
A Note on Data Types Supporting E�cient

Implementations of Polynomial Arithmetics

Joachim Apel

Universit�at Leipzig, Institut f�ur Informatik

Augustusplatz 10{11, D{04109 Leipzig, Germany

E-mail: apel@informatik.uni-leipzig.de

Uwe Klaus

Hochschule f�ur Gra�k und Buchkunst Leipzig

W�achterstr. 11, D{04107 Leipzig, Germany

E-mail: uklaus@hgb-leipzig.de

Abstract

There are discussed implementational aspects of the special-purpose computer
algebra system FELIX designed for computations in constructive algebra. In partic-
ular, data types developed for the representation of and computation with commu-
tative and non-commutative polynomials are described. Furthermore, comparisons
of time and memory requirements of di�erent polynomial representations are re-
ported.

1 Introduction

Developing our special-purpose computer algebra system FELIX we have payed many
attention to the space and time e�ciency of representing polynomials. The system is
specially designed for computations in and with algebraic structures and substructures.
The basic domains implemented so far are commutative polynomial rings, free non-
commutative algebras, quotient rings, and �nitely generated modules. [AK91b] gives a
more detailed overview about the algebraic capabilities.

For simplicity we will call both, elements of polynomial rings and of non-commutative
algebras, polynomials. Crucial for all applications is an e�cient implementation of the
polynomial arithmetics. Since Buchberger's algorithm plays a central role in the system
we have to consider also operations related to term orderings and matching problems.
This is the reason why we put many e�orts in investigating di�erent data structures for
monomials and polynomials.

In this paper we want to report about di�erent investigated possibilities of data
representation. We will not deal with the design of new fast arithmetic algorithms. Our
subject is to develop data types which are especially adapted to the requirements of
the common algorithms. In order to obtain a maximal speed up we employed hardware
features as well as low level programming. Such a data type consists of the de�nition
of the associated memory area, the speci�cation of some basic functions acting on the
data, and the description of the memory management for this data type.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226141061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Many applications in computer algebra are extremely space consuming. One pos-
sibility to reduce the space expansion is to keep data unique, i.e. to ensure that an
object is stored only once in the memory and another request provides a link to the
old object. But the more complex objects are involved, e.g. lists or graphes, the higher
is the management overhead caused by performing existence checks. Moreover, it is
strongly advisable to avoid any destructive data manipulation. Our compromise was
to apply unique representation strategies to the atomic data types but not to lists and
arrays.

In Section 2 there are given di�erent possibilities for representing polynomials. Both
the question of building up normal forms from an algebraic point of view and the ques-
tion of the internal representation of sums of terms are discussed. All the facts stated
in that section are well-known and are included in the paper mostly for completeness.

The Sections 3 and 4 deal with questions concerning data types designed for exponent
vectors of commutative terms and for words representing non-commutative terms. The
decision for a particular data structure can always be only a compromise since the
time and space behaviour depends on the proportions between the use of the di�erent
operations, on the number of variables, on the number of terms of the polynomials, etc..

The e�ciency of data types will be compared by analyzing the computation of some
rather complex examples. All computing times are measured on a Sun SPARCstation10
Model M51.

2 Polynomial representation

Before starting to describe implementational tricks we will discuss possible normal forms
of elements of a polynomial ring R = A[x1; :::; xn] from the algebraic point of view.

First of all, we want to state that R is an A-module. If A is a �eld it is even an
A-vector space. The most common way to represent the elements of a polynomial ring
in a computer algebra system is to utilize this module structure. The polynomials will
be expanded with respect to the module basis formed by the elements xi11 � � � xinn . Such
a normal form is called distributed representation.

Caused by the ring isomorphism R ' R0 = A[x1; :::; xn�1][xn] it is possible to con-
sider the polynomials as elements of the ring R0. Using the distributed representation
in R0 and representing the coe�cients recursively also by this method provides a second
normal form of polynomials called recursive representation.

If in addition A is a unique factorization domain then the same applies to the ring
R. Presumed that the factorization in R may be carried out algorithmically there is
another possibility of representing the elements of R in a unique way, namely, as the
product of its factors.

In order to ensure uniqueness of the representations the module basis of R has to be
ordered and in case of factorized representations additional conventions about the use
of units have to be made.

Factorized normal forms are rather compact and can save a lot of memory. However,
the management overhead, in particular the computation of normal forms, is incredible
time consuming and, therefore, this kind of normal forms will not be considered in this
paper.

The main advantage of the recursive representation is the possibility to introduce
new variables during a session without reorganizing previously computed expressions.

2

Therefore, the recursive representation of polynomials is used very often in computer
algebra systems which are working without explicit declaration of the algebraic working
domain. The distributed form of a polynomial is preferable for many arithmetic opera-
tions. Some algorithms, e.g. if Gr�obner basis techniques are involved, strongly depend
on term orderings. In this case the distributed representation is almost unavoidable.

Now, we consider the more technical details of the internal representation of a poly-
nomial. Independent on recursive or distributive normal form a polynomial appears as
a sum of monomials where each monomial is a product of a coe�cient and a module
basis element. If the ordering of the basis elements is equivalent to the natural numbers,
i.e. for any basis element there are only �nitely many lower ones, then the polynomial
can be characterized simply by the sequence of its coe�cients. For instance, all degree
compatible orderings, i.e. such orderings where among two basis elements of di�erent
degree always that of lower degree is the smaller one, have the assumed property. But
there are also a lot of important (even noetherian) orderings which do not satisfy the
demand, e.g. pure lexicographical orderings. If a term ordering is equivalent to the
natural numbers then the associated basis element can be deduced from the position
of its coe�cient in the sequence. In order to get a �nite object this sequence will be
truncated at the largest monomial with non-zero coe�cient. This method has the ad-
vantage that no space is required for storing the basis elements. Furthermore, there
are fast implementations for the arithmetic operations. On the other hand, also zero
coe�cients have to be stored which a�ects wasting memory and computing time in case
of sparse polynomials.

The number of basis elements satisfying a certain degree limit indicates that dense
polynomials are almost of no interest in multivariate applications. For instance, there
are

�
d+n

d

�
terms of degree not larger than d in the polynomial ring in n indeterminates,

i.e. in the case of 10 indeterminates we have already 184,756 terms with degree up
to 10. In the case of non-commutative polynomials the situation is still worse. There
are nd terms in n indeterminates of exactly degree d. The implementation of a data
type should reect this fact by representing a polynomial as a sequence of its non-zero
monomials given by the coe�cients and the associated terms. The question of the
internal representation of terms will be discussed in the next two sections. The internal
structure of the coe�cients will not be considered here since it depends on the coe�cient
domain, e.g. a ring of numbers or a polynomial ring.

Neglecting the question of a tag for the data type of the object there remain two
principle ways of storing polynomials. First there can be used lists (see Figure 1) of
monomials. The second variant is to arrange the monomials in an array. An array,
in FELIX also called packed list, is a coherent memory block of a certain length (see
heap entry in Figure 2). The array method saves a lot of memory since pointers to
succeeding monomials are not necessary. Furthermore, the array method allows to
access any term of the polynomial in a constant time while the average time required
for the list representation depends linearly on the number of terms. Working with
Gr�obner bases it might be useful to be able to reorder previously computed expressions
with respect to a new term ordering. FELIX uses the quick sort algorithm which is
known to have minimal complexity for sorting problems. The array structure �ts much
better to the required inplace changes and access to arbitrary elements than the list
form. Moreover, sorting a list it is even better to convert it �rst into an array, sort it,
and then to convert it back. Table 1 gives a comparison of times necessary to reorder

3

Figure 1: Representation of the sequence (< element #1 > , : : : , < element #n >)
as a binary tree using n node cells

elem #1 elem #2 elem #n
cells
other

NIL

@@R

. . .

@
@@

@
@
@R

cells
node

u u

u u

u

???
� � �

Figure 2: Representation of the sequence (< element #1 > , : : : , < element #n >)
as a packed list

u

u

u

...

elem #n

elem #2

elem #1

...

packed list cell heap entry other cells

-

-

-

length of
packed list: n

u

-pointer at next
packed list cell

polynomials. The polynomials were computed with respect to the degreewise reverse
lexicographical term ordering. Afterwards they have been reordered according to the
reverse lexicographical (revlex), lexicographical (lexic), and the total degree (totdeg)
term ordering.

A disadvantage of the array representation is that the computation of the tail of a
polynomial depends linearly on the number of terms since all terms but the �rst have
to be copied into a new array. In contrary, this operation can be executed in constant
time for list structures. Furthermore, two polynomials which have the smallest terms in
common can share this terms in the list representation. Similar arguments on the time
and space behaviour apply to the addition of polynomials when the sum and one of the
summands coincide in a certain number of smallest monomials.

4

Table 1: Times for reordering (1 + x1 + x2 + x3 + x4 + x5)
n (in sec.)

packed list representation list representation

n # of terms revlex lexic totdeg revlex lexic totdeg

10 3003 1:3 1:5 1:0 20:5 27:0 13:9
11 4368 2:3 2:1 2:1 33:5 54:3 33:5
12 6188 3:1 3:0 2:6 80:5 118:5 86:8
13 8568 4:5 4:8 4:2 193:9 206:9 162:1
14 11628 6:2 7:4 6:0 353:6 473:8 268:3

Direct access to arbitrary monomials is not required within the arithmetic opera-
tions. In principal, it is su�cient to consider the operations of adding two polynomials
and of multiplying a polynomial by a monomial. All other operations such as subtrac-
tion, multiplication, and in a certain sense also division can be reduced to these two
elementary operations. Addition is performed in a zipper like way and multiplication by
a monomial requires only going once through the polynomial. The aptitude of list and
array representation is almost equal. There is one particularity of the array method. A
priori there is known only an upper bound for the length of the sum of two polynomials.
In order to do not waste heap space the system FELIX includes a special array operation
which allows to adjust the resulting heap entry to the correct length afterwards.

The same remarks apply to distributed normal forms in free non-commutative al-
gebras Ahx1; :::; xni. Recursive or even factorized forms are not available for algebraic
reasons.

3 Representation of commutative terms

Fixing the sequence x1; x2; : : : ; xn of indeterminates a term x
j1

1 x
j2

2 � � � xjnn is uniquely de-
termined by the n-tuple of natural numbers (j1; j2; : : : ; jn). The concrete indeterminate
names are only important for input and output operations. The information about them
is part of the de�nition of the polynomial ring and each polynomial has a link to the
ring it belongs to. In the following we discuss some possibilities for the representation
of integer vectors.

3.1 Number lists

The most common possibility is to use a list representation for vectors, where we distin-
guish between the dense and the sparse form. The dense representation is the sequence
of the n natural numbers j1; j2; : : : ; jn. The position of a certain number in the se-
quence determines the indeterminate for which the number is the exponent. The sparse
representation involves only the non-zero components of the vector. The term 1 is rep-
resented by the empty list and the term x

j1

i1
� � � x

jm

im
, where jk > 0 for 1 � k � m, by

the list of pairs ((i1; j1); : : : ; (im; jm)). Depending on the number of indeterminates the
one or the other form is preferable. Some tests were reported in [AK92]. The larger the
number of indeterminates the better gets the sparse representation. This is not only
valid from the point of view of memory requirements but considering computing times
as well.

5

Figure 3: Exponent vector cell with AVL-tree pointers

pointer at heap entry

pointer at next allocated exponent vector cell

r

l

pointer at right subtree

pointer at left subtree

3.2 Exponent vectors

The use of number lists for the representation of commutative terms wastes a lot of
memory due to the connecting pointers between the components. Operations which
mainly utilize list properties such as insertion and deletion of elements are not applied in
term arithmetics. So, we can apply a more compact storage model packing the sequence
of components in a coherent memory region. In the case of terms the situation is even
better than for polynomials (see Section 2) because the entries are always integers. So,
bounding the allowed degree according to the machine word size it is useful to introduce
a new array type of constant size integer entries. In FELIX the special data type for
commutative terms is called exponent vector. It is based on a sparse representation
which for dimension n � 3 proved to be preferable.

Though, all vectors (i1; i2; : : : ; in) are of the same length n for a �xed polynomial
ring the data type of exponent vectors includes objects of variable length since we used
the sparse representation. Therefore, a speci�c dynamic data management is required.
In FELIX this is supported by splitting the memory in di�erent regions. More precisely,
an exponent vector consists of an exponent vector cell, an object of constant size, and
a heap entry of variable size where the exponents are stored. For details we refer to
[AK92]. Data management operations such as allocation or releasing of exponent vectors
will act only over the cell region in most situations.

An exponent vector cell is built up according to Figure 3. The corresponding heap
entry for a term x

j1

i1
x
j2

i2
� � � x

jm

im
2 R = A[x1; :::; xn] is shown in Figure 4.

Implementing this feature we packed both parts, the index of an indeterminate and
its associated exponent, into a single machine word (32 bits) which ensures good memory
exploition and fast access. For practical reasons, the division of the word is asymmetri-
cal. The index of an indeterminate is represented by only one byte which restricts the
total number of ring indeterminates to 256. The remaining three bytes are dedicated
to the exponent. The vector components should be open also for negative entries since
the representation of terms is not the only purpose of exponent vectors. They are also
used for constructing ordering matrices necessary for de�ning term orderings. The ex-
ponent parts are stored with respect to the two's complement which provides the range
�8388608 : : : 8388607 su�cient for most practical applications. Note, that the word
holding the length of the heap entry contains also the number n of ring indeterminates.
Since this number is only of interest if di�erent rings are considered simultaneously we
did not �gure out it for the sake of simplicity.

6

Figure 4: Heap entry of the exponent vector xj1
i1
x
j2

i2
� � � x

jm

im

length of heap entry: m
(number of non-zero exponents)

...

of ring indeterm. im

of ring indeterm. i2

of ring indeterm. i1

exponent jm

exponent j2

exponent j1

The facts described so far deal with the aim of storing exponent vectors in a com-
pact way. Introducing a special data type for algebraic objects suggests to equip the
data type with the most important algebraic operations acting on the objects. This
equipment should be done in the system kernel where the performance can be made
much better than de�ning it in the high level programming language. Since the FELIX
kernel is written in an assembler language the code of kernel functions is generally fast.
Furthermore, additional features not available in high level functions can be used, e.g.
a kernel function may hold intermediate results or arguments accessed more than once
directly in processor registers.

The total number of functions associated with exponent vectors is sixteen, among
them constructors, selectors, monoid operations, divisibility operations, and ordering
operations. The most important are listed below:

� VSET(integerlist) : : : Converts the list of integers to a vector.

� VNTH(integer,vector) : : : Projects to a component of a vector.

� VECTOR(expression) : : : Tests whether an arbitrary expression evaluates to a
vector.

� VPLUS(vector#1,vector#2) : : : Adds both vectors.

� VSCALAR(vector#1,vector#2) : : : Yields the dot product of the vectors.

� VDEGREE(vector) : : : Yields the total degree, i.e. the sum of the components,
of the vector.

� VMAX(vector#1,vector#2) : : : Computes the vector of maxima of the corre-
sponding components of the input vectors.

� VDIFF(vector#1,vector#2) : : : Computes the di�erence of the two vectors.

� VEQUAL(vector#1,vector#2) : : : Tests whether two vectors are equal.

� VORDER(vector#1,vector#2,matrix) : : : Tests whether the �rst vector is less
than the second with respect to the ordering described by the matrix.

� VLEXIC(vector#1,vector#2) : : : Especially designed for the lexicographical or-
dering. Similar to VORDER.

7

Table 2: Hit rate of already computed exponent vectors in per cent

n = 2 n = 5 n = 8 n = 15

(x1 + x
2

2
+ x

3

3
)n 26.3 46.4 54.0 59.9

(x1 + : : :+ x
5

5
)n 30.4 59.3 67.4 73.3

(x1 + : : :+ x
10

10
)n 32.5 69.7 77.5 80.1

(1 + x1 + x2 + x3)
n 31.2 72.3 83.0 91.1

(1 + x1 + : : :+ x5)
n 38.9 75.7 84.9 92.0

(1 + x1 + : : :+ x10)
n 44.6 77.9 86.2 92.6

3.3 Implementation of AVL-trees

As far as discussed in the previous section there is nothing mentioned about multiple
creating and storing the same exponent vector. A simple consideration shows that it
is very likely that many vectors will be created several times during a session. If the
product of two polynomials is computed the result will contain only terms of degree
at most the sum of the degrees of them. On the other hand, there will appear l in-
termediate terms where l is the product of the numbers of terms of the polynomials.
Assumed the polynomials contain n indeterminates and they are dense of degree d1 and
d2, respectively. Then the polynomials consist of

�
d1+n

n

�
respectively

�
d2+n

n

�
terms. Con-

sequently, the product contains
�
d1+d2+n

n

�
terms. The number of intermediate terms

is
�
d1+n

n

��
d2+n

n

�
. In the univariate case that yields the enormous di�erence between

d1 + d2 + 1 and (d1 + 1)(d2 + 1). For more variables the situation gets still more dra-
matical, e.g. if n = 10; d1 = 4; d2 = 6 then the number of necessary terms is 352; 716
and this of intermediate computed ones is 1; 001 � 8; 008 = 8; 016; 008.

In practical, the situation is a bit better than described above since dense polyno-
mials are the worst case which is very unlikely to appear as mentioned in Section 2. In
the best situation, which appears also not very often, no multiple vectors occur, as for
instance in the example (x2 + y)(x+ y2).

Analysing the exponent vectors computed e.g. during usual polynomial arithmetics
one detects that many of them are already stored on the heap. Table 2 gives an im-
pression on how often one meets already created exponent vectors during arithmetics.
There are chosen two families of sparse and dense polynomials. The hit rate is much
higher in the dense case. Furthermore, the hit rate increases with the complexity of the
examples. In subsection 3.4 this will be stressed once more by the Tables 4 and 5 where
the hit rates are much higher than 90%.

Since the probability that the same exponent vector occurs several times is very high
it is natural to ask for a storage strategy keeping vectors unique. The most common way
to implement data types where any object occurs at most at one place in the memory
is the arrangement of hash tables. But how to �nd a suitable hash key which splits the
exponent vectors of an arbitrary number of variables in balanced classes? Such natural
properties as the degree would not be a good key since the resulting distribution is
far from being balanced. The danger is enormous that the exponents appearing in
special applications inherit some common structure which could lead to an unbalanced
distribution of the occuring vectors.

8

Figure 5: Reordering of AVL-trees during insertion

D E

B
BN

�
�
B rr

�
��

A
AU

A rr

HHHj
����

C rr

ED

�
�

B
BN

�
�

B
BN

CA

��+ QQs
B rr

r r r r

=)

? ?

ED orDouble left rotation for insertion of either

�
�

B
BN

A rr

@@R��	
B rr

B
BN

�
�
B rr

��	 @@R
A rr

��@@
��@@

? ?

=)

��@@Simple left rotation for insertion of

Therefore, the �nal decision was to supplement the memory layout with another
additional structure allowing to search the heap for a certain exponent vector in a fast
way. Balanced binary trees are usually a good choice for such processes. In order to
support also fast insertion and deletion operations there are used AVL-trees [AVL62]
for the FELIX exponent vector management.

AVL-trees have the property that for every node the di�erence of the depths of
the left and the right subtree is at most one. The worst case complexity of searching,
insertion, and deletion of a certain node is O(logN) (N : : : number of nodes).

Implementing AVL-trees we have to supplement the exponent vector cells to build a
binary tree (see Figure 3). These two additional parts can be interpreted as the left and
the right subtree and contain pointers at other exponent vector cells or at the atom NIL

representing the empty list. Since all cells are aligned at machine word size the least
bit of a cell pointer is always zero. This allows to pack the necessary information about
balance into the least bits of the pointers at subtree cells. The bits l and r in Figure 3
are set if the corresponding subtree is deeper and reset, otherwise.

By convention, nodes of left subtrees represent smaller and right subtrees represent
greater exponent vectors. The ordering necessary for constructing these binary trees is
quite simple. It depends only on the exponent vector's heap entry illustrated in Figure
4. First the lengths of the heap entries, i.e. the number of non-zero exponents, is
compared. If both lengths are equal the elements of the heap entries will be compared

9

Figure 6: Reordering of AVL-trees during deletion

C
1

�
�

B
BN

B rr

��@@

J
Ĵ

�

A rr

C

B
BN

�
�
A rr

�

J
Ĵ

B rr

??

=)

��@@Simple left rotation for deletion of

D2 E

B
BN

�
�
C rr

��	 @@R
B rr

@@��

@
@R

�
�	

A rr

?

D E

�� BBN �� BBN
B rr A rr

�
�	

@
@R

C rr

?

=)

��@@Double left rotation for deletion of

according to the usual lexicographical ordering. This procedure has the advantage that
the number of accesses to heap entry components is minimal.

Whenever a term is computed a heap entry for the exponent vector is created on the
top of the heap, but no corresponding vector cell is allocated at this moment. Next, we
have to check whether there already exists an old heap entry decoding the same term.
This is performed by a recursive search through the AVL-tree of vector cells starting at
the root node. If the search is successful then the new heap entry is released and the
found cell becomes the result of the computation. Otherwise, the search ends at NIL. In
this case we have to create a new exponent vector cell pointing at our heap entry and
to insert it into the AVL-tree.

Insertion is performed in the following way. First, a vector cell is allocated and its
four parts (see Figure 3) are initialized (both subtree pointers are set to NIL, l = r = 0).
Now, all parent nodes along the searching path have to be checked bottom up for
correct balance information to keep the AVL-tree property. As explained in [W83]
after insertion into an AVL-tree at most one operation is necessary to reorder the tree.
Figure 5 sketches two of these principal reorderings, the simple left (three pointers have
to be updated) and the double left (�ve pointers have to be updated) rotation. The
corresponding simple and double right rotations are symmetric.

1
C is optional

2
D and E are optional but at least one has to appear

10

Deletion of nodes takes place only during garbage collections. It is performed in a
similar way as insertion, but it can require reordering at every node along the searching
path. Figure 6 shows the two left deleting rotations, the right ones are again symmetric.

Note, the following heuristic. If more than the half of vector cells have to be deleted
during a garbage collection then it proved to be better not to delete the cells sequentially
but to rebuild the whole AVL-tree.

3.4 Example

The comparison of the proposed methods will be illustrated by an example which has
been widely investigated by many authors (see e.g. [BF91] and [D87]). The gained
results are representative for most examples treated by the authors.

The task consists in computing Gr�obner bases for a family of systems of algebraic
equations (cyclic n-th roots).

x1 + x2 + : : :+ xn = 0
x1x2 + x2x3 + : : :+ xn�1xn + xnx1 = 0

. .
x1 � � � xn�1 + x2 � � � xn + : : :+ xnx1 � � � xn�2 = 0

x1 � � � xn = 1

The polynomials obtained by subtracting left and right hand sides of each equation
generate an ideal for which the Gr�obner basis shall be computed. The term ordering
used in the tests is �rst according to the total degree and then reverse lexicographical.
Note that we used a rather simple implementation of Buchberger's algorithm using
standard selection strategy and applying criterions for avoiding unnecessary reductions.
In general, it is not comparable with the current state of the art, but our intention was
just to have a complex example making extensive use of exponent vector operations.
Our tests cover the cases n = 5; 6; 7. Whereas we calculated over the �eld of rational
numbers for n = 5 and n = 6 there was applied characteristic 31991 in the case n = 7.
This prime is lucky for the example. In particular, the vector space dimension of the
quotient ring is the same in both characteristics 0 and 31991.

We used three di�erent managing strategies for exponent vectors. The �rst strategy
(see Table 3) does not use unique data representation and the exponent vectors are
linearly stored on the heap. The characteristic of the two other strategies is that the
vectors are kept unique and arranged in AVL-trees. Full management (see Table 4)
means that the space of currently unused exponent vectors will be recovered by garbage
collections. We tested also a restricted AVL-strategy (see Table 5) which keeps all
exponent vectors created so far. Such a method completely avoids costly deletion and
re-creation of exponent vectors. Finally, Table 6 presents a comparison of the memory
requirements of the three strategies.

The �rst observation is that there are no signi�cant di�erences between the com-
puting times for the three strategies. Because of many outside inuences, e.g. memory
equipment, it is always di�cult to give a reliable interpretation of garbage collection
times. So far, the linear model is the fastest since there is no overhead for the exponent
vector creation process. Though, also the deletion of exponent vectors is cheeper the
total amount of garbage collection time is higher for the linear model since the heap
is exhausted more frequently. Due to longer average search pathes the time advantage
expected for the restricted AVL-strategy is more than lost.

11

Table 3: Computation without AVL-trees

n = 5 n = 6 n = 7

comp. time (in sec) 5 370 34,580
+ garb. coll. time 2 37 2,092

Table 4: Computation using full AVL-tree management

n = 5 n = 6 n = 7

requested vectors 18,213 671,161 151,238,022
created vectors 1,093 16,031 1,109,253
deleted vectors 850 15,685 1,107,029

hit rate (in per cent) 94.0 97.6 99.3

max. AVL-tree depth 10 12 16
average search path length 6.8 8.1 10.7

insertion rotations 600 7,243 513,191
simple left 166 2,081 146,423
double left 138 1,909 129,668
simple right 127 1,707 123,394
double right 169 1,546 113,706

deletion rotations 210 3,093 252,113
simple left 71 1,135 90,460
double left 36 396 32,704
simple right 65 1,152 92,008
double right 38 410 36,941

comp. time (in sec) 6 376 36,139
+ garb. coll. time 2 32 1,400

Concerning the space requirement the full AVL-tree management is the outstanding
strategy. The amount of heap memory occupied by exponent vectors was measured
at two distinguished points. The �rst moment was when the intermediate ideal bases
reached their maximal sizes (see �rst part of Table 6). This point was chosen as one of
large, not necessarily maximal, memory demand. Second, the situations after �nishing
the calculations were investigated (see second part of Table 6).

In summary, we state that the full AVL-tree management is the most preferable
strategy since its memory demand is signi�cantly the smallest while the computing
times are almost the same for all three variants.

4 Representation of non{commutative terms

The set of words over the alphabet fx1; :::; xng forms an A-module basis of the free non-
commutative algebra Ahx1; :::; xni. The basic algebraic operations are based on word
operations. First of all, the words form a monoid with respect to the concatenation.
Furthermore, the words have to be ordered with respect to an ordering compatible to

12

Table 5: Computation using restricted AVL-tree management

n = 5 n = 6 n = 7

requested vectors 18,213 671,161 151,238,022
created vectors 621 3,357 62,444

hit rate (in per cent) 96.6 99.5 99.9

AVL-tree depth 12 15 20
average search path length 8.1 10.0 13.8

comp. time (in sec) 5 374 36,095
+ garb. coll. time 1 33 1,528

Table 6: Comparison of heap memory requirements of vectors (in byte)

n = 5 n = 6 n = 7

max. length of intermediate basis 23 65 402

no AVL-trees 4,488 35,724 1,235,992
full AVL-tree management 1,772 5,628 37,336
restricted AVL-tree management 8,512 58,460 1,247,608

�nal length of basis 21 44 209

no AVL-trees 3,312 14,344 421,012
full AVL-tree management 1,268 2,952 18,376
restricted AVL-tree management 9,548 61,952 1,755,456

concatenation. Finally, there are required matching operations for detecting subword
and overlapping properties. In the following subsections there will be given some pos-
sibilities how to build up data types representing words and supporting the necessary
operations.

Our test series dealing with non-commutative rings are still very small. In compar-
ison to polynomial rings the examples split even more into two classes, namely, trivial
and almost unsolvable applications. A special handicap is that the termination of the
Buchberger algorithm is not ensured [M86].

4.1 Lists of indeterminates

The most obvious way to represent a word is to consider the list of its characters.
Similar to the commutative case character sequences may be stored more e�ciently
using dynamic array structures. Of course, instead of the sequence of indeterminates
we can use simply the sequence of corresponding indices.

4.2 Hardware supported data type

For each natural number B > n there is a surjective mapping from the set of non-
commutative terms to the natural numbers by assigning the value

P
m

j=0 ijB
j to the

term xi0xi1 � � � xim . Let us �x B. In [AK91a] it is shown how the arithmetic, matching,
and ordering operations between non-commutative terms can be transformed to inte-

13

ger operations between their above described code numbers and another two integers
belonging to each term. The additional code numbers allow more e�cient implementa-
tions for some operations but their information is redundant. In particular, they ensure
that all important operations can be performed almost without costly decoding and
encoding of terms. But there is a snag in this method. The integers encoding the terms
can be, and actually will be, rather large. It is not advisable to use the long integers
included in FELIX for the term representation since the integer operations applied to
the codes are not simple, e.g. they include the computation of remainders of integer
division.

A compromise between the restriction to machine size integers, which allow to rep-
resent only a very small range of terms, and long integers, which are not supported by
direct processor instructions, is the use of 8-byte integers and to perform the arithmetics
using the oating point unit or an arithmetic coprocessor.

4.3 Bitstrings

But also the restriction to 8-byte integers turned out to be rather strong. Limitations
going along with this encoding were presented in [AK91a]. Finally, we created a new
data type which is simpler but more general than the coprocessor method.

Non-commutative terms will be again represented by sequences of indices of indeter-
minates. In most cases the number n of indeterminates is much smaller than the largest
integer representable by a machine word and the code of an indeterminate requires only
some bits. Therefore, we implemented the data type of bitstrings. A bitstring employs a
coherent memory region containing the total number of ring indeterminates, the degree
of the term, and the sequence of indices in a packed form.

There are �fteen kernel functions operating over bitstrings, e.g. constructors, selec-
tors, arithmetic functions, ordering tests, and functions for converting between exponent
vectors and bitstrings. A special subgroup of the arithmetic functions is dedicated to
substring and overlapping problems.

Similar to the case of exponent vectors it arises the question of unique representa-
tions. Within multiplication the portion of multiple created terms will be smaller than
in the case of commutative polynomials. Nevertheless, the advantages are still large
enough to justify a unique representation strategy. For this purpose the bitstrings are
again arranged in an AVL-tree. The ordering used in the tree is �rst according to the
total number of ring indeterminates, then to the degree, and last lexicographical with
respect to the sequence of indices.

When we developed the data type of bitstrings we expected that it would not be
as fast as the hardware supported oating point method since more operations have
to be performed digit by digit. But we were pleasantly surprised that the bitstring
method turned out to be the faster one since it does not require so much processor
communication and does not apply the expensive oating point arithmetics for simple
integer calculations.

References

[AVL62] G.M. Adelson-Velskij, E.M. Landis, Odin algoritm organisazii informazii. Dok-
lady Akademii Nauk SSSR, 146 (1962), pp. 263-266 (in Russian).

14

[AK91a] J. Apel, U. Klaus, Implementation aspects for non-commutative do-
mains. Proc. Computer Algebra in Physical Research, ed. D.V.Shirkov,
V.A.Rostovtsev, V.P.Gerdt, World Scienti�c, pp. 127-132, 1991.

[AK91b] J. Apel, U. Klaus, FELIX { an assistant for algebraists. Proc. ISSAC'91, ed.
S.M. Watt, ACM Press, pp. 382-389, 1991.

[AK92] J. Apel, U. Klaus, Data Representation and In-built Compilation in the Com-
puter Algebra Program FELIX. L.N.C.S. 721, pp. 173-192, 1993.

[BF91] J. Backelin, R. Froeberg, How we proved that there are exactly 924 cyclic
7-roots. Proc. ISSAC'91, ed. S.M. Watt, ACM Press, pp. 103-111, 1991.

[D87] J.H. Davenport, Looking at a set of equations. Bath Computer Science Tech-
nical Report 87-06, 1987.

[M86] T. Mora, Gr�obner bases for non-commutative polynomial rings. L.N.C.S. 229,
pp. 353-362, 1986.

[W83] N. Wirth, Algorithmen und Datenstrukturen, B.G. Teubner Stuttgart, 1983.

15

