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1 Introduction

Cognitive processes heavily rely on a dedicated spatio{temporal architecture

of the underlying neural system | the brain. The spatial aspect is substanti-

ated by the modularization as it has been brought to light in much detail by

recent sophisticated neural imaging investigations. The time aspect is less well

investigated although the role of time is prominent in several approaches to

understanding the organization of the information processing in the brain. By

way of example we mention (i) the synchronization hypothesis for the resolution

of the binding problem, cf. [5] [4], [3] and the e�orts to relate the information

contained in observed spike rates back to the neuronal mechanisms underlying

the cognitive event. In particular, in Refs. [1], [2] Amit et. al. tried to bridge

the gap between the Miyashita data [10] and the hypothesis that associative

memory is realized by the (strange) attractor states of dynamical systems.

These approaches are based on results from single cell recordings on mam-

mals. For the human brain EEG analysis might play an analogous role. In fact

EEG analysis can much contribute to the understanding of the spatio{temporal

structure of the information processing in the brain. On the one hand exploit-

ing the correlations between the EEG signals of di�erent channels (sites) one

may succeed in localizing the active modules in some cognitive event, cf. [9].

However as compared to the neural imaging techniques, the spatial resolution

of this procedure is not very high. On the other hand, the time resolution of

EEG is extremely good (typically 1 ms) and it is this high time resolution in

combination with the spatial resolution which forms the special merit of EEG

analysis.

However the above mentioned feature binding mechanism probably can not

be observed in EEG since the neural assemblies synchronized are too small.

One possible focus might be the oscillation hypothesis which relates the time

architecture of cognitive processes back to the interplay of neuronal modules

oscillating with di�erent frequencies. Notably, Jensen and Lisman [8], [6], [7]

developes detailes models for understanding the 7� 2 storage capacity of short

term memory to the interplay of modules (neural networks) oscillating with

frequencies in the � and 
 frequency bands.

The investigation of these e�ects requires a detailed time frequency analysis

of the EEG signals. It is here where wavelets are at its best since they allow

a most distinctive decomposition into frequency components while still keeping

as much time information as possible. Hence in principle one may hope to

directly observe stimulus induced oscillations of the neural assemblies involved

in the cognitive event. In combination with the spatial resolution available

this makes wavelet analysis of EEG signals a powerful vehicle of analyzing the

spatio{temporal architecture of the brain.

The present paper tries to give an elementary introduction into the subject

and to analyse some data in order to demonstrate the use of the method in

practice. As a background, we introduce in Section 2 the Fourier and short

time Fourier transforms in order to facilitate the comparison between di�erent

methods. A basic introduction to wavelet transforms may be found in Section

3. Pedagogical examples of WTs are presented in Section 4 and our wavelet
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analysis of EEG signals is contained in Section 5. Details of the transforms,

in particular the shape of time{frequency windows are relegated to the Appen-

dices.

2 Fourier and Gabor transforms

Wavelets form a tool for the time{frequency analysis of complex signals. We

will brie
y introduce the Fourier and Gabor transforms in order to make the

special merits of WTs explicite.

2.1 Fourier transforms and spectral density

Using (discrete) FTs one considers a given signal function f (t) (inside an inter-

val t 2 [0; T ]) as a superposition of frequency components given by harmonic

functions

f (t) =
X
!

�! sin!t+ �! cos!t =
X
!

a! cos (!t+ �!) 8t 2 [0; T ] (1)

the spectral density

S (!) = j�!j2 + j�wj2 = ja!j2 (2)

measuring the (square of the) amplitude of the component of frequency !. For

the continuous case we write correspondingly

f (t) =
1p
2�

Z
1

�1

dte�i!t ~f (!) (3)

with the complex amplitude ~f (!) and S (w) =
��� ~f (!)���2. Note that any phase

information is lost in the spectral density. Moreover, the FT analyses the global

properties of the function only, i. e. any information on the time at which speci�c

frequency components are active is not directly accessible in the FT.

2.2 Short{time Fourier and Gabor transforms

Short{time Fourier transforms (STFT) provide a time|frequency analysis of a

signal f (t) by using a time window which is moved over the signal, i. e. replace

f (t) ! f (t)G� (t� tF ) (4)

and take the FT afterwards, the parameter � denoting the width of the window

and tF its position on the time axis. A convenient window function was given

by D. Gabor as

G� (�) =
1p
2��

e
�
�2

2�2 (5)

with the width of the window �xed by �. The Fourier transform of the windowed

function

f (tjtF ; �) = f (t)G� (t� tF )
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is
~f (!jtF ; �) =

Z
1

�1

dte�i!tf (tjtF ; �) =
Z
1

�1

dte�i!tf (t)G� (t� tF ) (6)

which is also known as the Gabor transform of the function f

~f (!jtF ; �) =
n
GtF� f (t)

o
!

: (7)

Using Z
1

�1

dtG� (t) = 1 8� (8)

one has Z
1

�1

d� ~f (!j�; �) = ~f (!) 8�

which may be viewed as the decomposition of the Fourier transform into Gabor

transforms.

Alternatively we may also consider the Gabor transform as a window oper-

ation
~f (!jtF ; �) =

Z
1

�1

dtW� (t� tF ) f (t) (9)

where the window function is composed of the sin{ and cos{Gabor functions

W� (�) =
1p
2��

ei!� e
�
�2

2�2 =
1p
2��

e
�
�2

2�2 (cos!t+ i sin!t) (10)

and concentrated in�
tF �

�p
2
; tF +

�p
2

�
�
�
! � 1p

2�
; ! +

1p
2�

�
(11)

which implies the well known uncertainty relation

�t�! = 1=2 (12)

The result (11) reveals the essential drawback of time{frequency analysis

in terms of STFTs. The width of both the time and the frequency window

is independent of the frequency once � is chosen. Hence for given frequency

component of f (t) the number of the periods in the time window is proportional

to the frequency analysed. However, independent of the frequency in order to

de�ne the frequency in a certain limit of accuracy one needs always only a

certain number of periods. Hence actually the time{frequency window should

adapt itself according to the frequency considered.

3 The wavelet transform

The essential advantage of the wavelet transform is the fact that the time-

frequency window is 
exible and does in fact adpat in such a way that there is

always about the same number of periods of the frequency analysed in the time

window.
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3.1 Basic Wavelets

Wavelets are special window functions  (t) with zero mean

Z
1

�1

dt (t) = 0 (13)

decaying su�ciently fast so that  (t) 2 L2; and t (t) 2 L2. In frequency

language this so called admissibility condition reads

Z
1

�1

d!

��� ~ (!)���2
j!j <1 (14)

Examples are given by the Haar|function

 H (t) =

8>>>>><
>>>>>:

1 f�ur 0 � x < 1
2

�1 f�ur 1
2
� x < 1

0 sonst

(15)

and the above mentioned sin{Gabor function which we write here as

 (t) = sin (2��0t) e
�t2=2 (16)

where �0 is of the order of 1, see the Figures below.

3.2 The wavelet transform and time|frequency windows

The wavelet transformation is a window operation in the sense (9), the kernel

(window) of the wavelet transform being obtained by translation and dilations

of the chosen basis wavelets, i. e. we consider  (t) !  
�
t�b
a

�
and take this as

the window function. Hence the wavelet transform is

f [b; a] = fW fg(b;a) =
1p
jaj

Z
1

�1

dt f (t) �
�
t� b

a

�
(17)

From Appendix B (7.2) we �nd the time{frequency window as

[b� a� ; b+ a� ; ]�
�
! 

a
� 1

a
� ~ ;

! 

a
+

1

a
� ~ 

�
(18)

Now 1=a = v can obviously be interpreted as a frequency, i. e. !F =
! 
a
= v! 

is the center of the frequency window in units of the center frequency ! of the

basic wavelet. This one is roughly given by �0 in the special case (16) of the

sin{Gabor wavelet used throughout the present paper. The area of the time

window is obviously independent of a. However, its form changes as a function

of frequency v = 1
a in such a way that the relative error in frequency is kept

constant for all frequencies.
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3.3 Inverse transformation

For the sake of completeness we give the formula for the reconstruction of the

signal from the wavelet transform (inverse transformation). Let

bf (b; a) := fW fg (b; a)

be the wavelet transform of a function f (t) with basis wavelet  (t) : Then

f (t) =
1

C 

Z
1

�1

Z
1

�1

dadb bf (b; a) 1

a2
p
jaj
 

�
t� b

a

�
(19)

where

C =

Z
1

�1

d!

��� ~ (!)���2
j!j (20)

cf. (14).

4 Pedagogical Examples of Wavelet Transforms

Let us consider some relevant examples of wavelets  
�
t�b
a

�
with the basic

wavelets

 (t) = sin (2��0t) exp

 
� t

2

2

!
(21)

(the sin{Gabor{wavelet introduced above) which we use everywhere in the

present paper.

Now, let us consider �rst the time localized superposition of four harmonics:

f (t) =
4X
i=1

sin 2�vi(t� 0:7) e�
1

2
( t�0:7

0:1 )
2

(22)

depicted in Fig. 1. Its wavelet transform for �0 = 0:5 is shown in Fig. 2

Throughout the paper we always depict the square of the wavelet transform

and use a twice iterated gray scale for coding these values, the gray background

corresponding to the zero level. We observe in Fig. 2 an extreme time resolution

since �0 = 0:5 means that the width of the time window is just that of a single

oscillation at the frequency considered. Nevertheless the frequency resolution

is su�cient so that one still can discriminate the di�erent frequencies contained

in the signal. The following picture Fig. 3 is obtained with the basic wavelet

with �0 = 2 so that there are about four to �ve periods of oscillations which

form the basis of the analysis of the signal. Hence the frequency resolution is

much improved which of course has to be paid by a loss in time resolution. This

is seen best by the wings in the low frequency regime caused by the widening

with decreasing frequency of the time window.

The following example is that of a twin bump

f (t) = e�
1

2
( t�0:5

0:1 )
2

� e�
1

2
( t�0:7

0:2 )
2

(23)
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1.5
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2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

superposition

Figure 1: The function f (t) =
P4
i=1 sin 2�vi(t � 0:7) e�

1

2
( t�0:7

0:1 )
2

with v1 = 3;

v2 = 10; v3 = 30; v4 = 70Hz.

0.700 s

0.0 s 0.2 s 0.4 s 0.6 s 0.8 s 1.0 s 1.2 s 1.4 s 1.6 s
1 Hz

10 Hz

100 Hz

Figure 2: Wavelet transform with �0 = 0:5 of the function f (t) =P4
i=1 sin 2�vi(t� 0:7) e�

1

2
( t�0:7

0:1 )
2

with v1 = 3; v2 = 10; v3 = 30 and v4 = 70Hz.

The transformation is according to the standard expression, i. e. there is no

extra scaling factor in order to enhance high frequency components.
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0.700 s

0.0 s 0.2 s 0.4 s 0.6 s 0.8 s 1.0 s 1.2 s 1.4 s 1.6 s
1 Hz

10 Hz

100 Hz

Figure 3: Wavelet transform with �0 = 2 of the function f (t) =P4
i=1 sin 2�vi(t � 0:7) e�

1

2
( t�0:7

0:1 )
2

with v1 = 3; v2 = 10; v3 = 30 and v4 = 70Hz.

The transformation is according to the standard expression, i. e. there is no

extra scaling factor in order to enhance high frequency components.
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Figure 4: The function f (t) = e�
1

2
( t�0:5

0:1 )
2

�e� 1

2
( t�0:7

0:2 )
2

+2 mimicing the average

EEG response to novel events.
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0.200 s 1.000 s

0.0 s 0.2 s 0.4 s 0.6 s 0.8 s 1.0 s 1.2 s 1.4 s 1.6 s
0.1 Hz

1 Hz

10 Hz

100 Hz

Figure 5: Wavelet transform of the function f (t) = e�
1

2
( t�0:5

0:1 )
2

� e�
1

2
( t�0:7

0:2 )
2

.

depicted in Fig. 4 which is to mimic the average EEG response to novel events.

Its wavelet transform obtained from the standard expression (17) is mul-

tiplied with an additional amplitude correction factor v2 = 1=a2 in order to

enhance high frequencies in the same way as this is done with the EEG signals

shown below. The point of studying the function (23) is the behaviour of the

WT at high frequencies, i. e. the question as to wether there are higher order

harmonics of substantial amplitude. The pictures clearly demonstrate that this

is not the case. We may conclude from this crude argument that the compo-

nents of higher frequency (above 10 Hz say) observed in the EEG signals are

not caused by the P100 or P300 components itself but are genuine signals of

neuronal modules oscillating at these frequencies.

As a �nale example we study the role of interference e�ects if the signal

contains di�erent frequencies which are so close in frequency that the wavelet

can not resolve the frequencies so that two or several frequencies contribute to

the transform. Then, the value of the transform at given a; b depends on the

phase relation of the components contributing.

0.0 s 0.2 s 0.4 s 0.6 s 0.8 s 1.0 s 1.2 s 1.4 s 1.6 s
1 Hz

10 Hz

100 Hz

Figure 6: Interferencies occurring in the wavelet trasforms of a signal function

f(t) consisting of two frequency bands of closely related frequencies.
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5 Wavelet analysis of EEG signals

We study in the following EEG recordings obtained from human subjects at 112

electrodes. Stimuli have been target and standard tones of 2000 and 1000 Hz

and a collection of so called novels comprised of various noises. The stimuli of

duration of 100 ms have been presented at regular intervals of 800 ms. The task

consisted in counting the target events. We �rst depict in Fig. 7 the recordings

at one of the electrodes over a period of time comprising 4 events. The WT

30

35

40

45

50

55

60

65

83.6 83.8 84 84.2 84.4 84.6 84.8 85

"f212_1.dat"

Figure 7: The voltage recorced at a selected electrode over time

for �0 = 0:5 and �0 = 2 may be found on the following pages. We depicted

the WTs in the same way as in Sec. 4 above, i. e. we depict the square of the

WT multiplied by a correction factor of v2 = 1=a2 introduced in order to better

display the behaviour at high frequencies. We show the WTs �rst in a 3-d

representation in Figs. 8 and 9. Afterwards we use as before the twice iterated

gray scale for coding these values, the gray background corresponding to the

zero level. The WTs are normalized with a normalization factor common to

the whole time interval.

We clearly see that besides the activities at low frequencies which are re-

lated to the systematic response from the dipoles found in [9], we also observe

systematic belts of more or less constant frequency at higher frequencies. These

might be related to the neural oscillations mentioned in the introduction. One

way to �nd out about the relations of these oscillations to the events consists

in studying the phase of the oscillations relative to the events. For this pur-

pose we investigated the average of the WTs over time. We studied both the

average of the WT itself as well as the average of the square of the WTs. Now

as is clearly seen from the WTs of single events like that shown in Figs. 10
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kappa0=1
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     206
     155
     103
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Figure 8: Wavelet transforms with �0 = 1 of the EEG signals of Fig. 7

kappa0=2
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     183
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    91.6
    45.8

88.5
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88.7
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89
89.1
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100

0
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100
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200
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Figure 9: Wavelet transforms �0 = 2 of the EEG signals of Fig. 7
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88.400 s Kanal 114, Ereignis 212; k0=1, max=309 89.196 s

88.2 s 88.4 s 88.6 s 88.8 s 89.0 s 89.2 s

10 Hz

100 Hz

Figure 10: Greyscale image of the Wavelet transforms with �0 = 1 of the EEG

signals of Fig. 7

88.400 s Kanal 114, Ereignis 212; k0=2, max=347 89.196 s

88.2 s 88.4 s 88.6 s 88.8 s 89.0 s 89.2 s

10 Hz

100 Hz

Figure 11: Greyscale image of the Wavelet transforms �0 = 2 of the EEG signals

of Fig. 7
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and 11 oscillations do last over a certain period of time only. Hence if there

is no relation to the stimulus the phase of each of the oscillatory epochs will

be uncorrelated with the onset of the stimulation. In other words, the phase

of a de�nite oscillation is randomly distributed over the events. Hence upon

averaging any de�nite structure related to the phase should average out. This

cleary seen in the Figs. 12 through 17 (see the following pages) to happen for

most of the active frequencies. However for the frequency band at about 17 Hz

we observe the opposite behaviour. Here we see a detailed structure which can

only be explained by the assumption that the oscillation becomes phase locked

by the stimulus.

In order to exclude statistical e�ects (the structure might stem from one

single event which majorises in the average all the others) we depict in Fig. 18

the partial averages obtained from setting a threshold and including into

the averaging only events with amplitude (in the frequency band considered

=17 Hz) of the WT below the threshold. Fig. 18 clearly shows that (i) the

phase locking is valid for all oscillations of arbitrary amplitude and that (ii) the

observed structure is not a statistical e�ect since it is valid both in the total

and in all the partial averages.

Of the several points of interest connected with this oscillatory behaviour

we note that from the pictures it might seem that the oscillation is composed

of two components of slightly di�erent frequency and that the frequency of the

two components is not very stable, i. e. we have a nonlinear e�ect of frequency

shift due to the coupling to other oscillators. It would be interesting to �nd

out whether we observe here a case of entrainment of the oscillations by the

stimulus.

From scrutinizing the transforms over all the channels we also observe a

second phase locking frequency at 10 Hz with the interesting property to become

strong towards the end of the ISI.

6 Conclusions

In the present paper we presented the wavelet transforms as a method for study-

ing the time architecture of cognitive processes. Of course, time{frequency anal-

ysis of EEG signals is not a new subject. Even more, all results available from

wavelet analysis can also be obtained from using �lter banks of conveniently

tuned �lters, e. g. However what we hoped to demonstrate is the fact that by

using a convenient representation of the WTs one can hope to �nd new e�ects

in the time architecture of cognitive processes by visual scrutinization of the

wavelet diagrams.

In particular, considering the hypothesis that time architeture of perception

is based on the interplay of oscillatory networks oscillating with very di�erent

frequencies, wavelet transforms in a convenient representation might be helpful

in discovering these structures in the EEG recordings with speci�c psychophys-

ical experiments. The phase locking by the stimulus of the 10 and 17 Hz

oscillations found in the present paper might be a �rst hint in this direction.

We hope in the near future to �nd the localizations of the corresponding neural
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Figure 12: left: Averages of the square of the WTs over the events for �0 = 1

and event type 211 (standards). The dispersion is shown in the middle and the

relative dispersion is shown in the right column.
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10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 214; k0=1, max=64

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 214; k0=1, max=4.56

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 214; k0=1, max=29.6

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 214; k0=1, max=74.8

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 214; k0=1, max=4.72

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 214; k0=1, max=43.6

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 214; k0=1, max=70.1

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 214; k0=1, max=4.5

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

Figure 13: Averages of the square of the WTs over the events for �0 = 1 and

event type 214 (novels).
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0.000 s Kanal 30, Ereignis 218; k0=1, max=55.6

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 30, Ereignis 218; k0=1, max=185

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 30, Ereignis 218; k0=1, max=4.11

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 218; k0=1, max=51.8

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 218; k0=1, max=172

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 218; k0=1, max=3.83

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 218; k0=1, max=20.4

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 218; k0=1, max=93.7

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 218; k0=1, max=4.66

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 218; k0=1, max=20

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 218; k0=1, max=94.3

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 218; k0=1, max=4.72

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 218; k0=1, max=35.1

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 218; k0=1, max=125

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 218; k0=1, max=4.19

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 218; k0=1, max=52.2

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 218; k0=1, max=155

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 218; k0=1, max=3.67

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 218; k0=1, max=41.8

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 218; k0=1, max=146

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 218; k0=1, max=3.86

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

Figure 14: Averages of the square of the WTs over the events for �0 = 1 and

event type 218 (novels).
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0.000 s Kanal 30, Ereignis 211; k0=2, max=18.9

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 30, Ereignis 211; k0=2, max=99.5

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 30, Ereignis 211; k0=2, max=14.3

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 211; k0=2, max=25.8

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 211; k0=2, max=103

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 211; k0=2, max=10.2

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 211; k0=2, max=6.55

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 211; k0=2, max=42.3

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 211; k0=2, max=6.69

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 211; k0=2, max=6.32

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 211; k0=2, max=41.8

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 211; k0=2, max=6.87

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 211; k0=2, max=11.9

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 211; k0=2, max=70.9

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 211; k0=2, max=10.2

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 211; k0=2, max=22.7

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 211; k0=2, max=101

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 211; k0=2, max=10.4

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 211; k0=2, max=20.3

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 211; k0=2, max=91.9

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 211; k0=2, max=9.58

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

Figure 15: Averages of the square of the WTs over the events for �0 = 2 and

event type 211 (standard).
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0.000 s Kanal 30, Ereignis 212; k0=2, max=38.2

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 30, Ereignis 212; k0=2, max=171

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 30, Ereignis 212; k0=2, max=6.74

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 212; k0=2, max=44.3

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 212; k0=2, max=214

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 212; k0=2, max=6.1

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 212; k0=2, max=9.24

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 212; k0=2, max=53.3

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 212; k0=2, max=5.81

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 212; k0=2, max=8.64

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 212; k0=2, max=40.5

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 212; k0=2, max=5.75

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 212; k0=2, max=27.6

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 212; k0=2, max=146

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 212; k0=2, max=6.16

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 212; k0=2, max=41.3

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 212; k0=2, max=167

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 212; k0=2, max=5.61

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 212; k0=2, max=38.6

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 212; k0=2, max=196

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 212; k0=2, max=6.18

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

Figure 16: Averages of the square of the WTs over the events for �0 = 2 and

event type 212 (target).
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0.000 s Kanal 30, Ereignis 218; k0=2, max=77.1

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 30, Ereignis 218; k0=2, max=284

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 30, Ereignis 218; k0=2, max=4.2

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 218; k0=2, max=62.3

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 218; k0=2, max=224

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 32, Ereignis 218; k0=2, max=3.76

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 218; k0=2, max=29.2

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 218; k0=2, max=132

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 34, Ereignis 218; k0=2, max=4.56

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 218; k0=2, max=30.2

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 218; k0=2, max=138

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 36, Ereignis 218; k0=2, max=4.6

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 218; k0=2, max=47.5

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 218; k0=2, max=198

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 38, Ereignis 218; k0=2, max=4.27

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 218; k0=2, max=67.2

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 218; k0=2, max=231

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 40, Ereignis 218; k0=2, max=3.95

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 218; k0=2, max=54.7

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 218; k0=2, max=207

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

0.000 s Kanal 42, Ereignis 218; k0=2, max=4.02

-0.2 s 0.0 s 0.2 s 0.4 s 0.6 s

10 Hz

100 Hz

Figure 17: Averages of the square of the WTs over the events for �0 = 2 and

event type 218 (novels)
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Figure 18: Partial averages of the squares of the WT over events including but

the events with strength of the pertinent 17 Hz oscillations below a threshold.

oscillators in order to learn more about their role in the information processing

and in particular about their interplay with the dipoles identi�ed as the sources

of the N100 and P300 responses.
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7 Appendices

7.1 Appendix A: Time{frequency windows for STFTs

Alternatively we may also consider consider the Gabor transform as a window

operation according to (9)

~f (!jtF ; �) =
Z
1

�1

dtW� (t� tF ) f (t) (24)

There is an important relation between the windows in the time and in the

frequency domain. Let us consider the set of all functions f (t) 2 L2 and propose

that there is a corresponding window function H (!) in frequency space so thatZ
1

�1

dtf (t)GtF
(�;!)

(t) =

Z
1

�1

d� ~f (�)H� (�) 8f 2 L2 (25)

Using Parsevals identity one easily �nds that H (!) is essentially the Fourier

transform of the time window function. Hence for the special case of the Gabor

function one has

H (�) =
g
GtF

(�;!)
(�) =

Z
1

�1

dte�i�tGtF
(�;!)

(t)

= e�itF (��!)e��
2(��!)2=2 (26)

so that the window functions in time and frequency space are of the same

functional form di�ering only in width

1p
2��

ei!(t�tF )e
�
(t�tF )

2

2�2 , 1

2�
e�itF (��!)e��

2(��!)2=2 (27)

The root mean square width �t in time is found as �=
p
2 the corresponding

width �! in frequency is 1=
p
2�. Hence times t and frequencies � which essen-

tially are represented by the transform are from the time{frequency window�
tF �

�p
2
; tF +

�p
2

�
�
�
! � 1p

2�
; ! +

1p
2�

�
(28)

corresponding to the uncertainty relation

�t�! = 1=2 (29)

independent of the frequency.

7.2 Appendix B: Time{frequency windows for wavelet trans-

forms

Introducing the position t 

t =
1

k k2
Z
1

�1

dt t j (t)j2
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and root mean square width 2� ;

� =
1

k k

sZ
1

�1

dt (t� t )
2 j (t)j2

of the basis wavelet we �nd that the tranlation and dilation operation transform

t ! tF = at + b; � ! �F = a� (30)

The signal is consequently localized in the time window

[b+ at � a� ; b+ at + a� ; ] = [tF ��F ; tF +�F ]

On the other hand we �nd for the frequency window (in the same way as with

the Gabor transforms) the frequency window as

�
! 

a
� 1

a
� ~ ;

! 

a
+
1

a
� ~ 

�

where ! is the center frequency

! =
1������ ~ ������2

Z
1

�1

d!!
��� ~ (!)���2

and 2� ~ the root mean square width of the basis wavelet in the frequency

space. Hence the time{frequency window is

[b+ at � a� ; b+ at + a� ; ]�
�
! 

a
� 1

a
� ~ ;

! 

a
+
1

a
� ~ 

�
(31)

or

[tF ��F ; tF +�F ]�
h
!F ��~

F ; !F +�~
F

i
The area of the time window is obviously independent of a. However, its form

changes as a function of a in such a way that the time extension is inverse

proportional to the center frequency !F . as it should be. This special property

is also re
ected by the fact that the ratio between center frequency !F and band

width � ~F = 2
a
� ~ 

of the frequency window is independent of !F itself

!F

� ~F

= Q =
! 

� ~ 

(32)

This is called constant Q �ltering in signal processing.

Remarks:

� The function 1p
jaj
 
�
t�b
a

�
is used for transformation in both directions in

the same way as ei!t in the FT (consider e�i!t =
�
ei!t

��
).
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1. For the time frequency analysis the frequencies !F are always poitive.

The basis wavelets then have to abey the admissibility condition

Z
1

0
d!

��� ~ (!)���2
!

=
1

2
C <1 (33)

The corresponding reconstruction formula is

f (t) =
2

C 

Z
1

0
da

1

a2

�Z
1

�1

db bf (b; a) 1p
a
 

�
t� b

a

��
(34)

which di�ers only by a factor of 2 from 19.
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