

UNIVERSITY OF SASKATCHEWAN

Crop Damage – More Than Just Herbicides

Eric Johnson, Dr. Rosalind A. Bueckert and Dr. Chris Willenborg

Herbicide Injury

 Agronomists generally well trained in herbicide symptomology

- Injury generally results from additive environmental (abiotic) stresses
 - "DO NOT apply fenoxaprop 2 to 3 days prior to, or following, temperatures of 3°C or lower as crop injury may occur".

- Fenoxyprop (Puma, Bengal, any kind of cat)
 - "Durum wheat, forage grasses and barley may experience some initial, temporary stunting and yellowing that rarely results in yield loss. Injury is more likely under stress conditions".
- Metribuzin (Sencor, Tricor)
 - *"Heavy rainfall soon after application to peas, lentils and chickpeas can result in stand reduction on soils with less than 4 percent organic matter".*

Too much water!!

Photo credit: S. Phelps

Photo: Dr. R. Bueckert

Not enough water!!

Leaf flipping in soybean

Photo credits: Dr. R. Bueckert

Heat and drought stress!

Pod abortion

Photo credits: Dr. R. Bueckert

Which of these *Brassica* plants have PSII (Xylem mobile) herbicide injury?

- A. Photo 1
- B. Photo 2
- C. Both
- D. Neither

Manganese / aluminum toxicity

Photo credit: Jessica Weber, WARC, Scott, SK.

The effect of soil pH on nutrient availability.

Strong acid		Medium acid	Slightly acid	Very slightly acid	Very slightly alkaline	Slightly alkaline	Medium alkaline	Strongly alkalin	
_				ni	trogen				
				p	nosph	orus			
-		_		p	otassiu	ım	10		
	1				labur				
				51	alphur				
-				Ca	alcium				
				m	agnes	ium	9		
		iron		-					
		mangan	ese			-			-
		boron							
		Doron							
		copper	& zinc						
				m	olybde	enum			
					-	-	-		

Soil pH at Scott Research Farm Top 15 cm- 4.5 to 5.5

Ecoregion	Number of Sites	Copper (mg/kg)	lron (mg/kg)	Manganese (mg/kg)	Zinc (mg/kg)	Clay (%)	Organic Matter (%)	pН
Peace Lowland	10	1.1	160	12.9	7.8	36	6.2	6.5
Boreal Transition	8	0.8	123	16.1	3.5	26	5.5	6.3
Aspen Parkland	9	0.7	106	20.1	4.7	21	6.2	6.3
Moist Mixed Grasslands	5	0.8	98	24.7	2.0	18	5.0	6.2
Fescue Grasslands	2	1.3	92	28.9	2.3	29	5.7	6.3
Mixed Grasslands	8	0.9	39	11.8	0.8	24	1.8	7.2

Scott soils: mean Mn 51 ppm Range: 16-237 Aluminum availability may also be issue!

Halo on cotyledon from seed treatment

http://www.canolawatch.org/2013/05/29/halo-of-yellow-around-cotyledons/ Greg Sekulic, Canola Council

vv vv vv.usasn.ca

Triazine soil active herbicide in mustard

Photo Credit: Jaime Barton, U of S

Which of these Pea plots did not receive POST- Odyssey?

Β.

- Photo 1
- Photo 2
- C. Photo 3
- D. Can't tell

Yellow Flash in Field Pea from Odyssey

- Looked at effect of timing
- Applied 2X rate of Odyssey at 1-2 node, 5-6 node, and >8 node at Saskatoon, 2014 and 2015.

Chlorosis Ratings on Field Pea after 2X application of Odyssey. June 24, 2014

Pea tolerance to Odyssey timing – 2X rate -2014 Mean of 2 cultivars (CDC Golden and CDC Sage)

Pea tolerance to Odyssey timing – 2X rate -2015 Mean of 2 cultivars (CDC Golden and CDC Sage)

Odyssey applied to CDC Golden at 2X rate at >8 node - 2015

Conclusions from Odyssey study

- Yellow flash (chlorosis) from Odyssey application was transient and generally did not result in a yield reduction when applied before the 6-node stage.
- Adverse environments after application can result in injury even when application timing is made within label directions.
- Symptoms from waterlogging can resemble "yellow flash".
- Late application (beyond the 6-node stage) resulted in 3 to 12 days in maturity, and a slight yield drag in one year of the study.

Additive Effects of Waterlogging and PRE – Herbicide Injury: Source: Doug Fehr. 2012

Glyphosate & Express Pro

Increasing Moisture

Glyphosate alone

Glyphosate & Express Pro

www.usask.ca

, IE

Heat 80 acre rate

How much yield reduction do you think the middle plot will experience compared to the plot on left?

Anthocyanin expression

Which of these have Group 2 injury?

- Photo 1
- B. Photo 2
- C. Photo 3
- D. Photo <u>1 & 2</u>
- E. All

Δ

Other causes of canola purpling

http://www.canolacouncil.org/canolaencyclopedia/weeds/herbicide-residue-drift-injury/

Which of these is sulfentrazone carryover on wheat?

- A
- A. Photo 1
 - B. Photo 2
 - C. Photo 3
 - D. None

Wheat heads caught in the boot can be caused by:

- A. Improper timing of phenoxy herbicide application
- B. Glyphosate drift
- C. Cool temperatures at heading
- D. Genetic trait
- E. All of the above

http://www.mississippicrops.com/2011/03/23/identifying-glyphosate-driftinjury-on-wheat-plants/

Which of the following has Infinity carryover?

- A. Pea plants
- B. Canola
- C. Fababean
- D. All of them
- E. A & C

Albinism – genetic mutation

Pea Photos credit: Joshua Moats, FP Genetics

> Fababean photo credit: Sherrilyn Phelps, Sask Pulse Growers

This is herbicide injury on Fababean!

Photo credits: Sherrilyn Phelps, Sask Pulse Growers

Chocolate spot

Photo credits: Sherrilyn Phelps,Sask Pulse Growers

Viper Injury

Blast from the past: "Stacking" of herbicide residues

 Research in early 2000's found that under some environmental conditions that "back-to-back" application of residual Group 2 herbicides could result in additive or synergistic injury.

Check

2004-Photos taken about 21 days after in-crop treatment

Sundance applied in-crop

Odyssey appled previous year (2003)

Odyssey (2003) / Sundance in-crop

Odyssey -2 yrs / Assert -1 year

Herbicide Stacking – Take home

 Group 2 – only occurs with very residual herbicides: Pursuit, Assert and Sundance (no longer available);

• Layering – research required to ensure "layered" herbicides don't result in additive crop injury.

The lesions on these leaves are caused from:

- A. Frost damage
- B. PPO inhibitor damage
 - C. Insect damage

Summary

- Consider weather, other stresses when diagnosing
 - Many stresses are additive / synergistic
 - Frustrating for farmer and agronomist how much damage is herbicide / how much is environment?

Drought

Drought + >30 C temps

- Dicamba injury