
Stable Semantics of

Temporal Deductive Databases

Heinrich Herre Gerd Wagner

fherre,gwg@informatik.uni-leipzig.de
Institut f�ur Informatik, Univ. Leipzig,

Augustusplatz 10-11, 04109 Leipzig, Germany, Fax: (+49 341) 973 22 09.

Abstract

We de�ne a preferential semantics based on stable generated models for a very general

class of temporal deductive databases. We allow two kinds of temporal information to

be represented and queried: timepoint and timestamp formulas, and show how each of

them can be translated into the other. Because of their generality, our formalism and

our semantics can serve as a basis for comparing and extending other temporal deductive

database frameworks.

1 Introduction

A deductive database consists of facts and deduction rules. Logically, facts correspond to

sentences of a suitably restricted language, and rules may be viewed as Gentzen sequents. A

set of facts can be viewed as a database whose semantics is, according to the Closed-World

Assumption, determined by its minimal models. For a set of facts and rules, however, minimal

models are not adequate because they interpret rules in a non-directed way (according to the

symmetric contraposition principle), and are therefore not able to capture the directedness

of rules with negation-as-failure.

As an alternative to minimal models, stable models in the form of certain �xpoints have

been proposed by Gelfond and Lifschitz [GL88] as the intended models of deductive databases

(resp. normal logic programs). If we consider reasoning with temporal information the sit-

uation is similar: while minimal temporal models are adequate for temporal databases we

need again a more re�ned criterion to select the intended models of temporal deductive

databases. We show that our de�nition of stable generated models provides such a preference

criterion. Stable generated models are generated by a stable chain, i.e. a layered sequence of

rule applications where all applied rules remain applicable throughout the model generation

sequence.

The paper has the following structure. After introducing some basic notation in section 2,

we describe the �rst order language of temporally quali�ed formulas and explain the meaning

of some temporal null values in section 3. In section 4, then, temporal Herbrand models are

de�ned and their relationship to temporal databases is briey discussed. Temporal deductive

databases are introduced in section 5, and �nally in section 6, the stable semantics for them

is de�ned.

1

2 Preliminaries

A signature � = hRel ;Const;Funi consists of a set of relation symbols, a set of constant

symbols, and a set of function symbols. Term(�), resp. Term0(�), denotes the set of all

terms, resp. ground terms, of �. For a tuple t1; : : : ; tn we will also write ~t when its length

is of no relevance. The logical functors are :;^;_;�; 8; 9; � is called material implication.

L(�) is the smallest set containing the atomic formulas of �, and being closed with respect to

the following conditions: if F;G 2 L(�), then f:F; F ^G; F _G; F � G; 9xF; 8xFg � L(�).

For sublanguages of L(�) formed by means of a subset F of the logical functors, we write

L(�;F). With respect to a signature � we de�ne the following sublanguages: At(�) = L(�; ;),

the set of all atomic formulas (also called atoms); Lit(�) = L(�;:), the set of all literals. We

introduce the following conventions. When L � L(�) is some sublanguage, L0 denotes the

corresponding set of sentences (closed formulas). If the signature � does not matter, we omit

it and write, e.g., L instead of L(�). Whenever appropriate we write F (x) instead of F in

order to indicate that x occurs free in F . The set of free variables of a formula F is denoted

by Free(F).

If Y is a partially ordered set, then Min(Y) denotes the set of all minimal elements of Y ,

i.e. Min(Y) = fX 2 Y j :9X 0 2 Y : X 0 < Xg.

3 The Logic of Temporally Quali�ed Information

We consider two types of temporal formulas corresponding to two types of temporal quali�-

cation. In order to say that Charles and Diana have been married from 1981 to 1996 we can

use a collection of timepoint sentences of the form

m(C;D)@1981; m(C;D)@1982; : : : ; m(C;D)@1996

Alternatively, we can state this fact more compactly using the timestamp sentence

m(C;D)@[1981::1996]

Timepoint formulas are related to the snapshot view of temporal information, where the

semantic value of a relation symbol is a function that maps each timepoint to a relation

over the object domain. In the timestamp view, the semantic value of a relation symbol

is a function that assigns a timestamp, representing valid time, to each object tuple. Both

languages can be formalized in the framework of two-sorted predicate logic over an object

signature and a temporal signature.

3.1 Syntax

Let � be an object signature associated with an object domain, and let � be a tempo-

ral signature associated with a temporal domain, such that � and � have no symbols in

common. We assume that the temporal signature � contains a unary function symbol

s, a constant 0 and a binary relation symbol <. Timepoints will be represented by the

terms 0; s(0); s(s(0)); s3(0); : : :, corresponding to natural numbers.1 We describe a language

1Throughout the paper, we assume a discrete temporal domain isomorphic to the order type of natural

numbers. There is a widespread agreement in the database literature that this is the proper model of time for

most kinds of temporal databases.

TP (�; �) for timepoint formulas, and a language TS(�; �) for timestamp formulas. The vo-

cabulary of both languages contains the following symbols:

- object variables: OVar = fx1; x2; : : :g, we also use y; z; : : :;

- object constants: OConst = fc1; c2; : : :g;

- variables for timepoints: TVar = ft1; t2; : : :g, we also use t
0; s; s0; s1; : : :;

- timepoint constants: TConst = fi1; i2; : : :g, we also use j; j1; : : :.

We assume that OVar \ TVar = ;. Timepoint terms are denoted by p; p0; p1; p2; : : :.

L(�) is the set of formulas expressing properties of objects, such as 9y(m(x; y)) expresses

the fact that x is married to someone. L(�) is the set of formulas expressing properties of

timepoints, such as 0 < t ^ 9t0(t < t0). The interpretation of symbols from the temporal

signature � , e.g. of <, is �xed (see 3.2), while the interpretation of symbols from the object

signature � varies in the usual way (determined by the actual database state).

De�nition 1 (Elementary Timepoint Formulas) An expression of the form F@p, where

F 2 L(�), and p 2 Term(�), is called an elementary timepoint formula over the signature

(�; �); it is called an atomic timepoint formula if F is an atomic formula. TPel(�; �) denotes

the set of all elementary timepoint formulas over (�; �), and At(�; �) denotes the set of all

atomic timepoint formulas.

De�nition 2 (Timepoint Formulas) The set TP (�; �) of timepoint formulas over (�; �)

is the smallest set containing TPel(�; �)[L(�), and being closed with respect to the connectives

^;_;:;� and the following condition: if F (x); G(t) 2 TP (�; �), then the formulas 8xF (x),

9xF (x), 8tG(t), and 9tG(t) belong to TP (�; �).

Example 1 The query who married the same person again can be expressed by the time-

point formula

9t19t29t3(t1 < t2 ^ t2 < t3 ^m(x; y)@t1 ^ :m(x; y)@t2 ^m(x; y)@t3)

De�nition 3 (Timestamp Formulas) The set TS(�; �) of timestamp formulas over

(�; �) is the smallest set containing fF@�tG(t) : F 2 L(�); G(t) 2 L(�)g, and being closed

with respect to ^;_;:;� and 8x; 8t; 9x; 9t.

The expression �tG(t) stands for the set of all timepoints de�ned by G(t), see the semantic

de�nition below. We de�ne the set of temporal formulas as L(�; �) = TP (�; �) [TS(�; �).

Elements of At0(�; �), i.e. atomic timepoint sentences, are called temporal atoms.

Example 2 The following expressions are timestamp formulas:

(1) R(x)@�t(0 < t ^ t < s5(0)_ s6(0) < t ^ t < s9(0))

(2) Q(x)@�t(0 < t)

(3) Q(x)@�t(0 < t ^ 9t0(t < t0))

(4) 9t19t2[R(x)@�t(t1 < t ^ t < t2)^ Q1(x)@�t(t1 < t) ^Q2(x)@�t(t < t2)]

The timestamp of (1) corresponds to a �nite union of disjoint intervals, i.e. the form of

timestamps proposed in [Gad88]. In the sequel, we also use the notation

(10) R(x)@[1::4; 7::8]

instead of (1), and call such timestamps normal. (2) expresses an eternal valid time, that is

it corresponds to the null-valued timestamp formula

(20) Q(x)@[1::1]

where 1 stands for the null value ad eternum. (3) expresses a timestamp with unknown end

time, that is it corresponds to the null-valued timestamp formula

(30) Q(x)@[1::�]

where � stands for the null value unknown timepoint. There are further indexical temporal

null values like now and until changed which are discussed below in section 7. All of (10), (20)

and (30) can be viewed as a resp. shorthand notation for (1), (2) and (3).

3.2 Semantics

In the sequel we assume that � = h0; s; <i, and we write N = hT; s; 0;<i for the standard

system of natural numbers. A h�; �i-interpretation I interprets constant and function symbols

from � in the standard way as elements of, resp. functions over, the object domain UI
independent of the time. I assigns a function RI : T ! 2U

n

I to every n-place relation symbol

R from �, such that RI(t) � Un
I is the set of those object tuples for which R holds at

timepoint t. The �-interpretation I(t) assigning the relation RI(t) to a relation symbol R is

called the snapshot of I at timepoint t.

An I-instantiation � is a function � : OVar [TVar ! UI [T assigning objects to object

variables and timepoints to timepoint variables. We write �o for the restriction of � to OVar,

and �t for the restriction of � to TVar. If an instantiation � is changed at the argument x (or

t) by assigning c (or i) to x (or t), we simply write �xc (or �ti) for the changed instantiation.

De�nition 4 (Satisfaction of Timepoint Formulas)

1. For elementary timepoint formulas: I; � j= F@p i� I(�t(p)); �o j= F .

2. For temporal constraints F 2 L(�): I; � j= F i� N ; �t j= F .

3. I; � j= F ^ G i� I; � j= F and I; � j= G (similarly for F _ G, F � G).

4. I; � j= :F i� I; � 6j= F .

5. I; � j= 9xF (x) i� there is an object c, such that I; �xc j= F (x).

I; � j= 9tF (t) i� there is a timepoint i, such that I; �ti j= F (t).

6. I; � j= 8xF (x) i� for all objects c: I; �xc j= F (x).

I; � j= 8tF (t) i� for all timepoints i: I; �ti j= F (t).

De�nition 5 (Satisfaction of Timestamp Formulas)

1. An instantiation � maps a timestamp into a set of timepoints:

�(�sF (s)) := fi 2 T : N ; (�t)
s
i j= F (s)g.

2. I; � j= F@�tG(t) i� for all i 2 �(�tG(t)): I(i); �o j= F .

3. All other cases are de�ned as for timepoint formulas.

We need some further de�nitions. Let F 2 L(�; �) be a temporal formula, and I be a

(�; �)-interpretation. Then Sat(I; F) = f� : I; � j= Fg, and I j= F i� for all �, I; � j= F .

For X � L(�; �) we de�ne Mod(X) := fI : I j= F for every F 2 Xg, and the standard

entailment relation X j= F i� Mod(X) � Mod(fFg). Two temporal formulas F and G are

logically equivalent, symbolically F � G, i� for every (�; �)-interpretation I it holds that

Sat(I; F) = Sat(I; G).

3.3 From Timepoints to Timestamps and Vice Versa

We compare the expressive power of the languages TP (�; �) and TS(�; �), and show that

both languages have the same expressive power.

Theorem 1 There exist algorithmic functions f : TP 0(�; �)! TS0(�; �) and g : TS0(�; �)!

TP 0(�; �), such that for every (�; �)-interpretation I and all sentences F 2 TP 0(�; �),

G 2 TS0(�; �) the following equivalences hold:

(1) I j= F i� I j= f(F)

(2) I j= G i� I j= g(G)

Proof: obtained as a corollary of the following lemmas.

Lemma 1 There is an algorithmic function g : TS(�; �)! TP (�; �), such that for all F 2

TS(�; �) it holds that Free(F) = Free(g(F)), and for every interpretation I and instantiation

�:

I; � j= F i� I; � j= g(F)

Proof (inductively on the complexity of F): We sketch only the initial step. Let F =

G@�tH(t), then g(F) := 8t(H(t) � G@t). 2

Lemma 2 There is an algorithmic function h : TP (�; �)! TS(�; �), such that for all F 2

TP (�; �) it holds that Free(F) = Free(h(F)), and for every interpretation I and instantiation

�

I; � j= F i� I; � j= h(F)

Proof: (inductively on the complexity of F). We sketch only the initial steps. Let F = G@p

be an elementary timepoint formula, then h(F) := G@�t(t = p). Next, let F = t < t0 be an

atomic temporal constraint, then

h(F) := H(t; t0) = 9x(x 6= x)@�s(s = t0 ^ t0 � t)

Assume I; � j= t < t0, then �(t) < �(t0) in N , implying that the set fi 2 T : i = �(t0)^�(t0) �

�(t)g is empty, and therefore trivialy, I; � j= H(t; t0). Conversely, if I; � j= H(t; t0), then,

since 9x(x 6= x) is not satis�able, the set �(�s(s = t0 ^ t0 � t)) has to be empty, implying

that I; � j= t < t0. 2

4 Minimal Herbrand Models of Temporal Databases

A Herbrand interpretation I of the language L(�; �) is an interpretation whose object do-

main is the set of all ground terms of �, and which interprets constants and function symbols

canonically (i.e. identically). Notice that I is a temporal Herbrand interpretation i� for all

t 2 T , I(t) is a classical Herbrand interpretation. While a classcial Herbrand interpreta-

tion can be identi�ed with a set of ground atoms (atomic sentences), a temporal Herbrand

interpretation I can be identi�ed with a set of temporal ground atoms

I = fa@p 2 At0(�; �) : I j= a@pg

The class of all Herbrand (�; �)-interpretations is denoted by IH(�; �). In the sequel we

simply say `interpretation', resp. `model', instead of `temporal Herbrand interpretation', resp.

`temporal Herbrand model'. We write I instead of I when we want to indicate the use of

sets of temporal atoms as interpretations. For a set of temporal sentences X � L0(�; �), we

de�ne ModH(X) = fI 2 IH(�; �) : I j= F for all F 2 Xg.

De�nition 6 (Informational Extension of an Interpretation)

Let I; J 2 IH(�; �) be two interpretations. We say that J extends I, resp. J is informationally

greater than or equal to I, symbolically I � J, if for all t 2 T : I(t) � J(t).

Obviously, I � J i� I � J , and hIH ;�i is a complete lattice.

De�nition 7 (Minimal Model) For F 2 L0(�; �) � X, we de�ne

Modm(X) = Min(ModH(X))

and the minimal entailment relation X j=m F i� Modm(X) � ModH(F).

It is well-known that a relational database � over a language L(�) can be viewed as a �nite

set of atomic sentences X� � At0(�) which corresponds to a �nite Herbrand interpretation

I�, such that I� is the unique minimal model of X� (provided that � does not contain any

null values). An if-query F 2 L0(�) is con�rmed by �, if and only if I� j= F , or equivalently,

X� j=m F . This consideration shows that query answering in relational databases is based

on minimal entailment. The same holds for temporal databases.

An temporal database � without null values has a propositional representation as a set of

temporal atomsX� � At0(�; �). For a more e�cient representation,X� may be `compressed'

into its timestamp normal form which contains for each atom a occuring in X� exactly one

timestamp atom of the form a@[b1::e1; : : : ; bn::en], where the timestamp consists of a �nite

sequence of disjoint intervals with begin time bi and end time ei. Both the timepoint and

the timestamp representation of � have the same unique minimal model I�, and thus for

both propositional representations of � query answering has to be de�ned in accordance with

minimal entailment.

Recall that a database schema � essentially consists of a �nite set of predicates � =

fr1; : : : ; rmg which determine the temporal language L(�; �).

De�nition 8 (Temporal Database) A timestamp tuple is an object tuple concatenated

with a normal timestamp. A temporal table is a �nite set of (homogeneous) timestamp tuples.

A temporal database � over a schema � = fr1; : : : ; rmg is a �nite set of temporal tables:

� = fR1; : : : ; Rmg, such that the table Rk represents the temporal extension of the predicate

rk.

Example 3 The following temporal table represents the salary history of employees:

Sal =

Tom 3600 1994::1995

Tom 4100 1996

Tom 3900 1997

Pit 4400 1993::1994; 1997

Pit 4600 1995::1996

Notice that in practice one does usually not know the end timepoint of the currently valid

sentences. In order to represent this adequately, one needs the null value until changed which

is dicussed in section 7.

Observation 1 (Propositional Representation) A temporal database � over the schema

� = fr1; : : : ; rmg can be propositionally represented as

X� =
m[

k=1

frk(~c)@T : h~c; T i 2 Rkg

If the timestamps T in X� do not contain null values (except 1), the timestamp atoms of

X� can be attened to a set of temporal atoms:

At� =
[
fa@i : a@T 2 X� & i 2 Tg

Only in the rather idealized case without any disjunctive or existential null values can a

database � be viewed as an interpretation. In general, it should be viewed as a set of

sentences X�, most of which are atomic.

Observation 2 (Induced Interpretation) A temporal database � without null values

(except 1) induces the interpretation I� = At�, being the unique minimal model of X�,

such that for an if-query F ,

I� j= F , X� j=m F

De�nition 9 (Natural Inference) Let� be a temporal database over �, and F 2 L0(�; �)

be a temporal if-query. The natural inference relation `, which is the logical basis of query

answering, is de�ned by means of minimal entailment:

� ` F :, X� j=m F

Example 4 Let �3 = fSalg. Then,

X�3
= fsal(Tom; 3600)@[1994::1995]; sal(Tom; 4100)@1996; : : :g

I�3
= fsal(Tom; 3600)@1994; sal(Tom; 3600)@1995; : : :g

�3 ` :9x; y : sal(x; y)@1996^ y < 4000

Obviously, a set of atomic sentences such as represented by a temporal database (without

null values) has a minimal model. But how about more general sets of formulas ?

Proposition 3 Let X � L(�; �) be a set of universal sentences. If X has a model then X

has a minimal Herbrand model.

Example 5 The sentence 8t9s(t < s ^ R(~c)@s) does not have a minimal model.

Since temporal databases are an extension of relational databases, an important question

is how to embed the latter in the former. Formally, the answer to this question is straight-

forward: choose an arbitrary timepoint, say t0, and consider a relational database � as a

snapshot of the corresponding temporal database �0 at this timepoint: I� = I�0(t0). The

corresponding temporal database �0 gives the same answers (at t0) as the original database

does: Ans(�0; F@t0) = Ans(�; F). In this sense, relational databases can be faithfully em-

bedded in temporal databases.2

5 Temporal Deductive Databases

We obtain a temporal deductive database by adding deduction rules to a temporal database.

The general form of a temporal deduction rule is de�ned as follows.

De�nition 10 (Temporal Deduction Rule) A temporal deduction rule r is an expres-

sion of the form

F1; : : : ; Fm G1; : : : ; Gn

where Fi; Gj 2 L(�; �) for i = 1; : : : ; m and j = 1; : : : ; n. The body of r, denoted by

Br, is given by fG1; : : : ; Gmg, and the head of r, denoted by Hr, is given by fF1; : : : ; Fng.

R(�; �) denotes the class of all rules r such that Hr;Br � L(�; �). For a given set of rules

R � R(�; �), [R] denotes the ground instantiation of R, i.e. the set of all ground instances of

rules from R.

As with Gentzen sequents, the head of a rule represents a disjunction, while the body repre-

sents a conjunction.

De�nition 11 (Satisfaction of Rules) Let I 2 IH(�; �). Then,

I j= F1; : : : ; Fm G1; : : : ; Gn i�

\

i�n

Sat(I; Gi) �
[

j�m

Sat(I; Fj)

Note that a rule F with an empty body corresponds to a fact F 2 L(�; �). The question

arises, whether the rule arrow is really needed since we already have the material impli-

cation connective � in our language. The following proposition seems to suggest that there

is no need for the new connective .

Observation 3 (Rules and Material Implication) Let H B be a temporal deduc-

tion rule, and I be an interpretation. Then,

(1) I j= H B i� I j=
V
B �

W
H.

(2) I is a minimal model of H B i� I is a minimal model of
V
B �

W
H.

2Yet, this formal consideration does not reect the implicit temporality and dynamics of a relational

database. Normally, the facts entered into a relational database are valid from the time being entered until

they are deleted, and thus a relational database contains implicit temporal information which cannot be

queried, however, and can also not be reected in the embedding.

We will see below, however, that the intended models of a rule are not its minimal but its

stable models, and the stable models of a rule do not coincide with the stable models of the

corresponding material implication (see ex. 7).

For a rule set R � R(�; �), we de�ne the model operators

ModH(R) = fI 2 IH(�; �) : I j= r, for all r 2 Rg

Modm(R) = Min(ModH(R))

We now de�ne temporal deductive databases (TDDBs) in a very general way. This does not

mean that we propose such general rule formats for practical systems, it only reects the

semantical perspective of our paper. From a semantical point of view it is desirable to de�ne

the most general class of structures under consideration. It is a di�erent enterprise, then, to

identify the theoretically and practically relevant subclasses.3

De�nition 12 (TDDB) A temporal deductive database is a �nite set of quanti�er-free

temporal deduction rules.

Notice that this de�nition allows disjunctive rules as a speci�c form of incompleteness,

whereas it excludes null values representing existential information, such as �, or uc. For

instance, a rule describing Russian roulette, is expressible as

dead@s(t) _ dead@s2(t)_ : : :_ dead@s6(t) loaded@t

Also, negation is allowed both in the body and the head of a rule.

We have chosen quanti�er-free rules because they can be viewed as a representation of

the set of ground rules obtained by instantiation.

Proposition 4 Let R be a TDDB. Then, ModH(R) = ModH([R]), where [R] is the ground

instantiation of R.

A preferential semantics for rules is given by a preferred model operator � : 2R(�;�) ! 2IH(�;�),

satisfying the condition �(R) � ModH(R), and de�ning the preferential entailment relation

R j=� F i� �(R) � ModH(F)

The question is: which preferred model operator captures the intended models of temporal

deductive databases ?

Our intuitive understanding of rules suggests that they are able to generate additional

information when applied to given information. A model I of a rule set R is considered to

be intended if the information of I can be generated by an exhaustive iterated application

of the rules r 2 [R]. In other words, the intended models of R should be grounded in R.

Furthermore, we want to have the property that every piece of information a 2 I is supported

by a rule r 2 [R] in the sense that a occurs positively in the head of r, and I satis�es the

body of r. Below, we will make these ideas precise.

3Usually, the language of databases is restricted to function-free signatures (e.g. the schema of a relational

database does not allow function symbols). Another important restriction, which guarantees �nite and `sen-
sible' query evaluation, is the requirement that rules in databases have to be range-restricted, i.e. the head of

a rule must not contain other free variables than those occuring in the body, and the body must be evaluable,

resp. domain-independent in the sense of [vGT91]. We will not investigate the de�nition of evaluable formulas
of L(�; �) in this paper.

If a TDDB contains rules with negated premise formulas, it may have minimal models

which are not grounded in the sense sketched above. Consequently, preferential semantics

based on minimal models does, in general, not guarantee groundedness. This is illustrated

by the following example.

Example 6 We assume that a car insurance company refunds money to its customers if

they did not have an accident in the previous year, expressed by the rule

r1 : refund(x)@s(t) customer(x)@t; :accident(x)@t

Let R6 consist of this rule together with the fact that Wagner was a customer in 1995: R6 =

fcustomer(W)@1995; r1g. Obviously, R6 has two minimal models:

M1 = f customer(W)@1995; refund(W)@1996 g

M2 = f customer(W)@1995; accident(W)@1995 g

Only M1 is intended, and Wagner should get the refund. Note that in the case of M2, the

atom accident(W)@1995 cannot be generated by applying rules from [R6] because it does not

appear in the head of any rule. M2 is therefore neither grounded nor supported.

In the next section, we de�ne a more re�ned preference criterion for selecting the intended

models of a TDDB: stable generated models are both grounded and supported.

6 Stable Semantics for Temporal Deductive Databases

We need some further notation. With respect to a class of interpretationsK , we writeK j= F

i� I j= F for all I 2K. We denote the set of all rules from a rule set R which are applicable

in K by

RK = fr 2 [R] :K j= Brg

If K is a singleton, we omit brackets.

De�nition 13 (Interpretation Interval) Let I1; I2 2 IH(�; �). Then, [I1; I2] = fI 2

IH : I1 � I � I2g.

Recall the fact that every satis�able set of quanti�er-free formulas has a minimal Herbrand

model which is the basis for the following de�nition.

De�nition 14 (Stable Generated Model) Let R be a TDDB. A modelM of R is called

stable generated, symbolically M 2 Mods(R), if there is a chain of Herbrand interpretations

I0 � : : : � I� such that M = I�, and

1. I0 = ;.

2. For successor ordinals � with 0 < � � �, I� is a minimal extension of I��1 satisfying

all rules which are applicable in [I��1;M], i.e.

I� 2 MinfI 2 IH(�) : I � I��1, and I j= r, for all r 2 R[I��1;M] g

3. For limit ordinals � � �, I� = sup�<� I�.

We also say that M is generated by the R-stable chain I0 � : : : � I�.

Not every satis�able TDDB has a stable generated model. A simple example of an unstable

TDDB is fr(c)@0 :r(c)@0g whose unique minimal model fr(c)@0g cannot be generated

by a stable chain. This problem is, however, not related to the temporal quali�cation, and

we encounter it also in the case of normal logic programs.

In the sequel, we simply say `stable' instead of `stable generated' model. The stable

entailment relation is de�ned as follows:

R j=s F i� Mods(R) � ModH(F)

With respect to stable models, rules di�er from material implications.

Example 7 Let a; b 2 At0(�; �) be temporal ground atoms. Then,

Mods(:a � b) = Mods(a _ b) = ffag; fbgg 6= Mods(b :a) = ffbgg

And indeed, using stable entailment we obtain the right answer in the case of our car insurance

example, i.e. Wagner gets the refund:

R6 j=s refund(W)@1996

since Mods(R6) = fM1g.

Theorem 2 A deductive database � under the stable model semantics of [GL88] can be

faithfully embedded (as a snapshot) in a temporal deductive database �0
under our stable

semantics such that there is a one-to-one correspondence between the stable models of � and

the stable generated models of �0
.

Proof: follows directly from the proof that the stable models of a normal logic program in

the sense of [GL88] are exactly the models generated by a stable chain in [HW96].

7 Indexical Temporal Null Values

In this section, we briey discuss the meaning of two important temporal null values. Notice,

however, that we did not consider these special expressions in our treatment of TDDBs above.

Their inclusion would require certain extensions of our framework which we left as an issue

for future work.

It is natural to use the expression now in temporal queries like, for instance, Is Tom's

salary now higher than 4000 ? Such indexical queries, however, cannot be evaluated against a

temporal database X alone. Their evaluation requires in addition to X a reference timepoint

t which determines the interpretation of now. Let X1 consist of the table of ex. 3. Then, we

get
X1; 1996 ` sal(Tom; x)@now ^ x > 4000

X1; 1997 6` sal(Tom; x)@now ^ x > 4000

since in the example database X1, Tom's salaray is decreased in 1997 from 4100 to 3800

dollars.

The satisfaction relation for the extended language with now has to be extended accord-

ingly. A model, then, consists of a an interpretation I, an instantiation �, and an evaluation

instant i. E.g.,

I; �; i j= F@now i� I; � j= F@i

Formally, now is added to the temporal signature � as a special constant which may be used

in temporal terms, and which is replaced by the evaluation instant when interpreted.

Another important indexical null value is until changed (uc) which is used when storing

new information with an open-ended valid time. Notice that it seems to be the rule, and not

an exception, that new temporally dependent information (such as, e.g., the new salary of

an employee) does not come with a de�nite end time. In that case, the null value uc must

be used to store the new information in the database: sal(Tom; 3900)@[1997; uc] expresses

the fact that from 1997 until changed Tom's salaray is 3900. Formally, this means that the

unknown end timepoint is greater than or equal to now, i.e.

[1997; uc] = �t(1997 � t ^ 9s(now � s ^ t � s))

The di�erence between now and uc comes only into play when statements about the future are

concerned. This is the case if the database is used for planning or for recording commitments.

For instance,

fsal(Tom; 3900)@[1997; uc]g; 1998 ` sal(Tom; 3900)@1998

fsal(Tom; 3900)@[1997;now]g; 1998 ` sal(Tom; 3900)@1998

fsal(Tom; 3900)@[1997;now]g; 1996 6` sal(Tom; 3900)@1997

fsal(Tom; 3900)@[1997; uc]g; 1996 6` sal(Tom; 3900)@1997

The di�erences between 1, now and uc are informally discussed in [WJ91]. Many authors

seem to overlook the fact that now and uc are indexical expressions requiring a special

semantical treatment, and should not be confused with 1.

8 Related Work

The distinction between the snapshot and the timestamp view of temporal information is

discussed at length in [Cho94], where timestamps, however, are more restricted than in our

treatment (we allow for free variables in timestamps). The null values uc and 1, which we

have distinguished as certain timestamps, have been only informally discussed in [WJ91].

Negation in temporal deduction rules has been only allowed in strati�ed TDDBs by many

authors (e.g. [Cho90]) whereas our semantics is also de�ned for non-strati�ed TDDBS, and it

even allows negation and disjunction in the head of rules. Our de�nition of stable generated

models of TDDBs is based on the corresponding de�nition for normal logic programs in

[HW96].

9 Conclusion

We have shown that the notion of a stable model, originally proposed for normal logic pro-

grams, can also be de�ned for a very general class of temporal deductive databases. Our

semantics can serve as a basis for investigating further speci�c subclasses of TDDBs which

extend the temporal versions of Datalog by adding negation and disjunction. Such extensions

are interesting for information (and knowledge representation) systems if they prove to be

more expressive at an acceptable price.

References

[Cho94] J. Chomicki. Temporal Query Languages: a Survey. in: D. Gabbay and H. J.

Ohlbach (eds.) Temporal Logic, LNAI vol. 827 (1994), 506{534

[Cho90] J. Chomicki: Polynomial-Time Computable Queries in Temporal Deductive

Databases, Proc. of PODS'90, 1990.

[Gad88] S.K. Gadia: A Homogeneous Relational Model and Query Languages for Temporal

Databases, ACM Transactions on Database Systems 13:4 (1988), 418{448.

[vGT91] A. van Gelder and R.W. Topor: Safety and Translation of Relational Calculus

Queries, ACM Transactions on Database Systems 16:2 (1991), 235{278.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

In R. A. Kowalski and K. A. Bowen, editors, Proc. of ICLP, pages 1070{1080. MIT

Press, 1988.

[HW96] H. Herre and G. Wagner: Stable Models are Generated by a Stable Chain, Technical

Report, Univ. Leipzig, 1996, to appear in the J. of Logic Programming.

[WJ91] G. Wiederhold and S. Jajodia: Dealing with Granularity of Time in Temporal

Databases, Proc. of 3rd Int. Conf. CAiSE'91, LNCS 498, Springer-Verlag, 1991.

A Weiteres Material

Timepoint formulas can be normalized in the following way.

Proposition 5 Let G(p) denote the elementary timepoint formula F@p, then there is a

timepoint formula H(p) such that:

1. G(p) � H(p), and

2. every elementary timepoint subformula of H(p) has the form: A@p, where A is atomic

and Free(A) � Free(G).

De�nition 15 (Prenex Formula) F 2 TP (�; �) is a prenex formula if it has the form:

Q1v1Q2v2 : : :QmvmG, where Qi 2 f8; 9g and vi 2 TVar [OVar, i = 1; 2; : : : ; m, and G is a

quanti�er free formula from TP (�; �). A prenex formula is called universal if all quanti�ers

are universal.

Proposition 6 For every F 2 TP (�; �) there is a prenex formula G 2 TP (�; �), such that

F � G.

De�nition 16 (Persistent Formula) A formula F 2 L(�; �) is called persistent if for

arbitrary Herbrand interpretations I; J 2 IH(�; �) satisfying I � J, and every valuation

� : Var ! U� the condition I j= F� implies J j= F�.

Observation 4 Every formula F 2 L(�;^;_; 9; 8) is persistent.

Proposition 7 Let X � L(�; �) be a set of universal sentences. If X has a model then X

has a minimal Herbrand model.

Theorem 3 Let X � TP (�; �) be a set of universal sentences. Then every Herbrand model

of X is an extension of a minimal Herbrand model of X, and can be extended to a maximal

Herbrand model of X.

Proof sketch: We assume that every sentence in X is a prenex formula, and that every

elementary timepoint subformula in F 2 X has the form R(~x)@p(~t). W.l.o.g. we assume

that every formula F 2 X is a conjunctive normal form over formulas of the form R(~x)@p(~t),

p(~t) < q(~s), or p(~t) = q(~s). Let I 2 Mod(X), and let I0 � I1 � : : : � In � : : : be a sequence

of models of X with I = I0. We show that the interpretation J de�ned by J(t) =
S
In(t),

t 2 T , is a model of X . By Zorn's lemma this implies the existence of a maximal model of X

extending I . For any F 2 X , we may assume that F has the following form:

p1(~t) _ : : :_ pm(~t) _ :q1(~t)_ : : ::qn(~t)_

A1(~x)@�1(~t) _ : : :_Ak(~x)@�k(~t) _ :B1(~x)@�1(~t) _ : : :_ :Bl(~x)@�l(~t)

We show that J j= 8~x8~tF (~x;~t) by proving that the assumption J 6j= 8~x8~tF (~x;~t) leads to a

contradiction.

Proposition 8 Let R be a TDDB. Then, ModH(R) = ModH([R]), where [R] is the ground

instantiation of R.

Question 1 For which superclasses of quanti�er-free rules does this property still hold ?

De�nition 17 (Query Languages) We consider following query languages for generalized

temporal deductive databases. L0
Q(�; �) is the set of all quanti�er-free sentences from TP(�; �),

L1
Q(�; �) is the set of all closed formulas from TP(�; �) not containing object quanti�ers.

L2
Q(�; �) = L1

Q(�; �) = f9(F) : 9(F) is the existential closure of F and F is a formula from

TP (�; �) without free time variables and without object quanti�ers g.

