
Aspects of Large Scale Symbolic Computation Management

Joachim Apel

Universit�at Leipzig, Institut f�ur Informatik

Augustusplatz 10{11, D{04109 Leipzig, Germany

E-mail: apel@informatik.uni-leipzig.de

Uwe Klaus

Hochschule f�ur Gra�k und Buchkunst Leipzig

W�achterstr. 11, D{04107 Leipzig, Germany

E-mail: uklaus@hgb-leipzig.de

Abstract

The special-purpose computer algebra system FELIX is designed for computa-

tions in constructive commutative and non-commutative algebra. In this paper

we discuss some features of the system supporting the computation of rather com-

plex problems, especially standard basis computations, using standard hardware.

There is a �rst aspect concerning the de�nition and implementation of the basic

data types which should be a good compromise between space and time e�cient

representations of the algebraic objects. Usually, rather complex computations

are very time consuming (up to weeks) and often require several attempts. So,

there are included special session saving methods in FELIX which allows to backup

the attained intermediate results in form of memory images into special session

�les and to restart later on. Finally, we describe our e�orts crunching complex

problems by parallelization. The implemented interface is based on stream sockets

and includes a special protocol for the data exchange. It supports the distributed

computation on heterogeneous, loosely coupled systems.

1 Introduction

FELIX is specially designed for computations in and with algebraic structures and sub-

structures. Buchberger's algorithm for the computation of Gr�obner bases of polynomial

ideals and its generalizations to non-commutative rings play a central role in the system.

It is well-known that the complexity of the algorithm is horrible. In fact, it is already

double exponential in the number of indeterminates in the simplest case of polynomial

rings. Memory requirements of Mega bytes and time requirements of hours are not

unusual in practical applications. Hence, the management of large scale symbolic com-

putations is a crucial point in the design of a computer algebra program. In this paper

we will report about some of the FELIX-facilities supporting large computations.

First of all, large scale computation requires powerful memory management tools.

Creating and releasing intermediate objects often leads to a cleft memory after a short

time. Moreover, the work with a multitasking operating system requires a moderate

memory allocation strategy. The system should start with only a reasonable large

amount of memory. But it should have also the possibility to enlarge its data segment

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226141066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Linear memory model

EIP ESP

EBP

EDI

ESI

EDX

ECX

EBX

EAX

GS

FS

SS

ES

DS

CS

031

General registerSegment register

I 80386

...

memory block
Linear

()

0

4

8

...

memory
Physical

Memory page

�a 4 k Byte

()MMU

later on if necessary. Furthermore, it may happen that an intermediate calculation

requires much memory which will be not needed afterwards. So, the system should be

fair enough to release some of its allocated memory for redistribution by the operating

system. Section 2 of this paper will explain the memory management tools of FELIX.

A second feature which is very convenient for large scale computations is a debugging

mode. A special signal causes the system to start a debugging shell. The user may

examine the sequence of called functions including their parameters and local variables.

Furthermore, he may execute an arbitrary number of statements, e.g. he can reassign

variables and rede�ne functions. In particular, reassigning parameters or local variables

makes only sense during the development of algorithms. The user is responsible himself

for the consequences of his manipulations. The debugging mode will not be subject of

this paper. Only its use for saving the state of a session will be sketched in Section 2.

Furthermore, the possibility to compile functions is very important to speed up

computations. FELIX has got an in-build compiler which is explained in [AK93].

Finally, a promising way for attacking a large scale computation is to cut it into

pieces which are solved in parallel. Section 3 informs about the parallel concepts

implemented in FELIX. The concept is based on the Berkeley UNIX 4.xBSD interprocess

communication facilities. More precisely, messages are exchanged according to the

Internet protocol TCP/IP via stream sockets. A byproduct of the parallel concept is a

fast machine independent saving mechanism for selected data.

2 Basic data types and memory management

Current multitasking operating systems usually support a linear memory model for

application programs. This model is common in use and simpli�es the implemen-

tation over several platforms. Figure 1 underlines the situation for systems based

on Intel 32 bit processors (I 80386/486, Pentium). The segment selectors are �xed

by the operating system and select a linear memory block. The processor's in-built

memory managing unit (MMU) maps this block pagewise to the physical memory or

2

additional swap space. The application program can only modify the general purpose

register without restrictions. These registers are of machine word size and contain ei-

ther signed/unsigned integers or pointers/o�sets relative to the selected linear memory

block. So, an important designing principle of FELIX was that every algebraic object

independent from its size and complexity can be identi�ed by a single machine word.

The basic data types inside FELIX strongly reect properties of the represented

algebraic objects. Any data is either an atom or a sequence of other data (lists). So,

the general structure is LISP{like, but there are additional atomic data types which are

particularly adapted to our problem classes:

� names,

� integers,

� rational numbers,

� character strings,

� exponent vectors,

� bit�elds, and

� packed lists/arrays.

A consequence is that in contrast to many LISP{implementations the storage model

of FELIX is inhomogeneous, i.e. di�erent data types are stored in di�erent storage areas

(see �gure 2). For the typical layout of UNIX programs we refer to [St92].

A name cell contains three di�erent values simultaneously. Depending on the syn-

tactical context of a name we may refer to:

� its value as a variable with dynamic binding according to the sequence of function

calls,

� its global property (similar as in LISP), or

� its operator de�nition.

Note, that there are also local variables with static binding according to the sequence

of function calls. But after parsing an operator de�nition the references to the concrete

names are replaced by such to special virtual (non-name) objects maintained only on

the runtime object stack. The implementation of integers distinguishes between short

and long numbers. Shorts are within the range of a machine word and stored directly

in their cells. The data type of exponent vectors was created to support a commutative

polynomial arithmetic. It is based on a sparse representation of the exponent vector of a

monomial. Within FELIX there are included sixteen machine routines which are suitable

for an e�cient implementation of a polynomial arithmetic. The bit�elds correspond to

the non-commutative case. A non-commutative monomial is stored as a sequence of

integers representing the ring indeterminates. These integers are coded with some bits

only since the number of ring indeterminates is usually small. Long integers, character

strings, exponent vectors, bit�elds, and packed lists, which correspond to data of variable

size, are represented by two parts: a cell where they are registered, and a heap entry

where their elements are stored (see �gures 3, 4). A more detailed description of the

internal representations can be found in [AK94].

3

Figure 2: FELIX memory map

FELIX machine code

object stack

?

constants of linked routines

program stack

?

name cells/linked modules

packed list cells

exponent vector cells

bit�eld cells

character string cells

short integer cells

long integer cells

rational number cells

node cells

heap

6

available heap memory

6

?

m

o

v

a

b

l
e

a

e

r

a

6

?

f
i
x
e
d

a
e
r
a

FELIX memory layout

text segment

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

data segment

command-line arguments
environment variables

stack segment

?

reserved for os

(e.g. shared libraries)

Typical UNIX memory arrangement

6

?

6

available memory

y
r
o
m
e
m

a
l
l
o
c
a
t
e
d

Complex objects are constructed either as binary trees by node cells in the usual

LISP{like way or by arrays, the so called packed lists.

There are two di�erent kinds of garbage collections. The �rst one is activated if

no cells are available. It is performed in a usual way. First, there are marked all the

current occupied data beginning with the initial data, the name cells, the temporary

computed elements on the runtime object stack, the constants of the linked modules,

etc. and then recycled all the unused cells.

The whole available memory (see �gure 2) may be used to extend the heap. If a new

heap entry is requested it will be stored immediately behind the heap and the pointer

FREEHEAP at the begin of the available memory will be updated. It may happen that

the remaining available memory is too small to create a new entry, although, lots of

memory are unused. For this reason, there is a second kind of garbage collection to

4

Figure 3: Cell structure

`variable size' cell

pointer at next

pointer at heap entry

`Variable Size' Cell

hash pointer

short integer

Short Integer Cell

pointer at list element

or NIL

pointer at next node cell

Node Cell

pointer at numerator

pointer at denominator

Rational Number Cell

hash pointer

pointer at denotation

pointer at operator def.

pointer at global prop.

pointer at value

Name Cell

Figure 4: Heap management

length of heap entry: 3

< element#1 >

< element#2 >

< element#3 >

length of heap entry: 2

< element#1 >

< element#2 >

length of heap entry: 100

< element#1 >

...

< element#100 >

length of heap entry: 2

< element#1 >

< element#2 >

6

free heap memory

...

�
�
�

�
�
�
�
NIL

�
�

NIL

�

-hhhh
hhh

-
e
e
e
e
ee-

������

-

#
#
#
##
-

HH
HH

HH

-

XXX
XXX

XX

- (((((((

- PP
PP

PP

-

FIRSTCELL -

FREECELL -

LASTCELL -

FREEHEAP -

HeapCellsPointers

��*

contract the heap. Since the chain formed by the �rst pointers of all `variable size'

cells reects the time of creation of the heap entries, passing through this chain causes

working o� the heap linearly from the bottom to the top. This enables contraction

without managing gaps (see �gure 4).

A combined contraction and movement of the heap towards the memory end pro-

5

Table 1: Conditions for allocating new cells

condition zone 1 zone 2 zone 3 zone 4

number of free cells is less than a prede�ned min-

imum

p p p p

the shortage of the same kind of cells was the

cause for this and the last garbage collection

p p
| |

ratio number of free cells
number of allocated cells

1

2

1

4

1

8
|

Table 2: Conditions for allocating additional heap memory

condition zone 1 zone 2 zone 3 zone 4

free heap size is less than a prede�ned minimum
p p p p

ratio
size of free heap memory
size of used heap memory

1

1

1

2

1

4

1

8

vides the necessary space to extent the number of cells of any sort. So, cells can be

created at that time when they are requested. If the free heap memory is insu�cient

to satisfy some request after a heap contraction the data segment size is enlarged by

the UNIX sbrk(int incr) system call.

Since FELIX is designated to run in a multitasking environment we worked out some

heuristics to ensure that the system is allocating only as much memory as necessary,

and not as possible. Depending on the amount of the physical memory we introduced

four memory boundaries. Exceeding such a boundary will increase the conditions for

cell or heap memory allocation.

� Boundary 1: initial and minimal allocated memory (5{20 % of physical memory)

The FELIX session can coexists with other memory intensive programs well.

� Boundary 2: about half of physical memory

The FELIX session dominates the system and should be combined only with I/O{

intensive programs.

� Boundary 3: 15 % below physical memory

No other applications except necessary operating system stu� is possible.

� Boundary 4: all the physical memory

Further success can not be expected. The user should save the state of the

computation for further attempts on stronger hardware and give up.

In dependence of the size of the data segment (the zone between two of the bound-

aries) there will be performed separate checks for each cell type after each (cell) garbage

collection. Table 1 shows the kind of checks taking place within the four zones. The

sign | means that a check is skipped since allocation of new cells is disabled in order to

6

Table 3: Condition for performing full cell contractions

condition zone 1 zone 2 zone 3 zone 4

number of garb. collect. forcing a contraction 2048 1024 512 256

avoid enlarging the data segment too much. The sign
p
stands for enlarging the corre-

sponding cell area in case of satis�ed checks. If the ratios fall below the fractions given

in the table then new cells will be allocated. Similar remarks are valid for enlarging

the heap memory after (heap) contractions (see table 2).

Nevertheless, the situation may happen that �rst a certain kind of cells is extensively

allocated and later on lots of unused cells occupy the data segment while the demand

for other cells is growing. Therefore we introduced a special type of garbage collection

capable of contracting the cells such that all currently bounded cells are moved to a

continuous memory block. These (cell) contractions are regularly performed after every

n-th garbage collection (see table 3). At the same time a certain upper part of the free

heap memory is released.

The FELIX session saving concept also takes advantage of this technique. The in-

built function save called by

save(file name)$

performs such a contraction and writes the data segment without the free heap

memory (compare �gure 2) into the session save �le �le name. Obviously, the contrac-

tion saves lots of disk space. Furthermore, information about open input and output

�les is kept in the session save �le. The computation can be restarted later on by calling

load(file name)$:

Output �les are opened in append mode and input �les are opened for reading and

repositioned to the o�sets at saving time according to the special information about

open �les.

There is also an interface to the UNIX signal facilities (see [L90]). Receiving the

signal SIGQUIT interrupts the computation and gives the user the opportunity to in-

teract with the system (e.g. to debug or to save the session). Also, the occurrence of

SIGUSR1 and SIGUSR2 can be handled by user de�ned functions. These signals can be

delivered user independently using e.g. the crontab service and session saving may be

performed automatically.

3 FELIX{interprocess communication

We start with a rough description of the parallel concept implemented in FELIX based

on the Berkeley UNIX 4.xBSD interprocess communication facilities. Among the vari-

ous possibilities provided by Berkeley UNIX 4.xBSD our choice was that each process

separately creates its socket and that the communication is performed via the Internet

protocol TCP/IP (see [St94]) since this is a common method allowing the communica-

tion between processes running at di�erent machines. Furthermore, we preferred the

7

use of streams rather than datagrams, i.e. we establish a permanent connection between

both sockets which is used for the data transfer. The main argument for the stream

philosophy is the fact that a stream works according to a reliable �rst-in/�rst-out strat-

egy. So, the master process may feed the slaves without waiting for a con�rmation of

the reception. Hence, the overhead for stream controlling is less than for datagrams

from the view point of the programmer. The more frequent the transfer rate the more

preferable is our decision. A further important advantage is that a stream appears to

the programmer as a sequential �le which enabled us to use the parallel mechanisms

also for storing intermediate results of large scale computations. A disadvantage of

the stream concept is that it is more susceptible to network errors since broken pipes

cannot be repaired but has to be reinstalled. For an overview about the interprocess

communication types under Berkeley UNIX 4.4BSD we refer to [S94].

We summarize, two FELIX-processes A and B may communicate via stream sockets

using the Internet protocol TCP/IP. Establishing a connection is asymmetrical. Each

of the processes A and B creates a socket but then one of the processes, let us say A,

will be the server and the other, i.e. B, the client of the connection. The server will

provide a port for the connection and then wait for the clients reply. The client has

to know the port address in order to build up the connection and to inform the server

about the successful installation. The connection is a (duplexed) channel between A

and B which consists of two one-way communication mechanisms called pipes. There

is a pipe (A;B) which serves A for writing and B for reading and a second pipe (B;A)

with the opposite meaning for A and B. The processes A and B can access the channel

via handle numbers a and b, respectively. Note, that both pipes (A;B) and (B;A) are

referred by the same handle number within the same process. Which pipe has to be

used gets clear from the context. After establishing a channel the meaning of A and

B is not longer asymmetrical. Both processes can read from and write to the channel,

and watch the channel for events. At the UNIX level the data transfer is byte oriented.

In order to simplify the programmers work with FELIX the systems provides read and

write operations which are FELIX-object oriented. Later we will describe the details of

the underlying protocol for the data exchange. Finally, each process can close its own

channel end. This will not a�ect the socket of the other process but, of course, the

channel will be destroyed and one has to ensure an appropriate error handling of the

second process after the next (unsuccessful) access attempt. The same error handling

will be invoked by both processes if for some other reason the channel was broken.

3.1 Setting up a stream socket connection

Let A and B denote two FELIX-processes. The creation of a channel connecting A and

B requires the distinction between server and client. Let us say: we install A as server

and B as client of the connection.

Figure 5 shows the instructions necessary for opening the channel at the server side.

The function call

socket()$

creates a new socket and returns a positive integer soc which is the handle of the socket.

Note, however, that this handle number is only of intermediate importance. As soon

as the connection is established another handle will be used for the communication.

The second statement e�ects that the process will be the server of the channel ending

8

Figure 5: Installing a server A

soc := socket()$

por := server(soc)$

a := accept(por)$

Figure 6: Installing a client B

b := socket()$

client(b; inet; por)$

at socket soc and returns the port number por used for the connection. Finally, the

function call

accept(por)$

causes the process to wait for a con�rmation by the client that the connection is es-

tablished. The resulting positive integer a is the handle number for the access to the

input and output streams belonging to the channel.

Let us consider now �gure 6 describing the connection establishing process from the

client side. Here the �rst statement will again create a new socket and return its handle

number b. But in contrary to the server this handle number will be used later for the

communication. The second statement e�ects to connect the handle b to port por at

the machine with the Internet IP number inet. If the connection could be established

the result of the function call will be TRUE and FALSE, otherwise. Only, afterwards

the accept-function call in �gure 5 can be �nished.

We see that the client has to get informed about the Internet number of the partner

process and the associated port, i.e. the name bound to the server socket (see [S94]).

Establishing channels for the communication between FELIX-processes working in par-

allel by applying only these tools would be rather tedious. One would have to start

the FELIX-sessions on both machines1 and then to perform step by step the above in-

structions for installing server and client. In order to make the work more comfortable

we implemented a function connect which creates a slave process2 which can be fed

with tasks to be solved in parallel to the master. The connect-function is called by

the server process with exactly one parameter, namely, a string of the form host os.

The �rst part host of the string is the name of the host machine where the client is to

be started. The second part os, separated by the character , speci�es the operating

system running on the host machine. Up to now the following operating system tags

are allowed: SPC for the Sparc system on Sun workstations, BSD for NetBSD, and

LNX for Linux both running on IBM-compatible personal computers based on a 32

bit processor. The user needs to have an account on the host machine and he has to

1Of course it is also allowed to start both sessions at the same machine.
2Note, that this is not a child process in the sense of UNIX, since it is not a copy of the original

process but a new started FELIX-session with a particular initialization.

9

ensure by editing the �le .rhosts that he is allowed to start a remote shell on this

machine without being asked for a password. The action of the function call

connect(host os)$

can be roughly, i.e. ignoring any details concerning safety aspects such as avoiding

dead locks in case of failing connections, described as follows. There are performed the

�rst two statements of �gure 5. Then it is called a operating system remote shell which

executes the UNIX-command:

rsh <host> "(FXMODULE=<fxmod>;export FXMODULE;

FELIX=<fxclient>;export FELIX;

SERVER=<server>;export SERVER;

PORT=<por>; export PORT;

cd <fxclient>;

fxexe)" &

The names enclosed in angle brackets are place holders for the following parameters:
<host> stands for the name of the host machine in a form resolvable by

the name server of the server machine.

<fxmod> denotes the directory where the FELIX module �les are located

at the host machine.

<fxclient> denotes the work directory where FELIX has to be started in the

client mode at the host machine.

<server> denotes the name of the server machine.

<por> is the number of the port which will be used for the connection to

be established.
The parameter <host> is taken from the actual parameter of connect. <por> is the

port number resulting from statement two of �gure 5. The parameter server is com-

puted using the UNIX-command hostname during each session start and remains global

knowledge during the whole session. The value of the parameters fxmod and fxclient

are computed depending on the operating system tag os contained in the actual param-

eter of the connect-call. The execution of the above UNIX-shell-command will start a

new FELIX-session on the host machine. Because of the parameter fxclient the session

start will include the statements of �gure 6. FELIX has got a function environment

which allows to access the UNIX environment. By that means it has access to the

name of the server machine and the port number provided for the connection. The

initialization of a client session includes the construction of a list of allowed servers.

Using this list the Internet number belonging to the server machine can be resolved.

Note, that the above shell command is running in parallel to the FELIX-server session.

If the start of the command was successful the function connect will continue its work

with performing statement three of �gure 5. The result of the function will be the

handle number a serving for the communication with the new created client.

Note, that compared with the step-by-step method a big advantage of the function

connect is the much easier handling and that the client session can run without having

an output window. As a disadvantage one could consider the fact that it is impossible

to work directly with the client. Actually, the behaviour of server and client will remain

asymmetrical also after establishing the channel.

10

Our performance strategy of a client does not bind its life time to the solution of

one particular task. In order to ful�l the requirements on a slave a client-FELIX-session

has another interpreter loop as a usual FELIX-session. We have a cyclic performance of

Watch channel { Read channel { Eval { Write channel

in contrary to the usual cycle

Input { Eval { Output .

Sending the object (0bye) to the client will cause to �nish the client session3. After-

wards, the server should release also its own handles.

3.2 Data transfer across a channel

Let hdl be the handle number of a client or server process which addresses a channel

for the communication with the partner.

There is a function rawread called by

rawread(hdl)$

which takes hdl as its only argument. The semantics of this function call is to read one

FELIX-object from the input stream belonging to the channel addressed by hdl and to

return it as result. But, note, if the input stream is currently empty then the session

will be blocked and wait until an object arrives.

A second function rawwrite allows to send a FELIX-object to partner processes.

Sometimes information has to be distributed to more than one partner. The transfer

of an object requires to convert it according to the communication protocol. In order

to avoid multiple conversions the function rawwrite may feed more than one client

simultaneously. Let n be a positive integer which is at least as large as the largest

handle number to be served. It is created a packed �eld (array) ports of length n and

assigned the value TRUE to the (i + 1)-st entry of ports if the channel with handle i4

should receive the object and to FALSE, otherwise. The call

rawwrite(0ports; obj)$

will transmit the object obj to all handles addressed in the above way by setting the

corresponding entry of ports to TRUE. The result of the function call is the number of

processes for which the transfer was successful, i.e. where it was possible to write to the

corresponding stream but it is not tested whether the stream can be read successfully.

As a side e�ect the packed list ports is manipulated in such a way that only the entries

corresponding to channels where the write operation was successful have the value

TRUE and all other the value FALSE. So, the programmer can control the state of the

clients and perform an error handling if necessary. Note, that rawwrite will block the

process if a stream bu�er is full and will wait until it can �nish the write operation.

Also any receiving process will be blocked as soon as it tries to read the object from

its channel.

Finally, the function multiplex allows to watch channels. The function call has the

syntax

multiplex(0ports1;0 ports2;0 ports3; t)$

3This includes to close all open handles, hence, also the socket is closed automatically.
4The range of handles starts with 0.

11

The meaning of ports1, ports2, ports3 is the same as for rawwrite. The �rst array

declares the channels to be watched for incoming messages, the second array tests

whether the output pipes are ready for writing and the third array corresponds to

exception events. One or two of the arrays may be replaced by the name NIL which

abbreviates that no channels should be watched for events of the corresponding type.

So the most important application is to replace 0ports2 and 0ports3 by NIL but we

decided to pass all possibilities provided by the Berkeley UNIX system call select to

the programmer. The last argument t de�nes a watching duration. If t takes the value

NIL then the process is blocked until at least one event occurs. But t can also be a

natural number which gives the maximal duration in milliseconds. In particular, if we

watch for incoming messages and use t = 0 then we can check whether there is some

non-empty input stream (among the selected channels), i.e. some unread object, or

not. At latest, if there occurs a controlled event the function will �nish its work and

return the number of registered events. Note, that e.g. an incoming message will be

registered by any multiplex-call controlling the corresponding input channel until it

had been read using rawread. Again we have the side e�ect that the entries of ports1,

ports2, ports3 corresponding to a registered event are updated. A desirable feature

of multiplex would be to test whether an output stream bu�er is empty enough for

keeping the next object to be transferred. However, this is impossible. So it is not

always possible to avoid a jam in some stream which will block the writing process

until the partner process will remove objects from the stream.

3.3 Transmission protocol

Recall the fact that the functions rawread and rawwrite work FELIX-object oriented.

In Section 2 we mentioned that a FELIX-object can be an atom or a list. Furthermore, in

that section we described some details concerning the internal representation of atoms.

In addition, we have the data type of node cells which allows to build up lists. A node

cell consists of two pointers to other FELIX-objects. The FELIX-object starting at a node

cell is a binary tree. Its left (�rst) branch is the object addressed by the �rst address of

the cell and its right (rest) branch is the object where the second address refers to. This

is the usual LISP{philosophy for building up complex objects5. In contrary to LISP we

restricted the class of constructable binary trees by considering only genuine lists (i.e.

the right most branch is NIL). Note, however, that using destructive functions which

can replace the �rst respectively the second branch by any other object, in particular

the object starting at the node itself, the user might construct objects which contain

cycles.

So we summarize, a FELIX-object may be an atom or a list, i.e. a sequence of

\smaller" objects. There are functions ltop and ptol which convert a list to a packed

list (array) and vice versa in the usual way. Note, that FELIX allows also arrays of

length zero, i.e. with no entries.

Atoms of the types string, vector, and bit�elds are transmitted by sending �rst one

byte which is a tag characterizing the atom type and afterwards word by word the heap

entry belonging to the atomic object. Note, that the �rst word always contains the

information about the number of remaining words of the heap entry according to the

internal representation of a variable size object on the heap shown in �gure 3.

5The �rst branch is the CAR and the rest branch the CDR of the object.

12

Table 4: Type tags used for the data exchange protocol

Object type Tag character

String "

Vector [

Bit�eld n
Short integer 0

Long integer 1

Rational /

Name @

Packed list f
(Node) list (

Since the internal representation of integers (byte order) depends on the underlying

processor the data exchange between di�erent platforms requires the conversion to a

unique code. Our choice was the big endian6 code. On Sun workstations no conversion

is necessary but on Intel-based architectures (little endian) we have to convert integers

before sending and after receiving them. So, a short integer will be transmitted by

sending the tag character 0 followed by the big endian code of the integer. A long

integer will be transmitted by sending the 1-tag, the number of digits (of word size)

and �nally digit by digit converted to the big endian code. A rational number will be

send as the tag = followed by �rst numerator and second denominator, where both of

them are either short or long integers encoded as described above. A name object is

transmitted as the tag @ followed by a byte giving the number of characters belonging

to the denotation of the name and then character by character the denotation. Note,

that only the denotation and not the entire object is subject of transmission.

The transmission of packed lists and lists formed by nodes is performed recursively.

Before the transmission a list is converted to a packed list. After the tag characterizing

the type it follows the number of entries and then entry by entry the objects of the

sequence. Each object is decoded itself according to the protocol.

Table 4 shows all data type tags used for the protocol. According to the protocol a

receiving process is able to reconstruct the arriving object. In particular, the number

objects and the lists formed by nodes are converted back to the appropriate internal

representation.

The protocol is based only on FELIX-object conventions. Implementation depending

facts as integer representations or even addresses have no inuence on the transmitted

data. Clearly, the transfer of absolute addresses makes no sense even for processes

running on the same platform since we do not support shared memory access. Our

philosophy has the following inconvenient side e�ect. Complex objects (lists and packed

lists) can share subobjects, i.e. they can refer directly or indirectly to one and the same

smaller object. After transferring both objects to another process via a channel this

property will be lost, in general. If the common subobject is an atom di�erent from

a packed list then the unique data representation will help (see [AK94]) but if the

subobject is a packed list or a node list then only structural equality is preserved.

6Most signi�cant byte is stored �rst.

13

Figure 7: Storing selected data

create("x.sv")$

hdl := open("x.sv"; 1)$

por := consplist(hdl + 1)$

setplist(por; hdl + 1; true)$

rawwrite(0por; x)$

rawwrite(0por; list(0assign; list(00;0 x); x))$

close(hdl)$

Hence, tasks which make essential use of the physical equality, i.e. the equality of

addresses, of objects cannot be passed to other processes. The user should be also

aware the fact that for the same reason data sometimes will occupy more memory in

the receiving process than it did in the producing process.

3.4 Saving data via the FELIX-interprocess communication protocol

In Section 2 we mentioned the FELIX-facility to save the whole state of a session into

a �le. However, note that the session must not have open sockets for interprocess

communication. Later such a �le can be loaded very fast in another session and the

execution can be continued under the same conditions as before. Since all o�sets are

relative it is possible to run the save-�le on any platform which has the same processor

and the same version of the operating system as at saving time. Nevertheless, save-�les

are machine dependent, e.g. it is impossible to load a �le under Linux which was saved

under Solaris.

Therefore, FELIX supports a second saving mechanism. It allows to write selected

objects into a �le. In contrary to the session save mechanism the input of this �le

will not restore the whole state of the old session. But, it will also not destroy the

settings of the new session which are independent of the saved data. Recall that one

argument for our decision for stream sockets was that the same concept can be applied

also to writing data to and reading data from ordinary �les in a machine independent

representation which is very closed to the internal representation.

Let us consider the following example. We want to store the value of the variable

x to a not yet existing �le with name x.sv. The solution is shown in �gure 7. After

creating the �le x.sv it is opened for writing. It is constructed a packed list with all

entries FALSE at initial time. Then the entry corresponding to the handle hdl is set to

TRUE. It may follow an arbitrary number of rawwrite operations which will write the

second argument to the �le according to the conventions of the protocol described in

the preceding subsection.

Figure 8 shows how the stored data can be restored later on. The �le x.sv is opened

for read access which will place the �le pointer automatically at the begin of the �le.

Then the objects are read in from the �le. Note, that only the value of x without

information about the name x itself is stored during the �rst output operation. So the

variable x will not be inuenced by the �rst rawread-call presented in �gure 8. But

14

Figure 8: Loading selected data

hdl := open("x:sv"; 0)$

y := rawread(hdl)$

eval(rawread(hdl))$

close(hdl)$

the input of the second object will yield the appropriate assignment instruction. Its

evaluation will cause the assignment of the old value of x to the variable x.

Note, that such a way of storing huge expressions is much more e�cient than to

store it in the natural FELIX-input format since the necessary conversions before the

output and after the input are much less time consuming. However, loading a session

save �le is still much faster then reading stored data using the rawread-function. The

main reason for this di�erence is the signi�cant larger number of calls of the operating

system routine read in the latter case.

Summarizing we can say that storing intermediate results according to the con-

ventions of our interprocess communication protocol is machine and operating system

independent but still very closed to the internal representation at an arbitrary platform.

References

[AK93] J. Apel, U. Klaus, Data Representation and In-built Compilation in the Com-

puter Algebra Program FELIX. LNCS 721, pp 173-192, 1993.

[AK94] J. Apel, U. Klaus, Representing Polynomials in Computer Algebra Systems.

Proc. New Computer Technologies in Control Systems, Pereslavl 1994.

[L90] S.J. Le�er, M.K. McKusick, M.J. Karels, J.S. Quarterman, The Design and

Implementation of the 4.3BSD UNIX Operating System. AddisonWesley, Reading,

Mass., 1990.

[S94] S. Sechrest, An Introductory 4.4BSD Interprocess Communication Tutorial. In:

4.4BSD Programmer's Supplementary Documents, O'Reilly & Associates, Inc.

1994.

[St92] W.R. Stevens, Advanced Programming in the UNIX Environment. AddisonWes-

ley, Reading, Mass., 1992.

[St94] W.R. Stevens, TCP/IP Illustrated, Vol. 1: The Protocols. Addison Wesley,

Reading, Mass., 1994.

15

