
Incremental nonlinear dynamic data

reconciliation

Ralf Der1, Olaf Lummer2, Thomas List3

1
Universtit�at Leipzig, Institut f�ur Informatik

2
smartec GmbH, Leipzig

3
Wacker Chemie, Fachstelle Simulation und Prozess�uberwachung

March 31, 1998

Abstract

Measurement noise reduction and parameter estimation is a topic of

central importance in plant control. The complexity of real world plants

and the working conditions in practice require robust real{time algorithms

which are easy to implement, simple to use and economic in computer

ressources. The state of the art is given by the novel approach of Liebman

et al. called the NDDR (nonlinear dynamic data reconciliation) which is

based on nonlinear dynamic programming. We present in the present paper

a new algorithm based more traditionally on gradient descent methods

supplemented with a self control of the parameters of the algorithm. It uses

an iterative method for the recti�cation and correction of state variables

and system parameters, what makes it a true on{line algorithm. Despite

its simplicity, the perfomance of the new algorithm proved superior to that

of the NDDR in the applications considered so far.

1 Introduction

Measurement noise reduction and parameter estimation is a topic of central

importance in plant control. Many methods have been developed for solv-

ing this task. Recently a novel approach has been presented by Liebman

et al [1]. Their NDDR (nonlinear dynamic data reconciliation) is based on

dynamic programming.

The present paper describes an approach which has been designed for

a real world application. The challenge was to develop a procedure for the

control of a large chemical plant producing acetyl acetone (ACAC). The

process taking place in the plant can be simulated by a compartment model

including the chemical reactions, the heat transfer through the walls of the

1



reaction tube and the ow inside the tube. The complexity of the plant

and the working conditions in practice required a robust algorithm which

is easy to implement and simple to use. Moreover the algorithm should be

a true real{time one and was not to use too much computer ressources.

The NDDR algorithm by Liebman et al. was considered too complex

so that we developed a new algorithm based more traditionally on gradi-

ent descent methods. Despite its simplicity, the perfomance of the new

algorithm proved superior to that of the NDDR.

2 The problem

Let us consider by way of example a chemical plant with inputs I, internal

state u and outputs o. The plant is modelled by the set of di�erential

equations

_uk = fk (u; I; t) (1)

where all variables depend on time, the ouput being a function of the inputs

and the internal state of the plant

ok = gk (I;u; t) (2)

and u = (u1; : : : ; un) and so on. Typical problems arising in practice are

1. Not all state and/or onput variables are known at all times (the

problem of incomplete information)

2. Measurement are corrupted by errors (the noise problem)

3. The process model given by the dynamical system eq. (1) is not cor-

rect. In most cases the parameters of the model are known only ap-

proximately (the system{identi�cation or parameter{estimation prob-

lem)

As is well known these problems can be solved by using redundancies in

the measurements of the process. The redundance must be su�cient in

order to provide the necessary information to overcome the noisyness and

partial lack of information in the problem.

In order to develop the method we need a mathematical formulation of

the above problems. In particular point 2 is modeled as

xk = xtruek + �k (3)

where the measured value xk deviates from xtruek by the random number

�k. Usually white Gaussian noise is assumed.

2



3 The algorithm

Let us consider for the sake of simplicity a one dimensional system with

state variable utrue governed by the di�erential equation

_utrue = f
�
utrue

�
(4)

measured values u being corrupted by noise according to eq. (3). Mea-

surements are taking place at discrete times

tn = t0 + n�t n = 0; 1; : : :

�t being the time interval between measurements. We use a moving time

window W t = [t� T; t) of length T

t0 2Wt if t� T � t0 < t (5)

3.1 Error function

The basic idea of the algorithm is straightforward. We introduce estimates

ûn of the true values u
true
n of the observable u. The estimates are initialized

with the measured values and incrementally improved using the di�erential

equation. By means of the latter we calculate the forecasts

ûnjn�1 =

8<
:

Solution at time tn of _u = f (u)

starting at time tn�1 with u = ûn�1

(6)

Then we de�ne the error function

E =
X
n

En (7)

where

En =
1

2

�
ûnjn�1 � ûn

�2
(8)

This error E is equal to zero whenever the ûn are points on a global solution

u (t0) ; t0 2Wt0 of the di�erential equation 4.

3.2 Gradient descent

By means of gradient descent

�ûn = ��
@

@ûn
E (9)

on this error function we may generate a solution of the di�erential equation

4. The error function is so to say degenerate with respect to the solutions of

the di�erential equation since E = 0 for each one of the solutions. However

the solution found in initializing the ûn with the measured values un is not

3



necessarily the one which also does minimize the mean square deviation

between un and the �nal values of ûn. Correspondingly we add an extra

penalty term so that the error now is

E =
1

2

X
n

�
ûnjn�1 � ûn

�2
+ �

X
n

(ûn � un)
2 (10)

By gradient descent the �rst term moves the ûn so that the forecasts from

time tn�1 agree with the estimates ûn themself so that a global soution of

the di�erential equation is produced. The second term tries to keep the

estimates to the measured values as close as possible. This will uphold

gaps in the solution of the di�erential equation.

In principle one has to "cool" down the parameter � gradually during

the gradient descent procedure. Then in the limit � = 0 one obtains the

global solution which is the best one in the sense that its mean square

deviation from the measured values is minimal. Reliable scenarios for the

cooling are available in the theory of stochastic approximation. However

we found in all our applications that the second term could be dropped

(� = 0) altogether without loss of quality of the solution. For the case

of unbiased Gaussian noise and linear systems this can be understood in

simple terms by the dynamics of the ûn generated by gradient descent.

Noting that the ûnjn�1 are functions of the starting value ûn�1

ûnjn�1 = �n (ûn�1) (11)

equation (9) reads in more detail

�ûn = ��

��
ûn+1jn � ûn+1

� @

@ûn
ûn+1jn �

�
ûnjn�1 � ûn

��
� �� (ûn � un)

(12)

The forecasts ûn+1jn and ûnjn�1 can be obtained explicitly if the time

interval �t is not too large. However one must be careful to chose the

correct approximation procedure for these forecasts. We have observed

that a simple Taylor expansion with one or two terms is in general not

su�cient. Instead we used a fourth order Runge{Kutta approximation

which proved much superior to the Taylor expansion of even higher order.

The derivation @
@ûn

ûn+1jn is model speci�c. However one may use a

simple approximation to avoid doing this calculation manually. According

to eq. (11) one can approximate

@

@ûn
ûnjn�1 =

@

@ûn
�n (ûn�1) t

�n (ûn�1 + h)� �n (ûn�1)

h
(13)

This approximation is very fast and is of su�cient precision.

3.3 The general case

In general both the internal state and the inputs are multidimensional, the

dynamics of the system being governed by the set of di�erential equations

4



(1). The error function for this case is

E =
1

2

X
n;�

(�n;� � ûn;�)
2 + �

X
n;�

(ûn;� � un;�)
2 (14)

where the forecast

�n;� = �n;�
�
ûn�1;1; : : : ; ûn�1;M ;

�
x
�
t0
�
j t0 2Wt0

	�
(15)

is just u� (tn) obtained from the solution of eq. 1 starting at tn�1 with

fûn�1;� j � = 1; 2; :::;Mg as initial conditions. Note that the forecast is a

functional of the inputs if the latter depend on time, i. e. the forecast

depends on the set of values fx (t0) j t0 2Wt0g of the input variables inside

the time window.

The update of the estimates is obtained by gradient descent as

�ûn;� = ��u
@E

@ûn;�
(16)

= ��u
X
�

(�n+1;� � ûn+1;�)
2 @�n+1;�

@ûn;�

+�u (�n;� � ûn;�)� �u� (ûn;� � un;�)

3.4 The on{line algorithm

So far we have developed the algorithm for the case of a �xed time window,

the summation in eq. (7) running over the points inside the window.

For on-line applications one has to move the window by one time step

W t )W t+1 to account for the new measured value un+1. Between the

time steps for all n inside the time window, the update (12) is repeated as

often as possible. We call this one epoch of the algorithm. For each set of

updates, the learning parameter � is optimized. This increases both speed

and quality of results.

Pseudocode for the multi-dimensional case:

1. Start an epoch:

At time tm, move the time window one step forward. Initialize the

new estimates ûmi with the measured values umi.

2. Updating the estimates:

� repeat

Compute the update term pni for each ûni in the time window

(see (16)):

pni :=
@E

@uni
(17)

Store the current value of the energy function E.

5



Initialize the learning parameter as � = 0:9.

Add the updates, multiplied by the learning parameter to the

estimates:

�ûni = ��pni (18)

{ repeat

Remove the last updates.

Decrease the learning parameter as � := �=2

Apply the update, store the value of the energy function E.

{ until no further improvement can be achieved or new mea-

surement data arrive.

� until no further improvement can be achieved or new measure-

ment data arrive.

3. goto 1

Our practical experiences gathered with the algorithm justify the fol-

lowing notes:

� The inner loop can easily be formulated in a more e�cient manner.

� The initial learning parameter does not necessarily have to be 0.9,

it is only required to be a positive value less than 1.0 (but smaller

initial values lead to decreased performance).

� The length T of the time window is dictated by the compromise be-

tween the need of redundancy and the computational costs. Adaptive

regulation of this parameter is possible.

4 Parameter adaptation and drift correc-

tions

In practice the paramaters of the model often are not known exactly. We

use gradient descent on the above error function as well in order to �nd the

exact parameters. We assume for this purpose that (i) the average devia-

tion of the measured values un is zero and that (ii) the average curvature

of the solutions of the di�erential equations (1) is a smooth function of

parameter variations.1 Then the mean square deviation of the errors will

be minimal for the optimum solution (i. e. the one corresponding to the

exact parameters). Consequently gradient descent on the error function

(14) will produce the correct parameters after cooling � down to zero.

1In pathological cases and for a �xed �nite set of measured values fung there might be
parameter values producing solutions which run through all the un. This might happen above
all in the case of over�tting, i. e. if the number of paramters is much higher than the complexity
of the system requires (number of un). We exclude these cases from the discussion.

6



4.1 Parameter adaptation by gradient descent

Assuming the di�erential equations are parametrized by a set a = (a1; : : : ; aP )

of parameters, i. e. eq. (1) becomes

_uk = fk (u; I;a; t) (19)

and the forecasts are now written as

�n;� = �n;�
�
ûn�1;1; : : : ; ûn�1;M ; a1; : : : ; aP ;

�
x
�
t0
�
j t0 2Wt0

	�
the update rule for the parameters reading

�a� = ��a
@E

@a�
(20)

= ��a
X
�

(�n+1;� � ûn+1;�)
2 @�n+1;�

@a�

In the pseudocode for the algorithm given in Section 3.4 we have to insert

after eq. (17) the step

: : :

Calculate the update

q� :=
@E

@a�
(21)

: : :

and after eq. (18) insert the step

: : :

Update

�a� = �"aq� (22)

: : :

Note that the measuring values do not occurr in the update rule at all.

For � = 0 the dynamics (16) would drive the ûn to some solution of the

di�erential equation (19). If this is converged, the parameter dynamics

(20) halts as well since �n+1;� = ûn+1;�. Before convergence is reached

the parameters and the estimates ûn change simultaneously. Hence the

algorithm converges to some exact solution of the model equations (19)

with certain values of the paramters a�. The values a� and the solution

reached depends on the initial values of the ûn and the relative values of

the adaptation rates �u and �a.

This indeterminacy is removed by the � term in the update rule (16).

This one drives the ûn towards the measuring values un and thus prevents

the di�erences �n+1;� � ûn+1;� and hence the updates in the gradient rule

(20) from becoming zero. Under a slow cooling of � the combined gradient

dynamics will drive both the estimates and the parameters to the correct

values.

These considerations are appropriate for a �xed window with a �xed

set of measuring values. Most interestingly we observed again, that in the

7



moving window scenario the parameter adaptation is feasible even with

� = 0. This can be understood by the following argument. Each new

measuring value triggers the window to be shifted by one step starting

a new epoch of gradient descent inside the window. This introduces the

information over the measuring values into the update rule (20) since the

new estimate û is initialized with the fresh measuring value. In the average

over many such events the di�erence between the new measuring value and

its forecast is minimal if the latter is evaluated with the best forecast model,

i. e. using the exact parameters in the model equations (19). Consequently

in the average over many window shifts the gradient dynamics (20) is

observed to converge to the exact parameter values.

4.2 Systematic measurement errors (drifts)

We consider drift corrections as additional parameters so that the above

update rule (20) can be used for the elimination of drifts. For instance

assuming the measurement device of state variable Us is expected to need

a drift correction we replace in the r. h. s. of (19)

us ! us + b

where b is a new parameter which is incorporated into the parameter set

A introduced above.

In the same way drifts in the input variables can be corrected.

5 Examples

Before applying our method to the complex task of the kethen reactor we

have considered a few toy examples.

5.1 Logistic di�erential equation

In the �rst instance we studied data reconciliation and parameter estima-

tion for the one{dimensional di�erential equation

_u = au� u2 (23)

where the parameter a was chosen a = 1 for most of the investigations.

In this case the right hand side is the logistic function. We tested data

reconciliation both with and without parameter adaptation. The results

are given in Fig. 1.

The inuence of the width of the time window on the performance of

the algorithm is studied in 2.

8



Figure 1: Iterative improvement of estimates with a simple form of the algorithm.

(no time window, � = 0:2 �x, after 50 and 500 updates)

Figure 2: Inuence of window width T on accuracy using � = 0:2 �xed, 100

update steps per time window of width T = 5 and T = 20, respectively. In

practical applications, real-time requirements and limited CPU time restrict the

size of the time window.

9



5.2 Predator{Prey System

The two{dimensional case was tested in terms of the Lotka{Volterra dif-

ferential equations modeling a predator{prey system

_u1 = a1 u1 � a2 u1u2 (24)

_u2 = a3 u1 + a4 u1u2

The dynamics is characterized by a nonlinear oscillatory behaviour. Fig. 2

clearly shows this behovior and also demonstrates nicely that our algorithm

is capble of both parameter estimation and data reconciliation for this

system.

Figure 3: State estimation and parameter adaption in the preadator{prey{

system. The initial estimates a1 = a3 = 4 are seen to converge towards the

correct values a1 = 1 and a3 = 2. Convergence of the parameters is step like and

is most pronounced if dynamics is high, i. e. during rapid changes in the state

of the system.

5.3 A continuous{ow stirred tank reactor

In the standard model of the ontinuous{ow stirred tank reactor (CSTR)

the di�erential equations of the system are

_A =
q

V
(A0 �A)� �dkA (25)

_T =
q

V
(T0 � T )� �d

�HrAr

pCpTr
kA�

UAr

pCpV
(T � Tc)

10



where the reaction rate

k = K0 exp
�EA

TTr

The parameters used in our simulations have been the ones given by

Liebman et al. The following table gives a short comparison between the

Figure 4: Bias correction with measurement data from the CSTR simulation: the

estimate for the bias of A uctuates near the correct value of 0:1.

results of our tests with the CSTR simulation and those given by Liebman

et al. Unfortunately, no results for tests with bias estimation were available

for NDDR. Note that in our simulations the values of the input variables

A0 and T0 were not adapted by the algorithm, instead they were smoothed

by a moving average.

NDDR our algorithm

Bias of A 0 0 0.1

T 5 5 5

CPU time 1.14 0.085 0.085

SD SD SD SD SD SD SD SD SD

meas. est. reduct. meas. est. reduct. meas. est. reduct.

A 0.0547 0.0192 64.9% 0.0443 0.0138 68.9% 0.1033 0.0197 80.9%

T 0.0545 0.0160 70.6% 0.0540 0.0148 72.6% 0.0495 0.0117 76.4%

A0 0.0496 0.4550 -817.3% 0.0495 0.2924 -490.7% 0.0501 0.2825 -463.9%

T0 0.0537 0.0252 53.1% 0.0551 0.0271 50.8% 0.0466 0.0244 47.6%

Table 1: Comparison between the NDDR algorithm run on a VAXStation

3200 and our new algorithm run on a 486/80 PC for the CSTR model.

11



6 Concluding remarks

The above examples clearly demonstrated the potentials of the algorithm.

Presently we are working with a �rst implementation of the new algorithm

for the full compartment model of the ACAC reactor. Our preliminary

results demonstrate the good performance of the algorithm in this complex

domain.

References

[1] M. J. Liebmann, T. F. Edgar, and L. S. Ladson. E�cient data rec-

onciliation and estimation for dynamic processes using nonlinear dy-

namic programming techniques. Computers in Chemical Engineering,

16(10/11):961 { 985, 1992.

12


