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Abstract

We introduce a notion of Gr�obner reduction of everywhere convergent power series over the real or
complex numbers with respect to ideals generated by polynomials and an admissible term ordering.
The presented theory is situated somewhere between the known theories for polynomials and formal
power series.
Our main theorem states the existence of a formula for the division of everywhere convergent power
series over the real or complex numbers by a �nite set of polynomials. If the set of polynomials is
a Gr�obner basis then the remainder of that division depends only on the equivalence class of the
power series modulo the ideal generated by the polynomials. When the power series which shall be
divided is a polynomial the division formula leads to a usual Gr�obner representation well known
from polynomial rings.
Finally, the results are applied to prove the closedness of ideals generated by polynomials in the
ring of everywhere convergent power series and to give a very simple proof of the a�ne version of
Serre's graph theorem.

Mathematics Subject Classi�cation: 13J05, 46A04, 13P10
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1 Introduction

In this paper we introduce a notion of Gr�obner reduction of everywhere convergent power series over
the real or complex numbers with respect to ideals generated by polynomials and an admissible term
ordering. The presented theory is situated somewhere between the known theories for polynomials
and formal power series.
In section 2 we present some background, namely a short introduction into the theory of Gr�obner
bases for polynomial ideals and some facts about admissible term orderings, which will be necessary
for the formulation and the proofs of our results.
The third section contains the main theorem which says that there is a formula for the division of
everywhere convergent power series over the real or complex numbers by a �nite set of polynomials.
If the set of polynomials is a Gr�obner basis then the remainder of that division depends only on
the equivalence class of the power series modulo the ideal generated by the Gr�obner basis. In the
case that the power series which shall be divided is even a polynomial the division formula gives a
G-representation.
Finally, in section 4 we apply the results to prove the closedness of ideals generated by polynomials
in the ring of everywhere convergent power series and to give a very simple proof of the a�ne
version of Serre's graph theorem.

2 Gr�obner bases and admissible orderings

The basic algebraic structures involved in this paper are the polynomial ring R = K[X], the
ring S = K[[X]] of formal power series, and the ring E = ff 2 Sjf is convergent in Kng, where
X = (X1; . . . ; Xn) is the list of indeterminates. Since we are interested in convergency, we restrict
ourself to the �elds of complex (C ) or real (R) numbers. Nevertheless, the results connected only
with polynomials are valid with respect to an arbitrary coe�cient �eld. Clearly, there are the
inclusions R � E � S. In this paper convergency of power series always means convergency at the
entire space Kn.
For f =

P
�2Nn c�X

� 2 S we de�ne the support suppf = f�jc� 6= 0g of f . For sets F � S we set
suppF =

S
f2F suppf . The elements of R are just these of �nite support.

For the use of Gr�obner techniques it is necessary to order the monomials X� in such a way that
the multiplication is (strong) monoton with respect to the ordering. Such orderings are called
admissible term orderings (cf. [BB84]). Considering only the exponents � the investigation of
these orderings can be done in Nn. The orderings induced in Nn will be also called admissible term
orderings.
The description of admissible term orderings in Nn requires considerations in Rn. Any linear form
L =
Pn

i=1 liXi, where li 2 R, de�nes a partial ordering <L in Nn by

� <L � () L(�) < L(�): (1)

Obviously, the partial ordering <L is monoton with respect to the addition in Nn. Using a second
linear form L0 we may re�ne <L to a new monoton partial ordering <(L;L0) by comparing �rst with
respect to <L and if this gives no decision then with respect to <L0 . Iterating this process using
only proper re�nements, �nally, after at most n steps, we come to an admissible term ordering. On
the contrary, any term ordering can be given by such a sequence of linear forms of Rn. A detailed
description and classi�cation of the admissible term orderings can be found in [LR85].
Dealing with polynomial rings, term well-orderings are used. This provides �niteness of the reduc-
tion procedure. In rings of power series often non-noetherian orderings are used. Otherwise even
initial terms can not be de�ned. In this paper we are working somewhere within. We use Gr�obner
basis theory in R but afterwards we apply it to elements of E. The reason is that in contrary
to earlier works connected with Gr�obner reductions for power series (cf. [TM82, TM88]) we are
considering a di�erent topology.
In this paper from now on, ordering will always mean admissible term well-ordering. An example
for an ordering is the lexicographical ordering �lex de�ned by � �lex � if and only if the �rst
non-zero component of �� � is negative.

3



Let us emphasize the importance of orderings which are given by a sequence of linear forms which
have only natural numbers coe�cients. These orderings can be described by the formula

� �A � () �A �lex �A ; (2)

where A is a regular n� n-matrix with natural number entries.

The orderings of that type are exactly these term well-orderings which Robbiano called of lexico-
graphical type in [LR85]. There it is also shown that we need exactly n linear forms and that the
i-th column of A may be chosen as the coe�cients of the i-th linear form.
A linear form L with real coe�cients de�nes an oriented hyperplane of Rn crossing the origin.
Considering only a bounded area of Rn there exists always a second oriented hyperplane of Rn

crossing the origin which has only integer coordinates such that there is no lattice point of Nn lying
between both hyperplanes (with respect to the orientation). As an easy conclusion we get from
this fact, that for an arbitrary term well-ordering � and any �nite subset M � Nn there exists an
ordering �A of type (2) such that �jM=�AjM .
Some of the investigations in section 3 will require a more restricted type of term orderings having
the property that for any given element of Nn there exists only a �nite number of smaller vectors.
An ordering has this property if and only if its �rst linear form has only positive coe�cients.
The following lemma is due to D. Bayer ([DB]) and shows how any ordering may be approximated
by an ordering of this type.

Lemma 2.1: Let � be a term ordering and M � N
n a �nite set. There exists a linear form

L =

nX
i=1

liXi (0 < li 2 N): (3)

such that the restrictions of the partial ordering <L de�ned by (1) and of � coincide on M .

Proof: The proof will be done by construction of a suitable linear form L. First of all we �nd
an approximation �A of type (2) such that �jM=�AjM . If �A is the lexicographical ordering,
everything is easy. It may be used, for instance, Bayer's linear form L =

Pn

i=1 t
n�iXi where t 2 N

is greater than the degree of any monomial X� for � 2M . By setting

MA := f�Aj� 2Mg

the problem of the ordering described by the matrix A may be transformed into this for the
lexicographical one. Let Llex be a suitable linear form for MA and �lex, i.e. Llex has positive
integer coe�cients and <Llex coincides with �lex on MA, then we set L := ALlex where L and
Llex are considered as the column vectors of their coe�cients. It is obvious that the so-de�ned L

is of type (3) and that <L and � coincide on M . 2

Any term ordering which is a re�nement of <L, e.g. the ordering

� �L � ()

�
L(�) < L(�) or
L(�) = L(�) ^ � � �

; (4)

will coincide on M with �.
For some applications the weaker condition to L, namely, that only the re�nement �L of <L

de�ned in (4) has to coincide with � on M is also su�cient.
The notions below depend on the chosen ordering. Sometimes, if di�erent orderings are involved,
we will index the notions by the corresponding ordering in order to avoid confusion. Otherwise,
we assume that we are working with respect to a �xed term ordering and neglect the index.
Let � be a �xed ordering. The maximal (with respect to �) vector � appearing in suppf of a
non-zero polynomial f 2 R is called the exponent exp f of f . Furthermore, the coe�cient of
Xexp f in f is called the leading coe�cient lcf , the monomial inf := lcfXexp f the initial term, and
tailf := f � inf the tail of f .
The notions of initial term and exponent will be extended to sets of polynomials in the usual way
inF = finf jf 2 Fnf0gg and expF = fexp f jf 2 Fnf0gg. If F contains at least one non-zero
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polynomial then the monoid ideal expF +Nn will be denoted by �F and the complement Nnn�F

by DF . If F � f0g then, by de�nition, �F = ; :

In what follows we consider only non-zero ideals I and sets F of polynomials containing at least
one non-zero polynomial.
A power series g 2 E is called reducible with respect to a set F � R if suppg \�F 6= ;. Otherwise,
g is called reduced with respect to F . Obviously, g is reduced with respect to F if and only if
suppg � DF . This fact will be abbreviated by writing g 2 E(DF ) or if g is even a polynomial
also by g 2 R(DF ). The de�nitions are restricted to convergent power series since, in general,
reducibility introduced in this paper makes no sense for formal power series.

We say, that g 2 R reduces to g0 2 R with respect to F � R (denoted by g
F
�! g0) if there is an

equation

g0 = g � cX
f; where (5)

f 2 F;  2 Nn; c 2 Knf0g;  + exp f 2 suppg and  + exp f =2 suppg 0:

Since we are working over a �eld, for any g which is reducible with respect to F there exists a g0

such that g
F
�! g0. By the noetherianess of � the reduction process can be iterated only �nitely

many times, i.e. for any polynomial g there is a (not necessarily unique) reduced polynomial gred

which satis�es g
F

�!� gred where � marks the reexiv, transitive closure of the reduction relation.
The polynomials gred will be also called reduced forms of g with respect to F . There may be
distinguished one of the reduced forms of g with respect to a �nite basis F and an ordering � by
�xing a reduction strategy, i.e. we have to use a stronger de�nition of reduction which ensures that
there is at most one polynomial g0 such that g may be reduced in the stronger sense to g0 with
respect to a �xed set F and a �xed term ordering �. The simplest case where di�erent reduced
forms could be obtained occurs when a monomial has to be reduced which is dividable by more
than one leading term of the polynomials from F . This reects B. Buchberger's main idea for the
construction of S-polynomials (cf. [BB84]). In order to get uniqueness for a single reduction step
for monomials we �x an enumeration of the elements of F and use for the reduction always the
�rst possible element according to this enumeration (cf. [ML-J]). Reducing polynomials consisting
of more than one monomial, in addition, the reduced form could depend on the choice of the
next monomial to be reduced. At the moment we will complete the strategy for polynomials by
requiring that the largest reducible exponent from the support should be treated �rst. Following
De�nition 2.2 we will show that the reduced form is already unique without using this second part
of the strategy.
If we need to emphasize that reduced forms of polynomials are obtained by applying a �xed unique
reduction strategy we will call gred a normal form of g and denote it by Nfg .

De�nition 2.2: Let g 2 R, F � R, and � be a term ordering. A representation

g =
X
f2F

hff + grem;

where grem 2 R(DF ), hf 2 R, and for any f 2 F we have either hf = 0 or exp hf + exp f � exp g,
is called a G-representation of g with respect to F and �. The polynomial grem is called a
G-remainder of g with respect to F and �. Furthermore, the representation is called strong G-

representation with respect to F and � if in addition all the vectors �+ exp f , where f 2 F and
� 2 supphf , are pairwise distinct.

The strong G-representations are these G-representations with respect to �nite sets F which can
be constructed by iterated reduction in an algorithmic way. In this case the G-remainders are
reduced forms of g. In contrary, a G-remainder of g is not necessarily a reduced form of g with
respect to F .
For any unique reduction strategy the normal form operator Nf is linear. For polynomials g and
g0 consider associated normal forms Nfg and Nfg 0 with respect to F , respectively. There exist
strong G-representations g =

P
f2F hff + Nfg and g0 =

P
f2F h0ff + Nfg 0. We want to show

that
P

f2F (hf + h0f )f + Nfg + Nfg 0 is a strong G-representation of g + g0 and that Nf(g + g 0) =
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Nfg + Nfg 0 with respect to the �xed reduction strategy. Suppose, there is a situation, such that
�1 + exp f1 = �2 + exp f2 = �, where �i 2 supp(hfi + h0fi

) (i = 1; 2). Since the strong G-

representations of g and g0 are constructed according to a selection strategy which determinates
the f to be used for the reduction of a monomial, we must have f1 = f2 and, consequently, �1 = �2.
Taking into account Nfg + Nfg 0 2 R(DF ), we have proven that we have a strong G-representation
of g + g0 with respect to F .
Consequently, Nf(g + g 0) = Nfg + Nfg 0 with respect to our unique reduction strategy, including
selection of the next monomial to be reduced.
During the construction of the strong G-representation of g + g0 we did not use the second part
of the reduction strategy. Suppose, g0 = �g and that the normal form strategies for Nfg and
Nfg 0 coincide only in the �rst part. According to the above ideas the di�erence of the strong
G-representations provides a strong G-representation for g + g0 = 0, therefore, hf + h0f = 0 for all
f 2 F and Nfg = �Nfg 0, i.e. the normal form of g does not depend on the second part of the
reduction strategy.
There still remains an open gap, namely the reduction of convergent power series. This gap will
be closed in section 3.
Now we give a short introduction to the theory of Gr�obner bases ([BB65]) which turned out to be
a very powerful tool in constructive commutative algebra (cf. [BB84, G-T-Z]).

De�nition 2.3: A subset F � I of the ideal I � R such that inFR = inIR is called a Gr�obner

basis of I (with respect to �).

This is the most common Gr�obner basis de�nition which can be used also in more general situations
(cf. [LR86, TM88, B-S, JA]). In the case of polynomial rings over a �eld there are di�erent
equivalent conditions some of them will be listed below.

Lemma 2.4: For a subset F � I of a non-zero ideal I the following conditions are equivalent:

i) F is a Gr�obner basis of I,

ii) �F = �I,

iii) any g 2 Inf0g is reducible with respect to F ,

iv) any g 2 I has a G-representation with respect to F with grem = 0,

v) F generates I and the remainder grem appearing in G-representations of g 2 R with respect

to F is uniquely determined.

Proof: i) ) ii), ii) ) iii), and iii) ) iv) are obvious.
To prove iv) ) v) we consider two remainders of g with respect to F . Clearly, we have k :=
grem � g0rem 2 I \ R(DF ). Consider the G-representation k =

P
f2F hff + krem. For any f 2 F

we must have either hf = 0 or exphf + exp f � exp k since equality would yield exp k =2 DF . In
conclusion either k = krem = 0 or exp krem = exp k for any G-representation of k with respect to
F . According to iv) it follows grem � g0rem = 0 which completes the proof.
It remains to show v) ) i). Suppose that there is an element g 2 Inf0g, such that ing =2 inFR.
Since we are working over a �eld this means exp g =2 �F . Without loss of generality we may
assume suppg � DF . For F generates I there is a representation g =

P
f2F hff . Let f 0 2 F and

� 2 Nn such that exp hf + exp f � � + exp f 0 for all f 2 F . Both g and 0 are remainders in a
G-representation of X�f 0 + g with respect to F . This contradicts the assumption v). 2

Above we have stated the di�erence between G-remainders and reduced forms of g with respect
to F . According to condition v) we have coincidence for Gr�obner bases. Analogous formulations
of the conditions iv) and v) using strong G-representations would yield also equivalent conditions.
It should be mentioned a further very important equivalence to the conditions of the lemma which is
similar to iv) but requires zero-remainders only for a �nite number of special ideal elements, the so-
called S-polynomials (cf. [BB84]). This condition is fundamental for the algorithmic construction
of Gr�obner bases. The results in this paper will be presented rather existential than constructive
since in any case we are not yet able to give an algorithmic solution of the reduction problem for
convergent power series. According to our topology even the question for truncated results makes
no sense.
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The existence of a (�nite) Gr�obner basis F of an arbitrary ideal I � R with respect to a given
ordering is obvious. For polynomial rings it makes sense to de�ne reduced Gr�obner bases (cf.
[BB84]) by

De�nition 2.5: F is called reduced Gr�obner basis if lcf = 1 and suppf \�Fnffg = ; for all f 2 F .

Proposition 2.6: The reduced Gr�obner basis of an ideal I � R is �nite and unique.

Proof: The �niteness of the reduced Gr�obner basis follows from the fact that �I as monoid ideal
of the noetherian monoid Nn is �nitely generated.
Let G and G0 be two reduced Gr�obner bases of I. According to condition iii) of Lemma 2.4 any
element g of G must be reducible with respect to G0, i.e. there exists a g0 2 G0 such that exp g 2
�fg0g. On the other hand we have exp g0 2 �G and exp g =2 �Gnfgg, therefore, exp g0 2 �fgg.
Consequently, exp g0 = exp g and ing 0 = ing . It follows supp(g � g 0) � (suppg [ suppg 0)nfexp gg.
Since g�g0 2 I it has to be zero or reducible with respect to both G and G0 according to condition
iii). The second case is impossible by the de�nition of the reduced Gr�obner basis. Consequently,
we have g = g0 and G � G0. In the same way we get the other inclusion. This completes the proof.
2

Proposition 2.7: For a Gr�obner basis F of the ideal I the set B := fX�j� 2 DFg forms a vector

space basis of R=I.

The assertion follows immediately from conditions iv) and v) of Lemma 2.4.

Proposition 2.8: Let F � I be a Gr�obner basis with respect to the ordering �. Let �0 be an

ordering such that exp
�
f = exp

�0 f for all f 2 F . Then F is also Gr�obner basis of I with respect

to �0.

Proof: By construction it is �F;� = �F;�0 . Therefore, g is reducible with respect to F and � if
and only if it is reducible with respect to F and �0. According to condition iii) of Lemma 2.4 the
claim will follow. 2

Since suppG is �nite for a (reduced) Gr�obner basis G of the ideal I with respect to an arbitrary
ordering �0 we �nd an ordering � described by a regular matrix with natural number entries such
that G is also (reduced) Gr�obner basis with respect to the new ordering. Furthermore, the class
of orderings of type (2) is large enough to �nd for any application of Gr�obner bases a convenient
ordering within the class.
By Lemma 2.1 the class of orderings could be restricted even more. It would be su�cient to
consider only orderings of type (4). Unfortunately, for some applications as, e.g. the computation
of elimination ideals, the construction of a suitable linear form L requires that a Gr�obner basis
with respect to another ordering not of type (4) or at least some bound for its support is known
in advance. On the other hand, for our applications in section 3 it is already enough to know that
for a given Gr�obner basis there always exists an ordering of type (4) which gives rise to the same
Gr�obner basis.
At the end of this section we will present a last well-known proposition which allows to construct
elimination ideals. This proposition will be applied to Serre's graph theorem in the last section.

Proposition 2.9: Consider the polynomial ring R = K [Y; Z] in two groups Y and Z of indeter-

minates. Let � be an elimination ordering for Y , i.e. we have expZ� � exp (Y �1Z�2 ) for any

non-zero vector �1 and arbitrary vectors �2 and �. Furthermore, let F � I be a Gr�obner basis of

the ideal I � R with respect to �. Then F \ K[Z] is a Gr�obner basis of I \K[Z] with respect to

the ordering �Z induced by � in Nk where k is the number of indeterminates contained in Z.

Proof: Any element g 2 I has a G-representation g =
P

f2F hff with respect to F and �. Clearly,
F \ K[Z] � I \ K[Z]. Consider g 2 I \ K [Z]. By de�nition of � it follows ing 2 K[Z] if and
only if g 2 K [Z]. According to the exponent condition for G-representations all polynomials hf
for f =2 K[Z] have to be zero. In the case f 2 K[Z] it must be hf 2 K[Z], too. Consequently, the
above sum is also a G-representation of g in the ring K[Z] w.r.t F \ K [Z] and �Z . According to
condition iv) of Lemma 2.4 the claim will follow. 2

Remark: Assume we are given two arbitrary orderings �Y and �Z acting on monomials depending
only on Y and Z, respectively. Then there exists an elimination ordering � for Y as de�ned
in Proposition 2.9 which coincides with �Y or �Z for monomials depending only on Y or Z,
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respectively. For example the ordering � de�ned by

(�1; �2) � (�1; �2) ()

�
�1 �Y �1 or
�1 = �1 ^ �2 �Z �2

ful�lls this condition.
Furthermore, if Y are the �rst m indeterminates of X and Z are the remaining n �m ones then,
e.g., the lexicographical ordering can be used for the elimination of Y from I.

3 Reduction of convergent power series

In section 2 we left the gap what is the result of the reduction of a reducible convergent power
series. Clearly, a procedure similar to polynomials would not terminate in general. That, of course,
is a problem also arising during the reduction of formal power series (cf. [TM88]). But in that
case one may de�ne reduction strategies which ensure that any truncation of the reduced power
series may be computed exactly.
Such a strategy can not be applied to our problem, since a power series has no highest term
with respect to an admissible term well-ordering. We could start the reduction with the smallest
occurring monomial. But in this case any later reduction may change any of the already considered
terms and we have to start from the very beginning in any step. What we get are series for the
coe�cients of the resulting power series. To answer the questions for convergence or even limits of
this coe�cient series is far from to be easy.
We avoid this problem by de�ning an one-step reduction. On the one hand side we lose some
constructivity of the reduction by this approach. But on the other hand side we can solve many
existence problems, e.g. we prove the convergence of the above mentioned coe�cient series.

De�nition 3.1: Let g =
P

�2Nn c�X
� 2 E be a convergent power series, F � R a �nite set of

polynomials, and � an admissible term well-ordering. We say that g reduces to gred with respect

to F (denoted by g
F
�! gred) if gred =

P
�2Nn c�X

�
red for some reduced forms X�

red with respect
to F and � of X�, for all � 2 Nn.

First of all we have to justify our de�nition by proving the convergence of gred. As a by-product
we will obtain that gred is reduced with respect to F . Therefore, gred will be again called a reduced
form of g with respect to F . Using normal forms with respect to a �xed reduction strategy instead
of only reduced forms of the X� we obtain also an unique normal form for gred which we will call
also normal form and also denote by Nfg . The normal form operator is again linear. If g is a
polynomial the above normal form and the normal form from section 2 coincide.

Let g =
P

�2Nn c�X
� 2 S and let r = (r1; . . . ; rn) be an n-tuple of positive real numbers. Following

[G-R] we de�ne the norm

kgkr :=
X
�2Nn

jc�jr
�

and the set Br := fg 2 Sj kgkr < +1g of formal power series of �nite norm. Clearly, we have
E � Br for any r. We shall always consider the space E as a Frechet space with the topology
determined by the system of seminorms (norms) k � kr corresponding to all r : Let us �x D � N

n

and set Br(D) := Br \ S(D).
The space Br is a Banach algebra (cf. [G-R]), Br(D) as a closed subspace of Br is a Banach space
and E(D) is a closed subspace of E :

From this and from elementary facts concerning power series we may deduce the following lemma.

Lemma 3.2: Let r� = (r1� ; . . . ; rn�); � = 1; 2; . . . be a sequence of n-tuples of positive real numbers

such that

rj� ! +1 when � !1; for j = 1; 2; . . . ; n:

If g� 2 E(D), for � 2 Nn, and

X
�2Nn

kg�kr� < +1 ; for � = 1; 2; . . . ;

8



then the series
P

�2Nn g� is convergent in E and its sum g 2 E(D).

Remark: Let g� =
P

�2Nn g��X
� ; for � 2 Nn. Since the assumptions of Lemma 3.2 imply that the

family (c��x
�)�;�2Nn is absolutely summable, for any x 2 Kn ;

P
�;�2Nn c��X

� is independent of
ordering of summation.

Before we apply this convergence criterion to our reduced power series we need a norm estimation
in connection with the reduction process of polynomials.

Lemma 3.3: Let F � R be a �nite set and � an admissible term well-ordering. There exists a

sequence r� as in Lemma 3.2 such that

kg0kr� + kcX
kr� � kgkr� ; for � = 1; 2; . . .

for any simple reduction step g0 = g � cX
f where g and g0 are polynomials and c ; X

 ; and f

are as in formula (5).

Proof: By Lemma 2.1 there exists a linear form L =
Pn

i=1 liXi such that <L jsuppF =� jsuppF .
Set �� = (�l1 ; . . . ; � ln). Since F is �nite there exists �0 2 N such that

kin�L
f k�� = jlc�L

f j�L(exp�L f)
� ktail�L

f k�� + 1 ; for all f 2 F and � � �0;

where �L is the re�nement (4) of <L.
Since in�f = in�L

f and tail�f = tail�L
f for any polynomial f 2 F the sequence r� = ��+�0 ; � =

1; 2; . . . satis�es the conditions assumed in Lemma 3.2 and

kin�f kr� � ktail�f kr� + 1 ; for all f 2 F and � = 1; 2; . . . : (6)

We set � := +exp� f . Then g can be decomposed in the form g = c�X
�+p such that � =2 suppp

and c� = c lc�f . Consequently,

kgkr� = kpkr� + kc�X
�kr� = kpkr� + kcX

 in�f kr� = kpkr� + kcX
kr�kin�f kr� (� = 1; 2; . . .):

By (6) it follows

kgkr� � kpkr� + kcX
kr� (ktail�f kr� + 1) (� = 1; 2; . . .): (7)

Applying the triangular inequality to the equation

g0 = g � cX
f = p+ c�X

� � cX
 in�f � cX

 tail�f = p� cX
 tail�f

and then using the estimation (7) yields

kg0kr� � kpkr� + kcX
 tail�f kr� = kpkr� + kcX

kr�ktail�f kr� � kgkr� � kcX
kr� ;

for � = 1; 2; . . ., which completes the proof. 2

Proposition 3.4: Let F � R be a �nite set of polynomials, � an admissible term well-ordering

and r� the sequence from Lemma 3.3. Then for any strong G-representation

g =
X
f2F

hff + gred

of g 2 R with respect to F and � there are satis�ed the conditions

i) kgredkr� +
P

f2F khfkr� � kgkr� ,

ii) kgredkr� � kgkr� ,

iii) khfkr� � kgkr� for all f 2 F ,

9



for all � = 1; 2; . . . .

Proof: Since the given G-representation of g is strong it can be rewritten in the form

g =

mX
�=1

c�X
��f� + gred

providing a reduction sequence

g
F
�! g � c1X

�1f1
F
�! g �

2X
�=1

c�X
��f�

F
�! . . .

F
�! g �

mX
�=1

c�X
��f� = gred

Condition i) follows by applying Lemma 3.3 to each step of the reduction sequence.
The conditions ii) and iii) are trivial consequences from i). 2

As the next proposition will show the important property ii) of Proposition 3.4 is not only valid
for polynomials but also for convergent power series.

Proposition 3.5: Let F;� and r� be as in Proposition 3.4 . Furthermore, let g =
P

�2Nn c�X
� 2

E : Then we have the following properties:

i) the series gred =
P

�2Nn c�X
�
red is convergent in E(DF ),

ii) kgredkr� � kgkr� ; for � = 1; 2; . . . .

Proof: i) follows from condition ii) of Proposition 3.4 and Lemma 3.2 since X�
red 2 R(DF ) �

E(DF ).
ii) follows from

kgredkr� �
X
�2Nn

kc�X
�
redkr� �

X
�2Nn

kc�X
�kr� = kgkr� :

2

Two very useful results we may conclude from this proposition are:

Lemma 3.6: Let F be a �nite subset of R and Nf a (power series) normal form operator with

respect to F and an admissible term well-ordering �. Then:

i) The operator Nf : E �! E(DF ) is continuous.

ii) If F is Gr�obner basis of some ideal I � R then Nfg = 0 for any element g 2 IE.

Proof: i) follows immediately from condition ii) of Proposition 3.5 and the linearity condition of
Nf.
ii) There exists a sequence of polynomials g� 2 I; � = 1; 2; . . . such that lim�!1 g� = g. From
Lemma 2.4 and the assumption that F is a Gr�obner basis, we obtain Nfg� = 0 for the polynomials
g� 2 I. Since Nf is a continuous operator it follows

Nfg = lim
�!1

Nfg� = 0:

2

The following main theorem of this paper states that there is a division formula for convergent
power series modulo an ideal I generated by polynomials. Furthermore, the remainder of g with
respect to a Gr�obner basis of I is the only element of which is E(DI) congruent to g modulo IE.

Theorem 3.7: Let I � R be a polynomial ideal generated by the �nite set F and � a term

ordering.

For g 2 E and gred 2 E(DF ) such that g
F;�
�! gred we have:

i) There exists a division formula

g =
X
f2F

hff + gred; (8)

where hf 2 E. In case that g is a polynomial the division formula is a G-representation.
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ii) Let F be a Gr�obner basis of I with respect to �. Then for any power series g0 2 E(DF ) such
that g � g0 2 IE we have g0 = gred.

Proof: i) Let g =
P

�2Nn c�X
�. According to de�nition 3.1 there are strong G-representations

X� =
X
f2F

hf;�f +X�
red

such that gred =
P

�2Nn c�X
�
red.

Therefore,

g =
X
�2Nn

X
f2F

hf;�f + gred:

Set hf :=
P

�2Nn hf;�. Using condition iii) of Proposition 3.4 and Lemma 3.2 it will follow
immediately that the power series hf are absolutely, locally uniformly convergent in K

n. The
G-representation property is obvious.
ii) By condition i) it follows gred 2 IE. Therefore, g0 � gred 2 IE \E(DF ). According to Lemma
3.6, for any normal form operator we must have Nf(g 0 � gred) = 0. But since g0 � gred is reduced
this implies g0 � gred = 0 and this completes the proof of part ii). 2

Note, that the notion of reduction introduces in part 2.1 for polynomials could be used also for
convergent power series. Obviously, a power series obtained by a reduction of a convergent power
series would be also convergent and also congruent to the �rst power series modulo the ideal
generated by F . But in general, after a �nite number of reductions nothing of interest is produced,
i.e. we do not gain constructivity. Therefore, we decided to start with the reduction notion of
de�nition 3.1, which provides immediately a useful result.
The theorem shows that the vector space basis of R=I de�ned by a Gr�obner basis of I has the
preferable property that the image of any convergent power series modulo IE represented in terms
of this basis is convergent, too. The following example shows that this property is not a matter of
course for an arbitrary vector space basis of R=I.

Example: Consider the ideal I = (y � 1)R � R = K[X;Y ]. The monomials fXkY k!jk 2 Ng give a

basis of the vector space R=I. But
P1

k=0
Xk

k!
takes the representation

P1

k=0
XkY k!

k!
in terms of the

above basis which is not convergent in K2.
During the �nal preparations of this paper we got information about a very interesting paper of
P.B. Djakov and B.S. Mitiagin ([D-M]). There is presented a division algorithm for convergent
power series modulo polynomial ideals with respect to the degreewise lexicographical term order-
ing. Since the authors did not apply the theory of Gr�obner bases in [D-M], their results are less
constructive than here. Furthermore, the restriction of the term ordering will restrict also the
possible applications. For instance, the proof of the a�ne version of Serre's graph theorem given
in the next section requires the use of an elimination ordering.

4 Applications of reduction

Very often the theory of Gr�obner basis is applied algorithmic solutions of computational tasks. In
this section we will show that this theory may be also applied to prove hard theorems.

Theorem 4.1: Let I be an ideal of R. Then IE = IE, where denotes the closure relative to

the topology of the Frechet space E.

Proof: Let g 2 IE, i.e. there exists a sequence (g�)�=1;2;... of series g� 2 IE converging to g,
i.e. lim�!1 g� = g. Let F be a reduced Gr�obner basis of I and Nf a normal form operator with
respect to F . From the condition ii) of Lemma 3.6 it follows Nfg� = 0, for � = 1; 2; . . . , and so
the condition i) of Lemma 3.6 implies Nfg = 0. By condition i) of Theorem 3.7 there exists a
representation

g =
X
f2F

hff + 0;

where hf 2 E ; for f 2 F . This implies g 2 IE and completes the proof. 2
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In the complex case, i.e. K = C , our topology coincides with the topology of local uniform
convergence. Therefore, in this situation our theorem gives a closedness of the ideal IE in the
topology of local uniform convergence in C n (cf. [WR], Theorem 4.4).
Now we come to a second application. Let V be an algebraic subset of Kn and f 2 E such that
f jV : V ! K has algebraic graph. If K = C then (by Serre's graph theorem [GAGA]) there exists
a polynomial g such that gjV = f jV (for some more details we refer to [R-W, S L]).
Now we present a di�erent proof of this fact (also for K = R) together with a construction of g.

Theorem 4.2: Let I � R be the ideal of the set V . If f 2 E has algebraic graph on V then fred
with respect to any Gr�obner basis of I is a polynomial.

Proof: Let us consider the reduction with respect to the Gr�obner basis F of I with respect to the
ordering �. We introduce a new variable Y and consider the ring RY := R[Y ] = K[X;Y ] and
choose an ordering �Y convenient for the elimination of Y (see Proposition 2.9) which coincides
with � for monomials depending only on X.
Analogously, EY denotes the ring of power series convergent in the entire space Kn+1.
By assumption the graph W = V ((Y � f)EY + IEY ) is algebraic. Therefore, there exists an ideal
J � RY de�ning the same variety, i.e. V (J) = W .
Let G be a Gr�obner basis of J with respect to �Y . Consequently, G\R is a Gr�obner basis of J \R
with respect to � and any polynomial belonging to G but not to R has a initial term depending on
Y . Note, that a polynomial or convergent power series has a unique reduced form with respect to
a Gr�obner basis, therefore, the terminology �the reduced form �, which will be used in the remaining
proof, is justi�ed.
Since Y � f vanishes on W the reduced forms of Y and f with respect to G have to be the same
according to our main Theorem 3.7 .
On the one hand side, f depends only on the indeterminates X and therefore the reduced form of
f with respect to G is the same as with respect to G\R. But the reduced form of f with respect
to G \R lies in E and is independent of Y .
On the other hand side, Y is a polynomial and its reduced form with respect to G is again a
polynomial.
Combining both results we get fred 2 R, where the reduction is performed with respect to G \R.
According to the construction of W all elements of I vanish on W . Therefore, IRY � J and
I � J \R.
Conversely, let us consider the projection �(W ) of Kn+1 to K

n parallel to the Y -axis. Then
V (J \R) = �(W ) = V (I) = V .
By de�nition I contains all polynomials from R vanishing on V , therefore, J \R � I.
In conclusion I = J \R and fred is the polynomial we were looking for. 2

From the theorem we may deduce that a convergent power series has algebraic graph on an algebraic
set V if and only if the power series reduces to a polynomial with respect to an arbitrary Gr�obner
basis of the ideal de�ned by V .
That gives a criterion to decide whether or not the graph of a given convergent power series is
algebraic on a given algebraic set V . First of all we choose an ordering and compute the Gr�obner
basis of the ideal of V with respect to this ordering. If we may prove that the result of the reduction
of the power series with respect to the Gr�obner basis has only �nite support then we may conclude
that the graph is algebraic. In contrary, if we may show that the support is in�nite then we have
proved that the graph is not algebraic. In order to facilitate the above task it should be stressed
that we have the free choice of the ordering and may try to �nd a convenient one.
Of course, the above criterion often will not lead to a decision. If the reduction of convergent power
series would be algorithmic all could be solved. Indeed, this is not the case but note also that the
question for �niteness of the support may be much easier to answer than �nding the reduced power
series.
We will close the section with an example.

Example: Consider the ideal I � R = K[X;Y; Z] generated by the polynomials

F = fX2Z2 + 3Y Z3 + 6Z4 +X2Y + 6Z3 + 6Z2 + 9Z;
12Y Z4 + 3Y 4 + 12Y Z3 + 12Y Z2 + 18Y Z;
3Z5 +X2Z2 + 3Y Z3 +X2Y g
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and the convergent power series

g =

1X
i;j=0

Y iZj

i!j!
:

Probably, it is not obvious from the �rst view whether or not g has algebraic graph over V (I).
But computing the reduced Gr�obner basis Gd of I with respect to the degreewise lexicographical
ordering gives

Gd = fZ4 + 1=3X2Z;

Y Z3 + 1=3X2Y;

X2Z2 � 2X2Z + 6Z3 + 6Z2 + 9Z;
X2Y Z � 3=4Y 4 + X2Y � 3Y Z2 � 9=2Y Z;
Y 4Z � 3Y 4 + 2Y Z2 � 6Y Z;
X4Z + 54X2Z � 171Z3 � 162Z2 � 162Z;
X4Y + 27=2Y 4 � 9Y Z2 + 27Y Z;
X2Y 4 + 165=2Y 4 � 2X2Y + 6Y Z2 + 171Y Z;
Y 7 + 492Y 4 � 4Y Z2 + 984Y Zg .

Reducing the power series g will give a result containing all three indeterminates. Nevertheless,
looking carefully, one realizes that the number of reduced monomials which are not pure powers
of X is �nite and that the support of the reduced form of g does not contain pure powers of X,
i.e. the graph of G is algebraic on V . Using the reduced Gr�obner basis

Gl = fZ5 � 2Z4 � 2Z3 � 2Z2 � 3Z;
Y 4 + 4Y Z4 + 4Y Z3 + 4Y Z2 + 6Y Z;
X2Z + 3Z4;

X2Y + 3Y Z3g

of I with respect to the lexicographical ordering this is much more obvious. One may immediately
see, that I \K[Y; Z] is zero-dimensional, and therefore, the reduced form of the power series g with
respect to Gl must be a polynomial in Y and Z since also g depends only on Y and Z.

REFERENCES

[JA] J. Apel, A relationship between Gr�obner bases of ideals and vector modules of G-algebras.
Contemporary Mathematics, Vol 131, Part 2, pp. 195{204, 1992.

[DB] D. Bayer, The division algorithm and the Hilbert Scheme. Ph.D. Thesis, Harvard Uni-
versity, 1982.

[B-S] P. Beckmann, J. St�uckrad, The Concept of Gr�obner Algebras. J.Symb.Comp. 10, pp.
465{479, 1990.

[BB65] B. Buchberger, Ein Algorithmus zum Au�nden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, Univ. Innsbruck, 1965.

[BB84] B. Buchberger, An algorithmic method in polynomial ideal theory. Chapter 6 in: Recent
Trends in Multidimensional System Theory (ed.: N.K. Bose), D. Reidel Publ. Comp.,
1984.

[G-T-Z] P. Gianni, B. Trager, G. Zacharias, Gr�obner Bases and Primary Decomposition of Poly-
nomial Ideals. J.Symb.Comp. 6, pp. 149{167, 1988.

[D-M] P.B. Djakov, B.S. Mitiagin, The structure of polynomial ideals in the algebra of entire
functions. Preprint 123, Polish Academy of Sciences, 1977.

[G-R] H. Grauert, R. Remmert, Analytische Stellenalgebren. Springer, 1971.

[ML-J] M. Lejeune-Jalabert, E�ectivit�e de Calculus Polynomiaux. Cours de D.E.A., Universit�e
de Grenoble, 140 pages, Grenoble 1986.

13



[S L] S.  Lojasiewicz, Introduction to Complex Analytic Geometry. Birkh�auser, 1991.

[TM82] T. Mora, An algorithm to compute the equations of tangent cones. L.N.C.S. 144, pp.
158{165, 1982.

[TM88] T. Mora, Seven variations on standard bases. Preprint, Univ. di Genova, Dip. di Mathe-
matica, N. 45, 1988.

[LR85] L. Robbiano, Term orderings on the polynomial ring. L.N.C.S. 204, pp. 513{517, 1985.

[LR86] L. Robbiano, On the theory of graded structures. J.Symb.Comp. 2, pp. 139{170, 1986.

[WR] W. Rudin, A Geometric Criterion for Algebraic Varieties. Journal of Math. and Mechan-
ics, Vol bf 17, No 7, pp. 671{683, 1968.

[R-W] W. Rusek, T. Winiarski, Criteria for regularity of holomorphic mappings. Bull. Polon.
Acad. Sci. 28, No 9, pp. 471{475, 1980.

[GAGA] J.P. Serre, G�eom�etrie alg�ebraique et g�eom�etrie analytique. Ann. de L' Inst. Fourier, 6,
pp. 1{42, 1955{56.

14


