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ABSTRACT 
 

Pre-harvest sprouting (PHS) in bread wheat (Triticum aestivum L.) is one of the 

major abiotic constraints influencing the production of high quality grain. The flour 

milled from sprouted wheat grains has increased α-amylase activity as compared to non-

sprouted grain. PHS negatively affects the properties of flour with deleterious effects on 

bread and noodle quality. White-grained wheat is generally more susceptible to PHS 

damage than red-grained wheat. The objectives of this study were to identify a suitable 

method for phenotyping PHS resistance and to identify PHS resistance genomic regions 

and markers that could be used for marker-assisted selection in wheat improvement 

programs. A doubled haploid (DH) mapping population from a cross between two white-

grained spring wheat genotypes, Argent (non-dormant) and W98616 (dormant) was used 

in this study. Forty DH lines (20 dormant and 20 non-dormant) were evaluated for 

germination frequency, Falling Number, and α-amylase activity in dry and water-

imbibed seeds and spikes. The germination test was the most reliable method for 

measurement of PHS resistance, whereas the Falling Number and α-amylase activity in 

dry harvested seeds could not be correlated to dormancy levels. However, a positive 

association (r = 0.60***) was detected between germination frequency and α-amylase 

activity in imbibed seeds. To identify the genomic regions associated with PHS 

resistance, a genetic linkage map with a total genome coverage of 2,577 cM was 

developed. The map was constructed from 913 scored markers (356 SSR, 290 AFLP, 258 

DArT and 9 EST) with an average marker density of 3.7 cM/marker. Five genomic 

regions on chromosomes 1A, 3A, 4A, 7A and 7D were associated with PHS resistance by 

interval mapping and all regions were contributed by the dormant parent W98616. A total 

of 60 Canadian wheat cultivars and experimental lines were screened with three SSR 

markers, DuPw004, barc170 and wmc650, located under the major quantitative trait locus 

(QTL) on chromosome 4A. The SSR markers explained 60-75% of the total variation in 

germination frequency among different wheat genotypes. By using the DuPw004 marker 

in marker-assisted back crossing, the population size in the BC1F1 and BC2F1 generations 

were reduced by 41% and 59%, respectively. Thus, the 4A QTL markers have been 

proven useful for marker-assisted selection of PHS resistance for wheat improvement.  
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CHAPTER 1 

INTRODUCTION 

 
Wheat (Triticum aestivum L.) is one of the most important staple crops world-

wide, with a total production of over 600 million tonnes annually. The wheat crop is 

exposed to several biotic and abiotic factors that contribute to losses in yield and grain 

quality. Pre- harvest sprouting (PHS) is one of the major abiotic constraints influencing 

the production of high quality grain. PHS is defined as in-spike germination of 

physiologically mature grain during unfavorable harvest conditions and occurs when 

harvest time coincides with relatively high humidity in the field due to untimely rainfall. 

It is a widespread response to wet harvest conditions and occurs in areas as diverse as 

Canada, USA, Australia, Europe, China and Japan. PHS reduces the functional quality of 

wheat flour and thus affects the economic value of the grain. In Western Canada during 

1978-1988, downgrading due to PHS damage occurred in four years and was estimated to 

cost about US$100 million in each of those years (Derera 1990). The flour milled from 

sprouted wheat grain shows an elevated level of α-amylase activity, which negatively 

affects flour functionality with deleterious effects on bread and noodle quality (Edwards 

et al. 1989; Hatcher and Symons 2000; Mares et al. 2004). The flour from sprouted wheat 

produces sticky dough, and bread loaves with large holes, sticky crumb and dark-

coloured crusts (Mares et al. 2004). Noodles made from sprouted wheat flour show 

higher levels of discoloration (spots) as compared to noodles made from sound flour 

(Hatcher and Symons 2000).  

There is worldwide demand for white wheat because consumers in general prefer 

the taste and appearance of food products prepared from white wheat. The international 

market, particularly countries in Southeast Asia and the Middle East, often prefer white-

grained wheat over red-grained wheat (Crosbie et al. 1998; Ambalamaatil et al. 2002). 

With fewer phenolic compounds and tannins in the bran, white wheat imparts a less bitter 
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taste and a more favorable appearance to the final products than red wheat. The demand 

for white wheat by the milling and baking industry has also increased in North America 

(Sosland 2005). Hard white wheat has a flour yield advantage over hard red wheat, as 

white wheat can be milled closer to the bran layer without negatively impacting flour 

colour or flavour. Canada Western Hard White Spring (CWHWS) wheat with a light-

colored seed coat had improved milling yields (up to 2.6% higher) as compared to No.1 

grade Canada Western Red Spring (CWRS) wheat (Ambalamaatil et al. 2006). 

Furthermore, flours from white wheat may be higher in protein and resulting in 

substantially lighter-colored end-products than CWRS wheat flours (Ambalamaatil et al. 

2006). Australia is currently the largest producer of hard white wheat (Teetaert 2000), but 

if Canadian hard white wheat production increases to a significant level, then Canada 

may be in a position to maintain or capture a larger share of the global wheat market 

(Matus-Cádiz et al. 2003).  

Recently efforts have been intensified to develop cultivars of hard white wheat 

suited for domestic and international markets, but PHS is a major constraint for white 

wheat cultivar improvement. White-grained wheat, on average, is more susceptible to 

sprouting than red-grained wheat, although both wheat groups vary in this respect (Bassoi 

and Flintham 2005). Red grain colour has long been recognised as a genetic marker for 

PHS resistance (Nilsson-Ehle 1914). However, it is now evident that red colour per se is 

not adequate to guarantee dormancy (Flintham et al. 1999). Breeding for PHS resistance 

based on conventional phenotypic evaluation is difficult because PHS is expressed as a 

quantitative character that is influenced by the environment as well as by genotype x 

environment interactions. Further, the PHS phenotype is complex in that genes involved 

may be expressed in one of three distinct tissues; the maternal plant, the endosperm, 

and/or the embryo, of which the latter two belong genetically to the next generation (Gale 

1989). PHS is traditionally assayed by a germination test using threshed seeds or intact 

spikes that may be subjected to natural or artificial weathering (Mares 1989). Other 

indirect methods of PHS measurement are based on determination of α-amylase activity 

or Hagberg Falling Number (Hagberg 1960). Therefore, one objective of this study was 

to compare the different strategies to phenotype PHS in order to find a reliable, 

reproducible and simple method to determine PHS resistance.    
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The advent of environmentally insensitive DNA-based molecular markers during 

the last two decades has revolutionized the genetic analysis of quantitative traits. The 

DNA-based markers are not influenced by environmental factors and/or the 

developmental stage of the plant, and thus represent a promising, environment-insensitive 

tool for selecting genotypes with increased PHS resistance. QTL mapping requires the 

collection of genotypic (molecular marker) and phenotypic data from a segregating 

population, followed by statistical analysis to reveal all possible genetic loci where allelic 

variation correlates with the phenotype. The development of genetic linkage maps is a 

pre-requisite for dissection of complex traits such as PHS resistance through QTL 

analysis. Several detailed genetic maps based on DNA-based markers have been reported 

in wheat (Röder et al. 1998; Paillard et al. 2003; Sourdille et al. 2003; Somers et al. 2004; 

Quarrie et al. 2005; Akbari et al. 2006; Semagn et al. 2006; Torada et al. 2006; Båga et 

al. 2007; http://wheat.pw.usda.gov/ggpages/map_summary.html). Several quantitative 

trait loci (QTL) or genomic regions affecting PHS resistance or seed dormancy in wheat 

have been identified in different gene pools via linkage to molecular markers. In bread 

wheat, 20 chromosomes, with the solitary exception of chromosome 1D, have been 

reported to carry QTL/genes for PHS or dormancy (Anderson et al. 1993; Roy et al. 

1999; Zanetti et al. 2000; Kato et al. 2001; Mares and Mrva 2001; Flintham et al, 2002; 

Groos et al. 2002; Mares et al. 2002; Osa et al. 2003; Kulwal et al. 2005; Mares et al. 

2005; Mori et al. 2005; Tan et al. 2006). These large numbers of QTL suggest a complex 

trait controlled by numerous genes that are influenced by environmental conditions and 

genetic background. However, homoeologous chromosome group 3 and chromosome 4A 

carry major loci for PHS resistance as revealed in several studies (Mares and Mrva 2001; 

Groos et al. 2002; Osa et al. 2003; Kulwal et al. 2005; Mares et al. 2005; Mori et al. 

2005; Tan et al. 2006). The majority of earlier studies were based on red-grained wheat, 

except those reported by Anderson et al. (1993), Mares and Mrva (2001) Mares et al. 

(2002), Mares et al. (2005) and Tan et al. (2006), which were based on white-grained 

wheat. The objective of this study was to construct a linkage map in a doubled haploid 

mapping population from a cross between two white-grained spring wheat genotypes, 

Argent (non-dormant) and W98616 (dormant), and to identify the genomic regions 

associated with PHS resistance in white-grained bread wheat in order to develop 
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molecular markers suitable for marker-assisted selection in wheat breeding programs. 

This research was carried out with the following objectives: 

1. Comparison of different phenotyping methods for PHS resistance in white-

grained wheat.  

2. Identification of genomic regions associated with PHS resistance in white-grained 

wheat. 

3. Validation of putative QTL for PHS resistance in different genetic backgrounds 

suitable for marker-assisted selection. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 Wheat: Major source of energy in the human diet 

Wheat has accompanied humans since 3,000 to 4,000 BC. It has evolved in part 

by nature and in part by human manipulation from its primitive form (einkorn wheat) into 

the presently main cultivated species; bread wheat (Triticum aestivum L.) and durum 

wheat (T. turgidum L. var. durum). Its wide adaptation to diverse environmental 

conditions, along with its unique characteristic of possessing a viscoelastic complex of 

storage proteins, glutenins and gliadins, which in dough form gluten, are the main factors 

that make wheat the most important food crop in the world (Pena 2002). Wheat is a staple 

food for nearly 35% of the world population (Mujeeb-Kazi and Villareal 2002), with a 

total production of over 600 million tonnes annually. One-fifth of the calories consumed 

by humans are derived from wheat products, which provide 521 and 652 calories per 

capita daily world-wide and in Canada, respectively (FAO Staistical Yearbook 2005-

2006).  

2.2 Wheat evolution and domestication 

Bread wheat (Trticum aestivum L.), is an allohexaploid (2n = 6x = 42, AABBDD 

genomes) plant and has a genome size of 16,700 Mb/1C (Bennet et al. 2000) with about 

90% repetitive DNA (Li et al. 2004). It originated from the hybridization of three 

different diploid progenitors belonging to the Triticum and Aegilops genera. The first step 

was the hybridization between Triticum urartu Thum. Ex Gandil. (AA genome) and 

Aegilops speltoides (Tausch) Gren. or a closely related species (BB genome). The result 

of this hybridization was tetraploid wheat, Triticum turgidum (AABB). Several distinct 

groups of this species exist, of which, T. turgidum var. dicoccoides, is believed to be most 

primitive type. One derivative of T. turgidum var. dicoccoides is T. turgidum var. 

dicocccon, which is the most likely progenitor of hexaploid bread wheat as a result of 
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hybridization with Aegilops tauschii Cross. (DD genome) (Feldman et al. 1995; Talbert et 

al. 1998).  

The archeological records suggest that T. aestivum originated ~8000 years ago 

(Nesbitt and Samuel 1996), with the Fertile Crescent considered to be the birthplace. The 

principal area of the origin of T. aestivum is Armenia in Transcaucasia, but the southwest 

coastal area of the Caspian Sea in Iran and a corridor between the two areas may have 

played a role as well (Dvorak et al. 1998). In this region, Aegilops tauschii var. 

strangulata is predominant and may have hybridized with cultivated emmer to produce T. 

aestivum. Bread wheat has no wild hexaploid progenitor in nature and therefore it is a 

farming-associated natural hybrid that has since become the world’s leading crop. 

As hexaploid wheat is a relatively young species, a low level of genetic variation 

may be expected. However, wheat exhibits abundant genetic variation for traits such as 

winter versus spring growth habit, response to day length, cold hardiness, disease and 

insect resistance, and other important characteristics. Because of this variation and its 

wide adaptability it has been suggested that hexaploid wheat arose more than once from 

crosses of different genotypes of its progenitor species (Vardi 1973; Talbert et al. 1998; 

Dubcovsky and Dvorak 2007). 

Originating in the Fertile Crescent, wheat first spread to the Old World continents 

of Asia, Africa and Europe. Wheat cultivation was confined to these continents until the 

end of the fifteenth century and was brought to North America, South America and 

Australia in later centuries (Peterson 1965). Wheat was brought from England to New 

Zealand by Captain Cook in 1769 and the first records of wheat being grown in Australia 

and New Zealand date back in 1813 and 1788, respectively. Wheat was brought to South 

American countries by Spanish conquerors during the sixteenth centaury (Peterson 1965). 

In Canada, wheat was first grown by French settlers at Port Royal, Nova Scotia in 1605. 

The earliest attempts of wheat cultivation in Western Canada are associated with the 

Selkirk settlers in 1812 (Buller 1919). Red Fife was one of the first hard red spring wheat 

developed by an Ontario farmer, David Fife, from seeds received from Glasgow, 

Scotland (Buller 1919). The cultivar Marquis, from a cross between Red Fife and Hard 

Red Calcutta, was the cornerstone of wheat development in Western Canada (Buller 

1919; DePauw and Hunt 2001). 
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2.3 Market classes of wheat in Western Canada  

In Western Canada, wheat is grouped into eight market classes that are based on 

kernel characteristics and end-uses (Table 2.1). Each of the eight wheat classes has been 

assigned a combination of seed-coat colour and physical kernel configurations that are 

different and distinctive for each class. This Kernel Visual Distinguishability (KVD) 

system helps grain elevator agents and grain inspectors to readily distinguish one class of 

wheat from another as the grain moves from farms through the grain elevator system to 

customers. Complete separation of these classes of wheat ensures that buyers receive a 

product with known performance quality specifications required by end-use industries 

such as milling or baking companies.  

Canada Western Hard White Spring wheat is a relatively new market class of 

wheat developed for production in Western Canada. White wheat has several advantages 

over red wheat. There is a world wide demand for white wheat because consumers in 

general prefer the taste and appearance of food products prepared from white wheat. With 

fewer phenolic compounds and tannins in the bran, white wheat also imparts a less bitter 

taste and confers a more favorable appearance to the final products. Hard white wheat 

also has flour yield advantage over hard red wheat when milled to a flour colour standard, 

as white wheat can be milled closer to the bran layer without negatively impacting flour 

colour or flavor. Generally, a flour miller can extract one to two percent more flour from 

a volume of white wheat as compared to red wheats (http://www.kswheat.com/). Hard 

white wheat is suitable for regular and whole wheat breads and buns, American and 

Middle Eastern flat breads (tortillas, pitas) and Chinese steamed breads. Hard white 

wheat is also suitable for ready-to-eat breakfast cereals, snacks and noodles 

(http://idahowheat.org/market/). The introduction of hard white wheat into the Canadian 

wheat classification system was done to increase Canada’s competitiveness in the global 

wheat market. Development of improved hard white wheat cultivars would allow Canada 

to compete more effectively with Australian wheat producers, which solely grow white 

wheat and are the world’s leading hard white wheat exporters.  
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Table 2.1. Western Canadian wheat market classes and their uses. 

 

Market Class Uses 

Canada Western Red 

Spring Wheat  

(CWRS) 

Pan bread, hearth bread, flat bread, steamed bread, noodles, 

common wheat pasta 

Canada Western Extra 

Strong             

(CWES) 

Blended to increase the flour strength of weaker wheat in 

production of pizza dough, whole wheat and frozen dough 

products. 

Canada Prairie Spring 

Red Wheat        

(CPSR) 

Hearth bread, flat bread, steamed bread, noodles 

 

Canada Western Red 

Winter Wheat 

(CWRW) 

French bread, flat bread, steamed bread, noodles 

Canada Prairie Spring 

White Wheat    

(CPSW) 

Flat bread, chapatis, noodles, crackers 

Canada Western Soft 

White Spring Wheat 

(CWSWS) 

Cookies, cakes, pastries, crackers 

Canada Western Hard 

White Spring Wheat 

(CWHWS) 

Noodle, flat bread, pan bread, buns 

Canada Western 

Amber Durum Wheat 

(CWAD) 

Semolina for excellent pasta-making quality  

Source: Canadian Grain Commission  (http://www.grainscanada.gc.ca/) 
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2.3.1 Hard white wheat: production and characteristics  

About eight million hectares of spring bread wheat and two million hectares of 

durum wheat and 0.4 million hectare of hard red winter wheat are grown in Western 

Canada, generating four to five and half billion dollars in farm revenue. This production 

level supports the domestic flour, bread, confectionary and pasta industries and a 

substantial export industry that contributes to a trade surplus for Canada (Clarke et al. 

2005). During 2005-2006, Canada exported 10.60 and 4.23 million tonnes of bread wheat 

and durum wheat grain, respectively, and 0.29 million tonnes of wheat flour. From a total 

of 14.83 million tonnes of wheat exports, the wheat classes CWRS and CWHWS 

constituted 7.42 million tonnes (50%) and 0.73 million tonnes (5%) of exports, 

respectively (www.grainscanada.gc.ca). The international market, particularly countries 

in Southeast Asia and Middle East often prefer white-grained wheat over red-grained 

wheat (Crosbie et al. 1998; Ambalamaatil et al. 2002). The demand for white-grained 

wheat by the milling and baking industries has also increased in North America (Sosland 

2005). Australia is currently the largest producer of hard white wheat (Teetaert 2000), but 

if Canadian hard white wheat production increases to a significant level, then Canada is 

likely to capture a larger share of the global wheat market (Matus-Cádiz et al. 2003). 

Three cultivars, ‘AC Snowbird’ and ‘Kanata’ and ‘Snowstar’ are currently registered 

cultivars in the CWHWS wheat class. Under Western Grain Research Foundation’s new 

wheat breeding agreements implemented in 2005, 15% of the allocated funds are 

currently invested in CWHWS wheat development. This recognizes the strong potential 

of CWHWS wheat, which is forecast to be grown on up to 20% of the Western Canadian 

wheat acreage in the next decade (http://www.westerngrains.com). The Canadian Wheat 

Board has an Identity Preserved Contract Program (IPCP) for ‘Snowbird’ and ‘Kanata’, 

which pays growers a $2.50 per tonne premium in 2006-2007 (http://www.cwb.ca/). 

Canadian hard white spring wheats with their light colored seed coat has improved 

milling yields (up to 2.6%) over No.1 grade CWRS wheat based on pilot-scale milling 

(Ambalamaatil et al. 2006). Also, white wheat flours have favorable higher protein 

concentration and substantially lighter-colored end-products than CWRS (Ambalamaatil 

et al. 2006). These advantages are important market characteristics that can lead to 

economic incentives for hard white wheat producers. 
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2.4 Pre-harvest sprouting (PHS) - a problem associated with white wheat 

Pre-harvest sprouting refers to the precocious germination of the grain in the spike 

prior to harvest as a result of moist weather conditions at harvest time. Germination is 

initiated when conditions of moisture, temperature and oxygen occur that are conducive 

for embryo growth. In the field, grains in the spike usually experience oxygen levels and 

temperatures conducive for germination, but for PHS of wheat to occur, the trigger is 

usually the availability of moisture. The resistance to PHS is based on seed dormancy, i.e. 

the ability of the physiologically mature seed to withstand sprouting under conditions 

otherwise favourable for germination. Seed dormancy is generally an undesirable 

characteristic in agricultural crops, where rapid germination and growth are required. 

Extensive domestication and breeding of crop species have typically removed most 

dormancy mechanisms present in the seeds of their wild ancestors (Bewley 1997). This 

has led to a shorter dormancy period in domesticated winter wheat, as compared to its 

wild relatives (MacKey 1989). However, some degree of dormancy is required during 

seed development in cereal crops to prevent germination of grain while still in the spike. 

White grained wheat has been reported to be more susceptible to PHS than red grained 

wheat, although both groups vary in PHS (Bassoi and Flintham 2005). However, it is 

now apparent that red colour per se is inadequate to guarantee dormancy (Flintham et al. 

1999).  

2.4.1 Occurrence of PHS in Canada and worldwide  

Pre-harvest sprouting affects many wheat producing regions of the world 

including Canada, Australia, South Africa, USA, Central Asia and Europe. Despite being 

a major problem in wheat producing countries, there is very little published data 

documenting the extent of PHS in terms of incidence and economic loss. The only 

available published document about the PHS worldwide dates to 1990, where incidence 

of sprout damage was reported in three or four years during the 1978-1988 (Derera 

1990). Since that time, very little information has been published regarding the 

prevalence and economic impact of PHS. In China, 24.91 million hectares in the 

northeastern spring wheat region and northern winter wheat region, which constitute 83% of 

the wheat planting area, was affected by PHS in 1997 (Xiao et al. 2002). In the Western 

Australian wheatbelt, PHS occurs once out of every four years (Biddulph et al. 2007). 
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Based on grain prices in the 2004/2005 season, farmers in Australia lost about 22% of 

their grain revenue due to sprouting, which downgraded Australian Standard White wheat 

to feed grades (Biddulph et al. 2007). 

In Canada, during 1978-1988, downgrading due to PHS damage occurred in four 

of ten years and was estimated to cost about $100 million in each of these years (Derera 

1990). The Canadian wheat crop value loss in 2000 was estimated at greater than $100 

million due to PHS damage causing elevated α-amylase activity and unacceptable Falling 

Number values (Clarke et al. 2005). In 2002, PHS, loss of colour and test weight were 

also major problems in wheat production (Clarke et al. 2005).  

2.4.2 Grading regulation of PHS in wheat by Canadian Grain Commission 

Canada is known worldwide as a supplier of high quality wheat as a result of consistency 

in grain quality over the years. The responsibility for monitoring wheat quality lies with 

the Canadian Grain Commission (CGC), a federal government agency that operates under 

the authority of the Canada Grain Act. To assure grain quality with regards to PHS, CGC 

has set limits for total sprouted grain for different wheat grades and classes (Table 2.2). 

For example, a severely sprout-damaged and total sprouted kernel frequency of more 

than 0.5 % and 5%, respectively, in CWHWS wheat results in downgrading to feed grade 

wheat (Official Grain Grading Guide 2007). The Canadian Grain Commission defines the 

sprouted kernels and severely sprouted kernels as following:  

Kernels are sprouted if one of the following conditions exists: 

• Kernels show clear evidence of growth in the germ area. 

• The bran is noticeably split over the germ from apparent growth. 

• The germ is missing and there is apparent greyish discolouration normally attributable 

to sprouting. 

• The germ, though intact, appears distinctly swollen as a result of sprouting activity. 

Kernels are assessed as severely sprouted when: 

• The sprouts extend beyond the normal contour of the germ. 

• The kernels are severely degenerated as an apparent result of advanced sprouting. 

• The sprout has been clearly broken and only a portion remains. 

• The sprout is completely gone and there is evidence showing that there was extension 
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Table 2.2. Sprouted kernel frequency limit for primary and export grades for 

different wheat market classes.  

 

Sprouted kernels (%) Wheat class Grade  
Severely sprouted Total 

CWRS No.1 CWRS  0.1 0.5 
 No.2 CWRS 0.2 1 
 No.3 CWRS 0.3 3 
 No.4 CWRS 0.5 5 
 CW Feed No Limit No Limit 
CWHWS No.1 CWHWS 0.1 0.5 
 No.2 CWHWS 0.2 1 
 No.3 CWHWS 0.3 3 
 No.4 CWHWS 0.5 5 
 CW Feed No Limit No Limit 
CWAD No.1 CWAD 0.1 0.5 
 No.2 CWAD 0.2 2 
 No.3 CWAD 8 8 
 No.4 CWAD 12 12 
 No.5 CWAD No Limit No Limit 
CWRW No.1 CWRW 0.1 0.5 
 No.2CWRW 0.3 2.5 
 CW Feed No Limit No Limit 
CWSWS No.1 CWSWS 0.1 1 
 No.2 CWSWS 0.3 5 
 No.3 CWSWS 0.5 8 
 CW Feed No Limit No Limit 
CWES No.1 CWES 0.1 0.5 
 No.2 CWES 0.3 2 
 CW Feed No Limit No Limit 
CPSW No.1 CPSW 0.1 0.5 
 No.2 CPSW 0.3 2 
 CW Feed No Limit No Limit 
CPSR No.1 CPSR 0.1 0.5 
 No.2 CPSR 0.3 2 
 CW Feed No Limit No Limit 
Source: Official Grain Grading Guide, 2007. Canadian Grain Commission.  
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of the sprout outside the normal contour of the germ. 

2.5 Effect of PHS on grain and end-product quality 

Wet weather prior to harvest is a major abiotic stress contributing to loss of 

quality and grade in different wheat classes. Wet pre-harvest weather conditions reduce 

the grain value to the producers by impacting four primary grade determinants; (1) test 

weight (bulk density), (2) vitreousness (translucent properties of kernel), (3) degree of 

soundness (overall visual grain quality), and (4) percent sprouted kernels (Canadian 

Grain Commission, 2005; McCaig et al. 2006). 

Starch accounts for 64-74% of the total dry weight of wheat grains (Hucl and 

Chibbar 1996) and starch properties are important for determining the end-use quality of 

wheat flour. PHS has been closely associated with elevated levels of α-amylase, an 

enzyme that catalyzes endohydrolysis of α-1, 4-glucan bonds in starch molecules in 

wheat grain. Degradation of native starch granules negatively affect quality of various 

products made from wheat flour such as breads, cookies and noodles. There are four 

known possible sources of α-amylase activity in grains. The primary reason for α-

amylase accumulation in the grain is delayed harvest due to wet weather causing 

breakdown of grain dormancy (Flintham and Gale 1988). Another major cause of excess 

α-amylase activity is the deposition of α-amylase in the endosperm cavity (Flintham and 

Gale 1988; Evers et al. 1995). The third source of elevated α-amylase activity is 

associated with pre-maturity sprouting and involves germination during early grain 

development when kernels are still at high moisture content (Flintham and Gale 1988; 

Lunn et al. 2001a; Lunn et al. 2001b). The fourth possible cause of α-amylase activity 

has been identified as retained pericarp α-amylase in grains and is associated with non-

uniform maturity of the wheat crop (Olered 1975; Lunn et al. 2001a; Lunn et al. 2001b).  

The pre-maturity α-amylase and retained pericarp α-amylase are also known as late 

maturity α-amylase (LMA) (Mares and Mrva 2007) and are not directly associated with 

PHS, as LMAs are often triggered by low temperatures (12-18˚C) during the second half 

of the grain filling period (25-35 days after flowering) (Mrva and Mares 2001). Rainfall 

at harvest, however, is the main cause of PHS inducing α-amylase activity. During the 

early phase of grain filling low-isoelectric point (pI) isozymes are present in the pericarp 
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tissue under control of the α-Amy-2 genes located on long arms of group 7 chromosomes. 

The high pI isozymes that are product of α-Amy-1 gene family located on group 6 

chromosomes are synthesized during later stages of grain development and also during 

PHS (Lunn et al. 2001a; Lunn et al. 2001b; Wrigley 2006; Mares and Mrva 2007). 

Starches from sprout damaged wheat grain exhibit a lower swelling power, 

gelatinize at a lower temperature and over a narrow temperature range than starches from 

sound grain. A lower peak viscosity, as determined by Rapid Visco-Analyzer tests and 

increased digestibility by glucoamylase is noted for starch from sprouted wheat grain 

(Noda et al. 2004).   

Breads baked from hard wheats are affected more than other wheat products by 

PHS (Figure 2.1). Bread production is complicated by increased stickiness of the dough, 

which necessitates special handling in small bakeries and can disrupt operations of large 

bakeries. Even minor sprout damage can cause significant reductions in gluten strength of 

wheat flour making it unsuitable for bread making (Barbeau et al. 2006).  

Sprout damage affects both the processing and quality of different kinds of 

noodles. High α-amylase activitiy in dry noodles weakens the dough so that noodles 

cannot support their own weight and break during the dehydration process (Nagao 1995). 

As noodle appearance is the first critical judgement made by consumers when evaluating 

noodle quality, any change to noodle colour, brightness or appearance of undesirable 

discolorations (spots) will render the noodles less attractive. Alkaline noodles made from 

severely sprouted wheat flour may show up to a five-fold higher number of spots as 

compared to products made from sound flour (Hatcher and Symons 2000). 

Sprout damage also affect the products made from soft white wheat. A reduced 

thickening power of sprout damaged soft wheat flour results in poor cake baking quality, 

resulting in cakes with low volume, and a dip in the centre (Lorenz and Valvano 1981).   

2.6 Methods for measuring PHS 

Two basic approaches have been used to identify genotypes with improved PHS 

resistance based on seed germination. PHS can be measured by sprouting test of spikes 

subjected to artificial or natural wetting treatment or germination test of threshed seeds 

(Mares 1989). Artificial wetting treatment is intended to parallel field conditions but with 

greater control than rainfall-induced weathering immediately following physiological  
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         Figure 2.1. Loaves of bread made from sound and sprouted grains of wheat. 

                                             Source: http://www.grainscanada.gc.ca 
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maturity (Paterson et al. 1989). The germination test of threshed seeds provides a direct 

measure of seed dormancy and sprouting test of spikes may include other mechanisms 

associated with the intact spikes such as germination-inhibitors present in the hull (Kato 

et al. 2002) or spike morphology affecting the wetting efficiency (King and Richards 

1984).  

Seed dormancy can be estimated by a germination index ranging from 0 to 1.0 

(Reddy et al. 1985), germination resistance index ranging from 0 to 50 (Gordon 1971) or 

germination percentage ranging from 0 to 100%. All seed dormancy values are calculated 

on threshed grains imbibed on filter paper. The germination index is a weighted index 

which gives maximum weight to grains which germinate early and less weight to grains 

which germinate later. Thus, germination index can differentiate between lines which 

germinate rapidly from lines which germinate at a slower rate. Germination resistance 

index measures the relative rate of germination, by estimating the time to 50% 

germination. Germination index may give an important differentiation in a relatively 

small rainfall event; a slower germination rate will result in a lower proportion of 

germinated grain and thus more sprouting tolerance (Biddulph et al. 2007). Shorter et al. 

(2005) reported that germination index is consistent and repeatable across years (R2 = 

64%) compared to visible sprouts (R2 = 46%), sprout index (R2 = 38%) and Falling 

Number (R2 = 8%) under artificial weathering conditions.  

With the advent of highly automated food production plants, such as bakeries, 

variation in α-amylase activity levels in the grain has become more unacceptable (Mares 

and Mrva 2007). The Hagberg Falling Number method (Hagberg 1960; Hagberg 1961; 

Perten 1964) is a simple and rapid technique to determine α-amylase activity in grain and 

is widely used in classification, quality control and marketing of wheat. The Falling 

Number method is a viscometric assay that involves rapid gelatinization of a flour or 

meal, water suspension by boiling, with subsequent measurement of the starch 

liquification process caused mainly by α-amylase activity. There is an inverse curvilinear 

relationship between α-amylase activity and Falling Number (Mares 1987b), but at low 

α-amylase activity levels, the overall starch quality is the determining factor for Falling 

Number (Ringlund 1983). Falling Number measures the endosperm quality at harvest 

time (Hagemann and Ciha 1984) but Falling Number values fluctuate widely depending 
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on the degree of ripening and the amount of rainfall prior to harvest (Mares 1993). 

Furthermore, sample weight may affect Falling Number test precision, reproducibility 

and predictability of α-amylase activity (Finney 2001). Humphreys and Noll (2002) 

found that some genotypes with high sprouting scores had high Falling Number 

indicative of low α-amylase activities. 

While Falling Number is used universally at grain receival to access grain quality 

and α-amylase activity, the Rapid Visco Analyzer (RVA) is more commonly used by the 

milling, baking and grain export industries (Mares and Mrva 2007). An ELISA method 

using polyclonal antibodies to both high and low pI α-amylase and monoclonal 

antibodies to high pI α-amylase have also been developed for on-farm detection of pre-

harvest sprouting in wheat (Verity et al. 1999; Skerritt and Heywood 2000) 

 2.7 Factors associated with PHS resistance 

The interaction between plant growth regulators, particularly gibberellins (GA) 

and abscisic acid (ABA) is an important factor controlling the transition from 

embryogenesis to germination in seed (Figure 2.2). In the cereal grain aleurone layer, the 

expression of genes encoding starch hydrolytic enzymes such as α-amylases that are 

needed for seed germination, are induced by GA but suppressed by ABA (Lovegrove and 

Hooley 2000; Brady and McCourt 2003; Ho et al. 2003). 

2.7.1 Abscisic acid 

Abscisic acid (ABA) is a plant growth regulator that plays important roles during 

many phases of the plant life cycle, including seed development, dormancy, and 

responses to environmental stress conditions such as drought, cold and salinity (Zeevaart 

and Creelmann 1988; Seo and Koshiba 2002; Seki et al. 2007). During seed development, 

ABA content increases and regulates key processes involved in the imposition and 

maintenance of dormancy (Bewley 1997). This is illustrated by ABA-deficient mutants of 

maize that display vivipary (McCarty 1995) and by ABA-deficient mutants of 

Arabidopsis that can germinate in the absence of GA (Koornneef et al. 1982). Upon 

imbibition, the high concentration of ABA is reduced in order for seed to germinate, and 

studies have shown that this occurs when dormancy is broken by after-ripening, 

stratification or darkness (Gubler et al. 2005). In after-ripened non-dormant Arabidopsis 

seeds, ABA concentration declines rapidly upon imbibition, after which germination 
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proceeds. In contrast, imbibed dormant seed show a low level of ABA decline and only 

transiently, with ABA content again increasing to a level similar to that observed in the 

non-imbibed seeds (Ali-Rachedi et al. 2004). Similar to Arabidopsis, the dormant or non-

dormant dry seeds or embryos of barley (Hordeum vulgare) grains contain high 

concentrations of ABA, that decreases rapidly upon imbibation of grains with a more 

prominent reduction in non-dormant than dormant seeds (Millar et al. 2006).    

Changes in ABA content of imbibing seeds following dormancy release are likely 

to reflect changes in the balance between ABA synthesis and catabolism, with synthesis 

dominating in dormant seeds and catabolism dominating in non-dormant seeds. 

Dormancy release by after-ripening and stratification causes a switch to ABA catabolism, 

resulting in a decrease in ABA content in the embryo and a corresponding increase in 

inactive ABA metabolites such as phaseic acid (PA) and dihydrophaseic acid (Gubler et 

al. 2005). The ABA and PA content in embryos of after-ripened barley grains decrease 

and increase, respectively, rapidly after hydration. In dry dormant grains, the ABA 

content of the embryo is similar to that of after-ripened grains and although it also 

decreases for the first 12 hr and then increases, indicating that ABA is both synthesized 

and catabolized. Thus, the ABA content might be controlled by the balance between 

catabolism dominating in non-dormant grain and synthesis in dormant grain (Jacobsen et 

al. 2002).   

Several alternative catabolic pathways exist for the inactivation of ABA (Zhou et 

al. 2004; Nambara and Morion-Poll 2005). Hydroxylation of ABA at the 8'-position to 

produce 8'-hydroxyABA, which spontaneously isomerizes to phaseic acid, is considered 

to be the predominant pathway in ABA catabolism (Figure 2.2) (Nambara and Morion-

Poll 2005). This reaction is catalyzed by a cytochrome P450 monooxygenase known as 

ABA 8'-hydroxylase (Krochko et al. 1998). Molecular and genetic analysis of the ABA 

8'-hydroxylase gene family (CYP707A) indicates that the CYP707A2 gene is more active 

in non-dormant than dormant seeds of Arabidopsis (Millar et al. 2006). Similarly, a 

barley CYP707 homologue (HvABA8’OH-1) is expressed at much higher levels in 

embryos from non-dormant grains than from dormant grains (Millar et al. 2006). 

 

 



 19

2.7.2 Gibberellins 

Gibberellins (GAs) are a large family of tetracyclic diterpenoid compounds, some 

of which are bioactive growth regulators associated with diverse plant growth and 

developmental processes such as seed germination, stem elongation, flowering and fruit 

development (Davies 1995). To date, 126 different GA molecules have been identified in 

higher plants, fungi and bacteria. However, relatively few GAs have intrinsic biological 

activity and therefore possess a growth regulator function. (Hedden and Phillips 2000). 

Upon germination, GA released from the embryo triggers the aleurone cells to 

secrete hydrolytic enzymes, particularly α-amylases, which mobilize the endosperm 

reserves that fuel the germination process (Figure 2.3). GA not only stimulates the 

secretion of hydrolytic enzymes but, in combination with internally generated reactive 

oxygen species, also triggers the onset of programmed cell death in aleurone cells 

(Bethke et al. 2001). GA-treated aleurone layer protoplasts undergo cell death within 5-8 

days, whereas ABA-treatment can keep protoplasts alive for up to six months (Fath et al. 

2000). Inhibitors of GA biosynthesis do not inhibit the increase in α-amylase production 

during germination, suggesting that rather than GA being de novo synthesized, stored GA 

precursors are mobilized (Groselindemann et al. 1991). Released GA from the embryo 

triggers several responses ranging from gene induction and repression and up-regulation 

of secretory responses. The earliest event following GA treatment of the aleurone is an 

increase in cytoplasmic Ca2+ concentration (Figure 2.2). Hetero-trimeric G protein is 

involved in transducing the GA signal in the aleurone layer (Lovegrove and Hooley 

2000). The signal transduction pathway leading to hydrolase synthesis utilizes changes in 

cytosolic Ca2+, calmodulin (CaM), cGMP and the trans-activating protein GAMyb 

(Figure 2.2). In intact wheat aleurone cells, a response is observed within 2-5 min of GA-

treatment (Bush 1996). The alteration in Ca2+ concentration indicates a potential 

signaling role and calmodulin protein levels are stimulated two- to four-fold by GA and 

reduced by ABA in barley (Schuurink et al. 1996). Changes in cytosolic Ca2+ and CaM 

also play a role in programmed cell death (Levine et al. 1996; Groover and Jones 1999). 

In barley aleurone, GA induces a two- to three-fold increase in cGMP level (Penson et al. 

1996). An inhibitor of guanylyl cyclase prevents the GA-induced increase in cGMP and 

inhibits GA-induced α-amylase synthesis and secretion. The inhibitor also prevents GA-
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induced accumulation of α-amylase and GAMyB mRNA (Penson et al. 1996). The 

expression of α-amylase is transactivated by the transcription factor GA-induced Myb-

like protein (GAMyb) that binds specifically to the GARE box of an α-amylase promoter 

(Gubler et al. 1995). ABA and an ABA-induced protein kinase, PKABA1, repress the 

GA induction of GAMyb. In the barley slender mutant, GAMyb and α-amylase are 

highly expressed, even in the absence of GA. However, ABA, PKABA1 and inhibitor of 

cGMP inhibit the constitutive expression of GAMyb and α-amylase (Gómez-Cadenas et 

al. 2001). ABA also represses the expression of a GA 20-oxidase gene, suggesting that 

ABA might block the germination process by repressing GA biosynthesis (Pérez-Flores 

et al. 2003). Gibberellins appear not to be involved in the control of seed dormancy per se 

but rather, are important in the promotion and maintenance of germination, and act after 

the ABA mediated inhibition of germination has been overcome (Bewley 1997).  

2.7.3 Starch hydrolysis 

Starch represents a major source of calories in human food and animal feed and a 

vital storage compound in plants (Chibbar et al. 2004). Starch is composed of two distinct 

glucan polymers; amylose and amylopectin. During germination, degradation of starch in 

the cereal endosperm occurs in a nonliving tissue that is effectively an acidic, apoplastic 

environment in which no intracellular or intercellular compartmentation remains (Smith 

et al. 2005). Among the hydrolytic enzymes active during starch breakdown, α-amylases 

play a major role in degrading native starch granules. Up to 70% of newly synthesized 

and secreted enzymes from the aleurone are α-amylases (Ritchie et al. 2000). Only 

through the concerted action of α-amylase, β-amylase, debranching enzyme, and α-

glucosidase can starch be completely hydrolyzed (Figure 2.3) (Sun and Henson 1991).  

α-Amylase, an endoamylase, carries out the first step in starch hydrolysis, which 

involves cleavage of α,1-4 glucosidic linkages in the inner part of the amylose and 

amylopectin chains. Three classes of α-amylase genes; α-Amy1, α-Amy2 and α-Amy3 

have been identified in wheat. In hexaploid wheat, 12-14 α-Amy1 genes reside on 

homoeologous chromosomes 6A, 6B and 6D, whereas 10-11 α-Amy2 genes are found on 

chromosomes 7A, 7B and 7D. Three to four α-Amy3 genes are located on homoeologues 

of chromosome 5 (Baulcombe et al. 1987; Huttly et al. 1988). The three classes of α-

amylase genes are differentially expressed. The α-Amy1and α-Amy2 genes are active in 
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the aleurone cells of germinating wheat grain. However, the α-Amy1 isozymes are more 

prevalent following the immediate onset of germination (at days 1-2), while α-Amy2 

isozymes increase later (at day 3) (Sargent 1980). The α-Amy3 is only expressed in 

developing grains (Baulcombe et al. 1987).  

β-Amylase, an exoamylase, exclusively cleaves α,1-4 glycosidic bonds at the 

non-reducing ends of starch-glucan polymers. β-Amylase accumulates during grain 

development in two forms, soluble and bound (Forsyth and Koebner 1992; Ziegler 1999). 

A large portion of β-amylase in starchy endosperm is in the bound form, where the 

enzyme forms disulphide linkages to protein such as glutenins. Bound β-amylase is 

inactive and deposited on the periphery of the starch granules during grain development 

and is probably synthesized as a mature protein. The enzyme is a component of the 

protein matrix which covers the starch and might protect starch from premature attack by 

α-amylase (Ziegler 1999). Zhang et al (2005) demonstrated that nitric oxide is able to 

induce a rapid response in β-amylase in wheat seeds within 12 hr of germination. Nitric 

oxide can be produced enzymatically or non-enzymatically from nitrite at low pH in 

plants. β-Amylase has been reported to be encoded by multiple loci on chromosomes 4A, 

4D, 5A and 5B in hexaploid wheat (Ainsworth et al. 1983). 

The third group of starch-converting enzymes is the debranching enzymes 

represented by isoamylases and pullulanases that exclusively hydrolyze α,1-6 glycosidic 

bonds. The major difference between pullulanase (limit dextrinase in plants) and 

isoamylase is their ability to hydrolyze pullulan, a polysaccharide with a maltotriose 

repeating unit of that is α,1-6 linked. Limit dextrinases hydrolyze α,1-6 glycosidic bonds 

in pullulan and amylopectin, whereas isoamylase can only hydrolyze α,1-6 bonds in 

amylopectin (van der Maarel et al. 2002). Overexpression of thioredoxin h, a 12-kDa 

extraplastidic protein containing a redox-active disulfide group, in the endosperm of 

germinated grain in barley increases the activity of limit dextrinase (four-fold)  and 

gibberellin A1 content (1.6 to 2.8-fold) (Cho et al. 1999). This suggests that the 

endosperm communicates directly with the embryo and the aleurone, respectively, to 

accelerate germination and the accumulation of α-amylase activity (Wong et al. 2002).  

α-Glucosidase catalyzes the hydrolysis of α-1,4 glucan bonds at the non-reducing 

ends of dextrins and maltose to produce glucose. In barley, this enzyme is synthesized de  
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Figure 2.2. ABA and GA interactions during seed germination and dormancy. ABA- 

abscisic acid, CaM- calmodulin, cGMP- cyclic guanosine monophosphate, DPA- 

dihydrophaseic acid, GA- gibberellic acid, GAMyB- GA-induced Myb-like protein, 

GGDP- geranylgeranyl diphosphate, G-protein- GTP-binding protein, PA- phaseic acid, 

PKABA1- ABA-induced protein kinase (refer to the text for references). 

 

 

 
         Figure 2.3. Starch hydrolysis during cereal grain germination. The ring 

structure symbolizes the glucose moiety. 
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novo in response to GA in de-embryonated half-seeds (Hardie 1975) and is secreted from 

isolated aleurone layer in the presence of GA and Ca+2 in a manner similar to α-amylase 

(Sun and Henson 1990). In rice, α-glucosidase is present in dry seeds, however, dry seeds 

of barley and wheat do not contain α-glucosidase, but the enzyme is rapidly induced 

during germination and in vivo starch metabolism (Guglielminetti et al. 1995). Starch and 

maltose hydrolysis in germinating wheat seeds is reduced in the presence of the α-

glucosidase inhibitor ‘Bay m 1099’, which causes a reduction in glucose levels and 

inhibits plant growth (Konishi et al. 1994). Two forms of barley α-glucosidase (101 and 

95 kDa) are present early in seed germination, but their concentrations decline sharply 

later in germination, to be replaced by an 81 kDa α-glucosidase. These isoforms may 

represent α-glucosidases in different states of glycosylation and/or proteolytic processing. 

A 14-fold induction of these isoforms also occurs in isolated aleurones after treatment 

with gibberellin (Tibbot et al. 1998). 

 2.7.4 Phenolics 

A positive correlation between length of dormancy and the content of phenolic 

compounds is found for developing and ripening barley caryopses (Weidner et al. 1993). 

In wheat, rye and triticale, genotypes with deeper dormancy possess a high concentration 

of phenolic acids in the form of soluble esters. For all three cereals, the concentrations of 

ferulic and sinapic acids, and in case of wheat and rye also p-coumaric, are higher in 

caryopses with deeper dormancy than caryopses with shallow dormancy (Weidner et al. 

1999).  The concentration of the soluble esters of ferulic acid for wheat cv. Elena with 

deeper dormancy is almost twice as high as that of wheat cv. Alba with shallow 

dormancy. A high level of phenolic acids liberated from soluble glycosides also 

correlates with dormancy in wheat. However, the differences in the concentration of free 

phenolic acids are less marked for cultivars with different levels of dormancy (Weidner et 

al. 1999). A study indicated that phenolic acids in the form of esters most probably 

dictate dormancy, which is gradually lost by the process of after-ripening. After six 

months of dry storage, seed dormancy is generally gone and the levels of free and 

conjugated forms (esters and glycosides) of phenolic acids are reduced (Weidner et al. 

1996).     
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2.8 PHS resistance - a quantitatively inherited trait 

PHS is expressed as a quantitatively inherited trait and is strongly affected by 

environmental factors (Anderson et al. 1993). Traditionally, PHS resistance is known to 

be associated with red grain colour, whereas susceptibility is associated with white grain 

colour (Nilsson-Ehle 1914). The association between PHS and kernel colour may be due 

to either tight genetic linkage between genes affecting the two traits or due to pleiotropic 

effect by the gene controlling kernel colour (DePauw and McCaig 1983; Soper et al. 

1989; McCaig and DePauw 1992). White-grained wheat has been reported to be more 

susceptible than red-grained wheat, although both groups vary in PHS (Bassoi and 

Flintham 2005). However it is now clear that red colour per se is not sufficient to 

guarantee dormancy (Flintham et al. 1999). Combining dominant R alleles (R-A1, R-B1 

and R-D1) at two or three loci confer an additive effect on dormancy (Flintham 1993). 

PHS tolerance in red grained wheats has been attributed to hypersensitivity to abscisic 

acid in developing embryos (Walker-Simmons 1987), reduced α-amylase activity in the 

grain (Bhatt et al. 1976), the presence of compounds in the bract that inhibit germination 

(Derera and Bhatt 1980) and slower water uptake (King 1984). PHS is also influenced by 

spike morphology (King and Richards 1984). One study has demonstrated that the hulls 

of wheat seeds possess several kinds of inhibitors, which become synergistically 

operative as germination inhibitors. In case of Lancer and RL4137 (dormant varieties), 

the germination of intact seeds is restrained by the presence of husk. In contrast, 

existence of husk for Menyou (non-dormant variety) did not cause germination restraint. 

The water-soluble extracts; 2-phenylethylalcohol, dihydroactinidiolide, 4-vinylphenol 

and its 2-methoxy derivative extracted from the husks of a dormant variety (Kwankei 

W421) show a clear inhibition of germination at 500 mg/L (Kato et al. 2002). 

2.9 Genetic mapping of Quantitative Trait Loci (QTL) 

There are three basic requirements for the genetic mapping of QTL; genetic 

markers with genotypic data for population, mapping population showing segregation for 

trait valves and reliable phenotype data for population.  

2.9.1 Genetic markers 

A marker used for genetic mapping corresponds to a certain locus on the genome. 

In plant genetics, the most common marker types are morphological, biochemical 
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(enzyme and protein) and molecular (DNA) markers. The morphological markers are 

limited in number and are expressed mostly in adult plants. Biochemical markers 

(isoenzymes) were introduced to plant genetics in the 1960’s but these markers are also 

limited in number and rarely used today. Biochemical markers may show tissue specific 

expression and may be influenced by environmental factors. In the last two decades, the 

DNA based markers (molecular markers) have become the dominant marker system for 

genetic analysis. Molecular markers are numerous and show higher polymorphism than 

morphological and biochemical markers. DNA markers are not influenced by 

environmental factors or the developmental stage of the plant. The different types of 

molecular markers have been extensively reviewed in earlier publications (Gupta et al. 

1999; Gupta and Rustgi, 2004).    

2.9.1.1 Simple sequence repeat (SSR) 

The genomes of all eukaryotic organisms contain a class of repetitive sequences 

called as microsatellites or simple sequence repeat (SSR) (Litt and Lutty 1989; Tautz et 

al. 1986). SSR consist of 1-6 bp long monomer sequences that exist in tandem repeats. 

SSR polymorphisms derive mainly from variability in number of repeats rather than in 

the primary sequence. The length changes in microsatellite DNA are generally thought to 

arise from slippage by DNA polymerase during DNA replication (Levinson and Gutman 

1987). When the nascent strand realigns out of register, renewed replication will lead to 

the insertion or deletion of repeat units relative to the template strand (Ellegren 2004). 

Wheat SSR markers show a high level of polymorphism (Plaschke et al. 1995; Röder et 

al. 1995) and are generally chromosome-specific and inherited in a co-dominant manner. 

Several detailed genetic maps based on SSR markers have been reported in wheat 

(http://wheat.pw.usda.gov/ggpages/map_summary.html; Röder et al. 1998; Somers et al. 

2004; Båga et al. 2007). The increasing availability of expressed sequence tags (ESTs) in 

wheat and related cereals provides another valuable source of markers in wheat. EST-

based markers are physically associated with coding regions of the genome, and play a 

role in the genetic analysis of the transcribed region of the genome. A substantial portion 

of ESTs contain microsatellites, which has led to the development of EST-SSR markers 

(Eujayl et al. 2002; Nicot et al. 2004; Yu et al. 2004). However, when compared to 
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genomic SSRs, EST derived SSRs (EST-SSRs) are less polymorphic (25%) in hexaploid 

wheat (Eujayl et al. 2002). 

2.9.1.2 Amplified Fragment Length Polymorphism (AFLP) 

Amplified Fragment Length Polymorphism (AFLP) is a technique based on 

selective PCR amplification of restriction fragments from a total digest of genomic DNA 

of any origin or complexity (Vos et al. 1995). This technique shows an ingenious 

combination of RFLP and PCR. The fingerprints are produced without prior sequence 

knowledge using a limited set of generic primers. This technique is robust and reliable 

because stringent conditions are used for primer annealing. The AFLP procedure mainly 

involves three steps: (i) restriction of DNA using a rare cutting and a frequent cutting 

restriction enzyme (e.g. EcoR1 and Mse1) and ligation of oligonucleotide adapters to 

generated ends, (ii) selective amplification of sets of adapter ligated fragments, and (iii) 

gel analysis of amplified fragments. AFLP analysis has been conducted in a number of 

crops including wheat (Barrett and Kidwell 1998; Barrett et al. 1998) to access the 

genetic diversity. Although few maps have been developed using AFLP markers 

(http://wheat.pw.usda.gov/ggpages/map_summary.html; Semagn et al. 2006), a wheat 

molecular map using AFLP and SSR markers has recently been constructed in winter 

wheat (Båga et al. 2007).    

2.9.1.3 Diversity Array Technology (DArT®)  

Diversity Array Technology (DArT®) is a microarray hybridization-based 

technique that enables the simultaneous genotyping of several hundred polymorphic loci 

spread over the genome without prior sequence information 

(http://www.diversityarrays.com/; Jaccoud et al. 2001; Wenzl et al. 2004). DArT 

generates whole-genome fingerprints by scoring the presence versus the absence of 

specific DNA fragments in samples of digested genomic DNA. DArT has recently been 

used in genetic mapping and fingerprinting studies in Arabidopsis (Wittenberg et al. 

2005), barley (Wenzl et al. 2004), rice (Jaccoud et al. 2001), cassava (Xia et al. 2005), 

and wheat (Akbari et al. 2006, Semagn et al. 2006). DArT has the potential to increase 

the marker density on a map within a short time and at a 10-fold lower low cost than SSR 

markers (Xia et al. 2005). 
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2.9.1.4 Expressed Sequence Tags (ESTs) 

Expressed sequence tags (EST) are short cDNA sequences that serve to tag a gene 

from which the messenger RNA (mRNA) originated. They represent a snapshot of genes 

expressed in a given tissue and/or at a given developmental stage. Typically, ESTs are 

200-700 bp single pass sequences that can be used to search DNA and protein databases 

for similar genes. The information from the search can be used to determine if a specific 

gene (or sequence motif) is present in the same or other organisms and if its function is 

known (Lazo et al. 2004). ESTs have been developed for numerous organisms and 

sequences are deposited in GenBank and in species-specific databases. Among plants, 

Triticum aestivum currently has 1,051,146 ESTs deposited in the GenBank database as of 

19 October 2007 (http://www.ncbi.nlm.nih.gov/projects/dbEST). National Science 

Foundation Wheat EST Project has developed 90,016 ESTs 

(http://wheat.pw.usda.gov/NSF/), out of which 8,241 were physically mapped to 

chromosomes or chromosome bins using wheat aneuploid stocks and Southern 

hybridization (Lazo et al. 2004; http://wheat.pw.usda.gov/NSF/). These ESTs could lead 

to the development of markers associated with a specific function and used for direct 

gene selection of target traits in plant breeding. 

2.9.1.5 Advantages and disadvantages of different markers 

Molecular markers can be broadly classified in three groups: hybridization-based, 

PCR-based and sequence-based DNA markers (Gupta et al. 1999). Each marker system 

developed in higher plants during the last two decades is associated with some 

advantages and disadvantages (Table 2.3), and the choice of marker system is dictated to 

a large extent by the intended application, convenience and the cost involved. Most of the 

markers developed and used in the past, related to genomic DNA (gDNA) and therefore 

could belong to either the transcribed region or the non-transcribed region of the genome. 

However, during the last few years, emphasis has shifted towards the development of 

molecular markers from the transcribed region of the genome, and both wet lab and in 

silico approaches have been used for this purpose. This has become possible, firstly, due 

to availability of a large number of cDNA clones in a variety of plant systems and 

secondly, due to accumulation of a large number of expressed sequence tags (ESTs) in 

public databases (Gupta and Rustgi 2004). 



 28

Table 2.3. Advantages and disadvantages of different marker systems. 

Features 

 

Isozymes RFLP RAPD AFLP SSR DArT SNP STS SSCP 

Quantity of 

DNA required 

- High Low Low Low Low Low Low Low 

Hybridization/ 

PCR based 

- Hybridization PCR PCR PCR Hybridization/ 

PCR based 

PCR PCR PCR 

Level of 

polymorphism 

Low Medium Medium High High High High Low Low 

Reproducibility High High Low High  High High High High Medium 

Dominant/co-

dominant 

Codominant Codominant Dominant Dominant Codominant Dominant Dominant Dominant Codominant 

Sequence 

information 

required 

- Yes No No Yes Yes Yes Yes Yes 

Amenability to 

automation 

No No No Yes Yes Yes Yes Yes No 

RFLP- Restriction Fragment Length Polymorphism, RAPD- Random Amplified Polymorphic DNA, AFLP- Amplified Fragment 

Length Polymorphism, SSR- Simple Sequence Repeat, DArT-  Diversity Array Technology, SNP- Single Nucleotide Polymorphism, 

STS- Sequence Tagged Site, SSCP- Single Strand Conformation Polymorphism

 

28
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2.9.2 Mapping populations 

The identification of QTL linked to a desired trait requires a segregating 

population derived from parents that differ in the trait of interest. Different types of 

mapping populations may be used for mapping depending on the genetics of the trait of 

interest. F2 populations and backcross populations are the simplest type of mapping 

populations for self-pollinated species like wheat. The main advantages of these 

populations are that they are easy to develop and can be obtained in a short time. These 

populations are used for mapping traits having Mendelian inheritance, but are unsuitable 

for quantitative traits. Recombinant inbred lines (RILs) and doubled haploid (DH) lines 

represent permanent and immortal mapping populations as their genotypes are stable over 

generations. Inbreeding from individual F2 plants derived from F1 hybrids allows the 

development of RILs, consisting of near homozygous lines having a unique combination 

of chromosomal segments. The main disadvantage of producing RILs is time for 

production, which requires six or more generations. Haploid production with maize 

pollen procedure (Kisana et al. 1993; Knox et al. 2000) and anther culture (Gustafson et 

al. 1995; Fedak et al. 1997) followed by chromosome doubling results in creation of 

genetically pure DH lines within a relatively short period of time. The major advantage of 

RILs and DH populations are that they are true breeding lines. This allows replicated 

trials across different locations and years, which is a major requirement for phenotyping a 

quantitative trait influenced by environment.   

2.9.3 Genetic linkage maps 

Genetic dissection of complex agronomic traits through QTL analysis requires the 

development of molecular-marker linkage maps. A linkage map is a road map of 

chromosomes derived from two parents (Paterson 1996). Linkage maps indicate the 

position and relative genetic distance between markers along the chromosomes. Linkage 

maps are based on recombination fractions during meiosis and the frequency of 

recombinant genotypes is used to calculate the genetic distance between markers and 

relative order of markers on the chromosomes (Paterson 1996; Collard et al. 2005). 

Mapping functions are required to convert the recombination fractions into centiMorgan 

(cM) distances because the recombination frequency and frequency of crossing-over 

during meiosis are not linearly related (Hartl and Jones 2001). Two different mapping 
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functions are used in linkage analysis; Kosambi and Haldane mapping functions 

(Haldane 1919; Kosambi 1944). The Kosambi mapping function assumes interference 

between crossover events, whereas, the less used Haldane mapping function assumes no 

interference (Hartl and Jones 2001). Linkage between markers is calculated using odds 

ratios (i.e. the ratio of linkage versus no linkage) (Collard et al. 2005). This ratio is 

expressed as logarithm of odds (LOD score) (Risch 1992). Software packages, such as 

MAPMAKER/EXP 3.0 (Lander et al. 1987) and JoinMap® 3.0 (van Ooijen and Voorrips 

2001) are available for genetic linkage analysis. 

 Initially, genetic maps were mainly developed from interspecific and wide crosses 

using RFLP markers (Chao et al. 1989; Cadalen et al. 1997; Messmer et al. 1999). The 

International Triticeae Mapping Initiative (ITMI) population (‘Synthetic’/ ‘Opata’) is one 

of the most polymorphic wheat mapping population, that has been extensively mapped 

with RFLP, AFLP and SSR markers (http://wheat.pw.usda.gov). Although the ITMI map 

has high marker density, it is primarily made up of RFLP markers, which are not 

amenable to high-throughput molecular breeding strategies. RFLP analysis requires large 

quantities of DNA and is technically demanding, expensive and laborious, and the most 

common detection method is based on radioisotopes. However, mapping of 

agronomically important genes or QTL is a major goal of plant breeding and requires 

informative markers in an intraspecific context. Less than 10% of RFLP markers are 

polymorphic in intraspecific molecular analysis (Röder et al. 1998). In contrast, 

microsatellite markers are abundant, highly polymorphic and require only a small amount 

of DNA for analysis. The first linkage map of wheat based on 214 SSR markers was 

constructed by Röder et al. (1998). Paillard et al. (2003), Sourdille et al. (2003), Quarrie 

et al. (2005), Torada et al. (2006) and Båga et al. (2007) constructed intraspecific genetic 

maps covering genetic lengths of 3,086, 3,685, 3,522, 3,441 and 2,873 cM, respectively. 

A consensus map of 1,235 SSR markers, covering a genetic length of 2,569 cM, was 

constructed by joining four independent genetic maps (Somers et al. 2004). The entire 

genetic distance of the hexaploid wheat genome is considered to correspond to about 

4,000 cM (Sourdille et al. 2003). 
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2.9.4 QTL mapping of traits 

A quantitative trait locus (QTL) is a region on the genome that contributes to trait 

value. QTL mapping is a means to estimate the locations, numbers, magnitude of 

phenotypic effects, and modes of gene action of individual determinants that contribute to 

the inheritance of a continuously variable trait (Paterson 2002).  

The statistical analysis of associations between phenotype and genotype in a 

population to detect quantitative trait loci includes single-marker mapping, interval 

mapping and composite interval mapping (Tanksley 1993; Liu 1998). The simplest 

method for detecting QTL is single-marker analysis based on t-test, analysis of variance 

(ANOVA) and simple linear regression, which assess the segregation of a phenotype with 

respect to a marker genotype. Linear regression is most commonly used because the 

coefficient of determination (R2) from marker explains the phenotypic variation arising 

from QTL linked to the marker (Collard et al. 2005). This method does not require a 

complete linkage map and can be performed with basic statistical software programs such 

as SAS and Minitab. The main weakness of single-marker analysis is the failure to 

provide an accurate estimate of QTL location or recombination frequency between the 

marker and the QTL, because the evaluation of individual markers is conducted 

independently, and without reference to their position or order (Doerge 2002). These 

situations can be addressed by fixing the location of the QTL and estimating the QTL 

effect between intervals of markers, known as interval mapping (Lander and Botstein 

1989). 

The simple interval mapping (SIM) uses an estimated genetic map as framework 

for location of QTL and analyzes intervals between adjacent pairs of linked markers 

along chromosomes simultaneously, instead of analyzing each single marker separately 

(Lander and Botstein 1989). The principle behind interval mapping is to test a model for 

the presence of a QTL at several positions between two mapped marker loci. The model 

is fit, and its goodness is tested using the method of maximum likelihood. Maximum 

likelihood involves searching for QTL parameters which give the best approximation for 

quantitative trait distributions observed for each marker class. Models are evaluated by 

computing the likelihood of the observed distributions with and without fitting a QTL 

effect. The results of test are expressed as LOD (logarithm of the odds) scores, which 
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compare the evaluation of the likelihood function under the null hypothesis (no QTL) 

with the alternative hypothesis (QTL at the testing position). The best estimate of the 

location of the QTL is given by the chromosomal location that corresponds to the highest 

significant likelihood ratio. Software packages, such as MAPMAKER/QTL (Lincoln et 

al. 1992), QGene (Nelson 1997) and MapQTL® 5 (van Ooijen 2004) are available for 

QTL mapping.  

There are two problems with the single interval mapping (SIM) method resulting 

from a single QTL model as mentioned above. One is that the effects of additional QTL 

will contribute to sampling variance. The other is that combined effects of two linked 

QTL will cause biased estimates. Composite interval mapping (CIM) combines the 

interval mapping with linear regression and includes additional genetic markers in the 

statistical model in addition to adjacent pairs of linked markers for interval mapping 

(Jansen 1993; Zeng 1993; Jansen and Stam 1994; Zeng 1994). CIM gives more power 

and precision than SIM because the effects of other QTL are not present as residual 

variance. Furthermore, CIM can remove the bias that would normally be caused by QTL 

that are linked to the position being tested. However, a large number of potential QTL 

and their interactions will lead to innumerable statistical models and heavy computational 

demands in comparison to statistical approaches to locate multiple QTL. Software 

packages, such as QTL Cartographer (Basten et al. 1999), MapManager/QTX (Meer et al. 

2004) and MultiQTL (Mester et al. 2004) are available to locate multiple QTL. 

2.9.5 Chromosomal regions associated with PHS resistance  

In bread wheat, 20 chromosomes with the solitary exception of chromosome 1D 

have been identified to carry QTL for PHS resistance /dormancy based on germination of 

grains in the spike using artificial rain simulation, germination test, grain colour, Falling 

Number and α-amylase activity (see Figure 2.4 for QTL locations and references). The 

large numbers of QTL reported suggests PHS is a trait controlled by numerous genes, 

influenced by environmental conditions and genetic background. RFLP analyses revealed 

that eight regions of the wheat genome were associated with PHS-resistance (Anderson et 

al. 1993). Based on multiple regression analysis, specific sets of markers and their 

interaction accounted for 44% of the genetic variance for PHS in the population 

CC/NY18 and 51% in the population NY18/NY10. Roy et al. (1999) associated PHS 
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with a microsatellite marker and a STS marker on chromosomes 6B and 7D, respectively, 

indicating that perhaps two genes exhibiting complementary interaction govern the PHS 

tolerance in cultivar SPR8198. However, in an inheritance study using the cross 

SPR8198/WL711, PHS tolerance in PSR8198 was shown to be controlled by a single 

dominant gene (Sharma et al. 1994). 

Homoeologous chromosome group 3 and chromosome 4A have been found to 

carry loci for PHS resistance in several studies (Mares and Mrva 2001; Groos et al. 2002; 

Osa et al. 2003; Kulwal et al. 2005; Mori et al. 2005; Mares et al. 2005; Tan et al. 2006). 

Flintham et al. (1999) reported a Phs locus on chromosome 7D based on bulk segregant 

analysis of DH lines derived from the cross Boxer/Soleil. Subsequently analysis using 

RILs, the Phs locus was relocated to the long arm of chromosome 4A. The Phs locus 

cosegregated with marker Xpsr 1327 in both the DH and RIL populations, placing it in 

the region of an ancestral translocation/inversion point between chromosomes 4AS and 

5AL (Flintham et al. 2002). A major QTL (QPhs.ccsu-3A.1) was detected on 3AL at a 

genetic distance of ~183 cM from the centromere in a RIL population developed from the 

cross SPR8198/HD2329 (Kulwal et al. 2005). This QTL explained 24.68% to 35.21% of 

the phenotypic variation in six different environments and 78.03% of the variation across 

environments (pooled data). This QTL was not associated with red grain colour, nor did it 

show a pleiotropic effect of the R gene.  

The transcription factor VIVIPAROUS-1 encoded by the Vp1 gene plays a critical 

role in maintenance and induction of dormancy in maize (McCarty et al. 1991). Maize 

mutants lacking VP1 activity are viviparous, i.e. the immature embryos germinate 

precociously on the cob. Genes orthologous to maize Vp1 have been cloned from rice 

(Hattori et al. 1994), wild oat (Jones et al. 1997), sorghum (Carrari et al. 2001) and 

Craterostigma plantagineum (Chandler and Bartels 1997). Bailey et al. (1999) identified 

the taVp1 gene, an orthologue of the Vp1 gene, at 30 cM from the R locus in the distal 

region of long arm of group 3 chromosomes of wheat. The level of expression of the Vp1 

correlates with the level of seed dormancy in Minamino (dormant) and Tozan 18 (non-

dormant) cultivars (Nakamura and Toyama 2001). However, McKibbin et al. (1999) 

reported that the taVp1 transcript abundance was similar in developing embryos of 

dormant and non-dormant genotypes and not associated with the level of dormancy of the  
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Figure 2.4. Summary of genomic locations of QTL associated with PHS resistance. 

Vp1 – transcription factor VIVIPAROUS-1; R – Red grain colour loci; Phs – Pre-harvest 

sprouting locus; approximate locations of QTL  in following studies:       – Anderson et 

al. 1993;      – Roy et al. 1999;       – Zanetti et al. 2000;       - Mares and Mrva 2001;      

aa - Kato et al. 2001;      – Flintham et al. 2002;       -  Groos et al. 2002;        – Mares et 

al. 2002;       - Osa et al. 2003;      - Kulwal et al. 2005;       – Mares et al. 2005;              

oo – Mori et al. 2005;     – Tan et al. 2006. The chromosome length and centromere 

positions are based on a wheat consensus map (Somers et al. 2004). 
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wheat grain. Later studies showed that mis-splicing of the VP1 gene contributes to the 

susceptibility to PHS of modern hexaploid wheats (McKibbin et al. 2002). Analysis of 

VP-1 transcript structure in wheat embryos during grain development showed that each 

homoeologue produces mRNA of different sizes. A majority of VP-1 transcripts are mis-

spliced and do not have the capacity to encode full length proteins. Embryos of closely 

related tetraploid species (Triticum turgidum) and ancestral diploids also produce mis-

spliced VP-1 transcripts similar to modern hexaploid wheat suggesting that compromised 

structure and expression of VP-1 transcripts in modern wheat are inherited from ancestral 

species (McKibbin et al. 2002). 

2.9.6 Validation of molecular markers associated with a trait  

Before a marker can find wide application in crop improvement programs, it is 

important to validate its usefulness for marker assisted breeding outside the mapping 

population. Generally, markers should be tested for their effectiveness in determining the 

target phenotype in independent mapping populations and different genetic backgrounds. 

However, there is no guarantee that markers identified in one population will be useful in 

other populations. Parker et al. (1998) identified a marker for wheat flour colour on 

chromosome 7A based on the cross Schomburgk/Yaralinka and later confirmed it’s 

usefulness in the Cranbrook/Halberd and Sunco/Tasman crosses (Mares and Campbell 

2001). But the same marker was not applicable to yellow colour characteristics of lines 

such as Cunningham and Janz, but was applicable to material with Schomburgk-type 

yellow flour colour (Sharp et al. 2001). Sharp et al. (2001) also identified a marker linked 

to stem rust Sr2 gene in Chinese Spring x Chinese Spring (Hope3B) on chromosome 3B, 

but the polymorphism was not diagnostic when assayed in a wide range of CIMMYT, 

Australian and other cultivars of known Sr2 genotypes.  

To date, marker-assisted selection (MAS) has been effective for relatively simple 

traits governed by single genes (qualitative traits) but less effective for complex traits 

controlled by many genes (quantitative traits) that are under the influence of gene x gene 

and gene x environment interactions. A further complication is that estimates of 

quantitative trait loci (QTL) effects are biased by the necessity of working with limited 

sets of genotypes in a limited set of environments and hence application of these 
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estimates may not be as effective as expected when used more broadly within a breeding 

program (Podlich et al. 2004).  

One of the most critically anticipated and most often cited benefits of genetic 

markers for plant breeding has been their use to facilitate MAS as an indirect selection 

tool in crop improvement programs (Koebner and Summers 2003). MAS allows breeders 

to conduct early generation selection for a trait or combination of traits on a single plant 

basis. This is particularly valuable in situations where a trait is under multigene control, 

and/or environmental variation has a significant influence on trait expression or the trait 

is inherited recessively (Koebner and Summers 2002; Koebner and Summers 2003). 

MAS is also useful in accumulating multiple genes for resistance to specific pathogens 

and pests within the same cultivar, a process known as gene pyramiding (Huang et al. 

1997; Barloy et al. 2007). An additional benefit of MAS is that it can be performed on 

DNA extracted from small leaf tissue samples and consequently provides a non-

destructive, seed quantity independent alternative to phenotypic based selection. Thus, 

MAS can be used at any stage of a breeding program (Kuchel et al. 2007).  

The selection for recombination between target gene and flanking markers is 

highly effective even when a marker is rather distant from the target gene. MAS can be 

used for such large distance as recombination occurs with increasing distances with 

higher probability. The larger the distance between the marker and the gene, the smaller 

the population size can be chosen (Frisch 2005; Wenzel 2006). However, linkage drag is 

one of the main concerns in marker-assisted backcrossing if the desired trait is linked to 

an undesirable character. In introgression of target alleles from unadapted germplasm, 

linkage drag is the main cause for the differences between the recipient line and 

converted line. Tightly linked flanking markers can be used for substantial reduction of 

linkage drag (Frisch et al. 1999). 

Recently, a report was published detailing computer simulation based analysis of 

a specific wheat breeding strategy designed to employ MAS to select for multiple genes 

(Kuchel et al. 2005). The detailed economic analysis showed that incorporation of marker 

assisted selection at the BC1F1 followed by doubled haploid technology not only 

increased the genetic gain over the phenotypic alternative but also reduced the overall 

cost by 40%. The results of practical validation agreed with those of the simulation study 
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(Kuchel et al. 2007). Introgression of Lr34/Yr18 or Lr46/Yr29 loci in a susceptible 

recurrent parent resulted in an improvement in leaf rust and stripe rust resistance. 

Selection for favorable glutenin alleles significantly improved dough resistance and 

dough extensibility. However, grain yield was improved marginally at one of the five 

sites used for grain assessment (Kuchel et al. 2007).  

Evaluation of markers linked to specific traits in different cultivars could also 

reveal the origin of superior allele by tracing back to a specific genotype and introduction 

of new germplasm in that breeding program could significantly contribute to the 

development of improved genotypes (Malysheva et al. 2004). 

2.10 Hypothesis for thesis 

Pre-harvest sprouting in wheat is a worldwide problem resulting in substantial 

economic losses to producers, processors and allied industries because PHS reduces the 

functional quality of wheat flour and limits the end-use applications. In Canada, such 

losses from PHS in wheat have been calculated to be $100 million annually in the years 

favorable for PHS (Derera 1990; Clarke et al. 2005). Therefore, PHS resistant wheat 

cultivars have the potential to deliver significant savings to producers, processors and 

industries. Breeding for PHS resistant cultivars is challenging because PHS in wheat is a 

complex trait controlled by numerous genes and influenced by environmental conditions. 

In bread wheat, 20 chromosomes with the solitary exception of chromosome 1D are now 

known to carry QTL for PHS resistance /dormancy (Anderson et al. 1993; Roy et al. 

1999; Zanetti et al. 2000; Kato et al. 2001; Mares and Mrva 2001; Flintham et al, 2002; 

Groos et al. 2002; Mori et al. 2005; Tan et al. 2006). However, a critical analysis of 

published literature, leads to following hypothesis of my research: 

 

Genomic regions on wheat chromosomes 4A and homoeologous group 3 play major roles 

in PHS resistance in white-grained bread wheat.   

The present investigation was conducted to identify the genomic regions associated 

with PHS resistance in white-grained wheat and validate the putative QTL for PHS 

resistance in different genetic backgrounds suitable for marker-assisted selection in 

Canadian wheat breeding programs.  
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CHAPTER 3 

 COMPARISON OF DIFFERENT METHODS FOR PHENOTYPING 

PHS IN WHITE-GRAINED WHEAT  
 

3.1 ABSTRACT 

 The objective of this study was to identify a suitable method for phenotyping pre-

harvest sprouting (PHS) resistance in white-grained bread wheat. Forty doubled haploid 

(DH) lines derived from a cross between two white-grained spring wheats (Triticum 

aestivum L.) cultivar ‘Argent’ (non-dormant) and wheat breeding line ‘W98616’ 

(dormant), were evaluated for  germination frequency, Falling Number, and α-amylase 

activity in dry and water-imbibed seeds and spikes. The α-amylase activity in dry seeds 

or spikes did not differ significantly between parent lines, or lines of the DH population. 

Wetting of seeds or spikes for two days caused a five- to seven-fold increase in α-

amylase activity, but only in ‘Argent and the ‘non-dormant’ sub-group (49-100% 

germination) of the DH lines.  A positive association (r = 0.60***) was detected between 

germination frequency and α-amylase activity in imbibed seeds and spikes. The 

germination frequency could not be correlated to Falling Number or α-amylase activity 

in dry harvested seeds. Falling Number showed a strong correlation (r = -0.83***) to α-

amylase activity in dry harvested seeds, but could not be correlated to α-amylase activity 

in imbibed seeds. In conclusion, the germination test was the most reliable method for 

measurement of PHS resistance, because seed dormancy provides potential resistance to 

PHS, whereas high α-amylase activity may occur in grains with or without PHS.     

3.2 INTRODUCTION 

 In-spike germination of physiologically mature grain is denoted as pre-harvest 

sprouting (PHS) and is a serious problem in susceptible lines of bread wheat (T. aestivum 

L.). The condition occurs when harvest time coincides with relatively high humidity due 

to untimely rains. The immediate consequences of PHS are reduced yield, decreased 



 39

kernel quality and downgrading of the grain, leading to economic losses for the producer. 

During the period 1978-1988, the estimated loss due to PHS in Western Canada was 

valued at US $100 million (Derera 1990).  

 Sprouted grain and flour have increased levels of α-amylase and protease 

activities with deleterious effects on production of bread and noodle (Edwards et al. 

1989). The flour from sprouted wheat will yield sticky dough which, upon baking, 

produces loaves with large holes, sticky crumb and dark-coloured crusts (Mares et al. 

2004). Noodles made from sprouted wheat flour show higher levels of discoloration 

(spotting) as compared to noodles made from sound flour, and thus are less attractive to 

the consumer (Hatcher and Symons 2000). Pasta made from semolina of sprouted wheat 

negatively affects product texture. To assure grain quality with regards to PHS, the 

Canadian Grain Commission sets limits for total sprouted grain for different wheat grades 

and classes. For example, severely sprout-damaged and total sprouted kernel frequencies 

of more than 0.5% and 5%, respectively, in Canada Western Hard White Spring Wheat 

results in downgrading to Feed Wheat (Official Grain Grading Guide 2007). 

Grain sprouting becomes visible when the bran layer surrounding the embryo 

ruptures and the cotyledon emerges. One of the first biochemical changes associated with 

germination is increased activities from starch hydrolytic enzymes such as α-amylases, 

which play an important role in starch degradation. The α-amylases (EC 3.2.1.1) belong 

to the glycoside hydrolase family 13 (http://www.cazy.org/; Coutinho and Henrissat 

1999) and catalyze endohydrolysis of α-(1→4) glycosidic bonds present in amylose and 

amylopectin chains of starch (van der Maarel et al. 2002). There are four possible sources 

of α-amylase activity in wheat grains. The primary reason for α-amylase accumulation in 

the grain is delayed harvest due to wet weather causing breakdown of grain dormancy 

followed by sprouting (Flintham and Gale 1988). Another major cause of excess α-

amylase activity is the deposition of α-amylase in the endosperm cavity (Flintham and 

Gale 1988; Evers et al. 1995). The third route of α-amylase activity is termed pre-

maturity sprouting and involves germination in early development when grains are still at 

a high moisture content (Flintham and Gale 1988; Lunn et al. 2001a; Lunn et al. 2001b). 

The fourth possible reason is the retained pericarp α-amylase in grains that has been 
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associated with non-uniform maturity of the wheat crop (Olered 1975; Lunn et al. 2001a; 

2001b). 

The resistance to PHS is based on seed dormancy, i.e. the ability of the 

physiologically mature seed to withstand sprouting under conditions otherwise 

favourable for germination. Seed dormancy is affected by both genetic and environmental 

factors and, therefore, PHS in wheat is expressed as a quantitatively inherited trait 

(Anderson et al. 1993; Tan et al. 2006). Seed germination and dormancy are influenced 

by a wide range of plant growth regulators, of which abscisic acid (ABA) plays a key role 

in the maintenance of dormancy (Walker-Simmons 1987; McCarty 1995; Kawakami et 

al. 1997; Koornneef et al. 2002; Gubler et al. 2005).  The red grain colour is a traditional 

marker for sprouting resistance in wheat, and may act by increasing the sensitivity of 

embryos to ABA (Himi et al. 2002).   

A reliable, reproducible and simple method to determine susceptibility to PHS is a 

pre-requisite for wheat improvement programs aimed at developing new lines with  PHS 

resistance (Humphreys and Noll 2002; Mrva and Mares 2002; Shorter et al. 2005).  PHS 

measurements are traditionally done by a germination test using threshed seeds or intact 

spikes that may have been subjected to field or artificial weathering (Mares 1989). The 

germination test provides a direct measure of seed dormancy, whereas sprouting tests of 

spikes may include other mechanisms associated with the intact spikes such as 

germination-inhibitors in the hull (Kato et al. 2002) and spike morphology (King and 

Richards 1984).  Other more indirect methods for PHS estimation rely on determinations 

of grain α-amylase activity or Hagberg Falling Number (Hagberg 1960; Hagberg 1961). 

The Falling Number can serve as a gauge for starch degradation and is inversely related 

to α-amylase activity by a curvilinear relationship (Hagberg 1960; Hagberg 1961). In 

order to evaluate the different assays for PHS, this study compared different methods 

using a doubled haploid mapping population for which PHS had been evaluated in a 

series of field trials.  To eliminate the confounding effects of grain colour on PHS, the 

DH lines used were derived from white-grained spring wheat cultivars.  
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3.3 MATERIALS AND METHODS 

3.3.1 Plant materials and field trials 

 A population of 151 doubled haploid (DH) lines was used for phenotyping of 

PHS. The DH lines were developed from a cross between a white-grained spring wheat 

cultivar ‘Argent’ (non-dormant) and a white-grained line ‘W98616’ (dormant). The 

‘W98616’ parent was selected from the AUS1408 (white-grained) / RL4137 (red-

grained) cross (Hucl and Matus-Cádiz 2002b), where both parents are considered to be 

good sources of PHS resistance.  

The initial replicated (n=2) field trials involving the whole DH population of 151 

lines and parent lines were conducted at the Seed Farm and Kernen Farm, University of 

Saskatchewan, Saskatoon, in the years 2002 and 2003.  In 2005, a four replicate trial in a 

Randomized Complete Block Design (RCBD) with 40 DH lines (20 dormant and 20 non-

dormant lines selected based on the 2002 and 2003 trials), parents (‘Argent’ and 

‘W98616’) was conducted at the Seed Farm, University of Saskatchewan, Saskatoon, 

Canada. A total of 50 spikes per line were harvested when the plants had reached the 

Zadoks growth stage 92, which represents the physiological maturity stage of wheat 

development (Zadoks et al. 1974). The spikes were air dried for one week and stored at    

-20°C until analysis. Wetting of spikes and threshed seeds was done by incubation in 

distilled water for 48 hr at 20°C. Thereafter, an aliquot of the wetted spikes and threshed 

seeds were separately dried at 35°C for 48 hr. 

3.3.2 Germination test 

 Fifty seeds were placed in Petri dishes (8 cm diameter) containing a Whatman #1 

filter paper soaked with 3.0 mL of distilled water. The Petri plates were placed in a large 

plastic container holding a relative humidity level of >90 % and incubated at 20°C. The 

germination count was done after seven days. Non-germinated seeds were treated in a 

Petri-dish with 0.05% w/v gibberellic acid (GA3) and incubated at 12°C to break 

dormancy. The final germination count was done after seven days and seed viability of 

the sample was calculated. Germination tests were performed on four biological 

replications for each line tested. 
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3.3.3 Extraction of soluble proteins from flour  

 Grain samples were milled in a cyclone mill (Udy Corp., Fort Collins, CO) and 

sifted through a 0.5 mm sieve. Extraction of proteins from the meal was done following 

the procedure of McCleary and Sheehan (1987). Briefly, 1.0 g of meal and 7.0 ml of 

malate extraction buffer (50 mM Malic acid, 87.5 mM sodium hydroxide, 50 mM sodium 

chloride, 2 mM calcium chloride, 3 mM sodium azide, pH 5.2) were added to a 50 mL 

centrifuge tube, followed by vigorous stirring and incubation at 40°C for 20 min with 

occasional mixing. The slurry was centrifuged at 1,000 x g (AllegraTM Centrifuge, 

Beckman Coulter, Inc.) for 10 min at room temperature and the supernatant was stored on 

ice until analysis. The protein concentration in the cell extract was determined by 

Coomassie blue dye-binding assay (Bradford 1976) using the Quick StartTM Bradford 

Protein Assay Kit from Bio-Rad Laboratories, Inc., USA.  

3.3.4 Determination of α-amylase activity  

 The α-amylase enzyme activity in the soluble protein extract was analyzed within 

2 hr of preparation and was done essentially as described by McCleary and Sheehan 

(1987). The enzyme extract and substrate mixture of 2 mM blocked p-nitrophenyl 

maltoheptaoside and 1.25 U thermostable α-glucosidase (Megazyme International Ireland 

Ltd., Ireland) were pre-warmed to 40°C for 5 min and the reaction was initiated by 

adding  0.2 mL of enzyme extract to 0.2 mL substrate mixture. After 20 min incubation at 

40°C, the reaction was stopped  by adding 3.0 mL 1% w/v tri-sodium phosphate pH~11 

followed by vigorous stirring. The absorbance from released p-nitrophenol was measured 

at 400 nm using a DU® 800 Spectrophotometer (Beckman Coulter, Inc.).  The specific α-

amylase activity was defined as the amount of enzyme that released one μmole of p-

nitrophenol from blocked p-nitrophenyl maltoheptaoside min-1 mg-1 protein, when 

thermostable α-glucosidase is present in excess. For each line tested, the α-amylase 

assays were performed on four biological replications with three experimental assays per 

replication. 

3.3.5 Determination of Falling Number 

 Grain samples were milled in a cyclone mill and sifted through a 1-mm sieve. The 

moisture content in 3.0 g meal samples was determined following the standard AACC 

Method 44-15A (American Association of Cereal Chemists, 2000). Falling Number was 
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determined from 7.0 g meal at 14% moisture basis according to the standard AACC 

Method 56-81B (American Association of Cereal Chemists, 2000) using a FN 1700 

instrument (Perten Instruments). Falling Number determinations were performed on four 

biological replications for each line. 

3.3.6 Statistical analysis 

 Results were expressed as least square (LS) means of three or four replicates ± 

standard error. The data were compared by Duncan’s test at a significance level of 0.05, 

while relationships between measured parameters were assessed by Pearson’s test using 

Statistical Analysis System software (SAS Institute, Cary, NC). 

3.4 RESULTS AND DISCUSSION 

3.4.1 Predictability of PHS from germination frequency 

 Based on germination tests performed on seeds from the entire mapping 

population of 151 DH lines, a subgroup of 20 ‘dormant’ (8-28% germination) and 20 

‘non-dormant’ (83 to 97 % germination) lines were selected for further evaluation of PHS 

in 2005. Seeds for laboratory analyses were obtained by growing the lines in a 

Randomized Plot Design and collecting the spikes when plants had reached physiological 

maturity. Included in the fields tests were the parent lines ‘Argent’ (non-dormant) and 

‘W98616’ (dormant). Similar to previous field tests performed in 2002 and 2003, the 

dormant parent (W98616) and non-dormant (Argent) parent showed large differences in 

germination percentage, 4% and 100%, respectively, in the 2005 field trial. Among the 

DH lines, the germination percentage for the ‘dormant sub-group’ was 2-31% and the 

‘non-dormant sub-group’ showed germination frequencies of 49-100%. The germination 

frequencies separated the dormant and non dormant DH lines in all three trials (Figure 

3.1), which indicated that the germination test is a reliable predictor for PHS resistance 

and seed dormancy in white-grained bread wheat. Among the three years of field trials, 

the dormancy levels were higher overall in 2003, as compared to 2002 and 2005.  This 

suggests the influence of environment on seed dormancy.  

3.4.2 Predictability of PHS from α-amylase activity levels in pre-wetted seeds 

 Three different types of samples from harvested seeds and spikes of the dormant 

line ‘W98616’ and the non-dormant line ‘Argent’ were analyzed for α-amylase activity.   
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Figure 3.1. Box-and-Whisker plot of germination percentages of 20 ‘dormant’ 

and 20 ‘non-dormant’ DH lines in three years of field testing. The whiskers are 

the two lines out side the box that extend to the highest and lowest observations. The 

line inside the box represents the median of data set. The ends of boxes are upper and 

lower quartiles.  
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The sample types analyzed were dry seeds, seeds or spikes that had been pre-wetted for 

two days, and pre-wetted seeds or spikes that had been dried (Table 3.1). The pre-wetting 

treatment was done to simulate weather conditions that induce sprouting in the field. The 

α-amylase activity determined for ‘W98616’ samples varied from 3.32 to 5.6 μmoles of 

p-nitrophenol min-1 mg-1 protein (Table 3.1), thus the different treatments of the seeds or 

spikes had no effect on α-amylase activity in grain of the dormant cultivar. Dry seeds of 

the non-dormant ‘Argent’ showed a similar α-amylase activity level (5.46 μmoles of p-

nitrophenol min-1 mg-1 protein) as dry seeds from the dormant cultivar. Thus, the level of 

α-amylase activity in the dry seeds at harvest could not be used to distinguish dormant 

lines from non-dormant lines. Pre-wetting of seeds or spikes increased α-amylase activity 

five- to seven-fold, respectively, but only for samples from the non-dormant ‘Argent’ 

(Table 3.1). No significant difference was seen between pre-wetted and pre-wetted / dried 

samples, but the latter sample type was preferred as it was easier to mill compared to the 

wet samples.  

  The α-amylase activity in the DH lines was determined on seeds or spikes pre-

exposed to moisture then dried, and compared to α-amylase activities in dry seeds (Table 

3.2). The mean enzyme activity in dry seeds of the ‘dormant’ and ‘non-dormant’ 

subgroup was 4.2±0.3 and 3.8±0.4 units, respectively (Table 3.2) and did not differ 

significantly from enzyme activities recorded for the parents (Table 3.1). Thus, it was not 

possible to separate the dormant and non-dormant lines based on α-amylase activity at 

harvest time. Similar findings were reported in a study by Hagemann and Ciha (1984). 

Pre-wetting of seeds or spikes raised the α-amylase activity in seeds of the ‘non-dormant’ 

subgroup, whereas α-amylase activity levels in the ‘dormant’ lines were affected only 

slightly (Table 3.2). The enzyme activities in pre-wetted samples of the DH lines showed 

a statistically significant correlation (r = 0.60) to germination frequencies (Table 3.3). 

Similar correlations between sprouting kernels in intact spikes and α-amylase activity (r2 

= 0.30 – 0.79) and germination of threshed kernels and of α-amylase activity (r2 = 0.07 – 

0.81) in different environments were reported by DePauw et al. (1989).  
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Table 3.1. Level of α-amylase activity in parental lines. 

 

α-amylase activity* 
Treatment 

W98616 (dormant) Argent (non-dormant) 

Threshed Seeds   

Dry seeds at harvest  5.6 ± 0.3a 5.4 ± 0.4a 

Pre-wetted seeds 3.3 ± 0.3a 27.3 ± 4.5b 

Pre-wetted and dried 5.3 ± 0.3a  28.5 ± 5.2b 

Spikes   

Pre-wetted  4.9 ± 1.4a 39.8 ± 1.2b 

Pre-wetted spikes and dried 4.7 ± 0.2a 32.9 ± 9.5b 

 

* Each data point represents three biological replications and three experimental assays in 

each biological replication. Activity values are expressed as μmoles of p-nitrophenol  

min-1 mg-1 protein. Values followed by same letter are not significantly different (P<0.05)   
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Table 3.2. Germination frequency, α-amylase activity and Falling Number in dry 

and imbibed seeds of white-grained wheat DH lines. 

 

 

α-amylase activity* 

(μmoles of p-nitrophenol min-1mg-1protein) 

 

 

DH Lines 

 

 

Germination 

Frequency 

(%) 

 

Dry seeds 

 

Pre-wetted, dried seeds 

 

Falling Number 

(sec) 

 

Dormant 

 

16±5.5 

 

4.2±0.3 

 

5.5±0.9 

 

367±15.0 

 

Non-dormant 

 

74±7.7 

 

3.8±0.4 

 

16.2±4.6 

 

374±14.4 

 

* Each data point is presented as LS means ± standard error and represents four 

biological replications. 
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Table 3.3. Pearson Correlation coefficient between germination frequency, α-

amylase activity and Falling Number in white-grained wheat. 

 

α-amylase activity 

 

Falling 

Number 

 Germination 

frequency  

Dry seeds at 

harvest 

Pre-wetted and 

dried seeds 

Dry seeds at 

harvest 

Germination  

frequency 

           

          - 

 

     -0.16* 

 

     0.60*** 

 

      0.06NS 

α-amylase activity 

(Dry seeds at harvest ) 

  

         - 

 

      0.05NS 

 

    -0.83*** 

α-amylase activity 

(Pre-wetted and dried 

seeds) 

   

         -  

 

 

 

     -0.07NS 

Falling Number 

(dry seeds) 

    

       - 
 

* significant at .05, *** significant at .0001, and NS non significant 
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3.4.3 Falling Number in dry seeds  

 Falling Number is a measure of starch hot paste viscosity rather than a direct 

measure of α-amylase activity. The mean Falling Number values of dormant and non-

dormant DH lines at harvest were 367±15.0 and 374±14.4, respectively (Table 3.2). 

Similar to α-amylase activity at harvest, it was not possible to separate the dormant and 

non-dormant lines based on Falling Number values as no correlation to seed germination 

was noted (Table 3.3). Poor correlation between Falling Number and germination 

frequency was also found in a study by Reitan (1989). In a contrasting report, Hagemann 

and Ciha (1984) found a significant correlation between both germination index (GI) and 

percent germination (PG) with Falling Number values in un-germinated seeds. 

Hagemann and Ciha (1984) also concluded that Falling Number and enzymatic tests do 

not measure the seed’s ability to sprout under optimum conditions. In a study by 

Humphreys and Noll (2002), a higher correlation was noted for in-spike sprouting score 

and Falling Number when samples were artificially weathered as compared to field 

weathering. In this study, some lines with high Falling Number were found to have high 

sprouting scores. Low repeatability of Falling Number due to variety x year interactions 

was found in a study where in-spike sprouting had a high repeatability (Hucl 1994). 

Barbeau et al. (2006) suggested that Falling Number should not be used as the sole 

criteria for determining degree of sprout damage because it does not quantify nor 

accurately reflect changes in protein composition and quality due to grain weathering.  

The analysis of the parent lines and the DH lines for Falling Number revealed a 

negative correlation (r = -0.83***) to α-amylase activity in dry seeds (Table 3.3). No 

correlation could be found between Falling Number in dry seeds and α-amylase activity 

in pre-wetted seeds or germination frequency (Table 3.3), and thus Falling Number was 

not a good predictor for PHS in this study. Similar to this study, the Falling Number and 

α-amylase activity in dry seeds were negatively correlated (r = -0.91) in recombinant 

inbred lines derived from a wheat x spelt cross (Zanetti et al. 2000), for which  little 

variation in α-amylase activity was noted under dry harvest conditions relative to wet 

weather at harvest. Ringlund (1983) demonstrated that at low α-amylase activity levels, 

starch quality becomes the determining factor for Falling Number. Thus, Falling Number 
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reflects the endosperm quality at harvest time (Hagemann and Ciha 1984), but can 

fluctuate widely depending on the degree of ripening and the amount of rainfall prior to 

harvest (Mares 1993). Furthermore, Falling Number sample weight influences test 

precision, reproducibility and predictability of α-amylase activity (Finney 2001).  

3.5 CONCLUSIONS 

 The primary reason for α-amylase accumulation in the grain is delayed harvest 

due to wet weather. As sprouting is strongly influenced by environment, the timepoint for 

sampling and method for evaluating the genotypic differences for PHS is critical. 

Germination percentage has shown high repeatability in predicting genetic differences in 

PHS resistance (Wu and Carver 1999), and showed high repeatability in our study based 

on three years of data. Although we found a strong correlation between FN and α-

amylase activity in the dry harvested seeds, the data from these tests could not be 

correlated with germination percentage. However, a significant correlation was observed 

between α-amylase activity in pre-wetted seeds and germination percentage and this test 

could be used to predict PHS. However, artificial or field weathering and determination 

of α-amylase activity are tedious processes that require specialized equipment, which 

should be taken into consideration before choosing a method for evaluation of PHS.  

Given the simplicity of the germination test in combination with its good prediction of  

PHS resistance based on seed dormancy, this test provided a better proxy for seed 

dormancy in white grained wheat as compared to Falling Number and α-amylase activity. 

In addition to germination tests, α-amylase assays may be done to quantify sprout 

damage. 
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CHAPTER 4 

IDENTIFICATION OF GENOMIC REGIONS ASSOCIATED WITH 

PHS RESISTANCE IN WHITE-GRAINED WHEAT  

 
4.1 ABSTRACT  

Pre-harvest sprouting (PHS) in bread wheat (Triticum aestivum L.) is one of the 

constraints for consistent production of high quality wheat. White-grained wheat is 

generally more susceptible to PHS damage than red-grained wheat. The aim of this study 

was to identify molecular markers linked to quantitative trait loci (QTL) associated with 

PHS resistance in white-grained wheat. This trait was studied in a doubled haploid (DH) 

population derived from Argent (non-dormant, white-grained) x W98616 (dormant, 

white-grained). The DH population was mapped using 913 markers (356 SSR, 290 

AFLP, 258 DArT and 9 EST) on different wheat chromosomes with a total genome 

coverage of 2,577 cM and an average marker density of 3.7 cM/marker. Five genomic 

regions associated with PHS resistance were identified by interval mapping on 

chromosomes 1A, 3A, 4A, 7A and 7D, and were all contributed by the dormant parent, 

W98616. The marker alleles associated with major QTL for grain dormancy on 

chromosome 4A in white-grained W98616 may be used for marker-assisted selection for 

introgression of these QTL in white-grained wheats to select PHS resistant genotypes.    

4.2 INTRODUCTION 

Pre-harvest sprouting (PHS) is defined as in-spike germination of mature grain 

before harvest due to high moisture conditions during maturation and before harvest. In 

Western Canada, cool and wet weather during harvest makes the crops susceptible to 

PHS. This condition is initiated by elevated α-amylase activities which catalyze 

hydrolysis of endosperm starch and thus provide energy for seed germination. PHS in 

wheat (Triticum aestivum L.) represents a major constraint for consistent production of 

high quality grain as it causes downgrading of grain, severely limits end-use applications 
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for wheat flour and results in substantial economic losses to farmers and food processors. 

Wheat flour from sprouted grains loses its thickening power and produces bread loaves 

with large holes, sticky crumb and dark-coloured crusts (Mares et al. 2004). The 

Canadian Grain Commission has set tolerance levels for sprouted grain for each wheat 

grade produced in Canada. Depending on the quantity of sprouted kernels present in a 

sample, pre-harvest sprouted wheat is reduced in grade and value, and often graded as 

low-value animal feed (Official Grain Grading Guide 2007). Producer revenue in Canada 

decreases by 8.5% for food use with a concomitant and an increase of 2.5% for feed 

wheat, which reflects the shift from food use to feed use for downgraded wheat (Wahl 

and O'Rourke 1994).  

The development of wheat cultivars with harvest-time seed dormancy has been an 

important target for wheat improvement programs in many countries where moist harvest 

conditions frequently occur. Improving PHS resistance is challenging as PHS is 

expressed as a quantitatively inherited trait that is strongly affected by environmental 

factors (Anderson et al. 1993). The red grain colour has long been recognised as a genetic 

marker for PHS resistance in hexaploid wheat (Nilsson-Ehle 1914), but both red and 

white wheats vary in PHS susceptibility (Bassoi and Flintham 2005). Recent breeding 

efforts have been focused on developing new cultivars of hard white wheat suited to 

domestic and international markets, but the low level of PHS resistance is a major 

constraint for white wheat improvement. The potential resistance of wheat cultivars to 

PHS is based on seed dormancy (Mares 1987a). 

The advent of molecular markers has revolutionized the genetic analysis of 

complex traits and identification of chromosomal regions associated with disease, insects, 

agronomic and grain quality traits in wheat (Huang et al. 2000; Liu et al. 2001; Huang et 

al. 2006). Several quantitative loci (QTL) or genomic regions affecting the PHS 

resistance or seed dormancy in wheat have been identified in different gene pools via 

linkage to molecular markers (Anderson et al. 1993; Roy et al. 1999; Zanetti et al. 2000, 

Kato et al. 2001; Mares and Mrva 2001, Flintham et al. 2002; Groos et al. 2002; Osa et 

al. 2003; Kulwal et al. 2005; Mares et al. 2005; Mori et al. 2005; Tan et al. 2006). The 

accumulated QTL mapping studies suggest that several genes are involved in determining 
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resistance and new loci/genes may be discovered as the number of mapping studies 

increases.   

The aim of this study was to identify the genomic regions associated with PHS 

resistance in a doubled haploid (DH) mapping population of white-grained bread wheat 

and to develop molecular markers suitable for marker assisted selection in wheat 

breeding programs. A linkage map of 2,577 cM based on mapping data from a DH 

mapping population obtained from two white-grained spring wheat genotypes, W98616 

(dormant) and Argent (non-dormant) was developed using SSR, AFLP, DArT and EST 

markers to identify the genomic regions associated with PHS resistance. DNA markers 

associated with the genomic regions represent a promising, environment-insensitive tool 

for selecting genotypes with increased PHS resistance.   

4.3 MATERIALS AND METHODS 

4.3.1 Mapping population 

A mapping population of 151 DH lines was developed from a cross between two 

white-grained spring wheat (Triticum aestivum L.) genotypes, Argent and W98616 

(Figure 4.1; Hucl et al. 2005) using the wheat x maize method (Knox et al. 2000). The 

parent W98616 is a white-grained, dormant line selected from the cross 

AUS1408/RL4137. Both the white-grained AUS 1408 and red-grained RL4137 are good 

sources of resistance for PHS. The parent Argent is a white-grained and non-dormant 

American cultivar.  

4.3.2 Phenotyping for pre-harvest sprouting 

A 155-entry (151 DH lines with four checks: Argent, W98616, RL4137 and AUS1408), 

two replicate trials using a RCBD experimental design was grown in 2002 and 2003 at 

the Seed Farm (SF) and Kernen Farm (KF), University of Saskatchewan, Canada. 

Individual plots consisted of single rows, 3.7 meter long and 0.3 meter apart at a seed rate 

of 250 seeds m-2. Fertilizer was drilled in with the seed at a rate of 7 kg ha-1 of N and 29 

kg ha-1 of P. At Zadoks’ Growth Stage 92 (Zadoks et al. 1974), 40 spikes per plot were 

harvested from the upper canopies and air dried at room temperature (22 - 24˚C) for one 

week. The spikes were bulk threshed using a rubber belt thresher and seeds were stored in 

a freezer at -20˚C until needed. For seed dormancy determination, germination tests were  
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Figure 4.1. Pedigree of the DH mapping population used for identification of QTL 

for PHS tolerance.  
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conducted within two months of the harvest. Briefly, one hundred seeds were placed in 

Petri plates (8 cm diameter), containing a Whatman #1 filter paper soaked with 5.0 ml of 

distilled water. The Petri plates were incubated at a relative humidity level of >90 % and 

20°C. The germination count was performed after seven days. Non germinated seeds 

were treated with 0.05% (w/v) gibberellic acid (GA3) solution (1 ml/Petri plate) and 

incubated at 12°C. The final germination counts were performed after seven days to 

determine seed viability. Percent germination data were calculated as follows: (no. of 

germinated seeds/100 imbibed seeds) x 100. Statistical analysis was conducted using 

Minitab Version 13 (Minitab Inc, State College, PA). 

4.3.3 Marker analysis 

The parents and DH lines plants were grown under controlled conditions in a 

growth chamber under an 18 hr photoperiod (250 µmol m-2 s-1 light intensity, 23°C day 

and 18°C night temperature). The leaves were harvested after 20 days, freeze dried and 

genomic DNA was isolated using the CTAB method (Doyle and Doyle 1990). The DNA 

concentration was quantified using a DU® 800 spectrophotometer (Beckman Coulter, 

Inc., Fullerton, CA, USA).  

4.3.3.1 Microsatellite analysis 

A total of 689 SSR markers (Table 4.1) were screened for polymorphism between 

the parental lines W98616 and Argent. The polymerase chain reaction (PCR) was 

assembled in a 25 μl volume containing 100 ng of genomic DNA, 2.5 μl of 10X PCR 

buffer, 200 μM of each dNTP, 0.2 μM of each primer, 1.0 unit of REDTaq DNA 

polymerase (Sigma-Aldrich Canada Ltd., Oakville, Ontario, Canada) and incubated in a 

MyCyclerTM thermal cycler (Bio-Rad Laboratories, Ltd., Mississauga, Ontario, Canada). 

The thermocycling program consisted of an initial denaturation at 95°C for 4.15 min, 

followed by 30 cycles of 45 sec at 95°C, 20 sec at optimized annealing tempratures, 90 

sec at 72°C and a final cycle of 10 min at 72°C. The PCR products were initially 

electrophoresed on 2% (w/v) agarose gel to detect amplification and polymorphism. PCR 

products were also scored on 6% (w/v) denaturing polyacrylamide gel electrophoresis 

(PAGE) to detect the polymorphism. A 4 μl aliquot of PCR product was mixed with 4 μl 

of 2X loading buffer (95% formamide, 10 mM NaOH, 0.05% bromophenol blue and 
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0.05% xyanol blue), denatured at 95°C for 2 min and immediately chilled on ice. 

Samples (3 μl) were loaded on 6% (w/v) denaturing polyacrylamide gels and 

electrophoresis was done (80 watts, 60 milli amperes and 3000 volts for 1 hr) using a 

Model S2 sequencing gel electrophoresis apparatus (Mandel Scientific Company Inc., 

Guelph, Ontario, Canada). The migration of fragments was visualized by silver staining 

as described by the Silver Sequence protocol (Promega, Madison, WI, USA). 

4.3.3.2 Amplified Fragment Length Polymorphism (AFLP) analysis  

AFLP analysis using EcoRI/MseI primer/adaptor combination was performed as 

described by Vos et al. (1995). Genomic DNA (300 ng) in a 10 μl reaction volume 

containing 1 U EcoRI, 2 U MseI, 50 pmol MseI adaptor, 5 pmol EcoRI adaptor, 1U T4 

DNA ligase and 1X digestion-ligation buffer (500 mM Tris Cl pH 7.5, 100 mM MgCl2, 

100 mM DTT, 10 mM ATP, 255 μg/ml BSA and 50 mM NaCl) was incubated overnight 

at room temperature. After ligation, the reaction mixture was diluted to 18 times and 

stored at -20°C. Pre-selective amplification was performed with two primers, one 

corresponding to the EcoRI-end with a pre-selective nucleotide A and another 

corresponding to the MseI-end with a pre-selective nucleotide C. The PCR was 

performed in a 20 μl volume containing 4 μl of DNA (diluted DNA from ligation 

reaction), 2.0 μl of 10X PCR buffer, 200 μM of each dNTP, 58 pmol EcoRI primer and 

57 pmol MseI primer and 1.0 unit of REDTaq DNA polymerase (Sigma-Aldrich Canada 

Ltd., Oakville, Ontario, Canada) in MyCyclerTM thermal cycler (Bio-Rad Laboratories, 

Ltd., Mississauga, Ontario, Canada). The thermocycling program consisted of an initial 

cycle at 72°C for 3 min, followed by 20 cycles of 20 sec at 94°C, 30 sec at 56°C, 2 min at 

72°C and a final step of 30 min at 60°C. The PCR product was diluted 20 times for 

selective amplification. Selective amplification was performed with different EcoRI/MseI 

primer combinations having three selective nucleotides. The PCR was performed in a 20 

μl volume containing 3 μl of DNA (diluted DNA from pre-selective PCR reaction), 2.0 

μl of 10X PCR buffer, 200 μM of each dNTP, 6 ng EcoRI primer and 30 ng MseI primer 

and 1.0 unit of REDTaq DNA polymerase (Sigma-Aldrich Canada Ltd., Oakville, 

Ontario, Canada) in MyCyclerTM thermal cycler (Bio-Rad Laboratories, Ltd., 

Mississauga, Ontario, Canada). The thermocycling program consisted of an initial 
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denaturation at 94°C for 2 min, followed by 20 sec denaturation step at 94°C, 30 sec 

annealing step (see below), 2 min extension step at 72°C. The annealing temperature in 

the first cycle was 66°C, which was subsequently reduced in each cycle by 1°C for the 

next 10 cycles and was continued at 56°C for the remaining 25 cycles. Sixty-four EcoRI 

and MseI AFLP primer combinations were screened for polymorphism and 39 

informative primer pairs were used to genotype the mapping population. The 

nomenclature for an AFLP marker is derived from the enzyme combination, the primer 

combinations, and the molecular weight (bp) of the product. The sizes of AFLP 

polymorphic fragments were determined from scanned images of gels by comparing the 

amplified products to that of standard DNA marker using Quantity One Software (Bio-

Rad Lab, Hercules, CA, USA). 

4.3.3.3 Diversity Array Technology (DArT®) markers  

DArT markers were generated by Triticarte Pty. Ltd. Canberra, Australia 

(http://www.triticarte.com.au), which is a whole-genome profiling service laboratory, as 

described by Wenzl et al. (2004) and Akbari et al. (2006). DNA samples were prepared 

according to the company’s specifications. 100 μl DNA of the parents in duplicate and 90 

DH lines in a 96 well PCR plate were provided for genotyping. The locus designations 

used by Triticarte Pty. Ltd. were adopted in the linkage maps. DArT markers consisted of 

the prefix “wPt”, followed by numbers corresponding to a particular clone in the genomic 

representation, where w stands for wheat, P for PstI (primary restriction enzyme used) 

and t for TaqI (secondary restriction enzyme). 

4.3.3.4 Expressed Sequence Tag (EST) analysis 

The ESTs were selected from C-4AC-4AL12-0.43, C-4AS1-0.20 and 4AL13-

0.59-0.66 deletion bins of chromosome 4A and corresponding regions in the rice genome 

(Table 3). The ESTs were selected based on possible candidate genes involved in 

germination, dormancy and ABA signaling genes. Two oligonucleotide primer pairs for 

each EST were designed using the software Primer3 (Rozen and Skaletsky 2000). 

Primers were designed to amplify a PCR product in the range of 300-500 bp. The PCR 

products that appeared monomorphic by agarose gel analysis were further analysed by 

single strand conformation polymorphism (SSCP) gels (Orita et al. 1989; Tondelli et al. 

2005). 
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4.3.4 Genetic linkage analysis 

JoinMap® 3.0 (van Ooijen and Voorrips 2001) was used for linkage analysis of 

mapping data. Markers were assembled into linkage groups at a LOD score of >3.0. A 

linkage group was assigned to a chromosome when it contained at least three SSR or 

DArT markers or both that had been assigned to a particular chromosome in previously 

published genetic maps (http://wheat.pw.usda.gov/ggpages/map_summary.html; Röder et 

al. 1998; Somers et al. 2004; Akbari et al. 2006; Semagn et al. 2006). Final mapping was 

done by combining two or more linkage groups that belong to the same chromosome. 

The final map was drawn using the MapChart program, v. 2.1 (Voorrips 2002). 

Recombination fractions were converted into genetic map distance in centiMorgans (cM) 

using the Kosambi mapping function (Kosambi et al. 1944). The segregation ratio at each 

locus and its deviation from the expected ratio were determined using the chi-square (χ2) 

test. 

4.3.5 QTL analysis 

MapQTL® 5 (van Ooijen 2004) software was used for QTL analysis using two 

different analysis methods. Firstly, a Kruskal-Wallis rank sum test was performed to find 

the association between individual marker and germination percentage. From this test, 

putative QTL were identified for the markers with mean marker classes significantly 

different at P<0.01. Secondly, identification of major QTL on the genome was carried out 

by interval mapping (Lander and Botstein 1989). A log likelihood (LOD) score threshold 

of 3.0 was used to identify genomic regions containing putative QTL associated with 

PHS resistance.  

 

4.4 RESULTS AND DISCUSSION  

4.4.1 Analysis of germination frequency in doubled haploid population  

There were clear differences in percent germination between Argent and W98616 

and DH lines differed significantly in percent germination at 20ºC.  The results shown in 

Figures 4.2 and 4.3 are based on the mean averaged over two years and two locations 

each year. W98616 (dormant) and Argent (non-dormant) parents showed germination 

percentage of 4% and 97%, respectively (Figure 4.3). Percent germination for the DH 



 59

lines differed significantly and ranged from 8 to 97% for DH lines. The DH lines showed 

a continuous distribution (Figure 4.2) of trait values which is in agreement with the 

distribution expected for a quantitatively inherited trait. The germination frequencies 

separated the dormant and non-dormant DH lines in both years, which indicated that the 

germination test is a reliable predictor for PHS resistance or seed dormancy in bread 

wheat (Chapter 3). Overall, a higher dormancy level was observed for DH lines in 2003 

relative to 2002. Based on the germination percentage of DH population, 20 dormant 

lines (germination < 28%) and 20 non-dormant lines (germination > 83%) were used for 

mapping SSR and AFLP markers, whereas, 90 lines (40 from both extremes and 50 in the 

midrange) were used for mapping DArT markers (Figure 4.3).  

4.4.2 Genetic linkage map of Argent X W98616 

A total of 689 SSR markers (Table 4.1) were screened for polymorphism between 

the parent lines Argent and W98616. Between the two parents 316 (45.9%) of SSR 

markers showed polymorphism for one or more alleles. Fifty-two (16.5%) of 

polymorphic SSR primer pairs amplified more than one polymorphic allele between the 

two parents. Röder et al. (1998) also reported 20% of gwm primer pairs amplifying more 

than one locus. About 90% of the wheat genome consists of repetitive DNA, of which 

more than 50% are retro-elements (Li et al. 2004). If a SSR marker resides within these 

sequences, non-orthologous loci could be amplified (Röder et al. 1998).  

Sixty-four EcoRI and MseI AFLP primer combinations were screened for 

polymorphism and 39 informative primer pairs were used to genotype the mapping 

population (Table 4.2). Three hundred and six polymorphic markers were scored ranging 

from 2 to16 markers per EcoRI and MseI AFLP primer combination. Twenty-five primer 

combinations resulted in either poor amplification or showed no polymorphism between 

parents, and thus, were not used for genotyping the mapping population. 

The genotyping data of 295 DArT markers was generated by Triticarte Pty. Ltd. 

Canberra, Australia. Twenty-eight DArT markers were not included in linkage analysis 

because they were either monomorphic in the parents but polymorphic in the population 

or data on parents was missing. The overall call rate and P value of DArT markers was 

94.69% and 84.97%, respectively.  
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Figure 4.2. Frequency distribution of germination percentage at 20ºC for Argent x 

W98616 DH population. (Source: Matus-Cádiz and Hucl, Dept. of Plant Sciences, Univ. 

of Saskatchewan). 
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Figure 4.3. Germination percentage for 90 lines of Argent x W98616 DH population. 

DH lines represented by with black bars were used for mapping SSR and AFLP markers, 

and all 90 DH were used for mapping DArT markers. 
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A total of 972 polymorphic markers (390 SSR, 306 AFLP, 267 DArT and 9 EST) 

were obtained from the Argent / W98616 mapping population. Out of 972 markers, 913 

markers (356 SSR, 290 AFLP, 258 DArT and 9 EST) were mapped on different wheat 

chromosomes (Table 4.3; 4.4), whereas 59 markers (34 SSR, 16 AFLP, 9 DArT) could 

not be mapped to any linkage group. Most of the unmapped SSR markers belonged to 

SSR primers which amplified more than one allele. The distribution of the markers 

among the 21 chromosomes was uneven, with the D genome showing lower 

polymorphism than the A and B genomes (Table 4.4). The number of markers on 

chromosomes ranged from 12 makers on 2D to 91 markers on 2B. The B genome had the 

highest number of markers (425), followed by A and D genomes with 312 and 176 

markers, respectively. There was also variation in the number of markers on 

homoeologous groups. The homoeologous groups 1 and 7 had 152 markers, whereas, 

homoeologous group 3 had the lowest number of markers (99). 

The genetic length of wheat chromosomes ranged from 26 cM on 2D to 183 cM 

on 5B. A, B and D genomes had genetic length of 962, 888 and 727 cM, respectively, 

with a total genome coverage of 2,577 cM. Similar sizes of maps were reported by 

Somers et al. (2004) covering 2,569 cM and a winter wheat map of 2,873 cM by Båga et 

al. (2007). However, genetic maps of 3,685 cM and 3,522 cM in length have been 

reported (Sourdille et al. 2003; Quarrie et al. 2005). The genetic length of maps derived 

from recombinant inbred lines (RILs) is generally longer compared to doubled haploid 

populations due to increased number of meiosis, and thus recombinations in RILs than 

DH lines (Somers et al. 2004). 

The density of markers ranged from 2.0 cM/marker on 2B to 10.8 cM/marker on 

4D, with an average of 3.7 cM/marker. There was variation in marker density on different 

homoeologous groups, ranging from 2.4 cM/marker for group 2 to 4.5 cM/ marker for 

group 3 chromosomes. The marker density in the B genome was the highest (2.7 

cM/marker), followed by the A genome with 4.0 cM/marker. The D genome had the 

lowest marker density (5.4 cM/marker) compared to the A and B genomes. The low 

polymorphism in the D genome compared to the A and B genomes is well known and it 

is in agreement with the hypothesis of a monophyletic introduction of the D genome in  
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Table 4.1. Summary of SSR markers used in this study. 

 

 

SSR used in the study 

 

 

SSR code 

Total Polymorphic Polymorphism % 

 

Source 

gwm 207 107 51.7 Röder et al. 1998 

wmc 176 82 46.6 http://wheat.pw.usda.gov 

barc 186 84 45.2 http://wheat.pw.usda.gov 

cfa 20 5 25.0 http://wheat.pw.usda.gov 

cfd 81 27 33.3 http://wheat.pw.usda.gov 

gdm 11 8 72.7 Pestsova et al. 2000 

DuPw 2 1 50 Eujayl et al. 2002 

ksum 5 1 20 http://wheat.pw.usda.gov 

gpw 1 1 100 Nicot et al. 2004 

Total 689 316 45.9  
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Table 4.2. AFLP primer pair combinations with selective bases and number of 

polymorphic bands. 

 

 

M47 

 

M48 

 

M49 

 

M50 

 

M59 

 

M60 

 

M61 

 

M62 

MseI 

primer 

 

EcoRI 

primer 

 

 

 

Selective 

bases 

 

CAA 

 

CAC 

 

CAG 

 

CAT 

 

CTA 

 

CTC 

 

CTG 

 

CTT 

E32 AAC -* 6 8 - - - - - 

E33 AAG - 2 - - - - 6 - 

E35 ACA - 3 7 - - 3 9 7 

E36 ACC - - 13 6 - - 10 7 

E37 ACG 13 11 12 3 - 6 4 12 

E38 ACT - - 11 6 - 16 - 3 

E40 AGC - 11 12 5 9 6 6 11 

E41 AGG 2 8 10 13 8 4 10 5 

*- Poor amplification 

 

 

 

 

 



 64

Table 4.3.  Expressed sequence tags (EST) mapped in this study. 

 

 
EST Putative function  

 

Primer sequence 

(5' - 3') 

BE406676 Oxalate oxidase GF-2.8 precursor (Germin) Forward- GGTTCTGAAGGCTGAACTGC 

Reverse- CATGAACCGTGTGGACTTTG 

BE426203 Translocation protein TolB precursor Forward- AACGTCATCTTCTTCCACCG 

Reverse- TACTCGTAGCGACTGTGCGT 

BE426646 Putative transport protein  Forward- AAAGTGGTGGCTCATCTGCT 

Reverse- CTGCCTAAAAAGCCATCTCG 

BE442666 Lipoxygenase Forward- CAACAAGCTGGAAGGCAACT 

Reverse- ATGGCAGGGTACTCGTTCAC 

BQ170322 Signal transduction (Ca  binding motif / Calmodulin)  Forward- CGCAAGATGAAGGACACTGA 

Reverse- CACCAGGGAGGACACAAGTT 

CD920298 ABA induced plasma membrane protein PM19 Forward- TAACCATGCTGGTGGATACG 

Reverse- CATCCACATCCAGACACTGC 

U80037  ABA induced plasma membrane protein PM19 Forward- CTGGTGCTGAACCTCATCAT 

Reverse-  CATGGTTGCCAAACTGGTTC 

P450 (Rice 

chromosome 3) 

P450 monooxygenase  Forward- GTATGCTGTCCCGTGGTTCT 

Reverse- GACAGGAGGTCGTGCTTCTC 

 

64 
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Table 4.4. The distribution of SSR, AFLP, DArT® and EST markers and the 

density of markers on the genetic linkage map of Argent x W98616. 

 

No. of markers 
 

Chromosome 

SSR AFLP DArT EST Total Unique 
loci 

No. of 
Linkage 
groups 

Genetic 
length 

Marker 
density 

(cM/marker)

1A 18 21 14 0 53 38 1 154 4.1 
1B 18 26 19 0 63 45 2 132 2.9 
1D 17 7 12 0 36 28 1 80 2.9 
2A 17 11 7 0 35 26 3 77 3.0 
2B 23 39 28 1 91 65 3 132 2.0 
2D 8 2 2 0 12 8 3 26 3.3 
3A 21 11 11 0 43 37 2 172 4.6 
3B 9 5 14 0 28 25 3 96 3.8 
3D 13 8 7 0 28 18 2 90 5.0 
4A 24 18 14 2 58 46 2 133 2.9 
4B 14 8 8 3 33 28 2 74 2.6 
4D 13 3 1 0 17 11 2 119 10.8 
5A 16 4 3 0 23 18 3 137 7.6 
5B 25 30 30 1 86 67 1 183 2.7 
5D 22 3 6 1 32 28 2 175 6.3 
6A 10 10 17 0 37 30 2 116 3.9 
6B 16 25 20 0 61 46 2 150 3.3 
6D 17 5 3 0 25 19 3 97 5.1 
7A 23 30 9 1 63 44 2 173 3.9 
7B 16 20 27 0 63 48 1 121 2.5 
7D 16 4 6 0 26 23 2 140 6.1 
A genome 129 105 75 3 312 239 15 962 4.0 
B genome 121 153 146 5 425 324 14 888 2.7 
D genome 106 32 37 1 176 135 15 727 5.4 
Group1 53 54 45 0 152 111 4 366 3.3 
Group2 48 52 37 1 138 99 9 235 2.4 
Group3 43 24 32 0 99 80 7 358 4.5 
Group4 51 29 23 5 108 85 6 326 3.8 
Group5 63 36 39 2 141 113 6 495 4.4 
Group6 43 40 40 0 123 95 7 363 3.8 
Group7 55 54 42 1 152 115 5 434 3.8 
Total 356 290 258 9 913 698 44 2577 3.7 
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bread wheat (Lagudah et al. 1991). Also, the D genome has a lower DNA content (4,024 

Mb) than A. speltoides, the B-genome donor (4,886 Mb), and T. monococcum, the A- 

genome donor (5,751 Mb) (Arumuganathan and Earle 1991; Bennett and Leitch 1995). 

The high level of polymorphism in B genome of wheat may be that B genome has 

evolved more rapidly compared to the A and D genomes since the emergence of 

polyploidy (Sourdille et al. 2001). It may also be due to the outcrossing behavior of 

Aegilops speltoides or the B genome could have a polyphyletic origin as suggested by 

Vardi (1973).  

A total of 913 loci could be arranged into 44 linkage groups (Figure 4.4). Each 

linkage group was assigned at a LOD score of > 3.0. The linkage group on different 

chromosomes varied from one to three. Only four chromosomes viz. 1A, 1D, 5B, 7B, 

were represented by a single linkage group. The homoeologous group 2, and 

chromosomes, 3B, 4D and 6D had three linkage groups, whereas, the remaining 

chromosomes each had two linkage groups. The main reason for the occurance of 

multiple linkage groups was that only 40 DH lines were used for mapping SSR and 

AFLP markers. However, for DArT markers, 90 DH lines were used for genotyping. 

There could be some disagreement in the order of closely linked markers with the 

consensus map. In a smaller population the chances of informative recombinant progeny 

lines occurring in the mapping population to accurately position the markers is lower than 

in a larger population (Somers et al. 2004). The marker order is also conditioned by the 

population used and position of the cross-over along the chromosomes within the 

mapping population (Somers et al. 2004). 

 With a few exceptions, chromosomal location and marker order were similar to 

other published maps (Röder et al. 1998; Somers et al. 2004; Båga et al. 2007; 

http://wheat.pw.usda.gov/ggpages/map_summary.html; http://www.diversityarrays.com). 

A total of 22 (2.4%) loci showed different chromosomal locations (Table 4.5). These 

discrepancies between maps are likely due to mapping population size and genetic 

backgrounds, limitations of the software to resolve alternative markers, error in 

polymorphism scoring and different paralogous alleles scored in different mapping 

studies (Båga et al. 2007). Earlier studies also reported these discrepancies in 

chromosomal location of SSR and RFLP markers (Båga et al. 2007; Singh et al. 2007a). 
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Seventeen DArT markers were not mapped previously (Table 4.5) and the chromosomal 

location of these markers in this map may help in integrating these markers in future 

mapping studies.  

4.4.2.1 Segregation distortion 

The segregation ratios of all the markers were tested for fit to the expected 1:1 

ratio by Chi-squared analysis. Of the markers used for mapping, 87 markers showed 

segregation distortion. Among the 87 distorted loci, 64 (7.02%) and 23 (2.52%) showed 

distortion at p<0.05 and p<0.01. Forty-one markers showed segregation distortion in 

favour of Argent and 46 showed segregation towards W98616. Distorted regions favoring 

the Argent allele were found on chromosomes 2B, 3B, 3D, 6A and 6D, whereas, regions 

on chromosomes 1B, 4A, 5B, 5D, 7A and 7D showed preference for W98616 alleles  

(Figure 4.4). The markers with distorted segregation were not randomly distributed and 

most of these markers were clustered in distorted regions on the chromosomes. 

Segregation distortion is a common phenomenon in all mapping populations (F2, DH or 

RILs) and RILs have the highest probability of distortions due to continued selfing for 

five to six generations (Singh et al. 2007a). Segregation distortions have been reported in 

all the interspecific or intraspecific crosses used for generating linkage maps in diploid 

and hexaploid wheat species (Paillard et al. 2003; Liu et al. 2005 and Singh et al. 2007a). 

Segregation distortion in interspecific and intraspecific crosses mainly results from 

competition among male gametes in fertilization or from abortion of male gametes or 

zygotes (Lyttle 1991). Genetic differences among pollen may lead to gametophyte 

competition and selection, which result in non-random fertilization. Alternatively, hybrid 

sterility genes that cause the abortion of specific gamete or zygote genotypes can give 

rise to segregation distortion (Faris et al. 1998). Sears and Sears (1978) were unable to 

recover a telo-7DL plant in ‘Chinese Spring’. It may be possible that the distorted 

segregation observed on 7D was caused by a gametophyte selection factor. A hybrid male 

sterlity (ms) gene is known to exists on 4B (Sears 1966) and it may be possible that a 

homoeoallele exists on 4A. The evidence of preferential male transmission factors 

present on 5DL could be a reason that ditelosomic 5AS, 5BS and 5DS are the few 

unavailable ditelosomic lines of Chinese Spring wheat (Faris et al. 1998). There are 

several other reasons for explaining non-Mendelian segregation within wheat × maize- 
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Table 4.5. Markers mapped on different chromosomes in the Argent x W98616 DH 

mapping population compared to published studies. 

 

Markers 

 

Chr. 

 

Previously 

mapped 

Markers 

 

Chr. 

 

Previously  

mapped 

wPt-1179 7A 5B wPt-8760 2B  

wPt-1695 6A 6D wPt-8849 7B   

wPt-2410 2B   wPt-9205 5B 6A 

wPt-2479 6B   wPt-9215 7B 3A 

wPt-2587 6B   barc28 2A,6B  1A,5B 

wPt-3773 4A  barc90 4B 2D,7B 

wPt-4415 6B  barc287 1D 1A 

wPt-5188 6B 2B/6A cfa2141 5B 5A,5D,2D 

wPt-5558 4B   gwm32 2B 3A 

wPt-6199 2B  gwm44 5B 4A,7D 

wPt-6239 3B  gwm107 1B 3B,4B,6B 

wPt-6376 3B   gwm132 7B 2B,6A,6B,6D 

wPt-6673 7B   gwm304 1D 2A,5A 

wPt-6878 6B   gwm340 3A 3B 

wPt-7320 2B   gwm410 4D 2B,5A 

wPt-7629 2A   gwm448 6A 2A,2D,4B 

wPt-7642 7D 6B gwm558 1A 2A 

wPt-7894 7B  gwm642 6A 1D 

wPt-7906 6A  wmc762 7A 3B 

       

      Refer to the following links to find the previously mapped position of markers:  

http://wheat.pw.usda.gov/ggpages/map_summary.html;   

http://www.diversityarrays.com 
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Figure 4.4. Genetic linkage map of Argent x W98616 DH population and location of 

markers associated with PHS resistance. Loci that cosegregated are grouped beside a 

vertical line on the right side of chromosome bars. Marker positions are given in 

Kosambi cM on the left side of chromosome bars. Microsatellites amplifying more than 

one locus have the suffix “.1”, “.2” or “.3”. Single markers associated with PHS 

resistance based on Kruskal-Wallis test are indicated by ** (p<0.05), *** (p<0.01), **** 

(p<0.005), ***** (p<0.001), ****** (p<0.0005), ******* (p<0.0001) in four trials 

Kernen farm (KF) and Seed farm (SF) in 2002 and 2003. Markers in magenta and red 

colours are distorted in favor of W98616 and Argent alleles, respectively. 



 70

 



 71

 

 
 

 

 

 

 

 



 72

 



 73

 



 74

 
 

 

 



 75

 

 

 
 

 

 

 



 76

 

derived doubled haploid populations. These include heterogeneity within the parents, 

selection associated with the doubled haploid production process, outcrossing and 

admixture of seed during increase for trials (Kammholz et al. 2001). Segregation 

distortion of particular loci could cause serious problems in plant breeding if they are 

closely linked to agronomically important genes. 

4.4.3 Chromosomal regions associated with PHS 

Single marker analysis of the phenotypic and genotypic data revealed ten 

chromosomes;   1A, 1B, 2B, 3A, 4A, 5B, 6A, 6B, 7A and 7D involved in PHS resistance 

with the threshold significance value set to P<0.01 (Figure 4.4). The putative QTL on 

chromosome 1A, 3A, 4A, 5B, 6B, 7A and 7D were represented by multiple markers and 

were significant in all four trials. The QTL on chromosomes 1B and 6A, and 2A were 

significant in two and three trials, respectively. In all the putative QTL revealed from 

single marker analysis, the increase in dormancy or decrease in percent germination was 

contributed by the alleles from the dormant parent (Table 4.6). Two putative QTL on 

chromosome 4A were suggested based on P-value, where markers DuPw004 (36cM) and 

wPT-4660 (51cM) showed peak values (Table 4.6).  

Interval mapping using MapQTL5 (van Ooijen, 2004) was performed to identify 

genomic regions containing the putative QTL. The significant threshold LOD score 

(P=0.05) for detection of QTL on the whole genome was determined on 1,000 

permutation tests (Churchill and Doerge 1994). In this study, the permutation tests 

estimated significant LOD scores of 3.7, 3.7, 3.5 and 4.5 in KF2002, SF2002, KF2003 

and SF2003 trials, respectively. Five genomic regions on chromosomes 1A, 3A, 4A, 7A 

and 7D were detected by interval mapping (Figure 4.5). These QTL accounted for 14-

15% (2 trails), 15-16% (2 trials), 11-30% (3 trials), 19-23% (2 trials) and 27-31% (2 

trials) of phenotypic variance, respectively, and were all contributed by the dormant 

parent, W98616.  

In bread wheat, all chromosomes except chromosome 1D have been reported to 

carry QTL for PHS resistance or dormancy (Flintham et al. 2002). The QTL on 

chromosome 1A was located between 60-70 cM and likely resides near the centromeric 
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                     Table 4.6. Chromosomal regions associated with PHS resistance in the Argent x W98616 mapping population. 
 

 

Significance (p-value)c 

Trial site and year 

Meand Chromosome Positiona 

(cM) 

Peak 

Marker(s)b 

KF2002 SF2002 KF2003 SF2003 

LOD 

Argent W98616 

1A 62.1 gwm164 **** ******* ****** ***** 4.26 64 40 

 69.3 wPt9592 ****** ******* ******* ****** 4.44 65 38 

3A 156.4 gwm340 *** *** ***** *** 3.77 66 27 

 156.5 wPt0398 ****** ****** ******* **** 3.77 58 33 

4A 22.7 gwm397 ******* ** ****** ******* 4.97 60 41 

 37.4 CD920298 ******* ****** ****** ******* 5.77 80 22 

 50.7 wPt4660 ******* ****** ******* ******* 9.58 71 33 

7A 18.2 E38M62_188 *** ****** **** *** 3.85 77 36 

7D 30.4 E33M61_160 ** *** **** ** 3.32 72 37 
 
                              aChromosomal position in centiMorgans (cM) 
                              bMarkers with highest p-value 
                             c Significance level: ** (p<0.05), *** (p<0.01), **** (p<0.005), ***** (p<0.001), ****** (p<0.0005), *******     

(p<0.0001). 
                             d Phenotypic mean value of germination percentage from the trial with underlined p-value. 
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Figure 4.5. Interval maps of QTL for PHS resistance on chromosomes 1A, 3A, 4A, 

7A and 7D. Horizontal dashed line (         ) indicates the genome-wide threshold LOD 

score determined in each trial. KF2002, SF2002, KF2003, SF2003 indicates four trials at 

Kernen Farm (KF) and Seed Farm (SF) in 2002 and 2003. 
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region. Zanetti et al. (2000) reported a QTL for Falling Number in a wheat x spelt cross at 

60 cM and a QTL for α-amylase activity at 64 cM. The QTL in our study may 

corresponds to the QTL for Falling Number and α-amylase activity because the position 

of Xpsr1327 reported by Zanetti et al. (2000) is close to the gwm164 and gwm357 

markers. There is an inverse curvilinear relationship between α-amylase activity and 

Falling Number (Mares 1987b) but Falling Number values fluctuate widely depending on 

the degree of ripening and the amount of rainfall prior to harvest (Mares 1993). Also 

Falling Number and enzymatic tests do not measure the ungerminated seed’s ability to 

sprout under optimum conditions (Hagemann and Ciha 1984). The QTL on chromosome 

1A may likely be associated with α-amylase activity or Falling Number and may not be 

associated with grain dormancy per se. Two QTL were also reported on the short arm of 

chromosome 1A based on RFLP analysis (Anderson et al. 1993).   

The QTL on chromosome 3A was identified at the end of long arm between 

gwm340 and wPt-1596. The QTL on 3AL in our study corresponds to the QTL identified 

by Groos et al. (2002) and Kulwal et al. (2005). Osa et al. (2003) identified PHS 

resistance QTL on both arms of 3A, a major QTL on 3AS (QPhs.ocs-1) and a minor QTL 

on 3AL (QPhs.ocs-2) located between the centromere and taVp1 locus. The wheat taVp1 

locus was mapped 30 cM from the centromere and about 30 cM proximal to the red grain 

(R) locus that controls seed colour and coat imposed dormancy (Bailey et al. 1999). The 

expression levels of the Vp1 correlates with the level of seed dormancy in dormant and 

non-dormant cultivars (Nakamura and Toyama 2001). However, McKibbin et al. (1999) 

reported that the abundance of taVp1 transcript was similar in developing embryos of 

dormant and non-dormant genotypes and might not be associated with the level of 

dormancy of the wheat grain. Later studies showed that mis-splicing of VP1 gene 

contributes to the susceptibility to PHS in hexaploid wheats (McKibbin et al. 2002). 

However, in this study there was no LOD peak in the TaVP1 region and thus grain 

dormancy in this population is not expected due to the direct effect of TaVP1.  

Interval mapping revealed two peaks on chromosome 4A in marker intervals 

gwm397/wmc650 and wmc707/wmc161. Mapping of more markers may resolve whether 

the two peaks correspond to two different QTL or one. Very few markers have been 

reported in the genomic region between gwm397 and wmc161 in most of the genetic 
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maps. The QTL on 4AL was likely located in bin 4AL13-0.59-0.66 based on available 

markers. In our study we were able to map one EST (CD920298) (Table 4.3) to that 

region. This EST was described as ABA induced plasma membrane protein PM19 

(http://www.ncbi.nlm.nih.gov/). Tan et al. (2006) also reported a QTL between marker 

interval gwm397 and wPt-2788. A highly significant QTL on chromosome 4A associated 

with grain dormancy was identified in three bread wheat genotypes, two white-grained 

wheats (AUS 1408 and SW95-50213) and one red-grained wheat (AUS 1490) (Mares et 

al. 2005). Based on the comparisons between dormant red and white genotypes, and a 

white mutant derived from the red genotype, they postulated that the 4A locus confers an 

intermediate dormancy on its own and a dormant phenotype when combined with the red 

pigmentation genes in red wheat and unidentified gene(s) in white wheats. Noda et al. 

(2002) suggested that wheat embryo sensitivity to germination inhibition by abscisic acid 

(ABA) and dormancy is controlled by major gene(s) located on the long arm of 

chromosome 4A. In cereal crops, embryo sensitivity to ABA has been shown to be a key 

factor in the mechanism of seed dormancy (Walker-Simmons 1987; Kawakami et al. 

1997). ABA signaling genes were also mapped between gwm397 and gwm637 in a 

population of diploid wheat RILs derived from a cross between Triticum monococcum 

and T. boeoticum for identification of QTL for dormancy (Nakamura et al. 2007). One 

major QTL on the long arm of 5Am, two minor QTL on the long arm of 3Am and one 

minor QTL on the long arm of 4Am were detected. They concluded that the minor QTL 

on 4Am is orthologous to the QTL identified in previous studies (Mares et al. 2005; 

Torada et al. 2005). Three major haplotypes were observed on chromosome 4AL, 

designated RL4137-type allele, AUS1408-type allele and synthetic-hexaploid-type allele 

in a study of haplotype diversity of PHS QTL in wheat (Ogbonnaya et al. 2007). These 

results indicated that RL4137-type allele was prevalent in Canadian cultivars and RL4137 

is one of the grand-parents in our mapping population (Figure 4.1). 

The QTL on short arm of chromosome 7A spans a 21 cM marker interval between 

barc222/gwm573. This region corresponds to the locus Xpsp3050 associated with PHS 

resistance reported in a mapping population of RL4137 x Timgalen (Flintham et al. 

2002). This locus may be another PHS resistance allele contributed by RL4137 in both 

our population and Flintham et al. (2002) population.  



 81

The QTL on chromosome 7D showed a peak in marker interval gdm67/wPt7642, 

but the marker E33M61_160 in this region has a highest LOD score of 3.3. This genomic 

region corresponds to the location of the α-Amy-D2 locus on the long arm of 

chromosome 7D. During germination, the products of the two gene families α-Amy-1 and 

α-Amy-2 are present (Gale and Ainsworth 1984). Han et al. (1997) demonstrated that 

marker-assisted selection for a QTL associated with a marker Amy2 was highly effective 

in improving α-amylase activity and other malting characteristics. Varshney et al. (2001) 

also reported a QTL for PHS resistance on 7DL. 

 

4.5 CONCLUSIONS  

Insufficient seed dormancy at harvest can contribute to pre-harvest sprouting in 

bread wheat. This undesirable trait negatively impacts grain producers and the processing 

industry in terms of economic losses and functional quality of the wheat flour. White-

grained wheat genotypes are more prone to PHS as compared to red-grained wheat 

genotypes, although some white-grained wheats have relatively high levels of PHS 

resistance. Seed dormancy is an important trait for white-grained wheat breeding 

programs in order to prevent PHS. Seed dormancy and tolerance to PHS in wheat are 

complex traits, expressed as quantitatively inherited traits. The improvement of PHS 

resistance based on phenotypic selection is a difficult process because environments 

favorable for PHS are not always available and the controlled environments may not 

prove to be suitable to screen large numbers of breeding lines. Marker-assisted selection 

could provide a tool to overcome these difficulties. In this study, a detailed genetic map 

covering 2,577 cM of the wheat genome was developed on a mapping population derived 

from two parents differing widely in PHS. Five genomic regions on chromosomes 1A, 

3A, 4A, 7A and 7D were found to be associated with PHS resistance and all five QTL 

were contributed by the white-grained and dormant parent, W98616. As these QTL are 

not related to red-grain colour, they should be of particular interest for breeding white-

grained wheat genotypes with increased PHS resistance. Synteny between wheat, 

Brachypodium and rice genomes may be one of the strategies to saturate the genomic 

regions of PHS resistance with more markers. This strategy is not straight forward as 

micro-syntenic rearrangements may complicate the transfer of genomic information from 
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rice to wheat (Li et al. 2004). Another strategy may be the use of Target region amplified 

polymorphism (TRAP) markers (Hu and Vick 2003) in which one fixed primer is 

designed from a known EST, while the other primer is arbitrary with an AT- or GC-rich 

core to anneal with an intron or exon. This genetic map may also be helpful in detecting 

QTL for other quality or agronomic traits if the parents differ in those traits. 
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CHAPTER 5 

VALIDATION OF MOLECULAR MARKERS FOR PHS 

RESISTANCE IN BREAD WHEAT             

                 
5.1 ABSTRACT 

The selection for pre-harvest sprouting (PHS) resistance in bread wheat (Triticum 

aestivum L.) in early generations during breeding process is difficult because it is 

expressed as a quantitatively inherited trait and subject to environmental effects. The 

objectives of this study were to validate a major quantitative trait locus (QTL) for pre-

harvest sprouting (PHS) resistance on chromosome 4A in bread wheat and to isolate near-

isogenic lines for this QTL using marker-assisted selection (MAS). A total of 60 

Canadian wheat cultivars and experimental lines were screened with three SSR markers 

in the QTL region for PHS resistance. The SSR markers DuPw004, barc170 and wmc650 

explained 67%, 75% and 60% of total variation in germination (%), respectively, among 

different wheat genotypes. Marker assisted back crossing with DuPw 004 reduced the 

population size in BC1F1 and BC2F1 generation by 41% and 59%, respectively. A survey 

of pedigrees of different genotypes revealed that RL4137 is a major source of increased 

PHS resistance in a number of Western Canadian wheat cultivars. These microsatellite 

markers (DuPw004, barc170 and wmc650) will be useful for the plant breeders to 

pyramid this QTL with QTL from other PHS resistance sources.  

5.2 INTRODUCTION 

Pre-harvest sprouting (PHS) is the in-spike germination of physiologically mature 

grain in response to relatively high humidity due to untimely rains prior to harvest. PHS 

in bread wheat (Triticum aestivum L.) results in substantial economic loss, as it causes 

yield loss due to a reduction in grain weight and decreases the functional quality of the 

wheat flour.  In Western Canada, the estimated economic losses due to PHS were up to 

$400 million for the period 1978-1988 (Derera 1990). The flour from sprouted wheat 



 84

leads to sticky dough, and breads baked from this have a sticky crumb, dark-coloured 

crust and large holes in the loaves that are difficult to slice (Mares et al. 2004). Noodles 

made from sprouted wheat show a five-fold greater number of spots as compared with 

alkaline noodles made from sound flour (Hatcher and Symons 2000). Breeding for PHS 

tolerance in wheat is challenging on a phenotypic basis because PHS is inherited 

quantitatively and it is highly influenced by environmental conditions (Anderson et al. 

1993). Seed dormancy confers PHS resistance (Mares 1987a), but little is known about 

the genetic factors regulating seed dormancy in cereals. Red grain colour is a traditional 

marker for resistance to sprouting in wheat improvement programs. White-grained wheat 

is generally more susceptible to PHS than red-grained wheat, although both groups vary 

in PHS (Bassoi and Flintham 2005). Molecular markers linked to the PHS resistance trait 

represent a more reliable tool for selecting PHS resistant genotypes at early stages in 

wheat breeding programs. SSR (simple sequence repeat) or microsatellite markers have 

become a DNA marker system of choice in wheat. Several SSR markers have been 

identified which are linked to disease, insect, agronomic and grain quality traits in wheat 

(Huang et al. 2000; Liu et al. 2001; Huang et al. 2006).        

Once a target trait has been identified and tagged, breeders can use the molecular 

markers to efficiently and effectively accelerate the crop improvement programs by 

tracing the favorable alleles in the genomic background of genotype to be improved and 

ensuring the presence of elite alleles at the selected loci through repeated cycle of 

selection (Dreher et al. 2003). Marker-assisted selection (MAS) is based on genetic 

information retrieved through the application of molecular markers. MAS involves using 

the presence/absence of a marker as a substitute for/or, to assist in phenotypic selection, 

in a way which may make it more efficient, effective, reliable and cost-effective 

compared to conventional plant breeding methodology. Marker-assisted selection has 

several advantages; selection of genotypes at an early growth stage, elimination of 

environmental effects, selection for traits with low heritability and gene pyramiding 

(Collard et al. 2005). Backcross breeding is a well-known procedure for the introgression 

of a target gene from a donor genotype into the genomic background of an elite recipient 

genotype. The objective is to increase the recipient genome content of the progeny, by 

repeated backcrosses to the recipient line.  
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The aim of this study was to test if any of the microsatellite markers associated 

with a major QTL on chromosome 4A for PHS resistance could be used across different 

genetic backgrounds to identify PHS resistant lines and to incorporate this allele in elite 

genotypes through marker-assisted backcrossing. These markers may be suitable for 

marker assisted selection of increased PHS tolerance.   

 

5.3 MATERIALS AND METHODS  

5.3.1 Plant materials 

Sixty wheat lines and cultivars (Table 5.1; Table 5.2) were obtained from the 

Crop Development Centre, University of Saskatchewan, Saskatoon, Canada for the 

validation of markers. A 42-entry (Table 5.2), four replicate trials in RCBD experimental 

design was grown at Seed Farm, University of Saskatchewan, Saskatoon, Canada in 

2006. At Zadoks’ Growth Stage 92 (Zadoks et al. 1974), 50 spikes per plot were 

harvested. The spikes were held at room temperature for seven days, bulk threshed using 

a rubber belt thresher and seeds were stored in a freezer at -20˚C. The seed samples were 

removed from a freezer (-20˚C) and stored at room temperature for three weeks before 

dormancy testing. Thirty advanced lines (F7), 113 BC1F1 plants and 102 BC2F1 from 

different crosses were also used in this study (Table 5.3; Table 5.4). 

5.3.2 Germination assay 

Fifty seeds were placed in Petri plates (8 cm diameter), containing a Whatman #1 

filter paper soaked with 3.0 ml of distilled water. The Petri plates were placed in a large 

plastic container containing water saturated paper towels and incubated at 20°C. The 

germination count was done after seven days. Non germinated seeds were treated with 

0.05% (w/v) gibberellic acid (GA3) solution (1 ml/Petri plate) and incubated at 12°C. The 

final germination count was done after seven days to determine the seed viability. 

5.3.3 DNA extraction and molecular marker analysis 

Leaves were harvested from 2-3 weeks old seedlings grown in a growth chamber 

under an 18 hr photoperiod (250 µmol m-2 s-1 light intensity, 23°C day and 18°C night 

temperature). The leaves were freeze dried and an aliquout of 50 mg was ground to a fine 

powder in a 2 ml centrifuge tube containing two glass beads (5 mm) using a grinding 

apparatus at 50 MHz for 10 min. Total genomic DNA was isolated from the pulverized 
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leaves using the CTAB method (Doyle and Doyle 1990). For molecular marker analysis, 

a polymerase chain reaction (PCR) was performed in a 25 μl volume containing 100 ng 

of genomic DNA, 2.5 μl of 10X PCR buffer (Fermentas), 200 μM of each dNTP, 0.2 μM 

of each primer, 1.5 mM MgCl2 and 1.0 unit of Taq DNA polymerase (Fermentas) in 

MyCyclerTM thermal cycler (Bio-Rad). The thermocycling program consisted of an initial 

denaturation at 95°C for 4.15 min, followed by 30 cycles of 45 sec at 95°C, 20 sec at 

annealing temprature, 90 sec at 72°C and a final cycle of 10 min at 72°C. The following 

annealing temperatures were used: barc170 (60°C), wmc650 (60°C) and DuPw004 

(65°C). The DuPw004 products were separated by 2% (w/v) agarose gel electrophoresis 

and gel was stained with ethidium bromide. PCR products for barc170 and wmc650 were 

separated by 6% denaturing polyacrylamide gel electrophoresis and gel was stained with 

silver nitrate. 

5.3.4 Data analysis 

Single-marker linear regression analysis was used to determine the association 

between molecular marker and germination (%). The marker allele nd (non-dormant) was 

coded 0 and the allele d (dormant) was coded 1 for conducting regression analysis. The 

magnitude of the marker-associated phenotypic effect was described by the coefficient of 

determination (R2) which is a fraction of the total variance accounted by the marker 

genotype.  

 

5.4 RESULTS AND DISCUSSION 

5.4.1 Marker validation 

A major QTL for PHS resistance on Chromosome 4A has been mapped in a 

doubled haploid mapping population of ‘Argent’ (white-grained, non-dormant) x 

‘W98616’ (white-grained, dormant) (Chapter 4). Three SSR marker alleles, DuPw004 

(200 bp), barc170 (158 bp) and wmc650 (109 bp), inherited from the dormant parent 

(‘W98616’), whereas non-dormant parent (‘Argent’) carried the DuPw004 (300 bp), 

barc170 (177 bp) and wmc650 (90 bp) alleles. To test these three markers in different 

genetic backgrounds, initially we selected genotypes (Table 5.1) for which information 

about seed dormancy were available in previous studies (Osanai and Amano 1993; Hucl 

and Matus-Cádiz 2002a; Hucl and Matus-Cádiz 2002b; Hucl, personal communication). 
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A PCR product of 200 bp was amplified from all the PHS resistant wheat lines (Figure 

5.1). The same marker produced a 300 bp allele from PHS susceptible wheat lines. 

Similarly, dormant parent amplified a PCR product of 158bp and 109bp with barc170 and 

wmc650 SSR markers, respectively (Table 5.1). It should be noted that the allele size in 

‘W98616’ was 158bp, whereas, the allele sizes in RL4137 and AUS1408 were 158bp and 

197bp, respectively. ‘W98616’ has ‘AUS1408’ and ‘RL4137’ in the pedigree. So this 

allele is likely contributed by ‘RL4137’. 

The cvs. ‘Columbus’ and ‘AC Domain’ have ‘RL4137’ in their parentage as the 

source of PHS resistance. The cv. ‘Columbus’ is in the pedigree of cv. ‘AC Majestic’, 

‘McKenzie’, ‘Prodigy’, ‘AC Barrie’, ‘5600HR’, ‘HR5500’, ‘5601HR’, ‘Journey’, 

‘Lovitt’ and ‘Snowstar’(Table 5.1; Table 5.2; Figure 5.2), whereas, cv. ‘AC Domain’ is in 

the pedigree of cvs. ‘Harvest’, ‘AC Superb’, ‘PT434’, ‘PT435’, ‘PT559’, ‘BW384’ and  

‘KANE’. The line ‘OS72-36’ had ‘Zenkoujikomugi’ (‘Zen’) as one of the parent, which 

is a Japanese red-spring wheat with an extremely high level of seed dormancy and 

tolerance to PHS (Osanai and Amano 1993). Similarly the source of PHS resistance in cv. 

‘Snowbird’ and ‘W98616’ is ‘RL4137’. The genotypes ‘CDC EMDR9’ and ‘W98616’ 

have ‘AUS1408’ in their parentage. ‘Losprout’ is the source of dormancy in ‘AC Vista’. 

These results indicate ‘RL4137’ as a major source of increased PHS resistance in number 

of Western Canadian wheat cultivars. ‘AC Eatonia’ has ‘Leader’ as source of PHS 

resistance (DePauw et al. 1994). ‘RL4137’ and ‘Leader’ have ‘Frontana’ in their 

pedigree, a possible source of seed dormancy (Hucl, personal communication). Andreoli 

et al. (2006) also suggested that ‘Frontana’ as most likely source of seed dormancy in 

Canadian wheat cultivars. 

Red grain colour traditionally has been associated with seed dormancy, but now it 

is clear that red colour is not sufficient to guarantee dormancy (Flintham et al. 1999; 

Bassoi and Flintham 2005). This is also evident in this study, as a large number of red 

grained wheat genotypes are non-dormant and also four out of nine white wheat 

genotypes are dormant. The genes responsible for red grain colour (R) are located on the 

long arms of the homeologous group 3 chromosomes in wheat (Flintham and Gale 1996).  
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Figure 5.1. Screening of wheat cultivars and genotypes with a PHS resistance 

marker (DuPw004). Analysis of DuPw004 PCR amplification products by 2% (w/v) 

agarose gel electrophoresis. Migration of DNA size standard in lanes 1 and 30. The 

following lines were analyzed: 2- Argent, 3- W98616, 4- AUS1408, 5- RL4137,             

6- Columbus, 7- CDC EMDR9, 8- OS72-36, 9- Zen, 10- PT434, 11- PT435,                 

12- Snowstar, 13- BW384,  14- KANE, 15- AC Majestic, 16- AC Domain, 17- AC 

Eatonia, 18- Tordo, 19- AC Crystal, 20- AC Cadillac, 21- CDC Merlin, 22- AC Intrepid, 

23- Lillian, 24- CDC Go, 25- Katepwa, 26- CDC Alsask, 27- Roblin, 28- AC Reed,      

29- CDC Teal.  
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                       Table 5.1. Validation of microsatellite markers associated with PHS resistance in indifferent genetic  

                        backgrounds. 
Genotype Pedigree Class  DuPw004 

allele/bp 
barc170 
allele/bp 

wmc650 
allele/bp 

Argent Grandin*5/ND 614 White Spring 300 177 90 
W98616 AUS 1408/RL 4137 White Spring 200 158 109 
AUS1408 Australian Winter Cereal Collection 

accession number 1408 
White Spring 200 197 109 

RL4137 Frontana/4/McMurachy//Exchange/3/2
*Redman /5/Thatcher*6/Kenya Farmer 

Red Spring 200 158 109 

Columbus Neepawa*6/RL4137 CWRS1 200 158 109 
CDC EMDR9 AUS1408/Park Red Spring 200 197 109 
OS72-36 Tordo/ Zenkoujikomugi Red Spring 200 158 109 
AC Reed  PT303/Dikwin//Kenya321/Fieldwin CWSWS2 300 177 90 
Zenkoujikomugi (Zen) Derived from Igachikugo-Oregon by γ-

ray radiation breeding 
Red Spring 200 151 103 

PT434 AC Domain*6/Lr22a Red Spring 200 158 109 
PT435 AC Domain*6/Lr22a Red Spring 200 158 109 
Snowstar 94B46*G22/McKenzie CWHWS3 200 158 109 
BW384 BW150*2//Tp/Tm/3/2*BW252/4/  

98A190/5/BW252 
Red Spring 200 158 109 

KANE  AC Domain/McKenzie CWRS1 200 158 109 
AC Majestic  Columbus *2// Saric 70/Neepawa 

/3/Columbus *5//Saric 70/Neepawa 
CWRS1 200 158 109 

AC Domain ND499/RL4137//ND585 CWRS1 200 158 109 
Ptarmigan Yorkstar/Norstar Soft White 

Winter 
300 169 102 

Tordo Nainari-60*2//Tom-Thumb/Sonora-
64/3/Lerma-Rojo-64/Sonora-64 

White Spring 300 177 90 

                                           1CWRS - Canada Western Red Spring, 2CWSWS - Canada Western Soft White Spring, 3CWHWS - Canada Western Hard White Spring.   
Acknowledgements: We gratefully acknowledge G Humphreys (AAFC, Cereal Research Centre, Winnipig, Manitoba) for providing the          
seeds of PT 434 and PT435; S Fox (AAFC, Cereal Research Centre, Winnipig, Manitoba) for BW384 and SI Osanai (Kitami Agricultural 
Experiment Station, Kunnepu, Hokkaido, Japan) for OS72-36.
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Figure 5.2. Dormant wheat genotypes with RL4137 in their pedigree. 
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Table 5.2. Evaluation of microsatellite marker associated with PHS resistance in Canadian wheat cultivars.  

 
Genotypes Pedigree Class * Germination  

(%) 
DuPw004 
allele/bp 

barc170 
allele/bp 

wmc650 
allele/bp 

AC Eatonia Leader/Lancer CWRS 8 200 158 109 
Harvest  AC Domain*2/ND640 CWRS 14 200 158 109 
AC Foremost HY320*5/BW553//HY320*6/

7424-BW5B4 
CPSR 26 200 158 109 

AC Superb  Grandin*2/AC Domain CWRS 39 200 158 109 
5601HR  N93-2410/AC Majestic CWRS 45 200 158 109 
5500HR  N91-2381/AC Minto CWRS 46 200 158 109 
Lovitt 8405-JC3C*2/BW152 CWRS 47 200 158 109 
Prodigy SWP2242/Stoa                     

(SWP = Columbus/BW85) 
CWRS 51 200 158 109 

Snowbird  RL4137*6//Tc/Poso48/3/AC 
Domain 

CWHWS 53 200 158 109 

AC Barrie Neepawa/Columbus//BW90 CWRS 56 200 158 109 
McKenzie Columbus/Amidon CWRS 58 200 158 109 
PT559 SD3055/AC Domain CWRS 61 200 158 109 
5600HR  N91-2071/AC Minto CWRS 63 200 158 109 
Journey CDC Teal//Grandin/PT819 CWRS 66 200 158 109 
CDC Rama McNeal/Glenlea CWES 70 200 205 90 
AC Vista HY344/Losprout’S’//HY358*

3/BW553 
CPSW 79 200 158 109 

CDC Walrus Glenlea*3/McNeal CWES 80 300 177 90 
Infinity Kulm/8405-JC3C//AC Elsa CWRS 80 300 177 90 
AC Elsa BW90/Laura CWRS 85 300 177 90 
Lillian BW621*3/90B07-AU2B CWRS 86 300 177 90 
5700PR  N91-3051/AC Foremost CPSR 87 300 177 90 
CDC Imagine CDC Teal*4/FS2             

(FS=Fidel) 
CWRS 90 300 177 90 

AC Crystal HY377/L8474-D1 CPSR 92 300 177 90 
Marquis Hard Red Calcutta/Red fife Red 

Spring 
93 300 177 94 
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CDC Go  Grandin/SD3055 CWRS 94 300 177 90 
Glenlea Pemdina*2/Bage//CB100 CWES 94 300 177 90 
AC Abbey BW608/93464//BW591 CWRS 95 300 146 109 
AC Taber HY320*2/BW553 CPSR 95 300 177 90 
CDC Osler  AC Cora/PT534 CWRS 95 300 177 90 
AC Splendor Laura/RL4596//Roblin/BW10

7 
CWRS 96 300 177 90 

CDC Alsask  AC Elsa/AC Cora CWRS 96 300 177 90 
Katepwa Nep*6/RL2938/3/Nep*6//CI8

154/2*Fcr 
CWRS 97 300 177 90 

5701PR  N89-3003/N87-446//Oslo CPSR 98 300  177 90 
AC Andrew Dirkwin/SC8021V2//Treasure/

Blanca 
CWSWS 98 200 195 109 

AC Cadillac BW90*3/BW553 CWRS 98 300 177 90 
CDC Merlin RL4386//BW525/BW37 CWRS 99 300 177 90 
CDC Zorba RL5407/Common Winter 

Spelt 
Spring 
Spelt  

100 300 186 105 

AC Intrepid Laura/RL4596//CDC Teal CWRS 100 300 177 90 
CDC Bounty Katepwa/W82624//Kenyon CWRS 100 300 177 90 
CDC Teal BW514/Benito//BW38 CWRS 100 300 177 90 
Red Fife Reselection from a Polish 

Introduction in Canada 
Red 
Spring 

100 300 177 90 

Roblin RL4302/RL4356//RL4359/RL
4353 

CWRS 100 300 177 90 

LSD0.05   16    
*CWRS - Canada Western Red Spring, CWES - Canada Western Extra Strong, CPSR - Canada Prairie Spring Red, CPSW - Canada       

Prairie Spring White, CWSWS - Canada Western Soft White Spring, CWHWS - Canada Western Hard White Spring. 
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However, in this study we used the molecular markers associated with PHS 

resistance on chromosome 4A. A highly significant QTL associated with grain dormancy 

on 4A has been identified in two white grained wheat genotypes; ‘AUS1408’ and ‘SW95-

50213’ and a Japanese red-grained wheat (Mares et al. 2005; Tan et al. 2006). Noda et al. 

(2002) also suggested that chromosome 4A has the major gene(s) for embryo sensitivity 

to abscisic acid and dormancy. Flintham et al. (2002) reported the Phs locus on the long 

arm of chromosome 4A, in the region of an ancestral translocation/inversion point 

between chromosomes 4AS and 5AL.  

Effectiveness of molecular markers should be validated by determining the target 

phenotype in independent populations and different genetic backgrounds which is 

referred to as marker validation (Sharp et al. 2001; Collins et al. 2003). There is no 

guarantee that molecular markers identified in one population will be useful in other 

populations, when the populations originate from distantly related germplasm (Yu et al. 

2000). Parker et al. (1998) identified a marker for wheat flour colour on chromosome 7A 

based on the cross Schomburgk/Yaralinka and later confirmed it’s usefulness in the 

Cranbrook/Halberd and Sunco/Tasman crosses (Mares and Campbell 2001). But the same 

marker was not applicable to yellow colour characteristics of lines such as Cunningham 

and Janz, but was applicable to material with Schomburgk-type yellow flour colour 

(Sharp et al. 2001). Sharp et al. (2001) also identified a marker linked to stem rust Sr2 

gene in Chinese Spring x Chinese Spring (Hope3B) on chromosome 3B, but the 

polymorphism was not diagnostic when assayed in a wide range of CIMMYT, Australian 

and other cultivars of known Sr2 genotypes. In our study, the ability of the markers to 

detect the appropriate allele in different backgrounds supports its usefulness for selecting 

PHS resistant genotypes in wheat improvement programs.  

5.4.2 Molecular marker vs. germination (%) 

The marker data on different genotypes at the XDuPw004, Xbarc170 and 

Xwmc650 loci and percent germination of individual genotypes were used for QTL 

analysis through the single-marker linear regression approach. The regression of 

germination (%) on the DuPw004 marker was significant, indicating an association 

between the molecular marker and germination (%). The R2-value of 0.67 suggested that 

the quantitative trait locus linked with SSR marker DuPw004 contributed 67% of total 
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variation in germination (%) among different genotypes (Figure 5.3). Similarly, single-

marker linear regression analysis was used to determine the association between 

molecular markers, barc170 and wmc650, and germination (%). The marker alleles of 

148bp (barc170) and 109bp (wmc650) were considered as dormant (d) and all other 

alleles were considered as non-dormant (nd) for conducting the regression analysis. The 

magnitude of the marker-associated phenotypic effect (R2) was 0.75 (y = -45.793x = 

93.259) and 0.60 (y = -39.765x + 93) for barc170 and wmc650, respectively.  

5.4.3 Screening of F7 lines with PHS resistance marker 

Thirty advanced wheat breeding lines (F7) from different crosses were screened 

for the presence of PHS resistance marker (DuPw004). These lines were developed to 

incorporate the PHS resistance from ‘AC Majestic’ (‘BW173’) into ‘CDC Teal’ which is 

a PHS susceptible cultivar. 13 lines were homozygous for the presence of PHS resistance 

marker, whereas, 16 lines were negative for the marker (Table 5.3). During the first two 

backcrosses, progeny were selected on the basis of germination tests and in homozygous 

generations on the basis of falling number (Hucl, personal communication). As presented 

in Chapter 3, we did not observe any correlation between Falling Number and 

germination tests upon screening a DH population of Argent x W98616 cross (Singh et 

al. 2007b). Thus, as Falling Number is not an indicator of germination frequency, there is 

a possibility of losing the desired allele during the selfing process. One of the lines was 

found to be heterozygous on the basis DuPw004 marker. There are two possible reasons; 

first, the selected line had not reached homozygosity at this locus and second, DNA was 

extracted from 3-4 plants and not from a single plant.  

5.4.4 Screening of BC1F1 and BC2F1 with PHS resistance marker 

As PHS is inherited quantitatively and highly influenced by environmental 

conditions, selecting PHS resistant genotypes on a phenotypic basis at early stages of a 

breeding process is difficult. DNA-based markers have gained wider recognition as tools 

for increasing the selection efficiency for plants of a desirable genotype. The presence of 

molecular markers linked to an economically important trait allows selection of plants 

with the desirable allele and discarding of those with the undesirable allele in each 

generation. A total of 113 BC1F1 plants from four different backcrosses were screened 

with DuPw004 marker associated with PHS resistance (Table 5.4, Figure 5.4). Nineteen  
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Figure 5.3. Regression of germination percentage (Y) on PHS resistance molecular 

marker DuPw004, drawn using single marker linear regression analysis. nd – non-

dormant allele, d – dormant allele. 

 

 

 

 

 

 

 

 

 

 

 

y = -42.28x + 93.78
R2 = 0.673

0

20

40

60

80

100

120

Molecular marker (two alleles)

G
er

m
in

at
io

n 
(%

)

 nd d 



 96

 

 

 

 

 

 

 

 

Table 5.3. Screening of advanced F7 lines from different backcrosses with a PHS 

resistance marker (DuPw004). 

 

 

Cross 

 

Generation 

 

Total no. 

of lines 

 

Positive 

(200 bp)

 

Negative 

(300 bp) 

 

Heterozygous 

(200 and 300 bp) 

 

Teal/AC Majestic 

(F3)//Teal 

 

BC1F7 

 

11 

 

8 

 

3 

 

0 

Teal*3/ AC Majestic  BC2F7 9 3 6 0 

Teal*4/ AC Majestic BC3F7 10 2 7 1 
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BC1F1 plants from the cross ‘BW384’// ‘CDC Go’/ ‘PT434’ were homozygous for the 

presence of the 200 bp allele while 11 plants were heterozygous. As expected, no plant 

was homozygous for the absence of the marker because ‘BW384’ and ‘PT434’ were 

dormant and ‘CDC Go’ was non-dormant. Ten plants each from ‘CDC Go’*2 / ‘PT434’ 

and ‘CDC Go’*2 / ‘PT435’ were heterozygous for the marker, whereas, 19 and 14 plants 

were negative for the marker in the two crosses, respectively. Similarly, 17 BC1F1 plants 

from the cross ‘Lillian’ // ‘CDC Go’ / ‘PT434’ were heterozygous for the marker and 13 

plants were negative for the marker in this cross. Similarly, 102 BC2F1 plants were 

screened with PHS resistance markers. Fifty-two BC2F1 plants showed the PHS resistance 

markers in heterozygous condition, whereas, 50 plants were negative for the desired 

marker. Screening of plants from different backcrosses did not differ significantly from a 

1:1 ratio (Table 5.4).   

In the context of backcross breeding, DNA based markers can be used to control 

the target gene (foreground selection) and/or to hasten the return to the recipient genotype 

on chromosomal regions outside the target gene (background selection). The efficiency of 

such marker-assisted introgression programs has been analyzed in a series of theoretical 

works (Visscher et al. 1996). The results indicate that marker-assisted introgression is 

expected to be economically important, because it permits a gain of time of about two 

backcross generations, compared to conventional backcross programs, which is 

economically important. The quantitative trait loci (QTL) with larger effects are very 

useful for corresponding trait improvement through MAS. Enabling favourable allele 

frequency to be increased in early generation through molecular markers would deliver 

substantial efficiency gains in a crop improvement program (Koebner and Summers 

2003).  

5.5 CONCLUSIONS 

The primary objective of this study was to validate SSR markers associated with a 

major QTL for PHS resistance on chromosome 4A in different genetic backgrounds. A 

major QTL was identified in a DH mapping population of ‘Argent’ x ‘W98616’ in this 

study. Both the parents have white kernels but ‘Argent’ is a non-dormant genotype, 

whereas, ‘W98616’ is a dormant genotype. The main reason to use this population for  
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Figure 5.4. Genotyping of BC1F1 progeny from CDC Go*2/PT434 cross. The PCR 

products for DuPw004 were analyzed on 2% (w/v) agarose gel stained with ethidium 

bromide. M- MassRuler, 1- PT434, 2- CDC Go.  
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Table 5.4. Screening of backcross F1 progeny with a PHS resistance marker 

(DuPw004). 
 

Homozygous 

 

Cross 

 

Generation 

 

Total No. 

of plants  

200bp 

 

300bp 

 

Hetero- 

zygous 

 

 

χ2 

 

P 

CDC Go*2/PT434 BC1F1 29 0 19 10 2.8 0.09 

BW384//CDC Go/PT434 BC1F1 30 19 0 11 2.1 0.14 

Lillian// CDC Go /PT434 BC1F1 30 0 13 17 0.5 0.47 

CDC Go *2/PT435 BC1F1 24 0 14 10 0.7 0.41 

CDC Go *3/PT434 BC2F1 44 0 20 24 0.4 0.55 

CDC Go /3/Lillian// 

CDC Go /PT434 

BC2F1 16 0 7 9 0.3 0.62 

CDC Go *3/PT435 BC2F1 42 0 23 19 0.4 0.54 

 
Genotype Allele size (bp) Phenotype 

CDC Go 300 Non-dormant 

Lillian 300 Non-dormant 

PT434 200 Dormant 

PT435 200 Dormant 

BW384 200 Dormant 
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marker detection was to exclude the effect of grain colour on dormancy for which genes 

have been reported on homeologous group 3 chromosomes of wheat (Flintham et al. 

1996). The QTL detected on 4A chromosome may help in the selection for PHS 

resistance excluding effect of grain colour. The codominant nature of these markers is 

one of the major advantages in selection of homozygous and heterozygous plants. Marker 

assisted back-crossing reduced the population size in the BC1F1 and BC2F1 generation by 

41% and 59%, respectively. This reduction in population size will reduce the labour for 

analysis of advanced lines for other grain quality traits. The marker DuPw004 assay is 

PCR and agarose gel based; it can be implemented routinely to transfer this desired allele 

for PHS resistance in wheat breeding programs. The identification of markers associated 

with PHS resistance will allow breeders to select for the trait at the DNA level rather than 

relying on phenotypic expression. Near-isogenic lines for the PHS resistance QTL on 4A 

will be developed to investigate the effect of this QTL. These lines will be valuable 

parents for developing new mapping populations for high resolution mapping and map-

based cloning of this major QTL.  
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CHAPTER 6 

GENERAL DISCUSSION 

 
Pre-harvest sprouting (PHS) in rain-affected wheat at harvest time represents a 

limitation to the reliable production of high-quality grain for export and domestic use. In 

wheat-growing areas that are prone to unfavorable weather conditions during the harvest 

period, tolerance to PHS is, therefore, a highly desirable trait. Improving PHS tolerance is 

difficult on a phenotypic basis since PHS is a quantitatively inherited trait and strongly 

affected by environmental factors. Moreover, screening for PHS resistance is hampered 

by the existence of genotype x environment interactions. DNA markers linked to genes 

involved in PHS represent a promising, environment-insensitive tool for selecting 

genotypes that are more resistant to PHS. The present study focused on the identification 

of genomic regions associated with PHS resistance in white-grained wheats with the 

following objectives: 

(1) Identification of a suitable method for PHS phenotyping. 

(2) Identification of genomic regions associated with PHS resistance. 

(3) Validation of DNA markers linked to QTL associated with PHS resistance.  

The level of grain dormancy is a major component of genetic variation in 

resistance to PHS in wheat (Mares 1987a; Mares 1993). Two basic approaches have 

evolved to identify genotypes with improved PHS resistance based on grain dormancy. 

PHS can be measured by sprouting tests of spikes subjected to artificial or natural wetting 

treatments and germination tests on threshed seeds (Mares 1989). The α-amylase activity 

and Falling Number are also used as indicators of starch degradation due to PHS. In this 

study, different methods of PHS phenotyping e.g. germination test, Falling Number and 

α-amylase activity in dry and pre-wetted seeds were performed on 40 doubled-haploid 

lines (20 dormant and 20 non-dormant) derived from a cross between two white-grained 

spring wheat genotypes ‘Argent’ (non-dormant) and ‘W98616’ (dormant). The 
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germination percentage segregated the dormant and non-dormant DH lines in the three 

years of testing, indicating that the germination test is a repeatable and reliable predictor 

of PHS resistance or dormancy. Falling Number and α-amylase activity at harvest time 

could not be correlated with dormant and non-dormant DH lines. However, the α-

amylase activity in pre-wetted and dried seeds showed a positive correlation (r = 0.60) 

with germination percentage. There is an inverse curvilinear relationship between Falling 

Number and α-amylase activity (Mares 1987b). Falling Number provides a measure of  

endosperm quality at the harvest time (Hagemann and Ciha 1984), but it fluctuates 

widely depending on the degree of ripening and the amount of rainfall prior to harvest 

time (Mares 1993). At low α-amylase activity levels, starch quality affects the Falling 

Number values (Ringlund 1983). Also, α-amylase may accumulate in the grain during 

seed development independent of PHS (Lunn et al. 2001b; Mares and Mrva 2007).   

There are three basic requirements for the genetic mapping of quantitatively 

inherited traits such as PHS; mapping population, marker system and linkage map of the 

population under consideration. In this study a doubled haploid mapping population 

derived from Argent (non-dormant, white-grained) x W98616 (dormant, white-grained) 

was used to identify the genomic regions associated with PHS resistance in white-grained 

bread wheat. During the last two decades, a number of DNA-based molecular marker 

systems have been developed for construction of linkage maps in different crop plants 

(Vos et al. 1995; Röder et al. 1998; Gupta et al. 1999; Jaccoud et al. 2001; Gupta and 

Rustgi 2004; Varshney et al. 2005). Microsatellite or SSR markers are most commonly 

used for development of linkage map, as they are highly polymorphic, can be exchanged 

between laboratories and highly transferable between populations (Röder et al. 1998; 

Somers et al. 2004). Amplified Fragment Length Polymorphism (AFLP), a technique 

based on selective PCR amplification of genomic restriction fragments, can detect a large 

number of dominant polymorphic markers by using a limited set of generic primers and 

without any prior knowledge of genomic sequence (Vos et al. 1995). Diversity Arrays 

Technology (DArT), a microarray hybridization-based marker technique, has the 

potential for increasing marker density within a short time and at low cost (Jaccoud et al. 

2001; Wenzl et al. 2004). In this study, these three different types of DNA-based marker 

systems (SSR, AFLP and DArT) were used to construct a linkage map of Argent x 
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W98616. We were also able to incorporate a few expressed sequence tags (ESTs) in the 

linkage maps. Out of 972 polymorphic markers, 913 markers (356 SSR, 290 AFLP, 258 

DArT and 9 EST) could be arranged into 44 linkage groups at a LOD score of > 3.0 on 

different wheat chromosomes with total genome coverage of 2,577 cM. There was 

variation in marker density on different chromosomes. The marker density in the B 

genome was highest (2.7 cM/marker) while the D genome had the lowest marker density 

(5.4 cM/marker). The high level of polymorphism in the B genome may be due to the 

outcrossing behavior of Aegilops speltoides (B genome donor), polyphyletic origin of B 

genome (Vardi 1973) or the B genome has evolved more rapidly (Sourdille et al. 2001). 

Out of 913 mapped markers, 87 (9.5%) markers showed segregation distortion. 

Segregation distortion is a common phenomenon in different mapping populations (Singh 

et al. 2007a). The reasons for non-Mendelian segregation in wheat x maize-derived 

doubled haploid populations may be due to heterogeneity within parents, selection 

associated with DH production process or outcrossing (Kammholz et al. 2001). 

Single marker analysis of the phenotypic and genotypic data identified ten 

chromosomes involved in PHS resistance. However, only five genomic regions on 

chromosomes 1A, 3A, 4A, 7A and 7D were detected by interval mapping at a genome-

wide threshold LOD score (Figure 4.5, Figure 6.1). The QTL on chromosome 1A was 

located at a linkage interval of 60-70 cM and likely resides near the centromeric region. 

This QTL, in our study, most likely corresponds to the QTL for Falling Number and α-

amylase activity because the position of the Xpsr1327 marker associated with Falling 

Number and α-amylase reported by Zanetti et al. (2000), is close to the gwm164 and 

gwm357 markers. The QTL on chromosome 3A was identified at the end of the long arm 

between gwm340 and wPt-1596. The QTL on 3AL in our study corresponds to the QTL 

identified by Groos et al. (2002) and Kulwal et al. (2005). The vivipary loci (taVp1) that 

contribute to PHS susceptibility and the red grain loci (R) that control seed colour and 

coat imposed dormancy have been mapped to homoeologous group 3 chromosomes 

(Bailey et al. 1999). However, in this study there was no LOD peak in the TaVP1 region 

and thus grain dormancy was not due to the direct effect of TaVP1.  
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Figure 6.1. Summary of genomic locations of QTL associated with PHS resistance in 

present and previous studies. White oval structures represent the QTL identified in 

this study. Approximate locations of QTL in other studies:       – Anderson et al. 1993;       

r    – Roy et al. 1999;       – Zanetti et al. 2000;       - Mares and Mrva 2001;      - Kato et 

al. 2001;        – Flintham et al. 2002;       - Groos et al. 2002;        – Mares et al. 2002;       

o   - Osa et al. 2003;        - Kulwal et al. 2005;       – Mares et al. 2005;       – Mori et al. 

2005;       – Tan et al. 2006. The chromosome length and centromere positions are based 

on a wheat consensus map (Somers et al. 2004). 
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Interval mapping revealed two peaks on chromosome 4A in marker intervals 

gwm397/wmc650 and wmc707/wmc161. Mapping of more markers may resolve whether 

the two peaks observed correspond to two different QTL or one. In this study, in the 

marker interval gwm397/wmc650, we were able to map one EST (CD920298) described 

as ABA induced plasma membrane protein PM19 (http://www.ncbi.nlm.nih.gov/). Noda 

et al. (2002) suggested that wheat embryo sensitivity to germination inhibition by abscisic 

acid (ABA) is controlled by major gene(s) located on the long arm of chromosome 4A. 

The QTL on the short arm of chromosome 7A at the interval between barc222/gwm573 

corresponds to the locus Xpsp3050 associated with PHS resistance reported in a mapping 

population of RL4137 x Timgalen (Flintham et al. 2002) and may be a putative locus 

contributed by RL4137 as the mapping population in this study also has RL4137 as a 

grand-parent.The QTL on chromosome 7D corresponds to the α-Amy-D2 locus on the 

long arm of chromosome 7D. The QTL on chromosome 4A were significant in three out 

of four trials, whereas, QTL on chromosome 1A, 3A, 7A and 7D were significant in two 

trials at a genome-wide threshold LOD score.       

Before using molecular markers in actual plant breeding programs, it is necessary 

to undertake studies on marker validation, a process of examining the behavior of 

markers and associated polymorphism in different genetic backgrounds. During this 

investigation, a study was also carried out to validate molecular markers in QTL on 

chromosome 4A for PHS resistance in different genetic backgrounds and to incorporate 

the superior alleles in different elite genotypes through backcrossing. The marker 

classification of different wheat genotypes at the XDuPw004, Xbarc170 and Xwmc650 

loci and percent germination were used for QTL analysis via the single-marker linear 

regression approach. DuPw 004, barc170 and wmc650 explained 67%, 75% and 60% of 

total variation in germination (%), respectively. A survey of pedigrees of different 

genotypes revealed that RL4137 is a major source of increased PHS resistance in a 

number of Western Canadian wheat cultivars. Red grain colour has traditionally been 

associated with seed dormancy, however, it is now clear that red colour alone is not 

adequate to guarantee dormancy (Bassoi and Flintham 2005; Flintham et al. 1999). In this 

study, a large portion of the red-grained wheat genotypes are non-dormant while four out 

of nine white-grained wheat genotypes carried dormancy QTL. The microsatellite 
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markers (DuPw004, barc170 and wmc650) may be useful for the plant breeders to 

pyramid this QTL with QTL from other PHS resistance sources.  

6.1 Future research directions 

Excess α-amylase activity impairs wheat grain quality since enzymatic hydrolysis 

of starch leads to processing problems and unsatisfactory end-products. The major cause 

of excess α-amylase activity is PHS, when ripe grains germinate in the field in wet 

weather due to lack of dormancy. However, excess α-amylase activity also accumulates 

early during wheat grain development and not due to PHS (Lunn et al. 2001a; 2001b). 

This includes late maturity α-amylase (LMA) (Mares and Mrva 2007), also known as 

pre-maturity α-amylase and retained pericarp α-amylase (Lunn et al. 2001b). Unlike 

sprout damage, LMA may be triggered by low temperature shock (12-18°C) during the 

second half of grain filling period at 25-35 days after flowering (Mrva and Mares 2001). 

Rarely, α-amylase activity also accumulates due to germination in the early development 

stage when grains are still at high moisture content, normally before 35%, and is known 

as pre-maturity sprouting (Lunn et al. 2001b). Therefore, these routes of α-amylase 

accumulation should be taken into consideration while breeding for PHS 

resistance/dormancy because LMA is completely independent of PHS and can be 

expressed in sprouting tolerant or dormant genotypes (Nakatsu et al. 1996).  

Thirty advanced lines (F7) from three crosses (Table 5.3) developed to introgress 

PHS resistance from ‘AC Majestic’ into the PHS susceptible cultivar ‘CDC Teal’, were 

selected on the basis of germination tests during the first two backcrosses and in 

homozygous generations on the basis of Falling Number as PHS resistant (Hucl, personal 

communication). Thirteen lines were positive for the presence of PHS resistance marker 

(DuPw004) based on the germination test. It will be interesting to phenotype and 

correlate these genotypes based on germination percentage. Markers in QTL on 1A and 

7D can be used on these genotypes as these QTL were also reported to be associated with 

Falling Number and α-amylase activity. Similarly, the backcross line (Table 5.4) screened 

for the DuPW004 marker should be phenotyped with the germination test to correlate 

with the genotypic data.  
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6.2 Conclusions 

• Germination testing of seeds was the most reliable method for measuring PHS 

resistance in white-grained wheat. 

• The level of α-amylase activity in pre-wetted and dried seeds can predict the level 

of PHS. The enzyme activities in pre-wetted samples of the DH lines showed a 

statistically significant correlation (r = 0.60) to germination percentage. 

• Falling Number showed a strong correlation with α-amylase activity in dry seeds 

at harvest time, but was not correlated with percent germination.  

• Five genomic regions associated with PHS resistance identified by interval 

mapping on chromosomes 1A, 3A, 4A, 7A and 7D were all contributed by the 

dormant parent, W98616. 

• The SSR markers DuPw 004, barc170 and wmc650 explained 67%, 75% and 60% 

of the total variation in germination (%), respectively, among different wheat 

genotypes. 

• Marker analysis on the chromosome 4A QTL and a survey of pedigrees of 

different genotypes revealed that RL4137 is a major source of increased PHS 

resistance in a number of Western Canadian wheat cultivars.  

• Marker assisted back-crossing with DuPw 004 reduced the population size in the 

BC1F1 and BC2F1 generations by 41% and 59%, respectively. 
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APPENDIX I 

 
PLANT DNA EXTRACTION 

The plants were grown under controlled conditions in the growth chamber under 

an 18 h photoperiod (250 µmol m-2 s-1 light intensity, 23°C day and 18°C night 

temperature) or green house. The leaves were harvested after 20 days of seeding and 

freeze dried. The genomic DNA was isolated from freeze dried leaves using the CTAB 

method (Doyle and Doyle 1990). Approximately 20 mg of leaves were ground to fine 

powder in 2 ml centrifuge tube containing 2 glass balls (5 mm) in the grinding apparatus 

at 50 MHz for 10 min. After addition of 800 μl of DNA extraction buffer, the tubes were 

vortexed briefly and incubated at 60ºC for 10 min. The tubes were inverted 3-4 times 

during the incubation period to keep the samples well mixed. Then 800 μl of chloroform: 

isoamyl alcohol (24:1) was added to the tubes and mixed by inverting the tubes several 

times to obtain a homogeneous solution. The tubes were centrifuged at 13,000 rpm for 5 

min at room temperature and 750 μl of the upper phase was transferred to new centrifuge 

tubes. Again, 750 μl of chloroform: isoamyl alcohol (24:1) was added to the tubes, mixed 

well and centrifuged at 13,000 rpm for 5 min at room temperature. Then, 700 μl of the 

upper phase was transferred to new centrifuge tubes and 700 μl of DNA precipitation 

buffer was added, mixed immediately and kept at room temperature for 20 min. The 

samples were centrifuged at 13,000 rpm for 10 min. The supernatant was carefully 

poured off and the last droplets of supernatant were removed by placing the tubes upside-

down on a paper tissue (Kimwipe). The pellets were resuspended in 500 μl of 1M NaCl 

and the samples were kept at 60ºC for 5 min to ensure that all the pellets become 

dissolved. Then, 1 ml of absolute ethanol was added, mixed well and incubated at -20ºC 

overnight. The precipitated DNA was pelleted by centrifugation at 13,000 rpm for 6 min 

at room temperature. The supernatant was discarded and 1.5 ml of 80% (v/v) ethanol was 

added to the pellet and centrifuged at 13,000 rpm for 6 min at room temperature. The 

supernatant was carefully poured off. The tubes were again centrifuged to collect the 

remaining liquid to the bottom of the tube and all the liquid from the tubes was removed 

by pipette. The pellets were air dried and dissolved in 150 μl of Tris-EDTA buffer (1X). 
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The DNA samples were treated with RNase to remove residual RNA. 0.5 μl of RNase A 

(10 mg RNase A/ ml) was added to each DNA sample and incubated at 37ºC for 1 hr. 

Then 150 μl of phenol: chloroform: isoamyl alcohol (25:24:1) was added to each sample 

and mixed by inverting the tubes. The tubes were centrifuged at 13,000 rpm for 10 min at 

room temperature and 140 μl of upper phase was transferred to new centrifuge tube. Then 

140 μl of chloroform: isoamyl alcohol (24:1) was added, mixed and centrifuged at 13,000 

rpm for 5 min at room temperature. 140 μl of the upper phase was transferred to a new 

centrifuge tube and, 1/10 volume of 3 M sodium acetate and 2.5 volume of absolute 

ethanol was added and mixed. Samples were incubated at -80ºC for 10 min to precipitate 

the DNA. The precipitated DNA was pelleted by centrifugation at 13,000 rpm for 15 min 

at room temperature. The pellets were washed by adding 1ml of 80% (v/v) ethanol and 

centrifuged at 13,000 rpm for 5 min. The 80% ethanol washing step was repeated again. 

The pellets were air dried and dissolved in 100 μl of Tris-EDTA buffer (1X). The 

concenteration of DNA was determined using a DU® 800 spectrophotometer (Beckman 

Coulter). The spectrophotometer was calibrated with Tris-EDTA buffer (1X). DNA was 

diluted to 60 times with Tris-EDTA buffer (1X) and quantified.   

AGAROSE GEL ELECTROPHORESIS 

PCR products were analysed by 2% (w/v) agarose gel electrophoresis. Agarose 

powder was mixed with 0.5X TAE electrophoresis buffer to the desired concentration and 

heated in a microwave oven until completely melted. Ethidium bromide was added to the 

gel (final concentration 0.5 μg/ml) to facilitate visualization of DNA after 

electrophoresis. The solution was poured into a casting tray containing a sample comb 

and allowed to solidify at room temperature. After solidification of the gel, the comb was 

removed and the gel in the plastic tray was placed in the electrophoresis chamber. The 

electrophoresis chamber was filled with 0.5X TAE buffer so that it covered the gel. DNA 

samples mixed with loading buffer were then pipeted into the sample wells. 

Electrophoresis was carried out at constant 100 volts for 1 hr. The gels were then 

visualized with an ultraviolet transilluminator (BioRad Gel Documentation system).   
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POLYACRYLAMIDE GEL ELECTROPHORESIS (PAGE) 

Gel preparation 

The small and large glass plates were thoroughly cleaned on one side twice with 

95% ethanol and Kimwipes® tissue papers. Repel Silane (3 ml) was applied on the 

cleaned side of the large plate and spread over the entire surface with a Kimwipes® tissue 

paper. After 5 min, the excess of Repel Silane was removed with Kimwipe® tissue paper 

saturated with deionized water and plate was allowed to dry. The cleaned small plate was 

treated with 3 μl of Bind Silane in 1 ml of 0.5% acetic acid in 95% ethanol. The Bind 

Silane was spread over the entire surface with Kimwipe® tissue paper. After 5 min, the 

small plate was wiped with 95% ethanol and Kimwipe® tissue paper 3-4 times to remove 

the excess of binding solution and allowed to dry. The glass plates were assembled by 

placing 0.4 mm side spacer between the plates and plates were fitted in casting boot (Life 

TechnologiesTM). Care was taken not to allow the treated surfaces of the glass plates to 

touch each other.  

50 μl of TEMED and 500 μl of 10% (w/v) ammonium persulfate was added to 

6% gel mix in a beaker. The solution was carefully poured between the glass plates using 

a 60 ml syringe. A constant flow of solution was maintained at one side of the assembled 

plates to prevent the formation of bubbles in the gel. The straight side of the sharktooth 

comb was inserted between the plates up to a depth of 6 mm. The comb was secured with 

4 clamps. The gel was allowed to polymerize for 1 hr. 

Sample preparation  

The samples were prepared by mixing 4 μl of PCR product with 4 μl of STR 2X 

loading dye. The samples were denatured by heating at 95°C for 2 min and immediately 

chilled on ice. 

Gel electrophoresis 

After polymerization of the gel, the clamps were removed and excess 

polyacrylamide was shaved from the comb with a surgical blade. The comb was then 

removed from the plates. The plates were removed from the casting boot and fixed in the 

Model S2 sequencing gel electrophoresis apparatus (Mandel Scientific Company Inc., 

Guelph, Ontario, Canada). with the longer plate facing out and the well side on top. 0.5X 

TBE buffer was added in both upper and lower buffer chambers of the electrophoresis 
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apparatus. The air bubbles were removed from the top of the gel with a syringe filled with 

the buffer. The gel was allowed to run at 80 watts, 60 milli amperes and 3000 volts to 

achieve a gel surface temperature of approximately 50°C. After the prerun, the urea was 

flushed from the well area with a syringe filled with buffer. The comb teeth of the 

sharktooth comb were inserted into the gel approximately 1-2mm. The combs were kept 

inserted in the gel during both gel loading and electrophoresis. 3μl of each sample was 

loaded in the respective wells and also a 50 bp DNA ladder was loaded in the three wells. 

Electrophoresis was conducted 80 watts, 60 milli amperes and 3000 volts for 1 hr. 

Gel staining 

After electrophoresis, the glass plates were removed from the apparatus. The 

comb and side spacers were removed from the plates, and the plates were separated from 

each other. The gel remained affixed to the small glass plate and placed in a shallow 

plastic tray. The gel was stained with silver stain using following steps: 

 

Step Solution Time 

1 fix / stop solution 20 min 

2 deionized water 2 min 

3 repeat step 2, twice 2 x 2 min 

4 staining solution 30 min 

5 deionized water 10 sec 

6 developer solution (4-10°C) up to 5 min (until alleles and ladder became 

visible) 

7 fix / stop solution* 5 min 

8 deionized water 2 min 

*Added directly to the developer solution to stop the reaction 

The gel (small plate) was positioned upright and allowed to dry overnight. The gel was 

scanned with an Espon Expression 1680 scanner. 

 

 

 

 



 138

SINGLE STRAND CONFORMATION POLYMORPHISM (SSCP) 

Gel preparation 

The small and large glass plates were thoroughly cleaned with 95% ethanol and 

Kimwipes® tissue papers. The glass plates were assembled by placing 1.5mm side spacer 

between the plates and the plates were fitted in gel casting assembly. 34 μl of TEMED 

and 165 μl of 10% (w/v) ammonium persulfate were added to 50 ml of 10% gel mix in a 

beaker. The solution was carefully poured between the glass plates. A constant flow of 

solution was maintained on one side of the assembled plates to prevent the formation of 

bubbles in the gel and the comb was inserted between the plates. The gel was allowed to 

polymerize for one hour. 

Sample preparation  

PCR product (5 μl) was mixed with 9 μl of formamide loading dye (99.6% 

formamide, 20 mM EDTA, 0.1% bromophenol blue, and 0.1% xylene cynol). The 

samples were denatured by heating at 95°C for 5 min and kept on ice for 10 min. 

Gel electrophoresis 

After polymerization of the gel, the comb was removed from the plates and excess 

of polyacrylamide was shaved from the top of the plates with a surgical blade. The plates 

were removed from the casting assembly and fixed in the gel electrophoresis apparatus 

with the longer plate facing out and the well side on top. 0.6X TBE buffer was added in 

both the upper and lower buffer chambers of the electrophoresis apparatus. The gel was 

allowed to run at 3 watts, 50 milli amperes and 200 volts for 1 hr. The temperature of the 

gel was maintained at 18°C with the gel cooling system. After a prerun of the gel, the 

wells were cleaned with a syringe filled with buffer. Ten μl of each sample was loaded in 

the respective wells. The electrophoresis was conducted at 3 watts, 50 milli amperes and 

250 volts for 14-16 hr at 18°C. 

Gel staining 

After electrophoresis, the glass plates were removed from the electrophoresis 

apparatus. The side spacers were removed from the plates, and the plates were separated 

from each other. The gel was separated from the plates and placed in a shallow glass tray 

on a shaker. The gel was stained with silver stain in using the following steps: 
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Step Solution Time 

1 fix solution 3 min 

2 staining solution 5 min 

3 deionized water 10 sec 

4 developer solution  up to 10 min (until bands become visible) 

5 deionized water 2 min 

 

 

 

 

 

 

 


