
Solving Practical Reasoning Poblems

with Extended Disjunctive Logic Programming

Heinrich Herre � Gerd Wagner y

Abstract We present a de�nition of stable generated models for extended generalized
logic programs (EGLP) which a) subsumes the de�nition of the answer set semantics for
extended normal logic programs [GL91]; and b) does not refer to negation-as-failure by
allowing for arbitrary quanti�er free formulas in the body and in the head of as rule (i.e.
does not depend on the presence of any speci�c connective, nor any speci�c syntax of rules).

We show how to solve classical ATP problems in the framework of extended disjunctive

logic programming (EDLP) where neither Contraposition nor the Law of the Excluded Middle

are admitted principles of inference. Besides being able to solve classical ATP problems in

a monotonic reasoning mode, EDLP can as well treat commonsense reasoning problems

by employing its intrinsic nonmonotonic inference capabilities based on stable generated

models. EDLP thus proves itself as a general-purpose AI reasoning system.

1 Introduction

A logic program consists of facts and rules. Facts correspond to sentences of a

suitably restricted language, and rules are represented in the sequel by (Gentzen)

sequents. A set of facts can be viewed as a database whose semantics is determined

by its minimal models. In the case of logic programs, minimal models are not ade-

quate because they are not able to capture `groundedness', i.e. the directedness of

rules. Therefore, stable models in the form of certain �xpoints have been proposed

by Gelfond and Lifschitz [GL88] as the intended models of normal logic programs.

We have generalized this notion in [HW96] by presenting a de�nition which is neither

�xpoint-based nor dependent on any speci�c rule syntax and allows arbitrary open

formulas in the body and the head of a rule. Formalisms admitting arbitrary for-

mulas are more expressive and natural to use since they permit an easier translation

from informal speci�cations.

Logic programs with both strong negation and disjunction are called extended

disjunctive logic programs(EDLP).1 Despite their comparable expressiveness they do

not lead to classical �rst order logic (FOL). Our account of EDLPs is based on par-

tial logic where the possibility of two kinds of negation, called weak and strong, arises

�herre@informatik.uni-leipzig.de, Institut f�ur Informatik, Univ. Leipzig, Augustusplatz 10-

11, 04109 Leipzig, Germany
ygw@inf.fu-berlin.de, Institut f�ur Informatik, Univ. Leipzig, Augustusplatz 10-11, 04109

Leipzig, Germany
1See, e.g., [GL91], or [MR93].

1

in a natural way.2 In EDLPs, neither the Law of the Excluded Middle nor the Con-

traposition principle hold. It seems, however, that these classical principles in their

full generality are not needed in many cases of natural inferences, cf [HP92]. While

classical FOL seems to be appropriate for purely theoretical (notably mathematical)

reasoning, EDLP seems to be more appropriate for practical reasoning.

2 Preliminaries

A signature � = hRel ;ExRel;Const;Funi consists of a set of relation symbols Rel, a

set of exact relation symbols ExRel � Rel , a set of constant symbols, and a set of

function symbols. U� denotes the set of all ground terms of �. For a tuple t1; : : : ; tn
we will also write ~t when its length is of no relevance. The logical functors are

�;�;^;_; 8; 9; where � and � are called weak and strong negation, respectively.

L(�) is the smallest set containing the atomic formulas of �, and being closed with

respect to the following conditions: if F;G 2 L(�), then f�F;�F; F ^ G; F _

G; 9xF; 8xFg � L(�).

L0(�) denotes the corresponding set of sentences (closed formulas), and QF (�)

the set of quanti�er free sentences. For sublanguages of L(�) formed by means of a

subset F of the logical functors, we write L(�;F). With respect to a signature � we

de�ne the following sublanguages: At(�) = L(�; ;), the set of all atomic formulas

(also called atoms); Lit(�) = L(�;�), the set of all literals, and XLit(�) = L(�;�;�

), the set of all extended literals. We introduce the following conventions. When

L � L(�) is some sublanguage, L0 denotes the corresponding set of sentences. If the

signature � does not matter, we omit it and write, e.g., L instead of L(�). QF (�) =

L0(�;�;�;_;^) denotes the set of all quanti�er free sentences over the signature �.

If hY;<i is a partial order, then Min(hY;<i) denotes the set of all minimal elements

of Y , i.e. Min(hY;<i) = fX 2 Y j there is no X 0 2 Y s.th. X 0 < Xg. Pow(X) or

2X denote the power set of the set X .

3 Model Theory

The universe of a Herbrand interpretation of the language L(�) is equal to U�, and

terms are interpreted canonically. We identify Herbrand interpretations over � with

subsets of Lit0(�).

De�nition 1 (Interpretation) Let � = hRel;ExRel ;Const;Funi be a signa-

ture. A Herbrand �-interpretation is a set of literals I � Lit0(�). Its universe or

domain is equal to the set of all ground terms U�; its canonical interpretation of

ground terms is the identity mapping.

2As was already noticed in [Wag91].

2

The class of all Herbrand �-interpretations is denoted by IH4 (�) = 2Lit
0(�), while

the subclass of all coherent Herbrand �-interpretations is de�ned as

I
H
c (�) = fI 2 2Lit

0(�) : if a 2 I , then �a 62 Ig

In the sequel we shall simply say `interpretation' instead of `Herbrand interpretation'.

An instantiation over an interpretation I is a function � : Var ! U� , which can

be naturally extended to arbitrary terms by setting �(f(t1; : : : ; tn)) = f(�(t1); : : : ;

�(tn)). Analogously, an instantiation � can be canonically extended to arbitrary

formulas F , where we write F� instead of �(F). Note that for a constant c, being a

0-ary function, we have �(c) = c. The model relation j= � IH4 (�)� L0(�) between

an interpretation and a sentence is de�ned inductively as follows.

De�nition 2 (Model Relation) 1. For literals l 2 Lit0(�), I j= l i� l 2 I.

2. I j= F ^G i� I j= F and I j= G.

3. I j= F _G i� I j= F or I j= G.

4. I j= 9xF (x) i� I j= F (t) for some t 2 U�.

5. I j= 8xF (x) i� I j= F (t) for all t 2 U�.

6. I j= �F i� I 6j= F .

In addition, we assume DeMorgan-style rewrite rules for handling the combina-

tion of � with �;^;_; 8; 9.

We obtain the model operator Modc(X) = fI 2 IHc : I j= Xg, and the corre-

sponding consequence relation de�ned by X j=c F i� Modc(X) � Modc(F).

De�nition 3 (Extension of a Model) Let I; I 0 2 IH4 be two interpretations.

We say that I 0 extends I, resp. I 0 is informationally greater or equal than I, sym-

bolically I � I 0, if I � I 0.

De�nition 4 (Minimal Models) For F 2 L(�) � X, and � = 4; c, we de�ne

Modm
�
(X) = Min(hMod�(X) , �i), and X j=m

�
F i� Modm

�
(X) � Mod�(F).

4 Extended Disjunctive Logic Programs

In the following we use Gentzen sequents to represent rules of logic programs.

De�nition 5 (Sequent) A sequent s is an expression of the form

F1; : : : ; Fm) G1; : : : ; Gn

where Fi; Gj 2 L(�) for i = 1; : : : ; m and j = 1; : : : ; n. The body of s, denoted

by Bs, is given by fF1; : : : ; Fmg, and the head of s, denoted by Hs, is given by

fG1; : : : ; Gng. Seq(�) denotes the class of all sequents s such that Hs;Bs � L(�),

and for a given set S � Seq(�), [S] denotes the set of all ground instances of sequents

from S.

3

For a sequent) F with empty body we also write more simply F .

De�nition 6 (Satisfaction Set) Let I 2 IH4 (�), and F 2 L(�). Then

SatI(F) = f� 2 U�
Var : I j= F�g

De�nition 7 (Model of a Sequent) Let I 2 IH4 . Then,

I j= F1; : : : ; Fm) G1; : : : ; Gniff
\

i�m

SatI(Fi) �
[

j�n

SatI(Gj):

We de�ne the following classes of sequents:

1. EDLP+(�) = fs 2 Seq(�) jHs;Bs � Lit(�)g.

2. EDLP(�) = fs 2 Seq(�) jBs � XLit(�); Hs � Lit(�); Hs 6= ;g.

3. EGLP(�) = fs 2 Seq(�) jHs;Bs � L(�;�;�;^;_)g.

The class EDLP (EDLP+) corresponds to extended disjunctive logic programs (with-

out negation-as-failure), and EGLP to extended generalized logic programs. For

S � EDLP(�), we de�ne the model operator

Modc(S) = fI 2 IHc (�) : I j= s, for all s 2 Sg

and the associated entailment relation

S j= F i� Modc(S) � Modc(F)

where F 2 L(�). Instead of sequent notation B) H we shall also use the rule

notation F G, where F =
W
H and G =

V
B.

With respect to a class of interpretations K , we write K j= F i� I j= F for all

I 2K. We denote the set of all sequents from a sequent set S which are applicable

in K by

SK = fs 2 [S] :K j= Bsg

If K is a singleton, we omit brackets.

5 Stable Models

In the sequel, we need the notion of an `interval' of interpretations.

De�nition 8 [M1;M2] = fM 2 I
H
c : M1 �M �M2g

The following de�nition of a stable model of extended logic programs generalizes the

answer set semantics of [GL91].

4

De�nition 9 (Stable Model) Let S � EGLP(�). M 2 Modc(S) is called a

stable generated model of S, symbolically M 2 Modsc(S), if there is a chain of

Herbrand interpretations I0 � : : :� I� such that M = I�, and

1. I0 = ;.

2. For successor ordinals � with 0 < � � �, I� is a minimal extension of I��1

satisfying the heads of all sequents whose bodies hold in [I��1;M], i.e.

I� 2 Minf I 2 IHc (�) : I � I��1, and

I j=
W
Hs, f.a. s 2 S[I��1;M] g

3. For limit ordinals � � �, I� =
S
�<� I�.

We also say that M is generated by the S-stable chain I0 � : : : � I�.

The stable entailment relation is de�ned as follows:

S j=s F i� Modsc(S) � Modc(F)

where F 2 L(�).

Claim 1 If M is a stable model of S � EGLP, then there is either a �nite S-

stable chain, or a S-stable chain of length !, generating M .

Proof: along the same lines as in the case of generalized logic programs in [HW96].

Claim 2 In the case of a (non-disjunctive) extended logic program, stable coherent

models agree with answer sets as de�ned in [GL90].

6 Correct Derivations

In order to de�ne an automated bottom-up inference procedure corresponding to a

sound derivablity relation ` � j=s, we establish a number of inference rules which

are correct with respect to our stable semantics. Every set S of sequents de�nes a

nonmonotonic inference operation CS : 2QF ! 2QF as follows: CS(X) = fF : F 2

QF; S [X j=s Fg. An inference operation C : 2QF ! 2QF is said to be correct for

CS i� C(X) � CS(X) for every set X of quanti�er free sentences.

De�nition 10 (Rules) Let S � EGLP be a set of sequents, and F;G 2 QF .

(Re) If F 2 [S], then S ` F .

(And) If S ` F and S ` G, then S ` F ^ G.

(Or) If S ` F or S ` G, then S ` F _G.

(Det) If S ` G, and F G 2 [S], then S ` F .

(DS) If S ` F _ G, and S ` �F , then S ` G.

(Coh) If S ` �F , then S ` �F .

We de�ne the basic inference relation `0 � Pow(EGLP)� QF as the smallest

relation being closed under Reexivity (Re), And, Or, Detachment (Det), Dis-

junctive Syllogism (DS), and Coherence (Coh).

5

Observation 1 The consequence relation j=c is correct for j=s, hence, the basic

inference relation `0 is correct for j=s, i.e. S `0 F implies S j=s F .

6.1 Exact Predicates and Contrapositive Inference

In an EDLP, we distinguish between two kinds of predicates. This distinction reects

the fact that many predicates (especially in empirical domains) have truth value

gaps: neither p(c) nor �p(c) has to be the case for speci�c instances of such inexact

predicates, like color attributes which can in some cases not be determined because

of vagueness. Other predicates, e.g. from legal or theoretical domains, are exact, and

we then have, for instance, m(S)_ �m(S), stating that Susan is either married or

unmarried, resp. odd(0)_ �odd(0), stating that 0 is either odd or non-odd. For an

exact predicate p and any ground term t from its domain, the Tertium Non Datur

(TND) follows from S: S j= p(t) _ �p(t). For an EDLP, this can be achieved by

adding all suitable instances of the TND: fp(t)_ �p(t) : p 2 ExRelg.

Observation 2 (Collapse) Weak and strong negation collapse for exact predi-

cates: let p 2 ExRel, then S ` �p(t) i� S ` �p(t).

Observation 3 (Weak Contraposition) If S j=c �F , and F G 2 [S], then

S j=c �G.

The Weak Contraposition principle facilitates the e�cient bottom-up computation

of models. Together, Coherence and Weak Contraposition help to establish weakly

negated conclusions in the course of `model generation' reasoning. Combined with

Coherence, the Weak Contraposition principle leads to Mixed Contraposition: If

S ` �F , and F G 2 [S], then S ` �G. While in general, a weakly negated

conclusion can only be established after computing all stable models, by means of

Coherence and Mixed Contraposition, we can establish weakly negated conclusions

before �nishing the computation of all stable models.

If the Mixed Contraposition principle is combined with Collapse, we obtain:

Observation 4 (Strong Contraposition) Let p 2 ExRel. If S ` �F , and

F p(t) 2 [S], then S ` �p(t).

De�nition 11 (Contrapositive Inference) We de�ne the contrapositive in-

ference relation `0 as the smallest relation being closed under Reexivity, And, Or,

Detachment, Disjunctive Syllogism, Coherence, Weak Contraposition, and Collapse.

By applying Collapse and the contraposition principles, we can compile a program

S into S0 according to the following transformation steps. Firstly, set S 0 = S.

Secondly, add a contrapositive �G �F to S0 for every F G 2 S. Thirdly, apply

appropriate rewrite rules in order to transform the heads of the added contrapositves

into negation normal forms where negations occur only in extended literal form

�p(t), ��p(t), or �p(t). Finally, apply Collapse to the obtained weakly negated

literals. In the sequel, we write CP(S) instead of S0 for the compiled progam.

6

Observation 5 Contrapositive inference from S is obtained by basic inference

from the contrapositive transformation CP(S), i.e. S ` F i� CP(S) `0 F .

In the next section, we apply these inference rules to illustrative examples.

7 Practical Reasoning Problems

In this section we demonstrate by two simple examples how the framework of dis-

junctive logic programming can be used to formalize and solve practical reasoning

problems.

7.1 Monotonic Problems

The following problem is in its original version due to L. Schubert (and borrowed

from [Pel86]). Its solution is obtained by using (in addition to the basic principles

Detachment and Disjunctive Syllogism) the possibility to declare certain predicates

as exact, thus enabling the restricted inference rule of Strong Contraposition.

Example 1: The formalization of the problem is given by the following extended

disjunctive logic program P1 containing the facts and rules (A1) to (A9). Someone

who lives in Dreadsbury Mansion, killed aunt Agatha. Agatha, the butler, and

Charles live in Dreadsbury Mansion, and are the only people who live therein:3

(A1) k(A;A)_ k(B;A) _ k(C;A)

A killer hates his victim:

(A2) h(x; y) k(x; y)

and is never richer than his victim:

(A3) �r(x; y) k(x; y)

Charles hates no one that aunt Agatha hates:

(A4) �h(C; x) h(A; x)

Agatha hates everyone except the butler, and no one the butler does not hate:4

(A5) h(A; x) �e(x;B)

(A6) �h(A; x) �h(B; x)

The butler hates everyone not richer than aunt Agatha:

(A7) h(B; x) �r(x;A)

No one [in Dreadsbury Mansion] hates everyone:

(A8) HA ^HB ^HC

where Hx :=� h(x;A)_ � h(x;B)_ � h(x; C), for x = A;B;C. Finally, we also

know that Agatha is not the butler and Charles is not the butler:

(A9) �e(A;B)^ �e(C;B)

Who killed aunt Agatha: k(x;A) ?

3We reduce this information, namely lDM(A) ^ lDM(B) ^ lDM(C) ^ 9x : k(x;A) ^ lDM(x),

using the Closed-World Assumption for lDM , to the disjunction k(A;A) _ k(B;A) _ k(C;A).
4Notice that we use e as an equality predicate. In the case of (A5) we use the contraposition of

Schubert's original formulation `The butler hates everyone Agatha hates.'

7

A realistic representation of the problem should assume that the predicates hates

and killedmay be undetermined in certain cases, i.e. that they are not exact. On the

other hand, it seems plausible to declare the predicates richer and equals as exact,

i.e. assuming that they do not have truth value gaps, or in other words, that for

all ground instances of them it can be determined whether they are true or false:

ExRel = fr; eg.

While the solution can be found by `brute force' bottom-up computation, we

will construct here only the essential reasoning steps using the restricted Strong

Contraposition principle. Two arguments can be found why neither Charles nor the

butler killed Agatha, and hence, by the Disjunctive Syllogism, she must have killed

herself.

From (A5) and (A9) we get immediately that Agatha hates herself, h(A;A),

consequently by (A4), Charles does not hate Agatha, � h(C;A), and hence by

Mixed Contraposition of (A2), it is not the case that he killed her, �k(C;A).

From h(A;A) we obtain with Mixed Contraposition of (A6) that � � h(B;A).

From (A9) and (A5), we may also conclude that h(A;C), and consequently again

with Mixed Contraposition of (A6) that � �h(B;C). By applying the disjunctive

syllogism to the disjunction HB from (A8) and the two derived facts � � h(B;A)

and � � h(B;C), we get � h(B;B). Since r is assumed to be exact, Strong Con-

traposition of (A7) yields r(B;A), and �nally by Mixed Contraposition of (A3) we

conclude that it is also not the case that the butler killed Agatha, �k(B;A).

7.2 Nonmonotonic Problems

Example 2: Climbers and Skiers. The following disjunctive program (inspired

by a similar, but monotonic problem in [She88]) is denoted by P2.

Tony, Mike, and John are members of an alpine club. Tony likes rain and John

dislikes snow:

(B1) m(T); m(M); m(J); l(T; r); � l(J; s).

All club members are skiers or climbers:

(B2) c(x)_ s(x) m(x).

Climbers normally dislike rain and snow:5

(B3a) � l(x; r) c(x)^ �l(x; r).

(B3b) � l(x; s) c(x)^ �l(x; s).

Skiers like snow and dislike rain

(B4) l(x; s)^ � l(x; r) s(x).

Problem: Is there a climber in the club who likes rain but dislikes snow? Yes, this

holds for Tom: c(T)^ � l(T; s)^ l(T; r).

The program P2 has two stable models. Both contain the facts from (B1), and

5Notice, that rules of this form correspond exactly to normal default rules in Reiter's default

logic.

8

the following ones:

c(T); c(J);� l(T; s);� l(J; r)

One of them contains in addition c(M);� l(M; s); � l(M; r), and the other one

s(M); l(M; s);� l(M; r).

The monotonic inference rules de�ning ` are not su�cient to solve this problem,

we have to add some non-monotonic rule which is described as follows. Let S �

EDLP , and assume that S contains a complete set of rules for the exact predicates.

Let HeadLit(S) =
S
fH : B) H 2 [S]g. Let `1 be the smallest inference relation

being closed under the rules of contrapositive inference (see de�nition 11) and the

following nonmonotonic inference rule.6

(NM1): If l 62 HeadLit(S), then S `1 �l.

Observation 6 The inference relation `1 is correct for the stable semantics.

Proof (Sketch). Let l 62 HeadLit(S) and let I be a stable model of S. Assume,

l 2 I . By stability of I there exists a stable chain I0 � I1 � : : : � In � : : : generating

I . This implies the existence of a stage k 2 ! such that l 2 Ik+1 � Ik. It is easy to

show, that, because of l 62 HeadLit(S), the interpretation J = Ik+1�flg is a model

of f
W
Hs : [Ik; I] j=

W
Hsg. This contradicts the minimality if Ik+1.

We now sketch the solution of the problem P2. None of the predicates of the

problem domain is assumed to be exact, ExRel = ;. Therefore, neither (Collapse)

nor the (Strong Contraposition) principle may be used.

By (Coh) we obtain � � l(T; r) from the corresponding fact in (B1). From this

we get by weak contraposition of (B4) �s(T). By (Det) we obtain c(T)_s(T) from

(B1) and (B2). Applying (DS) to this disjunction and �s(T) yields c(T). Using

the non-monotonic inference rule NM1 we may derive �l(T; s). By applying (Det)

to (B3a) we �nally conclude � l(Ts). Finally, using (And) we combine the three

literals to the conjunction c(T)^ � l(T; s)^ l(T; r).

8 Conclusion

We have shown how the computational framework of EDLP, allowing for truthvalue

gaps and nonmonotonic inference, based on stable generated models, can be used to

solve practical reasoning problems.

References

[GL88] M. Gelfond and V. Lifschitz: The Stable Model Semantics for Logic Pro-

gramming, Proc. ICLP 1988, MIT Press, 1988.

6By a natural extension of this rule we get a sequence of stronger nonmonotonic relations `1�`2�

: : : �`� : : :.

9

[GL90] M. Gelfond and V. Lifschitz: Logic Programs with Classical Negation, Proc.

ICLP 1990, MIT Press, 1990.

[GL91] M. Gelfond and V. Lifschitz: Classical Negation in Logic Programs and

Disjunctive Databases, J. New Generation Computing 9 (1991), 365{385.

[HP92] H. Herre and D. Pearce: Disjunctive Logic Programming, Constructivity

and Strong Negation; Springer, in: LNAI 633, 391-410

[HW96] H. Herre and G. Wagner: Stable Models are Not Always Minimal, submit-

ted, available from the LPNMR archive.

[MR93] J. Minker and C. Ruiz: On Extended Disjunctive Logic Pograms, Proc. of

ISMIS'93, Springer LNAI, 1993.

[Pel86] F.J. Pelletier: Seventy-Five Problems for Testing Automatic Theorem

Provers, J. Automated Reasoning 2 (1986), 191{216.

[She88] J.C. Shepherdson:Introduction to the Theory of Logic Programming, Proc.

of the Logic Coll. 1986, North-Holland, 1988

[Wag91] G. Wagner: A Database Needs Two Kinds of Negation, in: Proc. Third

Int. Symp. on Mathematical Fundamentals of Database and Knowledge Based

Systems, Springer LNCS 495 (1991), 357{371.

10

