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ABSTRACT 
Energy demands can be particularly high in arctic-nesting birds that face harsh, 

unpredictable conditions during the breeding season. Consequences of these demands, 

particularly energy-partitioning during egg laying and incubation, are fundamentally important 

for arctic nesters. This study investigated differences in breeding strategies between Long-tailed 

Duck (Clangula hyemalis) and King Eider (Somateria spectabilis) in the central Canadian arctic. 

The focus was on ecological variables and influences of variation in nutrient resources used 

during incubation and egg production. Research was done at Karrak Lake, Nunavut, where both 

species nest sympatrically at relatively high densities, permitting comparative research about 

breeding strategies. 

This study used stable-carbon (δ13C) and nitrogen (δ15N) isotope analysis to investigate 

origins and allocation of endogenous (stored) and exogenous (external) nutrients used in egg 

production. Remote temperature sensors were placed in nests to estimate and compare incubation 

rhythms and gain insight into capital and income incubating strategies of both species. Results 

suggest that breeding Long-tailed Ducks and King Eiders used a “mixed” breeding strategy, that 

is they relied on both exogenous and endogenous resources for reproduction. Close 

correspondence between δ13C and δ15N values of egg components and potential diet items 

indicated that King Eiders allocated exogenous nutrients for egg production (albumen 98.1%, 

yolk protein 96.8%, whole yolk 98.4%, and yolk lipids 84%). Female King Eiders relied on 

endogenous nutrients for incubation, as evidenced by high incubation constancy (96%). 

Conversely, the range of δ13C values in components of Long-tailed Duck eggs and δ13C values of 

diet items suggested that although some females allocated endogenous reserves for egg 

production, most females allocated exogenous resources for egg production (albumen 98.5%, 

yolk protein 78.3%, whole yolk 84.9%, and yolk lipids 38.3%). Long-tailed Duck females had an 

84% incubation constancy, suggesting less reliance on endogenous nutrients for incubation than 

was estimated for female King Eiders. Knowledge about the relative importance of endogenous 

reserves and exogenous nutrients for egg production and incubation may help direct management 

decisions to specific winter/staging and or breeding areas used by King Eiders and Long-tailed 

Ducks.   
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1.0 GENERAL INTRODUCTION 

1.1. BREEDING STRATEGIES OF LONG-TAILED DUCKS AND KING EIDERS 

Drent and Dann (1980) theorized that breeding birds use either a capital strategy, relying 

on stored (endogenous) energy sources, or an income strategy, relying on external (exogenous) 

sources. Energy and nutrient reserves are essential during the breeding season for successful 

reproduction in many waterfowl species (Ankney et al. 1991, Alisauskas and Ankney 1992), and 

are crucial to the egg-laying and incubation processes (Afton and Paulus 1992). Reliance on 

energy and nutrient reserves for reproduction is a ubiquitous adaptation by breeding waterfowl to 

meet high energy demands of breeding (Alisauskas and Ankney 1992). The degree to which a 

breeding female relies upon endogenous and exogenous nutrient sources determines the breeding 

strategy as either, capital or income (Drent and Dann 1980). Recent research has demonstrated 

that many species occupy a continuum between the two extremes (Bonnet et al. 1998, Thomas 

1988, Meijer and Drent 1999, Gauthier et al. 2003, Morrison and Hobson 2004).  

The analysis of naturally occurring stable-isotopes in avian eggs can provide dietary 

information and insights into metabolic pathways linking endogenous reserves and exogenous 

nutrients to reproduction (Hobson 1995). Nutrients required for egg production are derived from 

either nutrient reserves or directly from the diet of laying females, making eggs particularly 

amenable to stable-isotope analysis (Hobson et al. 1997). Stable isotope analysis of eggs can help 

determine the relative proportion of endogenous or exogenous nutrients allocated to egg 

production (Hobson 1995). In addition, the technique can determine if nutrients utilized for egg 

production were obtained from either a freshwater or marine ecosystem (Hobson et al. 1997). 

Stable-isotope techniques have been used successfully to investigate capital and income breeding 

strategies of several species (Hobson 1995, Hobson et al.1997, Hobson et al. 2000, Klassen et al. 

2001, Morrison and Hobson 2004, Hobson et al. 2004). 

In addition to the physiological costs of egg formation, incubation behaviour is also 

fundamentally important to reproductive success (Mallory and Weatherhead 1993). A few of the 

major functions of avian incubation relate to maintaining favorable temperature conditions 

within nests for embryonic development, while minimizing likelihood of predation and allowing 

incubating females to maintain a favorable energy balance. The optimum balance of time spent 

on and off the nest is an adaptation that maximizes likelihood of successful hatch against costs of 
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conflicting variables (Flint and Grand 1999). Blums and Clark (1991) suggested that in northern-

most breeding areas, reliance on endogenous reserves during incubation might be more 

important than in more southern areas because of lower ambient temperatures. The various 

physiological costs of incubation to breeding females has lead to the suggestion that incubation 

behavior is driven by tradeoffs between the loss of body condition, maintenance of egg viability 

and predation risks (Thompson and Raveling 1987, Afton and Paulus 1992). These combined 

costs and tradeoffs have lead to theories related to the reliance by breeding females on either a 

capital or income strategy for incubation. 

Capital incubators are typically considered larger-bodied birds, such as geese, as larger 

body size may enable a greater storage of endogenous reserves (stored body reserves) before the 

breeding season, permitting greater use of these stores during the egg-laying and incubation 

periods. Income incubators, typically smaller-bodied birds, such as shorebirds, are thought to 

rely almost exclusively on exogenous stores (local diet resources) during the same periods, since 

their size may restrict the amount of energy that they can be stored for reproduction prior to 

arrival on the breeding grounds. Due to past technological difficulties in obtaining data on 

continuous nest attentiveness by incubating birds few studies have examined these variables 

simultaneously (Mallory and Weatherhead 1993). However, recent technological advances allow 

researchers to investigate such variables concurrently. Data loggers for automatically recording 

temperatures are one such technological advance, whereby incubation constancy can be easily 

measured since nest temperature will decrease and increase when a female leaves and returns to 

the nest respectively.  

Energy demands are expected to be particularly high in arctic-nesting sea ducks, which 

face harsh, often unpredictable conditions. However, few studies have researched the use of 

endogenous and exogenous resources (i.e. capital and income breeding strategies, respectively) 

in arctic-breeding sea duck species. Long-tailed Ducks (Glangula hyemalis) and King Eiders 

(Somateria spectabilis) winter and breed in arctic and subarctic regions, coming to coastal and 

inland freshwater areas during the breeding period. King Eider’s are large-bodied ducks (Palmer 

1976, Portenko 1972 in Suydam 2000, Kellett and Alisauskas 1997), while Long-tailed Ducks 

are medium-sized (Peterson and Ellarson 1979, Leafloor et al. 1996, G.J.R. Gilchrist and H.G. 

Gilchrist Unpubl.). Afton and Paulus (1992) found that larger bodied waterfowl relied more on 

endogenous reserves, during incubation because of less time available for feeding recesses due to 
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their high incubation constancy. Alternatively, smaller-bodied waterfowl had short fasting 

endurance, and instead relied more on exogenous energy sources (Afton and Paulus 1992). These 

findings suggest that body size is a significant factor in the breeding ecology of waterfowl (Afton 

and Paulus 1992). 

Long-tailed Ducks were found to lose most of their fat reserves during spring migration 

and egg laying and body mass declined by 7 - 13% during incubation (Peterson and Ellarson 

1979, Kellett et al. 2005). Fat deposition in Long-tailed Ducks appears to fulfill two 

requirements 1) supplying energy for migration, and 2) as energy reserves for meeting existence 

requirements during winter periods when food intake could be limited (Peterson and Ellarson 

1979). King Eiders may rely exclusively on endogenous energy reserves during both egg 

production and incubation, losing an average of 30% of their pre-incubation body mass during 

incubation (Kellett and Alisauskas 2000). Common Eiders (Somateria mollissima) also lost 

~30% body mass during incubation (Parker and Holm 1990), despite recent findings from the 

Baltic that suggested reliance on exogenous nutrients from the local breeding ground for egg 

production, (Rigou and Guillemette Unpubl.). These findings suggest that sea ducks may use 

different breeding strategies for reproduction, with Long-tailed Ducks as income breeders, King 

Eiders as capital breeders and Common Eiders as “mixed” breeders.  

Karrak Lake, Nunavut, Canada is an ideal research area for this study as both King Eiders 

and Long-tailed Ducks are found nesting at relatively high densities, permitting comparative 

research about breeding strategies, and allocation of nutrients for reproduction. Results regarding 

breeding strategies of Long-tailed Ducks and King Eiders with respect to variation in 

endogenous and exogenous resources in both egg production and incubation could provide 

insight into factors that influence reproductive success and may help direct management 

decisions to specific winter/staging or breeding areas. 

 

1.2 STUDY SPECIES  

 Long-tailed Ducks and King Eiders belong to the Mergini Tribe, along with all sea ducks. 

This primarily marine group are considered ancient in origin, and includes some of the most 

specialized species within the family Anatidae (Johnsgard 1965). These two species, are 

circumpolar in distribution, share sympatric breeding and wintering ranges, and are considered 

among the most northerly- nesting waterfowl species in North America. Both species exhibit 
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high sexual dimorphism in plumage, vocalization and behavior (Johnsguard 1965). Pair bonds 

are renewed with elaborate courtship displays each year on wintering grounds before spring 

migration (Johnsguard 1965, Parmelee 1967, Lamothe 1973, Alison 1975). Long-tailed Ducks 

and King Eiders reach sexual reproductive maturity at two years of age (Johnsguard 1965, 

Livezey 1995). Mark-recapture data on King Eiders breeding at Karrak Lake suggests they do 

not begin breeding before three years of age (Alisauskas Unpubl.). Adult females have cryptic 

and disruptive plumage (Johnsguard 1965) and are ground nesters. Only females incubate and 

they are likely to produce only one clutch per breeding season, as with most arctic-nesting 

waterfowl, and if the first attempt fails, the nest is abandoned or predated (Parmelee 1967, 

Lamothe 1973, Pehrsson 1986, Alison 1975, Kellett and Alisauskas 1997).  

  Long-tailed Ducks and King Eiders, considered the two deepest diving sea ducks (Ehrlich 

et al. 1988), are carnivores that rely on various prey species as primary sources of food (Weller 

1964a). However, both species feed occasionally on plant matter on breeding grounds (Cottam 

1939, Preble and McAtee 1923). Interspecific differences in bill morphology and dive depth 

allow exploitation of different niches and food resources while sharing habitats (Livezey 1995). 

King Eiders are circumpolar in distribution, wintering in marine habitats and coming inland to 

freshwater habitats during the breeding season. The King Eider is a large-bodied duck weighing 

between 1200 and 2100g (Palmer 1976, Portenko 1972), Kellett and Alisauskas 1997). King 

Eiders have an average clutch size ranging from 4 – 5.5 (Lamothe 1973, Cotter et al. 1997, 

Kellett and Alisauskas 1997) and incubate on average for 23 days (Lamothe 1973, Kellett and 

Alisauskas 1997). King Eiders take short infrequent incubation recesses throughout incubation, 

maintaining an incubation constancy between 94% - 99% (Chapter 3, McGuire et al. Unpubl.). 

King Eider’s, like other North American waterfowl have two plumage phases - basic and 

alternate and molt twice a year (Palmer 1976). 

 The Long-tailed Duck is also a circumpolar species that breeds in freshwater arctic and 

subarctic regions, and winters in marine and freshwater areas. Long-tailed ducks are a medium-

sized sea duck: females weigh approximately 700g and males weigh approximately 800g 

(Peterson and Ellarson 1979, Leafloor et al. 1996, G.J.R. Gilchrist and H.G. Gilchist Unpubl.). 

Average clutch size ranges from 6 – 7.9 (Alison 1975, Bengston 1971, Kellett et al. 2005) and 

the incubation period is 26 days (Alison 1975, Kellett et al. 2005). Long-tailed Ducks take 

frequent incubation recesses of longer duration than those of King Eiders, maintaining an 
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incubation constancy of 84% (Chapter 3). Long-tailed ducks, unlike other North American 

waterfowl species have 3 plumage phases (basic, supplemental and alternate) and molt occurs 

three times a year (Palmer 1976). 

 

1.3 STUDY OBJECTIVES 

Noted population declines for both species along with sparse information about 

reproductive life history generated interest in this research (Sea Duck Joint Venture Management 

Board 2001, Prairie and Northern Region Sea Duck Team 2000). In addition, sparse knowledge 

about arctic breeding ecology, and shared phylogeny of Long-tailed Ducks and King Eiders 

motivated this research. Energy demands are expected to be particularly high in arctic-nesting 

sea ducks, which face harsh, often unpredictable conditions during the breeding season. 

Environmental variables may influence the amount of energy reserve needed to complete 

reproduction successfully. Some Eider species rarely leave the nest during incubation suggesting 

reliance upon stored (endogenous) energy sources (Parker and Holm 1990, Kellett and 

Alisauskas 2000). Conversely, Long-tailed Ducks frequently leave their nests during incubation 

suggesting a greater reliance on local food (exogenous) resources (Kellett et al. 2005). 

Consequently, Long-tailed Ducks may use a markedly different nutritional strategy for 

reproduction than King or Common Eiders. Isotope analysis of avian eggs may provide dietary 

information and insights into metabolic pathways linking endogenous and exogenous reserves to 

reproduction (Hobson 1995) and can provide information on source of nutrients for egg 

production (Hobson et al. 1997, Gauthier et al. 2003, Morrison and Hobson et al. 2004, Hobson 

et al. 2004). Stable-isotope techniques were used to analyze stable-carbon and nitrogen (δ13C and 

δ13N, respectively) values of 1) eggs collected from both species and 2) potential diet items, to 

investigate contributions and allocation to egg production of endogenous versus exogenous 

sources of nutrients, from wintering and breeding ground habitats. Constancy of incubating 

females was measured by placing remote temperature data loggers in nests. 

Field work consisted of 1 field season extending from May 2004 to August 2004. The 

objectives were to: 

1. Estimate allocation of endogenous and exogenous resources in eggs of Long-tailed Ducks and 

King Eiders using naturally-occurring stable isotopes. 
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2. Estimate frequency, timing, and duration of incubation recesses of Long-tailed Ducks and 

King Eiders.  

2.0 STUDY AREA AND GENERAL METHODS 

2.1 STUDY AREA 

Karrak Lake, Nunavut (67O14’ N, 100O15’ W) is ~60km south of the Queen Maud Gulf in 

the Queen Maud Gulf Bird Sanctuary in the Central Canadian Arctic (Figure 2.1). Karrak Lake 

supports a large colony of ~1 million nesting Lesser Snow Geese (Chen caerulescens 

caerulescens) and Ross’s Geese (Chen rossii). The area also supports the highest known density 

of “semi-colonial” nesting King Eiders (Kellett and Alisauskas 1997, 2000) and the highest 

known density of nesting Long-tailed Ducks in North America (Kellett et al. 2005). The area 

consists of sedge meadows, marshy areas and rock outcrops interspersed with shallow tundra 

ponds (Slattery 1994). Much of the vegetation within the goose colony has been altered by 

feeding and nest-building by high densities of the geese (Alisauskas et al. 2006). Karrak Lake 

covers 16.1 km2 (Kellett and Alisauskas 2000), averages a depth of 1.2m (Ryder 1972) and is 

interspersed with 2.5 km2 of various sized islands (Kellett and Alisauskas 2000). Adjacent to 

Karrak Lake, is Adventure Lake which is 8.8 km2 in size, averaging 2.5m in depth and 

containing 0.2km2 of various sized islands (Kellett and Alisauskas 2000). Islands in both lakes 

are predominately rock and gravel outcrops with some low-lying vegetation (Kellett and 

Alisauskas 2000). Islands vary in habitat and nesting bird assemblages with different proportions 

of nesting King Eiders, Long-tailed Ducks, Glaucous Gulls (Larus hyperboreus), Herring Gulls 

(Larus argentatus ), Arctic Terns (Sterna paradisaea), Lesser Snow Geese, Ross’s Geese, 

Canada Geese (Branta Canadensis) , Red-throated Loons (Gavia stellata), Arctic Loons (Gavia 

arctica), and Red-breasted Mergansers (Mergus serrator). Simpson Lake (67O16’ N, 99O54’ W) 

is located 8 km east of Adventure Lake and is10.26 km2 in size with 0.314 km2 of islands. 

Islands in Simpson Lake are predominantly grassy with low lying vegetation and a mixture of 

rock and gravel outcrops.  

There are one-hundred and seven islands on Karrak and Adventure Lakes of which King 

Eiders and Long-tailed Ducks used twenty and ten, respectively for nesting during the 2004 

breeding season. Simpson Lake has thirty-five islands and King Eiders and Long-tailed Ducks 

were found nesting together or separately on twelve.  
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Figure 2.1. Study area Karrak, Adventure and Simpson Lakes and Karrak River. The star 
represents the Karrak Lake Canadian Wildlife Service Research Station (67O14’ N, 100O15’ W).  
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2.2.0. GENERAL FIELD METHODS 

2.2.1. Weather Data 

Meteorological weather variables of daily maximum and minimum ambient temperatures 

(0C), precipitation (mm/day), and wind speed (km/hour) and direction (degrees 0 – 3600) were 

recorded daily. In additional, timing of ice break-up as well as arrival times for both sexes of 

King Eiders (Kellett and Alisauskas 1997) and Long-tailed Ducks were recorded (Alisauskas 

Unpubl.). 

2.2.2. Nest Searching, Monitoring and Egg Collection 

Islands were searched for nests starting in mid-June, corresponding with late egg-laying 

and early incubation for both King Eiders and Long-tailed Ducks. Nests were visited every 5 - 10 

days to determine final clutch size, egg attrition rate, and nest fate. As predicted hatching dates 

neared, nests were visited more often, at intervals of 1 – 4 days. King Eiders and Long-tailed 

Ducks were assumed to have respective incubation periods of 23 days (Parmelee et al 1967, 

Kellett 1999) and 26 days (Alison 1975, Kellett et al. 2005), and eggs are laid at an interval of 

one per day (Lamothe 1973); hatch dates were calculated from estimated initiation dates. Remote 

temperature sensors (Hobo XT, Onset Computer Corporation) were placed in 29 Long-tailed 

Duck and 26 King Eider nests during incubation to record incubation and recess frequency, 

duration and timing. Nests were visited on predicted hatching dates to capture and mark 

incubating females and hatching ducklings. Remote temperature probes were placed in nests on 

several islands. Remote temperature probes were placed in nests on several islands with the aim 

of placing an equal number of remote temperature probes in both Long-tailed Duck and King 

Eider nests on each island. 

Nest locations were marked with small-numbered wood stakes placed 1 m north of nests. 

Nests with remote temperature probes were marked with a small plain 6” wooden stake placed 

underneath the nest bowl. This was done to minimize likelihood of predation (Picozzi 1975). 

Gulls (Larsus) and Parasitic Jaegers (Sterocoraius parasiticus) observed robbing nests of Long-

tailed Ducks were the primary predators although mammalian predators, such as Grizzly Bears 

(Ursus horribilis) and Arctic Foxes (Alopex lagopus) have depredated sea duck nests at Karrak 

Lake (S.L. Lawson per. obs.). Avian predators (gulls and jaegers) nesting close to nesting King 

Eider and Long-tailed Ducks may have increased predation or robbing of duck nests.  
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Both King Eiders and Long-tailed Duck eggs were numbered with indelible ink, and egg 

length (± 0.1mm) and width (± 0.1mm) was measured using dial calipers and recorded. Long-

tailed Duck and King Eider eggs were obtained during the same time period. Thirty and twenty–

nine eggs of Long-tailed Ducks and King Eiders, respectively, were collected from active nests 

at Simpson Lake early in incubation, in early July 2004. One to two eggs and one to three eggs 

per nest were collected from active King Eider and Long-tailed Duck nests respectively.  A nest 

was considered active if incubated and/or females were flushed from nest. Another forty-seven 

King Eider and nineteen Long-tailed Duck eggs were collected from failed and abandoned nests 

at Simpson, Karrak and Adventure Lakes throughout the breeding season (mid June – early 

August). Nest fates included (1) abandoned (if eggs are at the same stage of incubation as last 

visit and were cold) (2) failed (no depredated evidence of eggs or shells were found) or (3) 

depredated (Klett et al. 1986) were recorded. All salvaged eggs present in a nest when it was 

determined to be abandoned or failed were collected.  Salvaged eggs collected ranged from one 

to four per nest.  Collected eggs were boiled and frozen at Karrak Lake to preserve them until 

transportation to Canadian Wildlife Service laboratory in Saskatoon (Gloutney and Hobson 

1998, Hobson per. comm.) where egg components were prepared and analyzed for stable-carbon 

and nitrogen analyses. As I was unable to detect laying order or obtain a large enough sample of 

whole clutches and due to the close correspondence of δ15 N and δ13C values within species and 

between species I did not test for a clutch effect.  Egg component (albumen, yolk protein, whole 

yolk and yolk lipid) δ15 N and δ13C values from the same nest were averaged to investigate 

contribution of exogenous versus endogenous nutrient allocation on a per nest basis.  Egg 

component δ15 N and δ13C values hereafter refer to the mean δ15 N and δ13C values of each nest 

sampled.  Egg components of twenty-nine Long-tailed Duck and forty-four King Eider nests 

were used in the δ15 N and δ13C stable isotope analysis.      

 

2.2.3. Diet sampling and Storage 

King Eiders and Long-tailed Ducks congregate before and during the nesting season on 

Karrak and Adventure Lakes (S. Lawson per. obs.). Groups of molting Long-tailed Ducks also 

congregate on Karrak Lake after the nesting season. Samples of potential diet items (hereafter 

referred to as diet items), Ninespine Sticklebacks (Pungitius pungitius) and unidentified fish and 

invertebrates (Copepoda, Eubranchiopoda, Tipulidae, Haliplidae, and Chironomidae), were 
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collected in 2004, during and after the breeding season, using a dip net at several locations along 

the Karrak River and Karrak Lake (Figure 2.1) during and after nesting. Diet items were also 

collected at several sites on Adventure Lake in 2005 during and after nesting (Figure 2.1). 

Specimens were placed in 70% ethanol to avoid deterioration of stable isotopes during storage 

and transfer from field to laboratory (Hobson per. comm.). Ethanol preservation of aquatic 

invertebrates did not affect either δ15N or δ13C isotope values of specimens (Sarakinos et al. 

2002). The δ13C and δ15N signatures of diet items from these wintering grounds were obtained 

from the literature (Table 4.2). 

2.3 GENERAL LABORATORY METHODS 

Frozen egg components, whole yolk and albumen, were separated and placed into 

separate 20ml vials and then freeze-dried in the laboratory. A portion of each dried whole yolk 

sample was put into a separate 20ml vial. This second whole yolk sample from each egg, 

hereafter referred to as yolk protein, was soaked in a 2:1 chloroform: methanol mixture to 

remove lipids. Lipids moved into the chloroform fraction which was then poured off and the 

remaining sample placed in a fume-hood to air dry. Albumen samples were powdered using a 

mortar and pestle. Diet items were rinsed in distilled water and placed in individual 20ml vials, 

freeze-dried and soaked in a 2:1 chloroform: methanol mixture to remove lipids and then allowed 

to air-dry in a fume-hood.  

Whole yolk, yolk protein, albumen and diet items were weighed (1.0 milligram) in tin 

cups and combusted in a Roboprep elemental analyzer interfaced with a Europa 20:20 

continuous-flow isotope-ratio mass spectrometer (Europa Scientific, Crewe, UK; Hobson and 

Schell 1998) at the Department of Soil Science, University of Saskatchewan. All stable isotope 

values are reported in δ notation relative to the Pee Dee Belemnite (PDB) and atmospheric air 

standards for stable-carbon (δ13C) and nitrogen (δ15N) measurements. Measurement precision is 

based on thousands of measurements of our albumen lab standard and is estimated to be ± 0.1 o/oo 

for δ13C measurements and 0.3 o/oo  δ15N measurements (see Hobson 1995). Isotope values are 

expressed as δ13C and   δ15N (with units of o/oo ) according to the following equation: 

 

δ13C, δ15N = [ (Rsample/Rstandard) -1] x 1000  Where R = 13C/12C, 15N/14N   (2.1) 
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3.0 INCUBATION RHYTHMS OF LONG-TAILED DUCKS AND KING EIDERS AT 
KARRAK LAKE, NUNAVUT 
 
3.1. INTRODUCTION 

Incubation behavior is fundamentally important to reproductive success in avian species. 

Incubation must maintain relatively stable temperature conditions within the nest for embryonic 

development, while maintaining a favorable energy balance for incubating females (Flint and 

Grand 1999). These costs of breeding have led to theories that incubation behavior has evolved 

in response to tradeoffs between the loss of body condition, reliance upon energy and nutrient 

reserves, maintenance of egg viability, and to minimize predation risks (Thompson and Raveling 

1987, Afton and Paulus 1992, Ankney et al. 1991, Alisauskas and Ankney 1992). Incubating 

birds have a restricted behavioural repertoire governed by the need to maintain contact between 

the eggs and bird’s incubation patch in order to maintain the appropriate temperature for the 

developing embryo (Deeming 2002). Drent and Daan (1980) suggested that incubating birds rely 

on either a capital or income strategy for incubation. Capital incubators are typically considered 

to be larger-bodied birds, as their body size enables them to store sufficient endogenous reserves 

before arrival at breeding grounds and then draw from these reserves during the incubation 

period to meet their own metabolic requirements (Drent and Daan 1980). Income incubators, 

typically smaller-bodied, may be limited by their body size from arriving at breeding grounds 

with sufficient endogenous (stored) reserves to sustain themselves during incubation, and 

therefore rely almost exclusively on exogenous resources i.e. directly from their diets, during this 

portion of the breeding cycle (Drent and Daan 1980).  

Deeming (2002) suggested that the pattern of incubation behavior adopted by different 

bird species likely reflects restrictions imposed upon them by their environment. As a result, 

closely related species can adopt markedly different patterns of incubation behavior, thus 

confounding any relationship between phylogeny and incubation patterns (Deeming 2002). Only 

females incubate in most species of waterfowl, an incubation strategy found in 37% of bird 

families. Female-only incubation is characterized by three incubation behaviour patterns (1) a 

single recess of long duration during the day, (2) several recesses taken during the 24 hour period 

and (3) uninterrupted incubation for several days (Williams 1996). Lengths of both the 

incubation sessions and recesses are highly variable (Kendiegh 1952, Skutch 1962). In addition, 
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the number of sessions a bird undertakes during the incubation period can also vary considerably 

(Deeming 2002).  

Many incubating birds are often required to endure adverse weather conditions (Deeming 

2002). Weather conditions have a profound affect on the degree of incubation constancy 

particularly for females involved in a female-only incubation strategy (Deeming 2002). Afton 

(1980) showed that weather variables explained more of the components of incubation rhythms 

in small ducks than in larger geese and swans. Skutch (1962) found that precipitation also 

affected incubation behaviour although behaviour varied with precipitation severity and extent. 

Female-only incubators that experienced rain during a recess usually returned to nests to shield 

eggs leading to sessions that were longer than normal (Skutch 1962). Ambient temperature can 

influence the duration of both incubating sessions and recesses (Afton 1980).  However, no 

simple pattern has been shown suggesting factors such as female fat reserves may affect how 

ambient conditions affect behaviour (Kluivjer 1950, Haftorn 1978, 1984, Afton 1980, Halupka 

1994, Conway and Martin 2000). Energy reserves play a key role in the nesting ecology of 

waterfowl. Blums and Clark (1991) suggested that reliance on endogenous reserves during 

incubation might be more important in birds that breed in northern areas because of lower 

ambient temperatures and often unpredictable environmental conditions. Reliance on energy 

reserves may be particularly high in arctic-nesting species as environmental conditions are often 

harsh and unpredictable.  

Afton and Paulus (1992) found that patterns of nest attendance (incubation constancy) 

varied widely among North American waterfowl species, and that body size accounted for part 

of the variation. Larger-bodied waterfowl species such as King Eiders and Common Eiders, 

(Somateria mollissima) may rely more on (stored) endogenous reserves during incubation 

reducing the time required to feed, thereby leading to high incubation constancy (Afton and 

Paulus 1992). On the other hand, smaller-bodied waterfowl species have a short fasting 

endurance and therefore, may rely more heavily on exogenous energy sources to meet incubation 

requirements (Afton and Paulus 1992). King Eiders (95-99%) and Common Eiders, (96%) have 

higher incubation constancies and lose between 24 – 30% mass during incubation (Korshgen 

1977, Kellett and Alisauskas 2000, Manlove and Hepp 2000, McGuire et al. Unpubl.). Smaller-

bodied Spectacled Eider (Somateria fishcheri) and Common Goldeneyes (Bucephala clangula) 

had incubation constancies of 90% and 81% respectively (Mallory and Weatherhead 1993, Flint 
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and Grand 1999). Mass loss during breeding was 26% and 7% for Spectacled Eiders and Long-

tailed Ducks respectively (Flint and Grand 1999, Kellett et al. 2005). These findings suggest that 

smaller-bodied Long-tailed Ducks may rely more on exogenous food resources and use an 

income incubator strategy and larger-bodied King Eiders may rely almost exclusively on 

endogenous reserves during incubation suggesting they are capital incubators.  

Long-tailed Ducks and King Eiders winter and breed in arctic and sub-arctic regions, 

migrating inland to freshwater and coastal areas during the breeding period (Alison 1976, Kellett 

and Alisauskas 2000, Suydam 2000, Robertson and Savard 2002, Kellett et al. 2005). Spring 

migration paths through marine environments suggest that ample opportunities exist for King 

Eiders and Long-tailed Ducks to feed and acquire endogenous nutrients needed for reproduction 

on freshwater breeding grounds. Incubation periods of Long-tailed Ducks and King Eiders are 26 

and 23 days, respectively. Similar to most arctic-nesting waterfowl, there is likely only one 

breeding attempt per season; and if the first attempt fails, the nest is abandoned and/or predated 

(Parmelee 1967, Lamothe 1973, Pehrsson 1986, Alison 1975, Kellett and Alisauskas 1997). 

Incubating females often are unable to meet their own energy requirements during this period 

and either abandon nests in favor of their own survival or die on the nest while incubating 

(Deeming 2002). 

The goal of this study was to compare, and describe incubation behavior and the 

relationship to nest success of Long-tailed Ducks and King Eiders at Karrak Lake, Nunavut. 

Long-tailed Ducks and King Eiders were particularly appropriate for this study as they are (1) 

members of the same tribe (2) migrate similar distances to reach freshwater breeding areas, (3) 

are exposed to the same environmental conditions on arctic breeding areas, (4) nest sympatrically 

at Karrak and Adventures Lakes, but (5) differ substantially in body size. 

 

3.2.0. METHODS 

3.2.1. Measuring nest attendance  

Remote temperature probe (Hobo XT, Onset Computer Corporation) data recorded per 

nest (n = 55) ranged from several hours to twenty days of incubation. Temperature probes were 

place in wooden eggs with the thermistor sensor flush against the wooden egg to ensure the 

highest probability of contact with the incubating hen without protruding. Wooden eggs were 

staked in the center of the nest bowl, surrounded by nest eggs and covered with nest down. 
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Temperature was recorded at three minute intervals. Previous research using remote temperature 

probes found nest attendance interval recordings should not exceed 5 minutes (Hoover et al. 

2004). At this northern latitude, there are 24 hours of daylight during nesting; therefore data was 

grouped into 60 minute intervals over this period. Incubation constancy is defined as the 

proportion of the incubation period spent on the nest, number of recesses as the number of 

departures from the nest, and recess duration as the mean length of time (minutes) for each 

departure (Mallory and Weatherhead 1993). Incubation constancy, number of recesses and 

duration of recesses were calculated daily and over the whole incubation period. Recesses and 

constancy of incubating females were identified as combined drop and an increase in 

temperature of at least 2.5 0C over two intervals (6 minutes) (modified from Hoover et al. 2004).  

3.3. ANALYSIS  

SAS Institute (1996) software was used to perform statistical analyses. Time periods 

when human disturbance may have influenced recesses were eliminated from analysis. Intervals 

during egg laying and latter stages of pip and hatch were also removed from analyses because it 

is difficult to determine recesses and incubation behaviour of females at these times (Hoover et 

al. 2004). To examine if incubation constancy is affected by the stage of incubation and weather, 

I used analysis of covariance ANCOVA (PROC GLM) to examine variation in daily incubation 

constancy, daily number of recesses and duration of recesses between Long-tailed Ducks and 

King Eiders. Daily constancy, number of recesses and duration of recesses (minutes) were 

dependent variables and mean daily weather variables of air temperature (0C), wind speed 

(km/h), wind direction (0 – 3600) and precipitation (mm/day), incubation stage (day since last 

egg laid) and incubation stage2 were covariates. A squared term for stage of incubation 

(incubation stage2) (Eichholz and Sedinger 1999) was included in the model to allow for 

nonlinear relationships between incubation constancy, number of recesses and recess duration. I 

also used ANCOVA to examine within-species variation of incubation constancy using the same 

dependent variable. I included all interactions between factor and covariates in each of these 

ANCOVA analyses, then removed interactions that did not explain a significant amount of 

variation in the dependent variables based on type III mean square errors. Values presented are 

means ± standard error (SE). Best approximating models for incubation constancy, recesses and 

duration of recesses were selected using Akaike’s Information Criterion (AICc) (Burnham and 

Anderson 2002).  
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Success of nests with known incubation constancies was estimated using the Mayfield 

Logistic Regression (PROC LOGISTIC) (Hazler 2004) to investigate relationships between 

success, nest initiation, incubation constancy and weather variables. Best approximating models 

for both nest success analyses were selected using Akaike’s Information Criterion (AIC) 

(Burnham and Anderson 2002).  

3.4.0 RESULTS 

3.4.1. Incubation patterns of Long-tailed Ducks and King Eiders 

 I monitored 26 King Eider and 29 Long-tailed Duck nests with hobo temperature probes 

for a total of 244 and 351 nest days, respectively. I had sufficient data to estimate from day 2 to 

day 23 of incubation for King Eiders and day 1 to day 26 of incubation for Long-tailed Ducks.  

During 2004 King Eider (n = 13) and Long-tailed Ducks (n = 11) nests with hobo temperature 

probes that successfully completed incubation had an incubation period of 23 ± 0.17 (95% C.I.) 

and 26 ± 0.69 (95% C.I.) respectively.  

During the 2004 breeding season neither dates of arrival nor nest initiation dates differed 

between species. Incubation constancy (F1,597 = 232.5, P < 0.0001), number of recesses/day 

(F1,2869 = 166.31, P < 0.0001) and recess duration, minutes/recess, (F1,2869 = 14.26, P < 0.0002) 

differed significantly between the two species (Figures 3.1, 3.2). 

Incubation constancy and recess models that included incubation stage2 and species had 

the lowest AICc values explaining 63% and 89%, respectively of the variation found in 

incubation patterns of Long-tailed Ducks and King Eiders (AICc < 2; Burnham and Anderson 

1992; Table 3.1, 3.2). AICc model results showed a non-linear relationship between incubation 

stage, incubation constancy and number of recesses. As incubation progressed, King Eider daily 

constancy decreased and number of recesses increased (Figure 3.1, 3.2). Long-tailed Duck 

incubation constancy and the number of recesses increased as incubation progressed. However, 

the duration of recesses taken by Long-tailed Ducks decreased as hatch approached (Figure 3.2). 

Models with the lowest AICc values for recess duration explained 54% of the variation and 

showed a linear relationship between incubation stage and recess duration (Table 3.3). 

Although Long-tailed Duck incubation constancy and the number of recesses varied over 

time, recess duration constantly decreased as incubation progressed (Figure 3.1, 3.2). During mid 

incubation King Eiders and Long-tailed Ducks decreased their daily incubation constancy. This 
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decrease appeared to coincide with changes in weather, specifically a decrease in ambient 

temperature. However, none of the best fit AICc models for each of the response variables 

included weather variables. Instead variation in each of incubation constancy, number of recesses 

and recess duration was more a function of the stage of incubation than it was daily weather. 

Between day 1 and day 26 of incubation Long-tailed Ducks spent 84.4 % ± 0.8 (range 72.8 – 

91.7%) incubating clutches (Figure 3.1). One monitored nest included a recess of 12 hours. 

Allison (1979) described a recess of several days, and therefore this 12-hour recess was not 

removed from the analysis. King Eiders spent 96.1% ± 0.4 (range 92.2 – 100%) of the day 

incubating between day 2 and 23 (Figure 3.1). Incubating Long-tailed Ducks took 3.1 ± 0.04 and 

King Eiders took 2.0 ± 0.06 recesses per day (Figure 3.2). Recesses from incubation by Long-

tailed Ducks and King Eiders lasted 26.6 ± 0.3 and 23.7 ± 0.7 minutes, respectively (Figure 3.2). 

Forty-four percent of variation in daily incubation constancy was among individual King Eider 

hens (F25,243 = 6.4, P <0.0001), as was 26% of variation in daily number of recess ( F24,523 = 6.5, 

P <0.0001), and 15% of variation in recesses duration (F24,519 = 3.7, P <0.0001). Similarly, much 

of the variation, 32%, in daily incubation constancy was among Long-tailed Duck females (F29, 

346 = 5.0 P <0.0001). Only 8% of variation in daily number of recess (F29, 2350 = 8.3, P <0.0001), 

and 6% of variation in recess duration (F28, 2350 = 6.5, P <0.0001) was among individual Long-

tailed Duck females. 
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Figure 3.1. Daily percent (mean ± SE) of time spent incubating, constancy, by female King 
Eiders and Long-tailed Ducks over the incubation period at Karrak and Adventure Lakes, 
Nunavut 2004. Sample size (n) of observed nests were grouped into 4 day intervals during the 
incubation stage. 
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Table 3.1. Akaike’s Information Criterion (AICc) values for four candidate models for variation in 
daily incubation constancy (% of day) in Long-tailed Ducks and King Eiders (n = 1127) at Karrak and 
Adventure Lake, Nunavut, Canada in 2004. Models were based on ANCOVA with daily constancy 
(%), daily recess and duration of recesses as the dependent variables and species, number of 
incubation days (days), incubation stage (inc), incubation stage2 (incsq) and mean weather variables 
per day of temperature 0C (temp), precipitation mm/day (ppt), wind direction  0 - 3600 (wdir) and wind 
speed km/hour (wsp) as the independent variables. AICc model weight (wi

c) reflects the relative 
support of each model given the model set and sum to one; k is the number of parameters (* indicate 
an interaction). 

 

Model RSSb Ka AICc ΔAICc wi
c

species inc incsq species*inc species*incsq 39070 10 4016.3 0.0 0.63 
species inc species*inc 39320 7 4017.4 1.2 0.37 
species inc species*inc temp ppt wdir wsp 39055 11 4017.9 1.6 0.28 

Global 38758 19 4025.7 9.0 0.01 
a = Number of parameters 
b = Residual sum of squares 
c = Model weight 

Figure 3.2. Mean number of recesses (± SE) and recess duration (minutes) taken by Long-tailed 
Ducks and King Eiders at Karrak and Adventure Lakes, Nunavut 2004 a) recesses b) duration 
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during the 2004 breeding season. Sample size (n) of observed nests were grouped into 4 day 
intervals during the incubation stage. 
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Table 3.2. Akaike’s Information Criterion (AICc) values for five candidate models for variation 
in number of incubation recesses/day by female Long-tailed Ducks and King Eiders (n = 2871) 
at Karrak and Adventure Lake, Nunavut, Canada in 2004. Models were based on ANCOVA with 
number of daily recesses as the dependent variable and species, number of incubation days 
(days), incubation stage (inc), incubation stage2 (incsq) mean weather variables per day of 
temperature 0C (temp), precipitation mm/day (ppt), wind direction  0 - 3600 (wdir) and wind 
speed km/hour (wsp) as the independent variables. AICc model weight (wi

c) reflects the relative 
support of each model given the model set and sum to one; k is the number of parameters (* 
indicate an interaction). 

Model RSSb Ka AICc ΔAICc wi
c

species inc incsq species*inc species*incsq 8279 10 3060.7 0.0 0.89 
species inc species*inc temp ppt wdir wsp 8289 11 3066.0 5.3 0.06 

Global 8244 19 3066.7 5.9 0.05 
species inc  8336 5 3070.4 9.7 0.01 
species ppt species*ppt 8455 7 3115.1 54.4 0.00 
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Table 3.3. Akaike’s Information Criterion (AICc) values for five candidate models for variation 
in recess duration (minutes) in female Long-tailed Ducks and King Eiders (n = 2871) at Karrak 
and Adventure Lake, Nunavut, Canada in 2004. Models were based on ANCOVA with number 
of daily recesses as the dependent variable and species, number of incubation days (days), 
incubation stage (inc), incubation stage2 (incsq) and mean weather variables per day of 
temperature 0C (temp), precipitation mm/day (ppt), wind direction  0 - 3600 (wdir) and wind 
speed km/hour (wsp) as the independent variables. AICc model weight (wi

c) reflects the relative 
support of each model given the model set and sum to one; k is the number of parameters (* 
indicate an interaction). 
 

Model RSSb Ka AICc ΔAICc wi
c

species incstage species*incstage 736185 5 15934.9 0.0 0.54 
species inc incsq species*inc species*incsq 733702 10 15935.3 0.4 0.45 

species incstage species*incstage temp ppt wdir wsp 734987 11 15942.3 7.4 0.01 
Global 733109 19 15951.2 16.2 0.00 
species temp species*temp 747570 7 15983.0 48.1 0.00 
 

3.4.2. Nest Success Model Selection 

Mayfield Logistic Regression (Hazler 2004) and best fit AICc models (Burnham and 

Anderson 2002) suggest relationships between nest success, incubation constancy and weather 

variables were present during the 2004 breeding season. Models of Long-tailed Duck nest 

success explained 20% of variation with support for various factors influencing nest success such 

as incubation constancy, nest initiation date, incubation stage, and weather variables of 

temperature, precipitation, wind speed and wind direction (Table 3.4). This suggested that 

weather conditions and incubation constancy are good predictors of nest success for Long-tailed 

Ducks. Models of King Eider nest success found that variation was not explained by incubation 

constancy or weather, but rather by incubation stage (Table 3.4). Incubation stage of King Eiders 

explained only 5% of nest success variation, suggesting that other variables unaccounted for in 

this study such as body condition and/or available endogenous and exogenous nutrients may be 

better predictors of nest success. These results suggested that incubation constancy, incubation 

stage and weather variables are strong predictors of nest success for Long-tailed Ducks but not 

for King Eiders.  
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Table 3.4. Akaike’s Information Criterion (AICc) values for the top three of fifty-one candidate 
models explaining nest success in Long-tailed Ducks and King Eiders at Karrak and Adventure 
Lakes, Nunavut, Canada in 2004. Models were based on Mayfield Logistic regression with nest 
success as the dependent variable and daily incubation constancy (const), number of incubation 
days (days) (Long-tailed Ducks n = 347, King Eiders n = 244), nest initiation date (nid) 
incubation stage (incstage) and mean weather variables per day of temperature 0C (temp), 
precipitation mm/day (ppt), wind direction  0 - 3600 (wdir) and wind speed km/hour (wsp) as the 
independent variables. AICc model weight (wi

c) reflects the relative support of each model given 
the model set and sum to one; k is the number of parameters (* indicates an interaction). 
 
Species Model  Ka AICc ΔAICc wi

c

Long-tailed Duck const incstage nid temp ppt wsp wdir 9 187.54 0.00 0.203 
 ppt*wsp 5 187.96 0.42 0.165 
 ppt*wsp*wdir 6 189.53 1.99 0.075 
      
King Eider incstage 3 148.31 0.00 0.047 
 incstage temp 4 149.90 1.60 0.021 
  incstage ppt 4 150.20 1.90 0.018 

a = Number of parameters 
c = Model weight 

 
3.5. DICUSSION 

 Measurement of incubation behaviour varied among individual nests of both species. As 

with other waterfowl species, incubating King Eiders and Long-tailed Ducks establish a pattern 

of daily nest attendance during incubation. Long-tailed Ducks incubation constancy increased as 

incubation progressed. Long-tailed Duck females took more recesses that were shorter in 

duration near the end of incubation. Incubation constancy declined slightly in King Eiders as 

incubation progressed. Incubating King Eiders  maintained an incubation constancy of >~95% 

constancy throughout the incubation period. However, variation in both number and duration of 

recesses between individual incubating King Eider and Long-tailed Duck females was found. 

This was consistent with other bird species (Kendiegh 1952, Skutch 1962, Warham 1990, 

Williams 1996). Long-tailed Duck nest attendance was similar to that described for sea ducks of 

similar size such as Common Goldeneyes, (81% - Mallory and Weatherhead 1999) and 

Spectacled Eiders (90% - Flint and Grand 1999). King Eider nest attendance at Karrak Lake was 

similar to that reported for nesting King Eiders in Alaska 95-99% (McGuire unpubl.) and 

Common Eiders 96% (Korshgen 1977, Manlove and Hepp 2000).  
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Weather conditions can have profound effects on incubation constancy by influencing 

how birds incubate, particularly in species with female-only behaviour patterns (Deeming 2002). 

Open-nesting birds increase attentiveness during rain, snow and fog (Hawksley 1957, 

Rittinghous 1961 Willis 1961, Skutch 1962, Drent 1970). Mallory and Weatherhead (1999) 

found that daily temperature was the main influence on incubation rhythms of Common 

Goldeneyes. Afton (1980) found that weather variables explained more of the components of 

incubation rhythm in small ducks than in larger geese and swans. Consistent with these findings, 

I found weather variables and incubation stage explained 28% and 6% (Table 3.1, 3.2) of the 

variation in incubation constancy and number of recesses of Long-tailed Ducks and King Eiders, 

respectively. However, weather conditions were not found to have influenced the duration of 

recesses. Mallory and Weatherhead (1999) suggested Common Goldeneyes may be able to spend 

more time off nests later in incubation when ambient temperatures are higher and Flint and 

Grand (1999) concluded that incubating Spectacled Eider females timed recesses to take 

advantage of warmer ambient temperatures. This was not consistent with incubation patterns 

observed in both Long-tailed Ducks and King Eiders. As incubation progressed, ambient 

temperatures also decreased for a time and incubation patterns suggested that incubating females 

adjusted incubation behavior accordingly to this change in weather (Figure 3.3).  

Incubation stage is critical in determining nest attentiveness. Models for both King Eiders 

and Long-tailed Ducks suggested 63% of nest attentiveness was explained by incubation stage. 

Nest attentiveness in several waterfowl species progressively decreases as hatch approaches 

(Afton 1980, Aldrich and Raveling 1983, Brown and Fredickson 1987 and Yerkes 1998, Mallory 

and Weatherhead 1999, Eichholz and Sedinger 1999) and data generated here reveal that nest 

attentiveness by King Eiders followed a similar pattern. This could have resulted from depletion 

of (stored) nutrient reserves by King Eiders, instead relying more on exogenous nutrients to 

successfully complete incubation. Conversely, nest attentiveness by Long-tailed Duck did not 

follow this pattern and increased as hatched approached. Nest attentiveness by Long-tailed 

Ducks may be influenced by other factors such as reliance upon exogenous nutrients acquired 

daily and thereby allowing incubating females to increase attentiveness as a result of replenished 

available nutrients.  

Considering the entire breeding cycle, the incubation period may represent a time when 

females, in the Mergini Tribe, have depleted remaining endogenous reserves and subsequently 
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switched to local food sources (exogenous) to meet the metabolic requirements of incubation 

(Brown and Fredrickson 1987, Afton and Paulus 1992, Mallory and Weatherhead 1999). 

Common Goldeneyes (Mallory unpubl. data), White-winged Scoters (Brown and Fredrickson 

1987) and Spectacled Eiders, all members of the Mergini Tribe, spend a portion of time feeding 

on exogenous nutrients during incubation recesses perhaps replenishing nutrients needed to 

successfully compete incubation (Mallory and Weatherhead 1999). 

Results of stable carbon and nitrogen (δ13C, δ15N) isotope analysis of nutrients used for 

egg production of Long-tailed Ducks and King Eiders at Karrak Lake, Nunavut (Chapter 4) 

suggested that both species relied primarily on breeding ground nutrients for egg production. 

However, Long-tailed Ducks allocated more nutrients from marine and freshwater wintering 

grounds to egg production than King Eiders did in 2004. Stable-isotope results of eggs (Chapter 

4) suggested that smaller bodied Long-tailed Ducks arrived at breeding grounds with endogenous 

reserves, and allocated these nutrients to egg production not incubation. Conversely, δ13C and 

δ15N values of larger bodied King Eider eggs suggested these females arrived at breeding 

grounds with endogenous reserves and allocated these nutrients to incubation not egg production. 

These results suggest differences between Long-tailed Ducks and King Eider incubation 

strategies may be due to allocation and use of nutrients during the breeding cycle and not body 

size, as previously suggested. Average incubation constancy of 98% and mass loss of 30% 

during incubation (Kellett and Alisauskas 2000) suggested that King Eiders relied primarily on 

endogenous nutrients to supply metabolic requirements for incubation. Perhaps as hatch 

approached, increased heat production from developing embryos simultaneously with an 

increase in air temperature allowed female King Eiders to reduce attentiveness and subsequently 

increase feeding time. This could help to meet energetic costs of successful incubation (Drent 

1990 and Caldwell and Cornwell 1975). Decreases in air temperature, increases in wind speed 

and shifts of wind direction may have increased rates of egg cooling and influenced an increase 

in attentiveness in Long-tailed Ducks as incubation progressed. Long-tailed Ducks may have 

increased attentiveness to maintain a constant thermal environment for developing embryos. 

Long-tailed Ducks had an incubation constancy of 84% coupled with an incubation mass loss of 

7% during incubation (Kellett et al. 2005) suggesting that Long-tailed Ducks relied largely upon 

exogenous nutrients to maintain metabolic requirements throughout incubation.  
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Results of this study are consistent with inferences of Kellett et al. (2005) that King 

Eiders are primarily capital incubators, while Long-tailed Ducks are primarily income 

incubators. These findings suggest differences between Long-tailed Duck and King Eider 

incubation strategies may be due to allocation and use of nutrients during the breeding cycle and 

not body size. Incubation rhythms described here in combination with results from stable-carbon 

and nitrogen of egg components suggest that both species are combining both capital and income 

breeding strategies to meet the high energy demands of arctic breeding.  
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4.0 NUTRIENT ALLOCATION IN LONG-TAILED DUCK AND KING EIDER EGGS 
AT KARRAK LAKE, NUNAVUT: STABLE ISOTOPE ANALYSIS OF EGG 
COMPONENTS  
 
4.1 INTRODUCTION 

Two main breeding strategies used by migratory birds are those of the “capital breeder”, 

whereby costs of breeding are met with stored energy (endogenous reserves) transported to 

breeding and the “income breeder”, whereby birds acquire nutritional requirements from the 

local diet (exogenous resources) on breeding areas (Drent and Dann 1980). Reliance on energy 

and nutrient reserves for reproduction is a ubiquitous adaptation by waterfowl to meet high 

energy demands of breeding and can be crucial to egg-laying processes essential for successful 

reproduction (Ankney et al. 1991, Alisauskas and Ankney 1992, Afton and Paulus 1992). 

Energy demands are expected to be particularly high in arctic breeding areas with lower ambient 

temperatures and harsh unpredictable environmental conditions compared to those in 

temperature areas. Thomas (1989) reviewed capital and income breeding among waterfowl 

(Anserinae) and confirmed that many waterfowl species use a capital breeder strategy during 

reproduction (Drent and Dann 1980 and Jonsson 1997). A re-examination of published data 

found that only 3 of 12 well-studied species showed a reliance on a capital strategy (Meijer and 

Drent 1999). All three species breed in cold climates and reliance ranges from 50 - 100% in the 

Lesser Snow Goose (Chen caerulescens caerulescens) and Common Eider (Somateria 

mollissima) respectively (Meijer and Drent 1999). Income and capital breeding strategies are on 

opposite extremes of a continuum, and several arctic-breeding species use a mixed strategy 

(Bonnett et al. 1998, Meijer and Drent 1999, Gauthier et al. 2003, Morrison and Hobson 2004).  

Many arctic-breeding birds are long-distance migrants that require sufficient energy 

stores to successfully complete spring migration and then to reproduce. Klaassen (2003) 

suggested proportions of stores of fat (energy) and protein, required for migration and 

reproduction most likely differ, as typical fuel stores for migration are deficient in proteins and 

are not completely adequate for egg synthesis. Meijer and Drent (1999) pointed out proteins and 

lipids are deposited in the developing eggs, but noted that both nutrients are also required laying 

females for nitrogen metabolism and as an energy substrate for existence; they suggested that 

protein rather than fat is the limiting factor for reproduction in several species regardless of their 

size. Female birds of many species accumulate energy and protein before egg-laying, likely to 
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allow egg production and/or incubation to be performed at the physiologically maximum rate 

(Andersson and Norberg 1981, Hedenstrom 1992). Capital and income breeding strategies 

represent options of energy use defined largely by foraging decisions which may have important 

consequences for an organism’s fitness (Andersson and Norberg 1981, Hedenstrom 1992).  

The measurement of naturally occurring stable-isotopic ratios of endogenous nutrients, 

egg macronutrients and local diet as a means of tracing nutrient allocation to reproduction in 

birds has been used as an alternative to more conventional methods (Hobson 1995). This 

approach relies on isotopic differences between endogenous and exogenous sources of nutrients 

to laying females (Hobson et al. 2004). Stable-isotopic ratios of avian egg components can 

provide dietary information and permit inferences about contributions of endogenous and 

exogenous nutrient sources from differing habitats such as, marine or freshwater systems 

(Hobson 1995, Hobson et al.1997, Hobson et al. 2000, Morrison and Hobson 2004, Hobson et al. 

2004). Stable isotopes of carbon (δ13C) and nitrogen (δ15N) are typically enriched in marine 

versus freshwater systems and these isotopic signatures are incorporated by consumers (Braune 

et al. 2005). Stable-carbon and nitrogen isotopic analyses of avian eggs are particularly amenable 

because nutrients required for egg production are either derived from nutrient reserves or directly 

from the diet of laying females (Hobson et al. 1997).  

Research by Gauthier et al. (2003) provided evidence that Greater Snow Geese (Chen 

caerulescens atlantica) used a mixed breeding strategy, of both endogenous and exogenous 

resource use for reproduction, contrary to earlier suggestions (Ryder 1970, Ankney and 

MacInnes 1978, McLandress and Raveling 1981) that arctic-nesting geese relied almost solely 

on endogenous reserves brought with them to the breeding grounds for reproduction. The δ13C 

and δ15N signatures from Gauthier et al. (2003) support findings of intense feeding activities on 

breeding grounds by pre-laying and laying arctic-nesting geese (Gauthier and Tardif 1991, Prop 

and deVries 1993, Ganter and Cooke 1996, Carriere et al. 1999). Hobson et al. (2004) used 

stable-carbon and deuterium to investigate nutrients allocated by female migratory Redhead 

Ducks (Aythya americana) to egg production, and found that females relied mainly on 

exogenous dietary lipids and proteins for egg production, and endogenous reserves to satisfy 

body maintenance and energy requirements. Investigations of nutrient allocation to egg 

production using stable-carbon and nitrogen, in arctic-nesting shorebirds revealed that first-laid 

eggs of a clutch in some species contain endogenous nutrients and that later laid eggs of the same 
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clutch contain exogenous nutrients (Morrison and Hobson 2004). Bond (2005) investigated 

exogenous versus endogenous nutrient allocation in Harlequin Ducks and found that females 

allocated nutrients from freshwater breeding areas to egg production. Results of these studies 

provide support of mixed breeding strategies, where birds relied on both exogenous and 

endogenous nutrients (Morrison and Hobson 2004).  

Long-tailed Ducks (Clangula hyemalis) and King Eiders (Somateria spectabilis) winter 

and breed in arctic and subarctic regions, coming inland to freshwater and coastal areas during 

the nesting period (Alison 1976, Kellett and Alisauskas 2000, Suydam 2000, Robertson and 

Savard 2002, Kellett et al. 2005). Both species are predominantly carnivorous. On freshwater 

breeding grounds they feed on larval and adult aquatic insects (chironmids, trichopterans and 

larval dipterans), crustaceans (amphipods, fairy and brine (Polyartemia spp) shrimp and tadpole 

shrimp), cladocerans (Eurycercus lametllatus), fish roe and some vegetable matter (Cottam 1939, 

Taylor 1986, Pehrsson and Nyström 1988, Kondratyev 1999, Robertson and Savard 2002 and 

Suydam 2000). In marine wintering habitats these species feed on epibenthic crustaceans, 

mollusks, amphipods, mysids, isopods and in some areas bivalves, barnacles, sea anemone, 

insects, gastropods, brine and fairy shrimp, fish, fish eggs, tubiolous and nereid worms, algae and 

some plant matter. Long-tailed ducks are found wintering in freshwater habitats, such as the 

Great Lakes, where their diet consists of amphipods, fish and mollusks (Peterson and Ellarson 

1977) and/or Olgochaete worms (Rofritz 1977).  

During spring migration to breeding grounds, most Long-tailed Ducks fly within 2km of 

the coast along shore leads, adjacent to mainland and barrier islands over lagoon ice (Johnson 

1985), though offshore migration following open ice leads does occur (Richardson and Johnson 

1981, Johnson and Richardson 1982). When ice cover is extensive, birds will migrate over land 

(Woodby and  Divoky 1982). King Eiders migrate over frozen sea, often following open sea ice 

leads or polynas to get to freshwater breeding areas (Suydam 2000). Spring migration paths 

through marine environments suggest that ample opportunities exist for King Eiders and Long-

tailed Ducks to feed and acquire endogenous stores that could be used for reproduction on 

freshwater breeding grounds. 

Incubating female King and Common Eiders on average lose 30% of pre-incubation body 

mass during incubation (Parker and Holm 1990, Kellett and Alisauskas 2000) and maintain 95 – 

99% daily incubation constancy (Chapter 3, McGuire et al. Unpubl.) suggesting a capital strategy 
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during incubation. Conversely, arctic-nesting Long-tailed Ducks lost ~13% carcass weight 

between early incubation and brood rearing (Peterson and Ellarson 1979), 7% of pre-incubation 

body mass during incubation (Kellett et al. 2005) and maintain a daily incubation constancy of 

84% (Chapter 3). Long-tailed Ducks acquire considerable protein and fat stores before spring 

migration (Peterson and Ellarson 1979, Leafloor et al. 1996), but Peterson and Ellarson (1979) 

found that breeding females lost 69% of fat reserves during the egg-laying period, leaving only 

6% of fat at the start of incubation. This suggests Long-tailed Ducks have an income strategy 

during incubation. However, little information is known about nutrient allocation to egg 

production in either Long-tailed Ducks or King Eiders. 

Capital breeders are typically larger-bodied birds whose body size may be advantageous 

for storage of sufficient endogenous reserves from wintering grounds required for reproduction 

on breeding grounds (Drent and Daan 1980). King Eiders are large-bodied birds, and thus may 

be better adapted to acquiring endogenous reserves required for migration and reproduction. In 

contrast, Long-tailed Ducks may be limited by small body size from acquiring enough 

endogenous reserves to fuel migration and meet subsequent energetic demands of reproduction. 

Therefore, Long-tailed Ducks may rely upon exogenous resources for reproduction. I predicted 

that King Eiders allocated most if not all endogenous reserves to egg production and Long-tailed 

Ducks allocated exclusively exogenous resources to egg production.  

 To test this hypothesis, I collected eggs of Long-tailed Ducks and King Eiders for stable 

carbon and nitrogen (δ13C and δ13N, respectively) isotope analysis at three inland freshwater 

lakes in the Central Canadian Arctic. I collected potential diet items, hereafter referred to as diet 

items, at Karrak and Adventure Lakes for δ13C and δ13N analysis and obtained δ13C and δ13N 

values from published and unpublished sources of diet items from known marine and freshwater 

wintering areas. These species were particularly appropriate for this study as they are (1) 

members of the same tribe (2) exposed to the same environmental conditions on wintering and 

breeding areas, (3) share similar feeding ecology, (4) migrate similar distances to reach 

freshwater breeding areas, and (5) nest sympatrically at Karrak, Adventure and Simpson lakes.  

 

4.2. METHODS 

As laying order was undeterminable egg component (albumen, yolk protein, whole yolk 

and yolk lipid) δ15 N and δ13C values from the same nest were averaged to investigate 
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contribution of exogenous versus endogenous nutrient allocation on a per nest basis.  Egg 

component δ15 N and δ13C values hereafter refer to the mean δ15 N and δ13C values of each nest 

sampled.  Egg components of twenty-nine Long-tailed Duck and forty-four King Eider nests 

were used in the δ15 N and δ13C stable isotope analysis and the multi-source diet mixing model.   

4.2.1. Yolk Lipid Values 

As yolk lipids were not directly analyzed for δ13C and δ15N, derived yolk lipid δ13C 

values, hereafter referred to as yolk lipids, for each individual egg was obtained using the below 

calculation. Due to high discrimination factors and low δ15N values of whole yolk and yolk 

protein only yolk lipid δ13C values could be calculated.  

 

Yolk lipid δ13C =  (δ13C Whole yolk  - (δ13 C Yolk protein* E))    (4.1) 

L 
 

Lipid proportion (L) is the calculated proportion of lipids in whole dry yolk and protein 

proportion (E) is the calculated proportion of protein in dry whole yolk. Protein proportion e (E) 

was calculated by subtracting L from 1.00. Lipid proportion (L) was obtained from Table 1.7 in 

Burley and Vadhehra (1989). Since the lipid and protein proportions of Long-tailed Duck and 

King Eider egg components is unknown average lipid proportion (L) of the Northern Gannet 

(Morus bassanus), Brown Pelican (Pelecanus occidentalis) and Herring Gull (Larus argentatus) 

were used (Burley and Vadhehra 1989). These species share a carnivorous diet similar to Long-

tailed Ducks and King Eiders (Mowbray 2002, Sheilds 2002, Pierotti and Good 1994). It was 

reasonable to assume that egg yolk lipid and protein proportions from these species would reflect 

those of King Eiders and Long-tailed Ducks. Lipid proportion (L) used was 0.638, and protein 

value (E) was then 0.362 (1-0.638).  

 

4.3. ANALYSIS 

4.3.1. General Linear Models 

SAS Institute (1996) was used to perform statistical analysis of egg components and lake 

effects. Differences between species’, and egg component samples (albumen, whole yolk, lipid-

free yolk, and yolk lipids) were evaluated using a multivariate analysis of variance, MANOVA, 

(PROC GLM) with post-hoc Tukey Studentized tests. I tested for an effect among Karrak, 
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Adventure and Simpson Lakes using a general linear model (PROC GLM). Five King Eider eggs 

where lake assignment was unknown  were excluded from lake effect analysis. I used a general 

linear model (PROC GLM) to test for differences between 1) wintering, marine and freshwater, 

and breeding ground diet items δ13C and δ15N values and 2) egg components and wintering, 

marine and freshwater, and breeding diet items δ13C and δ15N values. Diet item δ13C and δ15N 

values used in analyses were corrected for discrimination using the carnivore model (Hobson 

1995, Gauthier et al. 2003). 

4.3.2. Multi-source Diet Mixing Model 

Isosource is a multi-source mixing model developed by Phillips and Gregg (2003) that 

uses isotopic ratios to estimate the proportional contribution of various sources to n, in this study 

n are eggs and sources are diet items. The proportion of contributions of n + 1 different sources 

can be uniquely determined by the use of n different isotope tracers (δ13C, δ15N, δ18O) with 

linear mixing models based on mass balance equations (Phillips and Gregg 2003). The Isosource 

(Phillips and Gregg 2003) approach relies on an iterative model that considers all possible 

solutions to the measured mean consumer’s tissue isotope values and the mean values of the 

potential food endpoints (Phillips and Gregg 2003). The observer chooses the appropriate tissue-

diet discrimination factors, the tolerance permitted about the mean consumer tissue values, and 

the interval increment (in o/oo) for the model (Phillips and Gregg 2003). I used Isosource (Phillips 

and Gregg 2003) to estimate the proportional contributions of wintering and breeding ground 

diet items to eggs. As King Eiders and Long-tailed Ducks are carnivorous I applied carnivore 

model (Hobson 1995) discrimination values to diet items. Discrimination values were applied so 

1) δ13C and δ15N signatures from diet items and egg components could be compared, and 2) to 

investigate allocation of diet items to egg components of Long-tailed Ducks and King Eiders. 

Diet items were grouped based on wintering ground (marine and freshwater) and breeding 

ground biomes, trophic guild, taxon and overlapping means and standard deviations (Phillips and 

Gregg 2005). Grouping allows inferences about the importance of diet items (Phillips and Gregg 

2005) to consumer’s tissues. Egg components (albumen, yolk protein and whole yolk) of each 

species and diet groups (see Table 4.3) mean low and high endpoints δ13C and δ15N values were 

run separately in Isosource.  These mean endpoints represented the range of δ13C and δ15N diet 

values found on the wintering and breeding grounds.  As I only had δ13C values of yolk lipids I 

ran Isosource using δ13C values for this egg component and diet groups. King Eiders do not 
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winter in freshwater areas as Long-tailed Ducks do, therefore diet groups from these areas (Table 

4.3 : groups 5 and 6), were excluded from the King Eider diet mixing model. 

 

4.3.0. RESULTS 

4.3.1. Stable-isotope Ratios of Egg Components  

Stable-isotope ratios in egg components - Values of carbon (δ13C) and nitrogen (δ15N) of 

all egg components (albumen, whole yolk, yolk protein yolk lipids) did not differ significantly 

between Long-tailed Ducks and King Eiders (MANOVA F7,60 = 1.75 P > 0.11) (Figure 4.1 and 

4.2).  

Carbon-13 - Long-tailed Duck egg component δ13C values had a wider variation than 

those of King Eiders (Table 4.1). Long-tailed Duck δ13C values showed both depleted and 

enriched δ13C values. Enriched δ13C values suggested close associations with δ13C values from 

marine wintering grounds and depleted δ13C values such as those ≤ - 29.0 0/00 indicated close 

association with freshwater wintering areas. These δ13C values indicated some Long-tailed Duck 

females allocated nutrients from wintering grounds to eggs. King Eider egg component δ13C 

values indicated close associations with freshwater breeding grounds. These results suggested 

King Eiders allocated primarily nutrients to eggs from the breeding grounds. 

Nitrogen-15 –The δ15N values between wintering and breeding grounds were highly 

variable and close associations between egg components and these areas were not as defined as 

δ13C values. δ15N values of egg components of Long-tailed Duck and King Eiders showed 

associations to diet source δ15N values from breeding grounds. Egg component and diet source 

δ15N values of this study were similar to shorebird and diet item δ15N values of high arctic 

terrestrial areas (Morrison and Hobson 2004).  
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Table 4.1. Stable-carbon (δ13C) and nitrogen (δ15N) analysis (mean ± SD (o/oo), [n] and range) of 
egg components of Long-tailed Ducks and King Eiders. Tukey’s studentized post-hoc multiple 
comparison results indicated egg components did not differ significantly. 
  

     Long-tailed Duck   King Eider  
Tissue  n Mean (0/00) Range (0/00) n Mean (0/00) Range (0/00) 
        
Albumen δ15N 29 8.49 ± 1.30 5.35 to 11.80 39 8.84 ± 1.14 6.39 to 11.94  
 δ13C 29 -20.95 ± 1.94  -16.72 to -25.27 39 -21.19 ± 1.49 -18.01 to  -23.67 
        
Yolk Protein δ15N 29 9.74 ± 1.42 6.33 to 13.03 44 9.84 ± 1.11 7.03 to 14.00 
 δ13C 29 -23.64 ± 2.03 -19.39 to -29.27 44 -23.78 ± 1.23 -20.57 to -26.62 

        
Whole Yolk δ15N 29 9.53 ± 1.72 5.51 to 14.66 44 9.31 ± 1.29 6.67 to 12.67 

 δ13C 29 -24.31 ± 2.36a -18.20 to -30.94 44 -24.86 ± 1.12 -21.32 to -26.67 
        
Yolk lipids δ13C 29 -25.85 ± 2.50 -19.35 to -32.90 44 -26.43 ± 1.19  -22.67 to -28.36 
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Figure 4.1. Stable-carbon (δ13C) and nitrogen (δ15N) values of Long-tailed Duck (n = 29) and 
King Eider (n = 44) egg components a) albumen b) yolk protein  c) whole yolk collected at 
Simpson, Karrak and Adventure Lakes, Nunavut 2004. Sold circles are King Eiders and empty 
circles are Long-tailed Ducks. 
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Figure 4.2. Stable-carbon (δ13C) values of Long-tailed Duck (n = 29) and King Eider (n = 44) 
yolk lipid collected at Simpson, Karrak and Adventure Lakes, Nunavut 2004.  Solid circles are 
King Eiders and empty circles are Long-tailed Ducks. 
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4.3.2 Lake Effects 

Lake Effects (Carbon-13) – The δ13C values of nest albumen (F3,65 = 4.71, P < 0.01) and 

yolk protein (F3,69 = 4.57, P < 0.01) showed significant differences between the three lakes. 

However, Tukey Post-hoc Studentized tests found only a difference between albumen and yolk 

protein δ13C values of Simpson and Adventure Lakes. Yolk protein and albumen  δ13C values of 

both species in Simpson Lake were depleted in δ13C compared to δ13C values of eggs from 

Adventure Lake. This result suggests that birds nesting at Adventure Lake allocated more carbon 

enriched nutrients into albumen.  

Lake Effects (Nitrogen-15) -  The δ15 N values of all egg components were not 

significantly different between the three lakes. No differences in δ15 N values were found 

between egg components of Long-tailed Ducks and King Eiders. 

 

4.3.3. Stable-isotope Ratios in Diet items 

Stable-isotope ratios in diet items – The δ13C signatures from wintering grounds, marine 

and freshwater, and my study site, a freshwater breeding ground, were significantly different 
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(ANOVA F5,103 =  5.54, P < 0.0002) (Figure 4.4 and 4.6). The δ13C signatures of marine 

wintering grounds were enriched in carbon, while diet items from freshwater areas were depleted 

in carbon. Freshwater diet items from the breeding ground were more enriched in δ13C than those 

diet items from freshwater winter grounds. There is some overlap between the δ13C values of fish 

and shrimp found on freshwater wintering grounds (Table 4.3, Group 5) and freshwater 

copepods collected at Karrak and Adventure Lakes (Table 4.3, Group 4). Overlapping δ13C 

values between these two species could be attributed to their associated trophic position in the 

ecosystems. The overlap is only applicable to Long-tailed Ducks as King Eiders do not winter in 

freshwater areas.  

Stable-isotope ratios in diet items (Nitrogen -15) - The δ15N signatures from diet groups 

on wintering grounds and breeding grounds were different (F5,96 = 10.22, P < 0.0001) (Figure 

4.4). δ15 N signatures of diet items in wintering grounds, marine and freshwater, were generally 

enriched compared to breeding ground diet items.  

4.3.4. Stable-isotope Ratios of Diet items and Egg Components 

Stable-isotope ratios egg components and diet items (Carbon-13) - δ13C values of egg 

components (albumen, yolk protein, whole yolk and yolk lipids) of Long-tailed Ducks and King 

Eider were significantly different from marine diet items (Falbumen 2,142 = 54.9, P < 0.0001; Fyolk 

protein 2,146 = 316.2, P < 0.0001; Fwhole yolk 2,146 = 353.4, P < 0.0001; Fyolk lipid 2,146 = 296.5, P < 

0.0001) (Figure 4.5 and 4.7). Long-tailed Duck δ13C values of albumen, yolk protein, and whole 

yolk were significantly different from freshwater winter ground diet items (Falbumen 1,47 = 45.7 P < 

0.0001; Fyolk protein 1,47 = 20.9, P < 0.0001; Fwhole yolk  1,47 = 36.6, P < 0.0001; Fyolk lipid 1,47 = 31.9, P < 

0.0001). δ13C values of albumen, yolk protein, whole yolk and yolk lipids of Long-tailed Ducks 

and King Eider did not differ significantly from breeding diet items, suggesting nutrients 

allocated to egg production are being acquired on breeding grounds.  

Stable-isotope ratios egg components and diet items (Nitrogen - 15) – The δ15N values of 

albumen, yolk protein, and whole yolk of Long-tailed Ducks and King Eider were significantly 

different from marine diet items (Falbumen 2,142 = 118.5, P < 0.0001; Fyolk protein 2,146 = 91.4, P < 

0.0001; Fwhole yolk  2,146 = 92.9, P < 0.0001) (Figure 4.5). δ15N values of albumen, yolk protein, and 

whole yolk of Long-tailed Ducks were significantly different from freshwater winter ground diet 

items (Falbumen 1,47 = 24.6, P < 0.0001; Fyolk protein 1,47 = 13.8, P < 0.0008; Fwhole yolk  1,47 = 11.8, P < 
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0.001). δ15N values of albumen, yolk protein, and whole yolk of Long-tailed Ducks and King 

Eider did not differ significantly from breeding diet items. 

4.3.5. Multi-source Diet Mixing Model 

The range and mean of each diet group contribution to each egg component was reported 

because only reporting the mean misrepresents the unique results of the mixing model (Phillips 

and Gregg 2003). Results from the Isosource mixing model (Phillips and Gregg 2003) (Table 

4.3) suggested freshwater diet items contributed the largest portion of nutrients to egg 

components. As calculated by Isosource, Long-tailed Ducks (n = 55) relied significantly on diet 

breeding ground group 3, for production of albumen, yolk protein and whole yolk. While King 

Eiders appear to rely on diet breeding ground group 3 for albumen (n = 70) and whole yolk 

production (n = 76), but relied equally on breeding ground groups 3 and 4, for yolk protein (n = 

76). Isosource calculations suggested that both species relied more on wintering ground diet 

items than those on breeding grounds for yolk lipids. However, Long-tailed Ducks appear to 

allocate proportionally larger amounts of wintering ground nutrients to yolk lipids than King 

Eiders. These results support the wide variation of δ13C and δ15N values from wintering and 

breeding ground areas, seen in egg components of Long-tailed Ducks. King Eider egg 

component δ13C and δ15N values were predominantly associated with breeding ground values 

and Isosource calculations support those findings. 
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Table 4.2. Stable-carbon (δ13C) and nitrogen (δ15N) isotope values (means ± SD 0/00) of diet 
items from wintering grounds (marine and freshwater) and breeding grounds. Wintering ground 
diet items were obtained from literature. 
 

  n δ13C δ15N Source 

Wintering Grounds: Marine     
Bivalves 162 -18.1 ± 1.6 10.16 ± 1.6 Haramis et al. 2001, Hobson et al. 1994, 

Morrison and Hobson 2004, Lovvorn et al. 
2005, Hobson et al. 2004, Ben-David et al. 
1997, Hobson et al. 1998, Fry 1998 

Aneome 1 -17.3 7.0 Fry 1988 
American plaice 1 -16.7 12.9 Fry 1988 
Cheatnognaths 4 -21.1 14.7 Lovvorn et al. 2005,  
Echinoderms 53 -15.3 ± 3.9 11.2 ± 3.8 Hobson et al. 2004, Lovvorn et al. 2005,  
Flounder 1 -16.1 12.0 Fry 1988 
Herrring 10 -19.0 ± 2.7 12.35 ± 1.6 Chisholm 1986, Fry 1988, Hobson et al. 1994 
Polycheates 21 -18.0 ± 1.5 12.7 ± 2.6 Fry 1988, Haramis et al. 2001, Hobson et al. 

2004, Lovvorn et al. 2005 
Sculpin 1 -16.6 12.4 Fry 1988 
Sand Lance 9 -18.4 ± 0.6 12.25 ± 2.9 Fry 1988,Hobson 1990 
sea worms & sea squirts 8 -19.3 ± 2.8 14.1 ± 4.1  Fry 1988, Hobson et al. 2004, Lovvorn et al. 

2005 
Gastropoda 52 -16.4 ± 3.4 10.82 ± 2.1 Hobson et al. 1998, Hobson et al. 2004, Lovvorn 

et al. 2005, Bond 2005  
Crustaceans 362 -18.3 ± 3.1 9.84 ± 1.8 Fry 1988, Hobson and Sealy 1991, Hobson and 

Welch 1992, Ben-David et al. 1997*, Hobson et 
al. 1998, Haramis et al. 2001, Morrison and 
Hobson 2004, Lovvorn et al. 2005, Bond 2005  

Arctic Cod 1 -20 10.8 Hobson et al. 2004 
     
Wintering Grounds: Freshwater      
Alewife 2 -23.2 ± 0.3 11.1 ± 2.7 Hebert et al. 1999 
Herring 1 -26.2 7.8 Keough et al. 1996 
Rainbow smelt 3 -24.4 ± 2.3 10.8 ± 3.5 Hebert et al. 1999 
Carp 1 -29.7 9.3 Keough et al. 1996 
Perch 5 -26.8 ± 4.7 10.4 ± 2.7 Keough et al. 1996 
Shrimp 1 -26.5 5.0 Keough et al. 1996 
Group:Chironomidae, Zooplankton 4 -30.9 ± 1.9 5.6 ± 2.0 Keough et al. 1996, Mitchell et al. 1996* 
Zebra mussel  1 -32.2 ± 0.3 11.1 ± 2.7 Mitchell et al. 1996* 
     
Breeding Grounds: Freshwater     
Tipulidae 10 -21.8 ± 2.2 4.5 ± 2.5 This Study 
Chironomidae 10 -21.4 ± 0.5 3.9 ± 1.8 This Study 
Fish:  5 -23.7 ± 1.3 8.6 ± 1.3 This Study 
Haliplidae 13 -19.9 ± 0.9 4.5 ± 1.4 This Study 
Eubranchiopoda  11 -22.0 ± 1.3 5.2 ± 1.2 This Study 
Copepoda 2 -25.7 ± 0.1 8.0 ± 0.2 This Study 

* These studies did not remove lipids from potential food sources. Not removing lipids can show 
a depletion δ13C value of -2 0/00. 
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Table 4.3. Diet item groups from wintering and breeding grounds used in Isosource (Phillips and 
Gregg 2003, Phillips and Gregg 2005). 
 

Wintering Grounds: Marine Breeding Grounds: 
Freshwater 

Wintering Grounds: 
Freshwater 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 
Aneome Herring Tipulidae Copepod Alewife Chironomids 
American 
plaice 

Arctic cod Chironomids  Herring zooplankton 

Echinoderms Cheatnognaths Coleoptera  Rainbow smelt Zebra mussel  
Bivalves Sea worms & 

Sea squirts 
Fish:Ninespine 
stickleback & 
unknowns  

 Shrimp   

Crustaceans  Eubranchiopoda  Perch Carp 
Flounder       
Polycheates       
Sculpin       
SandLance       
Gastropods           
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Figure 4.4. Stable-carbon (δ13C) and nitrogen (δ15N) isotope values of equivalent diet item 
means for each egg component: a) albumen b) whole yolk c) yolk protein. Diet items were 
grouped based on wintering and breeding ground, trophic guild, taxon and overlapping δ13C and 
δ15N values (Phillips and Gregg 2005). 
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Figure 4.5. Isosource diet polygons of stable-carbon (δ13C) and nitrogen (δ15N) isotope values of 
Long-tailed Duck and King Eider egg component means and mean equivalent diet item 
wintering and breeding ground group δ13C and δ15N endpoint values.  Solid diamonds are King 
Eiders and empty diamonds are Long-tailed Duck egg components. 
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Figure 4.6. Stable-carbon (δ13C) isotope values of equivalent diet item means for yolk lipids. 
Diet items were grouped based on wintering and breeding ground, trophic guild, taxon and 
overlapping δ13C values (Phillips and Gregg 2005). 
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Figure 4.7. Stable-carbon (δ13C) isotope values of Long-tailed Duck and King Eider yolk lipid 
and equivalent diet item group δ13C and δ15N endpoint values. Solid diamonds are King Eiders 
and empty diamonds are Long-tailed Duck yolk lipid.  
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Table 4.4. Isosource (Phillips and Gregg 2003) mean and range (1st and 99th percentile) of marine and freshwater diet source Stable-
carbon (δ13C) and nitrogen (δ15N) isotope values in egg components of Long-tailed Ducks and King Eiders . 
 

      Marine : Wintering Grounds Freshwater: Breeding Grounds Freshwater: Wintering Grounds 

   Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 
Egg Component Species n mean range mean range mean range mean range mean range mean range 
Albumen King Eider 39 1.0 0 - 3 1.0 0 - 3 88.0 85 - 91 10.1 8 -13 NA NA 
 Long-tailed Duck 29 0.2 0 - 1 0.1 0 - 1 97.5 96 - 100 1.0 0 - 4 0.7 0 - 3 0.5 0 - 2 
               
Whole yolk King Eider 44 0.8 0 -38 0.8 0 - 3 51.5 51 - 60 46.9 47 – 55 NA NA 
 Long-tailed Duck 29 3  0 - 7 2.5  0 - 7 78 73 - 83 6.9 0 - 20 5.6 0 - 17 4.1 0 - 11 
               
Yolk Protein King Eider 44 1.6 0 - 6 1.6 0 - 6 70.7 60 - 86 26.1 13 – 38 NA NA 
 Long-tailed Duck 29 0.4 0 - 2 0.3 0 - 2 72.8 68 -77 5.5 0 - 19 2.8 0 - 10 18.1 12 - 23 
               
Yolk lipids* King Eider 44 7.0 0 - 20 9.0 0 - 25 24.0 0 - 66 60.0 32 – 77 NA NA 
  Long-tailed Duck 29 13.3 0 -35 15.2 0 - 42 20.0 0 - 69 18.3 0 - 57 18.5 0 - 59 14.7 0 - 41 

• Only δ13C values of yolk lipids were run in Isosource as δ15N values were not available (Phillips and Gregg 2003). 
• NA: King Eiders do not winter in freshwater areas therefore these diet groups were excluded in the King Eider diet mixing 

model. 
 



4.4. DISCUSSION 

 When dietary carbon is incorporated into a particular tissue, a characteristic 

discrimination or change in the isotope value relative to diet is expected (Hobson and Clark 

1992). Patterns of stable isotope turnover from diet to bird tissues are tissue-dependant ranging 

from a few days to over a hundred days (Hobson and Clark 1992a, Hobson and Bairlein 2003). 

Isotope turnover in captive quail eggs was 3 -5 days for albumen, and 8 days for yolk (Hobson 

1995). Each egg-laying is preceded by rapid follicle growth (RFG) during which yolk 

accumulates in each ovarian follicle (Alisauskas and Ankney 1992). Estimated RFG for King 

Eiders and Long-tailed Ducks are 6 and 8 days respectively (Alisauskas and Ankney 1992). If 

yolk is formed rapidly from dietary sources then the contribution of the new isotopic signal in the 

yolk should be proportional to the additional mass of yolk formed using the new diet (Hobson 

1995). Research suggests the time for egg yolk (RFG) to reach a new isotopic equilibrium 

following a diet switch is estimated to be about 8 days (Gilbert 1971, Bluhm 1992, Hobson 

1995). Birds arriving on the breeding grounds with endogenous reserves for egg laying should 

lay eggs with isotopic signatures representing diet obtained elsewhere such as the wintering 

grounds (Hobson and Clark 1992). If eggs showed a strong isotopic shift in the direction of the 

isotopic value of the new diet, then this would indicate a strong dietary component to egg 

synthesis (Hobson and Clark 1992). 

Birds that winter in marine and freshwater biomes and breed in ecosystems that are 

isotopically distinct from wintering areas encounter foods that differ substantially in their δ13C 

values (Hobson and Sealy 1991, Hobson and Clark 1992). Hobson (1995) provided herbivore 

and carnivore models relating stable-isotope signatures in birds’ diets to their egg components. 

That study provided discrimination values of isotopes between food and eggs that allow 

predictions of dietary isotope values from those in eggs (Hobson 1995). Differences between 

predicted values and actual measured values can provide evidence for incorporation of stored 

endogenous nutrients where they may differ from local dietary endpoints (Hobson et al. 1997a, 

Hobson et al. 2000, Morrison and Hobson 2004). Stable isotopes have been used to determine 

relative contributions of diet items from different biomes to birds diets and then as nutrient 

tracers from diets to tissues (Hobson et al. 1997a, Hobson et al. 2000, Gauthier et al. 2003, 

Morrison and Hobson 2004, Hobson et al. 2004, Bond 2005). Evidence of an isotopic diet switch 

during egg-laying has been found in several migratory species (Hobson et al. 1997a, Hobson et 
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al. 2000, Klaassen et al. 2001, Gauthier et al. 2003, Morrison and Hobson 2004, Hobson et al. 

2004, Bond 2005). 

Values of δ13C and δ15N of King Eider and Long-tailed Duck egg components 

correspond to δ13C and δ15N values of diet items on breeding grounds. This indicated a dietary 

shift between wintering grounds, marine and freshwater, and breeding grounds. Results from 

Isosource models and δ13C and δ15N values of egg components suggest that marine-derived 

nutrients made up relatively small contributions to King Eider and Long-tailed Duck eggs. 

However, Long-tailed Duck egg components had a broader variation of δ13C values than those of 

King Eiders, consistent with higher contributions of wintering ground (both marine and 

freshwater) nutrients to egg production. Thus, indicating primary nutrients allocated to eggs of 

Long-tailed Ducks and King Eiders were from breeding grounds. The ability to distinguish 

between δ15N signatures of nutrients from breeding and wintering grounds in egg components of 

Long-tailed Ducks and King Eiders although significant was not as clear as it was for δ13C 

signatures. This was due to a large variation in δ15N values of diet items. Nitrogen (δ15N) values 

are determined by trophic level in both marine and freshwater biomes (Morrison and Hobson 

2004). However, relatively low δ15N values in egg components of both species supports  

allocation of nutrients from breeding grounds in both Long-tailed Duck and King Eider eggs. 

Yolk protein, and albumen values of δ13C differed among Simpson and Adventure Lakes but not 

between species. This suggested that birds nesting on Simpson Lake consumed a diet item(s) not 

sampled at Adventure Lake.  

Past research has suggested that egg-production is much more limited by protein than by 

energy, and perhaps a breeding females’ own protein requirements are temporarily depressed 

during the egg-lying period to spare protein for the eggs (Meijer and Drent 1999). If egg-laying 

is energetically costly, timing of breeding may be constrained by the ability to obtain sufficient 

food (Perrins 1970). Robins (1981) found for 5 groups of birds, with a mean body mass between 

25 and 927 g protein costs of egg production were twice as high (201g ± 60g) than during the 

non-laying period. Long-tailed Duck and King Eider body mass are 500 – 700 g and 1200 – 2100 

g respectively (Suydam 2000, Robertson and Savard 2002). Based on body mass smaller bodied 

female Long-tailed Ducks may require twice as much protein for egg production than female 

King Eiders. This extra need for protein may account for the variation of δ13C found in egg 
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components of Long-tailed Ducks, as some females may need to allocate nutrients from the 

wintering grounds to meet protein requirements for egg production.  

King Eiders and Long-tailed Ducks winter on both Pacific and Atlantic coasts (Suydam 

2000, Robertson and Savard 2002). Long-tailed Ducks are also known to winter in freshwater 

lakes, such as the Great Lakes (Robertson and Savard 2002). Spring migration of King Eiders 

and Long-tailed Ducks coincides with break up of arctic sea ice in North America and starts in 

early June (Suydam 2000, Robertson and Savard 2002). Sea-ice break up begins along the 

coastlines of the Bering and Beaufort Seas and Hudson Bay. Migratory behavior of King Eiders 

and Long-tailed Ducks suggests birds prefer to migrate through marine environments on the way 

to breeding grounds (Richardson and Johnson 1981, Johnson and Richardson 1982, Woodby and 

Divoky 1982, Johnson 1995, Suydam et al. 1997). King Eiders and Long-tailed Ducks are first 

seen in the Karrak Lake area early in the second week of June (Kellett and Alisauskas 1997) and 

the majority of nest initiation is in early July (Kellett and Alisauskas 1997). Birds are observed 

spending considerable time on the lake between arrival and egg-laying (Lawson per. obs.). 

Results from stable isotope analysis suggested that breeding females are feeding on local food 

resources, building up lipid and protein levels for egg production after having migrated to 

breeding grounds.  

Some attention has been called to the problem of forming large amounts of protein in a 

short period of time (Drent and Daan 1980). Results from this study reveal protein available at 

breeding grounds is incorporated into eggs. The δ13C and δ15N signatures of egg components of 

both species corresponded with signatures found in local food items. Overall, eggs showed 

breeding ground stable isotope signatures. However, individual allocation of nutrients likely 

varied with arrival time (i.e. bird arriving late may have less time to obtain and incorporate local 

diet items into egg production).  

Research suggested King Eiders relied almost exclusively on endogenous reserves during 

incubation losing ~30% of pre-incubation body mass during incubation (Kellett and Alisauskas 

2000) while maintaining a daily incubation constancy of  95 - 99% (McGuire et al. Unpubl, 

Chapter 3). Incubation constancy, defined as percent time spent on the nest during a 24 hour 

period, suggests King Eiders are relying upon stored reserves to sustain them through the 

incubation period. Long-tailed Ducks were found to lose between ~7 – 13% (Peterson and 

Ellarson 1979, Kellett et al. 2005) of pre-incubating body mass during incubation while 
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maintaining ~84% daily incubation constancy (Chapter 3). These results suggest Long-tailed 

ducks are relying on local nutrients to maintain their own energetic requirements during 

incubation. However, δ13C and δ15N values of King Eider and Long-tailed Duck egg components 

suggest a heavy reliance on breeding ground nutrients for egg production, results consistent with 

other sea duck species, Common Eiders and Harlequin Ducks (Bond 2005, Rigou and 

Guillemette Unpubl.). 

During spring, availability of open water in the Great Lakes (Schummer per. comm.) and 

open sea leads in combination with knowledge of migratory behavior suggests King Eiders and 

Long-tailed Ducks had opportunities to acquire nutrients from freshwater and marine wintering 

grounds for egg production. Few Long-tailed Duck egg components showed correspondence 

with associated wintering ground freshwater and marine values via stable isotope results. These 

results suggested some Long-tailed Ducks acquired nutrients allocated for egg production on the 

wintering grounds.  

Long-tailed Duck and King Eider egg component results indicated a dietary shift between 

winter and breeding areas that are inherent when birds migrate between regions with distinct 

isotopic abundance, marine versus freshwater (Hobson et al. 1997a, Hobson et al. 2000, Klaassen 

et al. 2001, Gauthier et al. 2003, Morrison and Hobson 2004, Hobson et al. 2004, Bond 2005). 

Results from Isosource (Phillips and Gregg 2003) suggested King Eiders and Long-tailed Ducks 

as in the case of other migratory birds, allocated both wintering and breeding ground nutrients to 

egg production (Hobson et al. 1997a, Hobson et al. 2000, Klaassen et al. 2001, Gauthier et al. 

2003, Morrison and Hobson 2004, Hobson et al. 2004). However, Isosource (Phillips and Gregg 

2003) results suggested King Eiders and Long-tailed Ducks allocated a maximum of 8% and 

23% of nutrients from wintering grounds to egg production respectively. The δ13C values of 

King Eider yolk lipids and breeding ground nutrients did differ, however, the values closely 

corresponded with freshwater values. This suggested an unknown diet source may have been 

missed during diet collections on the breeding ground. Bivalve shells and an unidentified 

gastropod were found in Karrak River and Karrak Lake respectively, however samples were 

unobtainable. King Eiders may have fed on these or other unknown diet items which may 

account for the difference found in δ13C  yolk lipid values. King Eiders appeared to use a mixed 

breeding strategy similar to that of Greater snow geese (Gauthier et al. 2003) and Common 

Eiders (Parker and Holm 1990, Rigou and Guillemette Unpubl.), allocating endogenous reserves 
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for incubation and breeding ground nutrients, exogenous resources, for egg production. Long-

tailed Ducks also appeared to use a mixed capital/income strategy, allocating breeding ground 

nutrients for incubation. However, Long-tailed Ducks allocated both wintering and breeding 

ground nutrients to egg production. Results from this study provide further evidence that a 

continuous breeding strategy gradient is used by migratory and arctic-nesting birds.  
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5.0 SYNTHESIS 

In cold regions, such as the arctic, reproductive activity, egg laying and incubation must 

be compressed into a short summer of four months or less (Irving 1972). Although preparations 

for breeding must be synchronized with the environment birds must be able to adjust to 

unpredictable local variation such as weather (Silverin 1995). Capital and income breeding 

strategies (Drent and Dann 1980) represent options of energy use (Andersson and Norberg 

1981). Apart from organisms that rely exclusively on stored resources for offspring production 

many species use stores to supply entirely or partially the requirements of particularly 

demanding stages of reproduction (Andersson and Norberg 1981, Hedenstrom 1992).  

King Eiders and Long-tailed Ducks are first seen in the Karrak Lake area in the second 

week of June, but do not start to initiate egg-laying typically until the 3 or 4th week of June. Birds 

are observed spending most of the time on the lake at this time (S. Lawson per. obs.), suggesting 

they are feeding on local food sources. Results from stable-carbon and nitrogen analysis of egg 

components indicates there is adequate time, between arrival and egg laying, and sufficient local 

nutrients to allow these birds to obtain the necessary energy and protein requirements to form 

eggs.  

Weather conditions such as temperature and precipitation have a profound affect on the 

degree of incubation constancy and are major influences on how birds incubate, particularly in 

those species with female-only incubators (Deeming 2002). Results from this study show that 

weather conditions did not affect King Eider and Long-tailed Duck incubation constancy but 

incubation stage did. Incubation constancy in King Eiders and Long-tailed Ducks may not be 

directly influenced by weather conditions, however nest success is. Nest success models 

suggested incubation stage is a good predictor for King Eiders and incubation constancy and 

weather conditions are good predictors of Long-tailed Duck nest success. King Eiders and Long-

tailed Ducks breeding at Karrak Lake have been shown to lose ~30% and 7% respectively, of 

pre-breeding mass during incubation (Peterson and Ellarson 1979, Kellett and Alisauskas 2000, 

Kellett et al. 2005). Results suggested that incubating female King Eiders and Long-tailed Ducks 

use different incubation strategies to meet metabolic/physiological/nutritional costs of 

incubation. King Eiders and Long-tailed Ducks have a daily incubation constancy of 98% and 

84% respectively. There was little variation in incubation constancy of King Eiders compared to 
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that of Long-tailed Ducks. Variation in incubation constancy may only play a small role in nest 

success of Long-tailed Ducks and almost no influence on King Eider nest success. This 

suggested other factors and/or relationships such as nutrients and/or body condition are 

influencing nest success of these species. Overall, findings suggested Long-tailed Ducks used an 

income incubator strategy, and King Eiders used a capital incubator strategy.  

 Nutrient allocation to egg production has long been a topic of interest to ornithologists. 

Naturally occurring stable isotope analysis (δ13C and δ15N) of avian eggs has been successful in 

providing dietary information and insights into metabolic pathways linking endogenous and 

exogenous reserves to egg production, gaining considerably interest and application by 

researchers (Hobson 1995, Hobson et al. 1997a, Hobson et al. 2000, Klaassen et al. 2001, 

Gauthier et al. 2003, Morrison and Hobson 2004, Hobson et al. 2004, Bond 2005). Stable isotope 

analysis demonstrates an alternative way to address nutrient allocation in reproduction than 

conventional methods which may have limitations, as diet items and egg values can be directly 

compared. Results from this study suggested Long-tailed Ducks and King Eiders relied primarily 

on nutrients from breeding grounds for egg production.  

Results of nutrient allocation in egg production (Chapter 4) combined with incubation 

constancy and mass loss during incubation provides insight into breeding strategies of Long-

tailed Ducks and King Eiders. This study provided evidence that both species rely on 

endogenous nutrients for egg laying and or incubation. Results from this study suggested that 

King Eiders and Long-tailed Ducks used a “mixed” strategy to meet energetic demands of 

reproduction. Breeding female King Eiders may be capital incubators but income egg producers 

where as breeding female Long-tailed Ducks are income incubators and are both income and 

capital egg producers.  

Future studies could include several breeding seasons as long term data may be able to 

address weather conditions and body condition of incubating females that may vary from year to 

year and investigate the influence these conditions may have on incubation constancy, nest 

success and nutrient allocation for egg production. These findings suggested arctic freshwater 

areas are extremely important to breeding Long-tailed Ducks and King Eiders as nutrients 

acquired during the breeding season are required for successful reproduction.  
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6.0 APPENDIX: POPULATION DELINATION OF LONG-TAILED DUCKS: 
MIGRATORY CONNECTIVITY FROM BREEDING GROUNDS TO THE 
WINTERING GROUNDS 
 
A.1. INTRODUCION 

In migratory species, events occurring at different stages of an annual cycle have 

important consequences on the ecology, evolution and conservation of migratory organisms 

(Webster et al. 2002). Linking wintering and breeding areas of migratory wildlife can provide 

important information on population dynamics (Fretwell 1972, Webster et al. 2002). Individuals 

from the same breeding areas often share wintering areas so entire cohorts could be affected by 

ecological factors on either of these areas (Mehl et al. 2004, Esler 2000). For many waterfowl 

species band recovery data can provide inferences about wintering and breeding area 

connectivity. However, for species such as the Long-tailed Duck (Clangula hyemalis) that 

spends most of the year at arctic and sub-arctic latitudes, band recovery information is sparse 

making inferences about breeding and wintering ground connectivity difficult. For example from 

1923 to 2004 4,445 Long-tailed Ducks were banded and only 61 were subsequently encountered 

(Bird Banding Office, United States Fish and Wildlife Service, Laurel, MD) resulting in a 1.3% 

recovery rate. Alternative methods such as satellite telemetry are expensive and breeding areas 

where Long-tailed Ducks are found in sufficient numbers to provide adequate marked birds are 

limited, compromising the ability to obtain data at a population level that would provide robust 

inferences about the species movements. On wintering grounds methods such as re-sighting 

colour banded individuals is difficult given that Long-tailed Ducks are widely distributed, winter 

in varying sized flocks and can be far offshore (Robertson and Savard 2002). Information 

regarding known breeding grounds is limited as birds nest across both arctic and sub-arctic areas 

of North America at low densities (Robertson and Savard 2002) making connectivity between 

breeding grounds and wintering grounds difficult. 

Naturally-occurring stable isotopes in animal tissues reflect local food webs (DeNiro and 

Epstein 1978, Fry and Sherr 1984, Hobson and Welch 1992, Hobson 2003). Isotopic signatures 

of food webs, in turn, can vary spatially, based on several possible biogeochemical processes, 

and these signatures are passed onto animals feeding in those foodwebs (Webster et al. 2002, 

Hobson 2003). The resulting geographical variation in stable isotope ratios in animal tissues then 

provides the basis for determining the geographical origins of migratory populations across 
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seasons and space (Webster et al. 2002). Birds that move between isotopically distinct foodwebs 

can retain information of previous feeding location for periods that depend upon the elemental 

turnover rates of the tissue of interest (Tiezsen and Boutton 1988, Hobson and Clark 1992, 

Hobson 2003). Feathers are keratinous tissues that are metabolically inert following synthesis 

and therefore maintain an isotopic record reflecting the location where the tissue was synthesized 

(Mizutian et al. 1990). Naturally occurring stable isotopes and values of diet items and 

consumers tissues can be used in combination to investigate relationships between origins of diet 

items and associated tissues (Phillips and Gregg 2003). Stable-carbon (δ13C) and (δ15N) isotope 

analysis has been used successfully to differentiate freshwater and marine habitats used by birds 

throughout their annual cycles (Mizutian et al. 1990, Hobson et al. 1997a, Bearhop et al. 1999, 

Hobson et al. 2000, Klaassen et al. 2001, Morrison and Hobson 2004, Hobson et al. 2004).  

Information regarding Long-tailed Duck population size and trend estimates has been 

difficult to obtain (Roberston and Savard 2002). The current population status is unknown 

however, declines of Long-tailed Ducks on both east and western coasts have been noted (Prairie 

& Northern Region Sea Duck Team 2000). Presently, it is unknown if Long-tailed Ducks in 

North America make up one continuous population or whether there are distinct populations, 

western, eastern and/or a Great Lakes subgroups. Band recoveries from hunter-killed birds 

suggest that Long-tailed Ducks from western and eastern coasts and Great Lakes region share 

similar breeding areas (Bird Banding Office, United States Fish and Wildlife Service, Laurel, 

MD).  

Long-tailed Ducks are a circumpolar species that breed in extensive portions of the arctic 

and sub-arctic areas of Alaska and Northern Canada in freshwater and coastal areas (Robertson 

and Savard 2002). The winter range of the Long-tailed Duck includes both Western and Eastern 

coasts, the Great Lakes, and other large inland lakes. These birds often remain in northern areas 

while open water persists, migrating to wintering areas when open water is no longer available. 

Long-tailed Ducks are considered a late fall migrant returning to western and eastern wintering 

grounds in October with numbers peaking in late November to December (Campbell et al. 1990, 

Viet and Petersen 1993, Walsh et al. 1999, Hess et al. 2000). They are first seen returning to 

wintering areas in the Great Lakes in mid-October (Peterjohn 1989, Robbins 1991).  

Unlike other waterfowl species, Long-tailed Ducks annually undergo 3 molts; basic 

plumage, alternate plumage and eclipse plumage. The basic plumage is acquired in the fall and 
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alternate (breeding) plumages are thought to be acquired on wintering areas. Body feathers of 

Long-tailed Ducks should therefore reflect isotopic signatures of food webs associated with 

regions were they where grown (Mizutani et al. 1990, Hobson and Clark 1992, Hobson et al. 

2001). Based on previously reported isotopic gradient in polar waters and an east-west marine 

delineation of King Eiders (Dutton et al. 1989, Schell et al. 1998, Mehl et al. 2005) I predicted 

that δ15N and δ13C values for feathers from Long-tailed Ducks wintering in western marine areas 

would be relative to feathers from Long-tailed Ducks wintering in eastern marine areas and the 

Great Lakes. Use of stable isotope analysis from feathers should reflect stable isotope 

composition of wintering areas at the time of feather molt for specific tracts. Feather δ15N and 

δ13C values should closely correspond to δ15N and δ13C values of potential diet items, hereafter 

referred to as diet items, from associated areas where grown. The purpose of this study was to 

use δ15N and δ13C values of Long-tailed Duck feathers and diet items to link the Karrak Lake, 

NU breeding area to wintering grounds and to delineate the Long-tailed Duck population(s). 

 

A. 2. METHODS   

Capturing, Marking and Feather Collection                                                                     

Mist nets were used to capture and mark adult female Long-tailed Ducks (Alison 1975a, 

Alison 1975b, Kellett et. al. 2005) at Karrak Lake, NU in mid to late incubation. All birds caught 

were marked with standard US Fish and Wildlife Service aluminum leg bands. Feathers from 

three body regions (chest, head and back) and a piece of 9th primary feather of adult female 

Long-tailed Ducks, were collected from 9, 12 and 7 incubating female Long-tailed Ducks in 

2003, 2004 and 2005 respectively. Feathers of male and females, juveniles and adults, were 

collected in known wintering areas throughout North America in 2003 and 2004 from other 

researchers and hunter-killed birds. All feathers were placed in 20ml vials and soaked in a 2:1 

chloroform methanol mixture to clean feathers and remove any surface oils, feathers were then 

allowed to air dry under a fume-hood. All feather samples were weighed into tin cups at a weight 

of 1.0 milligrams and submitted for carbon and nitrogen analysis to the Soil Science Department 

University of Saskatchewan, combusted in a Roboprep elemental analyzer interfaced with a 

Europa 20:20 continuous-flow isotope-ratio mass spectrometer (Europa Scientific, Crewe, UK; 

Hobson and Schell 1998) at the Department of Soil Science, University of Saskatchewan. We 

report all stable isotope values in δ notation relative to the Pee Dee Belemnite (PDB) and 

 62



atmospheric air standards for δ13C and δ15N measurements, respectively. Measurement precision 

is based on thousands of measurements of our albumen lab standard is estimated to be ± 0.1 o/oo 

for δ13C measurements and 0.3 o/oo δ15N measurements (see Hobson 1995). Isotope values are 

expressed as δ13C and   δ15N (with units of  o/oo ) according to the following equation: 

 

δ13C, δ15N = [ (Rsample/Rstandard) -1] X 1000  Where R = 13C/12C, 15N/14N   (A.1) 

 

Diet items - Long-tailed Ducks winter on both west and east coasts and inland freshwater lakes in 

southern Canada and the Northern United States. δ13C and δ15N signatures of diet items from 

these wintering grounds were obtained from the literature (Table 4.2). I applied discrimination to 

diet source δ13C and δ15N values using the carnivore model (Hobson and Clark 1992b). 

Discrimination values were applied so δ13C and δ15N signatures from known wintering ground 

diet items and feathers could be compared. Diet items were grouped based on marine, east and 

west, and freshwater wintering ground origins overlapping means and standard deviation 

(Phillips and Gregg 2005). Correspondence of δ13C and δ15N signatures between diet items and 

feathers may provide evidence of population delineation of western, eastern and Lake Ontario 

Long-tailed Duck populations. 

  

A.3. STATISTICAL ANALYSIS 

A.3.1. East, West and Lake Ontario Delineation  

Statistical analysis was carried out using SAS Version 8.2 (SAS Institute 1996). I plotted 

δ13C and δ15N values from each feather tract to determine the amount of overlap between 

eastern, western and Lake Ontario populations. Discrimination between the three populations 

was based on isotopic ratios from one or more feather tract(s), using discriminate function 

analysis (DFA; SAS Institute 1996, Mehl et al. 2004). Homogeneity of within-covariance 

matrices was tested using a chi-square test of homogeneity (option within SAS) and used 

discriminate function analysis (DFA; SAS Institute 1996).  

 

A.4. RESULTS 

 I used a subset of feather samples (n = 10) to determine which feather tract (chest, back, 

belly, head or 9th primary) provided the best discrimination between wintering locations. Results 
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determined that head feathers were significant with the least posterior probability of 

misclassification by region (X2= 35.05 P < 0.0001) (FigureA.1). Head feathers from west (n =  

26) and east (n = 31) coasts and Lake Ontario (n = 66) were used in predictive equations from 

Discriminant Function Analysis to classify individuals as wintering in western and eastern 

marine areas and Lake Ontario.  

 

Figure A.1. Isotopic values from head, back, chest and primary wing feathers of Long-tailed 
Ducks collected opportunistically by researchers and hunters that wintered on western (n = 10), 
eastern (n = 10) coasts and Lake Ontario (n = 10). Open circles are western birds, solid circles 
are eastern birds and triangles are birds from Lake Ontario. 

6

8

10

12

14

16

18

20

-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12

δ
13C (0/00)

West East Lake Ontario  

6

8

10

12

14

16

18

20

-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12

δ
13C (0/00)

West East Lake Ontario
 

δ15N 
(0/00) 

δ15N 
(0/00) 

a)   Head Feathers    b)  Back Feathers 

6

8

10

12

14

16

18

20

-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12

δ13C (0/00)
West East Lake Ontario

6

8

10

12

14

16

18

20

-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12

δ
13C (0/00)

West East Lake Ontario
 

δ15N 
(0/00) 

δ15N 
(0/00) 

c)  Chest Feathers    d)  9th Primary 

 

 64



The δ13C and δ15N head feather values and results from DFA suggest that 14%, 32% and 

53% of Long-tailed Duck females breeding at Karrak Lake wintered on the east coast, Lake 

Ontario and the west coast respectively (Table A.1.). However, results of head feather 

classification showed a high percentage of misclassification between Lake Ontario and west 

coast collection and assignments (Table A.1). Head feather δ13C and δ15N signature ranges from 

all three known wintering areas marine, east and west, overlapped as did some head feathers 

collected from Lake Ontario (Table A.2). These results suggested Long-tailed Duck 

classification was not as distinct as it had been for King Eiders and White-winged Scoters (Mehl 

et al. 2004, Mehl et al. 2005, Swoboda and Alisauskas Unpubl).  

 

Table A.1. Classification of Long-tailed Duck head feathers collected in 2003 and 2004 at known 
wintering, marine and freshwater, locations and at Karrak Lake 2003, 2004 and 2005. Region 
collected is the region of feather collection and classified into region is the region that feathers 
were classified as coming from. Sample size (n) is the number of birds classified into the region 
and percent % is the percentage of classification. 

 

  Classified into Region 
 East Lake Ontario West 
Region Collected n % n % n % 
East (31) 21 67.7 10 32.3 0 0.0 
Lake Ontario (66) 20 30.3 43 65.2 3 4.6 
West (27) 4 14.8 16 59.3 7 25.9 
Karrak Lake (28) 4 14.3 9 32.1 15 53.6 

 
 
Diet items - Results of ANOVA show potential marine diet source δ13C and δ15N values from 

different coasts did not differ (δ13C F2,3 = 0.28 P = 0.77; δ15N F2,3 = 0.02 P = 0.98) and fall 

within the same range (Table A.2). Knoche (2004) showed marine δ13C and δ15N values of King 

Eider wing feathers grown in the Bering and Beaufort seas overlapped, making it difficult to 

distinguish between these two molting areas. Using δ13C and δ15N values of feathers grown in 

these associated areas may prove problematic for population delineation. Diet item δ13C and 

δ15N values from the Great Lakes and tundra lakes did not differ (ANOVA δ13C F1,2 = 0.16 P = 

0.73; δ15N F1,2 = 0.10 P = 0.78) and ranges overlapped (Table A.2). Freshwater and marine diet 
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source δ13C and δ15N value ranges do not overlap suggesting δ13C and δ15N values can be used to 

discriminate between feathers grown in freshwater versus marine environments.  

Band recovery information (Bird Banding Office, Laurel MD) and δ13C and δ15N values 

of Long-tailed Ducks wintering in the Atlantic Ocean suggest that these birds molt head feathers 

exclusively in marine environments. Band recovery information and δ13C and δ15N values of 

Long-tailed Ducks wintering in Lake Ontario suggest head feathers of these birds are grown in 

freshwater, brackish and marine areas. This suggested that these birds may be moving between 

freshwater and marine areas during molt. The δ13C and δ15N values of Long-tailed Ducks 

collected on marine western wintering areas were either exclusively freshwater or marine. These 

results suggested that western Long-tailed Ducks are molting head feathers either in marine or 

freshwater areas and suggested they are not moving between areas during molt. Band recovery 

and satellite telemetry maps (www.absc.usgs.gov/research/seaducks/sat_telem_ltdu_maps.htm) 

show these birds wintering in both marine and freshwater environments.  

 

Figure A.2.Wintering ground, marine and freshwater, diet item δ13C and δ15N isotopic values 
(Table 4.2). 
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Figure A.3. δ13C and δ15N isotopic values of wintering ground, marine (east and west) and 
freshwater (Alaskan Lakes and Great Lakes), diet items and Long-tailed Duck head feathers 
classified as east (n = 49), west (n = 25), and Lake Ontario (n = 78). Diet items were grouped as 
marine and freshwater.  
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Table A.2. Range of isotopic δ13C and δ15N isotopic values of Long-tailed Duck head feather and 
wintering ground, marine (east, west and north) and freshwater (Great Lakes, Lake Oneida, and 
lakes on Alaska’s north slope). 
 

 Location δ13C δ15N 

Diet items Marine   
 East Coast  -22.1 to -16.0 6.5 to 15.2 
 West Coast  -18.6 to -10.2 7.8 to 14.3 
 Northern Oceans and Seas -22.5 to -11.3 7.1 to 16.5 
    
 Freshwater   
 Alaska’s North Slopes Lakes -34.6 to -26.2 3.7 to  9.9 
 Great Lakes & Lake Oneida, NY -33.6 to -21.3 3.0 to 14.8 
    
Head Feathers East Coast  -21.1 to -14.7 13.6 to 16.8 

 67



 West Coast  -31.5 to -16.9 9.1 to 18.3 
  Lake Ontario -26.9 to -12.6 8.7 to 17.2 

A.5 DISCUSSION 

Results of this study suggested that there is no clear δ13C and δ15N isotopic gradient 

between western and eastern oceans and east-west polar areas (Dutton et al. 1989, Schell et al. 

1998, Mehl et al 2005, Knoche 2005). The δ13C and δ15N values of Long-tailed Duck head 

feathers grown in eastern and western oceans of North America overlap, weakening the ability to 

distinguish between wintering populations of Long-tailed Ducks. Diet source δ13C and δ15N 

values from marine areas also overlap and therefore, did not aid in Long-tailed Duck wintering 

delineation. Head feathers collected on Lake Ontario and the west coast δ13C and δ15N values 

reflected marine and freshwater values and closely corresponded with diet source δ13C and δ15N 

values from both ecosystems. Results suggested certain Long-tailed Ducks wintering on Lake 

Ontario moved between freshwater and marine areas such as the Saint Lawrence sea way, 

therefore acquiring nutrients from both marine and freshwater areas to grow basic head feathers. 

Results also suggest birds on western wintering grounds spent time in freshwater ecosystems 

while molting head feathers. These birds may have wintered in inland lakes and/or molted in 

freshwater and then moved to marine areas. Head feathers from eastern wintering grounds had 

δ13C and δ15N values that reflected marine signatures and corresponded closely marine diet 

source δ13C and δ15N values. Eastern wintering Long-tailed Ducks may acquire nutrients and 

molt in a marine environment.  

Band recoveries from 1923 to 2004 (Bird Banding Office, Laurel, MD) and locations of 

satellite-radio marked Long-tailed Ducks (United States Geological, M. Mallory Unpubl.) found 

birds banded in western and eastern regions were recovered in these regions. Long-tailed Ducks 

marked in the Bering Sea with satellite-radios migrated to wintering areas in Alaska, Russia and 

Asia (United States Geological). Wintering Long-tailed Ducks marked with satellite radios in 

Ontario migrated in the spring to Hudson’s Bay and returned in the fall. There was no 

information available showing Long-tailed Ducks switched wintering grounds, east, west or 

Great Lakes region, from year to year. Data from band recoveries and satellite-radios suggests 

Long-tailed Ducks are remaining in the regions where they were marked. This information 

combined with δ13C and δ15N signatures of head feathers suggests there may be separate 

wintering populations of Long-tailed Ducks. However, precisely where populations separate still 
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remains unclear. Perhaps birds wintering in eastern areas are not exposed to the same harvest 

pressures or effects as those wintering in the west and are therefore not experiencing declines of 

the same magnitude. 

A wide variety of factors may be held responsible for generating considerable isotopic 

variability in 15N/14N and 13C/12C signals of the primary carbon and nitrogen sources in tissue 

components of individual organisms and different individuals within and between populations 

and communities (Smit 2001). Variation of δ15N and δ13C values of Long-tailed Duck head 

feathers grown in marine areas in this study support Smit’s (2001) findings and provide further 

evidence by Braune et al. (2004) that δ13C and δ15N isotopes are not the best population tracers 

to delineate western and eastern marine wintering populations of Long-tailed Ducks. Future 

stable isotope analysis could address seasonality and location of freshwater versus marine molt 

of Long-tailed Ducks using multiple feather tracts. This approach may be able to answer 

questions regarding molting areas of Long-tailed Ducks across North America and may be able 

to address the use of freshwater and/or marine molting areas across seasons.  
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