieved in shake flask 

experiments (Table 5.1). The partition coefficients for all reactants were similar to those 

determined in shake flasks and small reaction tubes (Figure 10.14, Table 10.1). Although 

the aeration rate of 0.15 L min-1 was low, the substrate steadily evaporated over time, 

resulting in continuously decreasing substrate concentrations in both organic and aqueous 

phases. According to the cyclohexane hydroxylation kinetics estimated for the two-liquid 

phase system (Figure 5.5 C), this decreasing substrate concentration can be considered the 

cause for the decrease in specific activities. In addition, degassing of CO2 originating from 

the dissolved NaHCO3 leads to a pH increase (Figure 10.15 A), which may have contributed 

to the activity decrease.  
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Table 5.1: Process data obtained from biotransformation experiments using Syn6803_CYP in shake flasks and stirred tank photo-bioreactors.  

Biotransformation condition 
Chx in 

org phasea / M 
Chx in 

aq phasea / µM 
Initial specific activity 

(2h)b / U gCDW-1 
Specific yield 

/ mmolCol+Cone gCDW-1 
Overoxidation 

/%Cone in product 

Shake flask      

5 mM Chx - 88c 23.7 ± 0.5e - ~ 10 

Chx via gas phase - 654d 24.0 ± 0.6 4.1 ± 0.4 0.7 ± 0.1 

2.5% (v/v) Chx in DINP 0.23 131 21.9 ± 0.6 20.2 ± 4.0 12.1 ± 0.1 

5% (v/v) Chx in DINP 0.46 261 27.2 ± 0.3 36.7 ± 6.3 6.0 ± 0.3 

10% (v/v) Chx in DINP 0.93 522 33.3 ± 0.3 45.4 ± 0.5 3.5 ± 0.3 

20% (v/v) Chx in DINP 1.85 654d 39.2 ± 0.7 19.7 ± 0.4 1.4 ± 0.1 

Photo-bioreactor      

5% (v/v) Chx in DINP, with aeration 0.38 → 0.06 273 → 32 26.3 ± 0.6 20.0 ± 0.5 9.3 ± 0.1 

5% (v/v) Chx in DINP, w/o aeration 0.42 → 0.34 150 → 244 34.9 ± 0.3 49.4 ± 0.3 4.6 ± 0.1 

Chx = cyclohexane, Col = cyclohexanol, Cone = cyclohexanone.  

a For shake flask experiments, theoretical numbers based on the molarity of 9.27 M for pure cyclohexane and its partition coefficient of Porg:aq = 1775 in the 

DINP-YBG11 system are given.  

b The specific activity given is based on the cyclohexanol and cyclohexanone concentrations determined in both phases.  

c Concentrations calculated based on Henry coefficient for cyclohexane (0.15 atm m3 mol1) and the gas:aq phase ratio of 9:1.  

d The value for the solubility of cyclohexane in water is given (McAuliffe, 1966).  

e The specific activity in the first 10 min of reaction is given. 
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To stabilize the substrate availability throughout the biotransformation, a bioreactor 

experiment without aeration was performed. Surrendering aeration indeed stabilized pH and 

cyclohexane concentrations in both phases, while the oxygen partial pressure stayed well 

above 100% of saturation during the entire process (Figure 10.15 B). The productive 

biotransformation time was significantly prolonged with a slow activity decrease up to 52 h, 

resulting in a specific yield of nearly 50 mmol gCDW
-1 (Figure 5.6 B, Table 5.1). The final 

product titer of 31.5 ± 0.3 and 11.5 ± 0.1 mM in the organic and aqueous phases, 

respectively, resulted in a total product amount of 2.6 g cyclohexanol. These results clearly 

emphasize the scalability of the process, whereby the handling of the volatile substrate 

cyclohexane is simplified by in situ O2 supply via photosynthetic water oxidation. 

 

Figure 5.6: Two-liquid phase biotransformation of cyclohexane using Syn6803_CYP in a stirred-tank 

photo-bioreactor with (A) and without (B) aeration. Cells were applied at a concentration of 0.8 (A) and 

0.5 gCDW L-1 (B) in YBG11 (+ NaHCO3, Km, IPTG) as described in the materials in methods section. 

Biotransformations were performed at 30 °C, 150 µE m-2 s-1, 300 rpm agitation, and 0.15 L min-1 

aeration with compressed air (only for A), using 1.2 L aqueous cell suspension and 0.4 L organic 

phase consisting of 5% (v/v) cyclohexane in DINP. Col = cyclohexanol, Cone = cyclohexanone. 

5.5 Discussion 

Cyclohexanol is a key synthon mostly used in the production of polymer building blocks such 

as ε-caprolactone, ε-caprolactam, and adipic acid with an annual production in the million 

tons range (Schuchardt et al., 1993; Weissermel and Arpe, 2008). However, the chemical 

synthesis of cyclohexanol is still challenging because of low selectivities (Schuchardt et al., 

2001). Biocatalysis provides an interesting alternative for the oxidation of cyclohexane 

providing high selectivities under mild conditions. In 2014, Salamanca et al. isolated the 

strain Acidovorax sp. CHX100, capable of growing on cyclohexane as sole carbon source, 

from a wastewater plant (Salamanca and Engesser, 2014). Characterization of this strain 

and subsequent recombinant gene overexpression in Pseudomonas taiwanensis VLB120 led 

to the identification of a novel cytochrome P450 monooxygenase system, which efficiently 
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catalyzes the oxidation of cyclohexane to cyclohexanol (Karande et al., 2016a; Salamanca et 

al., 2015).  

5.5.1 Light dependency 

In this study, we present the cyanobacterium Synechocystis sp. PCC 6803 as an efficient 

alternative host system enabling light-driven cytochrome P450 catalysis, i.e., cyclohexane 

oxyfunctionalization, with water as cheap and readily available source for reduction 

equivalents and O2. Thereby, such light-driven oxyfunctionalization profits from the efficient 

electron supply via the photosynthetic electron transport chain to ferredoxin and NADP+ 

(Wilhelm and Selmar, 2011; Wilhelm and Wild, 1984). This is in contrast to photosynthesis-

driven production of chemicals such as ethanol or lactate from CO2, which suffers from the 

low rate of CO2 fixation by RuBisCO (Bathellier et al., 2018; Knoot et al., 2018). Overall, 

efficient coupling of redox enzymes with the photosynthetic light reaction enables high 

oxyfunctionalization rates that compete with or even outperform established heterotrophic 

biocatalysts (Chapter 7). With its electron transfer components ferredoxin and ferredoxin 

reductases, the CYP450 enzyme system applied in this study in principle depends on NADH 

as electron donor. However, not NADH but NADPH is the primary carrier of activated 

electrons produced in the photosynthetic light reaction. This discrepancy together with the 

high oxyfunctionalization rate obtained and its strong light-dependency indicates trapping of 

activated electrons directly from the photosynthetic electron transport chain via native or 

Acidovorax ferredoxin or from NADPH via native ferredoxin reductase. This electron transfer 

appears to be quite efficient given the comparatively high specific oxygenation activities 

achieved rivaling those reached with heterotrophic host strains (Schrewe et al., 2013). 

Efficient integration of heterologous enzyme systems into photosynthetic redox metabolism 

by adjusting the electron transferring pathways represents an important research field for the 

development of efficient photobiocatalytic processes (Khanna and Lindblad, 2015; Lassen et 

al., 2014b).   

5.5.2 Reactant toxicity 

Next to biocatalyst design, the physicochemical properties of reactants often constrain the 

biocatalytic process performance and necessitate an adequate bioprocess design (Kim et al., 

2007; Willrodt et al., 2015b). In this study, the applied substrate cyclohexane and the product 

cyclohexanol feature logPO/W values (logarithm of the partition coefficient in an octanol/water 

mixture) of 3.4 and 1.2, respectively. It has been shown that chemical compounds with 

logPO/W values between 2 and 4 typically are toxic to microorganisms (Laane et al., 1987; 

Sikkema et al., 1994). These compounds damage bacterial membrane integrity, resulting in 

the impairment of microbial activity. Membrane permeabilization-induced loss of biocatalytic 

activity upon cyclohexane exposure has been reported, e.g., for the typically solvent-tolerant 
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strain Pseudomonas taiwanensis VLB120 (Karande et al., 2016a) and thus constitutes a key 

aspect for the photobiocatalytic reaction system investigated in this study. Via in situ 

substrate supply by means of a two-liquid phase system, the substrate concentration was 

kept below 654 µM, which can be considered critical according to the empirical 

considerations reported by Sikkema et al. 1994 and Kratzer et al. 2015 for microbial cell 

toxification by hydrophobic substances (Kratzer et al., 2015; Sikkema et al., 1994). Thus, 

growth as well as the cyclohexane hydroxylation activity of Syn6803_CYP were stabilized by 

overcoming cell toxification.  

5.5.3 Substrate volatility  

During scale-up from shake flask to the stirred tank photo-bioreactor, a second 

physicochemical property of the substrate, namely its high volatility, constrained process 

durability. At a low aeration rate of 0.1 vvm, cyclohexane continuously evaporated from the 

reaction system and thus became the factor limiting the bioconversion rate and the final 

product yield. By omitting aeration, cyclohexane loss was largely avoided, enabling an 

increase of the biomass-specific product yield by a factor of 2.5 (Figure 5.6, Table 5.1). Such 

process management was possible, as O2 together with activated electrons, both key 

substrates for the oxyfunctionalization reaction, was continuously provided via photosynthetic 

water oxidation (Chapter 3). In conclusion, the use of a cyanobacterial host strain enables 

oxygenase catalysis without aeration and thus the efficient conversion of a volatile substrate. 

5.5.4 Productivity 

The production of fine-chemicals at industrially relevant scales necessitates productivities of 

at least 1 - 10 g L-1 h-1 (Straathof et al., 2002). With an average productivity of 0.04 g L-1 h-1, 

the reaction system developed in this study requires further improvement by a factor of at 

least 25. Comparison of process parameters of the Syn6803_CYP-based whole-cell 

biotransformation of cyclohexane with an established E. coli driven process for the 

epoxidation of styrene reveals that the biotransformation durability of 52 h and the product 

yield on biomass with 4.9 g gCDW
-1 are already valuable (Table 5.2) (Kuhn et al., 2010b). In 

addition, hydroxylation coupled to the metabolism of the heterotrophic host strains depends 

on an organic compound such as glucose as source of reduction equivalents, representing a 

significant environmental and cost factor (Kuhn et al., 2012b; Kuhn et al., 2010b). 

Photosynthesis-driven processes make use of inexpensive carbon (CO2) and electron (H2O) 

sources for biocatalyst and product synthesis and thus augur well for the development of 

economically viable processes involving redox chemistry for the production of chemicals and 

fuels. The specific cyclohexane oxyfunctionalization rates obtained here were equal or even 

higher than those reported for Pseudomonas sp. VLB120 harboring the very same CYP 

enzyme system (24.0 and 39 U gCDW
-1 in aqueous and 2-liquid phase systems, respectively,  
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Table 5.2: Comparison of process performance parameters of photosynthesis- or heterotrophically driven biocatalytic oxyfunctionalizations and possible 

improvement strategies for the biotransformation catalyzed by Syn6803_CYP.  

Parameter Syn6803_CYPa E. coli JM101 (pSPZ10)b Possible improvement strategies for Syn6803_CYP 

Volume aq phase / L 1.2 1 Scaling 

Volume org phase / L 0.4 1 Scaling 

Substrate in org phase 5% Chx in DINP 8% styrene in BEHP - 

Maximum specific activity / U gCDW-1 34.9 ± 0.3 60 Increase of oxygenase expression levels, 

improved coupling to electron transport chain 

Applied biomass concentration / gCDW L-1 0.5 5.4 – 39.3 Prolonged growth phase, 

improvement of growth conditions (CO2, light) 

Durability / h 52 8 - 

Glucose consumed / g - 113.7 - 

Average productivity / g Laq-1 h-1 0.04 11.08 Increase of biomass concentration, 

increase of specific activity 

Specific yield / g gCDW-1 4.9 1.85 Continuous bioprocessing 

Titer / g Laq-1 2.2 72.6 Increase of biomass concentration 

Total product / g 2.6 72.6 Scaling 

aq = aqueous, org = organic, U = µmol min-1, CDW = cell dry weight, Chx = cyclohexane, BEHP = bis(2-ethylhexyl)phthalate.  

a this study; b E. coli JM101 catalyzing the oxyfunctionalization of styrene to styrene oxide (Kuhn et al., 2010b) 

 



Chapter 5: Light-dependent and aeration-independent hydroxylation of cyclohexane  

92 

vs. 20-25 U gCDW
-1 in P. taiwanensis VLB120, Karande et al. 2016). However, the specific 

biocatalyst activity and especially the cell concentration in bioreactor settings still require 

engineering efforts (see possible improvement strategies in Table 5.2). The cultivation of 

cyanobacteria at cell densities of up to 50 gCDW L-1 is possible using systems with enhanced 

CO2 and light supply (Apel et al., 2017; Bähr et al., 2016; Dasgupta et al., 2010). With the 

reaction system developed in this study (39 U gCDW
-1), such a cell concentration would 

already enable a cyclohexanol productivity of ~ 12 g L-1 h-1. Further increase in productivity 

may be achieved by enhancing the specific oxyfunctionalization activities. An enoate 

reductase has been shown to trap electrons derived from the photosynthetic metabolism at a 

rate of up to 123 U gCDW
-1 (Köninger et al., 2016). In theory, the photosynthetic light reaction 

provides activated reduction equivalents at high rates of up to 850 U gCDW
-1 (assumptions: kcat 

of PSII: 1000 s-1, 1% PSII gCDW
-1, 350 kDa) (Dismukes et al., 2009; Shen, 2015). With this 

high specific activity and a biomass concentration of 50 gCDW L-1, productivities of  

~ 255 g L-1 h-1 are in theory possible and illustrate the potential of phototrophic organisms as 

hosts for hosts for oxyfunctionalization biocatalysis. 

5.5.5 Scalability 

For the development of eco-efficient bioprocesses, high productivities have to be 

accomplished at scale. In this study, a scale-up evaluation was performed based on the 

established stirred-tank bioreactor concept. Especially the generation of excess O2 during 

biotransformation without aeration, effecting a pO2 between 100 and 150% of air saturation 

throughout the entire process time, demonstrates the high capacity and suitability of 

photosynthetic biocatalysts for oxyfunctionalization bioprocesses, especially for those 

involving volatile substrates. However, efficient light supply constitutes a big challenge and a 

possible limitation for the further scaling of the stirred-tank bioreactor setup. To achieve high 

cell concentrations and thus high productivities, light intensities have to be increased, and/or 

additional light sources have to be installed within the reactor system. Alternatively, other 

reactor concepts such as biofilm-based capillary reactors can be applied (David et al., 2015). 

Capillary reactors enable the establishment of a high irradiation surface area to volume ratio, 

facilitate continuous bioprocessing, and thus constitute a promising technology for 

photosynthesis-driven bioprocesses.  

5.6 Conclusions 

Photosynthetic water oxidation catalyzed by photoautotrophic microorganisms encompasses 

a high potential for efficient biocatalytic oxyfunctionalization, providing activated reduction 

equivalents as well as O2 at high rates. The present study reports on the establishment of a 

recombinant CYP450 harboring cyanobacterium enabling an unprecedentedly high light-

driven oxyfunctionalization activity. The specific cyclohexane hydroxylation rates achieved 
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compare well to those of established heterotrophic strains. Further, the two-liquid phase 

concept enabled stable bioprocessing for 52 h, and in situ O2 generation allowed for a non-

aerated process operation mode and thus gram-scale production of cyclohexanol from the 

volatile substrate cyclohexane. The reported concepts for biocatalyst and process 

engineering augur well for the future application of cyanobacteria for the ecologically as well 

as economically remunerative production of fine and even bulk chemicals via 

biotransformation reactions. 
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6.1 Abstract 

Cultivation of photoautotrophic organisms at high cell densities for photobiocatalytic 

applications still challenges the reactor and photobioprocess design. Reactor technologies 

providing high surface to volume ratios, such as biofilm-coated capillary reactors, are 

considered highly promising as they facilitate efficient light input and thus cell growth. 

However, in enclosed reactor systems O2 accumulates to high concentrations in the course 

of oxygenic photosynthesis, leading to oxidative stress and cell growth inhibition. In this 

study, we present an improved cultivation concept based on the co-cultivation of the 

photoautotrophic strain Synechocystis sp. PCC 6803 with the chemoheterotrophic O2-

respiring organism Pseudomonas sp. VLB120 in a biofilm-based capillary reactor. The 

chemoheterotrophic organism faciliated enhanced cyanobacterial surface coverage and 

reduced oxidative stress by the respiration of O2. Eventually, the mixed-trophies cultivation 

technology enabled growth of cyanobacterial biofilms to super-high cell densities of up to 

48 gBDW L-1 and was demonstrated to be accessible for the biocatalytic oxyfunctionalization of 

hydrocarbons. 
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6.2 Introduction  

The application of photoautotrophic organisms for biocatalytic purposes constitutes a 

promising technology for the eco-efficient production of fuels and value-added chemicals. In 

contrast to chemoheterotrophic organisms, phototrophic microorganisms such as algae and 

cyanobacteria rely on water, light, and CO2 as abundant sources for electrons, energy, and 

carbon, respectively. Yet, the cultivation of photobiocatalysts at high cell densities (HCD) still 

challenges the reactor and bioprocess design (Lima-Ramos et al., 2014). Reactor 

technologies providing high surface to volume ratios, such as capillary reactors (Karande et 

al., 2014; Wohlgemuth et al., 2015), are highly promising for the cultivation of HCD 

phototrophic organisms, as they facilitate efficient light input and distribution. Applying the 

microbial catalyst in a biofilm format further exploits this technology, featuring self-

immobilization, regeneration and high biomass retention and allowing a continuous process 

operation (Halan et al., 2012; Rosche et al., 2009). The capillary biofilm-based reactor 

concept was already successfully applied to heterotrophic microorganisms and was recently 

adapted to the cultivation of the cyanobacterium Synechocystis sp. PCC 6803 (David et al., 

2015). However, as a consequence of photosynthetic water oxidation, cultivation of 

photoautotrophic organisms in enclosed reactor setups quickly becomes hampered by the 

local supersaturation of oxygen in the system (Huang et al., 2017; Weissman et al., 1988). 

Such growth inhibiting effects were also observed for the biofilm-based cultivation of 

Synechocystis sp. PCC 6803 by David et al. 2015. Thus, the stable cultivation of HCD 

photoautotrophic organisms in the capillary biofilm reactor necessitates solutions to extract 

excess oxygen from the liquid phase. Technical approaches aim at the elimination of 

supersaturated O2 concentrations by facilitating gas exchange from the aqueous medium to 

the gaseous environment (Weissman et al., 1988). In that line, the insertion of air segments 

into the constant medium flow of the cyanobacterial-coated capillary reactor (Figure 6.1 top) 

most likely also stabilized the biofilm development of Synechocystis sp. PCC 6803 in David 

et al. 2015.  

In this communication, we present an alternative and biologically-inspired concept to reduce 

aqueous phase oxygen concentrations by the co-cultivation of a chemoheterotrophic O2-

respiring organism (Pseudomonas sp. VLB120). The use of two microbial species with 

complementary metabolic activities results in an O2-optimized microenvironment and thus 

reduced oxidative stress to the cells (Figure 6.1 bottom). Eventually, the mixed-trophies 

biofilm-based capillary reactor setting enables the retention of super-high biomass. 

Furthermore, the HCD cultivation system allows the biotechnological application of 

recombinant photobiocatalysts for the light-driven oxyfunctionalization of cyclohexane. 
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Figure 6.1: Top: Scheme of a segmented-flow capillary reactor. Bottom: Basic principle of proto-

cooperation between two microbial species with complementary metabolic activities 

(chemoheterotrophic and photoautotrophic). Cells of both species are embedded in extracellular 

polymeric substances and form a three-dimensional biofilm on the inner surface of the capillary. O2 

respiration rates (chemoheterotrophic strain) and O2 evolution rates (photoautotrophic strain) could 

balance the O2 environment. 

6.3 Materials and methods 

Chemicals and bacterial strains. Chemicals, construction and cloning of plasmids and 

strains used in this study are described in Chapter 2. Synechocystis sp. PCC 6803 and 

Pseudomonas sp. VLB120 harboring the empty expression plasmid pAH032 contain a 

kanamycin resistance cassette and are hereinafter referred to as Syn6803_Km and Ps_Km. 

Synechocystis sp. PCC 6803 and Pseudomonas sp. VLB120 harboring pAH050 contain a 

cyclohexane monooxygenase CYP enzyme system and are hereinafter referred to as 

Syn6803_CYP and Ps_CYP. Synechocystis sp. PCC 6803 harboring pAH042 contain the 

alkane monooxygenase system AlkBGT and is hereinafter referred to as Syn6803_BGT. 

Pseudomonas sp. VLB120 harboring pAH049 contains a cyclohexanone Baeyer-Villiger 

monooxygenase and is hereinafter referred to as Ps_BVMO. 

Pre-cultivation of Synechocystis sp. PCC 6803 strains. Cells were grown in YBG11 

medium supplemented with 50 mM NaHCO3 (see medium composition below). Pre-cultures 

were inoculated in 20 mL medium in a 100 mL baffled shake flask using 200 µL of cryo-stock 

and cultivation was carried out at 30 °C, 50 µE m-2 s-1 (LED), ambient CO2 (0.04%), 150 rpm 

(2.5 cm amplitude), and 75% humidity in an orbital shaker (Multitron Pro shaker, Infors, 

Bottmingen, Switzerland) for 4 days. From this pre-culture, main-cultures were inoculated 

starting with an OD750 of 0.08 and cultivation was continued for another 4 days.   

YBG11 medium composition (50 mM NaHCO3, w/o citrate): 1.49 g L-1 NaNO3, 0.074 g L-1 

MgSO4 · 7 H2O, 0.031 g L-1 K2HPO4, 10 mL L-1 YBG11 trace elements (100x) , 0.019 g L-1 

Na2CO3, 50 mM HEPES (pH 7.2); YBG11 trace elements (100x): 3.6 g L-1 CaCl2 · 2 H2O, 

0.28 g L-1 boric acid, 0.11 g L-1 MnCl2 · 4 H2O, 0.02 g L-1 ZnSO4 · 7 H2O, 0.039 g L-1 

Capillary reactor (Ø = 2-3 mm)

)
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Na2MoO4 · 2 H2O, 0.007 g L-1 CuSO4 · 5 H2O, 0.005 g L-1 Co(NO3)2 · 6 H2O, 0.16 g L-1 

FeCl3 · 6 H2O, 0.6 g L-1 Na2EDTA · 2 H2O, 4.2 g L-1 NaHCO3 (Shcolnick et al., 2007). 

Pre-cultivation of Pseudomonas sp. VLB120 strains. Overnight cultures were inoculated 

from a cryo-stock using 5 mL LB medium and grown at 30 °C and 200 rpm (2.5 cm 

amplitude) in an orbital shaker (Multitron Pro shaker, Infors, Bottmingen, Switzerland) 

(Sambrook and Russell, 2001). Pre-cultures were inoculated by adding 200 µL of this 

overnight-culture to 20 mL M9 medium (5 g L-1 citrate, US* trace elements) and growth was 

continued for 24 h (Emmerling et al., 2002). Main-cultures were cultivated for 8 h in 50 mL 

M9 medium (5 g L-1 citrate, US* trace elements) in 250 mL baffled shake flasks starting with 

an OD450 of 0.2. 

Pre-mixing of bacterial strains. 20 mL of each main culture (Synechocystis sp. PCC 6803, 

Pseudomonas sp.VLB120) were centrifuged (5000g, rt, 7 min), washed with 20 mL YBG11 

and resuspended in 40 mL YBG11 medium. Optical densities after resuspension were 

OD750 = 2.2 and OD450 = 2.4, respectively. 10 mL of Synechocystis sp. PCC 6803 were 

mixed with 10 mL of Pseudomonas sp. VLB120 in a 100 mL baffled shake flask and 

cultivation was continued at 30 °C, 50 µE m-2 s-1 (LED), ambient CO2 (0.04%), 150 rpm 

(2.5 cm amplitude), and 75% humidity in an orbital shaker (Multitron Pro shaker, Infors, 

Bottmingen, Switzerland) for 24 h. Single species control cultures were mixed with 10 mL of 

YBG11 medium.  

Technical setting of the capillary reactor system. For biofilm cultivation, a capillary 

reactor system adapted from David et al. 2015 was applied (Figure 6.2) (David et al., 2015). 

Serological pipettes functioned as capillaries for biofilm growth (1 mL, trimmed to a capillary 

volume of 1.2 mL by cutting the tip and the intake area; inner diameter of 3 mm, 16.6 cm 

length, Labsolute, Th. Geyer GmbH & Co. KG, Renningen, Germany). YBG11 medium 

(supplemented with 50 mM NaHCO3, with or without 0.4 g L-1 citrate) was supplied via Tygon 

tubing (LMT-55, 2.06 mm inner diameter, 0.88 mm wall thickness; Ismatec, Wertheim, 

Germany) using a peristaltic pump (ISM939D; Ismatec, Wertheim, Germany). Air segments 

were supplied via Tygon tubing connected by a T-connector to the capillary reactor system.  

Injection ports were introduced in front of the capillaries for inoculation using a syringe. 

Fluorescence-light tubes were used as light source (50 µE m-2 s-1 measured at the center of 

capillaries) with a light spectrum shown in Chapter 2. Gas exchange at medium inlet, for air 

segments, and at medium outlet was enabled through sterile filters (0.2 µm). Cultivation was 

performed at rt (~26 °C).  

Inoculation of the capillary reactor system. The capillaries of the reactor system were 

inoculated with single- and mixed-species cultures, respectively, by purging ca. 5 mL of each 

culture through the injection port. Medium flow was started 15 – 24 h after inoculation at a 
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rate of ~55 µL min-1. If indicated, air segments were introduced 9 days after inoculation at a 

rate of ~55 µL min-1, resulting in an increased overall flow rate of ~110 µL min-1 in these 

capillaries. 

 

Figure 6.2: Technical setup of the capillary reactor system. 

O2 quantification in gas and in liquid phase. For O2 gas analysis of air segments, bubble 

traps (sealed with a septum) were introduced downstream of capillaries one day before 

measurement to enable gas equilibrium. 100 µL of gas phase were sampled from the bubble 

trap using a gas-tight syringe (Hamilton Company, Reno, Nevada, USA) and O2 was 

quantified using gas chromatography (GC Trace 1310, Thermo Fisher Scientific, Waltham, 

USA) equipped with a TG-BOND Msieve 5A capillary column (30 m, I.D.: 0.32 mm, film 

thickness: 30 μm, ThermoFisher Scientific, Waltham, USA) and a thermal conductivity 

detector (TCD) operating at 100 °C with a filament temperature of 300 °C, and a reference 

gas flow of 4 mL min-1. Argon gas was applied as carrier gas with a constant flow of 5 mL 

min-1. The injection temperature was set to 50 °C and a split ratio of 2 was applied. The oven 

temperature was kept constant at 35 °C for 3 min. O2 concentrations in the liquid medium 

were quantified using a Clark-type flow-through sensor (OX-500 Oxygen Microsensor, 

Unisense, Aarhus, Denmark) equipped with a microsensor amplifier (Microsensor multimeter, 

Unisense, Aarhus, Denmark). 

Quantification of citrate concentration in the liquid phase using HPLC. Samples were 

collected from the capillary outlet, centrifuged (17000g, 5 min, rt), and the supernatant was 

applied for high pressure liquid chromatography (Dionex Ultimate 300, Thermo Fisher 

Scientific, Waltham, USA) equipped with a ligand exchange column (HyperREZ XP 

Carbohydrate H+, 30 cm length, 7.7 mm diameter, 8 µm particle size, ThermoFisher 

Scientific, Waltham, USA) and a variable wavelength detector operating at 210 nm. The 

column oven temperature was kept constant at 40 °C. 16 mM H2SO4 was applied as carrier 

solvent at a flow rate of 0.75 mL min-1. 
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Syn6803_CYP activity measurement in the Syn6803_CYP + Ps_CYP mixed-species 

biofilm setup. CYP gene expression was induced 36 days after inoculation by the addition 

of 2 mM IPTG to the supplied YBG11 medium. At day 37, cyclohexane was delivered in 

saturating concentrations via air and medium phase. For this purpose the air and medium 

flow was passed through a silicone tube, dipped into liquid cyclohexane allowing the 

cyclohexane to diffuse through the silicone tube into the medium and air stream.  

Ps_BVMO activity measurement in the Ps_BVMO + Syn6803_BGT mixed-species 

biofilm setup. BVMO gene expression was induced 15 days after inoculation using 2 mM of 

IPTG supplied with the YBG11 medium. At day 16, BVMO activity was measured by adding 

5 mM of cyclohexanone to the YBG11 medium flow.  

Quantification of cyclohexanol and caprolactone using gas chromatography (GC). 

Samples were collected from the reactor outflow and quenched with equal volumes of ice-

cold diethyl ether, vortexed for 2 min, and centrifuged (17,000g, 2 min, rt). The ether phase 

was removed and dried over anhydrous Na2SO4. Quantification of caprolactone and 

cyclohexanol was performed using gas chromatography (GC Trace 1310, Thermo Fisher 

Scientific, Waltham, USA) equipped with a TG-5MS capillary column (5% diphenyl / 95% 

dimethyl polysiloxane, 30 m, I.D.: 0.25 mm, film thickness: 0.25 μm, Thermo Fisher Scientific, 

Waltham, USA) and a flame ionization detector (FID) operating at 320 °C, 350 mL min-1 air 

flow, 30 mL min-1 makeup gas flow and 35 mL min-1 hydrogen gas flow. Nitrogen gas was 

applied as carrier gas with a constant flow of 1.5 mL min-1. The injection volume was set to 

1 μL using a PTV injector, programmed with a temperature gradient of 10 °C s-1 from 90 -

300 °C. A split ratio of 11 was applied. For cyclohexanol quantification, the temperature 

profile of the oven was: 1) 40 °C for 1 min, 2) 40 – 80 °C with 10 °C min-1, 3) 80 – 250 °C with 

100 °C min-1, and 4) 250 °C for 2 min. The oven temperature profile for caprolactone 

quantification was: 1) 40 °C for 3 min, 2) 40 – 170 °C with 15 °C min-1, 3) 170 – 300 °C with 

100 °C min-1, and 4) 300 °C for 1 min. 

Quantification of cell number, cell volume, and biofilm dry weight. For biomass harvest 

purposes, the reactor experiment was actively stopped by terminating the medium supply. 

The biofilm coated capillaries were disassembled and the biomass was removed from the 

capillaries by scratching and resuspension into a defined volume of water. The resulting 

culture was mixed vigorously for 1 minute before cell number and cell volume quantification 

using coulter counter measurement (Multisizer 3, 20 μm aperture,Beckman Coulter, Brea, 

CA). Synechocystis sp. PCC 6803 and Pseudomonas sp. VLB120 cells were differentiated 

by particles size of 0.4 - 1.6 µm and 1.6 - 6 µm, respectively. For biofilm dry weight 

determination, the remaining biomass was concentrated by centrifugation (5000g, 20 °C, 

7 min), transferred to pre-dried and pre-weighted glass tubes, centrifuged again (10000g, 4 

°C, 7 min), and the remaining pellet dried at 60 °C for 1 week.  
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6.4 Results  

To proof the technique of stably cultivating phototrophic microorganisms at high cell densities 

via a mixed-trophies biofilm-based capillary reactor, the two model strains Synechocystis sp. 

PCC 6803 and Pseudomonas sp. VLB120 were applied. Synechocystis sp. PCC 6803 is a 

well-known cyanobacterial model strain and widely used for studying photosynthesis-driven 

production of chemicals and fuels. Pseudomonas sp. VLB120 constitutes a 

chemoheterotrophic strain frequently applied for biocatalytic purposes with strong biofilm 

formation ability. First, single- and mixed-species of Syn6803_Km and Ps_Km were applied 

in the capillary reactor system. Six experimental setups using YBG11 medium 

(supplemented with 0.4 g L-1 citrate if stated) for cell growth and without or with additional air 

segments were conducted. After five weeks of biofilm maturation, O2 concentration in the 

liquid and gas phase as well as citrate consumption was measured. Afterwards, the 

cultivation system was actively terminated and characterized regarding photo-pigment 

formation (macroscopic), bio-volume of each species (cell number and cell volume), and total 

biofilm dry weight.   

6.4.1 Cultivation of single species Synechocystis results in low surface coverage and 

impaired biofilm development.  

First, biofilm and O2 formation in the capillary reactor were analyzed during cultivation of 

single species Syn6803_Km. Cells cultivated without air segments resulted in weak biofilm 

formation with a low final biomass concentration of 2 gBDW L-1 mainly located in the first part 

of the capillary tube (Figure 6.3i, Table 6.1, Figure 6.4i). In addition, photo-pigment 

formation seemed to be impaired indicated by a yellow/ light green outer appearance of the 

biofilm. O2 concentrations measured in the aqueous phase were 3 fold above the saturation 

limit at ambient conditions (746 µM, Table 6.1, Figure 6.4i). The application of air segments 

promoted cyanobacterial growth resulting in a lush green colored biofilm and increased final 

biomass concentrations of 14 gBDW L-1 (Figure 6.3ii). In contrast to single phase cultivation, 

the use of air segments facilitated O2 extraction from the liquid phase into the gas segments, 

reflected by an increased O2 concentration of 24% measured in the gas phase in comparison 

to ambient O2 concentration (21%) (Table 6.1). In general, surface coverage of single 

species Syn6803_Km grown biofilm was inhomogeneous. 

6.4.2 Co-cultivation of Synechocystis with Pseudomonas sp. VLB120 enhances 

cyanobacterial surface coverage and promotes biofilm formation to high cell 

densities.  

In a next setting, Ps_Km was co-cultivated with Syn6803_Km. After five weeks of cultivation 

without air segments visible surface coverage was slightly enhanced in comparison to single 

species cultivation (Figure 6.3iii vs. Figure 6.3i). This resulted in three-times higher final 
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biofilm dry weight of 6 gBDW L-1, mainly consisting of cyanobacterial cells (98.3%) (Table 6.1). 

O2 concentrations measured in the aqueous phase were, as expected, above the solubility 

limit at ambient conditions (Table 6.1, Figure 6.4iii). As observed before, the use of air 

segments resulted in extraction of O2 into the air phase and promoted lush green 

cyanobacterial biofilm formation throughout the length of the capillary (Figure 6.3iv, Table 

6.1). Overall, the co-cultivation of Syn6803_Km with Ps_Km promoted biofilm formation to a 

high final biofilm concentration of 32 gBDW L-1 mainly consisting of cyanobacterial cells 

(99.3%) (Table 6.1, Figure 6.4iv). 

 

Figure 6.3: Pictures of capillary reactors taken five weeks after inoculation. Syn6803_Km = 

Synechocystis sp. PCC 6803 pAH032, Ps_Km = Pseudomonas VLB120 pAH032, Mixed = 

Syn6803_Km + Ps_Km, BDW = biofilm dry weight.  

6.4.3 Citrate respiration relieves oxidative stress and supports the formation of super-

high density cyanobacterial biofilm.  

In the following experiments, mixed-trophies cultivation was conducted as described above, 

but using YBG11 medium supplemented with citrate to promote O2 respiration by Ps_Km. 

After five weeks of cultivation, the capillaries were entirely coated with rich green biofilm 

(Figure 6.3v + vi). Without air segments, respiration of citrate by Ps_Km decreased the O2 

concentration in the aqueous phase to anoxic conditions (Table 6.1, Figure 6.4v). As 

already observed before, the relief of supersaturating O2 concentrations, in this case via 

Ps_Km respiration, had a positive impact on the cyanobacterial biofilm development. The 

cyanobacterial surface coverage was high and resulted in a final biofilm concentration of 

48 gBDW L-1 consisting of 85% cyanobacterial cells (Table 6.1). Upon the addition of air 

v) Mixed without air segments with citrate                                                               48 gBDW L-1 

 
vi) Mixed with air segments with citrate                                                                   19 gBDW L-1 

 
 

i) Single Syn6803_Km  without air segments                                                           2 gBDW L-1 

 

ii) Single Syn6803_Km  with air segments                                                              14 gBDW L-1 

 
 

iii) Mixed without air segments                                                                                  6 gBDW L-1 

 
iv) Mixed with air segments                                                                                     32 gBDW L-1 
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segments, O2 was again stripped into the gas phase (Figure 6.4vi). Surprisingly, the final 

biofilm dry weight was reduced to 19 gBDW L-1 (92% cyanobacterial cells) (Figure 6.3vi, Table 

6.1).  

Table 6.1: Quantitative data obtained from single- and mixed-species biofilm cultivation in a tubular 

microreactor. Mixed-species = Co-culture of Syn6803_Km and Ps _Km, - Citrate = without organic 

carbon source, + Citrate = with 0.39 g L-1 citrate as carbon source, - Air = without air segments, + Air = 

with air segments.  

Experimental setup 
O2 in 

gas phase 
/ % 

O2 in 
aq. phase [1] 

 / µM 

Citrate 
consumption 

/ g L-1 

Biofilm dry weight [2] 
/ g L-1 

Ps. Syn. total 

Single Syn6803_Km       

i) - Air  - Citrate - 746 - - 1.5 1.5 

ii) + Air - Citrate 23.9 284 - - 13.7 13.7 

Mixed-species       

iii) - Air  - Citrate - 923 - 0.1 5.8 5.9 

iv) + Air - Citrate 24.1 287 - 0.2 31.4 31.6 

Mixed-species       

v) - Air  + Citrate - 0 0.27 7.2 40.6 47.8 

vi) + Air + Citrate 16.3 194 0.39 1.5 17.3 18.8 

[1] Solubility of O2 (at 26 °C, salinity of 3.5 g kg-1, 21% O2 in gas phase): ~250 µM; aqueous 
phase O2 concentrations of experiments performed with air segments are theoretical 
numbers relying on the partitioning between gas and aqueous phase.  
[2] The biofilm dry weight is calculated based on 1.2 mL tube volume. Ps. and Syn. specific 
biofilm dry weights are calculated based on cell numbers and cell volumes and the 
respective total biofilm dry weight, assuming that both strains constitute equal biovolume to 
biofilm dry weight ratio.  
 

 
Figure 6.4: Oxygen concentrations and final biofilm dry weight of single- and mixed-species cultivation 

of Syn6803_Km and Ps_Km grown in biofilm-based capillary reactor. Cultivation was performed using 

YBG11 medium without or with citrate supplementation and without or with air segments.  
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6.4.4 The mixed-species biofilm-based capillary reactor setup enables biocatalytic 

reactions.  

Mixed-species cultivation significantly enhanced cyanobacterial biofilm development and 

retention of HCD cyanobacterial biofilm. In order to test the new developed cultivation 

method for biocatalytic purposes, an exemplary whole-cell reaction was performed using 

recombinant strains harboring a cyclohexane CYP monooxygenase enzyme system. 

Syn6803_CYP was co-cultivated with Ps_CYP using air segments for O2 extraction and 

YBG11 medium without organic carbon source to focus on photobiocatalytic hydroxylation 

activitiy. After 5 weeks of cultivation, CYP gene expression was induced using IPTG and 

cyclohexane was delivered to the biofilm via substrate saturated air- and medium flow. 

Cyclohexanol quantification of samples from the reactor outlet showed titers of 1.1 mM 

corresponding to a productivity of 7.5 g Ltube
-1 day-1 (Table 6.2). The reaction was most likely 

catalyzed by the cyanobacterial strain, as no organic carbon source for the Ps_CYP cell 

growth and cofactor regeneration was present and cultivation under light exclusion resulted 

in reduced product formation (data not shown). Thus, we could proof the accessibility of the 

cyanobacterial cells in the grown biofilm for biocatalytic purposes.  

Table 6.2: Exemplary biocatalytic reactions conducted with recombinant strains applied in the mixed-

species biofilm based capillary reactor system. Syn_CYP = Synechocystis sp. PCC 6803 pAH050, 

Ps_CYP = Pseudomonas sp. VLB120 pAH050, Ps_BVMO = Pseudomonas sp. VLB120 pAH049, 

Syn6803_BGT = Synechocystis sp. PCC 6803 pAH042; + Citrate = with 0.46 g L-1 citrate as carbon 

source, + Air = with air segments. 

Recombinant 
biocatalytic strains 

Reaction 
conditions 

Reaction 
Product 

concentration in 
reactor outlet 

Productivity 

Syn6803_CYP + Ps_CYP 
- Citrate  

+ Air 
Cyclohexane 

 → Cyclohexanol 
1.1 mM 7.5 g Ltube-1 day-1 

Ps_BVMO + Syn6803_BGT 
+ Citrate  

+ Air 
Cyclohexanone 
→ Caprolactone 

2.5 mM 19.4 g Ltube-1 day-1 

 

In a second reaction setup, two further recombinant strains, namely Syn6803_BGT and 

Ps_BVMO, were co-cultivated using air segments and YBG11 supplemented with citrate to 

promote chemoheterotrophic biocatalysis. After 15 days of cultivation, AlkBGT and BVMO 

gene expression was induced using IPTG and either pure NAME was supplied as additional 

organic phase or 5 mM of cyclohexanone were added to the cultivation medium. Analysis of 

the reactor outlet revealed no catalytic activity for Syn6803_BGT. This might be explained by 

isufficient protein synthesis or unsufficient coupling of the photosynthetic metabolism with the 

heterologous enzyme system under the applied cultivation and reaction conditions, as 

already observed for biotransformations using suspended cultures (Chapter 4). In contrast, 

the chemoheterotrophic strain Ps_BVMO catalyzed the Baeyer-Villiger oxidation of 
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cyclohexanone to caprolactone. The final titer of 2.5 mM caprolactone corresponds to a 

catalytic rate of ca. 19 g Ltube
-1 day-1 (Table 6.2). Eventually, the mixed-species biofilm-based 

capillary reactor system enabled the biocatalytic functionality of both, the phototrophic 

biocatalysts and heterotrophic species.  

6.5 Discussion 

In nature, oxygenic phototrophs and aerobic heterotrophs are embedded in a complex matrix 

of extracellular polymeric substances (EPS) to form stable microbial mats (Prieto-Barajas et 

al., 2017). In such mats, the microbial consortium interacts in close cooperation, and thereby 

profits from complementary metabolic activities and taps new resources. In wastewater 

treatment plants microalgal/ cyanobacterial biofilms are applied in undefined consortia, e.g. 

for effluent oxygenation, heavy metal removal, and recycling of nitrogen and phosphorous 

(Barros et al., 2018). The here presented technology exploits the concept of microbial mats 

in a defined and minimized biofilm system. The co-cultivation of the chemoheterotrophic, 

aerobic microorganism Pseudomonas sp. VLB120 strongly enhanced biofilm formation, 

maturation and surface coverage of the photoautotrophic cyanobacterium Synechocystis sp. 

PCC 6803. This phenomenon may be attributed to proto-cooperation, which is the beneficial 

but not essential interaction of organisms, and is described for the here applied cultivation 

system by the following sections. 

Pseudomonas sp. VLB120 supports Synechocystis sp. PCC 6803 cell attachment. In 

principle, both strains produce EPS and thus facilitate biofilm formation. Using microscopy 

analysis of the harvested biofilm, the embedding of Syn6803_Km and Ps_Km in a biofilm 

matrix was visible (Figure 6.5). However, also during cultivation without organic carbon 

source the presence of Pseudomonas had a positive impact on Synechocystis biofilm 

formation although the cultivation conditions did not support Pseudomonas growth (0.6% of 

total cell fraction) (Figure 6.3iii, Table 6.1). Most likely, the few observed Pseudomonas cells 

survived on EPS or cell debris of Synechocystis and in turn improved the cyanobacterial 

surface attachment e.g., via conditioning of the capillary surface. Unexpectedly, the 

application of air segments reduced growth of Pseudomonas. This might be explained by a 

hydrodynamic stress response of the cells induced by high fluidic and interfacial stresses in 

the capillary, which might require more energy for Pseudomonas cell maintenance and EPS 

formation. This was reflected by a higher specific citrate consumption of 0.26 g gPsBDW
-1 in 

comparison to 0.04 g gPsBDW
-1 in single phase flow (Table 6.1). Thus, future optimization of 

the cultivation setting may involve the reduction of hydrodynamic stress e.g., via a reduced 

rate of air flow.  
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Figure 6.5: Microscopic image of a mixed-species biofilm containing Synechocystis sp. PCC 

6803_Km (Syn_Km) and Pseudomonas VLB120_Km (Ps_Km), harvested from a capillary reactor. 

Scale bar equal to 10 µm. 

Oxidative stress impairs cyanobacterial biofilm growth and can be relieved by O2 

respiration. During single phase cultivation supersaturating O2 concentrations were 

measured which went along with impaired biofilm formation (Figure 6.4). High O2 

concentrations can enhance the formation of radical oxygen species, which are side products 

generated during electron transport in oxygenic photosynthesis. Most likely these extreme O2 

concentrations led to oxidative stress and thus growth inhibition of Syn6803_km, resulting in 

visible photo-pigment reduction (yellowish/ light green outer appearance of the strain) 

observed towards the end of the capillary tube (Latifi et al., 2009; Narainsamy et al., 2016; 

Weissman et al., 1988). In contrast, the introduction of air segments as well the respiration of 

O2 by Pseudomonas decreased the aqueous phase O2 concentration to ambient or even 

anoxic levels, thus relieved oxidative stress and resulted in rich green, HCD biofilm (Figure 

6.4). Overall, the dual trophies approach enabled the cultivation of photobiocatalysts in a 

stable and super-high cell density format which is currently a key-bottleneck in photo-

biotechnology. Furthermore, the applied biotransformation of cyclohexane to cyclohexanol 

demonstrated the applicability of the developd cultivation technology for biotechnological 

purposes.  

The mixed-trophies capillary reactor system supports the application of 

chemoheterotrophic biocatalysts. Continuous production of chemicals using 

Pseudomonas sp. VLB120 in biofilm-based capillary reactors was already investigated in 

several studies (Gross et al., 2010; Karande et al., 2016b). As for many O2-dependent 

bioprocesses, oxygen mass transfer constitutes a main process limitation also during 

cultivation in such reactor systems. The introduction of air segments into the medium flow 

increases oxygen availability, but again becomes limited after a specific length of the 

capillary tube (Karande et al., 2014). In contrast, coupling photosynthetic O2 generation with 

bacterial respiration relieves the process limitation of O2-dependent bioprocesses in theory 

Syn_Km

Ps_Km
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independent of the tube length as long as light is available (Chapter 7). Already some 

decades ago the phenomenon of in situ O2 supply was transferred from nature to productive 

biotechnology utilizing defined co-cultures of algae and bacteria (Adlercreutz et al., 1982; 

Adlercreutz and Mattiasson, 1982; Cheirsilp et al., 2011; Papone et al., 2012). Yet, this 

research either focused on immobilized cells embedded in artificial polymers such as 

alginate, or cell suspensions. In this study, growth of Pseudomonas sp. VLB120 in the 

capillary reactor was 6.5 times and citrate respiration 9 times higher than without the use of 

air segments, but solely due to the in situ supply of O2 originating from the co-cultured 

cyanobacterium (data for single species Ps_Km not shown). Furthermore, Ps_BVMO applied 

in the mixed-trophies reaction system was accessible for the hydroxylation of cyclohexanone 

to caprolactone and thus demonstrates the functionality of the developed technology also for 

chemoheterotrophic biocatalysis.  

6.6 Conclusion 

In a mixed-trophies biofilm it was possible to co-cultivate the photoautotrophic Synechocystis 

sp. PCC 6803 with Pseudomonas sp. VLB120 over a time-period of five weeks to a high cell 

density of max. 48 gBDW L-1. This is the first cultivation technology allowing the defined, 

continuous cultivation of a phototrophic organism at super-high cell densities. Furthermore, 

the strains applied in the capillary reactor setup enabled the biocatalytic conversion of 

hydrocarbons to respective oxyfunctionalized value-added products. The concept now faces 

further implementation, evaluation and optimization of biocatalytic approaches and scale-up 

for the eco-efficient production of fuels and value-added chemicals.  
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7.1 Abstract 

O2-dependent whole-cell bioprocesses, such as C-H oxyfunctionalizations, are constrained 

by technically limited O2 mass transfer and biocatalyst-inherent O2 respiration. In large-scale 

bioprocesses, this restricts the maximum achievable productivity to 5.6 gproduct L-1 h-1 

assuming a resting cell concentration of 9.4 gCDW L-1. This concept paper discusses 

strategies to enhance the O2 availability for biocatalytic oxyfunctionalizations with a focus on 

the in situ generation of O2 from water. This promising approach was addressed recently by 

the exploitation of microbial photosynthesis for light-driven C-H oxyfunctionalization. Via 

intracellular O2 evolution, phototrophic biocatalysts increase the maximum achievable 

productivity well beyond technical boundaries. This fundamental advantage over O2-respiring 

biocatalysts now awaits scale-up evaluations, combining established cultivation technologies 

for phototrophic organisms with bioprocessing techniques for heterotrophic organisms. 
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7.2 Introduction  

Oxygen-dependent reactions like regio- and enantiospecific hydrocarbon 

oxyfunctionalizations are of outstanding interest for the chemical and pharmaceutical 

industries (Bühler et al., 2003a; Dong et al., 2018; Hollmann et al., 2011). For such reactions, 

efficient biocatalysis concepts have been developed that rely on oxygenases and electron 

supply via the metabolism of living microbial cells (Schmid et al., 2001; Schrewe et al., 2013; 

Wachtmeister and Rother, 2016). Commercial production of oxyfunctionalized fine and bulk 

chemicals necessitates a productivity of at least 1 - 10 g L-1 h-1 (Straathof et al., 2002; van 

Dien, 2013). To achieve this, biocatalysts are required that feature high specific activities of 

>100 U gCDW
-1 and/ or can be operated at high cell concentrations of >10 gCDW L-1. With a 

cellular oxygenase content of up to 12.5% of dry biomass (Tufvesson et al., 2010), the given 

whole-cell activity translates into an enzyme-specific activity of >0.8 U mgenzyme
-1. In 

comparison to other industrially applied enzymes (e.g., lipases), the nature of oxygenases 

often limits the productivity due to a low kcat (typically in the range of 0.2 - 75 s-1) and limited 

enzyme stability (Duetz et al., 2001; Lundemo and Woodley, 2015). Thus, high biomass 

concentrations are essential for the production of large volume chemicals or energy carriers. 

The maximum applicable biomass concentration of O2 respiring biocatalysts is constrained 

by the maximum net oxygen accumulation rate (= dO2/dt, µmolO2 min-1 L-1 = U L-1) of the 

bioprocess setup, constituting a critical process boundary for O2-dependent reactions (Duetz 

et al., 2001; Garcia-Ochoa and Gomez, 2009; Law et al., 2006; Marques et al., 2010). In 

classical biotransformation processes performed with heterotrophic microbes, this boundary 

depends on i) the bioreactor-intrinsic oxygen transfer rate (OTR) and ii) the biocatalyst 

specific oxygen respiration rate (ORR):  

dO2/dt = OTR – ORR. 

The OTR is a physical parameter defined by the gas-liquid mass transfer constant  

kL (m min-1), the interfacial area a (m2m-3), and the difference between the O2 solubility C* 

(µmol L-1) and the dissolved O2 concentration in the liquid phase C (µmol L-1):  

OTR = kLa (C*-C). 

As the O2 solubility in aqueous media is relatively low under atmospheric conditions 

(~250 µM at 25 °C, 1 atm, and a salinity of 6 g kg-1) (Garcia and Gordon, 1992; Garcia and 

Gordon, 1993), the mass transfer term kLa is one of the most critical process parameters to 

be addressed during the scale-up of microbial bioprocesses (Marques et al., 2010). It 

depends on the composition and physical properties of the gas and liquid phases (which also 

influence C*) and on the mixing applied. Technical solutions to enhance the net oxygen 

accumulation rate aim at an OTR increase via the optimization of the hydrodynamics in 
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bioreactor setups, that is, the bioreactor geometry or the operational conditions (Figure 7.1) 

(Garcia-Ochoa and Gomez, 2009). Examples concern either kLa or C*:  

• kLa: increased aeration rate (Law et al., 2006), improved mixing (stirrer speed, 

design), application of organic solvents (Kumar et al., 2017; Shet et al., 1997) or 

(nano)particles (Beenackers and van Swaaij, 1993; Olle et al., 2006) 

• C*: application of O2-enriched air, increased pressure 

 

Figure 7.1: Examples for technical solutions physically enhancing the O2 transfer rate in bioreactors. 

(top left) Standard stirred tank bioreactor (STR), (top right) falling film microreactor (FFMR), and 

(bottom) aqueous-air segmented microreactor (adapted with permission from Karande et al. 2014 

Copyright 2018 John Wiley and Sons.) (Karande et al., 2014). 

Further, the application of microreactors can significantly increase gas-liquid mass transfer 

by increasing the turbulence and thus kLa compared to reactors with a lower surface to 

volume ratio. This was shown for oxidations catalyzed by glucose oxidase or D-amino acid 

oxidase in falling film microreactors (Bolivar et al., 2016; Illner et al., 2014) and styrene 

epoxidation by recombinant Pseudomonas sp. VLB120 using air segments in multiphasic 

biofilm-coated microreactors (Karande et al., 2014) (Figure 7.1). 

Besides physical solutions to increase the net oxygen accumulation rate, approaches using 

oxygen donors other than O2 (namely H2O and H2O2) have been reported. After reviewing 

O2-related technical constraints critical for the implementation of large-scale whole-cell 

oxygenation bioprocesses, new concepts for in situ O2 generation in the liquid phase will be 

discussed. 

7.3 Constraints for standard large-scale whole-cell oxygenation bioprocesses 

Successful scale-up of a bioprocess in a typically used stirred tank bioreactor (STR) depends 

on the power input available for O2 transfer. The maximum achievable kLa thus is scale-

dependent. Considering bioreactor-intrinsic constraints, a maximum kLa of 200 h-1 can be 

considered feasible for large-scale STRs (> 1 m3) at 30 °C and an assumed average 

pressure of 2.5 atm, enabling a maximum OTR of 1500 U L-1 (Duetz et al., 2001). This OTR 
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translates into a maximum productivity of 9 g L-1 h-1 for a product with a molar mass of 

100 g mol-1 (Figure 7.2).  

 

Figure 7.2: Maximum achievable productivity of O2-dependent biocatalytic reactions as a function of 

the applied concentration of chemoheterotrophic whole-cell biocatalysts. The maximum applicable 

biomass concentration results from the bioreactor-intrinsic oxygen transfer rate (OTR) divided by the 

biocatalyst specific oxygen respiration rate and represents the biomass concentration, at which all O2 

transferred into the aqueous medium is respired by the cells. The dashed line represents the 

productivity that can be achieved for a product with a molar mass of 100 g mol-1 at a reasonable 

biocatalyst-specific oxyfunctionalization rate of 100 U gCDW-1. The OTR is defined by the bioreactor-

specific gas-liquid mass transfer term kLa (estimated to be 200 h-1 in large scale reactors), the soluble 

O2 concentration (550 µM at 30 °C and 2.5 atm) and the dissolved oxygen concentration (100 µM), 

forming an upper process boundary (red line). With increasing concentration of O2-respiring 

biocatalysts, the net oxygen accumulation rate (dO2/dt) is reduced by the oxygen respiration rate 

(100 U gCDW-1 for growing, 60 U gCDW-1 for non-growing resting cells), shifting the upper boundary 

towards lower productivities (blue lines). 

The maximum net oxygen accumulation rate depends on the OTR and the ORR. Growing 

chemoheterotrophic microbes like Escherichia coli respire O2 at a specific rate of 

~100 U gCDW
-1 (Calhoun et al., 1993; Duetz et al., 2001; Park, 2007; Shet et al., 1997). Thus, 

dO2/dt is inversely proportional to the applied biocatalyst concentration. The maximum 

applicable biomass concentration is restricted to 15 gCDW L-1 at which all available O2 is used 

for respiration and the productivity for an O2 dependent reaction is thus reduced to zero 

(Figure 7.2) (Duetz et al., 2001). Non-growing (resting) cells exhibit a lower energy demand 

(only for maintenance) and thus a lower respiration rate of ~60 U gCDW
-1 (calculated based on 

a glucose uptake rate of 0.62 mmol gCDW
-1 h-1 for resting E. coli JM101 with 6 O2 molecules 

consumed per glucose molecule oxidized to CO2) (Julsing et al., 2012a; van Beilen et al., 

2003). Their application thus increases the maximally applicable biomass concentration to 
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25 gCDW L-1. However, under aerobic conditions, the endogenous respiration remains 

indispensable for the application of chemoheterotrophic biocatalysts, enabling biocatalyst 

maintenance including, inter alia, protein regeneration. Careful adjustment of the biomass 

concentration is of upmost importance to maximize the productivity and avoid a limitation by 

O2 (Baldwin and Woodley, 2006; Hilker et al., 2006). For the industrial scale scenario defined 

above (molar massproduct = 100 g mol-1, ORR = 60 - 100 U gCDW
-1, kLa = 200 h-1, specific 

oxygenation activity = 100 U gCDW
-1), 7.5 and 9.4 gCDW L-1 of growing and resting 

chemoheterotrophic biocatalysts allow a maximum achievable productivity of 4.5 and  

5.6 g L-1 h-1, respectively (Figure 7.2). In situ O2 generation or the application of oxygen 

sources other than O2 are promising strategies to overcome the restrictions by the traditional 

external O2 supply and are discussed in the following. 

7.4 Use of alternative oxygen donors to overcome O2 limitations 

Enzymes that use oxygen sources other than O2 represent an alternative to the use of 

catalysts based on oxygenases (Figure 7.3). 

 

Figure 7.3: Examples for enzymes utilizing alternative oxygen donors for oxyfunctionalizations. 

Peroxygenase- (A) and dehydrogenase- (B) based enzyme systems make use of H2O2 and H2O as 

oxygen donors, respectively. 

Peroxygenases utilize H2O2 as oxygen donor (Bormann et al., 2015; Wang et al., 2017). 

Cytochrome P450 CYP119, for instance, catalyzes the epoxidation of styrene to styrene 

oxide via a peroxide shunt pathway (Figure 7.3 A) (Koo et al., 2000). Up to now, the variety 

of reactions catalyzed by peroxygenases is limited. Future exploration of novel 

peroxygenases with a more diverse reaction scope can be considered a promising approach 

for preparative oxyfunctionalization chemistry (Wang et al., 2017). Importantly, the high 

reactivity of H2O2 necessitates its well-controlled supply to the reaction system. In situ 

generation of H2O2 by enzymatic, e.g., via glucose oxidase (van de Velde et al., 2000), 

electrochemical, i.e., via a cathode (Lütz et al., 2004), or photocatalytic, e.g., via Flavin/ 

EDTA/ hʋ (Perez et al., 2009; Zhang et al., 2018), water oxidation successfully prevents the 

inactivation of the applied oxidoreductases (Bormann et al., 2015). However, these 
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processes go along with O2 reduction and thus do not overcome the requirement for O2 

dissolved in the aqueous phase.   

In contrast, dehydrogenase-type enzymes such as molybdopterin-dependent hydroxylases 

use water as oxygen donor for the oxyfunctionalization of, however, rather activated carbon 

atoms (Hille et al., 1998). The few examples showing the application of these enzymes for 

oxyfunctionalizations include the formation of p-hydroxybenzyl alcohol from p-cresol by the p-

cresol methylhydroxylase or the hydroxylation of quinaldine to 4-hydroxyquinaldine using 

quinaldine 4-oxidase (Figure 7.3 B) (Hopper, 1978; Ütkür et al., 2011).   

Next to these enzymes, photochemically active catalysts such as ruthenium porphyrins have 

been developed relying on water as source of oxygen for the chemical oxyfunctionalization of 

olefins and sulfides (Fukuzumi et al., 2012; Funyu et al., 2003; Inoue et al., 2005; Inoue et 

al., 1994; Li et al., 2011; Pagliaro et al., 2005). 

7.5 In situ generation of O2 in the liquid phase 

Already in 1977, Hans Günter Schlegel developed the concept of “aeration without air” by 

investigating the controlled supply of H2O2 to microbial cultures synthetizing catalases. 

Catalases enzymatically cleave H2O2, in situ releasing O2 that can be taken up by cells for 

respiration, and thus reduce the need for external aeration (Nies and Schlegel, 1984; 

Rosenberg et al., 1992; Schlegel, 1977; Sonnleitner and Hahnemann, 1997; Sriram et al., 

1998).  

 

Figure 7.4: Electrochemical in situ O2 generation for the hydroxylation of camphor to 5-exo hydroxyl 

camphor using CYP101 (Reipa et al., 1997). Reduction equivalents were supplied from an antimony-

doped tin oxide working electrode to CYP101 via putidaredoxin (Pdx). O2 was generated at the 

platinum counter electrode and the reactor was operated anaerobically using an argon purge. Figure 

adapted from Reipa et al., 1997 Copyright (2018) National Academy of Sciences. 

Using electrolysis, water can be used for the in situ generation of O2 (Wang et al., 2016a). At 

an electric potential of at least 1.23 V, water is electrolyzed to O2 and H2. Electrochemical in 

situ O2 generation in aqueous media has successfully been coupled to hydrocarbon 

oxyfunctionalization, e.g., the hydroxylation of camphor to 5-exo-hydroxycamphor or the 

epoxidation of styrene to styrene oxide using CYP101 (Figure 7.4) (Mayhew et al., 2000; 
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Reipa et al., 1997). From an energy perspective, the use of light energy for photocatalytic, 

photo-electrochemical, or photovoltaic-electrochemical water oxidation constitutes an 

economically and ecologically promising approach for the in situ generation of O2 (Abe, 2010; 

Jiao et al., 2015; Li, 2017). Whereas many photo-/electro-/chemical concepts focus on H2 

generation, the coupling of this O2 generation principle with enzymatic oxyfunctionalizations 

has yet to be demonstrated on technical scale. 

7.6 Exploitation of microbial photosynthesis for O2-dependent reactions 

Following the principle of lichens (symbiosis of fungi with microalgae or cyanobacteria), 

Adlercreutz et al. reported in 1982 the co-immobilization of the algae Chlorella pyrenoidosa 

as natural O2 producer with O2-respiring Gluconobacter oxydans (Adlercreutz et al., 1982; 

Adlercreutz and Mattiasson, 1982). The defined mixed-cultures revealed a 5.4 times 

increased production of dihydroxyacetone from glycerol in comparison to the single species 

system without O2-evolving algae.   

Recently, we successfully exploited the cyanobacterium Synechocystis sp. PCC 6803 for the 

intracellular coupling of the photosynthetic O2 generation with the O2-dependent C-H 

oxyfunctionalization of a fatty acid methyl ester (Figure 7.5) (Chapter 3).  

 

Figure 7.5: Microbial photosynthesis as source of O2 for biocatalytic oxygenation. Phototrophic 

organisms like cyanobacteria oxidize water resulting in the intracellular formation of O2 and reduction 

equivalents, both required for oxygenase catalysis. PSII = photosystem II, OER = oxygen evolution 

rate, OTR = oxygen transfer rate.  

Photoautotrophic whole-cell biocatalysts rely on photosynthetic water oxidation rather than 

the oxidation of organic compounds and O2 respiration for the supply of (bio)energy in the 

form of ATP and activated electrons (e.g., NAD(P)H). Thus, they are not only independent 

from extracellular O2 supply for growth and maintenance, but even increase the overall O2 

supply. 
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The equation for the net oxygen accumulation rate then is expanded by the biocatalyst-

specific oxygen evolution rate (OER), while the negative impact of the ORR becomes small 

as long as light is available and photosynthetic water oxidation takes place: 

dO2/dt = OTR - ORR + OER. 

In this case, the net oxygen accumulation rate correlates directly with the applied photo-

biocatalyst concentration enabling high productivities (Figure 7.6). 

 

Figure 7.6: Maximally achievable productivity of O2-dependent biocatalytic reactions as a function of 

the applied concentration of chemoheterotrophic as well as photoautotrophic whole-cell biocatalysts. 

The dashed black line represents the productivity that can be achieved for a product with a molar 

mass of 100 g mol-1 at a biocatalyst-specific oxyfunctionalization rate of 100 U gCDW-1. The oxygen 

transfer rate (OTR) is defined by the bioreactor specific gas-liquid mass transfer coefficient kLa 

(estimated to be 200 h-1 in large-scale bioreactors) and the soluble O2 concentration, in principle 

forming an upper process boundary (red line). With increasing concentration of O2-respiring 

biocatalysts, the effective net oxygen accumulation rate (dO2/dt) is reduced by the biocatalysts specific 

oxygen respiration rate (100 U gCDW-1 for growing, 60 U gCDW-1 for non-growing cells), shifting the upper 

boundary towards lower productivities (blue lines). By contrast, photosynthetically active whole-cell 

biocatalysts enhance dO2/dt (green line) by their intrinsic O2 evolution rate (maximally 850 U gCDW-1), 

thus theoretically supporting significantly higher productivities. The green area indicates the expanded 

operational space of phototrophic biocatalysts. The dashed green lines represent a limitation of dO2/dt 

by the availability of light, which can be expected to occur at high cell densities due to shading effects 

and will depend on the reactor design. 

This gives the photosynthetically active biocatalysts a sweeping advantage over O2-respiring 

ones. The upper productivity limit is determined by the biocatalyst-specific 

oxyfunctionalization rate as long as this rate does not exceed the net oxygen accumulation 

rate. The OER at photosystem II (PSII) can in theory reach a maximum of 850 U gCDW
-1 

(assumptions: kcat of PSII: 1000 s-1, 1% PSII gCDW
-1, 350 kDa), (Dismukes et al., 2009; Shen, 
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2015) being in line with maximally measured OERs ranging from 50 to 910 U gCDW
-1 

(Porankiewicz and Clarke, 1997; Thomas et al., 1993; Touloupakis et al., 2015; Wang et al., 

2012; Yao et al., 2012; Zavřel et al., 2016). However, it has to be considered that the OER at 

PSII depends on the available light intensity. Respiration and photorespiration (ribulose-1,5-

bisphophate oxygenation catalyzed by RuBisCO) may limit the maximum net O2 

accumulation rate, e.g., as a result of shading at high cell densities (indicated by dashed 

green lines in Figure 7.6) (Peterhansel et al., 2010; Vermaas, 2001). 

Altogether, O2-evolving microorganisms provide the basis to realize oxyfunctionalization 

productivities far in excess of those achievable in large-scale bioreactors with external O2 

supply (> 9 g L-1 h-1). This requires the achievement of high specific oxygenation activities 

(≥ 100 U gCDW
-1) and cultivation of phototrophic biocatalysts to high cell densities  

(> 10 gCDW
-1) to be targeted via biocatalyst, bioreactor, and bioprocess engineering 

(Fresewinkel et al., 2014). Such high productivities augur well for the production of large 

volume base chemicals or energy carriers. Classically, high amounts of photosynthetically-

derived (algae) biomass are produced in open pond systems and are used for animal and 

human nutrition products, cosmetics, as well as for the extraction of high value molecules 

such as special fatty acids or pigments (Chaumont, 1993; Grobbelaar, 2009; Pulz, 2001; 

Singh and Sharma, 2012; Spolaore et al., 2006; Weissman et al., 1988). Meanwhile, also 

closed systems such as the tubular photo-bioreactor in Klötze, Germany (500 km total length 

and 700 m3 volume) are developed successfully, producing 130-150 t dry biomass per year 

(Spolaore et al., 2006). In contrast to biomass producing systems, production systems 

utilizing phototrophic microorganisms as biocatalyst hold altered requirements with respect to 

safety, process regulation/ control, biomass production, and product recovery. In order to 

develop technically and economically viable production processes with (recombinant) 

photoautotrophic biocatalysts, the well-established advances in microbial fermentation 

technologies have to be complemented by methodologies for the efficient cultivation of 

phototrophs with a main focus on light distribution and – at least during growth/ biocatalyst 

production – carbon dioxide mass transfer (Fresewinkel et al., 2014). Recently, a number of 

promising cultivation concepts such as tubular, flat panel, and thin-layer reactors have been 

developed, enabling the generation of biomass concentrations of up to 50 gCDW L-1 (Apel et 

al., 2017; Bähr et al., 2016; Dasgupta et al., 2010). These technologies primarily focus on the 

generation of CO2-derived chemical products and now have to be transferred to 

biotransformation applications, such as the oxyfunctionalization of hydrocarbons (Lippi et al., 

2018). Beside biocatalyst growth to high concentrations (> 10 gCDW L-1), the technical reaction 

setting must allow efficient substrate mass transfer and high product titers including in situ 

product removal technologies for efficient post-process product recovery. The application of 

cyanobacterial biofilm-coated capillaries constitutes another promising technology, allowing 
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for continuous bioprocessing (David et al., 2015; Strieth et al., 2018). High surface to volume 

ratios enhance the light distribution and therefore allow increased phototrophic biocatalyst 

growth and consequently increased productivities. Algal biofilms (such as Chlorella sp.) were 

reported to grow to cell densities of ca. 25 g m-2 on polystyrene foam (Johnson and Wen, 

2010). Growing such dense biofilms in tubes with an inner diameter of 2 mm, as it was 

shown for Synechocystis sp. PCC 6803 (David et al., 2015), in theory enable biomass 

concentrations of up to 100 gCDW Ltube
-1. With such a high biomass concentration and a 

specific activity of 100 U gCDW
-1, the application of phototrophic biocatalysts overcoming O2 

limitation would theoretically allow an increase of productivities from 5.6 up to  

30 gproduct L-1 h-1 (100 g mol-1 molar mass of the product) for efficient light-dependent 

biocatalytic oxyfunctionalization at scale. 

7.7 Conclusion 

The in situ generation of O2 in the liquid phase has a large potential to overcome limitations 

of the productivity by the O2 availability in O2-dependent whole-cell bioprocesses. 

Photosynthetically active biocatalysts that evolve O2 in situ via the photosynthetic water 

splitting reaction, which simultaneously supplies oxygenases with activated electrons, can 

efficiently overcome limitations by O2 mass transfer. Now, photo-bioreactor systems have to 

be developed that combine the technologies available for photo-biocatalyst cultivation and 

biotransformations. Photosynthesis has a great potential to considerably raise the 

productivity process boundary of biocatalytic oxyfunctionalizations in a highly eco-efficient 

way.  
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8.1 Conclusions & Outlook 

Biocatalysis targets the synthesis of fuels and chemical compounds using a biological 

system that is applied in a technological reaction setup (Figure 8.1). Oxygenic 

photosynthesis is a highly valuable driver for industrially relevant redox biotransformations 

such as the oxyfunctionalization of hydrocarbons (Chapter 1).  

 

Figure 8.1: Conceptual design of photosynthesis-driven biotransformations. Redox enzymes 

(oxygenases) catalyze the conversion of substrates to the targeted oxyfunctionalized chemical 

products and are fueled with electrons and O2 derived from oxygenic photosynthesis. The applied 

technological system encloses the catalytic host and facilitates the supply with sufficient light, 

nutrients, and substrates as well as product extraction.  

Via photosynthetic water oxidation, reduction equivalents as well as O2, both co-substrates of 

oxygenases, are accessed by the energy of light. Isolated enzymes and chemoheterotrophic 

biocatalysts are frequently applied, while the photobiotechnological application of 

photoautotrophic organisms in redox biocatalysis is rare. This thesis aimed at the 

development and investigation of photosynthesis-driven oxyfunctionalization bioprocesses 

that go beyond the proof-of-concept catalyst development stage. An integrated bioprocess 

design concept (Chapter 1), comprising biocatalyst, reaction, and process engineering tools, 

was followed to conceptually evaluate the photosynthetic O2 and electron supply as well as 

the technical application of cyanobacteria as phototrophic biocatalysts. The following 

sections conclude the main outcomes of this work and provide prospects for the design of 

eco-efficient oxyfunctionalization bioprocesses.  

Synechocystis sp. PCC 6803 is a suitable biocatalytic host for oxyfunctionalizations. 

Integrated bioprocess development relied on the construction of two recombinant 

cyanobacterial strains. The alkane monooxygenase enzyme system AlkBGT, originating from 

Pseudomonas putida GPo1, and a CYP enzyme system, originating from Acidovorax sp. 

CHX100, were genetically introduced into Synechocystis sp. PCC 6803 resulting in 

Syn6803_BGT (Chapter 3) and Syn6803_CYP (Chapter 5). Both strains functionally 

catalyzed the hydroxylation of nonanoic acid methyl ester (NAME) to 9-hydroxynonanoic acid 

methyl ester (H-NAME) and cyclohexane to cyclohexanol, respectively. Biochemical analysis 

revealed that, in comparison to the total endogenous protein amount, Syn6803_BGT and 
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Syn6803_CYP synthesized the heterologous proteins at rather low concentrations 

(Chapter 4, Chapter 5). Although Synechocystis sp. PCC 6803 constitutes the model 

organisms for photoautotrophic biocatalysts, controlled overexpression of genes and thus the 

synthesis of the target proteins at high specific concentrations is hindered by the limited 

availability of promoter and plasmid systems. Therefore, future developments have to 

address the elaboration on these genetic engineering tools for improving the expression 

system function. Next to low heterologous protein levels, Syn6803_BGT showed high 

catalytic activity towards the hydrolysis of the substrate NAME, resulting in the formation of 

the toxic reactant nonanoic acic (NA) (Chapter 4). Thus, the biocatalytic chassis may be 

engineered for the elimination of this side reaction. In a comparable study on several E. coli 

strains, the carboxylesterase BioH was identified as medium-chain length fatty acid methyl 

ester hydrolyzing enzyme and thus might be a potential target for a knock-out strategy in 

Syn6803_BGT (Kadisch et al., 2017a). The biocatalytic host system may also be changed to 

another cyanobacterial chassis potentially facilitating a reduced or even lacking side-reaction 

activity. Furthermore, phototrophic strains possessing accelerated growth rates for faster 

biocatalyst growth or enhanced solvent tolerance for improved reaction robustness would be 

relevant. A promising candidate for further evaluation is Synechococcus elongatus UTEX 

2973 which was (re-) identified in 2015 and capable of growing at high rates with a doubling 

time of 2.1 h (in comparison 6.6 h for Synechocystis sp. PCC 6803) (Yu et al., 2015a). 

Eventually, the complementation of above described strain engineering strategies with the 

application of further oxygenases, e.g., the Baeyer-Villiger cyclohexanone monooxygenase, 

but also of other redox enzymes, such as hydrogenases, will broaden the reaction and thus 

the product scope of photosynthesis-driven biotransformations. 

Photosynthetic water oxidation is a valuable source of O2. Biocatalyst characterization 

followed the biocatalyst development with a focus on evaluating the possibilities of linking 

photosynthetic O2 and electron sources to productive biocatalysis. Under exclusion of 

external O2, Syn6803_BGT captured nearly 25% of photosynthetically generated O2 for the 

hydroxylation of NAME (Chapter 3). In addition, in situ O2 supply allowed the operation of 

bioreactors without aeration during Syn6803_CYP biotransformation, preventing substrate 

(cyclohexane) evaporation and thus enhancing process stability (Chapter 5). The in situ 

generation of photosynthetically generated O2 is a highly promising concept for redox 

biocatalysis, overcoming the need for external gas-liquid mass transfer (Chapter 7). O2-

respiring catalyst restrict the maximum achievable productivity to 5.6 g L-1 h-1. In contrast, O2-

evolving photobiocatalysts possess the ability to shift this O2-boundary far in excess of the 

reactor intrinsic oxygen transfer rate of 9 g L-1 h-1 (traditional large-scale stirred tank 

bioreactor). In conclusion, cyanobacteria inherently provide a promising technological 

solution for otherwise O2 limited, large-scale redox bioprocesses.   
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In situ extraction of O2 potentially facilitates O2-sensitive bioprocesses. The concept of 

in situ capturing photosynthetically generated O2 overcomes gas-liquid mass transfer 

limitations. In addition, it also features a promising solution for photosynthesis-driven, but O2-

sensitive bioprocesses. An example is the photosynthesis-driven production of hydrogen. 

Hydrogen with its high energy density is regarded as a favorable future zero-emission fuel 

gas. Production of hydrogen via coupling the photosynthetic water oxidation with 

hydrogenases constitutes a highly promising alternative technology to the power-demanding 

electrolysis of water. However, due to the inherent O2 generation during photosynthetic water 

oxidation, photobiotechnological production of hydrogen suffers from O2-sensitive 

hydrogenases as well as the formation of explosive oxyhydrogen gas (Knallgas). Current 

approaches aim at the technical separation of the two gases or the identification and 

development of O2-resistant hydrogenases. In a patent application, we emphasize a novel 

approach of co-applying hydrogenases with oxygenases as O2-consuming enzyme (Chapter 

10.4). Accumulating O2 is in situ captured at its place of generation, potentially preventing 

hydrogenase inactivation and furthermore reducing the risk of oxy hydrogen gas formation. 

Photosynthetic water oxidation is a valuable source of activated reduction 

equivalents. So far, cofactor regeneration constitutes a key parameter in standard 

enzymatic as well as whole-cell redox biocatalysis. The photosynthetic light reaction provides 

a rich source of electrons originating from water, accessed by the energy of light. By 

increasing the light intensity, and thus the photosynthetic water oxidation rate, cyclohexane 

oxyfunctionalization activities of Syn6803_CYP were increased from 6 to 26 U gCDW
-1 

(Chapter 5). The rate of oxyfunctionalization equals the rate of heterotrophic biocatalysts 

harboring the very same enzyme system (Karande et al., 2016a) and thus demonstrates the 

successful change of the cofactor regeneration system from a carbohydrate-based to a 

photosynthesis driven metabolism. The characterization of the electron flux (electron 

balance) from water oxidation at the photosystems PSII to the heterologous redox enzyme 

will provide an understanding of, and potential engineering targets for the interplay of the 

introduced electron sink within the photosynthetic metabolism. On the one hand, the electron 

flux towards the oxygenase may be enhanced, e.g., by the knock-out of competing, electron 

demanding reactions as described in the general introduction (Chapter 1). On the other 

hand, the pathway of electron supply may be optimized, e.g., by engineering the cofactor 

specificity from NADH to NADPH-dependent oxygenases, the overexpression of endogenous 

reductases coupling with the introduced redox enzyme, or fusion of the heterologous enzyme 

in spatial proximity to the photosynthetic machinery (e.g., PSII). Importantly, determination of 

redox potentials of the heterologous redox enzyme and the endogenous electron transferring 

enzymes is a powerful strategy to disclose potential electron-accessing points allowing for 

maximum efficient electron abstraction. 
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Reaction engineering via two-liquid phase biotransformation stabilizes 

photosynthesis-driven C-H oxyfunctionalization. Biotransformation of pure substrates 

with Syn6803_BGT or Syn6803_CYP revealed a substantial reactant toxicity and mass 

transfer challenges. These issues tremendously affected the specific oxyfunctionalization 

rate (productivity) and biotransformation stability (yield and titer). In situ substrate supply via 

the application of a 2-liquid phase cultivation setup successfully enhanced the reaction 

performance with respect to productivities, yields on biomass, and titers for both reaction 

systems (Chapter 4, Chapter 5). In the case of Syn6803_BGT, the use of DINP as organic 

carrier phase additionally reduced the side-reaction of substrate hydrolysis, potentially 

enabling higher yields on the substrate. Eventually, for Syn6803_CYP, the reaction 

engineering approach resulted in 1.5 times enhanced initial specific activities of ca. 

40 U gCDW
-1 and a pro-longed biotransformation stability of > 24 h resulting in 10 times 

increased final yields of 4.5 gproduct gCDW
-1. Further reaction engineering may even improve 

these productivities and yields e.g., by improvement of growth and reaction conditions 

including medium optimization, CO2 and light supply. Furthermore, the consumption of 

materials as well as metabolic resources may be reduced by decoupling the 

biotransformation phase from growth. Bioprocesses based on heterotrophic whole-cells can 

benefit from the omission of growth-essential nutrients such as nitrogen or magnesium, thus 

preventing cell growth (Julsing et al., 2012a; McIver et al., 2008; Willrodt et al., 2016). The 

physiological state of these resting cells possesses decreased metabolic competition for 

reduced cofactors and thus enables higher reaction rates for product formation. The concept 

of production decoupled from growth might be beneficial for photosynthesis driven 

oxyfunctionalization as well, although the exclusion of nutrients such as nitrogen might be 

detrimental to the photosynthetic functionality of cyanobacteria as degradation of 

phycobilisomes (chlorosis) was observed (Richaud et al., 2001). 

Successful application of Synechocystis sp. PCC 6803 in a technical process setting. 

The application of Syn6803_BGT and Syn6803_CYP in a technical process setting promoted 

the integrated development of a photobiocatalytic biotransformation process. Biocatalyst 

growth and gene expression were successfully transferred from a mL shake-flask to the 

multi-liter scale in a stirred-tank photobioreactor (Chapter 4, Chapter 5). Two-liquid phase 

biotransformations under process conditions without aeration enabled for the first time the 

photosynthesis-driven production of 2.6 g cyclohexanol from cyclohexane, water, and light. A 

further increase in total product amount will necessitate higher biomass concentrations, 

increased volumes and prolonged biotransformation times. Scaling of standard stirred tank 

bioreactors would result in decreased surface to volume ratios, resulting in impaired light 

distribution and thus photosynthetic activity. A highly promising technology for the cultivation 

of phototrophic organisms relies in the miniaturization of reaction systems. At the scale of a 
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capillary reactor, the surface to volume ratio and thus the light distribution to the phototrophic 

organisms is maximized, allowing for high photosynthetic and thus biocatalytic activities. The 

operation of a mixed-species biofilm in a capillary reactor setting enabled the continuous 

cultivation of Synechocystis sp. PCC 6803 at exceptionally high biomass concentrations of 

48 gCDW L-1 (Chapter 6). The biofilm supporting, co-applied strain Pseudomonas sp. VLB120 

enhanced the surface coverage and reduced oxidative stress by the respiration of O2. The 

capillary reactor setting now faces the integration of recombinant protein activity and, 

subsequently, reaction engineering strategies for appropriate substrate supply and product 

removal, including downstream processing. Finally, numbering up is a promising strategy for 

scaling the reaction system, retaining the advantage of the miniaturized setting, i.e., high 

surface to volume ratio.  

8.2 Concluding remarks 

Combining the achievements of this thesis, comprising a specific initial activity of 

ca. 40 U gCDW
-1, a cyanobacterial biomass concentration of 41 gCDW L-1, and a 

biotransformation stability of 52 h in one bioprocess setting, would already facilitate 

industrially relevant productivities, titers and yields of ca. 10 g L-1 h-1, 500 g L-1 and  

12.5 g gCDW
-1, respectively, for a 100 g mol-1 molecular weight product. This requires the 

retention of the high specific activities throughout the entire biotransformation time. Using a 

standard stirred tank photobioreactor, high biocatalyst concentrations need to be realized. In 

turn, the application of a biofilm-capillary reactor system necessitates the implementation of 

high specific oxyfunctionalization activities. In conclusion, oxygenic photosynthesis 

constitutes a highly promising driver for redox biocatalysis. Continuing the integration of 

biocatalyst-, reaction-, and process engineering will facilitate the successful development of 

photosynthesis-driven redox biotransformations. Eventually, photosynthesis as the billion 

years old milestone of natural evolution may develop into a milestone for the eco-efficient 

production of fuels and value-added chemicals. 
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10.1 Supporting information to Chapter 3 

 

Figure 10.1: Product formation of recombinant E. coli W3110 (pAH042). The specific activity was 

10.0 ± 0.1 U gCDW-1, calculated for a reaction time of 30 min. Average values and standard deviations 

of two independent biological replicates are given. 

 

10.2 Supporting information to Chapter 4 

 

 

Figure 10.2: Normalized light spectrum of the stirred tank photo-bioreactor (Labfors 5 Lux, Infors AG, 

Bottmingen, Switzerland) used for the cultivation of Synechocystis sp. PCC 6803. 
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Figure 10.3: Influence of cell growth conditions on specific NAME oxyfunctionalization activity of 

Syn6803_BGT. Cells were cultivated at indicated growth conditions, harvested at given time-points 

and standard oxygenation activity assays (2 gCDW L-1, YBG11, 30 µE m-2 s-1) were performed. 
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Figure 10.4: Impact of light intensity on NAME biotransformation activity of Syn6803_BGT. Cells were 

cultivated under standard conditions (YBG11, 50 µE m-2 s-1, ambient CO2). Two days after inoculation, 

gene expression was induced for 24 h. Oxyfunctionalization assays were performed at given light 

intensities (2 gCDW L-1, YBG11 + NaHCO3).  

 

 

 

Figure 10.5: Membrane fractionation analysis of Syn6803_BGT. Cells were cultivated and induced in 

a stirred tank photo-bioreactor as described in the materials and methods section of Chapter 4, 

disrupted by French press and applied for sucrose density gradient centrifugation as described in 

Chapter 2. Subsequently, Western blot analysis was performed for Strep-tag identification. 10 µg of 

each protein fraction was loaded on SDS gel. Strep-tag protein ladder (IBA GmbH, Göttingen, 

Germany) or a pre-stained protein ladder (PageRuler Prestained Protein Ladder 26616, Thermo 

Fisher Scientific, Waltham, USA) were used. NrtA = Nitrate transport protein (localized in plasma 

membranes of Synechocystis sp. PCC 6803). 
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Figure 10.6: Cell growth of Synechocystis sp. PCC 6803 (pAH032) (empty expression plasmid) upon 

addition of DINP containing different NAME concentrations. Cells were cultivated under standard 

conditions for two days before aliquots of 7.5 mL were applied to fresh 100 mL shake flasks. Then, 

2.5 mL of organic carrier solvent containing different NAME concentrations were added to the cultures 

(indicated by the arrow, organic:aqueous phase ratio of 1:3), and cultivation was continued under 

standard conditions with a reduced shaking frequency of 100 rpm (2.5 cm amplitude). Average values 

and standard deviations of two independent biological replicates are given.  
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Figure 10.7: Dependency of the oxyfunctionalization activity of Syn6803_BGT on gene expression 

time. Cells were cultivated under standard conditions (YBG11, 50 µE, ambient CO2), induced after 2, 

3, 4, or 5 days (panels A, B, C, and D, respectively), and harvested at defined time points to determine 

oxyfunctionalization activities in short-term assays (2 gCDW L-1, YBG11 + NaHCO3, 30 µE m-2 s-1). Non-

induced cells (dashed bars) served as a control. Error bars represent the standard deviation of two 

independent biological replicates.  
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Figure 10.8: Impact of different NAME concentrations within the organic carrier solvent DINP on the 

NAME hydrolysis activity of Syn6803_BGT. Cells were cultivated under standard conditions (YBG11, 

ambient CO2, 50 µE m-2 s-1) and applied for long-term NAME biotransformations (YBG11 + NaHCO3, 

2 gCDW L-1, 30 µE m-2 s-1) using different concentrations of NAME dissolved in DINP added at an 

organic:aqueous phase ratio of 1:3. Initial specific activities were calculated for the first 30 min of 

reaction. Average values and standard deviations of two independent biological replicates are given.  

* Only one biological replicate available; standard deviation of 10% was assumed. 

U = unit = µmol min-1, CDW = cell dry weight.  
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Figure 10.9: Analysis of expression system components used for the heterologous expression of 

alkBGT in E. coli W3110 and Synechocystis sp. PCC 6803 (Syn6803). Specific oxyfunctionalization 

activities of E. coli W3110 strains are based on 15 min resting-cell assays (performed as described in 

Chapter 3). Specific oxyfunctionalization activities of Syn6803 strains are based on 30 min standard 

reaction assays in YBG11 medium either without NaHCO3 or with 50 mM NaHCO3, as indicated. 

pRSF_nAlk (=pAH010) constitutes a broad host range vector (RSF origin of replication) encoding the 

alkBFG and alkST operons in their native configuration under control of the Palk regulatory system of 

Pseudomonas putida GPo1. pRSF_PAlk:BGT (= pAH039) constitutes a broad host range vector (RSF 

origin of replication) with the alkBGT genes in a single operon under control of the Palk regulatory 

system. pRSF_Ptrc1O:BGT (= pAH038) constitutes a broad host range vector (RSF origin of 

replication) containing the alkBGT genes in a single operon under control of the Ptrc1O promoter 

system. pRSF_Ptrc1O:BGTII (= pAH042) equals pAH038 with a Strep-tagII sequence added to the C-

terminus of alkB, alkG, and alkT. pRSF_Ptrc1O:BGTII_2x (= pAH048) equals pAH042 with a second 

Ptrc1O:BGTII operon present in the same plasmid. “No growth” indicates that no colonies were formed 

upon transformation of Synechocystis sp. PCC 6803 with the respective plasmid. Growth rates are 

given for E. coli W3110 strains. The growth rates of recombinant Synechocystis sp. PCC 6803 did not 

vary between the strains. Average values and standard deviations of two independent biological 

replicates are given. U = unit = µmol min-1, CDW = cell dry weight. 
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Figure 10.10: SDS PAGE analysis of E. coli W3110 (A - C) and Synechocystis sp. PCC 6803 (= 

Syn6803) (D) harboring indicated plasmids. Cells were either disrupted by heat (E. coli W3110, 99 °C, 

5 min) or using glass beads (Syn6803) as described in Chapter 2. Whole-cell protein fractions of 

45 µgCDW (A – C) or protein fractions of 10 or 20 µg (D) were applied. A) pRSF_nAlk =pAH010, 

pRSF_Palk:empty = pAH008, pRSF_Palk:BGT = pAH039, B) pRSF_Ptrc1O:Term = pAH032, 

pRSF_Ptrc1O:BGT = pAH042, C) pRSF_Ptrc1O:BGTII = pAH048, D) B = pAH044, BG = pAH047, 

BGT = pA042, BGT2x = pAH048. The expression systems located on respective plasmids are 

described in Chapter 2. M = unstained protein ladder (PageRuler Unstained Protein Ladder 26614, 

Thermo Fisher Scientific, Waltham, USA), STM = Strep-tag protein ladder (IBA GmbH, Göttingen, 

Germany). 
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Figure 10.11: Western blot analysis and NAME oxyfunctionalization activities of recombinant 

Synechocystis sp. PCC 6803 harboring one (pAH042) or two (pAH048) Ptrc1O:BGT operons on the 

expression plasmid. Cells were cultivated under standard conditions (YBG11, ambient CO2,  

50 µE m-2 s-1). Gene expression was induced two days after inoculation. Cells were harvested 24 h 

after induction of gene expression and subjected to cell disruption, Strep-tag purification, and Western 

blot analysis as described in Chapter 2 (panel A) or to oxyfunctionalization assays (as described in 

the materials and methods section of Chapter 4), of which the results are shown in panel B for the 

strain containing two operon copies (pAH048). * 10 µg of total protein from supernatant after cell 

disruption, ** 20 µL of elution fraction after Strep-tag purification (Elution was performed in the same 

volume as loaden on Strep-tag purification column), *** 20 µL of 5x concentrated (via acetone 

precipitation) elution fraction.  

 

 

 

Figure 10.12: pH values measured in a stirred tank photo-bioreactor with standard YBG11 medium 

under abiotic conditions (30 °C, 300 rpm) with and without aeration, respectively. 
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10.3 Supporting information to Chapter 5 

 

Figure 10.13: SDS-PAGE analysis of Synechocystis sp. PCC 6803 harboring the empty plasmid 

pAH032 or the expression vector pAH050 (Syn6803_CYP). Samples were taken from cultures 

cultivated in YBG11 medium for 3 days, while gene expression was induced after 2 days using 2 mM 

IPTG when indicated (= ind.). Cell disruption was performed using glass beads as described in 

Chapter 2. The band corresponding to the CYP enzyme (47.3 kDa) is indicated by an arrow. Protein 

bands for ferredoxin (12.4 kDa) and ferredoxin reductase (42.7 kDa) could not be identified. Ind. = 

induced. Marker: PageRuler Prestained Protein Ladder 26616 (Thermo Fisher Scientific, Waltham, 

USA).  
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Figure 10.14: Partition coefficients for cyclohexane, cyclohexanol, and cyclohexanone during two-

liquid phase biotransformation of cyclohexane using Syn6803_CYP in aerated (A) and non-aerated 

(B) stirred tank photo-bioreactors.  

 

Table 10.1: Partition coefficients obtained during biotransformation in stirred tank photo-bioreactors in 

comparison to those obtained from abiotic measurement (Eppendorf-tube). 

 Porg:aq (Chx) Porg:aq (C-ol) Porg:aq (C-one) 

Abiotic (Eppendorf-tube) 1775 ± 214 2.1 ± 0.1 4.4 ± 0.7 

STR with aeration 1502 ± 321 2.0 ± 0.2 4.0 ± 1.4 

STR without aeration 2255 ± 496 2.6 ± 0.3 4.6 ± 0.7 

 

 

Figure 10.15: pH and pO2 courses during cyclohexane biotransformation using Syn6803_CYP in 

aerated (A) and non-aerated (B) two-liquid phase stirred-tank photo-bioreactor setups. 

Biotransformation conditions were: 30 °C, 300 rpm, 150 µE m-2 s-1, and, only for A, 0.15 L min-1 

aeration with compressed air.  
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10.4 Patent application WO2018/162465 A 
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