
An Improved Mixture of Experts Approach

for Model Partitioning in VLSI{Design

Using Genetic Algorithms

K. Heringy, R. Hauptz, Th. Villmann¤

Institut fÄur Informatik

UniversitÄat Leipzig, Augustusplatz 10-11

04109 Leipzig

UniversitÄat Leipzig / Institut fÄur Informatik

Report Nr. 14 (1995)

ftp.uni-leipzig.de { directory: /pub/i¯/reports

yemail: khering@informatik.uni-leipzig.de
zemail: rhaupt@informatik.uni-leipzig.de

¤email: villmann@informatik.uni-leipzig.d400.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226141118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The partitioning of complex processor models on the gate and register-transfer level

for parallel functional simulation based on the clock-cycle algorithm is considered. We

introduce a hierarchical partitioning scheme combining various partitioning algorithms

in the frame of a competing strategy. Melting together the di®erent partitioning results

within one level using superpositions we crossover to a mixture of experts one. This

approach is improved applying genetic algorithms. We present two new partitioning

algorithms (experts), the Backward-Cone-Concentration algorithm (n-BCC) and the

Minimum-Overlap Cone-Cluster algorithm (MOCC), both of them taking cones as

fundamental units for building partitions.

1 Introduction

Logic design for whole microprocessor structures is accompanied with time-extensive

simulation processes. Within the design strategy outlined in [Spr89] the veri¯cation of

functional (logical) behavior is strictly separated from the analysis of timing aspects.

In this context the background of the present paper is given by simulation processes for

functional design veri¯cation on gate and register-transfer level (logic simulation) where

sequences of machine instructions or microcode are taken as test cases and underlying

models comprise complex parts of processor structures. Under this assumptions the

usage of cycle-based simulators is to be preferred, because they are signi¯cantly faster

than event-driven simulators in this ¯eld of application. Nevertheless, the ratio between

simulation runtime and simulated CPU time can reach values between 105 and 107.

TEXSIM1 is a simulator of high performance for logic simulation of synchronous

designs using the clock-cycle algorithm running on RS/6000 processors. Within a

TEXSIM simulation model all elements representing combinational logic or global

outputs, are statically rank ordered. These ranks are preceded by a special rank con-

taining elements standing for clocked latches, registers and global inputs. Roughly

spoken, the simulation of one cycle comprises the evaluation of all logical elements

from lower to higher ranks followed by the propagation of values to the outputs of

latches or registers. To achieve a signi¯cant reduction of running time for simulations

we are working on the parallelization of TEXSIM for IBM's loosely coupled RS/6000

processor system SP2. Thereby a parallel TEXSIM simulation consists of several co-

operating TEXSIM instances running on di®erent processors over parts of the whole

model. As a basic assumption, the process of the evaluation of combinational logic

during the simulation of a cycle has been left unchanged for the parallel TEXSIM

version. This directly in°uences model partitioning. Assigning a logical element to a

model part requires the same assignment for all logical elements of the whole model

which are able to contribute to a change of an input value of the considered element

during one cycle. If special fan-in cones [SUM87, Man92, MTSDA93] are taken as

basic building blocks for model partitioning, the demand mentioned above is ful¯lled.

A model partition is directly related to certain workloads of the processors involved in

later parallel simulation and communication overhead between co-operating TEXSIM

instances. In this way model partitioning has an essential impact on the speed-up pos-

sible due to parallelization. The amount of time acceptable for partitioning depends

on the expected total duration of all simulation runs to be performed regarding to a

1copyright by IBM

1

corresponding model. Simulation processes we are dealing with are characterized by a

large number of time-extensive runs concerning a given model. We investigate models

of microprocessor structures the complexitivity of which will reach several million gate

level elements in the near future.

In this paper, we introduce a hierarchical partitioning strategy for handling complex

models. Starting with a formal structural hardware model, basic de¯nitions concerning

cones and partitions are given in section 2. In section 3 a q-level partitioning scheme

is presented which allows to combine di®erent partitioning algorithms at succeeding

hierarchy levels. To overcome the lack of a priori knowledge in choosing algorithms

suited for models at hand, within each hierarchy level the competition and mixture

of di®erent algorithms according to a so called mixture of experts strategy [JJ94] is

proposed. In this framework we de¯ne superpositions of partitions to get the possibility

of melting together results of various partitioning algorithms within one and the same

hierarchy level. In a ¯nal step, an improved mixture of experts strategy using genetic

algorithms is developed. Two new partitioning algorithms aiming at the generation of

partitions with balanced workload are presented. First experimental results are given

in section 4.

2 De¯nitions

In the following we de¯ne a structural model for the logic design on gate and register-

transfer level. The underlying hardware is synchronous, i.e., asynchronous combina-

tional feedback is not allowed. Basic components of the model are given by the sets

listed below (Fig. 1):

² MI : : : global inputs,

² MO : : : global outputs,

² ME : : : logical elements,

² ML : : : storing elements,

² MS : : : signals.

ME includes all elements which represent combinational logic within the hardware

we want to simulate. Signals of MS are to be interpreted as wires. The elements of the

2

Figure 1: hardware model { basic structure

set ML possess storing function and are cycle limiting in the sense of the clock-cycle

algorithm. We concentrate the elements of all pairwise disjoint sets MI , MO, ME and

ML (Fig. 1) to the set of boxes MB = MI [MO [ME [ML. On the basis of these

sets the hardware model can be taken as a directed bipartite graph. Therefore, we

introduce the relation MR µ (MB £MS) [(MS £ MB) describing the connections

between boxes and signals. For any directed graph G = (X;R) and x 2 X we have the

sets of successors N+
G
(x) = fyj(x; y) 2 Rg and predecessors N¡

G
(x) = fyj(y; x) 2 Rg.

Using these notations we are able to de¯ne the hardware model as:

De¯nition 1 Let MI , MO, ME, ML, and MS be pairwise disjoint and nonempty

sets. MB and MR are de¯ned as above. M = (MI ; MO; ME; ML; MS; MR) is called

hardware model if the corresponding directed bipartite graph G(M) = (MB; MS; MR)

[Len90, Spo95] satis¯es the following conditions:

1.
n
xjx 2MB [MS ^ N

¡

G(M)
(x) = ;

o
=MI ;

2.
n
xjx 2MB [MS ^ N

+

G(M)
(x) = ;

o
=MO;

3. any directed cycle in G(M) includes at least one element of ML.

MI and MO are the sets of all sources and sinks of G(M), respectively. Condition 3

ensures the absence of directed cycles only including elements ofME [MS . This corre-

sponds to the exclusion of asynchronous combinational feedbacks within the underlying

hardware.

3

Due to our parallelization approach, cutting signals of M
S
during a partitioning of

M is only permitted at cycle-boundaries related to the clock-cycle algorithm mentioned

above. Therefore, we are forced to de¯ne basic units for partitioning which are known

as cones [SUM87, Man92, MTSDA93]. These units comprise elements of MB with a

limiting head element out of M
O
[M

L
. For further investigations of the partitioning

problem we ¯x the following formal de¯nitions with respect to an arbitrarily chosen

hardware model M :

De¯nition 2 The fan-in cone coI(x) of an element x 2MO[ME[ML is recursively

de¯ned by:

1. x 2 co
I
(x);

2. y 2ME ^N
+
G(M)(N

+
G(M)(y)) \ coI(x) 6= ; ! y 2 coI(x):

De¯nition 3 The fan-out cone coO(x) of an element x 2MI[ME[ML is recursively

de¯ned by:

1. x 2 co
O
(x);

2. y 2ME ^N
¡

G(M)(N
¡

G(M)(y)) \ coO(x) 6= ; ! y 2 coO(x):

Now, let us take a cone co(x) as a special fan-in cone coI(x) if x 2 MO [ML.

All the cones form the set Co (M) as the set of basic units for the partitioning of M .

An example of cones for the model shown in Fig. 1 is depicted in Fig. 2. The head

element x of co(x) is an element of the set MO[ML. The number of cones belonging to

Co(M) is mc = jCo(M)j = jMLj+ jMOj. For relevant models the ratio of the number

of cones mc to the number of boxes mB is in the range of mc : mB ¼ 1 : 10. A box

b 2M
E
(logical element), from which directed paths (with all intermediate boxes being

elements of M
E
) to the heads of di®erent cones ĉ

i
2 Co(M), i = 1; : : : ;m exist, belongs

to all of the m di®erent cones ĉi: b 2
mT
i=1

ĉi. These cones ĉi are called to be overlapping.

Considering the whole model, i.e. all cones c
i
, we get:

mcX

i=1

jcij ¸

¯̄
¯̄
¯

mc[

i=1

ci

¯̄
¯̄
¯ = jMLj+ jMOj+ jMEj . (2.1)

If we distribute overlapping cones to di®erent processors we have to take into account

the multiple evaluation of boxes in parallel simulations. On the other hand, communica-

tion between the processors is reduced to communication at the clock-cycle boundaries.

4

Figure 2: hardware model with cones (shaded)

Of course, replication in the evaluation of boxes is an additional restricting factor and

has to be minimized. In the following, C always denotes nonempty subsets of Co(M).

De¯nition 4 The box-related cone overlap degree u : ME ! IN is de¯ned by

u(b) = jfc jc 2 Co(M) ^ b 2 cgj, giving the number of cones which contain the box

b 2ME.

De¯nition 5 The overlap region ovr(C) of a set of cones C is the set of boxes

belonging to these and only these cones c 2 C:

ovr(C) =

Ã\
c2C

c

!
n

0
@ [
c02Co(M)nC

c
0

1
A : (2.2)

Then, we can state:

1. All elements of the set ME [ML [MO are uniquely and disjoint distributable

into overlap regions ovr(C). Using P ¤ = 2Co(M) n f;g we get:

jMEj+ jMLj+ jMOj =
X
C2P ¤

jovr(C)j . (2.3)

In general, most of the overlap regions ovr(C) are empty sets.

5

2. The overlap degree of a nonempty overlap region ovr(C) is denoted by uC for

which

uC = jCj (2.4)

is valid.

3. The set of boxes of a cone c is uniquely decomposable into overlap regions ovr(C),

whereby c 2 C:

c =
[

(C2P ¤^c2C)

ovr(C) with jcj =
X

(C2P ¤^c2C)

jovr(C)j : (2.5)

The overlap structure allows a construction of a hypergraph identifying the nodes with

cones and the hyperedges with cone sets C corresponding to nonempty overlap regions

ovr(C) with uC > 1.

De¯nition 6 The overlap hypergraph GU = (V;E) consists of a ¯nite set of nodes

V = Co(M) and a set of hyperedges E µ P ¤ with C 2 E if and only if uC > 1 and

jovr(C)j > 0.

To map the whole structure of the overlap regions onto the overlap hypergraph we

introduce weights for the nodes º : V ! IN and for the hyperedges ¹ : E ! IN . The

weight º for a node ci 2 V is the number of boxes which are contained in the cone

ci, exclusively: ºi = º(ci) = jovr(fcig)j. The weight ¹ for a hyperedge Cj 2 E is the

number of boxes which are contained in all cones cl 2 Cj , exclusively: ¹j = ¹(Cj) =

jovr(Cj)j. An overlap hypergraph GU = (V;E) together with the weights º and ¹ we

call weighted.

There are other possibilities to de¯ne weighted overlap hypergraphs in a similar

manner:

1. GU 0
´ GU with a changed weighting function for the nodes º 0i = º 0(ci) = jcij

and ¹0 = ¹.

2. Manjikian introduced a directed hypergraph where each hyperedge gets exactly

one head [Man92]. Whereas the node-weighting function º is changed to º 00 the

hyperedge-weighting function remains unchanged. To each weight ºi the weight

of all hyperedges whose heads are identical to ci is added yielding º 00i .

6

Figure 3: overlap hypergraph GU according Fig. 2

In Fig. 3 an example of an overlap hypergraphGU according to Def. 6 is represented

coincident with Fig. 2.

In the following we want to introduce the terms { partitioning and partition { by

means of two nonempty sets U and V .

De¯nition 7 A partitioning of U related to V is a unique map © : U ! V assigning

each element u 2 U to an element v 2 V .

De¯nition 8 A partition ª© of U related to the partitioning © : U ! V is given by

ª© = f©¡1 (v) j v 2 cod ©g , where cod © is the range of ©.

An element v 2 cod © represents the partition component ©¡1 (v) containing all

elements u 2 U which are mapped onto v. Here, we identify U with the set of cones

Co (M) and V with the set of mb blocks B representing processors.

Remark 1 If the partitioning © : U ! V is not surjective, elements v 2 V exist

which do not represent partition components. If it is not speci¯ed otherwise we consider

surjective partitionings.

For estimating the running time of parallel simulations several evaluation models

are possible. Our approach bases on a unique time unit ¿ = 1 for the evaluation of

each box.2 Under this assumption the workload Wi of a block Bi may be speci¯ed as

2Other assignments of evaluation times to special logical boxes are possible.

7

the sum of all boxes which are to be evaluated at the corresponding processor. With

©¡1 (Bi) =
n
ci1; c

i
2; : : : ; c

i
mi

o
we have

Wi =

¯̄
¯̄ [
j=1:::mi

cij

¯̄
¯̄ ; (2.6)

where each cij 2 Co(M), which can be also expressed in terms of overlap regions:

Wi =
X

(C2P ¤^C\©¡1(Bi)6=;)

jovr(C)j : (2.7)

For sequential simulation we have the sequential workload

Wseq =
X
C2P ¤

jovr(C)j = jMEj+ jMLj+ jMOj (2.8)

which is equal to the sum of boxes to be evaluated.

3 Hierarchical Partitioning

3.1 Hierarchical Strategy and the Mixture of Experts Ap-

proach

Using the general Def. 7 of a partitioning problem we can describe the special case of

mapping cones c 2 Co (M) onto a set B of blocks Bi (processors) by

© : Co (M)! B (3.1)

with jBj = mb as the number of all blocks. The task is to ¯nd a partitioning which

leads to a minimal running time for parallel simulation. To achieve this goal we have

to consider quality functions taking into account several aspects such as interprocessor

communication, workload balance and replication rate. For a certain quality function

one has to determine a partitioning ©
opt which optimizes . Yet, such an optimization

problem in general is a NP{complete one. Moreover, in the applications considered here

the ratio betweenmc as the number of cones andmb may be up to the range of 105¡106.

Therefore, we focus onto a hierarchical strategy which has been successfully applied to

data extensive problems as color image processing [VMB+94], satellite remote sensoring

[GS93, Vil95], robotics [RMS92] and time series prediction in high{dimensional data

spaces [DEFH93, KMP95]. To gradually reduce the range of the problem we introduce

a general q{level partitioning scheme according to Def. 7 by:

8

De¯nition 9 A q-level partitioning of U with respect to V is de¯ned by ©H : U !

V with

©H = ©q ± ©q¡1 ± : : : ± ©1 (3.2)

where

©j : Vj ! Vj+1 (3.3)

and V1 = U , Vq+1 = V and furthermore jV1j ¸ jV2j ¸ : : : ¸ jVq+1j.

Clearly, in general ©H is only an approximation of ©
opt. In dependence on the

problem the number q of hierarchy levels has to be chosen. Up to now, in our application

we use a 2{level scheme ©H = g±f , i.e. V1 = U = Co (M), Vq+1 = V = B and V2 = S:

©H : Co (M)
f
¡! S

g
¡! B : (3.4)

Thereby, S is a set of elements Sl, the pre{images sl = f¡1 (Sl) of which are called

super{cones. We remark that super{cones are collections of usual cones.3 In contrast

to the determination of the cones the realizations of g and f are free. This allows

an optimal adaptation. However, often an a priori optimal choice is not possible

[Len90]. To overcome this di±culty we prefer in each level of the hierarchical scheme a

strategy introduced in neurodynamics by Jordan et al. [JJ94] which is called mixture

of experts.

For a q{level scheme we consider several partitioning algorithms Aj
i , i = 1 : : :mj

corresponding to maps ©j
i and working in a parallel way in one hierarchical step j

representing various partitioning heuristics. The resulting partitions ª
A

j

i
are compared

with respect to a quality measure4 and the ¯j best of them will form the basis for the

algorithms Aj+1
i of the next level which generate partitions ª

A
j

i
;A

j+1

l

. Thereby, the

images of the super{cones of a partition ª
A

j

i
given by ©j

i are taken as the new minimal

units. The ¯nal result of a q{level scheme is a partition ªA1i1
;A2i2

;:::;A
q

iq
the quality

measure of which is the best in the last level. However, as yet this is only a simple

strategy of competing experts.

By introducing the superposition ª¤ of partitions ªi of a certain level, which plays

the role of a generating system for these partitions, we next extend the competing

3On the other hand, the cones themselves are sets of boxes which are elements ofM =ME [ML[

MO. Therefore, we can take the concentration of these as an initial 'partitioning' ©0 :M! Co (M).

In this way we obtain ©¤

H
= g ± f ± ©0 as an extended 2{level scheme. The de¯nition of the cones

uniquely determines the map ©0. Yet, ©0 is not a partitioning in the sense of Def. 7.
4To obtain a quality measure which is applicable to each of these partitions ª

A
j

i

one has to de¯ne

it on the basis of the set U from Def. 9, i.e., in our special case on the set of cones Co (M).

9

approach to a mixture one. Then each super{cone of a partition ªi is expressible in

terms of s¤
l
2 ª¤. To explain such a generating system we give the following de¯nition:

De¯nition 10 Let ¦ = fª
1
; : : : ;ªkg be a system of partitions of the set U . The

elements of ªi are denoted by sj
i
, j = 1 : : : ni. A set ª¤ = fs¤

1
; : : : ; s¤

m
g is called a

superposition of ¦ if the following conditions are satis¯ed:

1. ª¤ is a partition of U

2. ª¤ is a generating system for each ªi 2 ¦, i.e., for each sj
i
2 ªi (i = 1 : : : k,

j = 1 : : : ni) exist s¤
l1
; : : : ; s¤

lr
2 ª¤ such that sj

i
= s¤

l1
[: : : [s¤

lr
.

With Defs. 7 and 8 it follows that ; =2 ª¤. Of course, the elements of U taken as

single sets form a superposition U¤ of ¦. However, we want to have a superposition

the granularity of which is rougher than the granularity of U¤, i.e., jU¤j > jª¤j. Now

we consider a special construction of superpositions:

Theorem 1 Let ¦ = fª
1
; : : : ;ªkg be a system of partitions of the set U . The elements

of ªi are denoted by sj
i
, j = 1 : : : ni. Furthermore, let ª¤ be given as

ª¤ =

½
s¤
j1:::jk

j s¤
j1:::jk

= \
i=1:::k

sji
i

¾
n f;g (3.5)

with ji = 1 : : : ni. Then ª¤ is a superposition of ¦.

The proof is shown in Appendix A.

Following the theorem, in most applications we are able to determine a superposi-

tion ª¤ of the partitions ª
1
; : : : ;ªk with jU ¤j > jª¤j, i.e. with a rougher granularity

than this of U¤, by k{times intersections according to (3.5). Of course, in general

we only have jU ¤j ¸ jª¤j. The construction of the elements of ª¤ depends on the

structure of the partitions of the ªi 2 ¦ which represent the di®erent partitioning

heuristics (realized by the corresponding algorithms). Hence, all used strategies in°u-

ence the superposition, i.e., the expert knowledge of the algorithms is mixed in ª¤. We

add a superposition according to Theorem 1 as a special partition to the ¯j best of one

hierarchical level j so that it may be used in the next level, too.

Returning to our 2{level scheme, the usage of a superposition is only useful after

the ¯rst partitioning level. If we assume that we have various algorithms A1

i
realizing

10

the maps fi : Co (M) ! Si we obtain ªi = f¡1i (Si) according to Def. 8. Si are sets

of the mappings of the super{cones determined by the partitions ªi, respectively. In

analogy, we introduce the abstract map f¤ : Co (M) ! S¤ where S¤ is representing

the super{cones s¤l 2 ª¤ and ª¤ = (f¤)
¡1

(S¤). Then each element of the set system

§f = fS1; : : : ;S¯1;S
¤g can be taken as a new system of basic units for partitioning in

the second level.

Yet, the above mixture strategy is a very simple one. In the next section we will

improve this strategy using genetic algorithms. Thereby, condition 2 of Def. 10 becomes

important.

3.2 Improved Mixture of Experts Using Genetic Algorithms

In this part we extend the mixture approach introduced in section 3.1 using genetic

algorithms. In genetic algorithms populations of individuals (parents) produce new

individuals (children) in a manner which is inspired by biological evolution and biolog-

ical reproduction. The individuals are chains of strings describing a set of parameters

which are to be optimized.5 For applying genetic algorithms to graph partitioning let

us consider a partitioning map © : U ! V where U and V are discrete ¯nite sets.

Furthermore let us try to optimize © regarding to a certain quality function (¯tness

function). In this context an individual j represents a certain partition, determined by

a map ©j. The i-th component of a string is associated with the i{th element of U

containing the mapping goal which is an element of V . Several authors applied genetic

algorithms to the graph partitioning problem, for instance [MGSK88].

However, we will involve this approach into the above described hierarchical strat-

egy. Here we focus onto our special 2{level scheme (3.4). Then genetic algorithms

may be used as one of the parallel working algorithms in each hierarchical level. Yet,

because of the large number of cones in Co (M) the string of an individual representing

a partition of Co (M) is too long for mastering. Therefore, often in this ¯rst level the

application of genetic algorithms is impossible. On the other hand, if taking genetic

algorithms in the second level of the hierarchical scheme, they require a uniform set

of basic elements. To serve this assumption the usage of the superposition speci¯ed in

Def. 10 is necessary. We remark again that the superposition of all produced partitions

simultaneously forms a generating system for it, i.e., each partition may be described

in terms of this generating system. Hence, the superposition ful¯lls the conditions of

5For a more detailed introduction see for instance [Koz92] or [Gol89].

11

a uniform basis for genetic algorithms as demanded. Now the initial population for

the genetic algorithm is the set of all partitions determined in the ¯rst level which are

described by the elements of the superposition. We emphasize that the several algo-

rithms implement various partitioning strategies the best of which a priori is unknown.

Still more, in general a merged strategy will improve the result signi¯cantly. How we

can involve such a real mixture strategy using genetic algorithms? The recombination

by crossing over o®ers an elegant way to join di®erent properties of two individuals

(partitions) into new ones. The crossing over scheme may be interpreted as a more

general exchanging than the simpler one in the algorithm of Kernighan and Lin

[KL70]. However, we have to take into account a second argument, how much of the

old individuals get the chance to the competing step for selection of the new popula-

tion. Two contrary methods are well known: ¯rst we have the [¹; ¸]{scheme6 where ¹

individuals produce ¸ children with ¹ < ¸ and only the ¹ best of the ¸ children form

the new population; the second one is the [¹+ ¸]{scheme where all ¹ + ¸ individuals

are allowed for the selection process. Both schemes have advantages. In the second one

the best solution is preserved. Yet, it tends to a stagnation into a local minimum. In

the [¹; ¸]{scheme this property is weakened. On the other hand, good solutions may

be lost here. Therefore, we introduce a new so called [¹ ¤ ¸]{scheme: Let t = 0; 1; 2; : : :

be the number of generations which already have been generated. Then the value

¹t = int [(¹ ¡ ¹®) ¢ ¾ (t)] + ¹® (3.6)

determines that one has to take into consideration ¹t of the old individuals in addition

to the ¸ new produced in the selection process. Thereby, int [x] stands for the integer

value of x. The function ¾ (t) is of decreasing sigmoid type with 0 · ¾ (t) · 1.

¹® describes a survival probability for the parent individuals. Then we have ¹0 =

¹ and lim
t!1

¹t = ¹®. In this way we combine the advantages of both the [¹; ¸]{

and the [¹+ ¸]{strategy. The whole procedure, which includes the generation of a

superposition and following genetic algorithm, ¯nally leads to the complete scheme of

the improved hierarchical mixture strategy depicted in Tab. 1.

3.3 Special Experts

Our mixture of experts approach is a framework for applying several partitioning algo-

rithms. There exists a broad variety of such experts. A survey of algorithms suitable

for parallel logic simulation is given in [Spo95]. We distinguish direct and iterative

6Here we use the notions of Rechenberg and Schwefel [Rec73, Sch81].

12

cones ci

+

algorithms A1

j

+

fj : Co (M) ! Sj

+

f¤ : Co (M) ! S¤

ª¤ = (f ¤)
¡1

(S¤)¡ superposition

+

§f = fS1; : : : ;S¯1;S
¤g

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

f

+

gi;k : S
¤ ¡!

Si

Bk

+

§g = fB1; : : : ;B¯2g

+

Genetic Algorithm

+

§+

g+
=
n
B+1 ; : : : ;B

+

¯2

o

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

g

+

g2

½
g+j :S

¤!B+j j
³
B+j

´
=min

l

h

³
B+l

´i¾

f = f¤

+

©H = g ± f

Table 1: Scheme of the improved mixture of experts strategy using genetic algorithms

13

partitioning algorithms. Direct partitioning algorithms construct a single partition re-

sulting from basic units without building intermediate partitions. Iterative algorithms

require an initial partition which is improved according to di®erent quality functions.

The algorithm by Mueller-Thuns et al. [MTSDA93] is a direct one using cones as

basic units. Other ones assign boxes to blocks in a special way [Hil81, SB93]. Well

known iterative heuristics are those of Kernighan & Lin [KL70] and its improvement

by Fiduccia & Mattheyses [FM82] and Sanchis [San89].

We have developed two new direct algorithms on the basis of cones aiming at bal-

anced workload and minimal replication, the Backward-Cone-Concentration algorithm

(n-BCC) and the Minimum-Overlap Cone-Cluster algorithm (MOCC).

The basic idea of n-BCC consists in iteratively assigning sets of cones to blocks with

preferred choice of n cones overlapping each other using the box-related cone overlap

degree u of Def. 4:

1. At ¯rst in the codomain of u a value n¤ with smallest distance to n is ¯xed. All

boxes in ME are assumed to be unmarked.

2. Within all unmarked boxes out of u¡1(n¤), a box e is chosen and the fan-out

cone coO(e) (see Def. 3) starting from e is searched to ¯nd the head elements

of the n
¤ cones covering e. These n¤ cones are assigned to a block possessing

the lowest number of cones for the moment and all boxes of the selected cones

become marked. If there is a remaining unmarked box e 2 u
¡1(n¤), then step 2

is repeated.

3. If there exists n0 2 cod u with u
¡1(n0) containing an unmarked box, then such

an n
0 is taken as new n

¤ and one has to continue with step 2. Otherwise, the

algorithm terminates.

Contrary to MOCC explained below, with n-BCC there is no explicit use of knowl-

edge concerning the number of boxes in overlap regions or cones. First of all, n-BCC

has been designed for application at the ¯rst level of our hierarchical strategy.

MOCC successively constructs a partition using the speci¯cs of the corresponding

hardware model in form of the overlap hypergraph GU according to Def. 6. With

this algorithm the objective is to achieve partitions with blocks containing hypergraph

nodes (cones) connected among one another with high-weighted hyperedges:

14

1. Initially, out of the mc cones mb ones with the highest numbers of boxes are

assigned to the mb blocks.

2. Taking block Bi 2 B with the lowest number of boxes, we are looking for that

overlap region ovr(C¤) of Bi with the maximum of the product of the num-

ber of boxes jovr(C¤)j and the number of cones which are not assigned to Bi :

jC
¤

n ©¡1(Bi)j.

3. Now we include the set of these up to now not assigned cones C¤ n©¡1(Bi) of the

selected overlap region ovr(C¤) to the block Bi.

4. If free cones exist yet, we proceed with step 2. Otherwise the partition is complete

and the algorithm terminates.

MOCC aims at a minimum of multiple evaluation of boxes on di®erent processors

keeping a balanced workload corresponding to the resulting partition. If two-stage

partitioning is necessary the complex structure of GU implies preferably applying

MOCC to the second level of the hierarchical partitioning scheme.

4 Experimental Results and Conclusions

Finally, we present a special application of the improved mixture of experts strategy

(Tab. 1) for a speci¯c hardware model M representing a processor structure with

jMEj = 16 398 boxes. This model was provided by IBM for a ¯rst testing phase of our

strategy.

For the initial hierarchical level we use a set of n-BCC algorithms A1

k
with ¯1

parameters n and a ¯xed number of super-cones ms. The crossing to the second level

requires the production of an initial population §g for the genetic algorithm to be

applied. Generally, each Si resulting from the ¯rst level, allows the production of

many individuals Bk in the second level gi:k : S
¤
¡!
Si

Bk , using the elements of S¤ as

new basic units and keeping such units together in one block of Bk which correspond to

one and the same super-cone belonging to Si. Here, we restrict the number of created

initial individuals Bk to one for each Si (¯2 = ¯1). For the evaluation of individuals

within the genetic algorithm and for choosing the ¯nal (best) partition described by

©H , a quality function with = max
1·i·mb

Wi=Wseq (maximum workload) is taken (see

(2.6), (2.8)).

15

Figure 4: Quality function concerning the maximum workload max1·i·ms
Wi=Wseq

for the partitions resulting from the n-BCC for various values of ms and parameters n.

Figure 5: Maximum workload of partitions generated by n-BCC algorithms for ms1
=

16 (4) and ms2
= 32 (¦) with respect to the parameter n.

16

Figure 6: Maximum workload of the best partition generated by a genetic algorithm

for ms1
= 16 (short dashed) and ms2

= 32 (straight line) with respect to time (number

of generations).

In Fig. 4 the quality function , applied to the partitioning results of the ¯rst

hierarchical level of n-BCC for various m
s
= 2 : : : 50 with the parameters n = 1 : : : 100,

is shown.

In our exemplary application of the hierarchical scheme we consider only a ¯xed

number ms of super{cones, i.e., the set of possible n{BCC algorithms in the ¯rst level

is restricted to such ones, which generate m
s
super{cones. However the parameter n

varies. The initial population for the genetic algorithm is chosen out of corresponding

partitioning results randomly. The ¯tness (maximum workload) of all n{BCC experts

with respect to msi
is depicted in Fig. 5 extracted from Fig. 4. The evaluation in

time (number of generations) of the ¯tness of the best individuum of the population is

shown in Fig. 6. In both cases the genetic algorithm generates partitions the maximum

workload of which is better than the best ones of the initial n{BCC algorithms.

These ¯rst results show that a mixture of the a priori chosen strategies represented

by the various n{BCC instances leads to improved partitions. The successful applica-

tion of the genetic algorithms to the mixture strategy of partitioning algorithms was

demonstrated using the idea of superposition of partitions.

17

A Appendix

At ¯rst for the proof of Theorem 1 we show the following lemma:

Lemma 1 For s¤i 2 ª¤

and s¤j 2 ª¤

with i 6= j holds: s¤i \ s¤j = ;, i.e. the elements of

ª¤

are pairwise disjoint.

Proof of the lemma:

Let s¤i1 :::ik 2 ª¤ and s¤j1:::jk 2 ª¤ be given with (i1; : : : ; ik) 6= (j1; : : : ; jk). Then

l exists such that il 6= jl. Further we have s¤i1:::ik = si1
1
\ : : : \ s

il
l \ : : : \ s

ik
k and

s¤j1:::jk = s
j1
1 \ : : :\ s

jl
l \ : : :\ s

jk
k . Then we obtain for the intersection s¤i1:::ik \ s¤j1:::jk the

relation

s¤i1 :::ik \ s¤j1:::jk = si1
1
\ s

j1
1
\ : : : \ s

il
l \ s

jl
l \ : : : \ s

jk
k \ s

jk
k (A.1)

According to Def. 10 of ª¤ we get: s
il
l 2 ªl and s

jl
l 2 ªl. Because ªl is a partition of

U , sill \ s
jl
l = ; is valid. 2

Now we are able to prove Theorem 1:

Proof of the theorem:

(I) ª¤ is a generating system:

Let s
j

i 2 ªi be arbitrarily chosen. We construct the sets Sl with l 6= i according

to the following rule: if s
j

i \ s
j0

l = ~s
j0

l with s
j 0

l 2 ªl and ~s
j0

l 6= ; holds then ~s
j 0

l 2 Sl.

According to this construction, for each l the relation [
j0
~sj

0

l = s
j

i is valid. We consider

the set S¤ =

8
><
>:s¤

j0
1
:::j0

k
j s¤

j 0
1
:::j 0

k
= \

l=1:::k
l 6=i

~s
j0
l

l ; ~s
j0
l

l 2 Sl

9
>=
>; n f;g. Because of the de¯nition of

the ~s
j0
l

l as intersections with s
j

i 2 ªi we have s¤j0
1
:::j0

k
2 ª¤ and furthermore, [

s¤
j0
1
:::j0

k

2S¤

s¤
j0
1
:::j0

k
µ s

j

i . It still remains to show [
s¤
j0
1
:::j0

k

2S¤

s¤
j0
1
:::j0

k
¶ s

j

i : Now we take an arbitrary

but ¯xed u 2 s
j

i . Then for each Sl one and only one ~s
j¤
l

l exists such that u 2 ~s
j¤
l

l , i.e.,

u 2 \
l=1:::k
l 6=i

~s
j¤
l

l with \
l=1:::k
l 6=i

~s
j¤
l

l 2 S¤.

(II) ª¤ is a partition of U :

According to (I) ª¤ is a generating system for the s
j

i 2 ªi. Furthermore, it is

assumed, that all ªi are partitions of U themselves. Then one can ¯nd for each u 2 U

18

a s
¤

j¤ 2 ª¤ such that u 2 s
¤

j¤. Regarding to Lemma 1 all elements of ª¤ are pairwise

disjoint. This completes the proof of the theorem.2

References

[DEFH93] R. Der, H. Englisch, M. Funke, and M. Herrmann. Time Series Prediction

Using Hierarchical Self-Organized Feature Maps. Neural Network World,

(3):699{703, 1993.

[FM82] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for im-

proving network partitions. In Proc. 19th Design Automata Conference,

ACM/IEEE, pages 175{181, 1982.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Lerning. Addison Wesley, Reading, 1989.

[GS93] Markus H. Gross and F. Seibert. Visualization of multidimensional image

data sets using a neural network. Visual Computer, 10:145{159, 1993.

[Hil81] W. Hilberg. Partitionierung mit Hilfe der Verbindungsmatrix. ntz Archiv,

3(3):57{62, 1981.

[JJ94] M. I. Jordan and R. A. Jacobs. Hierarchical Mixture of Experts and the

EM Algorithm. In P. Morasso, editor, Proc. ICANN'94, pages 479{486.

Springer, 1994.

[KL70] B. W. Kernighan and S. Lin. An e±cient heuristic procedure for parti-

tioning graphs. Bell Systems Technical Journal, 49(2):291{307, 1970.

[KMP95] J. Kohlmorgen, K.-R. MÄuller, and K. Pawelzik. Improving Short-Term

Prediction with Competing Experts. In Proc. ICANN'95, Paris 1995,

1995.

[Koz92] J. R. Koza. Genetic Programming. MIT Press, 1992.

[Len90] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.

Teubner-Verlag Stuttgart and JOHN WILEY & SONS, 1990.

[Man92] N. Manjikian. High performance parallel logic simulation on a network

of workstations. Technical Report CCNG T-220, Department of Electri-

cal and Computer Engineering and Computer Communications Network

Group, University of Waterloo, 1992.

19

[MGSK88] H. MÄuhlenbein, M. Gorges-Schleuter, and O. KrÄamer. Evolution Algo-

rithm in Combinatorial Optimization. Parallel Computing, (7):65{88,

1988.

[MTSDA93] R. B. Mueller-Thuns, D. G. Saab, R. F. Damiano, and J. A. Abraham.

VLSI Logic and Fault Simulation on General Purpose Parallel Computers.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 12:446{460, 1993.

[Rec73] I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme

nach Prinzipien der biologischen Information. Fromman Verlag Freiburg

(Germany), 1973.

[RMS92] Helge Ritter, Thomas Martinetz, and Klaus Schulten. Neural Computa-

tion and Self-Organizing Maps: An Introduction. Addison-Wesley, Read-

ing, MA, 1992.

[San89] L. A. Sanchis. Multiple-way network partitioning. IEEE Transactions on

Computers, 38(1):62{81, 1989.

[SB93] C. Sporrer and H. Bauer. Corolla partitioning for distributed logic sim-

ulation of VLSI-circuits. In Proc. Of the Workshop on Parallel and Dis-

tributed Simulation (PADS), pages 85{92, 1993.

[Sch81] H.-P. Schwefel. Numerical Optimization of Computer Models. Whiley and

Sons, 1981.

[Spo95] C. Sporrer. Verfahren zur Schaltungspartitionierung fÄur die parallele

Logiksimulation. Verlag Shaker Aachen, 1995.

[Spr89] W. G. Spruth. The Design of a Microprocessor. Springer Berlin, Heidel-

berg, 1989.

[SUM87] S. P. Smith, B. Underwood, and M. R. Mercer. An analysis of several

approaches to circuit partitioning for parallel logic simulation. In Pro-

ceedings IEEE International Conference on Computer Design (ICCD),

pages 664{667, 1987.

[Vil95] Th. Villmann. Topologieerhaltung in selbstorgansierenden neuronalen

Merkmalskarten. Diss., eingereicht, UniversitÄat Leipzig, 1995.

20

[VMB+94] A. Verikas, K. Malmquist, M. Bachauskene, L. Bergman, and K. Nielson.

Hierarchical Neural Nets for Color Classi¯cation. In P. Morasso, editor,

Proc. ICANN'94, pages 847{851. Springer, 1994.

21

