

A Novel Approach to Computer-Aided Configuration Design

 Based on Constraint Satisfaction Paradigm

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master Science

in the Department of Mechanical Engineering

University of Saskatchewan

Saskatoon

By

Jingxin Li

© Copyright Jingxin Li, January 2005. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226141027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Permission to Use

 In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University may

make it freely available for inspection. I further agree that permission for copying of this thesis

in any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department or

the Dean of the College in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be allowed without

my written permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my

thesis.

 Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

 Head of the Department of Mechanical Engineering

 University of Saskatchewan

 Saskatoon, Saskatchewan (S7N 5A9)

 ii

ABSTRACT

The trend in today’s manufacturing industry is changing from mass production to mass

customization. The companies which win the markets are those which can deliver highly

customized products at the fastest rate and allow for life-cycle participation of customers

regardless of where they are and when they participate. One of the strategies for implementing

the mass customization paradigm is to implement the product development according to the

assemble-to-order (ATO) pattern. Under the ATO pattern, the design of a product becomes the

determination of a configuration which contains a set of pre-developed components –

configuration design for short. The configuration design problem can be well treated as a

constraint satisfaction problem (CSP). The mature methods are available for CSP, but there are

several limitations with CSP for configuration design.

This thesis proposes a novel approach to configuration design. This approach is based on a CSP

but adds a wrapper (product data model, PDM for short) over the CSP model. Consequently,

both the customer and the other life cycle development programs only communicate with the

PDM, and a more intelligent and user-friendly computer system for configuration design can

then be implemented. Both the conceptual design and implementation of such a wrapper are

discussed in this thesis. A computer prototype system for elevator design is developed for

demonstrating the effectiveness of this approach.

 iii

ACKNOWLEDGMENTS

Upon the completion of this thesis, I would like to express my sincere gratitude and appreciation

to my supervisor Professor W.J. (Chris) Zhang for his invaluable guidance, constructive

discussion, inspiration and encouragement, without which this research work would not be

carried out successfully.

My appreciation is extended to the members of the Advisory Committee: Professor S. Habibi,

Professor I. Ogoucha, for their scholarly suggestions, advices and examination in the period of

this research. My appreciation also goes to H. Xie and Concurrent Engineering Research Group

in IMTI, National Research Council (NRC) for their scholarly and partial financial support. My

appreciation would also go to Loken Engineering Services for its resourceful working

environment and generous financial support to sustain my expenditure.

I am grateful to my dearest daughter for her understanding to the countless late night study, and

to my absence for many of her school activities. I am also greatly indebted to my parents, my

grandmother, my siblings, and other family members for their continued moral support and love.

This research was made possible by the financial support from the National Sciences and

Engineering Council (NSERC) of Canada.

 iv

Dedicated to

My dearest daughter Sophia (Song) Ge

And

My parents,

Mr. M.S. Li and Ms. Z.F. Yang

For their continuous love and unwavering support!

 v

TABLE OF CONTENTS

ABSTRACT.. ii

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS... x

1 INTRODUCTION ... 1

1.1 Evolution of Information Technology to Manufacturing ... 1

1.2 Product Data Modeling ... 2

1.3 Product Configuration Technology... 3

1.4 Research Questions... 4

1.5 Configurator: a Critical Review.. 6

1.6 Research Objectives.. 9

1.7 General Research Method... 10

1.7.1 General System Development Approach... 10

1.7.2 Case-based elaboration .. 11

1.8 Organization of the Thesis .. 12

2 CONSTRAINT SATISFACTION PROGRAMMING (CSP)... 13

2.1 Introduction... 13

2.2 Definition of CSP.. 13

2.3 Methods for Solving a CSP Problem.. 16

2.3.1 Backtracking .. 17

2.3.2 Backjumping.. 19

 vi

2.3.3 Consistency Check... 19

2.3.4 Several Heuristics Rules for Searching ... 21

2.4 Constraint Optimization.. 23

2.4.1 Standard Search ... 23

2.4.2 Dichotomic Search... 25

2.5 CSP Extensions... 26

2.6 Preference Problems in CSP ... 27

2.7 Limitations of CSP.. 28

3 AN INTEGRATED PDM AND CSP FRAMEWORK... 29

3.1 Introduction... 29

3.2 General Idea of Integration of PDM and CSP .. 29

3.3 A Conceptual PDM for Configuration Design ... 31

3.3.1 A Data Model for Requirement ... 32

3.3.2 A Data Model for Product Configuration .. 36

3.3.3 A Data Model for Configuration Design Knowledge.. 40

3.4 A Conceptual Model of CSP for Configuration Design ... 49

3.5 From the PDM Model to the CSP Model ... 53

3.6 Illustration ... 56

3.6.1 Configuration Design Requirement ... 56

3.6.2 The PDM representation of Design Requirement.. 58

3.6.3 The CSP Representation of Design Requirement.. 59

3.6.4 Design Knowledge Representation.. 62

3.7 Concluding Remark .. 66

4 LIFE CYCLE CONFIGURATION DESIGN ... 67

 vii

4.1 Introduction... 67

4.2 Life Cycle Configuration Design Concept ... 67

4.3 Interfaces between Configurator and Other Life Cycle Programs.. 69

4.3.1 The Interface Framework... 70

4.3.2 The Interface between Configurator and CAD Program... 73

4.3.3 The Interface between Configuator and SCM ... 75

4.4 Summary ... 77

5 IMPLEMENTATION AND DEMONSTRATION... 78

5.1 Introduction... 78

5.2 The architecture of PDM-CSP Configurator .. 78

5.3 General Implementation Methodology... 80

5.4 Implementation of CSP.. 81

5.5 Implementation of Integration of the Configuration and CAD .. 82

5.6 Demonstration... 84

6 CONCLUSIONS AND FUTURE WORK .. 88

6.1 Overview of the Thesis ... 88

6.2 Cntributions... 90

6.3 Future Work .. 91

REFERENCES ... 92

Appendix A: XML.. 97

Appendix B: Design Knowledge Base for the Elevator System Design 101

 viii

List of Figures

Figure 1.1 The Notion of a PDM Integrated Configuration ... 7

Figure 1.2 Three Levels of Architecture... 10

Figure 1.3 System Decomposition of the Elevator System .. 11

Figure 2.1 CSP Graph Representation .. 15

Figure 2.2 An Example of Backtracking .. 18

Figure 2.3 Illustration of Constraint Propagation for Arc-Consistency............................ 20

Figure 2.4 Dichotomic Search .. 26

Figure 3.1 Integration Framework .. 30

Figure 3.2 A Data Model for the Requirement ... 33

Figure 3.3 A Data Model for the Function ... 35

Figure 3.4 Data Models for the Constraint and the Wish ... 36

Figure 3.5 Data Model for the Assembly and Connectivity ... 37

Figure 3.6 Pair Relationships for the General Connectivity Representation 38

Figure 3.7 A Data Model for the Connection ... 39

Figure 3.8 A Data Model for the Shaft-Hole Connection Type 39

Figure 3.9 Serial Structure .. 41

Figure 3.10 Parallel Structure ... 41

Figure 3.11 Serial Structure Design Process... 42

Figure 3.12 Constraints on Attributes... 45

Figure 3.13 A Data Model for the Design Knowledge of Configuration Design............. 46

Figure 3.14 A Data Model for Configuration Design... 47

Figure 3.15 The Post Configuration Design ... 48

Figure 3.16 Case-Based Configuration Design Knowledge Base 48

Figure 3.17 Composite Variable ... 53

Figure 3.18 Composite Constraint .. 53

Figure 3.19 Modeling Process from PDM to CSP.. 54

Figure 3.20 Linkage Data Model .. 55

Figure 4.1 General Product Production Process ... 68

 ix

Figure 4.2 Things to Be Managed... 69

Figure 4.3 The Interface Framework .. 71

Figure 4.4 The Concept of The Process of a Program.. 71

Figure 4.5 Structural data vs. Semi-Structural Data ... 72

Figure 4.6 Integration of Structural and Semi-Structural Data... 73

Figure 4.7 XML Representation of The Semi-Structural data.. 75

Figure 4.8 Background Information of a Part in XML... 77

Figure 5.1 The Aarchitecture of PDM-CSP.. 80

Figure 5.2 Elevator System... 83

Figure 5.3 Different Configurations for Doors and Car Cabs .. 84

Figure 5.4 Interface for Design Requirement Specification ... 85

Figure 5.5 Cost Limit From Customer.. 86

Figure 5.6 Solution: BOM for the Configured Product .. 87

Figure A.1 The XML Architecture ... 98

Figure A.2 The Concepts of Tags and Strings.. 98

Figure A.3 An Example of a XML File With an External DTD Reference 99

 x

List of Abbreviations

AC: Arc Consistency

API: Application Programming Interface

ATO: Assemble-to-Order

BOM: Bill of Material

CAD: Computer Aided Design

CAM: Computer Aided Manufacturing

CASE: Configuration Design Knowledge Base

CIM: Computer Integrated Manufacture

CRM: Customer Relationship Management

CSP: Constraint Satisfaction Paradigm, Problem, Programming

DBMS: Database Management System

DTD: Document Type Definition

EDI: Electronics Data Interchange

ERP: Enterprise Resource Planning

ETO: Engineer-to-Order

JCL: Java Constraint Library

JSP: Java Server Page

HTML: Hyper Text Markup Language

LCCD: Lifecycle Configuration Design

MRP: Manufacture Resource Planning

PC: Path Consistency

PDM: Product Data Model, Product Data Modeling

 xi

PDM-CSP: Integrated PDM and CSP

PLM: Product Lifecycle Management

POD: Product Ontology Dictionary

Prob-CSP: Probabilistic CSP

SCM: Supply Chain Management

SGML: Standard Generalized Markup Language

STEP: Standard exchanging protocol

STO: Stock-to-Order

UML: Universal Model Language

XHTML: EXtensible HyperText Markup Language

XML: eXtensible Markup Language

 1

Chapter 1

Introduction

1.1 Evolution of Information Technology to Manufacturing

Manufacturing has undergone a long process of awareness of the strong positive impact of

information technology to manufacturing. Two decades ago, the paradigm popular in

manufacturing is computer integrated manufacture (CIM). The CIM paradigm leads to a great

improvement of manufacturing practice but at some sacrifice as a result of high expense. With

the development of the internet technology, communication between two remote ends is greatly

facilitated. The organization of a manufacturing firm becomes virtual in the sense that each

manufacturing unit keeps competitive components within themselves. Manufacturing activities

become more of a “networking activity”.

The trend of today’s manufacture industry is changing from mass production to mass

customization. The companies which win the markets are those which can deliver highly

customized products with the fastest speed. As such, the production development changes from

“stock-to-order”, to “assemble-to-order”, and/or to “engineer-to-order”.

Stock-to-order (STO) refers to a manufacturing situation where a whole product (e.g., a

computer) is available in the manufacturer’s inventory. For instance, if one wants to purchase a

laptop, one goes to the computer shop or manufacturer and gets one provided that the

 2

manufacturer has prepared computers in its inventory (i.e., the manufacture adopts the stock-to-

order pattern).

Assemble-to-order (ATO) refers to a manufacturing situation where the product structure is

known. The product structure means (1) the number of component types (or components for

simplicity), (2) how these components are connected. ATO manufacturing process is then to

determine instances of the components to make an assembly to meet the customer’s requirement.

ATO differs from the stock-to-order in that in the case of ATO, instances of components may not

be available to the manufacturer which directly communicates with a customer, and they are

usually supplied by other manufacturers. ATO is often integrated with the order, supply, and

production systems so that once a product is configured, delivery can follow immediately.

Usually, the engineering work is not required for ATO pattern. However, some manufacturing

works may be needed where a product is assembled.

Engineer-to-order (ETO) deals with problems where not all components are ready to use; some

may need to be designed and then fabricated specifically to meet customer’s requirements.

This thesis concerns product development which follows the assemble-to-order (ATO) pattern;

specifically the development of a computer support system for ATO pattern.

1.2 Product Data Modeling

The key technology to develop an effective computer support system for product development is

Product Data Modeling (PDM). From the point of view of modeling, the PDM is a process of

 3

establishing a data model that represents information and knowledge generated during a product

development life cycle. From the point of view of management, the PDM is a process of

managing data. Database technology is a powerful tool for PDM. Database technology provides

the notion of data model [Codd, 1970] and the notion of semantic data model [Chen, 1976]. A

data model contains a set of rules to define the structure of, the constraint of, and the valid

operation on data. Quite often, the applications of a data model focus on the structure and

constraint. A semantic data model focuses on the meaning (or semantics) of data in the context

of a discourse of an application [Zhang, 1994]. In other words, a semantic model concerns with

what information or knowledge a series of symbols asserts. A semantic data model is therefore

also called “conceptual data model”. This thesis research focuses on conceptual data modeling;

specifically on what information is needed to support the assemble-to-order (ATO) pattern. The

computer system that supports the assemble-to-order pattern can then be designed to capture this

information. There will be a further discussion in Section 1.7 regarding the relationship among a

conceptual data model, its implementation, and its application.

1.3 Product Configuration Technology

The most commonly used definition of the configuration task was given by Mittal & Frayman

[1989]: The configuration of an artefact is a set of interconnected components that are chosen

from predefined sets of component types called the catalog of component types. Specifically, a

component is described by a set of properties, ports for connecting it to other components,

constraints at each port that describe the components that can be connected at that port, and

other structural constraints.

 4

An augmented configuration is defined as the configuration (as defined previously) together with

the background about why the configuration is needed and/or the rationale about how the

configuration is determined.

Configuration design is a process of determining one or more configurations that satisfys the

function and constraint requirements. It should be noted that in literature, there is a notion called

“configuration management” [Lyon, 2000]. The configuration management mainly concerns

with the change management, and it addresses the following issues: who suggests changes, who

assesses impact of the changes, and who approves the changes. Configuration management is

thus different from configuration design.

1.4 Research Questions

Question 1:

What should be a computationally effective representation of a product configuration for the

Assemble-to-Order product development?

In current literature, the answer to this question appears to be (1) the expert system (rule based

system), or (2) the database approach. The main rational for the expert approach is that the expert

system is about capturing the constraints in a configuration using the syntactic expression –

rules. But the expert system is known for its inflexibility with respect to the change of

requirements and knowledge, or to the maintenance of the system. The database approach, which

was pioneered by Zhang [1994], is indeed very general with respect to information

representation, but not computation-oriented. This means that in order to design a configuration,

 5

information needs to be extracted from a database and converted into a form on which

algorithms can be applied. An alternative solution is Constraint Satisfaction Problem (CSP)

[Tsang, 1999; Miguel and Shen, 2001]. The CSP is a paradigm or an approach to represent a

problem or a system into formalism called constraint, and the solution to the problem satisfies

the constraint. The CSP is not only highly declarative to represent design knowledge, but also

domain independent. This thesis adopts the CSP approach to Question 1. Chapter 2 will present

details of the CSP approach. Specifically, one will see some unresolved problems with CSP itself

and the application of CSP to configuration design. This thesis will address these problems and

present a new approach which integrates PDM and CSP.

It is clear that the answer to this question will eventually come to a system that determines a

configuration, given a set of requirements; such a system is also called configurator in literature.

Question 2:

Suppose that the CSP approach is taken to build a configurator. The knowledge representation

will be the one suitable for computation, but not efficient for representing information that sits at

the back end, e.g., the rationale for a design decision. The question is then as follows:

What is the role of the CSP configurator in the context of mass customization manufacturing

paradigm?

 6

The answer to this question has not been found. The question reads like a traditional question

called integration, yet in the new context which is characterized by (1) the configuration

technology, and (2) the internet technology.

This thesis undertakes to answer the two questions above. The next section provides a literature

review of relevant studies.

1.5 Configurator: a Critical Review

Configurator was originally designed as an interface on the top of the ERP (Enterprise Resource

Planning) system. This is especially introduced to facilitate the acquisition of products from

customers with a focus on the price and deliverable time. The commercial configurators, such as

PTC’s Windchill™ Product and FirePond’s Sales Performer™, are successful implementations

of the configurator concept; in addition, they usually provide the customer with access to their

systems at any time and any place through the internet technology. This kind of configurators

may be called the ERP-based configurator.

One of the essential assumptions underlying the ERP-based configurator is that products are pre-

designed. Specifically, components are ready to go, and they just need to be assembled [Tiihonen

et al., 1996; Tiihonen and Soininen, 1997]. The ERP-based configurator cannot work for the

situation where the product needs some engineering and manufacturing work. For example, the

customer may prefer to a color of the interior of the elevator, which is not available in the current

component repository. In this case, the elevator manufacturer may reject the customer’s request

 7

for that special color, but the customer oriented manufacturing practice would try to tailor

whether the component with that color could be painted and produced, which may need to

contact the manufacturer’s supplier or sub-contractor who does the painting job for the interior.

Another example is such that the customer may want to install a video camera in a place where

the existing elevator is designed not to hold the camera in that place. To accommodate that

requirement from the customer will require a little bit of engineering work to assemble a product.

It might be quite true that the configurator without the capability of accommodating engineering

and manufacturing works (more or less) will considerably compromise the manufacturer’s

philosophy: customer-oriented product development. Mesihovic and Malmqvist [2000]

suggested a PDM integrated configurator. Their main idea was to have the notion shown in Fig.

1.1. This notion was primarily based on the observation that PDM is supposed to support all

engineering works (see the discussion in Section 1.3). This idea is promising; yet they have not

given details of their system.

Figure 1.1 The Notion of a PDM Integrated Configuration

With respect to the configuration system by itself, the following issues are of concern. The first

issue is whether a configuration system supports configuration design where topology of a

Configurator

PDM ERP

 8

configuration is changed during the process of configuring product. Note that, this issue has gone

beyond the ERP-based configurator. At this point, the CSP-based configurator solver has made

this possible [Mittal and Falkenhainer, 1990]. Mailharro [1998] commented on the work by

Mittal and Falkenhainer [1990], saying that this work sets a limit (maximum) on the number of

variables allowed, and questioning the applicability of this approach for large configuration

problems. The second issue is the knowledge representation of the product configuration. There

are basically three requirements on such a knowledge representation: (1) the flexibility in the

sense that knowledge can be easily maintained, (2) the expression power for representing

semantics, and (3) the efficiency in terms of the computational time.

To meet requirement (1), the CSP knowledge representation formalism is a must. To meet

requirement (2), there are several generic semantics for configuration design, such as multiple

occurrences of components [Stumptner et al., 1998]. Usually, CSP will have to rewrite the

constraints many times to match the times the component is used. Bowen and Bahler [1991] used

a language based on the semantics of free logic to address the multiple occurrence problems. To

meet requirement (3), as well as requirement (2), a configuration as composite constraint

satisfaction was proposed by Sabin and Freuder [1996], which extended the

standard/conventional CSP to accommodate issues such as unknown a priori number of

constituent parts of a system. The knowledge is expressed as a hierarchical structure. The domain

of a variable is a set of entire sub-problems with their own variables and constraints. After

instantiating a variable with one of the possible sub-problems, the variables and constraints of

the sub-problem are added to the constraint network.

 9

In general, the current configurtors, including both research and commercial based ones, can

only meet the functions which were described by Mittal and Frayman [1989]. They need to be

extended in the aspects of (1) optimization, (2) user preference, and (3) integration of product

configuration with many other engineering and manufacturing systems.

1.6 Research Objectives

Objective 1:

Extend a CSP representation for explicitly incorporating the customer preferences and

composite object constraint.

Objective 2:

Develop an integrated PDM and CSP approach to configuring products.

Objective 3:

Develop a framework for integrating a configurator with other product life cycle development

systems

The particular activities in the product life cycle considered are the engineering design, and parts

acquisition and supply. The process planning is not the scope of this thesis, which is considered

as an internal business process in a partner company. Furthermore, the notion of framework

implies that the question of what information is needed will be the focus. The implementation is

merely for the purpose to give impression of what a system could achieve based on the concept

and methodology developed and thus to enhance understanding of the concept and methodology.

 10

1.7 General Research Method

1.7.1 General System Development Approach

As mentioned previously, this thesis takes product data modeling as a main approach. The

strategy for data modeling is to follow the ANSI/SPARC database architecture [Date, 1990], i.e.,

the conceptual view, the internal view, and the external view (see Fig. 1.2). The conceptual view

of data or database model answers the question: what information is needed for a discourse of an

application. The internal view, however, answers how to implement the model resulted from the

development at the conceptual view. The external view determines the aspect of the model at the

conceptual view for a particular need of an application under consideration. This thesis focuses

on the conceptual data modeling, as also mentioned before. Universal Modeling Language

(UML) [Booch et al, 1999] will be employed for development of a conceptual view or model for

particular applications.

Figure 1.2 Three Levels of Architecture

Conceptual level

Internal level

External level

 11

1.7.2 Case-based elaboration

Another general methodology for this research is case-based presentation method. The case-

based method is to take a case or example for elaborating and establishing hypotheses,

developing models, and testing the hypotheses through the evaluation of the models. Throughout

the thesis, an example regarding an elevator system is taken.

Figure 1.3 System Decomposition of the Elevator System

Hoist way Car Assembly C-Weight Suspension Safety Cable

Guide
Rail

U-bracket

Cab Supporting

Frame Door

Platform Sling

Crosshead Stiles

M-beam

Motor

H-cable

D-sheave Sheave Brake Governor Buffer

Control Cable Com-cable

Cwt BufferCar Buffer

Safety Beam Guide Rail

Elevator System

 Note: The blocks shaded are the components considered in this thesis

 12

An elevator system consists of 16 components [Yost, 1996], and they are, respectively, Door,

Platform, Sling, Safety, Crosshead, Car Buffer, Cwt-Buffer, C-Weight (counter weight), M-beam

(machine beam), Motor, Sheave, H-cable (Hoist cable), Com-cable, Control Cable, Governor,

Safety Beam, and Guide Rail. There are four additional components which are optional: Car

Lantern, Car Level Indicator, Car Phone, and Car Communication. Their relationships can be

visualized by the assembly structure shown in Fig. 1.3. For each component, there could be

several alternatives or instances. The selection of their alternatives in order to achieve a desired

performance at the whole system level makes sense for the elevator system design to be a

configuration design problem.

1.8 Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 presents a literature review of

CSP, where there is a discussion of limitations of CSP. Chapter 3 proposes a new approach to

configuring products by integrating PDM and CSP. This new approach may also be viewed as an

enhancement of CSP to make it more semantic in addition to its powerful computation

framework. Furthermore, the preference and composite object problems are addressed in this

chapter. Chapter 4 presents some ideas about how to bring the configurator into a product life

cycle development. Chapter 5 presents some implementation works to demonstrate the

effectiveness of the ideas proposed in the preceding chapters. Chapter 6 is a conclusion with

future work and recommendation.

 13

Chapter 2

Constraint Satisfaction Programming (CSP)

2.1 Introduction

In the mid-80s, constraint satisfying programming (CSP) was developed as a computational

technique, which is a result of combining artificial intelligence and computer programming

techniques. CSP promises to provide solutions to some NP problems and scheduling problem.

This chapter serves as a brief introduction to CSP. In Section 2.2, the definition of CSP is

presented, and the mathematical model of CSP is defined. Section 2.3 presents some solving

methods for the CSP problems. Optimization is an important part, or extension to the original

CSP, and it will be discussed in Section 2.4. Section 2.5 provides a broad view of CSP

extensions. Section 2.6 discusses the so-called preference problems in CSP. Section 2.7 discusses

some limitations with CSP problems.

2.2 Definition of CSP

Definition 1: A CSP is a triple P = {V, D, C}, where

• V = {v1, v2, …, vn} is the set of variables called the domain variables;

• D = {D1, D2, …, Dn} is the set of domains. The domain is a finite set containing possible

values for the corresponding variables;

• C = {c1, c2, …, cn} is the set of constraints. A constraint ci is a relation defined on a subset

of {vi, …, vk} of all the variables; that is, {Di, …, Dk}⊇ ci.

 14

If a constraint ci is defined on a set that only has one or two elements, this constraint is called

unary or binary constraint, correspondingly. The remainder of constraints are called non-binary

constraints. A CSP is a binary CSP if all its constraints are unary or binary. Non-binary

constraints can be transformed into several equivalent binary CSPs. Therefore, only binary

constraints are considered in this thesis.

The structure of a binary CSP may be represented by a constraint graph, which is defined as

follows: variables are represented with nodes, and the constraints between them are represented

with edges. The labels of the edges represent the constraints and the labels of the nodes represent

the domain of the variables (see Fig. 2.1). In Fig. 2.1, there are nodes: A, B, C, D, and E. The

digits in the parenthesis behind the node indicate their domains. A node could have edges

directing to the node itself, which implies the unary constraint (in Fig. 2.1, node B). The generic

format for the expression of a binary constraint is as follows:

Binary constraint: = operand 1| operator| operand 2

For example, if A and B are two variables, and A is greater than B, the binary constraint for this

can be expressed as

A>B

 15

Figure 2.1 CSP Graph Representation

Definition 2: Assignment: It is a mapping from a set of variables to their corresponding domains.

Let vi be a variable and Di its domain. The process that vi takes a value, say di from the domain

Di is called assignment. Such an assignment is denoted (vi, di).

For a CSP problem which has a set of variables, say v1, v2, …, vm, the assignment for all the

variables is denoted {(v1, d1), (v2, d2), …, (vm, dm)}. When all the variables are assigned a value,

the assignment is called complete, otherwise partial. For a complete assignment, one may write

as {d1, d2, …, dm}. The expression {d1, d2, …, dm} is also called the value tuple. The set of all

possible complete assignments is called the assignment space. This space could be very large,

depending on factors, such as the number of variables, size of domains, and tight or loose

constraints. The following is an example to illustrate the assignment:

Suppose that there are three variables A, B, C and each of them has a domain as follows:

DA: {1, 2, 3, 4} DB: {5, 6, 7} DC: {8, 9, 10, 11}

A (3, 4, 5)

B < 4
A > B

D (3, 8)

C (7)

 E (4, 5)

B (4, 5, 6)

 16

Each variable is assigned a value from its domain as follows:

A=1, B=6, C=9

Assignment to variables can be represented as {(A, 1), (B, 6), (C, 9)}, or more commonly as {1,

6, 9}. This is also called the value tuple. An incomplete assignment (for example, without

assignment to variable C) may look like {(A, 1), (B, 6)}, or {1, 6}.

Definition 3: Consistent assignment: Constraint is satisfied in assignment if each of its variables

gets a value such that the value tuple satisfies all constraints.

Definition 4: Complete or partial consistent assignment: A partial consistent assignment refers to

the assignment that satisfies a partial set of constraints. A solution to a CSP problem is a

complete consistent assignment which means that all constraints are satisfied.

Definition 5: Over constrained: If for a problem there is no such a complete assignment, the

problem is called over constrained or inconsistent problem. Correspondingly, a CSP problem

with more than one solution is called under-constrained problem.

Definition 6: Relaxing or tightening of constraint: Given a set of constraints, relaxing of

constraints means that one or more constraints are removed from this set; while tightening of

constraints means to add one or more constraints to this set.

2.3 Methods for Solving a CSP Problem

Finding a consistent assignment to all variables of a CSP problem is the process to solve a CSP

problem. Basically, there are two kinds of strategies to find solutions [Tsang, 1999]: systematic

 17

search and repair methods. Systematic search assigns consistent values to variables one by one

through a systematic way. Repair method assigns values randomly regardless of constraints, and

then repairs the assignments that violate constraints. Repair strategy is often called heuristic

strategy or stochastic strategy [Reeves, 1991]. Repair strategy could be ineffective for some large

size and tight constraint problems. In this thesis, only systematic methods were applied, which

are backtracking and backjumping. In addition, the consistency technique was used to pre-

process the variable domains for improving the efficiency of a solving process.

2.3.1 Backtracking

The backtracking solving strategy assigns values to particular variables and extends a partial

assignment incrementally. Each time a variable is instantiated, constraints associated with this

variable are tested. If some of the constraints are violated, the variable is reassigned a new value

from its domain until a consistent assignment is found. If none of the values in the domains are

found to form a consistent assignment, the algorithm will turn to the nearest point at which a

consistent assignment was established. An example helps to illustrate this method.

Suppose there are variables X, Y and Z with constraints X≠Y, Y≠Z, X≠Z:

Variables and domains: DX {t, e, f}
 DY {t, e, f}
 DZ {t, e, f}

The backtracking method for this CSP problem is illustrated in Fig. 2.2.

Under the systematic searching approach, different heuristics can be used to improve the

efficiency. It is generally true that variable and value orders are critical for efficiency of problem

 18

solving. For example, in 8-queen problem [Marriott and Stuckey, 1998], the fail-first heuristic is

used to determine which variable needs to be instantiated/assigned first. The fail-first rule says

that the variable which has smaller domain should be reassigned first. This is because the dead

end would be found earlier. Values can be ordered either as ascending, descending sequence,

or other heuristics. There will be a discussion about value and variable ordering later in this

chapter.

 X=t Y=t failure
 Y=e Z=t failure
 Z=e failure
 Z=f solution
 Y=f Z=t failure
 Z=e solution
 Z=f failure

 X=e Y=t Z=t failure
 Z=e failure
 Z=f solution
 Y=e failure
 Y=f Z=t solution
 Z=e failure
 Z=f failure

 X=f Y=t Z=t failure
 Z=e solution
 Z=f failure
 Y=e Z=t solution
 Z=e failure
 Z=f failure
 Y=f failure

Figure 2.2 An Example of Backtracking

There are three major drawbacks of the standard backtracking method:

• Thrashing, i.e., repeated failure due to the same reason;

• Redundant work, i.e., conflicting values of variables are not remembered, and

• Late detection of the conflict, i.e., conflict is not predicted before it really occurs.

Two methods, backjumping and backmarking are available for addressing the first two

drawbacks. The consistency technique solves the third problem.

 19

2.3.2 Backjumping

This is a method to avoid thrashing in the Backtracking method. The process of backjumping is

exactly the same as backtracking, except for their different strategies for looking back. When any

constraint is violated, the backtracking method will take action of moving one step back, while

the backjumping method will first analyze the sources of inconsistency, and then jump to the

source point where inconsistency comes.

2.3.3 Consistency Check

Consistency check is a pre-processing of solving a CSP problem, which is also called, in

different literatures, local consistency, consistency enforcing, constraint propagation, filtering, or

narrowing algorithms [Apt, 1999]. The objective of consistency check therefore is to eliminate

those values from the domains of the variables, which do not meet any constraint. The

consistency check helps to prune the search tree dramatically in many cases and leads to a

smaller space to search. There are three types of inconsistency checks:

Node-consistency check: It removes any value that does not meet the unary constraint from the

domain of a variable.

Arc-consistency (AC) check: It deals with consistency between two variables e.g. (A, B).

Specifically the rule corresponding to the arc-consistency check is such that a constraint is arc

consistenct if for any value in the domain of A in this constraint there is a value in the domain of

 20

another variable such that the constraint is satisfied. CSP is arc consistent if all the constraints

are arc consistent. The simplest algorithm for achieving arc-consistency is to repeat revising. An

example of arc-consistency is shown in Fig. 2.3. In Fig. 2.3, the constraint Y=2X is a binary

constraint on domain Y and domain X. Since the largest value in domain Y is 10, the values over

5 in domain X should be crossed off for any valid assignment based on the constraint Y=2X. So

only five values (less than or equal to 5) are left in domain X. Therefore domain Y can be pruned

to include only five values that are double of the values in Domain X. A further inference is such

that values in Domain X is modulo number, so the values in Domain X can be further reduced to

three numbers: (1, 3, 5). Finally the values in Domain Y are: (2, 6, 10). This algorithm is called

AC-1, and it suffers from the problem of non-necessary repetition of revisions. There are some

other AC algorithms, named AC-2, AC-3, until AC-7, details of which refer to [Bartak, 2001].

Figure 2.3 Illustration of Constraint Propagation for Arc-Consistency

Path Consistency (PC) check: A path is consistent if for every pair d1, dn of consistent values

(i.e., this pair satisfies all binary constraints between V1 and Vn) there exist values d2, …, dn-1

Y

X 1, 3, 5

1,2,3,4,5

1,2,3,4,5
6,7,8,9,10

2, 6, 10
2, 4, 6
8,10

1,2,3,4,5
6,7,8,9,10

Y = 2X Y ≤=10 (X modulo 2) = 1 Y = 2X

 21

such that all the constraints between di, di+1 are satisfied. CSP is path consistent if all paths are

path consistent.

A problem does not necessarily have a solution when it is AC consistent. In contrast, path

consistency assures that a path consistency CSP must have at least one solution if none of the

domains are empty. From this sense, PC is said to be stronger than AC. However, PC is rarely

used in practice because of its computational complexity and high demand on computer memory.

K-consistency check: Node, arc, and path consistency are instances of a general notion called

k-consistency. CSP is k-consistent if every consistent (k-1)-tuple can be extended to a consistent

k-tuple.

2.3.4 Several Heuristics Rules for Searching

Three heuristics rules are introduced here, the value order, the variable order, and the pseudo

solution. The value ordering rule is such that values in domains are arranged in a certain order

according to a certain attribute which is meaningful to a particular application problem. In

engineering and manufacturing applications, the attribute can be such as cost, performance,

weight, and delivery time.

Variable ordering rule is to organize the variables based on some criterion. One of such rules is

to order the variable based on the number of partnerships of a particular variable with other

variables. For example, if there are five variables: A, B, C, D, and E. A has constraints with B, C,

 22

and D, B with D and A, C with A, D with A and B, and E with none. In this case, the numbers of

participations for A, B, C, D, and E are, respectively,

 A is 3, B is 2, C is 1, D is 2, and E is 0.

The order of the variables, descending in this case, will be then A, B, D, C, and E. This way is

conductive to detect unresolved branches at the early stage of search.

The variables can also be ordered in terms of their importance with respect to a particular

application problem. For example, a variable which “contributes” most to the performance may

be arranged on the top.

The main idea of the pseudo solution rule is to predict as early as possible whether a search along

a particular branch of a tree is promising. The unpromising branch would be abandoned. This is

achieved by introducing a constraint into the searching space. Suppose that an initial solution is

found, denoted S0. A constraint is established as follows:

 Si+1 < Si, i = 0, 1, 2, ··· ···

where Si is the solution. The operation ‘<’ represents the preference suggested on the solution. In

the case of product configuration design, such preferences may be: the cost is lowest; the weight

is lowest, etc.

The pseudo solution rule may be combined with value ordering rule. For example, the cost is the

criterion to order the value. Then, values in each domain are ordered in terms of a descending or

ascending order. In this case, S0 can be obtained simply by picking up the first value in all

domains subject to other constraints.

 23

2.4 Constraint Optimization

In many real life problems, the interests are probably only on a certain solution, instead of all

solutions or a solution obtained at first. The quality of a solution is measured by an application

dependent function called the objective function. The goal is to find such a solution that will

minimize or maximize the objective function with respect to the applications. This is called CSP

optimization. The definition of a CSP optimization problem is given as follows:

(1) A tuple of n variables, V = (v1, v2, …, vk, vk+1, …, vn), where variables 1 to k measure the

multi objectives to be optimized, and variables k+1 to n are special variables without any

sub objectives.

(2) A tuple of n domains, D = (d1, d2, …, dn), such that vi ∈ di.

(3) A set of constraints among variables, R = {r1, r2, …, rm }, that restrict the domains of the

variables.

(4) An objective function, z(V), which is minimized or maximized.

The CSP optimization problem consists of a standard CSP problem and an objective function.

There are two strategies for solving a CSP optimization problem, namely, the standard search

and the dichotomic search methods.

2.4.1 Standard Search

 24

The most widely used algorithm for finding an optimal solution is called Branch and Bound (B

& B) method, also called standard search [Lustig and Puget, 2001].

The (B & B) searching procedure is first to find a feasible solution, while ignoring the objective

function z (x1, x2, …, xn) (xi is the value of the variable). Let (y1, y2, …, yn), where yi is the value

of the variable, represent such a feasible solution. The search space is then pruned by adding a

new constraint

 z (y1, y2, …, yn) > z (x1, x2, …, xn)

to the system. After that, the search continues. The added constraint specifies that any new

feasible solution must have a better objective value than the current point, giving a new lower

bound. Consistency or propagation of this constraint may cause the domains of the variables to

be reduced, and thus reduce the size of the search space. The search procedure concludes until no

feasible solution is found. The last feasible solution is then taken as an optimal solution. The

exhaustive search is effective for problems where the searching space is not too big.

Two steps conduct the search process, which further determine the efficiency of a search process.

The first step is to get a quality bound to make the search process fast. An appropriate lower

bound can be found by computing objective functions through relaxed constraints. The second

step is to determine a better solution with respect to a defined objective function or some other

criteria. Computation in the second step is relatively costly. In fact, in many applications, users

are satisfied with a solution that is close to optimum if this solution is found early. The B & B

method can be used to find sub-optimal solutions using appropriate bound.

 25

2.4.2 Dichotomic Search

The dichotomic search improves the search efficiency over the standard search. This algorithm

starts with a lower bound L and an upper bound U on the objective function z (x1, x2… xn). The

lower bound L is not necessarily a solution point, and it can be any arbitrary value reasonable for

the problem. An initial solution to a CSP problem can serve as the upper bound U.

The dichotomic search procedure is essentially a binary search on the objective function. The

midpoint M = (U+L)/2 of the two bounds is computed, and a CSP is solved by taking the design

constraints and adding the constraint z(x1, x2, …, xn) < M. That means the search is in L ~ M

region; see Fig. 2.4a. If a new feasible solution is found, then the upper bound is updated from M

to the new feasible solution (new-U). A new middle point is calculated, named as new-M; see

Fig. 2.4b. Then the search continues in area L ~ new-M as shown; see Fig. 2.4b. If no solution is

found in L ~ M region the lower bound is updated to Middle point M. A new middle point new-

M’ is then calculated by (U+M)/2. The search continues within M ~ new-M’ region (see Fig.

2.4c). This procedure will continue until the searching space is exhausted. The last lower bound

will be taken as the optimum solution to the problem.

The dichotomic search is very effective when the lower bound is appropriate. The dichotomic

search stresses on the search for feasible solutions, whereas the standard search emphasizes the

improvement of the lower bound.

 26

Lower bound (L) Middle (M) Upper Bound (U)

 (a) Searching in L to M region (area indicated by curved line)

L new-M new-U

 (b) Searching in L to new-M region (new-U: updated upper bound)

 M (new-L) new-M’ U

(c) Searching in M (new-L) to new-M’ region.

Figure 2.4 Dichotomic Search

2.5 CSP Extensions

The CSP described above may be called the classical CSP or standard CSP. In some real-life

applications, constraints may be incomplete at the time they are imposed. Therefore some

alternative approaches to extend the classical CSP have been proposed for modeling incomplete

constraints. Two of these extensions are described in the following paragraphs.

Fuzzy CSP: Fuzzy CSP extends the notion of the classical CSP by having constraints associated

with a preference level to each tuple of values of variables. Such a level is represented by a

number between 0 and 1, where 1 represents the best value (i.e., the tuple is allowed), and 0 the

worst one (i.e., the tuple is not allowed). The solution of a fuzzy CSP is then defined as the set of

tuples of values, which shifts preference level to a maximum.

 27

Probabilistic CSP: Probabilistic CSP (Prob-CSP) enables to model those situations where each

constraint c has a certain probability p(c), independent of the probability of other constraints, to

be part of the given problem (actually, the probability is not of the constraint, but of the situation

which corresponds to the constraint: saying that c has probability p means that the situation

corresponding to c has probability p of occurring in the real-life problem). A solution to a Prob-

CSP problem is found by satisfying that the expression Sum {Product {p(c) | c is a constraint in

S} S is a subset of the set of all constraints satisfied by A} is maximized among all possible

assignments A of values.

2.6 Preference Problems in CSP

Preferences in CSP refer to (1) preference on the value of the variable, (2) preference on the

solution of a CSP problem, and (3) preference on the constraint. Examples of Preference (1)

include: in the case of the elevator system, the door is preferred to open vertically; the color of

the interior is white grey. Preference (1) can be specified in the CSP problem by

 Door.open = ‘Vertical’

 Interior.color = ‘White grey’

The left part in the above expressions represents the variables, and the right part represents the

values.

Examples of Preference (1) include: in the case of the elevator system, the total cost of the

elevator should be the lowest. Preference (2) can be specified in CSP as an optimization problem

 28

(see the previous discussion in Section 2.4). Examples of Preference (3) include: in the case of

the elevator system, if the elevator system is used in the hospital environment, the color of the

interior is preferred to be light blue, and if in the general residence environment, the color of the

interior is preferred to be grey.

Preference (1) and Preference (2) are, respectively, called Preference I and Preference II later in

this thesis. Preference (3) is not considered to be in the scope of this thesis. Furthermore, it seems

that not a sufficient research is done for Preference II, perhaps because it is classified into the

general optimization problem. Yet, there is still some twist when the optimization in the context

of CSP is implemented.

2.7 Limitations of CSP

There are basically two problems when a computational tool is concerned: (1) Its knowledge

representation, and (2) its computational efficiency. The CSP representation provides a low level

of the specification of relationships between two entities. These two entities are usually at the

level of features of an artefact, although the syntax of CSP expressions does not exclude

somewhat a heterogeneous representation, e.g., a feature of entity A is associated with entity B

as a whole. The nature of the CSP representation hinders the efficiency of the solving process.

The CSP approach needs heuristic rules to improve the efficiency, but this can hardly be

achieved at the level of constraint specification. A novel solution is warrant and will be presented

in the next chapter.

 29

Chapter 3

An Integrated PDM and CSP Framework

3.1 Introduction

As analyzed in Chapter 1 and Chapter 2, respectively, there are several problems with CSP,

especially when it is used directly for product life cycle in a virtual organization environment.

This chapter will present solutions to these problems. Section 3.2 presents a general idea of the

integration of PDM and CSP as one of the solutions to these problems. Section 3.3 presents a

conceptual PDM for configuration design. Section 3.4 presents a conceptual model of CSP.

Section 3.5 illustrates the linkage between the PDM and the CSP. Section 3.6 illustrates the ideas

described in the preceding sections using the elevator system as an example. Section 3.7

concludes this chapter.

3.2 General Idea of Integration of PDM and CSP

The general idea behind this study is to integrate PDM and CSP. PDM has two roles in this

connection. The first role is that PDM facilitates the engineering activities in the course of

configuring a product; see Fig. 3.1a. Knowledge stored in the format of CSP is meaningful only

in the sense of variables and constraints which are the relationships among the variables, while

PDM promises to store all information and knowledge about a product over its life cycle [Krause

 30

et al., 1993; Sinha, 2004]. For instance, the background information concerning why a particular

part is interfacing with other parts, or why a particular colour is not available for the interior of

an elevator will be stored in PDM but, certainly not always in CSP. In certain CSP systems,

where the constraint may be represented by simply listing a pair of instances of two components,

say A and B, e.g.,

 <a1 b1> from the view point of colour match

 <a2 b3> from the view point of size match

while the semantics of why these two instances are put together (i.e., the view point or context)

are in the mind of the operator or administrator of that particular CSP package.

Figure 3.1 Integration Framework

The second role of PDM is that PDM provides semantic rich expressions such that it becomes a

meta-knowledge representation for CSP; see Fig. 3.1b. For example, for a part, say a platform in

the elevator system, there are two attributes, size and weight. The knowledge representation at

the CSP level may go to the attribute level, which means that the operand in the CSP expression

Engineering

PDM

CSP
Configuration

Design

User

PDM

CSP Solver
Configuration

Design

(a) (b)

 31

may have the form (e.g., the platform), such as ‘P01#.weight’ and ‘P03#.size,’, where ‘P01#’ and

‘P03#’ are the component identities of the platform and the safety system, respectively, and

‘weight’ and ‘size’ are attributes or features of these components, respectively. At the CSP level,

‘P01#’ and ‘P03#’ do not make any sense because there is no expression clause that asserts any

semantics for them. Furthermore, the fact that two pieces of information, i.e., ‘P01#.colour’ and

‘P01#.size’, are related to the same product, or represent two features of the same product, is

missing at the CSP level. However, at the PDM level, there are representations to assert

semantics to the instance ‘P01#’ (for example) through the schema – instance mechanism, and to

assert the semantics that the weight and the size are two attributes of the platform.

Last, since PDM promises to contain complete information regarding a product under

configuration, PDM can be a source of producing heuristic knowledge for improving efficiency

in searching solutions to a CSP problem; see discussion in Chapter 2.

3.3 A Conceptual PDM for Configuration Design

As mentioned earlier, PDM captures all information about the product life cycle. There have

been many PDMs proposed in literature [Krause et al., 1993; Shrikhande, 2000; Sinha, 2004].

The following is a set of core models with PDM:

• A data model for product assembly or architecture,

• A data model for product connectivity,

• A data model for requirement, and

 32

• A data model for design knowledge base

The background information associated with these models is also captured and represented. In

the following, these models are tailored to configuration design. In particular, Section 3.3.1

presents a data model for the requirement. Section 3.3.2 puts together the assembly and

connectivity information (product configuration in short) and presents a data model for product

configuration. Section 3.3.3 presents a data model for design knowledge for configuration

design. These models are called conceptual because they do not depend on a particular

implementation and they do not work for only a particular use.

3.3.1 A Data Model for Requirement

The design requirement includes: (1) the function, (2) the constraint, and (3) the wish. Examples

of functional requirements are: the speed of the elevator must be greater than 300 feet/min; the

capacity of the elevator must be 1000 lbs, etc. An example of a constraint requirement is: the

color of the interior must be red. The constraint requirement may be converted into the functional

requirement. The wish requirement includes the statements which represent the customer desire:

(1) Quality: as good as possible;

(2) Cost: as low as possible; and

(3) Time: as short as possible.

Note the wish may not necessarily be achieved, which differs from the function that has to be

fulfilled, and from the constraint that has to be subjected to.

 33

Figure 3.2 A Data Model for the Requirement

A data model for the requirement is shown in Fig. 3.2. Specifically, Fig. 3.2 represents the

semantics that the design requirement is associated with the function, the constraint, and the

wish. The multiplicity indicated on the diagram shows that there must be at least one function

requirement; yet there may be none constraint or none wish requirement. It is noted that in Fig.

3.2, the customer who proposes the requirement is also shown. This is intended to track the

requirement change initiated by the customer. It is the customer who keeps the rationale for a

particular piece of requirement. So when the requirement is changed by a customer (say A), the

customer (say B) who is associated with this requirement needs to be informed. For instance, a

message is posted to customer B: “The requirement you suggested is to be changed by customer

A.” It should be noted that A and B may be the same person physically yet at different times.

Here, it is shown that the proposed data model (i.e., Fig. 3.2) can also be useful for customer

requirement management. Details about customer requirement management can be found in

[Brown, 2000].

Suggest

1

1..* 0..*0..*

Requirement

- r_id
- customer_id

Function Constraint Wish

Customer

 34

Fig. 3.3 represents the function requirement. There are two ways to specify the function

requirement (see Fig. 3.3, F1 and F2, respectively). One way (F1) is, for example, the capacity of

an elevator is 3000 lb, and the other way (F2) is, for example, the capacity of an elevator

increases from 3000 lb to 5000 lb. In the data model for the function, the attribute

‘product_feature’ refers to both the structural and behavioural features of a particular product.

For example, for the elevator system, the ‘product_feature’ takes the items (for example):

‘capacity’, ‘platform.weight’, ‘platform.size’, etc. The syntax ‘platform.weight’ has the

following meaning. The first word ‘platform’ stands for a class, and the second attribute ‘color’

stands for an attribute of the class ‘platform’. The generalization of this syntax is self-

explanatory and applies to the remainder of the discussion in this thesis. The attributes

‘operator’, ‘quantity’, ‘from_quantity’, and ‘to_quantity’ are self-explanatory with respect to

their corresponding classes (F1, F2). The two examples of the function requirement, as discussed

before, can then be expressed in the form of instances as follows:

Instance of F1

<F001#, ‘Capacity’, ‘>’, 3000>

Instance of F2

<F002#, ‘Capacity’, 3000, 5000>

 35

Where the symbol ‘>’ means ‘greater than’.

Figure 3.3 A Data Model for the Function

Fig. 3.4a is a data model for the constraint. The constraint is defined upon the structural feature

of a product. The example of the constraint, regarding the color of the interior of the car in the

elevator system, is:

Instance of constraint

<C001#, ‘Interior.color’, ‘Red’>

where the term ‘Interior.color’ refers to the color of the interior of the elevator, and it is a

structural feature of the elevator product.

Function

- f_id
- name

F1

-product_feature
-operator
-quantity

F2

-product_feature
-from_quantity
-to_quantity

 36

..

Figure 3.4 Data Models for the Constraint and the Wish

Fig. 3.4b is a data model for the wish requirement. The wish may be applied to the whole

product, or a set of components. An example of the wish requirement would be: the cost of an

elevator system should be the lowest. The data representation of this wish requirement may be

expressed in the form of instance as follows:

< W001#, Cost, Lowest, {component 1, component 2, …, component n} >

where the ‘W001’ stands for the identity of the wish; ‘cost’ is a behavioural feature of the

product; ‘lowest’ represents the degree of the wish in the customer’s mind. In the bracket ‘{…

…}’, all concerned components of a product are listed. When a whole product system (e.g., the

elevator system) is described for a certain behaviour or property, simply put the name of the

product in the brackets.

3.3.2 A Data Model for Product Configuration

The definition of product configuration is given in Chapter 1. In that definition, a product

configuration is viewed as a network of connections among a set of components. Such a view of

product is also called connectivity view. A product configuration may also be viewed as a set of

1..*
Constraint

-c_id
-product_feature
-value

(a) (b)

Wish

-w_id
-product_feature
-value

Components

1

 37

Figure 3.5 Data Model for the Assembly and Connectivity

sub-systems or components based on the function decomposition at varying levels. Such a view

of product is called assembly view. For example, the elevator system is decomposed into (see

Fig. 1.3):

• Hoist way assembly,

• Car assembly,

• C-weight,

• Suspension,

• Safety, and

• Cable.

The Hoist way assembly is further decomposed into the components: guide rail and U-bracket,

and the car assembly are further decomposed into the subsystems: car and supporting system.

1

1 1

Assembly

Part

Subassembly

1..k

1..k1..k

Connection

2

1..k

Configuration

1 1

 38

Figure 3.6 Pair Relationships for the General Connectivity Representation

A data model which captures the above semantics is shown in Fig. 3.5. In this figure, it is further

remarked that the line which connects the class ‘subassembly’ to itself express that the level of

decomposition of subsystems may be more than one and varying. Note that Fig. 3.5 also

represents the connectivity view of product configuration. To make the model more general, the

connectivity can be viewed as a set of pair relationships [Zhang and Van der werff, 1993]. For

example, a product has four objects that are connected, as shown in Fig. 3.6. This connectivity

view can be expressed by a list of pair relationships as follows:

<A, B>

<A, C>

<A, D>

<B, D>

Further, there are various types of connections in the product architecture, for example, the shaft-

and-hole, face-to-face against, etc. Fig. 3.7 represents this semantics. Specifically, for the shaft-

A

B

D

C

 39

hole connection type, a set of attributes that describe it is shown in Fig. 3.8, where the attributes

of the class ‘Shaft_Hole_Connection’ are self-explanatory.

Furthermore, the data model illustrated in Fig. 3.5 also represents: a configuration is a kind of an

assembly. In fact, the data model of assembly and connection is a generic one.

Figure 3.7 A Data Model for the Connection

Figure 3.8 A Data Model for the Shaft-Hole Connection Type

There are linkages between the requirement data model and the product configuration data

model. In particular, the domains of the attribute ‘product_feature’ should be included by the

domain of the product ontology dictionary” (POD). The product ontology is the definition of

Shaft_Hole_Connection

 -connection_id
 -1st_product_feature
 -2nd_product_feature
 -basic_size
 -type_of_fit
 -tolerance_code

Connection

-connection_id
-name
-connection_type

Shaft_hole Face_to_face_against ··· ···

 40

basic concepts and their relationships for a particular type of product, while the product ontology

dictionary contains a list of such definitions. Therefore, the POD contains the following

information:

• Structural features of components, of subsystems, and of systems,

• Behavioural features of components, of subsystems, and of systems, and

• Their semantics.

For example, in the POD, there may be the following definitions:

001#: Platform.size: the size of the platform;

002#: Interior.color: the color of the interior;

003#: Capacity: the capacity of the system;

004#: Cost: the effort which is converted into money for making products, subsystems,

and components.

The first two examples are a structural feature of the product, while the last two are a behavioural

feature of the product.

3.3.3 A Data Model for Configuration Design Knowledge

Design knowledge is mainly concerned with design synthesis knowledge; that is, it answers

various “how-to-achieve” questions. The structure of design knowledge expression may depend

on the general structure of a product. Generally speaking, the structure of a product has two

 41

types: (1) serial type, and (2) parallel type. In the serial structure type, synthesis can be divided

into n synthesis sub-tasks (see Fig. 3.9). In particular, synthesis at sub-task i is not subject to any

constraint of that at sub-task j (j ≠ i) except the input-output relation (i.e., output of sub-task i is

input of sub-task i+1). In the parallel structure type, each component plays a unique role in

forming a product; see Fig. 3.10.

Figure 3.9 Serial Structure

 Figure 3.10 Parallel Structure

Product

The dependency between points

The point where a decision is made

······
1 2 n 3

 42

The representations of design knowledge for these two types of structures are considerably

different. For the serial structure type, design knowledge can be expressed as a set of function-

structure (F-S) pairs; see Fig. 3.11, where a sub-function further corresponds to one or more

structures. The sense of “how-to-achieve” can be seen from the following scenario:

Given a functional requirement for a new product, the function is decomposed into a set of sub-

functions, say F1, F2, …, Fn. A process is started to match the function-structure pair in the

design knowledge database, which has the structure shown in Fig. 3.11. Assume that F1, F2, …,

Fi (i ≤ n) are matched. Then the function decomposition process will be continued on Fi+1, Fi+2,

…, Fn. The design ends when all sub-functions are matched by structures, which means all

functions are achieved. The design is thus a set of structures that can be obtained through the

function-structure pair. For example, for F1, one obtains S1 (See Fig. 3.11). Note that this design

process is well known, as described in design literature, e.g. [Suh, 1990].

Figure 3.11 Serial Structure Design Process

For the parallel structure type, design knowledge is expressed in a way by determining all

component instances “simultaneously” to satisfy a requirement. Design knowledge, in this case,

S1

S2

Sn

F1 F2 Fn ···

 43

can hardly be expressed by separate blocks or units (the same way as for the case of the serial

structure type). There may be several possibilities of combinations of component instances that

achieve a requirement, and these possibilities are design knowledge for the parallel structure

type. When the number of components, n, is large, the number of possible combinations of

component instances is large. It is understood that the maximal number of possibilities is m1×

m2× ··· ···× mn (mi: the number of instances of component i) which can be a very large number.

Instead of exposing all instances of components, the other method to express design knowledge

for the parallel structure type is to describe “rules” that constrain the selection of instances of

components. This method is more efficient, in the form of design knowledge expression, than the

way that lists all combinations of component instances.

Configuration design is a design problem relevant to the parallel structure type design problem.

Therefore, the serial structure type of design knowledge is not the concern in this thesis study.

This thesis focuses on the parallel structure type of design knowledge. In the following, the data

modelling issue for design knowledge for the parallel structure type is discussed.

Based on the above discussion, design knowledge for configuration design is in the form of

various relationships and constraints. A constraint makes sense when a corresponding

relationship must be maintained. For instance, the color of the interior of an elevator is related to

the color of the door of the elevator; specifically the red of the interior matches the white of the

door. When such a relationship needs to be maintained, a constraint is then built upon the color

of the interior and the color of the door. Note that the relationship and the constraint are viewed

interchangeably hereafter.

 44

The following points of general constraints can be summarized. First, suppose there are two

components/sub-systems, A and B. A has NA attributes (A1, A2, ……, ANA), while B has NB

attributes (B1, B2, ……, BNB). Attribute Ai and attribute Bj may have a constraint, denoted by

<Ai, Bj>. Second, the constraint may be applied to more than two components or attributes; for

example, <Ai, Bj, Ck>, where Ai, Bj, and Ck are three components/subsystems, while the

subscript i (j, k) indicates a specific feature associated with the component, or <Ai, Aj, Ck>,

where two attributes of component A participate in a constraint. These types of constraints may

be called the n-nary constraint (n>2). It should be noted that a n-nary constraint is not equivalent

to two binary constraints, e.g.,

 <Ai, Bj> AND <Bj, Ck>

This is because these two binary constraints do not impose the constraint on Ai and Ck directly;

Ai and Ck are constrained only in the sense that each of them is related to Bj. The following is an

example to further illustrate this point. Consider that the constraints on three product features, Ai,

Bj, and Ck, are, respectively (see Fig. 3.12),

 <ai1, bj1, ck3>, and

 <ai2, bj1, ck1>.

where the items in the symbol ‘<>’ are the instances corresponding to Ai, Bj, Ck, respectively. For

instance, ai1 is an instance of Ai.

 45

Figure 3.12 Constraints on Attributes

Now consider representing these constraints based on the binary constraints. This results in the

following representation of instances:

 <ai1, bj1>

 <ai2, bj1>

 <bj1, ck1>

 <bj1, ck3>

The above representation is based on the idea that bj is an intermediate which relates ai1 (ai2) and

ck1 (ck3). However, such an idea is not able to exclude the following pieces of knowledge:

 <ai1, bj1, ck1>

 <ai2, bj1, ck3>

ck1 ai1

bj1

ck3

Constraint

ai2

 46

which are not part of the constraints for this problem. Therefore, the data representation of

knowledge for configuration design should include the n-ary (n≥3) expressions.

Fig. 3.13 presents a data model of design knowledge for configuration design. It should be noted

that the domain of the class ‘structure_feature’ and ‘behavior_feature’ are included by the

domain of the class “POD” (see the previous discussion). Several remarks can be made regarding

the data model shown in Fig. 3.13.

Figure 3.13 A Data Model for the Design Knowledge of Configuration Design

Remark 1: When the multiplicity indicted at the end of the class ‘structure_feature’ is ‘1’, this

means that there is only one ‘structure_feature’ associated with the class ‘Configuration design

knowledge’. In this case, the design knowledge which makes sense is simply the domain of the

respective ‘structure_feature’. The domain of an attribute (‘structure_feature’ in this case) serves

as a kind of knowledge in the sense that any product feature outside the domain should not be

considered as a valid design.

Propose Knowledge engineer

1

1..*

Structure_feature
Behaviour_feature

Configuration design
knowledge

0..*

1

 47

Remark 2: When the multiplicity indicated at the end of the class ‘structure_feature’ is ‘2’, this

means a binary constraint. When the multiplicity is ‘3’, this means a ternary constraint, as

discussed above, with special reference to Fig. 3.12.

Design knowledge is used by a designer for determining a configuration given a requirement.

Fig. 3.14 captures this semantics. After a configuration design is finished, one obtains a pair of

particular requirement instance and a particular configuration instance; see Fig.3.15. A set of

such pairs forms a new knowledge base called the case-based configuration design knowledge

base (CASE for short) (Fig. 3.16).

Figure 3.14 A Data Model for Configuration Design

Designer

Configuration Requirement

Configuration design knowledge

 48

Figure 3.15 The Post Configuration Design

Figure 3.16 Case-Based Configuration Design Knowledge Base

CASE improves the efficiency of configuration design in the following sense. For any new

configuration design task, the first step is now to search CASE by matching the requirement

instance of a new design task. If there is a match, then simply retrieve the corresponding

configuration instance. By this way one avoids searching configuration design knowledge base,

Instance of Instance of

Requirement Configuration

A particular design
requirement

instance

A particular
configuration

instance

▪ ▪ ▪ ▪ ▪ ▪

Requirement
Instance

Configuration
Instance

 49

which may be a time-consuming task. On a general note, the idea described here may be called

design process reuse.

3.4 A Conceptual Model of CSP for Configuration Design

The knowledge representation for configuration design, as proposed before, does not best suit

computation. A computation-efficient representation usually requires such a formalism that

includes the operand and the operator only. In the following, a conceptual model of CSP for

configuration design is proposed. By the conceptual model it is meant that the representation is

independent of any computer code which implements CSP. The conceptual model of CSP for

configuration design is defined as follows:

Variable:

 Vi | Description; i =1, 2, …, n (3.1)

where n is the total number of variables, and i is the variable identity. It is noted that the domain

can be viewed as the unary constraint.

Domain:

 Di | A set of values (3.2)

Binary constraint:

 Cj | C-Expression (3.3)

where Cj is the constraint identity, and C-Expression takes the following form:

 50

C-Expression: = operand 1 |operator |operand 2 (3.4)

Where operators include U, ∩, ≠, >, <, =, ┐, and “operand 1” and “operand 2” are variables

defined in Equation (3.1). It is noted that these operations are not logic operators; they represent

the semantics of various type of constraints.

In the case of the categorical type of variables, e.g., the variable ‘color’ which has the domain

{‘Red’, ‘Blue’, …}, the operators that require quantitative information, such as >, =, ≠, <,

become irrelevant. One needs to make use of the operators such as ‘∩’, ‘U’, ‘┐’and ; see the

discussion to follow. Regarding the (operators: U, ∩, ┐); specifically in the context of CSP,

Variable 1 U Variable 2 means Either Variable 1 Or Variable 2; Variable 1 ∩ Variable 2 means

Variable 1 AND Variable 2. Variable 1 ┐Variable 2 means Variable 1 incompatible with

Variable 2.

In Chapter 2, two types of preferences, Preference I and Preference II, were discussed. Their

CSP representations are as follows:

Preference I:

Pi | PVi | vi {ai} (3.5)

where

Pi : the preference identifier;

 PVi : the preference name;

vi : the variable;

 51

ai : the value.

In the case of the elevator system, suppose that the customer prefers that the door is opened

vertically. This preference can be represented as follows:

P002# | door opening | V2 {‘V0’}

where

 P002# : the preference identifier;

 V2 : the variable representing the door opening attribute;

 V0 : the value representing that the door is opened vertically

Preference I can be further represented as a form of the unary constraint. That is, for the door

opening example, the specification would be

V2 | {V0}

Preference II:

 Pi | PVi | PII-Description | (3.6)

In Equation (3.6), PII-Description represents the preference of the customer on the whole system

or sub-systems. In this study, the following types of Preference II are considered: (1) cost, (2)

quality, and (3) weight. Therefore, there are three types of PII-Description.

 52

 PII-Description (1): Cost is the minimum | Sk

PII-Description (2): Quality is maximum | Sk

PII-Description (3): Weight is the minimum | Sk

Sk represents a system or a sub-system to which a preference is applied. For example, in the case

of the elevator system, one may require the minimum weight of the sub-system consisting of the

platform, sling, and crosshead. This preference can be specified as follows:

PII #01 | moving parts | PII #01 - Description |

PII #01 - Description = weight minimum | {V1, V2, V3}|

V1: Platform component

V2: Sling

V3: Crosshead

Preference II is solved by the CSP optimization technique, as mentioned in Chapter 2.

Composite constraint:

In the CSP literature, there is a notion called composite constraint specification [Sabin and

Freuder, 1996]. Semantically, a variable (say VA) may represent a sub-system. The sub-system

 53

VD

VA

VC VB

consists of several components, which correspond to variables (say VB, VC, and VD). Thus,

there is a hierarchical relation between VA and VB (VC, VD); see Fig. 3.17.

Figure 3.17 Composite Variable Figure 3.18 Composite Constraint

Suppose that there is another variable, say VH, which has a constraint with VA. This situation

leads to Fig. 3.18. The specification of the composite constraint requires the possibility in CSP to

define the hierarchical relation among variables.

3.5 From the PDM Model to the CSP Model

The representation of the CSP problem (in Section 3.4) can be completely derived from the

knowledge representation for configuration design discussed in Section 3.3. In particular, the

variable and its domain correspond to the attribute ‘product_feature’ (both the structural and

behavioural features) and its domain in PDM. Preference I of CSP corresponds to the constraint

requirement in PDM.

Constraint

VD

VA

VC VB

VH

 54

The function requirement defined in PDM level corresponds to the unary constraint in CSP. Here

it should be noted that the semantics is gradually losing with the modeling process from PDM to

CSP; see Fig. 3.19.

Figure 3.19 Modeling Process from PDM to CSP

The wish requirement in PDM corresponds to the Preference II in CSP. In PDM, a particular

component may have to be associated with a particular subassembly. This semantics corresponds

to the composite constraint in CSP; specifically, that partial configuration corresponds to a

composite variable. It is noted that with the idea of the integrated PDM and CSP the relationship

among variables for a composite variable is readily captured in PDM by the assembly and

connection semantics (see Fig. 3.5).

: Semantics Reducing

PDM CSP

Function Requirement
Constraint Requirement Unary Constraint

 55

Figure 3.20 Linkage Data Model

Fig. 3.20 shows a data model which represents the linkage (discussed above) between the PDM

and the CSP. The linkage data model makes it possible a two-way travel between PDM and CSP

(also see Fig. 3.1b). A process, which may be called the linkage process, works upon the linkage

model to maintain the two-way travel (see Fig. 3.20). In particular the linkage data model is

automatically created when traveling from PDM to CSP, and after the computation for

1

Linkage process

PDM CSP

Constraint – Preference I

Function - Unary

Wish – Preference II

Product_feature - Variable

Function_word - Variable

Design knowledge – Unary, Binary, …

Schema

Linkage InstancePDM Instance CSP Instance

1

1

1

1

222

1

The process from PDM to CSP

The process from CSP to PDM 2

 56

configuration design is finished (at the CSP level) the process is back to the PDM level through

the association between PDM and CSP in the linkage data model.

3.6 Illustration

The elevator system is used as an example to give an impression of what the models developed

above look like. It is noted that the models developed before are “templates”, while a specific

application problem is “instances” of these “templates”.

3.6.1 Configuration Design Requirement

The elevator system, as earlier mentioned in Chapter 1, consists of 16 components and 4 optional

components. Each component has a certain number of features or attributes, and they are given

below.

 Door: Features: (1) open type

(2) speed

(3) open strike side

 Platform: Features: (1) width

 (2) depth

 Sling: Features: (1) size

 (2) type

 Safety Features: (1) size

 (2) type

 57

 Head Features: (1) size

 Carbuffer Features: (1) size

 (2) type

 Cweight Features: (1) size

 (2) type

 Sheave Features: (1) capacity

 Cwtbuffer Features: (1) size

 Concable Features: (1) type

 Hcable Features: (1) type

 (2) duty

 Gcable Features: (1) type

 Comcable Features: (1) type

 Machine Features: (1) capacity

 Mbeam Features: (1) size

 Motor Features: (1) power

The design requirement of the elevator system may include the following specifications (not a

complete list):

Function:

(1) Elevator capacity: 2500 lb

(2) Elevator speed: 250 ft/min

 58

(3) Need a phone or not: yes

(4) Need a lantern or not: no

(5) Need a communication or not: no

(6) Need an indicator or not: no

Constraint:

(1) Door open type: side open

(2) Door open speed: double

Wish:

 (1) The lowest cost of the whole elevator system

3.6.2 The PDM representation of Design Requirement

The PDM for the above design requirement is presented below:

Following the data model shown in Fig. 3.3, the instances of the data model representing the

semantics of the function requirement are shown below:

 <F001#, ‘Capacity’, ‘>’, 2500 lb>

 <F002#, ‘Speed’, ‘=’, 250 ft/min>

 <F003#, ‘Phone’, ‘=’, ‘yes’>

 <F004#, ‘Lantern’, ‘=’, ‘no’>

 59

 <F005#, ‘Communication’, ‘=’, ‘no’>

 <F006#, ‘Indicator’, ‘=’, ‘no’>

Following the data model shown in Fig. 3.4, the instances representing the semantics of the

constraint and wish requirements, respectively, are shown below:

Constraint:

 <C001#, Door.open, “Side open”>

 <C002#, Door.speed, “Single speed”>

Wish:

 <W001#, ‘Cost’, ‘lowest’, { }>

where ‘{}’ implies that this particular wish is applied to the whole system (i.e., the elevator).

3.6.3 The CSP Representation of Design Requirement

Variables (the left side are the variable names, and the right side is the description)

V0 | Door

V1 | Platform

V2 | Sling

V3 | Safe

V4 | Head

 60

V6 | Car buffer

V7 | Car weight

V8 | Sheave

V9 | Cwtbuffer

V10 | Concable

V11 | Hcable

V12 | Gcable

V13 | Comcable

V14 | Machine

V15 | Mbeam

V16 | Motor

V18 | CarPhone

V19 | CarLantern

V20 | CarIntercom

V21 | CarIndicator

V22 | ElevatorCapacity

V23 | ElevatorSpeed

There are other variables, which refer to the design requirement, and they are presented as

follows:

 VF01 | required capacity

 VF02 | required speed

 VF03 | required door type and speed

 61

 VF04 | need a phone or not

 VF05 | need a lantern or not

 VF06 | need a communication system or not

 VF07 | need an indicator or not

 VFCOST | cost of the total system

In the above,

VF01 corresponds to V22

VF02 corresponds to V23

VF03 corresponds to V0

VF04 corresponds to V18

VF05 corresponds to V19

VF06 corresponds to V20

VF07 corresponds to V21

The design requirement is represented in CSP as follows:

Function:

 VF01 = 2500 lb

 VF02 = 250 ft/min

 VF04 = ‘yes’

 VF05 = ‘no’

 VF06 = ‘no’

 62

 VF07 = ‘no’

Constraint:

The design constraints (1) and (2), as described above in Section 3.6.1, are represented by one

variable in CSP.

 VF03 = ‘2sso’

Where ‘2ssso’ stands for (1) the door is ‘side open’, and (2) door open speed is ‘double’

Wish:

VFCOST = ‘lowest’

3.6.4 Design Knowledge Representation

Design knowledge stated at the application level:

For example, Car Assembly made of Door, Platform, Sling and Crosshead which are called

components. Each component has several models which fulfill similar function but each of them

meets different requirements from geometric, physical, structural aspects. Take the component

Door and Platform as an example. Their alternative models (in parentheses) are listed as follows:

Door: (ssco, ssso, 2sco, 2sso)

where ssco : single speed and center open;

 Ssso : single speed and side open;

 63

 2sco : double speed and center open;

 2sso : double speed and side open.

Platform: (2.5B, 4B, 6B)

where 2.5B : the smallest model;

6B : the largest.

The platform model (2.5B) is compatible with the door models (ssco, ssso) but not the door

models (2sco, 2sso). Further, there is design knowledge which says: If Capacity is equal to or

less than 2500 lb, use Platform model 2.5B. If Capacity is larger than 2500 lb and less than

3000 lb, use platform model 4B; otherwise use platform 6B model.

Design knowledge represented in PDM:

In the production configuration data model, one has the following instance:

Assembly:

<A01#, P01#, P02#, P03#, P04#>

Part:

<P01#, ‘Door’>

<P02#, ‘Platform’, ‘Capacity’>

<P03#, ‘Sling’>

<P04#, ‘Crosshead’>

 64

For representing the feature values, a general data model proposed by Zhang and Van der Werff

[1993] is applied. This data model suggested two attributes in a class: the attribute id and its

value. Therefore, one has the following definition of the structure feature.

Structure_feature:

 <PF001#, P01, ssco>

 <PF002#, P01, ssso>

 <PF003#, P01, 2sco>

 <PF004#, P01, 2sso>

 <PF005#, P02, 2.5B, {#, 2500}>

 <PF006#, P02, 4B, {2500, 3000}>

 <PF007#, P02, 6B, {3000, #}>

Configuration design knowledge:

<DK001#, PF005#, PF001#>

<DK002#, PF005#, PF002#>

Design knowledge represented in CSP:

In the CSP level, the design knowledge is represented by

The Domain:

 Door: {ssco, ssso, 2sco, 2sso}

 65

Platform: {2.5B, 4B, 6B}

Capacity: {2000, 2500, 3000, 3500, 4000}

The Binary relation:

 #089 | C- platform.2.5B ∩ door.ssco

#090 | C- platform.2.5B ∩ door.ssso

#091 | C- Capacity.C1 ∩ platform.2.5B

#092 | C- Capacity.C2 ∩ platform.4B

#093 | C- Capacity.C2 ∩ platform.6B

In the above, C1, C2, and C3 are so-called surrogates which are defined as follows:

 C1: capacity less than 2500 lb;

 C2: capacity less than 3000 but greater than 2500;

 C2: capacity greater than 3000.

The linkage between PDM and CSP is illustrated as follows:

 PDM CSP

P01 corresponds to Door

P02 corresponds to Platform

Structure_feature corresponds to Domain of door and platform

Configuration design knowledge corresponds to Binary constraint

Behaviour_feature corresponds to Domain of Capacity

 66

3.7 Concluding Remark

The integration of PDM and CSP is a promising idea for a more intelligent computer system for

configuration design. The improved intelligence is because this idea gets both the strengths of

the two paradigms (PDM, CSP): the rich expression of application semantics with PDM and the

powerful facility (in computation) and generality (in knowledge representation) with CSP. The

essence of this idea is such that PDM becomes a “wrapper” over CSP; CSP is merely a

computational engine. One can also see that at the CSP level, the binary constraint has difficulty

in representing the continuous variables (i.e., capacity <2500). At the current CSP formalism, the

notion of surrogate was applied.

 67

Chapter 4

Life Cycle Configuration Design

4.1 Introduction

A configuration design system or configurator does not work in isolation from other design and

manufacturing processes. The life cycle configuration design concept will be proposed in this

chapter. Specifically, Section 4.2 will elaborate this concept. Section 4.3 presents a general

framework for integrating various life cycle systems and two specific integrations, namely the

Configurator with CAD (Computer Aided Design) and the Configurator with SCM (Supply

Chain Management). Section 4.4 is a summary.

4.2 Life Cycle Configuration Design Concept

The product production is a process which takes a triple (energy, material, information) in and

generates a new triple (energy, material, information) out; see Fig. 4.1. Such a process is a

controlled process with some goals to achieve and subject to some constraints; see Fig. 4.1. The

things to be controlled or managed are resources, such as equipment, people, money,

subcontractors, and suppliers; see Fig. 4.2. In literature, control of equipment and material may

be fulfilled by a software system called “Manufacture Resource Planning (MRP)”. The control of

financial flow may be fulfilled by a software system called “Enterprise Resource Planning

(ERP)”. Control of supplies may be fulfilled by a software system called “Supply Chain

 68

Management (SCM)”, and finally management of customers may be fulfilled by a software

system called “Customer Relation Management (CRM)”. These software systems may not stand-

alone; they may physically be integrated into one software system. For instance, many ERP

systems include the functions of CRM and MRP.

Figure 4.1 General Product Production Process

The concept of life cycle configuration design (LCCD) means that the configuration design

activity involves all these management or control activities. It should be noted that product life

cycle design or engineering for general products was first elaborated by Alting and Legarth

[1995]. Here, configuration design is viewed as a particular design pattern with respect to general

product design. Therefore, the life cycle (general) idea should be well applied to configuration

design. In order to develop an integrated life cycle configuration design system, the idea

proposed in this thesis is to identify interfaces between the configurator and many other

control/management systems.

Information

Material

Energy

Information

Material

Product Production

Goal

Energy

Control Constraint

 69

Figure 4.2 Things to Be Managed

4.3 Interfaces between Configurator and Other Life Cycle Programs

With the concept of integrated PDM and CSP (hereafter, PDM-CSP for short), the interface

between configurator and the other systems as mentioned before (e.g., CAD/CAM system, ERP

system) simply become the interface between PDM and the other systems. In general product

production, interface between PDM and the other systems is well known, specifically under the

heading called Product Life Cycle Management (PLM). In fact, the early system with the

heading of PDM has already taken the whole life cycle of product into consideration; see

Shrikhande [2000]. Nevertheless, there are two reasons that a study of PLM or PDM issue with

special reference to configuration design is warrant here. First, the configuration design has its

special features that may demand special considerations. Second, the current development of

Control/Management

Equipment
Resource

Human
Resource

Financial
Resource

Customer
Resource

Sub-Contractors Supplies Plant Worker

 70

XML allows the possibility to develop a mixed structural and semi-structural data that was

recognized in [Shrikhande, 2000] as being very important for an effective PDM.

This thesis was not intended to give a full model for the life-cycle configuration design system

but to focus on general framework and concept. The following discussion presents the concept of

interface as a key technology for gluing a configurator with other program systems that support

life cycle configuration design and illustrates how this concept works based on a few examples.

4.3.1 The Interface Framework

Fig. 4.3 illustrates a general framework of interface between a configurator with other program

systems. In this framework the configurator and those other programs have a port which stores

information and knowledge that is ready to communicate with other programs. Between the ports

is an interface system. The interface is basically a kit of tools that further facilitate the

communication. Here, the communication is mostly about data flow in the sense that the data

from the configurator flows to the program (e.g., a CAD program), or vice versa. It is assumed

that program A will not directly intervene program B in such a way program A, serving like a

process of program B, changes data in the data repository of program B. In other words, each

program has a process which represents intelligence of that program; see Fig. 4.4. Such a process

is refreshable and replaceable, the same as human learning.

 71

Figure 4.3 The Interface Framework

Figure 4.4 The Concept of The Process of a Program

It is further noted that the data in the port of a program (e.g., configurator) may differ depending

on what other programs it communicates with. For example, when a configurator communicates

with an ERP program, the data from the configurator’s port may only include the so-called bill-

of-material (BOM) data, which is a list of materials, their quality, and their quantities. Note that

BOM does not contain the structure over these materials (i.e., a kind of assembly of these

materials). The data in the configurator’s port may contain the product assembly and

In
te

rf
ac

e

SCM

Configurator

ERP

CAM

CAE

CAD

: Data port

Process

Data repository

Information and
knowledge engineer
refresh the process

 72

connectivity information, as represented with the model illustrated in Fig.3.5 (Chapter 3), when

it communicates with a CAD program system.

Figure 4.5 Structural data vs. Semi-Structural Data

Data in a program’s port typically contains both structured data and semi-structured data. The

structured data is one that conforms to a particular data model framework (e.g., relational, etc.),

while the semi-structured data does not. The semi-structured data usually provides the context

data for the structured data; see Fig. 4.5.

Recently, XML emerges to be a powerful tool for representing semi-structured data [Marchal,

2000] (more details about XML refer to Appendix A). The structured data and semi-structured

data must be integrated, as the latter is the context of the former (Fig. 4.5). The key to make the

integration possible is that they both share the same ontology; see Fig. 4.6.

Product Context

Product

Product Context
-Why is it
-How to make it
-Who makes it

Structural data Semi-structural data

UML model
E-R model XML, HTML

 73

Figure 4.6 Integration of Structural and Semi-Structural Data

4.3.2 The Interface between Configurator and CAD Program

(1) Data in the configurator’s port:

Structural data:

• Product assembly and connection model (see Fig. 3.5), and

• Parts Catalogue.

Semi-Structural data:

• Customer information,

• Configuration design identifier,

• Design id, and

• Design status (design, review, or release, etc.).

Ontology

Structural data
(UML)

Semi-Structural data
(XML)

Product data
dictionary Product tag

dictionary

 74

(2) Data in a CAD system (e.g., SolidWorks):

• Assembly and parts in CAD data format (e.g., DWG, IGES, STEP, ACIS, DXF, etc.),

• Mates relationship, and

• Title block information (designed by, checked by, approved by, etc.).

(3) Interface:

The data transfer of the structural data from the configuration’s port to the CAD program’s port

may be performed by a human operator if there is a lack of the automated transfer process. Take

the elevator as an example. This means the personnel who administrate the configurator needs to

create a solid model of a configured product in a particular CAD system, e.g., SolidWorks. It is

noted that such a model should be parametric for the configuration design application. Once the

CAD model is established, the subsequent design scenarios will be as this. After a solution is

generated by a configurator, the configurator will send parametric information to the CAD

system by specifying a particular product family (e.g. elevator) stored in the CAD system. Then,

the CAD system will realize the solution (i.e., a configured product) to the customer. The

customer may be allowed to do change directly on the solution in the CAD system if the

customer is familiar with the CAD system (e.g., SolidWorks) or if a user interface system, which

relieves the customer of the need to be familiar with the particular CAD system, is available.

There is also a data transfer of the semi-structural data (XML format) from the configurator’s

port to the CAD’s port. For example, the XML representation of the semi-structural data is

shown in Fig. 4.7. It is noted that in this figure the tag words used in the XML representation are

 75

drawn from the product ontology dictionary (POD) as discussed in Section 3.5. In that sense, the

structural and semi-structural data are integrated.

Figure 4.7 XML Representation of The Semi-Structural data

4.3.3 The Interface between Configuator and SCM

SCM describes the integration beyond boundary of the firm, involving business partners in

different processes and activities. It involves suppliers, producers, retailers, logistics-service

providers, and customers. By making planning cooperatively by all the participants it is believed

to be more cost effective than isolated planning by individual participant. Therefore the

communication for information exchange is very important for a seamless integration over all

players, customers and its partners.

Electronic Data Interchange (EDI) system has been one widely used to achieve integration over

participants. However EDI’s considerable setup time and high operation costs stop many small

Natural Language for Design
Rationale:

The customer for this product
(elevator) is USIntel. The
customer requested the product
delivered on the date of January
5, 2005. The product will be used
in a building. The resulting
configuration has an identifier
(IDNumber). This design task has
an identifier (DesignID). The
design has been completed.

Tags:

<Product>USIntel </Product>
<customerID>c10058</customerID>
<configuration_identifier> Solution109
</configuration_identifier>
<design_id>d00150018</design_id>
<design_status>released</design_status>
<Quotation>
 <quotationID>05</quotationID>
 <price>350</price>
 <currency>CAD</currency>

<delivery_date> Jan05/05
</delivery_date>

</Quotation>

 76

and medium size companies from using it. XML, instead, is very promising for representing

structured and semi-structured data in SCM with low cost or even 0 cost [Buxmann et al., 2002].

The following is an example of data for the communication between a Configurator and a SCM

program. Suppose that the end-user (customer who needs a product) is satisfied with the solution

(a configured product) generated by the Configurator. The Configurator will need to

communicate with the SCM system in order to generate the delivery date for the customer. For

this purpose, at the Configurator’s port, the BOM data is to be sent to the SCM system. Some

background information may be attached with the BOM data. The example of such background

information is the customer required delivery date and the customer location. The SCM system

receives the Configurator’s request and will then analyze the request and develop a supply plan

for which the SCM system may further communicate with potential supplies. After the SCM

system has worked out a supply plan, the SCM system will then return the result to the

Configurator, and the Configurator generates the product delivery date to the customer and in the

mean time the customer will be given the access to the SCM system to track the product delivery

process. The interface between the Configurator and the SCM in this case will not have much

difficulty in terms of the data format; the text format for the BOM and XML format for the other

information should suffice. For example, the XML file for the background information (as

mentioned before) can be formed in Fig. 4.8.

 77

Figure 4.8 Background Information of a Part in XML

4.4 Summary

An effective configuration design system will have to provide a facility for life cycle

considerations. The essential issue here is integration of a configurator with various other life

cycle design systems, e.g., CAD system, SCM system, ERP system, etc. The general solution is

to view the problem as an interface problem. In this chapter, the integration of the configurator

with two life cycle modules, CAD and SCM, was discussed at the conceptual level (i.e., with

emphasis on what information and knowledge are required in order to make integration happen).

It has been long recognized that information and knowledge has to address both structural and

semi-structural data. These two categories of data represent, respectively, decisions and their

rationale. An idea was described that is to have UML for structural data and XML for semi-

structural data, and further let two data models (UML and XML) share the same ontology of a

domain of application under consideration.

<Background>
<CustomerLocation>
 <StreetNo>210 ABC Ave. </StreetNo>
 <City> St. Peterburger</City>
 <Province>Saskatchewan</Province>
 <PostalCode>S7H1A7</PostalCode>
</CustomerLocation>

 <DeliveryDate> Jan20/05</DeliveryDate>
 </Background>

 78

Chapter 5

Implementation and Demonstration

5.1 Introduction

This chapter discusses an implementation of the theoretical developments described in the

proceeding chapters. The purpose of this implementation is to verify whether the concepts

proposed in the preceding chapters can be implemented both effectively and efficiently. In this

case, the elevator system is taken as an example. The implementation resulted in a web-based

integrated Configurator software system for the elevator system development. The configurator

was based on the integration of PDM and CSP (an idea discussed in Chapter 3); specifically

PDM wraps CSP. Hereafter, this system is called the PDM-CSP Configurator (or Configurator

for short). Section 5.2 presents the system architecture of the PDM-CSP Configurator. Section

5.3 discusses the general implementation methodology. Section 5.4 discusses an implementation

of CSP. Section 5.5 discusses an implementation of the integration of the Configurator and the

CAD system. Section 5.6 presents a demonstration.

5.2 The architecture of PDM-CSP Configurator

Architecture of a system describes the various software modules and their relationships. It is well

known that the architecture of a complex software system should make the following three

components separate: the presentation, the data, and the process [Zhang, 1994]. This idea is

translated to the web-based software application, which results in the structure shown in Fig. 5.1.

 79

In this figure it can be seen that there is a server layer which refers to the CSP algorithm and the

knowledge conversion program between PDM and CSP, an interface layer which refers to the

interaction of the server with the client or customer, and a database layer which stores

information and knowledge needed for conducting configuration design. It should be noted that

with this architecture, data management is performed at the server layer in a centrally controlled

manner. The client can start with PDM-CSP at any location. At the client end, a standard

browser is needed, such as Netscape or Internet Explorer.

Each layer contains several program modules. At the database layer, there are (1) information

about the design of a particular product, (2) the knowledge for designing the product, and (3)

some general product development knowledge (e.g., materials, supplies, etc.). At the sever layer,

there are (1) the database management system (DBMS), (2) the data conversion system (i.e., the

linkage process; see the discussion in Section 3.5), and (3) the main program to perform

configuration design. At the interface layer, there are (1) the interface management system which

deals with the interface structure, (2) the user-model, and (3) some conversion program (e.g.,

XML to HTML).

 80

Figure 5.1 The Architecture of PDM-CSP

5.3 General Implementation Methodology

Currently, the interface layer was implemented using Java Server Page (JSP) and Servlets. JSP

and Java Servlets were used to create the html web pages. In the server layer, CSP was

implemented using Java Constraint Library 1.0 (JCL). JCL was one of the first software libraries

to bring CSP to the java world. This library was an open source library developed by JCL team

in the Swiss Federal Institute of Technology [JCL, 2000]. JCL provided an Application Program

Interface (API) for working with constraint satisfaction problems. These problems included the

classic, soft CSP, and continuous CSP. The database layer was implemented using the text file

that could be accessed by any programming language. Furthermore, currently the

implementation of the PDM system was very pre-matured.

Client Client Client

Interface

Process/Management

Client Tier

Server Tier

Database Data Tier

 81

The programming environment is as follows: (1) Windows 2000 professional or other windows

systems, and (2) VisualAge for Java from IBM as editor and the web environment.

5.4 Implementation of CSP

The CSP problem representation was implemented based on the following simplifications: (1)

each variable corresponds to one component/subsystem, instead of the attribute or feature of a

component or subsystem. In this case, if a particular component has two attributes (e.g., the color

and size), and the domain of the color is <’Red’, ‘Blue’>, and the domain of the size is, <’100’,

‘200’>, then the domain of that component or variable corresponding to that component will

have 4 models, which are: model 1 (‘Red’, ‘100’), model 2 (‘Red’, ‘200’), model 3 (‘Blue’,

‘100’), and model 4 (‘Blue’, ‘200’). So the domain of the variable in this case has 4 models.

The function requirement is represented by the variable too. For example, the capacity of the

elevator corresponds to a variable. The domain of the capacity variable was <1000, 1500, 2000,

2500, 3000>. The constraint requirement was also represented as variable.

Care must be taken that since the variable was defined for the whole component, not for an

attribute or property of a component (as discussed before), a specification of Preference I may

introduce some redundant specification. An example helps to clarify this point. Suppose that the

customer has a preference, say the door open style should be “side open” (the customer has no

preference on the door speed). The door component has the two features in the current example):

 82

the door speed and the door open style. The codes were developed corresponding to these two

features. For example:

ss: single speed;

2s: double speed;

so: side open;

co: center open;

Therefore the code ssso stands for “single speed and side open”.

The constraint requirement as mentioned before is then specified by two unary constraints: Door

model {ssso, 2sso}.

The wish requirement in CSP was implemented with Preference II (see the previous discussion

in Section 3.6). Currently, only the cost and performance were implemented. This was

specifically done by introducing extra two attributes (cost and quality) with each model. As such,

the CSP solving process was able to evaluate the total cost and total quality. Appendix B

presents a full list of constraints of CSP for the elevator configuration design.

5.5 Implementation of Integration of the Configuration and CAD

The implementation of an interface of the Configurator (i.e., PDM-CSP) was done based on a

CAD system: SolidWorks. The interface between the PDM-CSP and the CAD was discussed in

Section 4.3.2. In SolidWorks, the elevator system was created. The model was parametric so that

the whole elevator product family can be assembled. Fig. 5.2 shows a simplified elevator system.

 83

Figure 5.2 Elevator System

Fig. 5.3 shows two configurations of doors. Such an implementation supported the following

design scenario. The customer interacts with the Configurator and gets an optional configured

product. Then the product is visualized in the SolidWorks environment.

 84

Figure 5.3 Different Configurations for Doors and Car Cabs

5.6 Demonstration

The design problem starts from the design requirements; specifically, it includes:

(1) Function requirements:

(1a) The capacity of the elevator should be 2000 lb,

(1b) The speed of the elevator should be 250 ft/min,

(1c) The car of elevator has a “phone” and a “level indicator”.

(2) Constraint requirements:

(2a) Door opening type should be “Side”,

(2b) Door opening speed should be “Double”,

(2c) Door opening strike side should be “Right”,

Side-open door Center-open door

 85

(2d) Cab should be “96” inch high, “70” inch wide, and “84” inch deep.

(3) Wish requirements:

Figure 5.4 Interface for Design Requirement Specification

 86

It is required to have a high performance but within a cost limit. The customer can enter the

requirements into the interface, as shown in Fig. 5.4.

Figure 5.5 Cost Limit Input by Customer

Since the wish requirement is specified as the high performance within a cost limit, the

configuration will ask from the customer for the preferred cost information. To facilitate the

customer decision making process, the configuration will first calculate the range of the cost

limits (Fig. 5.5). After that, the customer can specify a preferred cost which should be within the

range, e.g., $9,000 in this case. Finally the Configurator will come up with a solution (i.e., a

configured elevator) and shows the solution in the data format of BOM (Fig. 5.6). In this figure,

 87

the configured product’s BOM is listed, and each component’s model is selected. For example,

component door’s model is ‘2sso1’, which means a door with “double speed”, “side open”

features and grade 1 quality. The cost of a model is also attached; for example, the price for

model ‘2sso1’ is $500. Some other attributes attached with the BOM are performance (or

quality), important factor, and performance number.

Figure 5.6 Solution: BOM for the Configured Product

 88

Chapter 6

Conclusion and Future Work

6.1 Overview of the Thesis

The trend of today’s manufacture industry is changing from mass production to mass

customization. The companies who win the markets are those who can deliver highly customized

products with the fastest speed. One of the strategies to implement the mass customization is to

implement the product development into the assemble-to-order (ATO) pattern. As such, the

design of a product becomes the determination of a configuration which contains a set of pre-

developed components – configuration design for short. In the configuration design, the

components will be less engineered. The configuration design problem can be well treated as

constraint satisfaction problem (CSP). The matured methods are available for CSP. But the CSP

method for configuration design has several limitations. First, CSP requires that design problem

be defined at a relatively low level, i.e., the variable, the domain, and the constraint. Second,

because of the first reason, the modeling of a configuration design problem into a CSP problem

is not convenient. Third, integration of configuration design process based on CSP into life cycle

processes (assembly, maintenance, recycling) is difficult because the linkage between CSP

model of configuration design and the models for other life cycle processes is not explicitly

represented in a data format. So computer processing of the integration is not possible.

This thesis proposed to overcome these limitations by having a product data model wrap a CSP

model for configuration design. In this way, configuration design is represented in the product

 89

data model (PDM) level as well as in the CSP level, while the linkage between PDM and CSP is

completely looked after by the computer (i.e., automatically maintained). The computer system

implemented as such is called the PDM-CSP configurator (or configurator for short). In

particular, the following research objectives were defined.

Objective 1: Extend a CSP representation to explicitly incorporating the customer preference

and constraint.

Objective 2: Develop an integrated PDM and CSP approach to configuring products.

Objective 3: Develop a framework for integrating a configurator with other product life cycle

development systems.

These objectives have generally been achieved. Specifically, an extended CSP model which

incorporates two preferences (I, II) was proposed in Chapter 3, which addresses objective 1. The

Preference I was in fact a kind of unary constraint. The Preference II was represented into an

optimization problem, which was supported by an underlying CSP method. A great deal of

discussion in Chapter 3 is on data modeling for the configurator, which includes the data model

for configuration design in the PDM level, the data model for configuration design in the CSP

level, and the data model for a linkage between PDM and CSP. These data models address

objective 2.

Chapter 4 proposed a life cycle configuration design concept and developed a framework for

integration of the configurator and other life cycle processes. Specifically, the integration

 90

problem was viewed as the interface problem, i.e., the interface between the configurator and

other life cycle processes. For the illustration purpose, two integration examples, an interface

between the configurator and CAD systems and an interface between the configurator and SCM

systems, were discussed. Integration between two systems involves data integration; data here

includes both decision data and its background data (more semantically, data representing

decisions on the product development and data representing rationale behind the decisions). It

was proposed that the decision data was represented as the structural data, while its background

data was represented as the semi-structural data. It was further proposed that the schema-instance

data modeling language (e.g., EXPRESS, UML) should be used for the structural data, while the

mark up language (e.g., XML) should be used for the semi-structural data. These two data

models (structural, semi-structure) share same product ontology; specifically, at the

implementation level, the tag in XML should reference to the metadata dictionary which is

designed for the structural data model.

Finally, an effort was made to verify the ideas and methods proposed in Chapter 3 and 4. This

was demonstrated by an implementation. This implementation includes (1) a CSP system, (2) a

configuration design interface on the Internet; (3) an interface between the configuration and the

SolidWorks.

6.2 Contributions

A main contribution of the research reported in this thesis is the proposed idea that PDM warps

CSP. This idea has laid down a basis for a computer-based and web-based configuration design

system. Specifically, there are the following contributions:

 91

(1) Proposed the data models for configuration design, which capture: (i) both the structural and

functional information, (ii) the structural and semi-structural data, and (iii) the linkage

between the PDM and the CSP. A computer system for supporting configuration design

based on this idea allows for a customer-oriented interface and a computationally powerful

solver (CSP).

(2) Proposed a framework for integrating the Configurator with other life cycle processes. In this

framework, a strategy for integrating the structural and semi-structural data was proposed.

(3) Proposed an implementation of the CSP with a particular reference to the customer

preferences.

6.3 Future Work

The study presented here has some limitations or can be further extended. First, in design, it is

quite often that information is incomplete (uncertain or imprecise). The configurator needs to be

extended to model incomplete information. This can be done by developing the data modeling

which enables the modeling of incomplete information [Li et al., 1998]. While at the CSP

level, the fuzzy and probabilistic CSP facilities can be applied. It is noted that some conceptual

level development about this work has already been done; see [Zhang et al., 2003]. Second, a

configuration design problem could involve continuous variables. In this case, the CSP problem

becomes a mix of the discrete and continuous variables. The future extension of the PDM-CSP

configuration for such a complex CSP problem should be interesting.

 92

References:

Apt, R. K. (1999). “The essence of constraint propagation”, Theoretical Computer Science,

221(1-2), p. 179-210.

Alting, L. & Legarth, B. (1995). “Life Cycle Engineering and Design”, Annals of the CIRP Vol.

44/2/1995.

Bartak, R. (2001). “Theory and practice of constraint propagation”, Proceedings of CPDC2001

Workshop (invited talk), p.7-14. Gliwice, June 2001.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language user guide,

Addison-Wesley.

Bowen, J. & Bahler, D. (1991). “Conditional existence of variables in generalized constraint

networks”, Proc. AAAI, pp. 215-220.

Box, D., Skonnard, A., & Lam, J. (2000). Essential XML: Beyond MarkUp (The DevelopMentor

Series), Addison-Wesley Pub Co.

Brown, S. (2000). Customer Relationship Management: A Strategic Imperative in the World of

E-Business. John Wiley & Sons, April 21.

Buxmann, P., Díaz, L., & Wüstner, E. (2002). “XML-Based Supply Chain Management--As

SIMPLEX as it is”, Proceedings of the 35th Annual Hawaii International Conference on System

Sciences (HICSS'02)-v.7, p.168, January 07-10.

Carlson, D. (2001). Modeling XML applications with UML: Practical e-business application.

Addison-Wesley.

 93

Chen, P. P. (1976). "The entity-relationship model - toward a unified view of data", ACM

Transactions on Database Systems, Vol. 1, No 1, March 1976, pp 9-36

Codd, E. F. (1970). "A relational model of data for large shared data banks", Communications of

the ACM, vol. 13 No.6 (June, 1970).

Date, C. J. (1990). An Introduction to Database Systems, volume 1, 5th edition. Addison-Wesley

Publishing Company.

JCL (2000). The JAVA Constraint Library, http://liawww.epfl.ch/JCL/jcl-index.html.

Junker, U. (2000). “Preference-based search for scheduling”, Proceedings seventeenth national

conference on artificial intelligence (AAAI-2000). AAAI press, Menlo Park, CA, USA;.p.904-9.

Junker, U. (2001). “Preference programming for configuration”, International Joint Conference

on Artificial Intelligence (IJCAI-2001), IJCAI-01 Workshop on Configuration, http:// www.ijcai-

01.org.

Krause, F., Kimura, F., Kjellberg, T., & Lu, S. C.Y. (1993). “Product Modeling”, Annals of

CIRP, 42:2, 695-706.

Li, Q., Ma, Z.M., & Zhang, W.J. (1998). “Modeling of incomplete information and uncertain

information in database for engineering design and production management”, ASME 12th

Engineering Information Management Symposium, Paper number: DETC98/EIM-5686, USA,

September.

Lustig, I. & Puget, J. (2001). “Program does not equal program: Constraint programming and its

relationship to mathematical programming”, Interfaces Vol 31 No 6: 29-53.

Lyon, D. D. (2000). “On configuration management and program management”,

http://www.pmforum.org/library/papers/dlyon.htm

 94

Mailharro, D. (1998). “A Classification and constraint-based framework for configuration”,

Artificial Intelligence for Engineering Design, Analysis and manufacturing (1998), v.12, 383-

397.

Marchal, B. (2000). Applied XML Solutions-The Authoritative Solution, SAMS, A Division of

Macmillan USA, Indianapolis, Indiana

Marriot, K. & Stuckey, J. P. (1998). Programming with constraints: An Introduction, MIT Press,

Cambridge, Massachusetts, 1998.

Mesihovic, S. & Malmqvist, J. (2000). “Product Data Management (PDM) system support for

the engineering configuration process”, 14th European conference on artificial intelligence ECAI

2000 configuration workshop, Aug. 20-25, 2000, Berlin, Germany.

Miguel, I. & Shen, Q. (2001). “Solution techniques for constraints satisfaction problems:

foundations”, Artificial Intelligence Review: 15: 243-267& 269-293. 2001 Kluwer Academic

Publishers.

Mittal, S. & Frayman, F. (1989). “Towards a generic model of configuration tasks”, Proc.

Eleventh Int. Joint Conf. Of Artificial Intelligence, 1395-1401.

Mittal, S. & Falkenhainer, B. (1990). “Dynamic constraint satisfaction problems”, Proc. AAAI

Conf., pp. 25-32.

Rao, S. S. (1996). Engineering optimisation-theory and practice, A Wiley-Interscience

Publication.

Reeves, C.R. (1991). “Recent algorithmic developments applied to scheduling problems”, Proc.

of 9th IASTED Conf. on Applied Informatics, 155-158.

 95

Sabin, D. & Freuder, E.(1996). “Configuration as composite constraint satisfaction”, AAAI Press.

In workshop notes of AAAI fall symposiums on configuration, 28-36, Menlo Park, CA

Sasikumar, M. (1996). “Case-based reasoning for software reuse”, Knowledge based computer

systems-research and applications (International Conference on Knowledge-Based Computer

Systems), pp.31-42, Bombai, India, (December 12-15, 1996). Narosa Publishing House, London.

Shrikhande, S.V. (2000). On effective information modeling for computer-based configuration

management of complex products in manufacturing environments, M. Sc. Thesis, University of

Saskatchewan, Saskatoon, Canada.

Sinha, N. (2004). Modeling for effective computer support to MEMS product development, M.

Sc. Thesis, University of Saskatchewan, Saskatoon, Canada.

Stumptner, M., Friedrich, G. E., & HaselBock, A. (1998). “Generative constraint based

configuration of large technical systems”, AIEDAM (Artificial Intelligence for Engineering,

Design, Analysis and Manufacturing), special issue on configuration, 12(4), p302-320,

September, 1998

Suh, N.P. (1990). The Principles of Design, Oxford University Press

Tiihonen, J., Soininen, T., Männistö, T., & Sulonen, R. (1996). “State-of-the Practice in Product

Configuration – a Survey of 10 Cases in the Finnish Industry”, Helsinki University of

Technology

Tiihonen, J. & Soininen, T. (1997). “Product configurators – information systems support for

configurable products”, TAI research center and laboratory of information processing science,

Product Data Management Group, Helsinki University of Technology, Finland.

Tsang, E. (1999). “A glimpse of constraint satisfaction”, Artificial Intelligence Review: 13: 215-

227. 1999 Kluwer Academic Publishers, Printed in the Netherlands.

 96

Yost, G. R. (1996). “Configuring elevator systems”, Int. J. Human-Computer Studies (1996) 44,

p.521-568.

Zhang, W.J. (1994). “An integrated environment for CAD/CAM of mechanical systems”, Thesis

Delft University of Technology

Zhang W.J. & Werff van der K. (1993). “Guidelines for product data model formulation using

database technology”, Proc. of Int. Conf. on Engineering Design (ICED'93), Vol.3, The Hague,

1618-1626.

Zhang, W.J., Li, J.X., Xie, H., & Shi, Z.Z. (2003). “A general approach to e-learning software”,

Proceedings of CIE’03: ASME international 23rd Computers and Information in Engineering

(CIE) Conference, September 2-6, 2003, Chicago, Illinois.

 97

Appendix A: XML

Data can be classified as structural data and semi-structural data. Structural data is best described

by the so-called “data model” which gives (1) rules to define data structure, (2) rules to define

data integrity, and (3) rules to define data behaviour. Database technology is an effective tool for

the structural data. The semi-structural data are those that cannot be structured the same manner

as the structural data. The semi-structural data may also be called the “document data”.

Earlier in 1980s, a language called SGML (Standard Generalized Markup Language)

[Shrikhande, 2000] was used to represent semi-structure data in the need of publishing service

communities. Later, with the development of the internet technology, the HTML (Hyper Text

Markup Language) comes to the stage. From its premise, the HTML is inherently designed for

the display of semi-structural data. The main problem with the HTML is its device (display

device) dependency. XML (eXtensible Markup Language) [Box et al., 2000] is designed to

overcome the device dependency problem with the HTML, which is the premise of the XML. As

such, XML has the system architecture, in which the data representation and the data display are

separated (see Fig. A.1). In Fig. A.1, XSL stands for eXtensible Stylesheet Language; XHTML

stands for eXtensible HyperText Markup Language; XML DTD is Document Type Definition.

The premise of XSL consists of three parts: XSLT, XPath, and XSL Formatting Objects. It is to

specify the presentation of a class of XML documents by describing how an instance of the class

is transformed into an XML document that uses the formatted vocabulary.

 98

The premise of XHML is to replace HTML. The premise of DTD is to define building blocks of

a XML document.

Figure A.1 The XML Architecture

One of the common characteristics of the XML and the HTML is the way to express data, i.e.,

the concepts of tags and strings. Fig. A.2 shows an example to explain these two concepts. In this

example, ‘<note >’, ‘<to>’, ‘<from>’ and ‘<body>’ are called the start tags, and ‘</note >’,

‘</to>’, ‘</from>’ and ‘</body>’ the end tags. Strings are placed between the start tags and the

end tags.

Figure A.2 The Concepts of Tags and Strings

As this thesis focuses on conceptual modeling, the XML DTD (Document Type Definition) is of

interest. As mentioned earlier, the purpose of a DTD is to define the legal building blocks of an

Data display (XSL, XHTML)

Data representation (XML DTD)

<note>
<to>Tove</to>
<from>Jani</from>
<body>Don't forget me this
weekend!</body>
</note>

Don't forget me this
weekend!

(a) (b)

display

 99

XML document. It defines the document structure with a list of legal elements. A DTD can be

declared within a XML document with inline format, or as an external reference.

The examples of a XML file using an external DTD are shown in Fig. A.3 and Fig. A.4

respectively. Fig. A.3 is a XML file with an external DTD (the line in bold.), and Fig. A.4 is this

external DTD named “note.dtd. It can be seen that the DTD file (see Fig. A.4) defines the tags,

such as to, from, heading, and body, specifically to the data type for “to”, “from”, “heading”, and

“body”.

Figure A.3 An Example of a XML File With an External DTD Reference

Figure A.4 An Example of a DTD File

For more details regarding XML, as well as HTML, the readers may refer to

1. XML separates data presentation from data semantics to make XML file machine –

independent. Therefore it is a cross-platform, software and hardware independent tool for

transmitting information.

<?xml version="1.0"?>
<!DOCTYPE note SYSTEM "note.dtd">
<note>
<to>Tove</to>
<from>Jani</from>
<body>Don't forget me this weekend!</body>
</note>

<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

 100

2. XML is free and extensible that means you can create your own ‘tags’ (elements for

expressing application semantics) and define you own document structures by DTD or

XML schema. Therefore it is a powerful tool to be used in variety of industries,

communities and research areas.

3. XML is able to manage semi- or un-structured data with some special tools. Unstructured

data is the information hidden in a company's e-mails, memos, notes from call centers

and support operations, news releases, user groups, chats, reports, letters, surveys, white

papers, marketing material, research, presentations, and Web pages. Microsoft and some

other vendors (CambridgeDocs: http: // www.cambridgedocs.com/id16.htm) have all

developed technology that transforms unstructured data into XML.

In conclusion, XML was created to structure, store and send information, and most importantly,

it is a cross-platform, software and hardware independent tool for transmitting information.

 101

Appendix B: Design Knowledge Basefor the Elevator
System Design

The variable corresponds to the component of the elevator system. There are 16 components plus

4 optional components. So the number of variables correspondingly to the components is 20. The

design requirement is also represented by the variable. There are three design requirements, i.e.,

“capacity”, “speed”, and “Cab Door Type”. So there are additional three variables corresponding

to the design requirements. In total, there are twenty three variables. These variables are listed

below:

 V0 | Door

 V1 | Platform

V2 | Sling

V3 | Safe

V4 | Head

V6 | Carbuffer

V7 | Cweight

V8 | Sheave

V9 | Cwtbuffer

V10 | Concable

V11 | Hcable

V12 | Gcable

V13 | Comcable

V14 | Machine

 102

V15 | Mbeam

V16 | Motor

Option variables:

V18 | CarPhone

V19 | CarLantern

V20 | CarIntercom

V21 | CarIndicator

And requirement variables:

V22 | Capacity

V23 | Speed

V24 | Door Type

The domains of these variables are listed below:

component #Capacity
Domain size #5
value #2000
value #2500
value #3000
value #3500
value #4000
component #Speed
Domain size #5
value #200
value #250
value #300
value #350
value #400
component #DoorOpenSpeed
Domain size #4
value #ssco
value #ssso
value #2sco
value #2sso
component #CarPhone
Domain size #2
value #0
value #1

 103

component #CarLantern
Domain size #2
value #0
value #1
component #CarIndicator
Domain size #2
value #0
value #1
component #CarIntercom
Domain size #2
value #0
value #1
component #v0Door,15
Domain size #8
value #ssso1,500,high
value #ssso2,400,low
value #ssco1,500,high
value #ssco2,450,low
value #2sso1,500,high
value #2sso2,450,low
value #2sco1,800,high
value #2sco2,780,low
component #v1Platform,16
Domain size #6
value #2.5B1,600,high
value #2.5B2,400,low
value #4B1,700,high
value #4B2,500,low
value #6B1,800,high
value #6B2,650,low
component #v2Sling,10
Domain size #5
value #2.5B-18,554,common
value #2.5B-21,578,common
value #4B-HOSP,680,common
value #4B-GP,699,common
value #6C,899,common
component #v3Safe,12
Domain size #3
value #B1,100,common
value #B4,300,common
value #B6,400,common
component #v4Head,7
Domain size #5
value #W8*8,100,common
value #W8*21,50,common
value #C8*11.5,20,common
value #C10*15.3,40,common
value #C13*16.55,80,common
component #v6Carbuffer,2
Domain size #2
value #OH-1-car,400,common
value #OM-14-car,500,common
component #v7Cweight,3
Domain size #3
value #weight1,300,common
value #weight2,380,common

 104

value #weight3,450,common
component #v8Sheave,11
Domain size #2
value #DS-20,250,common
value #DS-25,320,common
component #v9Cwtbuffer,2
Domain size #2
value #OH-1,400,common
value #OM-14,500,common
component #v10Concable,3
Domain size #3
value #Light,110,common
value #Middle,120,common
value #Heavy,130,common
component #v11Hcable,4
Domain size #3
value #3-0.5,144,common
value #3-0.625,120,common
value #6-0.625,150,common
component #v12Gcable,6
Domain size #1
value #normal1,300,common
component #v13Comcable,9
Domain size #6
value #Chain1,200,common
value #Chain2,180,common
value #Chain3,165,common
value #Chain4,150,common
value #Chain5,140,common
value #Chain6,130,common
component #v14Machine,17
Domain size #8
value #18-1,1100,high
value #18-2,1000,low
value #28-1,1545,high
value #28-2,1445,low
value #38-1,1855,high
value #38-2,1655,low
value #58-1,1999,high
value #58-2,1799,low
component #v15Mbeam,13
Domain size #10
value #10*25.4,500,common
value #10*35,550,common
value #12*31.8,600,common
value #12*35,650,common
value #12*40.8,700,common
value #12*50,750,common
value #15*42.9,850,common
value #15*50,890,common
value #18*54.7,920,common
value #18*70,950,common
component #v16Motor,18
Domain size #12
value #10HP1,436,high
value #10HP2,336,low
value #15HP1,680,high

 105

value #15HP2,580,low
value #20HP1,1216,high
value #20HP2,1016,low
value #25HP1,1396,high
value #25HP2,1096,low
value #30HP1,1208,high
value #30HP2,1008,low
value #40HP1,1435,high
value #40HP2,1335,low
component #v17Building,1
Domain size #1
value #normal2,1000,common
component #v18CarPhone,0
Domain size #2
value #0,0,common
value #1,100,common
component #v19CarLantern,0
Domain size #2
value #0,0,common
value #1,120,common
component #v20CarIntercom,0
Domain size #2
value #0,0,common
value #1,250,common
component #v21CarIndicator,0
Domain size #2
value #0,0,common
value #1,120,common

Design knowledge is listed below:

Binary constraint:

Number of constraints #21
pair0 #v1Platform,v3Safe
Tupledomain size #8
#2.5B1 B4
#2.5B2 B4
#4B1 B4
#4B2 B4
#6B1 B6
#6B2 B6
#4B1 B1
#4B2 B1
pair1 #v1Platform,v2Sling
Tupledomain size #10
#2.5B1 2.5B-18
#2.5B2 2.5B-18
#2.5B1 2.5B-21
#2.5B2 2.5B-21
#4B1 4B-HOSP
#4B2 4B-HOSP
#4B1 4B-GP
#4B2 4B-GP
#6B1 6C
#6B2 6C

 106

pair2 #v2Sling,v3Safe
Tupledomain size #6
#2.5B-18 B1
#2.5B-21 B1
#2.5B-21 B4
#4B-HOSP B4
#4B-GP B4
#6C B6
pair3 #v2Sling,v4Head
Tupledomain size #5
#2.5B-18 W8*8
#2.5B-21 W8*21
#4B-HOSP C8*11.5
#4B-GP C10*15.3
#6C C13*16.55
pair4 #v3Safe,v6Carbuffer
Tupledomain size #4
#B1 OH-1-car
#B4 OH-1-car
#B4 OM-14-car
#B6 OM-14-car
pair5 #v1Platform,v7Cweight
Tupledomain size #6
#2.5B1 weight1
#2.5B2 weight1
#4B1 weight2
#4B2 weight2
#6B1 weight3
#6B2 weight3
pair6 #v6Carbuffer,v9Cwtbuffer
Tupledomain size #2
#OH-1-car OH-1
#OM-14-car OM-14
pair7 #v8Sheave,v11Hcable
Tupledomain size #3
#DS-20 3-0.5
#DS-25 3-0.625
#DS-25 6-0.625
pair8 #v11Hcable,v16Motor
Tupledomain size #14
#3-0.5 10HP1
#3-0.5 10HP2
#3-0.625 15HP1
#3-0.625 15HP2
#3-0.625 20HP1
#3-0.625 20HP2
#3-0.625 25HP1
#3-0.625 25HP2
#6-0.625 25HP1
#6-0.625 25HP2
#6-0.625 30HP1
#6-0.625 30HP2
#6-0.625 40HP1
#6-0.625 40HP2
pair9 #v14Machine,v15Mbeam
Tupledomain size #20
#18-1 10*25.4

 107

#18-2 10*25.4
#28-1 10*35
#28-2 10*35
#28-1 12*31.8
#28-2 12*31.8
#28-1 12*35
#28-2 12*35
#28-1 12*40.8
#28-2 12*40.8
#38-1 12*50
#38-2 12*50
#38-1 15*42.9
#38-2 15*42.9
#38-1 15*50
#38-2 15*50
#58-1 18*54.7
#58-2 18*54.7
#58-1 18*70
#58-2 18*70
pair10 #v14Machine,v16Motor
Tupledomain size #36
#18-1 10HP1
#18-1 10HP2
#18-2 10HP1
#18-2 10HP2
#18-1 15HP1
#18-1 15HP2
#18-2 15HP1
#18-2 15HP2
#28-1 20HP1
#28-1 20HP2
#28-2 20HP1
#28-2 20HP2
#28-1 25HP1
#28-1 25HP2
#28-2 25HP1
#28-2 25HP2
#38-1 20HP1
#38-1 20HP2
#38-2 20HP1
#38-2 20HP2
#38-1 25HP1
#38-1 25HP2
#38-2 25HP1
#38-2 25HP2
#38-1 30HP1
#38-1 30HP2
#38-2 30HP1
#38-2 30HP2
#38-1 40HP1
#38-1 40HP2
#38-2 40HP1
#38-2 40HP2
#58-1 40HP1
#58-1 40HP2
#58-2 40HP1
#58-2 40HP2

 108

pair11 #v1Platform,v16Motor
Tupledomain size #24
#2.5B1 10HP1
#2.5B1 10HP2
#2.5B2 10HP1
#2.5B2 10HP2
#2.5B1 15HP1
#2.5B1 15HP2
#2.5B2 15HP1
#2.5B2 15HP2
#4B1 20HP1
#4B1 20HP2
#4B2 20HP1
#4B2 20HP2
#4B1 25HP1
#4B1 25HP2
#4B2 25HP1
#4B2 25HP2
#6B1 30HP1
#6B1 30HP2
#6B2 30HP1
#6B2 30HP2
#6B1 40HP1
#6B1 40HP2
#6B2 40HP1
#6B2 40HP2
pair12 #v7Cweight,v13Comcable
Tupledomain size #6
#weight1 chain1
#weight1 Chain2
#weight2 Chain3
#weight2 Chain4
#weight3 Chain5
#weight3 Chain6
pair13 #v0Door,v1Platform
Tupledomain size #48
#ssso1 2.5B1
#ssso2 2.5B1
#ssso1 2.5B2
#ssso2 2.5B2
#ssso1 4B1
#ssso2 4B1
#ssso1 4B2
#ssso2 4B2
#ssso1 6B1
#ssso2 6B1
#ssso1 6B2
#ssso2 6B2
#2sso1 2.5B1
#2sso2 2.5B1
#2sso1 2.5B2
#2sso2 2.5B2
#2sso1 4B1
#2sso2 4B1
#2sso1 4B2
#2sso2 4B2
#2sso1 6B1

 109

#2sso2 6B1
#2sso1 6B2
#2sso2 6B2
#ssco1 2.5B1
#ssco2 2.5B1
#ssco1 2.5B2
#ssco2 2.5B2
#ssco1 4B1
#ssco2 4B1
#ssco1 4B2
#ssco2 4B2
#ssco1 6B1
#ssco2 6B1
#ssco1 6B2
#ssco2 6B2
#2sco1 2.5B1
#2sco2 2.5B1
#2sco1 2.5B2
#2sco2 2.5B2
#2sco1 4B1
#2sco2 4B1
#2sco1 4B2
#2sco2 4B2
#2sco1 6B1
#2sco2 6B1
#2sco1 6B2
#2sco2 6B2
pair14 #inputCapacity,v16Motor
Tupledomain size #40
#2000 10HP1
#2000 10HP2
#2000 15HP1
#2000 15HP2
#2000 20HP1
#2000 20HP2
#2000 25HP1
#2000 25HP2
#2500 10HP1
#2500 10HP2
#2500 15HP1
#2500 15HP2
#2500 20HP1
#2500 20HP2
#2500 25HP1
#2500 25HP2
#3000 10HP1
#3000 10HP2
#3000 15HP1
#3000 15HP2
#3000 20HP1
#3000 20HP2
#3000 25HP1
#3000 25HP2
#3000 30HP1
#3000 30HP2
#3000 40HP1
#3000 40HP2

 110

#3500 25HP1
#3500 25HP2
#3500 30HP1
#3500 30HP2
#3500 40HP1
#3500 40HP2
#4000 25HP1
#4000 25HP2

#4000 30HP1
#4000 30HP2
#4000 40HP1
#4000 40HP2
pair15 #inputSpeed,v16Motor
Tupledomain size #36
#200 10HP1
#200 10HP2
#200 15HP1
#200 15HP2
#200 20HP1
#200 20HP2
#200 25HP1
#200 25HP2
#250 10HP1
#250 10HP2
#250 15HP1
#250 15HP2
#250 20HP1
#250 20HP2
#250 25HP1
#250 25HP2
#300 15HP1
#300 15HP2
#300 20HP1
#300 20HP2
#300 25HP1
#300 25HP2
#350 15HP1
#350 15HP2
#350 20HP1
#350 20HP2
#350 25HP1
#350 25HP2
#350 30HP1
#350 30HP2
#400 25HP1
#400 25HP2
#400 30HP1
#400 30HP2
#400 40HP1
#400 40HP2
pair16 #inputCarOpenSpeed,v0Door
Tupledomain size #8
#ssco ssco1
#ssco ssco2
#2sco 2sco1
#2sco 2sco2

 111

#ssso ssso1
#ssso ssso2
#2sso 2sso1
#2sso 2sso2
pair17 #inputCarPhone,v18CarPhone
Tupledomain size #2
0 0
1 1
pair18 #inputCarLantern,v19CarLantern
Tupledomain size #2
0 0
1 1
pair19 #inputCarIndicator,v21CarIndicator
Tupledomain size #2
0 0
1 1
pair20 #inputCarIntercom,v20CarIntercom
Tupledomain size #2
0 0
1 1

