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ABSTRACT 

 

The trend in today’s manufacturing industry is changing from mass production to mass 

customization. The companies which win the markets are those which can deliver highly 

customized products at the fastest rate and allow for life-cycle participation of customers 

regardless of where they are and when they participate. One of the strategies for implementing 

the mass customization paradigm is to implement the product development according to the 

assemble-to-order (ATO) pattern. Under the ATO pattern, the design of a product becomes the 

determination of a configuration which contains a set of pre-developed components – 

configuration design for short. The configuration design problem can be well treated as a 

constraint satisfaction problem (CSP). The mature methods are available for CSP, but there are 

several limitations with CSP for configuration design. 

 

This thesis proposes a novel approach to configuration design. This approach is based on a CSP 

but adds a wrapper (product data model, PDM for short) over the CSP model. Consequently, 

both the customer and the other life cycle development programs only communicate with the 

PDM, and a more intelligent and user-friendly computer system for configuration design can 

then be implemented. Both the conceptual design and implementation of such a wrapper are 

discussed in this thesis. A computer prototype system for elevator design is developed for 

demonstrating the effectiveness of this approach.  
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Chapter 1 

Introduction 
 
 
 
1.1 Evolution of Information Technology to Manufacturing 

 
Manufacturing has undergone a long process of awareness of the strong positive impact of 

information technology to manufacturing. Two decades ago, the paradigm popular in 

manufacturing is computer integrated manufacture (CIM). The CIM paradigm leads to a great 

improvement of manufacturing practice but at some sacrifice as a result of high expense. With 

the development of the internet technology, communication between two remote ends is greatly 

facilitated. The organization of a manufacturing firm becomes virtual in the sense that each 

manufacturing unit keeps competitive components within themselves.  Manufacturing activities 

become more of a “networking activity”.  

 

The trend of today’s manufacture industry is changing from mass production to mass 

customization. The companies which win the markets are those which can deliver highly 

customized products with the fastest speed. As such, the production development changes from 

“stock-to-order”, to “assemble-to-order”, and/or to “engineer-to-order”.  

 

Stock-to-order (STO) refers to a manufacturing situation where a whole product (e.g., a 

computer) is available in the manufacturer’s inventory. For instance, if one wants to purchase a 

laptop, one goes to the computer shop or manufacturer and gets one provided that the 
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manufacturer has prepared computers in its inventory (i.e., the manufacture adopts the stock-to-

order pattern). 

  

Assemble-to-order (ATO) refers to a manufacturing situation where the product structure is 

known. The product structure means (1) the number of component types (or components for 

simplicity), (2) how these components are connected. ATO manufacturing process is then to 

determine instances of the components to make an assembly to meet the customer’s requirement. 

ATO differs from the stock-to-order in that in the case of ATO, instances of components may not 

be available to the manufacturer which directly communicates with a customer, and they are 

usually supplied by other manufacturers. ATO is often integrated with the order, supply, and 

production systems so that once a product is configured, delivery can follow immediately.  

Usually, the engineering work is not required for ATO pattern. However, some manufacturing 

works may be needed where a product is assembled.  

 

Engineer-to-order (ETO) deals with problems where not all components are ready to use; some 

may need to be designed and then fabricated specifically to meet customer’s requirements.  

 

This thesis concerns product development which follows the assemble-to-order (ATO) pattern; 

specifically the development of a computer support system for ATO pattern.     

 
1.2 Product Data Modeling   

 

The key technology to develop an effective computer support system for product development is 

Product Data Modeling (PDM).  From the point of view of modeling, the PDM is a process of 
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establishing a data model that represents information and knowledge generated during a product 

development life cycle. From the point of view of management, the PDM is a process of 

managing data. Database technology is a powerful tool for PDM. Database technology provides 

the notion of data model [Codd, 1970] and the notion of semantic data model [Chen, 1976]. A 

data model contains a set of rules to define the structure of, the constraint of, and the valid 

operation on data. Quite often, the applications of a data model focus on the structure and 

constraint. A semantic data model focuses on the meaning (or semantics) of data in the context 

of a discourse of an application [Zhang, 1994]. In other words, a semantic model concerns with 

what information or knowledge a series of symbols asserts. A semantic data model is therefore 

also called “conceptual data model”. This thesis research focuses on conceptual data modeling; 

specifically on what information is needed to support the assemble-to-order (ATO) pattern. The 

computer system that supports the assemble-to-order pattern can then be designed to capture this 

information. There will be a further discussion in Section 1.7 regarding the relationship among a 

conceptual data model, its implementation, and its application.    

 
1.3 Product Configuration Technology 

 

The most commonly used definition of the configuration task was given by Mittal & Frayman 

[1989]: The configuration of an artefact is a set of interconnected components that are chosen 

from predefined sets of component types called the catalog of component types. Specifically, a 

component is described by a set of properties, ports for connecting it to other components, 

constraints at each port that describe the components that can be connected at that port, and 

other structural constraints.  
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An augmented configuration is defined as the configuration (as defined previously) together with 

the background about why the configuration is needed and/or the rationale about how the 

configuration is determined.  

 

Configuration design is a process of determining one or more configurations that satisfys the 

function and constraint requirements. It should be noted that in literature, there is a notion called 

“configuration management” [Lyon, 2000]. The configuration management mainly concerns 

with the change management, and it addresses the following issues: who suggests changes, who 

assesses impact of the changes, and who approves the changes. Configuration management is 

thus different from configuration design.  

 

1.4 Research Questions 

 

Question 1:  

What should be a computationally effective representation of a product configuration for the 

Assemble-to-Order product development? 

 
In current literature, the answer to this question appears to be (1) the expert system (rule based 

system), or (2) the database approach. The main rational for the expert approach is that the expert 

system is about capturing the constraints in a configuration using the syntactic expression – 

rules. But the expert system is known for its inflexibility with respect to the change of 

requirements and knowledge, or to the maintenance of the system. The database approach, which 

was pioneered by Zhang [1994], is indeed very general with respect to information 

representation, but not computation-oriented. This means that in order to design a configuration, 
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information needs to be extracted from a database and converted into a form on which 

algorithms can be applied. An alternative solution is Constraint Satisfaction Problem (CSP) 

[Tsang, 1999; Miguel and Shen, 2001]. The CSP is a paradigm or an approach to represent a 

problem or a system into formalism called constraint, and the solution to the problem satisfies 

the constraint. The CSP is not only highly declarative to represent design knowledge, but also 

domain independent. This thesis adopts the CSP approach to Question 1. Chapter 2 will present 

details of the CSP approach. Specifically, one will see some unresolved problems with CSP itself 

and the application of CSP to configuration design. This thesis will address these problems and 

present a new approach which integrates PDM and CSP.  

 

It is clear that the answer to this question will eventually come to a system that determines a 

configuration, given a set of requirements; such a system is also called configurator in literature.  

 

Question 2:  

Suppose that the CSP approach is taken to build a configurator. The knowledge representation 

will be the one suitable for computation, but not efficient for representing information that sits at 

the back end, e.g., the rationale for a design decision. The question is then as follows:  

 

What is the role of the CSP configurator in the context of mass customization manufacturing 

paradigm? 
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The answer to this question has not been found. The question reads like a traditional question 

called integration, yet in the new context which is characterized by (1) the configuration 

technology, and (2) the internet technology.  

 

This thesis undertakes to answer the two questions above. The next section provides a literature 

review of relevant studies.  

 

1.5 Configurator: a Critical Review 

 

Configurator was originally designed as an interface on the top of the ERP (Enterprise Resource 

Planning) system. This is especially introduced to facilitate the acquisition of products from 

customers with a focus on the price and deliverable time. The commercial configurators, such as 

PTC’s Windchill™ Product and FirePond’s Sales Performer™, are successful implementations 

of the configurator concept; in addition, they usually provide the customer with access to their 

systems at any time and any place through the internet technology. This kind of configurators 

may be called the ERP-based configurator. 

 

One of the essential assumptions underlying the ERP-based configurator is that products are pre-

designed. Specifically, components are ready to go, and they just need to be assembled [Tiihonen 

et al., 1996; Tiihonen and Soininen, 1997]. The ERP-based configurator cannot work for the 

situation where the product needs some engineering and manufacturing work. For example, the 

customer may prefer to a color of the interior of the elevator, which is not available in the current 

component repository. In this case, the elevator manufacturer may reject the customer’s request 
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for that special color, but the customer oriented manufacturing practice would try to tailor 

whether the component with that color could be painted and produced, which may need to 

contact the manufacturer’s supplier or  sub-contractor who does the painting job for the interior. 

Another example is such that the customer may want to install a video camera in a place where 

the existing elevator is designed not to hold the camera in that place. To accommodate that 

requirement from the customer will require a little bit of engineering work to assemble a product.  

 

It might be quite true that the configurator without the capability of accommodating engineering 

and manufacturing works (more or less) will considerably compromise the manufacturer’s 

philosophy: customer-oriented product development. Mesihovic and Malmqvist [2000] 

suggested a PDM integrated configurator. Their main idea was to have the notion shown in Fig. 

1.1. This notion was primarily based on the observation that PDM is supposed to support all 

engineering works (see the discussion in Section 1.3). This idea is promising; yet they have not 

given details of their system.   

 

 

Figure 1.1 The Notion of a PDM Integrated Configuration 
 

With respect to the configuration system by itself, the following issues are of concern. The first 

issue is whether a configuration system supports configuration design where topology of a 

Configurator 

PDM ERP 
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configuration is changed during the process of configuring product. Note that, this issue has gone 

beyond the ERP-based configurator. At this point, the CSP-based configurator solver has made 

this possible [Mittal and Falkenhainer, 1990]. Mailharro [1998] commented on the work by 

Mittal and Falkenhainer [1990], saying that this work sets a limit (maximum) on the number of 

variables allowed, and questioning the applicability of this approach for large configuration 

problems. The second issue is the knowledge representation of the product configuration. There 

are basically three requirements on such a knowledge representation: (1) the flexibility in the 

sense that knowledge can be easily maintained, (2) the expression power for representing 

semantics, and (3) the efficiency in terms of the computational time. 

 

To meet requirement (1), the CSP knowledge representation formalism is a must. To meet 

requirement (2), there are several generic semantics for configuration design, such as multiple 

occurrences of components [Stumptner et al., 1998]. Usually, CSP will have to rewrite the 

constraints many times to match the times the component is used. Bowen and Bahler [1991] used 

a language based on the semantics of free logic to address the multiple occurrence problems. To 

meet requirement (3), as well as requirement (2), a configuration as composite constraint 

satisfaction was proposed by Sabin and Freuder [1996], which extended the 

standard/conventional CSP to accommodate issues such as unknown a priori number of 

constituent parts of a system. The knowledge is expressed as a hierarchical structure. The domain 

of a variable is a set of entire sub-problems with their own variables and constraints. After 

instantiating a variable with one of the possible sub-problems, the variables and constraints of 

the sub-problem are added to the constraint network.   

 



 9

In general, the current configurtors, including both research and commercial based ones, can 

only meet the functions which were described by Mittal and Frayman [1989]. They need to be 

extended in the aspects of (1) optimization, (2) user preference, and (3) integration of product 

configuration with many other engineering and manufacturing systems. 

 

1.6 Research Objectives   

 

Objective 1:  

Extend a CSP representation for explicitly incorporating the customer preferences and 

composite object constraint. 

 
Objective 2: 

Develop an integrated PDM and CSP approach to configuring products. 

 
Objective 3: 

Develop a framework for integrating a configurator with other product life cycle development 

systems 

 

The particular activities in the product life cycle considered are the engineering design, and parts 

acquisition and supply. The process planning is not the scope of this thesis, which is considered 

as an internal business process in a partner company. Furthermore, the notion of framework 

implies that the question of what information is needed will be the focus. The implementation is 

merely for the purpose to give impression of what a system could achieve based on the concept 

and methodology developed and thus to enhance understanding of the concept and methodology. 
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1.7 General Research Method 

 

1.7.1 General System Development Approach 

 

As mentioned previously, this thesis takes product data modeling as a main approach. The 

strategy for data modeling is to follow the ANSI/SPARC database architecture [Date, 1990], i.e., 

the conceptual view, the internal view, and the external view (see Fig. 1.2). The conceptual view 

of data or database model answers the question: what information is needed for a discourse of an 

application. The internal view, however, answers how to implement the model resulted from the 

development at the conceptual view. The external view determines the aspect of the model at the 

conceptual view for a particular need of an application under consideration. This thesis focuses 

on the conceptual data modeling, as also mentioned before. Universal Modeling Language 

(UML) [Booch et al, 1999] will be employed for development of a conceptual view or model for 

particular applications. 

   

 
Figure 1.2 Three Levels of Architecture 

Conceptual level

Internal level 

External level 
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1.7.2 Case-based elaboration 

 

Another general methodology for this research is case-based presentation method. The case-

based method is to take a case or example for elaborating and establishing hypotheses, 

developing models, and testing the hypotheses through the evaluation of the models. Throughout 

the thesis, an example regarding an elevator system is taken. 

 

 
Figure 1.3 System Decomposition of the Elevator System 

 

Hoist way Car Assembly C-Weight Suspension Safety Cable 

Guide 
Rail 

U-bracket 

Cab Supporting 

Frame Door 

Platform Sling 

Crosshead Stiles 

M-beam 

Motor

H-cable

D-sheave  Sheave Brake Governor Buffer 

Control Cable Com-cable 

Cwt BufferCar Buffer  

Safety Beam Guide Rail 

Elevator System 

 Note: The blocks shaded are the components considered in this thesis 
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An elevator system consists of 16 components [Yost, 1996], and they are, respectively, Door, 

Platform, Sling, Safety, Crosshead, Car Buffer, Cwt-Buffer, C-Weight (counter weight), M-beam 

(machine beam), Motor, Sheave, H-cable (Hoist cable), Com-cable, Control Cable,  Governor, 

Safety Beam, and Guide Rail. There are four additional components which are optional: Car 

Lantern, Car Level Indicator, Car Phone, and Car Communication. Their relationships can be 

visualized by the assembly structure shown in Fig. 1.3. For each component, there could be 

several alternatives or instances. The selection of their alternatives in order to achieve a desired 

performance at the whole system level makes sense for the elevator system design to be a 

configuration design problem.  

 

1.8 Organization of the Thesis 

 

The remainder of this thesis is organized as follows: Chapter 2 presents a literature review of 

CSP, where there is a discussion of limitations of CSP. Chapter 3 proposes a new approach to 

configuring products by integrating PDM and CSP. This new approach may also be viewed as an 

enhancement of CSP to make it more semantic in addition to its powerful computation 

framework. Furthermore, the preference and composite object problems are addressed in this 

chapter. Chapter 4 presents some ideas about how to bring the configurator into a product life 

cycle development. Chapter 5 presents some implementation works to demonstrate the 

effectiveness of the ideas proposed in the preceding chapters. Chapter 6 is a conclusion with 

future work and recommendation.  
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Chapter 2  

Constraint Satisfaction Programming (CSP) 
 
 
 
2.1 Introduction 

 

In the mid-80s, constraint satisfying programming (CSP) was developed as a computational 

technique, which is a result of combining artificial intelligence and computer programming 

techniques. CSP promises to provide solutions to some NP problems and scheduling problem. 

This chapter serves as a brief introduction to CSP. In Section 2.2, the definition of CSP is 

presented, and the mathematical model of CSP is defined. Section 2.3 presents some solving 

methods for the CSP problems. Optimization is an important part, or extension to the original 

CSP, and it will be discussed in Section 2.4. Section 2.5 provides a broad view of CSP 

extensions. Section 2.6 discusses the so-called preference problems in CSP. Section 2.7 discusses 

some limitations with CSP problems.   

 
2.2 Definition of CSP 

 

Definition 1: A CSP is a triple P = {V, D, C}, where 
 

• V = {v1, v2, …, vn} is the set of variables called the domain variables; 

• D = {D1, D2, …, Dn} is the set of domains. The domain is a finite set containing  possible 

values for the corresponding variables; 

• C = {c1, c2, …, cn} is the set of constraints. A constraint ci is a relation defined on a subset 

of {vi, …, vk} of all the variables; that is, {Di, …, Dk}⊇  ci. 
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If a constraint ci is defined on a set that only has one or two elements, this constraint is called 

unary or binary constraint, correspondingly. The remainder of constraints are called non-binary 

constraints. A CSP is a binary CSP if all its constraints are unary or binary.  Non-binary 

constraints can be transformed into several equivalent binary CSPs.  Therefore, only binary 

constraints are considered in this thesis.   

 
The structure of a binary CSP may be represented by a constraint graph, which is defined as 

follows: variables are represented with nodes, and the constraints between them are represented 

with edges. The labels of the edges represent the constraints and the labels of the nodes represent 

the domain of the variables (see Fig. 2.1). In Fig. 2.1, there are nodes: A, B, C, D, and E. The 

digits in the parenthesis behind the node indicate their domains. A node could have edges 

directing to the node itself, which implies the unary constraint (in Fig. 2.1, node B). The generic 

format for the expression of a binary constraint is as follows: 

 

Binary constraint: = operand 1| operator| operand 2 

 

For example, if A and B are two variables, and A is greater than B, the binary constraint for this 

can be expressed as  

A>B 
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Figure 2.1 CSP Graph Representation 
 

 
Definition 2: Assignment: It is a mapping from a set of variables to their corresponding domains.     

 

Let vi be a variable and Di its domain. The process that vi takes a value, say di from the domain 

Di is called assignment. Such an assignment is denoted (vi, di).  

 

For a CSP problem which has a set of variables, say v1, v2, …, vm, the assignment for all the 

variables is denoted  {(v1, d1), (v2, d2), …, (vm, dm )}. When all the variables are assigned a value, 

the assignment is called complete, otherwise partial. For a complete assignment, one may write 

as {d1, d2, …, dm}. The expression {d1, d2, …, dm} is also called the value tuple. The set of all 

possible complete assignments is called the assignment space.  This space could be very large, 

depending on factors, such as the number of variables, size of domains, and tight or loose 

constraints. The following is an example to illustrate the assignment: 

 

Suppose that there are three variables A, B, C and each of them has a domain as follows:  

DA: {1, 2, 3, 4}       DB: {5, 6, 7}       DC: {8, 9, 10, 11} 

 

A (3, 4, 5) 

B < 4 
A > B

D (3, 8) 

C (7) 

 E (4, 5) 

B (4, 5, 6) 
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Each variable is assigned a value from its domain as follows:  

A=1, B=6, C=9 

Assignment to variables can be represented as {(A, 1), (B, 6), (C, 9)}, or more commonly as {1, 

6, 9}.  This is also called the value tuple. An incomplete assignment (for example, without 

assignment to variable C) may look like {(A, 1), (B, 6)}, or {1, 6}. 

 
Definition 3: Consistent assignment: Constraint is satisfied in assignment if each of its variables 

gets a value such that the value tuple satisfies all constraints.  

 
Definition 4: Complete or partial consistent assignment: A partial consistent assignment refers to 

the assignment that satisfies a partial set of constraints. A solution to a CSP problem is a 

complete consistent assignment which means that all constraints are satisfied.  

 
Definition 5: Over constrained: If for a problem there is no such a complete assignment, the 

problem is called over constrained or inconsistent problem. Correspondingly, a CSP problem 

with more than one solution is called under-constrained problem. 

 
Definition 6:  Relaxing or tightening of constraint: Given a set of constraints, relaxing of 

constraints means that one or more constraints are removed from this set; while tightening of 

constraints means to add one or more constraints to this set.   

 

2.3 Methods for Solving a CSP Problem 

 

Finding a consistent assignment to all variables of a CSP problem is the process to solve a CSP 

problem. Basically, there are two kinds of strategies to find solutions [Tsang, 1999]: systematic 
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search and repair methods. Systematic search assigns consistent values to variables one by one 

through a systematic way. Repair method assigns values randomly regardless of constraints, and 

then repairs the assignments that violate constraints. Repair strategy is often called heuristic 

strategy or stochastic strategy [Reeves, 1991]. Repair strategy could be ineffective for some large 

size and tight constraint problems. In this thesis, only systematic methods were applied, which 

are backtracking and backjumping. In addition, the consistency technique was used to pre-

process the variable domains for improving the efficiency of a solving process. 

 
2.3.1 Backtracking 

 

The backtracking solving strategy assigns values to particular variables and extends a partial 

assignment incrementally. Each time a variable is instantiated, constraints associated with this 

variable are tested. If some of the constraints are violated, the variable is reassigned a new value 

from its domain until a consistent assignment is found. If none of the values in the domains are 

found to form a consistent assignment, the algorithm will turn to the nearest point at which a 

consistent assignment was established.   An example helps to illustrate this method. 

 

Suppose there are variables X, Y and Z with constraints X≠Y, Y≠Z, X≠Z:   

Variables and domains:  DX {t, e, f} 
                                        DY {t, e, f} 
                                        DZ {t, e, f} 
  
The backtracking method for this CSP problem is illustrated in Fig. 2.2. 

 

Under the systematic searching approach, different heuristics can be used to improve the 

efficiency.  It is generally true that variable and value orders are critical for efficiency of problem 
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solving. For example, in 8-queen problem [Marriott and Stuckey, 1998], the fail-first heuristic is 

used to determine which variable needs to be instantiated/assigned first. The fail-first rule says 

that the variable which has smaller domain should be reassigned first. This is because the dead 

end would be found earlier. Values can be ordered either    as ascending, descending sequence, 

or other heuristics. There will be a discussion about value and variable ordering later in this 

chapter. 

          ___________________________________ 
                 X=t  Y=t       failure 
                      Y=e  Z=t  failure 
                           Z=e  failure 
                           Z=f  solution 
                      Y=f  Z=t  failure 
                           Z=e  solution 
                           Z=f  failure 
                ___________________________ 
                 X=e  Y=t  Z=t  failure 
                           Z=e  failure 
                           Z=f  solution 
                      Y=e       failure 
                      Y=f  Z=t  solution 
                           Z=e  failure 
                           Z=f  failure  
                ____________________________ 
                 X=f  Y=t  Z=t  failure 
                           Z=e  solution 
                           Z=f  failure 
                      Y=e  Z=t  solution 
                           Z=e  failure 
                           Z=f  failure 
                      Y=f       failure 
                      ___________________________________________ 
                                  

Figure 2.2 An Example of Backtracking 
 
 

There are three major drawbacks of the standard backtracking method: 

• Thrashing, i.e., repeated failure due to the same reason; 

• Redundant work, i.e., conflicting values of variables are not remembered, and 

• Late detection of the conflict, i.e., conflict is not predicted before it really occurs. 

Two methods, backjumping and backmarking are available for addressing the first two 

drawbacks. The consistency technique solves the third problem.     
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2.3.2 Backjumping 

 
This is a method to avoid thrashing in the Backtracking method. The process of backjumping is 

exactly the same as backtracking, except for their different strategies for looking back. When any 

constraint is violated, the backtracking method will take action of moving one step back, while 

the backjumping method will first analyze the sources of inconsistency, and then jump to the 

source point where inconsistency comes.  

 

2.3.3 Consistency Check 

 

Consistency check is a pre-processing of solving a CSP problem, which is also called, in 

different literatures, local consistency, consistency enforcing, constraint propagation, filtering, or 

narrowing algorithms [Apt, 1999]. The objective of consistency check therefore is to eliminate 

those values from the domains of the variables, which do not meet any constraint. The 

consistency check helps to prune the search tree dramatically in many cases and leads to a 

smaller space to search.  There are three types of inconsistency checks:   

 

Node-consistency check:  It removes any value that does not meet the unary constraint from the 

domain of a variable.     

 

Arc-consistency (AC) check:  It deals with consistency between two variables e.g. (A, B). 

Specifically the rule corresponding to the arc-consistency check is such that a constraint is arc 

consistenct if for any value in the domain of A in this constraint there is a value in the domain of 
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another variable such that the constraint is satisfied. CSP is arc consistent if all the constraints 

are arc consistent. The simplest algorithm for achieving arc-consistency is to repeat revising. An 

example of arc-consistency is shown in Fig. 2.3.  In Fig. 2.3, the constraint Y=2X is a binary 

constraint on domain Y and domain X. Since the largest value in domain Y is 10, the values over 

5 in domain X should be crossed off for any valid assignment based on the constraint Y=2X. So 

only five values (less than or equal to 5) are left in domain X. Therefore domain Y can be pruned 

to include only five values that are double of the values in Domain X. A further inference is such 

that values in Domain X is modulo number, so the values in Domain X can be further reduced to 

three numbers: (1, 3, 5). Finally the values in Domain Y are: (2, 6, 10). This algorithm is called 

AC-1, and it suffers from the problem of non-necessary repetition of revisions. There are some 

other AC algorithms, named AC-2, AC-3, until AC-7, details of which refer to [Bartak, 2001]. 

  

Figure 2.3 Illustration of Constraint Propagation for Arc-Consistency 

 

Path Consistency (PC) check: A path is consistent if for every pair d1, dn of consistent values 

(i.e., this pair satisfies all binary constraints between V1 and Vn) there exist values d2, …, dn-1 

Y

X 1, 3, 5 
 

1,2,3,4,5 
  

1,2,3,4,5 
6,7,8,9,10 

2, 6, 10 
2, 4, 6 
8,10 

1,2,3,4,5 
6,7,8,9,10 

Y = 2X Y ≤=10  (X modulo 2) = 1 Y = 2X 
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such that all the constraints between di, di+1 are satisfied. CSP is path consistent if all paths are 

path consistent.  

 

A problem does not necessarily have a solution when it is AC consistent. In contrast, path 

consistency assures that a path consistency CSP must have at least one solution if none of the 

domains are empty. From this sense, PC is said to be stronger than AC. However, PC is rarely 

used in practice because of its computational complexity and high demand on computer memory.  

 

K-consistency check:  Node, arc, and path consistency are instances of a general notion called 

k-consistency. CSP is k-consistent if every consistent (k-1)-tuple can be extended to a consistent 

k-tuple.  

 

2.3.4 Several Heuristics Rules for Searching 

Three heuristics rules are introduced here, the value order, the variable order, and the pseudo 

solution. The value ordering rule is such that values in domains are arranged in a certain order 

according to a certain attribute which is meaningful to a particular application problem. In 

engineering and manufacturing applications, the attribute can be such as cost, performance, 

weight, and delivery time. 

 

Variable ordering rule is to organize the variables based on some criterion. One of such rules is 

to order the variable based on the number of partnerships of a particular variable with other 

variables. For example, if there are five variables: A, B, C, D, and E. A has constraints with B, C, 
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and D, B with D and A, C with A, D with A and B, and E with none. In this case, the numbers of 

participations for A, B, C, D, and E are, respectively, 

   A is 3, B is 2, C is 1, D is 2, and E is 0. 

The order of the variables, descending in this case, will be then A, B, D, C, and E. This way is 

conductive to detect unresolved branches at the early stage of search.  

 

The variables can also be ordered in terms of their importance with respect to a particular 

application problem. For example, a variable which “contributes” most to the performance may 

be arranged on the top. 

 

The main idea of the pseudo solution rule is to predict as early as possible whether a search along 

a particular branch of a tree is promising. The unpromising branch would be abandoned. This is 

achieved by introducing a constraint into the searching space. Suppose that an initial solution is 

found, denoted S0. A constraint is established as follows: 

   Si+1 < Si, i = 0, 1, 2, ··· ··· 

where Si is the solution. The operation ‘<’ represents the preference suggested on the solution. In 

the case of product configuration design, such preferences may be: the cost is lowest; the weight 

is lowest, etc. 

 

The pseudo solution rule may be combined with value ordering rule. For example, the cost is the 

criterion to order the value. Then, values in each domain are ordered in terms of a descending or 

ascending order. In this case, S0 can be obtained simply by picking up the first value in all 

domains subject to other constraints.   
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2.4 Constraint Optimization 

 
In many real life problems, the interests are probably only on a certain solution, instead of all 

solutions or a solution obtained at first. The quality of a solution is measured by an application 

dependent function called the objective function. The goal is to find such a solution that will 

minimize or maximize the objective function with respect to the applications. This is called CSP 

optimization. The definition of a CSP optimization problem is given as follows:  

  

(1)  A tuple of n variables, V = (v1, v2, …, vk,  vk+1, …, vn ), where variables 1 to k measure the 

multi objectives to be optimized, and variables k+1 to n are special variables without any 

sub objectives. 

(2)  A tuple of n domains, D = (d1, d2, …, dn ), such that vi ∈ di. 

(3)  A set of constraints among variables, R = {r1, r2, …, rm }, that restrict the domains of the 

variables. 

(4) An objective function, z(V), which is minimized or maximized.  

 

The CSP optimization problem consists of a standard CSP problem and an objective function. 

There are two strategies for solving a CSP optimization problem, namely, the standard search 

and the dichotomic search methods.   

 

2.4.1 Standard Search 
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The most widely used algorithm for finding an optimal solution is called Branch and Bound (B 

& B) method, also called standard search [Lustig and Puget, 2001]. 

 
The (B & B) searching procedure is first to find a feasible solution, while ignoring the objective 

function z (x1, x2, …, xn) (xi is the value of the variable). Let (y1, y2, …, yn), where yi is the value 

of the variable, represent such a feasible solution. The search space is then pruned by adding a 

new constraint 

  
                  z ( y1, y2, …, yn ) > z ( x1, x2, …, xn ) 

 
to the system. After that, the search continues. The added constraint specifies that any new 

feasible solution must have a better objective value than the current point, giving a new lower 

bound. Consistency or propagation of this constraint may cause the domains of the variables to 

be reduced, and thus reduce the size of the search space. The search procedure concludes until no 

feasible solution is found. The last feasible solution is then taken as an optimal solution. The 

exhaustive search is effective for problems where the searching space is not too big. 

 

Two steps conduct the search process, which further determine the efficiency of a search process. 

The first step is to get a quality bound to make the search process fast. An appropriate lower 

bound can be found by computing objective functions through relaxed constraints. The second 

step is to determine a better solution with respect to a defined objective function or some other 

criteria. Computation in the second step is relatively costly. In fact, in many applications, users 

are satisfied with a solution that is close to optimum if this solution is found early. The B & B 

method can be used to find sub-optimal solutions using appropriate bound.  
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2.4.2 Dichotomic Search  

 

The dichotomic search improves the search efficiency over the standard search. This algorithm 

starts with a lower bound L and an upper bound U on the objective function z (x1, x2… xn). The 

lower bound L is not necessarily a solution point, and it can be any arbitrary value reasonable for 

the problem. An initial solution to a CSP problem can serve as the upper bound U.   

 

The dichotomic search procedure is essentially a binary search on the objective function. The 

midpoint M = (U+L)/2 of the two bounds is computed, and a CSP is solved by taking the design 

constraints and adding the constraint z(x1, x2, …, xn) < M. That means the search is in L ~ M 

region; see Fig. 2.4a. If a new feasible solution is found, then the upper bound is updated from M 

to the new feasible solution (new-U). A new middle point is calculated, named as new-M; see 

Fig. 2.4b. Then the search continues in area L ~ new-M as shown; see Fig. 2.4b. If no solution is 

found in L ~ M region the lower bound is updated to Middle point M. A new middle point new-

M’ is then calculated by (U+M)/2. The search continues within M ~ new-M’ region (see Fig. 

2.4c). This procedure will continue until the searching space is exhausted. The last lower bound 

will be taken as the optimum solution to the problem.  

 

The dichotomic search is very effective when the lower bound is appropriate. The dichotomic 

search stresses on the search for feasible solutions, whereas the standard search emphasizes the 

improvement of the lower bound.  
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Lower bound (L)                Middle (M)                           Upper Bound (U) 

 
              

                    (a) Searching in L to M region (area indicated by curved line)  

  

L             new-M      new-U 

 
                     (b) Searching in L to new-M region (new-U: updated upper bound) 

                    

                                                      M (new-L)           new-M’                U 

                                                        
(c) Searching in M (new-L) to new-M’ region. 

 

Figure 2.4 Dichotomic Search 

 

2.5 CSP Extensions   

 

The CSP described above may be called the classical CSP or standard CSP. In some real-life 

applications, constraints may be incomplete at the time they are imposed. Therefore some 

alternative approaches to extend the classical CSP have been proposed for modeling incomplete 

constraints. Two of these extensions are described in the following paragraphs. 

 

Fuzzy CSP: Fuzzy CSP extends the notion of the classical CSP by having constraints associated 

with a preference level to each tuple of values of variables. Such a level is represented by a 

number between 0 and 1, where 1 represents the best value (i.e., the tuple is allowed), and 0 the 

worst one (i.e., the tuple is not allowed). The solution of a fuzzy CSP is then defined as the set of 

tuples of values, which shifts preference level to a maximum.  
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Probabilistic CSP: Probabilistic CSP (Prob-CSP) enables to model those situations where each 

constraint c has a certain probability p(c), independent of the probability of other constraints, to 

be part of the given problem (actually, the probability is not of the constraint, but of the situation 

which corresponds to the constraint: saying that c has probability p means that the situation 

corresponding to c has probability p of occurring in the real-life problem). A solution to a Prob-

CSP problem is found by satisfying that the expression Sum {Product {p(c) | c is a constraint in 

S} S is a subset of the set of all constraints satisfied by A} is maximized among all possible 

assignments A of values. 

 

2.6 Preference Problems in CSP 

 

Preferences in CSP refer to (1) preference on the value of the variable, (2) preference on the 

solution of a CSP problem, and (3) preference on the constraint. Examples of Preference (1) 

include: in the case of the elevator system, the door is preferred to open vertically; the color of 

the interior is white grey. Preference (1) can be specified in the CSP problem by 

             Door.open = ‘Vertical’ 

             Interior.color = ‘White grey’  

The left part in the above expressions represents the variables, and the right part represents the 

values. 

 

Examples of Preference (1) include: in the case of the elevator system, the total cost of the 

elevator should be the lowest. Preference (2) can be specified in CSP as an optimization problem 
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(see the previous discussion in Section 2.4). Examples of Preference (3) include: in the case of 

the elevator system, if the elevator system is used in the hospital environment, the color of the 

interior is preferred to be light blue, and if in the general residence environment, the color of the 

interior is preferred to be grey.  

 

Preference (1) and Preference (2) are, respectively, called Preference I and Preference II later in 

this thesis. Preference (3) is not considered to be in the scope of this thesis. Furthermore, it seems 

that not a sufficient research is done for Preference II, perhaps because it is classified into the 

general optimization problem. Yet, there is still some twist when the optimization in the context 

of CSP is implemented.  

 

2.7 Limitations of CSP 

 

There are basically two problems when a computational tool is concerned: (1) Its knowledge 

representation, and (2) its computational efficiency. The CSP representation provides a low level 

of the specification of relationships between two entities. These two entities are usually at the 

level of features of an artefact, although the syntax of CSP expressions does not exclude 

somewhat a heterogeneous representation, e.g., a feature of entity A is associated with entity B 

as a whole. The nature of the CSP representation hinders the efficiency of the solving process. 

The CSP approach needs heuristic rules to improve the efficiency, but this can hardly be 

achieved at the level of constraint specification. A novel solution is warrant and will be presented 

in the next chapter.   
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Chapter 3 

An Integrated PDM and CSP Framework 

 
 
 
3.1 Introduction 

 

As analyzed in Chapter 1 and Chapter 2, respectively, there are several problems with CSP, 

especially when it is used directly for product life cycle in a virtual organization environment. 

This chapter will present solutions to these problems. Section 3.2 presents a general idea of the 

integration of PDM and CSP as one of the solutions to these problems. Section 3.3 presents a 

conceptual PDM for configuration design. Section 3.4 presents a conceptual model of CSP. 

Section 3.5 illustrates the linkage between the PDM and the CSP. Section 3.6 illustrates the ideas 

described in the preceding sections using the elevator system as an example. Section 3.7 

concludes this chapter. 

 

3.2 General Idea of Integration of PDM and CSP 

 

The general idea behind this study is to integrate PDM and CSP. PDM has two roles in this 

connection. The first role is that PDM facilitates the engineering activities in the course of 

configuring a product; see Fig. 3.1a. Knowledge stored in the format of CSP is meaningful only 

in the sense of variables and constraints which are the relationships among the variables, while 

PDM promises to store all information and knowledge about a product over its life cycle [Krause 
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et al., 1993; Sinha, 2004]. For instance, the background information concerning why a particular 

part is interfacing with other parts, or why a particular colour is not available for the interior of 

an elevator will be stored in PDM but, certainly not always in CSP. In certain CSP systems, 

where the constraint may be represented by simply listing a pair of instances of two components, 

say A and B, e.g., 

  <a1 b1>     from the view point of colour match  

  <a2 b3>     from the view point of size match  

while the semantics of why these two instances are put together (i.e., the view point or context) 

are in the mind of the operator or administrator of that particular CSP package.  

 

Figure 3.1 Integration Framework 
 

The second role of PDM is that PDM provides semantic rich expressions such that it becomes a 

meta-knowledge representation for CSP; see Fig. 3.1b. For example, for a part, say a platform in 

the elevator system, there are two attributes, size and weight. The knowledge representation at 

the CSP level may go to the attribute level, which means that the operand in the CSP expression 

Engineering 

PDM 

CSP  
Configuration 

Design 

User 

PDM 

CSP Solver  
Configuration 

Design 

(a) (b)
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may have the form (e.g., the platform), such as ‘P01#.weight’ and ‘P03#.size,’, where ‘P01#’ and 

‘P03#’ are the component identities of the platform and the safety system, respectively, and 

‘weight’ and ‘size’ are attributes or features of these components, respectively. At the CSP level, 

‘P01#’ and ‘P03#’ do not make any sense because there is no expression clause that asserts any 

semantics for them. Furthermore, the fact that two pieces of information, i.e., ‘P01#.colour’ and 

‘P01#.size’, are related to the same product, or represent two features of the same product, is 

missing at the CSP level. However, at the PDM level, there are representations to assert 

semantics to the instance ‘P01#’ (for example) through the schema – instance mechanism, and to 

assert the semantics that the weight and the size are two attributes of the platform. 

 

Last, since PDM promises to contain complete information regarding a product under 

configuration, PDM can be a source of producing heuristic knowledge for improving efficiency 

in searching solutions to a CSP problem; see discussion in Chapter 2. 

  

3.3 A Conceptual PDM for Configuration Design 

 

As mentioned earlier, PDM captures all information about the product life cycle. There have 

been many PDMs proposed in literature [Krause et al., 1993; Shrikhande, 2000; Sinha, 2004]. 

The following is a set of core models with PDM: 

 

• A data model for product assembly or architecture, 

• A data model for product connectivity, 

• A data model for requirement, and 
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• A data model for design knowledge base   

 

The background information associated with these models is also captured and represented. In 

the following, these models are tailored to configuration design. In particular, Section 3.3.1 

presents a data model for the requirement. Section 3.3.2 puts together the assembly and 

connectivity information (product configuration in short) and presents a data model for product 

configuration. Section 3.3.3 presents a data model for design knowledge for configuration 

design. These models are called conceptual because they do not depend on a particular 

implementation and they do not work for only a particular use.  

 

3.3.1 A Data Model for Requirement 

 

The design requirement includes: (1) the function, (2) the constraint, and (3) the wish. Examples 

of   functional requirements are: the speed of the elevator must be greater than 300 feet/min; the 

capacity of the elevator must be 1000 lbs, etc. An example of a constraint requirement is: the 

color of the interior must be red. The constraint requirement may be converted into the functional 

requirement. The wish requirement includes the statements which represent the customer desire: 

(1) Quality: as good as possible; 

(2) Cost: as low as possible; and 

(3) Time: as short as possible. 

Note  the wish may not necessarily be achieved, which differs from the function that has to be 

fulfilled, and from the constraint that has to be subjected to. 
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Figure 3.2 A Data Model for the Requirement 
 

A data model for the requirement is shown in Fig. 3.2. Specifically, Fig. 3.2 represents the 

semantics that the design requirement is associated with the function, the constraint, and the 

wish. The multiplicity indicated on the diagram shows that there must be at least one function 

requirement; yet there may be none constraint or none wish requirement. It is noted that in Fig. 

3.2, the customer who proposes the requirement is also shown. This is intended to track the 

requirement change initiated by the customer. It is the customer who keeps the rationale for a 

particular piece of requirement. So when the requirement is changed by a customer (say A), the 

customer (say B) who is associated with this requirement needs to be informed. For instance, a 

message is posted to customer B: “The requirement you suggested is to be changed by customer 

A.” It should be noted that A and B may be the same person physically yet at different times. 

Here, it is shown that the proposed data model (i.e., Fig. 3.2) can also be useful for customer 

requirement management.  Details about customer requirement management can be found in 

[Brown, 2000]. 

 

Suggest 

1 
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Fig. 3.3 represents the function requirement. There are two ways to specify the function 

requirement (see Fig. 3.3, F1 and F2, respectively). One way (F1) is, for example, the capacity of 

an elevator is 3000 lb, and the other way (F2) is, for example, the capacity of an elevator 

increases from 3000 lb to 5000 lb. In the data model for the function, the attribute 

‘product_feature’ refers to both the structural and behavioural features of a particular product. 

For example, for the elevator system, the ‘product_feature’ takes the items (for example): 

‘capacity’, ‘platform.weight’, ‘platform.size’, etc. The syntax ‘platform.weight’ has the 

following meaning. The first word ‘platform’ stands for a class, and the second attribute ‘color’ 

stands for an attribute of the class ‘platform’. The generalization of this syntax is self-

explanatory and applies to the remainder of the discussion in this thesis. The attributes 

‘operator’, ‘quantity’, ‘from_quantity’, and ‘to_quantity’ are self-explanatory with respect to 

their corresponding classes (F1, F2). The two examples of the function requirement, as discussed 

before, can then be expressed in the form of instances as follows:   

  

Instance of F1    

<F001#, ‘Capacity’, ‘>’, 3000> 

Instance of F2  

<F002#, ‘Capacity’, 3000, 5000> 
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Where the symbol ‘>’ means ‘greater than’. 

Figure 3.3 A Data Model for the Function    
 

Fig. 3.4a is a data model for the constraint. The constraint is defined upon the structural feature 

of a product. The example of the constraint, regarding the color of the interior of the car in the 

elevator system, is: 

  

Instance of constraint  

          

<C001#, ‘Interior.color’, ‘Red’> 

 

where the term ‘Interior.color’ refers to the color of the interior of the elevator, and it is a 

structural feature of the elevator product.  
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..  

Figure 3.4 Data Models for the Constraint and the Wish 
 

Fig. 3.4b is a data model for the wish requirement. The wish may be applied to the whole 

product, or a set of components. An example of the wish requirement would be: the cost of an 

elevator system should be the lowest. The data representation of this wish requirement may be 

expressed in the form of instance as follows:  

 

< W001#, Cost, Lowest, {component 1, component 2, …, component n} > 

 
where the ‘W001’ stands for the identity of the wish; ‘cost’ is a behavioural feature of the 

product; ‘lowest’ represents the degree of the wish in the customer’s mind. In the bracket ‘{… 

…}’, all concerned components of a product are listed. When a whole product system (e.g., the 

elevator system) is described for a certain behaviour or property, simply put the name of the 

product in the brackets.  

 
3.3.2 A Data Model for Product Configuration 

 

The definition of product configuration is given in Chapter 1. In that definition, a product 

configuration is viewed as a network of connections among a set of components. Such a view of 

product is also called connectivity view. A product configuration may also be viewed as a set of  

1..* 
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Figure 3.5 Data Model for the Assembly and Connectivity 

 

sub-systems or components based on the function decomposition at varying levels. Such a view 

of product is called assembly view. For example, the elevator system is decomposed into (see 

Fig. 1.3): 

 

• Hoist way assembly, 

• Car assembly, 

• C-weight, 

• Suspension,  

• Safety, and  

• Cable. 

 

The Hoist way assembly is further decomposed into the components: guide rail and U-bracket, 

and the car assembly are further decomposed into the subsystems: car and supporting system.  

1

1 1

Assembly 

Part 

Subassembly 

1..k

1..k1..k 

Connection 

2 

1..k

Configuration 

1 1



 38

 

Figure 3.6 Pair Relationships for the General Connectivity Representation 
 

A data model which captures the above semantics is shown in Fig. 3.5. In this figure, it is further 

remarked that the line which connects the class ‘subassembly’ to itself express that the level of 

decomposition of subsystems may be more than one and varying. Note that Fig. 3.5 also 

represents the connectivity view of product configuration. To make the model more general, the 

connectivity can be viewed as a set of pair relationships [Zhang and Van der werff, 1993]. For 

example, a product has four objects that are connected, as shown in Fig. 3.6. This connectivity 

view can be expressed by a list of pair relationships as follows: 

 

<A, B> 

<A, C> 

<A, D> 

<B, D> 

 

Further, there are various types of connections in the product architecture, for example, the shaft-

and-hole, face-to-face against, etc. Fig. 3.7 represents this semantics. Specifically, for the shaft-

A 

B 

D 
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hole connection type, a set of attributes that describe it is shown in Fig. 3.8, where the attributes 

of the class ‘Shaft_Hole_Connection’ are self-explanatory.   

 

Furthermore, the data model illustrated in Fig. 3.5 also represents: a configuration is a kind of an 

assembly. In fact, the data model of assembly and connection is a generic one. 

 

Figure 3.7 A Data Model for the Connection 

 

Figure 3.8 A Data Model for the Shaft-Hole Connection Type 
 

There are linkages between the requirement data model and the product configuration data 

model. In particular, the domains of the attribute ‘product_feature’ should be included by the 

domain of the product ontology dictionary” (POD). The product ontology is the definition of 

Shaft_Hole_Connection 
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basic concepts and their relationships for a particular type of product, while the product ontology 

dictionary contains a list of such definitions. Therefore, the POD contains the following 

information: 

 

• Structural features of components, of subsystems, and of systems, 

• Behavioural features of components, of subsystems, and of systems, and 

• Their semantics. 

 

For example, in the POD, there may be the following definitions: 

 

001#:  Platform.size: the size of the platform; 

002#: Interior.color: the color of the interior; 

003#: Capacity: the capacity of the system; 

004#: Cost: the effort which is converted into money for making products, subsystems, 

and components. 

 

The first two examples are a structural feature of the product, while the last two are a behavioural 

feature of the product.  

 
3.3.3 A Data Model for Configuration Design Knowledge 

 

Design knowledge is mainly concerned with design synthesis knowledge; that is, it answers 

various “how-to-achieve” questions. The structure of design knowledge expression may depend 

on the general structure of a product. Generally speaking, the structure of a product has two 
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types: (1) serial type, and (2) parallel type. In the serial structure type, synthesis can be divided 

into n synthesis sub-tasks (see Fig. 3.9).  In particular, synthesis at sub-task i is not subject to any 

constraint of that at sub-task j (j ≠ i) except the input-output relation (i.e., output of sub-task i is 

input of sub-task i+1). In the parallel structure type, each component plays a unique role in 

forming a product; see Fig. 3.10.  

 

Figure 3.9 Serial Structure 
 

 

     Figure 3.10 Parallel Structure 
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The dependency between points 

The point where a decision is made 

······
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The representations of design knowledge for these two types of structures are considerably 

different. For the serial structure type, design knowledge can be expressed as a set of function-

structure (F-S) pairs; see Fig. 3.11, where a sub-function further corresponds to one or more 

structures. The sense of “how-to-achieve” can be seen from the following scenario: 

 

Given a functional requirement for a new product, the function is decomposed into a set of sub-

functions, say F1, F2, …, Fn. A process is started to match the function-structure pair in the 

design knowledge database, which has the structure shown in Fig. 3.11. Assume that F1, F2, …, 

Fi (i ≤ n) are matched. Then the function decomposition process will be continued on Fi+1, Fi+2, 

…, Fn. The design ends when all sub-functions are matched by structures, which means all 

functions are achieved. The design is thus a set of structures that can be obtained through the 

function-structure pair. For example, for F1, one obtains S1 (See Fig. 3.11). Note that this design 

process is well known, as described in design literature, e.g. [Suh, 1990]. 

 

Figure 3.11 Serial Structure Design Process 
 

For the parallel structure type, design knowledge is expressed in a way by determining all 

component instances “simultaneously” to satisfy a requirement. Design knowledge, in this case, 
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can hardly be expressed by separate blocks or units (the same way as for the case of the serial 

structure type). There may be several possibilities of combinations of component instances that 

achieve a requirement, and these possibilities are design knowledge for the parallel structure 

type. When the number of components, n, is large, the number of possible combinations of 

component instances is large. It is understood that the maximal number of possibilities is m1× 

m2× ··· ···× mn (mi: the number of instances of component i) which can be a very large number. 

Instead of exposing all instances of components, the other method to express design knowledge 

for the parallel structure type is to describe “rules” that constrain the selection of instances of 

components. This method is more efficient, in the form of design knowledge expression, than the 

way that lists all combinations of component instances.  

 

Configuration design is a design problem relevant to the parallel structure type design problem. 

Therefore, the serial structure type of design knowledge is not the concern in this thesis study. 

This thesis focuses on the parallel structure type of design knowledge. In the following, the data 

modelling issue for design knowledge for the parallel structure type is discussed.   

 

Based on the above discussion, design knowledge for configuration design is in the form of 

various relationships and constraints. A constraint makes sense when a corresponding 

relationship must be maintained. For instance, the color of the interior of an elevator is related to 

the color of the door of the elevator; specifically the red of the interior matches the white of the 

door. When such a relationship needs to be maintained, a constraint is then built upon the color 

of the interior and the color of the door. Note that the relationship and the constraint are viewed 

interchangeably hereafter.  
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The following points of general constraints can be summarized. First, suppose there are two 

components/sub-systems, A and B. A has NA attributes (A1, A2, ……, ANA), while B has NB 

attributes (B1, B2, ……, BNB). Attribute Ai and attribute Bj may have a constraint, denoted by 

<Ai, Bj>. Second, the constraint may be applied to more than two components or attributes; for 

example, <Ai, Bj, Ck>, where Ai, Bj, and Ck are three components/subsystems, while the 

subscript i (j, k) indicates a specific feature associated with the component, or <Ai, Aj, Ck>, 

where two attributes of component A participate in a constraint. These types of constraints may 

be called the n-nary constraint (n>2). It should be noted that a n-nary constraint is not equivalent 

to two binary constraints, e.g.,  

  <Ai, Bj> AND <Bj, Ck> 

This is because these two binary constraints do not impose the constraint on Ai and Ck directly; 

Ai  and Ck are constrained only in the sense that each of them is related to Bj. The following is an 

example to further illustrate this point. Consider that the constraints on three product features, Ai, 

Bj, and Ck, are, respectively (see Fig. 3.12), 

 <ai1, bj1, ck3>, and  

 <ai2, bj1, ck1>. 

where the items in the symbol ‘<>’ are the instances corresponding to Ai, Bj, Ck, respectively. For 

instance, ai1 is an instance of Ai. 
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Figure 3.12 Constraints on Attributes  
 

Now consider representing these constraints based on the binary constraints. This results in the 

following representation of instances:    

 

  <ai1, bj1> 

  <ai2, bj1> 

  <bj1, ck1> 

   <bj1, ck3> 

The above representation is based on the idea that bj is an intermediate which relates ai1 (ai2) and 

ck1 (ck3). However, such an idea is not able to exclude the following pieces of knowledge: 

  <ai1, bj1, ck1> 

  <ai2, bj1, ck3> 
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which are not part of the constraints for this problem. Therefore, the data representation of 

knowledge for configuration design should include the n-ary (n≥3) expressions. 

 

Fig. 3.13 presents a data model of design knowledge for configuration design. It should be noted 

that the domain of the class ‘structure_feature’ and ‘behavior_feature’ are included by the 

domain of the class “POD” (see the previous discussion). Several remarks can be made regarding 

the data model shown in Fig. 3.13.  

 

Figure 3.13 A Data Model for the Design Knowledge of Configuration Design 
 

Remark 1: When the multiplicity indicted at the end of the class ‘structure_feature’ is ‘1’, this 

means that there is only one ‘structure_feature’ associated with the class ‘Configuration design 

knowledge’. In this case, the design knowledge which makes sense is simply the domain of the 

respective ‘structure_feature’. The domain of an attribute (‘structure_feature’ in this case) serves 

as a kind of knowledge in the sense that any product feature outside the domain should not be 

considered as a valid design.   
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Remark 2: When the multiplicity indicated at the end of the class ‘structure_feature’ is ‘2’, this 

means a binary constraint. When the multiplicity is ‘3’, this means a ternary constraint, as 

discussed above, with special reference to Fig. 3.12. 

 

Design knowledge is used by a designer for determining a configuration given a requirement. 

Fig. 3.14 captures this semantics. After a configuration design is finished, one obtains a pair of 

particular requirement instance and a particular configuration instance; see Fig.3.15. A set of 

such pairs forms a new knowledge base called the case-based configuration design knowledge 

base (CASE for short) (Fig. 3.16).  

 
Figure 3.14 A Data Model for Configuration Design 
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Figure 3.15 The Post Configuration Design 
  

 

Figure 3.16 Case-Based Configuration Design Knowledge Base 

 
CASE improves the efficiency of configuration design in the following sense. For any new 

configuration design task, the first step is now to search CASE by matching the requirement 

instance of a new design task. If there is a match, then simply retrieve the corresponding 

configuration instance. By this way one avoids searching configuration design knowledge base, 
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which may be a time-consuming task. On a general note, the idea described here may be called 

design process reuse.  

 

3.4 A Conceptual Model of CSP for Configuration Design  

 

The knowledge representation for configuration design, as proposed before, does not best suit 

computation. A computation-efficient representation usually requires such a formalism that 

includes the operand and the operator only. In the following, a conceptual model of CSP for 

configuration design is proposed. By the conceptual model it is meant that the representation is 

independent of any computer code which implements CSP. The conceptual model of CSP for 

configuration design is defined as follows: 

 

Variable: 

      Vi | Description;         i =1, 2, …, n                                       (3.1) 

where n is the total number of variables, and i is the variable identity. It is noted that the domain 

can be viewed as the unary constraint. 

 

Domain: 

      Di | A set of values                                                       (3.2) 

 

Binary constraint: 

      Cj | C-Expression                                                          (3.3) 

where Cj is the constraint identity, and C-Expression takes the following form: 
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C-Expression: = operand 1 |operator |operand 2   (3.4) 

Where operators include U, ∩,  ≠, >, <, =, ┐, and “operand 1” and “operand 2” are variables 

defined in Equation (3.1). It is noted that these operations are not logic operators; they represent 

the semantics of various type of constraints. 

  

In the case of the categorical type of variables, e.g., the variable ‘color’ which has the domain 

{‘Red’, ‘Blue’, …}, the operators that require quantitative information, such as >, =, ≠, <, 

become irrelevant. One needs to make use of the operators such as ‘∩’, ‘U’, ‘┐’and  ; see the 

discussion to follow. Regarding the (operators: U, ∩, ┐); specifically in the context of CSP, 

Variable 1 U Variable 2 means Either Variable 1 Or Variable 2; Variable 1 ∩ Variable 2 means 

Variable 1 AND Variable 2. Variable 1 ┐Variable 2 means Variable 1 incompatible with 

Variable 2.  

 

In Chapter 2, two types of preferences, Preference I and Preference II, were discussed. Their 

CSP representations are as follows:  

 

Preference I: 

 
Pi | PVi | vi {ai}                                              (3.5) 

where    

Pi : the preference identifier; 

      PVi : the preference name; 

vi : the variable; 
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ai : the value. 

 

In the case of the elevator system, suppose that the customer prefers that the door is opened 

vertically. This preference can be represented as follows:  

 

P002# | door opening | V2 {‘V0’} 

where 

  P002#  : the preference identifier; 

  V2  : the variable representing the door opening attribute; 

  V0  : the value representing that the door is opened vertically 

 

Preference I can be further represented as a form of the unary constraint. That is, for the door 

opening example, the specification would be  

 

V2 | {V0} 

 

Preference II: 

 

     Pi | PVi | PII-Description |                                            (3.6) 

In Equation (3.6), PII-Description represents the preference of the customer on the whole system 

or sub-systems. In this study, the following types of Preference II are considered: (1) cost, (2) 

quality, and (3) weight. Therefore, there are three types of PII-Description. 
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 PII-Description (1): Cost is the minimum | Sk 

PII-Description (2): Quality is maximum | Sk 

PII-Description (3): Weight is the minimum | Sk 

 

Sk represents a system or a sub-system to which a preference is applied. For example, in the case 

of the elevator system, one may require the minimum weight of the sub-system consisting of the 

platform, sling, and crosshead. This preference can be specified as follows: 

 

PII #01 | moving parts | PII #01 - Description | 

PII #01 - Description = weight minimum | {V1, V2, V3}| 

V1: Platform component 

V2: Sling 

V3: Crosshead  

 

Preference II is solved by the CSP optimization technique, as mentioned in Chapter 2.  

 

Composite constraint: 

In the CSP literature, there is a notion called composite constraint specification [Sabin and 

Freuder, 1996]. Semantically, a variable (say VA) may represent a sub-system. The sub-system 
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VD 

VA 

VC VB 

 

consists of several components, which correspond to variables (say VB, VC, and VD). Thus, 

there is a hierarchical relation  between VA and VB (VC, VD); see Fig. 3.17.  

 
 

Figure 3.17 Composite Variable                              Figure 3.18 Composite Constraint 
 

Suppose that there is another variable, say VH, which has a constraint with VA. This situation 

leads to Fig. 3.18. The specification of the composite constraint requires the possibility in CSP to 

define the hierarchical relation among variables.  

 

3.5 From the PDM Model to the CSP Model  

 

The representation of the CSP problem (in Section 3.4) can be completely derived from the 

knowledge representation for configuration design discussed in Section 3.3. In particular, the 

variable and its domain correspond to the attribute ‘product_feature’ (both the structural and 

behavioural features) and its domain in PDM. Preference I of CSP corresponds to the constraint 

requirement in PDM.  
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The function requirement defined in PDM level corresponds to the unary constraint in CSP. Here 

it should be noted that the semantics is gradually losing with the modeling process from PDM to 

CSP; see Fig. 3.19.  

Figure 3.19 Modeling Process from PDM to CSP 
 
 

The wish requirement in PDM corresponds to the Preference II in CSP. In PDM, a particular 

component may have to be associated with a particular subassembly. This semantics corresponds 

to the composite constraint in CSP; specifically, that partial configuration corresponds to a 

composite variable. It is noted that with the idea of the integrated PDM and CSP the relationship 

among variables for a composite variable is readily captured in PDM by the assembly and 

connection semantics (see Fig. 3.5).  
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Figure 3.20 Linkage Data Model 
 

Fig. 3.20 shows a data model which represents the linkage (discussed above) between the PDM 

and the CSP. The linkage data model makes it possible a two-way travel between PDM and CSP 

(also see Fig. 3.1b). A process, which may be called the linkage process, works upon the linkage 

model to maintain the two-way travel (see Fig. 3.20). In particular the linkage data model is 

automatically created when traveling from PDM to CSP, and after the computation for 
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configuration design is finished (at the CSP level) the process is back to the PDM level through 

the association between PDM and CSP in the linkage data model. 

3.6 Illustration 

 

The elevator system is used as an example to give an impression of what the models developed 

above look like. It is noted that the models developed before are “templates”, while a specific 

application problem is “instances” of these “templates”. 

 

3.6.1 Configuration Design Requirement 

 

The elevator system, as earlier mentioned in Chapter 1, consists of 16 components and 4 optional 

components. Each component has a certain number of features or attributes, and they are given 

below.    

 

 Door:  Features: (1) open type 

(2) speed 

(3) open strike side 

 Platform: Features: (1) width 

     (2) depth 

 Sling:  Features: (1) size 

     (2) type 

 Safety   Features: (1) size 

     (2) type 
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 Head   Features: (1) size 

 Carbuffer  Features: (1) size 

     (2) type 

 Cweight Features: (1) size 

     (2) type 

 Sheave  Features: (1) capacity 

  

 Cwtbuffer Features: (1) size 

 Concable Features: (1) type 

 Hcable  Features: (1) type 

     (2) duty 

 Gcable  Features: (1) type 

 Comcable Features: (1) type 

 Machine Features: (1) capacity 

 Mbeam Features: (1) size 

 Motor   Features: (1) power 

 

The design requirement of the elevator system may include the following specifications (not a 

complete list): 

 

Function: 

(1) Elevator capacity:                                     2500 lb 

(2) Elevator speed:                                         250 ft/min 
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(3) Need a phone or not:                                yes 

(4) Need a lantern or not:                               no 

(5) Need a communication or not:                 no 

(6) Need an indicator or not:                         no 

 

Constraint: 

(1) Door open type: side open     

(2) Door open speed: double 

 

Wish: 

 (1) The lowest cost of the whole elevator system 

  

3.6.2 The PDM representation of Design Requirement 

 

The PDM for the above design requirement is presented below: 

 

Following the data model shown in Fig. 3.3, the instances of the data model representing the 

semantics of the function requirement are shown below: 

 

 <F001#, ‘Capacity’, ‘>’, 2500 lb> 

 <F002#, ‘Speed’, ‘=’, 250 ft/min> 

 <F003#, ‘Phone’, ‘=’, ‘yes’> 

 <F004#, ‘Lantern’, ‘=’, ‘no’> 
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 <F005#, ‘Communication’, ‘=’, ‘no’> 

 <F006#, ‘Indicator’, ‘=’, ‘no’> 

Following the data model shown in Fig. 3.4, the instances representing the semantics of the 

constraint and wish requirements, respectively, are shown below: 

 

Constraint: 

 <C001#, Door.open, “Side open”> 

 <C002#, Door.speed, “Single speed”> 

  

Wish: 

 <W001#, ‘Cost’, ‘lowest’, { }> 

 

where ‘{}’ implies that this particular wish is applied to the whole system (i.e., the elevator). 

 

3.6.3 The CSP Representation of Design Requirement 

 

Variables (the left side are the variable names, and the right side is the description) 

 

V0  |    Door 

V1  |    Platform 

V2  |    Sling 

V3  |    Safe 

V4  |    Head 
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V6  |    Car buffer 

V7  |    Car weight 

V8  |    Sheave 

V9  |    Cwtbuffer 

V10  |    Concable 

V11  |    Hcable 

V12  |    Gcable 

V13  |    Comcable 

V14  |    Machine 

V15  |    Mbeam 

V16  |    Motor 

V18  |    CarPhone 

V19  |    CarLantern  

V20  |    CarIntercom 

V21  |    CarIndicator 

V22  |    ElevatorCapacity 

V23  |    ElevatorSpeed 

 

There are other variables, which refer to the design requirement, and they are presented as 

follows: 

 VF01  |   required capacity 

 VF02  |   required speed 

 VF03  |   required door type and speed 
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 VF04  |   need a phone or not  

 VF05  |   need a lantern or not 

 VF06  |   need a communication system or not 

 VF07  |   need an indicator or not 

 VFCOST |   cost of the total system 

 

In the above,     

VF01 corresponds to V22 

VF02 corresponds to V23 

VF03 corresponds to V0 

VF04 corresponds to V18 

VF05 corresponds to V19 

VF06 corresponds to V20 

VF07 corresponds to V21 

 

The design requirement is represented in CSP as follows: 

 

Function: 

  VF01 = 2500 lb 

  VF02 = 250 ft/min 

  VF04 = ‘yes’ 

  VF05 = ‘no’ 

  VF06 = ‘no’ 
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  VF07 = ‘no’ 

 

Constraint: 

 
The design constraints (1) and (2), as described above in Section 3.6.1, are represented by one 

variable in CSP. 

 
  VF03 = ‘2sso’ 

 
Where ‘2ssso’ stands for (1) the door is ‘side open’, and (2) door open speed is ‘double’ 

 

Wish: 

 
VFCOST = ‘lowest’ 

 
3.6.4 Design Knowledge Representation 

 

Design knowledge stated at the application level: 

For example, Car Assembly made of Door, Platform, Sling and Crosshead which are called 

components. Each component has several models which fulfill similar function but each of them 

meets different requirements from geometric, physical, structural aspects. Take the component 

Door and Platform as an example. Their alternative models (in parentheses) are listed as follows: 

 
Door: (ssco, ssso, 2sco, 2sso) 

 
where    ssco : single speed and center open; 

  Ssso : single speed and side open; 
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  2sco : double speed and center open; 

  2sso : double speed and side open. 

 

Platform: (2.5B, 4B, 6B) 

 
where   2.5B : the smallest model; 

6B : the largest. 

 

The platform model (2.5B) is compatible with the door models (ssco, ssso) but not the door 

models (2sco, 2sso). Further, there is design knowledge which says: If Capacity is equal to or 

less than 2500 lb, use Platform model 2.5B. If Capacity is larger than 2500 lb and less than 

3000 lb, use platform model 4B; otherwise use platform 6B model.   

 

Design knowledge represented in PDM: 

In the production configuration data model, one has the following instance: 

 

Assembly: 

<A01#, P01#, P02#, P03#, P04#> 

 

Part: 

<P01#, ‘Door’> 

<P02#, ‘Platform’, ‘Capacity’> 

<P03#, ‘Sling’> 

<P04#, ‘Crosshead’> 
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For representing the feature values, a general data model proposed by Zhang and Van der Werff 

[1993] is applied. This data model suggested two attributes in a class: the attribute id and its 

value. Therefore, one has the following definition of the structure feature. 

  

Structure_feature: 

 <PF001#, P01, ssco> 

 <PF002#, P01, ssso> 

 <PF003#, P01, 2sco> 

 <PF004#, P01, 2sso> 

 <PF005#, P02, 2.5B, {#, 2500}> 

 <PF006#, P02, 4B, {2500, 3000}> 

 <PF007#, P02, 6B, {3000, #}> 

  

Configuration design knowledge: 

<DK001#, PF005#, PF001#>  

<DK002#, PF005#, PF002#>  

 

Design knowledge represented in CSP:  

In the CSP level, the design knowledge is represented by 

 

The Domain: 

 Door: {ssco, ssso, 2sco, 2sso} 



 65

Platform: {2.5B, 4B, 6B} 

Capacity: {2000, 2500, 3000, 3500, 4000} 

 

The Binary relation: 

 #089 | C- platform.2.5B ∩ door.ssco 

#090 | C- platform.2.5B ∩ door.ssso 

#091 | C- Capacity.C1 ∩ platform.2.5B 

#092 | C- Capacity.C2 ∩ platform.4B  

#093 | C- Capacity.C2 ∩ platform.6B  

In the above, C1, C2, and C3 are so-called surrogates which are defined as follows: 

 

 C1: capacity less than 2500 lb; 

 C2:  capacity less than 3000 but greater than 2500; 

 C2: capacity greater than 3000. 

 

The linkage between PDM and CSP is illustrated as follows: 

 

             PDM                        CSP 

P01                                                 corresponds to Door 

P02 corresponds to Platform 

Structure_feature corresponds to Domain of door and platform 

Configuration design knowledge corresponds to Binary constraint 

Behaviour_feature corresponds to Domain of Capacity 
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3.7 Concluding Remark 

 

The integration of PDM and CSP is a promising idea for a more intelligent computer system for 

configuration design. The improved intelligence is because this idea gets both the strengths of 

the two paradigms (PDM, CSP): the rich expression of application semantics with PDM and the 

powerful facility (in computation) and generality (in knowledge representation) with CSP. The 

essence of this idea is such that PDM becomes a “wrapper” over CSP; CSP is merely a 

computational engine. One can also see that at the CSP level, the binary constraint has difficulty 

in representing the continuous variables (i.e., capacity <2500). At the current CSP formalism, the 

notion of surrogate was applied. 
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Chapter 4 

Life Cycle Configuration Design 
 
 

 

4.1 Introduction 

 
A configuration design system or configurator does not work in isolation from other design and 

manufacturing processes. The life cycle configuration design concept will be proposed in this 

chapter. Specifically, Section 4.2 will elaborate this concept. Section 4.3 presents a general 

framework for integrating various life cycle systems and two specific integrations, namely the 

Configurator with CAD (Computer Aided Design) and the Configurator with SCM (Supply 

Chain Management). Section 4.4 is a summary. 

 
4.2 Life Cycle Configuration Design Concept 

 

The product production is a process which takes a triple (energy, material, information) in and 

generates a new triple (energy, material, information) out; see Fig. 4.1. Such a process is a 

controlled process with some goals to achieve and subject to some constraints; see Fig. 4.1. The 

things to be controlled or managed are resources, such as equipment, people, money, 

subcontractors, and suppliers; see Fig. 4.2. In literature, control of equipment and material may 

be fulfilled by a software system called “Manufacture Resource Planning (MRP)”. The control of 

financial flow may be fulfilled by a software system called “Enterprise Resource Planning 

(ERP)”. Control of supplies may be fulfilled by a software system called “Supply Chain 



 68

Management (SCM)”, and finally management of customers may be fulfilled by a software 

system called “Customer Relation Management (CRM)”. These software systems may not stand-

alone; they may physically be integrated into one software system. For instance, many ERP 

systems include the functions of CRM and MRP.  

  
Figure 4.1 General Product Production Process 

 
 

The concept of life cycle configuration design (LCCD) means that the configuration design 

activity involves all these management or control activities. It should be noted that product life 

cycle design or engineering for general products was first elaborated by Alting and Legarth 

[1995]. Here, configuration design is viewed as a particular design pattern with respect to general 

product design. Therefore, the life cycle (general) idea should be well applied to configuration 

design. In order to develop an integrated life cycle configuration design system, the idea 

proposed in this thesis is to identify interfaces between the configurator and many other 

control/management systems. 
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Figure 4.2 Things to Be Managed 
 

4.3 Interfaces between Configurator and Other Life Cycle Programs 

 

With the concept of integrated PDM and CSP (hereafter, PDM-CSP for short), the interface 

between configurator and the other systems as mentioned before (e.g., CAD/CAM system, ERP 

system) simply become the interface between PDM and the other systems. In general product 

production, interface between PDM and the other systems is well known, specifically under the 

heading called Product Life Cycle Management (PLM). In fact, the early system with the 

heading of PDM has already taken the whole life cycle of product into consideration; see 

Shrikhande [2000]. Nevertheless, there are two reasons that a study of PLM or PDM issue with 

special reference to configuration design is warrant here. First, the configuration design has its 

special features that may demand special considerations. Second, the current development of 
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XML allows the possibility to develop a mixed structural and semi-structural data that was 

recognized in [Shrikhande, 2000] as being very important for an effective PDM.  

 

This thesis was not intended to give a full model for the life-cycle configuration design system 

but to focus on general framework and concept. The following discussion presents the concept of 

interface as a key technology for gluing a configurator with other program systems that support 

life cycle configuration design and illustrates how this concept works based on a few examples. 

 

4.3.1 The Interface Framework 

 

Fig. 4.3 illustrates a general framework of interface between a configurator with other program 

systems. In this framework the configurator and those other programs have a port which stores 

information and knowledge that is ready to communicate with other programs. Between the ports 

is an interface system. The interface is basically a kit of tools that further facilitate the 

communication. Here, the communication is mostly about data flow in the sense that the data 

from the configurator flows to the program (e.g., a CAD program), or vice versa. It is assumed 

that program A will not directly intervene program B in such a way program A, serving like a 

process of program B, changes data in the data repository of program B. In other words, each 

program has a process which represents intelligence of that program; see Fig. 4.4. Such a process 

is refreshable and replaceable, the same as human learning. 
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Figure 4.3 The Interface Framework 

 

 

Figure 4.4 The Concept of The Process of a Program 
 

It is further noted that the data in the port of a program (e.g., configurator) may differ depending 

on what other programs it communicates with. For example, when a configurator communicates 

with an ERP program, the data from the configurator’s port may only include the so-called bill-

of-material (BOM) data, which is a list of materials, their quality, and their quantities. Note that 

BOM does not contain the structure over these materials (i.e., a kind of assembly of these 

materials).  The data in the configurator’s port may contain the product assembly and 
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connectivity information, as represented with the model illustrated in Fig.3.5 (Chapter 3), when 

it communicates with a CAD program system. 

 

Figure 4.5 Structural data vs. Semi-Structural Data 
 

Data in a program’s port typically contains both structured data and semi-structured data. The 

structured data is one that conforms to a particular data model framework (e.g., relational, etc.), 

while the semi-structured data does not. The semi-structured data usually provides the context 

data for the structured data; see Fig. 4.5.  

 

Recently, XML emerges to be a powerful tool for representing semi-structured data [Marchal, 

2000] (more details about XML refer to Appendix A). The structured data and semi-structured 

data must be integrated, as the latter is the context of the former (Fig. 4.5). The key to make the 

integration possible is that they both share the same ontology; see Fig. 4.6.  
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Figure 4.6 Integration of Structural and Semi-Structural Data 
 

4.3.2 The Interface between Configurator and CAD Program 

 

(1) Data in the configurator’s port: 

Structural data: 

• Product assembly and connection model (see Fig. 3.5), and  

• Parts Catalogue. 

 
Semi-Structural data: 

• Customer information, 

• Configuration design identifier, 

• Design id, and 

• Design status (design, review, or release, etc.). 
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(2) Data in a CAD system (e.g., SolidWorks): 

• Assembly and parts in CAD data format (e.g., DWG, IGES, STEP, ACIS, DXF, etc.), 

• Mates relationship, and 

• Title block information (designed by, checked by, approved by, etc.). 

 

(3) Interface: 

The data transfer of the structural data from the configuration’s port to the CAD program’s port 

may be performed by a human operator if there is a lack of the automated transfer process. Take 

the elevator as an example. This means the personnel who administrate the configurator needs to 

create a solid model of a configured product in a particular CAD system, e.g., SolidWorks. It is 

noted that such a model should be parametric for the configuration design application. Once the 

CAD model is established, the subsequent design scenarios will be as this. After a solution is 

generated by a configurator, the configurator will send parametric information to the CAD 

system by specifying a particular product family (e.g. elevator) stored in the CAD system. Then, 

the CAD system will realize the solution (i.e., a configured product) to the customer. The 

customer may be allowed to do change directly on the solution in the CAD system if the 

customer is familiar with the CAD system (e.g., SolidWorks) or if a user interface system, which 

relieves the customer of the need to be familiar with the particular CAD system, is available. 

 

There is also a data transfer of the semi-structural data (XML format) from the configurator’s 

port to the CAD’s port. For example, the XML representation of the semi-structural data is 

shown in Fig. 4.7. It is noted that in this figure the tag words used in the XML representation are 
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drawn from the product ontology dictionary (POD) as discussed in Section 3.5. In that sense, the 

structural and semi-structural data are integrated. 

  
Figure 4.7 XML Representation of The Semi-Structural data 

 

4.3.3 The Interface between Configuator and SCM 

 
SCM describes the integration beyond boundary of the firm, involving business partners in 

different processes and activities. It involves suppliers, producers, retailers, logistics-service 

providers, and customers. By making planning cooperatively by all the participants it is believed 

to be more cost effective than isolated planning by individual participant. Therefore the 

communication for information exchange is very important for a seamless integration over all 

players, customers and its partners. 

 
Electronic Data Interchange (EDI) system has been one widely used to achieve integration over 

participants. However EDI’s considerable setup time and high operation costs stop many small 

Natural Language for Design 
Rationale: 
 
The customer for this product 
(elevator) is USIntel. The 
customer requested the product 
delivered on the date of January 
5, 2005. The product will be used 
in a building. The resulting 
configuration has an identifier 
(IDNumber). This design task has 
an identifier (DesignID). The 
design has been completed. 

Tags:  
  
<Product>USIntel </Product> 
<customerID>c10058</customerID> 
<configuration_identifier> Solution109 
</configuration_identifier> 
<design_id>d00150018</design_id> 
<design_status>released</design_status> 
<Quotation> 
 <quotationID>05</quotationID> 
 <price>350</price> 
 <currency>CAD</currency> 

<delivery_date> Jan05/05 
</delivery_date>   

</Quotation>
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and medium size companies from using it. XML, instead, is very promising for representing 

structured and semi-structured data in SCM with low cost or even 0 cost [Buxmann et al., 2002].    

 

The following is an example of data for the communication between a Configurator and a SCM 

program. Suppose that the end-user (customer who needs a product) is satisfied with the solution 

(a configured product) generated by the Configurator. The Configurator will need to 

communicate with the SCM system in order to generate the delivery date for the customer. For 

this purpose, at the Configurator’s port, the BOM data is to be sent to the SCM system. Some 

background information may be attached with the BOM data. The example of such background 

information is the customer required delivery date and the customer location. The SCM system 

receives the Configurator’s request and will then analyze the request and develop a supply plan 

for which the SCM system may further communicate with potential supplies. After the SCM 

system has worked out a supply plan, the SCM system will then return the result to the 

Configurator, and the Configurator generates the product delivery date to the customer and in the 

mean time the customer will be given the access to the SCM system to track the product delivery 

process. The interface between the Configurator and the SCM in this case will not have much 

difficulty in terms of the data format; the text format for the BOM and XML format for the other 

information should suffice. For example, the XML file for the background information (as 

mentioned before) can be formed in Fig. 4.8. 
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Figure 4.8 Background Information of a Part in XML 
 
4.4 Summary 

 
An effective configuration design system will have to provide a facility for life cycle 

considerations. The essential issue here is integration of a configurator with various other life 

cycle design systems, e.g., CAD system, SCM system, ERP system, etc. The general solution is 

to view the problem as an interface problem. In this chapter, the integration of the configurator 

with two life cycle modules, CAD and SCM, was discussed at the conceptual level (i.e., with 

emphasis on what information and knowledge are required in order to make integration happen). 

It has been long recognized that information and knowledge has to address both structural and 

semi-structural data. These two categories of data represent, respectively, decisions and their 

rationale. An idea was described that is to have UML for structural data and XML for semi-

structural data, and further let two data models (UML and XML) share the same ontology of a 

domain of application under consideration. 

<Background> 
<CustomerLocation> 
    <StreetNo>210 ABC Ave. </StreetNo> 
    <City> St. Peterburger</City> 
    <Province>Saskatchewan</Province> 
    <PostalCode>S7H1A7</PostalCode> 
</CustomerLocation> 

   <DeliveryDate> Jan20/05</DeliveryDate> 
 </Background> 
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Chapter 5  

Implementation and Demonstration 
 
 
 
5.1 Introduction 

 

This chapter discusses an implementation of the theoretical developments described in the 

proceeding chapters. The purpose of this implementation is to verify whether the concepts 

proposed in the preceding chapters can be implemented both effectively and efficiently. In this 

case, the elevator system is taken as an example. The implementation resulted in a web-based 

integrated Configurator software system for the elevator system development. The configurator 

was based on the integration of PDM and CSP (an idea discussed in Chapter 3); specifically 

PDM wraps CSP. Hereafter, this system is called the PDM-CSP Configurator (or Configurator 

for short). Section 5.2 presents the system architecture of the PDM-CSP Configurator. Section 

5.3 discusses the general implementation methodology. Section 5.4 discusses an implementation 

of CSP. Section 5.5 discusses an implementation of the integration of the Configurator and the 

CAD system. Section 5.6 presents a demonstration. 

 
5.2 The architecture of PDM-CSP Configurator 

  

Architecture of a system describes the various software modules and their relationships. It is well 

known that the architecture of a complex software system should make the following three 

components separate: the presentation, the data, and the process [Zhang, 1994]. This idea is 

translated to the web-based software application, which results in the structure shown in Fig. 5.1. 
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In this figure it can be seen that there is a server layer which refers to the CSP algorithm and the 

knowledge conversion program between PDM and CSP, an interface layer which refers to the 

interaction of the server with the client or customer, and a database layer which stores 

information and knowledge needed for conducting configuration design. It should be noted that 

with this architecture, data management is performed at the server layer in a centrally controlled 

manner. The client can start with PDM-CSP at any location. At the client end, a standard 

browser is needed, such as Netscape or Internet Explorer.     

 

Each layer contains several program modules. At the database layer, there are (1) information 

about the design of a particular product, (2) the knowledge for designing the product, and (3) 

some general product development knowledge (e.g., materials, supplies, etc.). At the sever layer, 

there are (1) the database management system (DBMS), (2) the data conversion system (i.e., the 

linkage process; see the discussion in Section 3.5), and (3) the main program to perform 

configuration design. At the interface layer, there are (1) the interface management system which 

deals with the interface structure, (2) the user-model, and (3) some conversion program (e.g., 

XML to HTML). 
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Figure 5.1 The Architecture of PDM-CSP  
 

 

5.3 General Implementation Methodology 

 

Currently, the interface layer was implemented using Java Server Page (JSP) and Servlets. JSP 

and Java Servlets were used to create the html web pages. In the server layer, CSP was 

implemented using Java Constraint Library 1.0 (JCL). JCL was one of the first software libraries 

to bring CSP to the java world. This library was an open source library developed by JCL team 

in the Swiss Federal Institute of Technology [JCL, 2000]. JCL provided an Application Program 

Interface (API) for working with constraint satisfaction problems. These problems included the 

classic, soft CSP, and continuous CSP. The database layer was implemented using the text file 

that could be accessed by any programming language. Furthermore, currently the 

implementation of the PDM system was very pre-matured. 
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The programming environment is as follows: (1) Windows 2000 professional or other windows 

systems, and (2) VisualAge for Java from IBM as editor and the web environment. 

 

5.4 Implementation of  CSP  

 

The CSP problem representation was implemented based on the following simplifications: (1) 

each variable corresponds to one component/subsystem, instead of the attribute or feature of a 

component or subsystem. In this case, if a particular component has two attributes (e.g., the color 

and size), and the domain of the color is <’Red’, ‘Blue’>, and the domain of the size is, <’100’, 

‘200’>, then the domain of that component or variable corresponding to that component will 

have 4 models, which are: model 1 (‘Red’, ‘100’), model 2 (‘Red’, ‘200’), model 3 (‘Blue’, 

‘100’), and model 4 (‘Blue’, ‘200’). So the domain of the variable in this case has 4 models. 

 

The function requirement is represented by the variable too. For example, the capacity of the 

elevator corresponds to a variable. The domain of the capacity variable was <1000, 1500, 2000, 

2500, 3000>. The constraint requirement was also represented as variable.   

 

Care must be taken that since the variable was defined for the whole component, not for an 

attribute or property of a component (as discussed before), a specification of Preference I may 

introduce some redundant specification. An example helps to clarify this point. Suppose that the 

customer has a preference, say the door open style should be “side open” (the customer has no 

preference on the door speed). The door component has the two features in the current example): 
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the door speed and the door open style. The codes were developed corresponding to these two 

features. For example:  

ss: single speed;  

2s: double speed; 

so: side open; 

co: center open; 

Therefore the code ssso stands for “single speed and side open”. 

 

The constraint requirement as mentioned before is then specified by two unary constraints: Door 

model {ssso, 2sso}. 

 

The wish requirement in CSP was implemented with Preference II (see the previous discussion 

in Section 3.6). Currently, only the cost and performance were implemented. This was 

specifically done by introducing extra two attributes (cost and quality) with each model. As such, 

the CSP solving process was able to evaluate the total cost and total quality. Appendix B 

presents a full list of constraints of CSP for the elevator configuration design.  

 

5.5  Implementation of Integration of the Configuration and CAD 

 

The implementation of an interface of the Configurator (i.e., PDM-CSP) was done based on a 

CAD system: SolidWorks. The interface between the PDM-CSP and the CAD was discussed in 

Section 4.3.2. In SolidWorks, the elevator system was created. The model was parametric so that 

the whole elevator product family can be assembled. Fig. 5.2 shows a simplified elevator system.  
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Figure 5.2 Elevator System 

Fig. 5.3 shows two configurations of doors. Such an implementation supported the following 

design scenario. The customer interacts with the Configurator and gets an optional configured 

product. Then the product is visualized in the SolidWorks environment. 
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Figure 5.3 Different Configurations for Doors and Car Cabs  
 

5.6 Demonstration 

 
The design problem starts from the design requirements; specifically, it includes:    

 
(1) Function requirements: 

(1a) The capacity of the elevator should be 2000 lb, 

(1b) The speed of the elevator should be 250 ft/min, 

(1c) The car of elevator has a “phone” and a “level indicator”. 

 
(2) Constraint requirements: 

(2a) Door opening type should be “Side”, 

(2b) Door opening speed should be “Double”, 

(2c) Door opening strike side should be “Right”, 

Side-open door   Center-open door   
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(2d) Cab should be “96” inch high, “70” inch wide, and “84” inch deep. 

 

(3) Wish requirements: 

 

Figure 5.4 Interface for Design Requirement Specification  
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It is required to have a high performance but within a cost limit. The customer can enter the 

requirements into the interface, as shown in Fig. 5.4.  

 

 

 
Figure 5.5 Cost Limit Input by Customer  

 

Since the wish requirement is specified as the high performance within a cost limit, the 

configuration will ask from the customer for the preferred cost information. To facilitate the 

customer decision making process, the configuration will first calculate the range of the cost 

limits (Fig. 5.5). After that, the customer can specify a preferred cost which should be within the 

range, e.g., $9,000 in this case. Finally the Configurator will come up with a solution (i.e., a 

configured elevator) and shows the solution in the data format of BOM (Fig. 5.6). In this figure, 
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the configured product’s BOM is listed, and each component’s model is selected. For example, 

component door’s model is ‘2sso1’, which means a door with “double speed”, “side open” 

features and grade 1 quality. The cost of a model is also attached; for example, the price for 

model ‘2sso1’ is $500. Some other attributes attached with the BOM are performance (or 

quality), important factor, and performance number. 

  

 
 
 

Figure 5.6 Solution: BOM for the Configured Product 
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Chapter 6  

Conclusion and Future Work 
 
 
 
6.1 Overview of the Thesis 

 
The trend of today’s manufacture industry is changing from mass production to mass 

customization. The companies who win the markets are those who can deliver highly customized 

products with the fastest speed. One of the strategies to implement the mass customization is to 

implement the product development into the assemble-to-order (ATO) pattern. As such, the 

design of a product becomes the determination of a configuration which contains a set of pre-

developed components – configuration design for short. In the configuration design, the 

components will be less engineered. The configuration design problem can be well treated as 

constraint satisfaction problem (CSP). The matured methods are available for CSP. But the CSP 

method for configuration design has several limitations. First, CSP requires that design problem 

be defined at a relatively low level, i.e., the variable, the domain, and the constraint. Second, 

because of the first reason, the modeling of a configuration design problem into a CSP problem 

is not convenient. Third, integration of configuration design process based on CSP into life cycle 

processes (assembly, maintenance, recycling) is difficult because the linkage between CSP 

model of configuration design and the models for other life cycle processes is not explicitly 

represented in a data format. So computer processing of the integration is not possible. 

 

This thesis proposed to overcome these limitations by having a product data model wrap a CSP 

model for configuration design. In this way, configuration design is represented in the product 
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data model (PDM) level as well as in the CSP level, while the linkage between PDM and CSP is 

completely looked after by the computer (i.e., automatically maintained). The computer system 

implemented as such is called the PDM-CSP configurator (or configurator for short). In 

particular, the following research objectives were defined. 

 

Objective 1: Extend a CSP representation to explicitly incorporating the customer preference 

and constraint.   

 

Objective 2: Develop an integrated PDM and CSP approach to configuring products. 

 

Objective 3: Develop a framework for integrating a configurator with other product life cycle 

development systems.  

 

These objectives have generally been achieved. Specifically, an extended CSP model which 

incorporates two preferences (I, II) was proposed in Chapter 3, which addresses objective 1. The 

Preference I was in fact a kind of unary constraint. The Preference II was represented into an 

optimization problem, which was supported by an underlying CSP method. A great deal of 

discussion in Chapter 3 is on data modeling for the configurator, which includes the data model 

for configuration design in the PDM level, the data model for configuration design in the CSP 

level, and the data model for a linkage between PDM and CSP. These data models address 

objective 2.   

 

Chapter 4 proposed a life cycle configuration design concept and developed a framework for 

integration of the configurator and other life cycle processes. Specifically, the integration 
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problem was viewed as the interface problem, i.e., the interface between the configurator and 

other life cycle processes. For the illustration purpose, two integration examples, an interface 

between the configurator and CAD systems and an interface between the configurator and SCM 

systems, were discussed. Integration between two systems involves data integration; data here 

includes both decision data and its background data (more semantically, data representing 

decisions on the product development and data representing rationale behind the decisions). It 

was proposed that the decision data was represented as the structural data, while its background 

data was represented as the semi-structural data. It was further proposed that the schema-instance 

data modeling language (e.g., EXPRESS, UML) should be used for the structural data, while the 

mark up language (e.g., XML) should be used for the semi-structural data. These two data 

models (structural, semi-structure) share same product ontology; specifically, at the 

implementation level, the tag in XML should reference to the metadata dictionary which is 

designed for the structural data model. 

 

Finally, an effort was made to verify the ideas and methods proposed in Chapter 3 and 4. This 

was demonstrated by an implementation. This implementation includes (1) a CSP system, (2) a 

configuration design interface on the Internet; (3) an interface between the configuration and the 

SolidWorks.  

 
6.2 Contributions 

 

A main contribution of the research reported in this thesis is the proposed idea that PDM warps 

CSP. This idea has laid down a basis for a computer-based and web-based configuration design 

system. Specifically, there are the following contributions: 
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(1) Proposed the data models for configuration design, which capture: (i) both the structural and 

functional information, (ii) the structural and semi-structural data, and (iii) the linkage 

between the PDM and the CSP. A computer system for supporting configuration design 

based on this idea allows for a customer-oriented interface and a computationally powerful 

solver (CSP). 

(2) Proposed a framework for integrating the Configurator with other life cycle processes. In this 

framework, a strategy for integrating the structural and semi-structural data was proposed. 

(3) Proposed an implementation of the CSP with a particular reference to the customer 

preferences.  

 

6.3 Future Work 

 

The study presented here has some limitations or can be further extended. First, in design, it is 

quite often that information is incomplete (uncertain or imprecise). The configurator needs to be 

extended to model incomplete information. This can be done by developing the data modeling 

which enables the modeling of incomplete information [Li et al., 1998          ]. While at the CSP 

level, the fuzzy and probabilistic CSP facilities can be applied. It is noted that some conceptual 

level development about this work has already been done; see [Zhang et al., 2003]. Second, a 

configuration design problem could involve continuous variables. In this case, the CSP problem 

becomes a mix of the discrete and continuous variables. The future extension of the PDM-CSP 

configuration for such a complex CSP problem should be interesting. 
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Appendix A: XML 
 

Data can be classified as structural data and semi-structural data. Structural data is best described 

by the so-called “data model” which gives (1) rules to define data structure, (2) rules to define 

data integrity, and (3) rules to define data behaviour. Database technology is an effective tool for 

the structural data. The semi-structural data are those that cannot be structured the same manner 

as the structural data. The semi-structural data may also be called the “document data”. 

 

Earlier in 1980s, a language called SGML (Standard Generalized Markup Language) 

[Shrikhande, 2000] was used to represent semi-structure data in the need of publishing service 

communities. Later, with the development of the internet technology, the HTML (Hyper Text 

Markup Language) comes to the stage. From its premise, the HTML is inherently designed for 

the display of semi-structural data. The main problem with the HTML is its device (display 

device) dependency. XML (eXtensible Markup Language) [Box et al., 2000] is designed to 

overcome the device dependency problem with the HTML, which is the premise of the XML. As 

such, XML has the system architecture, in which the data representation and the data display are 

separated (see Fig. A.1). In Fig. A.1, XSL stands for eXtensible Stylesheet Language; XHTML 

stands for eXtensible HyperText Markup Language; XML DTD is Document Type Definition.  

 

The premise of XSL consists of three parts: XSLT, XPath, and XSL Formatting Objects. It is to 

specify the presentation of a class of XML documents by describing how an instance of the class 

is transformed into an XML document that uses the formatted vocabulary.  
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The premise of XHML is to replace HTML. The premise of DTD is to define building blocks of 

a XML document.  

 

 

Figure A.1 The XML Architecture 

 
One of the common characteristics of the XML and the HTML is the way to express data, i.e., 

the concepts of tags and strings. Fig. A.2 shows an example to explain these two concepts. In this 

example, ‘<note >’, ‘<to>’, ‘<from>’ and ‘<body>’ are called the start tags, and ‘</note >’, 

‘</to>’, ‘</from>’ and ‘</body>’ the end tags. Strings are placed between the start tags and the 

end tags.  

 

 

Figure A.2 The Concepts of Tags and Strings 
 

As this thesis focuses on conceptual modeling, the XML DTD (Document Type Definition) is of 

interest. As mentioned earlier, the purpose of a DTD is to define the legal building blocks of an 

Data display (XSL, XHTML) 

Data representation (XML DTD) 

<note> 
<to>Tove</to> 
<from>Jani</from> 
<body>Don't forget me this 
weekend!</body> 
</note> 

Don't forget me this 
weekend! 
 

(a) (b) 

display 
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XML document. It defines the document structure with a list of legal elements. A DTD can be 

declared within a XML document with inline format, or as an external reference. 

 
The examples of a XML file using an external DTD are shown in Fig. A.3 and Fig. A.4 

respectively. Fig. A.3 is a XML file with an external DTD (the line in bold.), and Fig. A.4 is this 

external DTD named “note.dtd. It can be seen that the DTD file (see Fig. A.4) defines the tags, 

such as to, from, heading, and body, specifically to the data type for “to”, “from”, “heading”, and 

“body”. 

 

Figure A.3 An Example of a XML File With an External DTD Reference 
 

 

Figure A.4 An Example of a DTD File 
 

For more details regarding XML, as well as HTML, the readers may refer to 

 
1. XML separates data presentation from data semantics to make XML file machine –

independent. Therefore it is a cross-platform, software and hardware independent tool for 

transmitting information. 

<?xml version="1.0"?> 
<!DOCTYPE note SYSTEM "note.dtd"> 
<note> 
<to>Tove</to> 
<from>Jani</from> 
<body>Don't forget me this weekend!</body> 
</note> 

<!ELEMENT note (to,from,heading,body)> 
<!ELEMENT to (#PCDATA)> 
<!ELEMENT from (#PCDATA)> 
<!ELEMENT heading (#PCDATA)> 
<!ELEMENT body (#PCDATA)> 
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2. XML is free and extensible that means you can create your own ‘tags’ (elements for 

expressing application semantics) and define you own document structures by DTD or 

XML schema. Therefore it is a powerful tool to be used in variety of industries, 

communities and research areas.  

 
3. XML is able to manage semi- or un-structured data with some special tools. Unstructured 

data is the information hidden in a company's e-mails, memos, notes from call centers 

and support operations, news releases, user groups, chats, reports, letters, surveys, white 

papers, marketing material, research, presentations, and Web pages. Microsoft and some 

other vendors (CambridgeDocs: http: // www.cambridgedocs.com/id16.htm) have all 

developed technology that transforms unstructured data into XML.  

 
In conclusion, XML was created to structure, store and send information, and most importantly, 

it is a cross-platform, software and hardware independent tool for transmitting information.  
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Appendix B: Design Knowledge Basefor the Elevator 
System Design 
 
The variable corresponds to the component of the elevator system. There are 16 components plus 

4 optional components. So the number of variables correspondingly to the components is 20. The 

design requirement is also represented by the variable. There are three design requirements, i.e., 

“capacity”, “speed”, and “Cab Door Type”. So there are additional three variables corresponding 

to the design requirements. In total, there are twenty three variables. These variables are listed 

below: 

 
 V0 |  Door 

  V1 |  Platform 

V2 |  Sling 

V3 |  Safe 

V4 |  Head 

V6 |  Carbuffer 

V7 |  Cweight 

V8 |  Sheave 

V9 |  Cwtbuffer 

V10 |  Concable 

V11 |  Hcable 

V12 |  Gcable 

V13 |  Comcable 

V14 |  Machine 
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V15 |  Mbeam 

V16 |  Motor 

 
Option variables: 

V18 |  CarPhone 

V19 |  CarLantern  

V20 |  CarIntercom 

V21 |  CarIndicator 

 
And requirement variables: 

V22 |  Capacity 

V23 |  Speed  

V24 |  Door Type  

 
The domains of these variables are listed below: 

component #Capacity 
Domain size #5 
value #2000 
value #2500 
value #3000 
value #3500 
value #4000 
component #Speed 
Domain size #5 
value #200 
value #250 
value #300 
value #350 
value #400 
component #DoorOpenSpeed 
Domain size #4 
value #ssco 
value #ssso 
value #2sco 
value #2sso 
component #CarPhone 
Domain size #2 
value #0 
value #1 
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component #CarLantern 
Domain size #2 
value #0 
value #1 
component #CarIndicator 
Domain size #2 
value #0 
value #1 
component #CarIntercom 
Domain size #2 
value #0 
value #1 
component #v0Door,15 
Domain size #8 
value #ssso1,500,high 
value #ssso2,400,low 
value #ssco1,500,high 
value #ssco2,450,low 
value #2sso1,500,high 
value #2sso2,450,low 
value #2sco1,800,high 
value #2sco2,780,low 
component #v1Platform,16 
Domain size #6 
value #2.5B1,600,high 
value #2.5B2,400,low 
value #4B1,700,high 
value #4B2,500,low 
value #6B1,800,high 
value #6B2,650,low 
component #v2Sling,10 
Domain size #5 
value #2.5B-18,554,common 
value #2.5B-21,578,common 
value #4B-HOSP,680,common 
value #4B-GP,699,common 
value #6C,899,common 
component #v3Safe,12 
Domain size #3 
value #B1,100,common 
value #B4,300,common 
value #B6,400,common  
component #v4Head,7 
Domain size #5 
value #W8*8,100,common 
value #W8*21,50,common 
value #C8*11.5,20,common 
value #C10*15.3,40,common 
value #C13*16.55,80,common 
component #v6Carbuffer,2 
Domain size #2 
value #OH-1-car,400,common 
value #OM-14-car,500,common 
component #v7Cweight,3 
Domain size #3 
value #weight1,300,common 
value #weight2,380,common 
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value #weight3,450,common 
component #v8Sheave,11 
Domain size #2 
value #DS-20,250,common 
value #DS-25,320,common 
component #v9Cwtbuffer,2 
Domain size #2 
value #OH-1,400,common 
value #OM-14,500,common 
component #v10Concable,3 
Domain size #3 
value #Light,110,common 
value #Middle,120,common 
value #Heavy,130,common 
component #v11Hcable,4 
Domain size #3 
value #3-0.5,144,common 
value #3-0.625,120,common  
value #6-0.625,150,common  
component #v12Gcable,6 
Domain size #1 
value #normal1,300,common  
component #v13Comcable,9 
Domain size #6 
value #Chain1,200,common  
value #Chain2,180,common  
value #Chain3,165,common  
value #Chain4,150,common  
value #Chain5,140,common  
value #Chain6,130,common  
component #v14Machine,17 
Domain size #8 
value #18-1,1100,high 
value #18-2,1000,low  
value #28-1,1545,high  
value #28-2,1445,low   
value #38-1,1855,high  
value #38-2,1655,low   
value #58-1,1999,high  
value #58-2,1799,low   
component #v15Mbeam,13 
Domain size #10 
value #10*25.4,500,common  
value #10*35,550,common  
value #12*31.8,600,common  
value #12*35,650,common  
value #12*40.8,700,common  
value #12*50,750,common  
value #15*42.9,850,common  
value #15*50,890,common  
value #18*54.7,920,common  
value #18*70,950,common  
component #v16Motor,18 
Domain size #12 
value #10HP1,436,high 
value #10HP2,336,low   
value #15HP1,680,high  
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value #15HP2,580,low  
value #20HP1,1216,high  
value #20HP2,1016,low  
value #25HP1,1396,high  
value #25HP2,1096,low  
value #30HP1,1208,high  
value #30HP2,1008,low  
value #40HP1,1435,high  
value #40HP2,1335,low  
component #v17Building,1 
Domain size #1 
value #normal2,1000,common 
component #v18CarPhone,0 
Domain size #2 
value #0,0,common 
value #1,100,common 
component #v19CarLantern,0 
Domain size #2 
value #0,0,common 
value #1,120,common 
component #v20CarIntercom,0 
Domain size #2 
value #0,0,common 
value #1,250,common 
component #v21CarIndicator,0 
Domain size #2 
value #0,0,common 
value #1,120,common 
 
Design knowledge is listed below: 

Binary constraint: 

Number of constraints #21  
pair0 #v1Platform,v3Safe 
Tupledomain size #8 
#2.5B1 B4 
#2.5B2 B4 
#4B1 B4 
#4B2 B4 
#6B1 B6 
#6B2 B6 
#4B1 B1 
#4B2 B1 
pair1 #v1Platform,v2Sling 
Tupledomain size #10 
#2.5B1 2.5B-18 
#2.5B2 2.5B-18 
#2.5B1 2.5B-21 
#2.5B2 2.5B-21 
#4B1 4B-HOSP 
#4B2 4B-HOSP 
#4B1 4B-GP 
#4B2 4B-GP 
#6B1 6C 
#6B2 6C 
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pair2 #v2Sling,v3Safe 
Tupledomain size #6 
#2.5B-18 B1 
#2.5B-21 B1 
#2.5B-21 B4 
#4B-HOSP B4 
#4B-GP B4 
#6C B6 
pair3 #v2Sling,v4Head 
Tupledomain size #5 
#2.5B-18 W8*8 
#2.5B-21 W8*21 
#4B-HOSP C8*11.5 
#4B-GP C10*15.3 
#6C C13*16.55 
pair4 #v3Safe,v6Carbuffer 
Tupledomain size #4 
#B1 OH-1-car 
#B4 OH-1-car 
#B4 OM-14-car 
#B6 OM-14-car 
pair5 #v1Platform,v7Cweight 
Tupledomain size #6 
#2.5B1 weight1 
#2.5B2 weight1 
#4B1 weight2 
#4B2 weight2 
#6B1 weight3 
#6B2 weight3 
pair6 #v6Carbuffer,v9Cwtbuffer 
Tupledomain size #2 
#OH-1-car OH-1 
#OM-14-car OM-14 
pair7 #v8Sheave,v11Hcable 
Tupledomain size #3 
#DS-20 3-0.5 
#DS-25 3-0.625 
#DS-25 6-0.625 
pair8 #v11Hcable,v16Motor 
Tupledomain size #14 
#3-0.5 10HP1 
#3-0.5 10HP2 
#3-0.625 15HP1 
#3-0.625 15HP2 
#3-0.625 20HP1 
#3-0.625 20HP2 
#3-0.625 25HP1 
#3-0.625 25HP2 
#6-0.625 25HP1 
#6-0.625 25HP2 
#6-0.625 30HP1 
#6-0.625 30HP2 
#6-0.625 40HP1 
#6-0.625 40HP2 
pair9 #v14Machine,v15Mbeam 
Tupledomain size #20 
#18-1 10*25.4 
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#18-2 10*25.4 
#28-1 10*35 
#28-2 10*35 
#28-1 12*31.8 
#28-2 12*31.8 
#28-1 12*35 
#28-2 12*35 
#28-1 12*40.8 
#28-2 12*40.8 
#38-1 12*50 
#38-2 12*50 
#38-1 15*42.9 
#38-2 15*42.9 
#38-1 15*50 
#38-2 15*50 
#58-1 18*54.7 
#58-2 18*54.7 
#58-1 18*70 
#58-2 18*70 
pair10 #v14Machine,v16Motor 
Tupledomain size #36 
#18-1 10HP1 
#18-1 10HP2 
#18-2 10HP1 
#18-2 10HP2 
#18-1 15HP1 
#18-1 15HP2 
#18-2 15HP1 
#18-2 15HP2 
#28-1 20HP1 
#28-1 20HP2 
#28-2 20HP1 
#28-2 20HP2 
#28-1 25HP1 
#28-1 25HP2 
#28-2 25HP1 
#28-2 25HP2 
#38-1 20HP1 
#38-1 20HP2 
#38-2 20HP1 
#38-2 20HP2 
#38-1 25HP1 
#38-1 25HP2 
#38-2 25HP1 
#38-2 25HP2 
#38-1 30HP1 
#38-1 30HP2 
#38-2 30HP1 
#38-2 30HP2 
#38-1 40HP1 
#38-1 40HP2 
#38-2 40HP1 
#38-2 40HP2 
#58-1 40HP1 
#58-1 40HP2 
#58-2 40HP1 
#58-2 40HP2 
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pair11 #v1Platform,v16Motor 
Tupledomain size #24 
#2.5B1 10HP1 
#2.5B1 10HP2 
#2.5B2 10HP1 
#2.5B2 10HP2 
#2.5B1 15HP1 
#2.5B1 15HP2 
#2.5B2 15HP1 
#2.5B2 15HP2 
#4B1 20HP1 
#4B1 20HP2 
#4B2 20HP1 
#4B2 20HP2 
#4B1 25HP1 
#4B1 25HP2 
#4B2 25HP1 
#4B2 25HP2 
#6B1 30HP1 
#6B1 30HP2 
#6B2 30HP1 
#6B2 30HP2 
#6B1 40HP1 
#6B1 40HP2 
#6B2 40HP1 
#6B2 40HP2 
pair12 #v7Cweight,v13Comcable 
Tupledomain size #6 
#weight1 chain1 
#weight1 Chain2 
#weight2 Chain3 
#weight2 Chain4 
#weight3 Chain5 
#weight3 Chain6 
pair13 #v0Door,v1Platform  
Tupledomain size #48 
#ssso1 2.5B1 
#ssso2 2.5B1 
#ssso1 2.5B2 
#ssso2 2.5B2 
#ssso1 4B1 
#ssso2 4B1 
#ssso1 4B2 
#ssso2 4B2 
#ssso1 6B1 
#ssso2 6B1 
#ssso1 6B2 
#ssso2 6B2 
#2sso1 2.5B1 
#2sso2 2.5B1 
#2sso1 2.5B2 
#2sso2 2.5B2 
#2sso1 4B1 
#2sso2 4B1 
#2sso1 4B2 
#2sso2 4B2 
#2sso1 6B1 
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#2sso2 6B1 
#2sso1 6B2 
#2sso2 6B2 
#ssco1 2.5B1 
#ssco2 2.5B1 
#ssco1 2.5B2 
#ssco2 2.5B2 
#ssco1 4B1 
#ssco2 4B1 
#ssco1 4B2 
#ssco2 4B2 
#ssco1 6B1 
#ssco2 6B1 
#ssco1 6B2 
#ssco2 6B2 
#2sco1 2.5B1 
#2sco2 2.5B1 
#2sco1 2.5B2 
#2sco2 2.5B2 
#2sco1 4B1 
#2sco2 4B1 
#2sco1 4B2 
#2sco2 4B2 
#2sco1 6B1 
#2sco2 6B1 
#2sco1 6B2 
#2sco2 6B2 
pair14 #inputCapacity,v16Motor 
Tupledomain size #40 
#2000 10HP1 
#2000 10HP2 
#2000 15HP1 
#2000 15HP2 
#2000 20HP1 
#2000 20HP2 
#2000 25HP1 
#2000 25HP2 
#2500 10HP1 
#2500 10HP2 
#2500 15HP1 
#2500 15HP2 
#2500 20HP1 
#2500 20HP2 
#2500 25HP1 
#2500 25HP2 
#3000 10HP1 
#3000 10HP2  
#3000 15HP1 
#3000 15HP2 
#3000 20HP1 
#3000 20HP2 
#3000 25HP1 
#3000 25HP2 
#3000 30HP1 
#3000 30HP2 
#3000 40HP1 
#3000 40HP2 
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#3500 25HP1 
#3500 25HP2 
#3500 30HP1 
#3500 30HP2 
#3500 40HP1 
#3500 40HP2 
#4000 25HP1 
#4000 25HP2 
 
#4000 30HP1 
#4000 30HP2 
#4000 40HP1 
#4000 40HP2 
pair15 #inputSpeed,v16Motor 
Tupledomain size #36 
#200 10HP1 
#200 10HP2 
#200 15HP1 
#200 15HP2 
#200 20HP1 
#200 20HP2 
#200 25HP1 
#200 25HP2 
#250 10HP1 
#250 10HP2 
#250 15HP1 
#250 15HP2 
#250 20HP1 
#250 20HP2 
#250 25HP1 
#250 25HP2 
#300 15HP1 
#300 15HP2 
#300 20HP1 
#300 20HP2 
#300 25HP1 
#300 25HP2 
#350 15HP1 
#350 15HP2 
#350 20HP1 
#350 20HP2 
#350 25HP1 
#350 25HP2 
#350 30HP1 
#350 30HP2 
#400 25HP1 
#400 25HP2 
#400 30HP1 
#400 30HP2 
#400 40HP1 
#400 40HP2 
pair16 #inputCarOpenSpeed,v0Door 
Tupledomain size #8 
#ssco ssco1  
#ssco ssco2 
#2sco 2sco1 
#2sco 2sco2 
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#ssso ssso1   
#ssso ssso2   
#2sso 2sso1   
#2sso 2sso2   
pair17 #inputCarPhone,v18CarPhone 
Tupledomain size #2 
0 0 
1 1  
pair18 #inputCarLantern,v19CarLantern 
Tupledomain size #2 
0 0 
1 1  
pair19 #inputCarIndicator,v21CarIndicator 
Tupledomain size #2 
0 0 
1 1  
pair20 #inputCarIntercom,v20CarIntercom 
Tupledomain size #2 
0 0 
1 1   
  


