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Abstract

In the last years, the amount of available data in the field of computational

biology steadily increased. In order to be able to analyze these data, various

algorithms have been developed by bioinformaticians to process them efficiently.

Moreover, computational models were developed to predict for instance biological

relationships of species. Furthermore, the prediction of properties like the

structure of certain biological molecules is modeled by complex algorithms.

Despite these advances in handling such complicated tasks with automated

workflows and a huge variety of freely available tools, the expert still needs to

supervise the data analysis pipeline inspecting the quality of both the input data

and the results. Additionally, choosing appropriate parameters of a model is

quite involved.

Visual support puts the expert into the data analysis loop by providing

visual encodings of the data and the analysis results together with interaction

facilities. In order to meet the requirements of the experts, the visualizations

usually have to be adapted for the application purpose or completely new

representations have to be developed. Furthermore, it is necessary to combine

these visualizations with the algorithms of the experts to prepare the data.

These in-situ visualizations are needed due to the amount of data handled within

the analysis pipeline in this domain.

In this thesis, algorithms and visualizations are presented that were developed

in two different research areas of computational biology. On the one hand, the

multi-replicate peak-caller Sierra Platinum was developed, which is capable of

predicting significant regions of histone modifications occurring in genomes based

on experimentally generated input data. This algorithm can use several input

data sets simultaneously to calculate statistically meaningful results. Multiple

quality measurements and visualizations were integrated into to the data analysis

pipeline to support the analyst. Based on these in-situ visualizations, the analyst

can modify the parameters of the algorithm to obtain the best results for a

given input data set. Furthermore, Sierra Platinum and related algorithms were
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benchmarked against an artificial data set to evaluate the performance under

specific conditions of the input data set, e.g., low read quality or undersequenced

data. It turned out that Sierra Platinum achieved the best results in every test

scenario. Additionally, the performance of Sierra Platinum was evaluated with

experimental data confirming existing knowledge. It should be noticed that the

results of the other algorithms seemed to contradict this knowledge.

On the other hand, this thesis describes two new visualizations for RNA

secondary structures. First, the interactive dot plot viewer iDotter is described

that is able to visualize RNA secondary structure predictions as a web service.

Several interaction techniques were implemented that support the analyst

exploring RNA secondary structure dot plots. iDotter provides an API to share

or archive annotated dot plots. Additionally, the API enables the embedding of

iDotter in existing data analysis pipelines.

Second, the algorithm RNApuzzler is presented that generates (outer-)planar

graph drawings for all RNA secondary structure predictions. Previously presented

algorithms failed in always producing crossing-free graphs. First, several drawing

constraints were derived from the literature. Based on these, the algorithm

RNAturtle was developed that did not always produced planar drawings. There-

fore, some drawing constraints were relaxed and additional drawing constraints

were established. Building on these modified constraints, RNApuzzler was devel-

oped. It takes the drawing generated by RNAturtle as an input and resolves the

possible intersections of the graph. Due to the resolving mechanism, modified

loops can become very large during the intersection resolving step. Therefore,

an optimization was developed. During a post-processing step the radii of the

heavily modified loops are reduced to a minimum. Based on the constraints

and the intersection resolving mechanism, it can be shown that RNApuzzler is

able to produce planar drawings for any RNA secondary structure. Finally, the

results of RNApuzzler are compared to other algorithms.
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Chapter 1

Preface

Verba docent, exempla trahunt.

In the last years, the amount of available data in the field of computational

biology steadily increased. In order to be able to analyze these data, various

algorithms have been developed by bioinformaticians to process them efficiently.

Moreover, computational models were developed to predict for instance biological

relationships of species. Furthermore, the prediction of properties like the

structure of certain biological molecules is modeled by complex algorithms.

Despite these advances in handling such complicated tasks with automated

workflows and a huge variety of freely available tools, the expert still needs to

supervise the data analysis pipeline inspecting the quality of both the input data

and the results. Additionally, choosing appropriate parameters of a model is

quite involved.

Visual support puts the expert into the data analysis loop by providing

visual encodings of the data and the analysis results together with interaction

facilities. In order to meet the requirements of the experts, the visualizations

usually have to be adapted for the application purpose or completely new

representations have to be developed. Furthermore, it is necessary to combine

these visualizations with the algorithms of the experts to prepare the data.

These in-situ visualizations are needed due to the amount of data handled within

the analysis pipeline in this domain.

In this thesis, algorithms and visualizations are presented that were developed

in two different research areas of computational biology. On the one hand, a

new multi-replicate peak-caller was developed, which is capable of predicting

significant regions of histone modifications occurring in genomes based on

experimentally generated input data. This algorithm can use several input data
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Chapter 1. Preface

sets simultaneously to calculate statistically meaningful results. On the other

hand, this thesis describes two new visualizations for RNA secondary structures.

First, an interactive dot plot viewer is described that is able to visualize RNA

secondary structure predictions as a web service. Second, a new algorithm is

presented that generates (outer-)planar graph drawings for all RNA secondary

structure predictions. Previously presented algorithms failed in always producing

crossing-free graphs.

The thesis starts with an introduction of the biological background (Chap-

ter 2). The first section of this chapter gives an overview of DNA, RNA, and

proteins (Section 2.1) and their interaction. It is followed by an overview of

the research area Epigenetics, where the histone modifications are described in

detail (Section 2.2). Finally, the basics of RNA secondary structure prediction

algorithms that are able to generate the necessary input data for the visualization

systems for RNA secondary structures are introduced (Section 2.3).

The chapter describing the new peak-caller ’Sierra Platinum’ (Chapter 3) is

mainly based on the following publications:

Sierra platinum: a fast and robust peak-caller for replicated ChIP-seq
experiments with visual quality-control and-steering: Lydia Müller⋆,

Daniel Gerighausen⋆, Mariam Farman, Dirk Zeckzer. BMC Bioinformat-

ics, 2016. doi:10.1186/s12859-016-1248-6

The Sierra Platinum Service for generating peak-calls for replicated
ChIP-seq experiments: Daniel Wiegreffe⋆, Lydia Müller⋆, Jens Steuck,

Dirk Zeckzer, Peter F. Stadler. BMC Research Notes, 2018.

doi:10.1186/s13104-018-3633-x

⋆ equally contributed

The chapter starts with an introduction of the peak-calling process of

histone modifications and the goals of the new algorithm Sierra Platinum

(Section 3.1). Then, a general overview of the analysis pipeline is given. In the

following, related algorithms are presented and compared to the Sierra Platinum

approach (Section 3.2). Afterwards, the methodology of the multi-replicate

peak-caller is described in detail (Section 3.3). Moreover, the algorithms and

visualizations of each pipeline step are described (Section 3.3). If it was possible

to optimize an analysis step, those optimizations are discussed in detail. Then,
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the implementation of Sierra Platinum and its usage to generate significant peak-

callings are described (Section 3.4). Furthermore, the service implementation

of Sierra Platinum is presented (Section 3.4.11).

To evidence the usefulness and usability of Sierra Platinum, an artificial

benchmark data set that can be used to evaluate the performance of peak-callers

was developed (Section 3.5). Therefore (Section 3.5.7), several data sets were

created to simulating a variety of common quality issues of experimentally

created input data sets for histone peak-callings. Together with statistical

measures (Section 3.6) these benchmarks were used to evaluate the overall

performance of Sierra Platinum. First, the quality measurements of Sierra

Platinum are tested against the different data sets and it is discussed how the

provided visualizations encode the errors of these data sets. Next, the parameter

settings of Sierra Platinum are evaluated and general recommendations for using

it are provided. Finally, the performance of Sierra Platinum is tested against

other peak-callers and it is shown that Sierra Platinum performs better than

the others in any test scenario.

Finally, results for experimental data using the Sierra Platinum peak-caller

are presented (Section 3.8). First, the data sets and their pre-processing are

introduced. Next, the methodology used to calculate the agreement of the

results of different peak-calling tools is described, since the detected regions

can be slightly different due to the different methods applied by the peak-callers.

If the peaks overlap up to certain threshold, one can suppose that these results

are similar. After that, the results of the comparison are presented. Then, the

results are analyzed at specific loci of the human genome. For these regions

biological experts provided background knowledge how the peak-callings should

look like and the results are verified against this knowledge.

The chapter describing the interactive dot plot viewer (Chapter 4) is mainly

based on the following publication:

iDotter - an interactive dot plot viewer: Daniel Gerighausen, Alrik

Hausdorf, Sebastian Zänker, Dirk Zeckzer. 25. International Conference

in Central Europe on Computer Graphics, Visualization and Computer

Vision WSCG, 2017

This chapter starts with a brief introduction to motivate the necessity to

develop a new dot plot viewer for RNA secondary structures. Furthermore, it

describes what kind of interactions were added to the visualization system to

3
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enhance it. Followed by that, the functions of related tools and visual repre-

sentations of RNA secondary structures are discussed (Section 4.2). Based

on that, the current state and the issues of current dot plot viewers for RNA

secondary structures are elaborated upon (Section 4.3). Then, a solution for

the mentioned issues is proposed and the newly developed interactive dot plot

viewer iDotter is described (Section 4.4). Within this section, the complete

data analysis pipeline is described and the features of the visualization system

are presented in detail. iDotter is implemented as freely available web service to

facilitate the usage of this tool. Finally, this chapter concludes with a discussion

of the results produced by iDotter (Section 4.5) and an use case showing how

to interpret RNA secondary structure dot plots (Section 4.6).

The subsequent chapter (Chapter 5) continues thematically in the domain

of RNA secondary structure visualizations, addressing planar graph layouts of

such structures. It is mainly based on the following publication:

RNApuzzler: efficient outerplanar drawing of RNA-secondary struc-
tures: Daniel Wiegreffe, Daniel Alexander, Peter F. Stadler, Dirk Zeckzer.

Bioinformatics, 2018. doi:10.1093/bioinformatics/bty817

This chapter starts with an extensive introduction of the theoretical back-

grounds of the graph representation of RNA secondary structures (Section 5.2).

The theoretical background begins with a collection of definitions related to

graphs that are used thereafter to describe the graph layout. Then, a formal

definition of RNA and its secondary structure is provided as well as its interpreta-

tion as an RNA-Tree. Derived from these definitions, specific properties of the

RNA-Tree are postulated, which will then be proven. Based on these properties,

a new algorithm was developed to visualize RNA secondary structures as a

graph that is provably planar for any RNA secondary structure. This algorithm

consists of two principle components. The first component is called RNAturtle

(Section 5.3). First, a collection of drawing constraints of RNA secondary

structure graph layouts is described and matched with the related literature.

These do not yet include planarity of the resulting drawing. Afterwards, the

RNAturtle algorithm is described. It is based on a turtle-graphics algorithm

and therefore, the RNA structure is drawn sequentially by iterating of over all

nucleotides of its sequence. The algorithm is evaluated against the previously

postulated drawing constraints. Despite fulfilling most of the constraints with

every possible structure, RNAturtle may not create planar drawings, especially
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for large RNAs. Therefore, based on this result, RNApuzzler was developed

(Section 5.4). First, the drawing constraints of RNAturtle are analyzed. Based

on this, new constraints were added and some existing constraints were relaxed

to enable RNApuzzler to create planar drawings. Furthermore, a more coarse

grained data structure for the RNA-Tree is proposed. Each of the elements

in this data structure represents a vertex (structural element: loop) and its

incoming edge (structural element: stem). If a stem is connected to another

loop segment, an edge between those two elements represents this connection.

After that, the main algorithm of RNApuzzler is described (Section 5.4.3).

Basically, RNApuzzler checks the output of RNAturtle for intersections within

the graph layout and resolves them. To achieve this, RNApuzzler checks three

different properties of the planarity in succession. As it was proven (Section 5.2),

these proporties build upon each other and if all of them are fulfilled, the whole

graph layout is provably planar. If an intersection is detected during these tests,

the algorithm resolves it and continues the processing. Based on the resolving

mechanism, the loops of the RNA structure may become very large since their

radii are increased during the resolving step. Therefore, an optimization step

was developed that reduces the effects of the loop increase regarding drawing

space and readability of the visualization (Section 5.5). Then, the benchmarks

of RNApuzzler and RNAturtle are discussed (Section 5.6). It is shown that

RNApuzzler fulfills all proposed drawing constraints at least in their relaxed

form and compared to other drawing algorithms it is the only known algorithm

that produces planar drawings for every possible RNA secondary structure. Fur-

thermore, the computational time of RNApuzzler was evaluated. RNApuzzler

needs only a fraction of the computational time that is needed to predict the

folding of the structure but it is slower than the previous (non-planar) standard

visualization algorithm, especially for large RNA structures. Finally, RNApuzzler

was compared to existing drawing algorithms with respect to readability of the

layout.

The last chapter summarizes the results of this thesis and an outlook for

further research is given (Chapter 6).
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Chapter 2

Biological Background

2.1 Molecular Biology

Every living cell has basically the same setup where molecules called proteins

manage the cell, DNA (deoxy-ribonucleic acid) stores the construction plan for

the proteins, and RNA (ribonucleic acid) transmits messsages between the DNA

and the proteins.

DNA

In eukaryotes, the DNA is stored inside the nucleus (see Figure 2.1) of the cell

and it is organized in subunits, called chromosomes. Human DNA, for example,

consists of 46 chromosomes. The DNA sequence is built up from four nu-

cleotides: deoxyadenosine monophosphate (A), deoxyguanosine monophosphate

(G), deoxycytidine monophosphate (C), and thymidine monophosphate (T).

Each of them have a 2-deoxyribose sugar and a phosphate group is bonded to

this sugar. Additionally, one of the four nucleobases adenine, guanine, cytosine,

or thymine is bonded to the sugar. Altogether, each combination of sugar,

phosphate, and one of the nucleobases forms a so-called nucleotide. These

nucleotides can form a chain: a single strand of DNA (see Figure 2.2). Fur-

thermore, the DNA can form a double strand with base pairs of nucleotides.

As Watson and Crick [82] proposed, DNA forms only specific base pairs, the

so-called Watson Crick base pairs: G-C and A-T (see Figure 2.3). The double

stranded structure forms the well known double helical structure of the DNA

like shown in Figure 2.1.

The DNA is divided into so-called coding and non-coding regions. In the

coding regions, information is stored that can be used to generate proteins.

7
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DNA double-strand

Basepair Histones

Chromatides

Telomere

Centromere

Telomere

Chromosome
Nucleus

Cell

Figure 2.1: DNA and its structural organization in the nucleus of eukaryotic
cells [1].
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(a) The four DNA nucleotides C, G, A,
and T forming a single stranded chain
of DNA.

(b) The four RNA nucleotides C, G, A,
and U forming a single stranded chain
of RNA.

Figure 2.2: Single stranded pieces of DNA and RNA.

(a) The canonical base pair G-C (b) The canonical base pair A-T

Figure 2.3: Watson Crick base pairs

Which protein is created depends on the order of the nucleotides in the respective

DNA sequence. The non-coding regions can not be used to generate proteins.

However, the DNA has regions that do not encode information for proteins, the

non-coding regions. Nevertheless, these regions can be transcribed to RNAs

and also have a function. Figure 2.5 shows an overview of transcription and

translation. Functional regions of the DNA are called genes.

9
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(a) The canonical base pair A-U,
which is replacing the A-T base
pairs in RNA

(b) The canonical Wobble base pair
G-U

Figure 2.4: Additional possible base pairs occuring in RNA molecules.

RNA

RNA molecules (Figure 2.2) are rather similar to DNA molecules (see Fig-

ure 2.2a). They are built up from a ribose sugar (compared to the desoxyribose

sugar of the DNA, a hydroxyl group is added to the sugar at the 2’ position of

the ring). Additionally, one nucleobase is exchanged in RNA: RNA uses uracil

instead of thymine. This base has an extra methyl group (H3C in Figure 2.4)

and like thymine forming a base pair with adenine. RNA molecules can also

form a chain of molecules but they do not form the double stranded helical

structures. Nevertheless, it can form a single stranded helical structure by com-

plementary base pairings. This structure is called the RNA secondary structure

and is described in more detail in Section 2.3. Besides Watson Crick base pairs,

RNA can form additional base pairs like the Wobble pair G-U (see Figure 2.4).

Altogether, Watson Crick and Wobble pairs [28] form the canonical base pairs.

Additionally, even more base pair types exist in RNA, the so-called non-canonical

base pairs. However, these pairings are not treated as secondary structures.

RNA molecules have different functions in the cell. Best known are the

coding RNAs, that serve as intermediate messenger (mRNA) between the DNA

and proteins. In addition to that, several other RNA types are known that

do not serve as a messenger, the so-called non-coding RNAs (ncRNA). Most

prominently are the groups of transfer RNAs (tRNA) and ribosomal RNAs

(rRNA). They act as assistants and regulators during the translation of mRNAs

into proteins. Besides those, there are many more ncRNA types.
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DNA

Protein

mRNA

ncRNA

Func�on Func�on

Gene

Figure 2.5: From a gene to function: either a region of the DNA is transcribed to
an mRNA, which is translated into a functional protein or the DNA is transcribed
into a functional ncRNA [9].

Proteins

Proteins, on the other hand, are not built up from nucleotides but rather from

amino acids. Amino acids are a composition of amine and carboxyl groups

together with a specific side chain that determines the amino acid. Amino

acids can also form chains that build up proteins. Similar to DNA and RNA,

amino acids can establish additional pairings within a chain of amino acids

and interact with other amino acid chains or other molecules forming large

macromolecules. There are a multitude of different amino acids, but in known

life only 22 variants are translated. These amino acids are called proteinogenic

amino acids. From these 22 amino acids, 20 can be synthesized by translation,

the remaining 2 are synthesized by other processes [16]. As shown in Figure 2.5,

mRNAs are translated into proteins within a cell. This is done with the use of

macromolecules called ribosomes. During the translation, a ribosome assembles

the chain of amino acids with a specific order provided by the mRNA. Each triplet

of nucleotides of the mRNA, a so-called codon, represents a specific amino acid

and the ribosome reads the mRNA and forms the protein. Furthermore, mRNAs

have a specific start and a specific stop codon for controlling the translation.

Figure 2.6 provides the codons for the 20 common amino acids.

The transfer of information from DNA over RNA to protein is described

in the Central Dogma of Molecular Biology [30, 29]. As shown in Figure 2.7,
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Figure 2.6: Overview of all amino acids that are encoded by codons. The
visualization is read from the center of the circle outwards so that each sequence
of nucleotides results in an amino acid or a start/stop codon.

the arrows show the direction of information transfer between DNA, RNA and

proteins. The solid arrows encode information transfer that were included into

the original model and describe the common information flow. However, the

original model was not complete, e.g., RNA can be reversely transcribed to

DNA. This mechanism is used by some viruses to transfer new information from

their RNA to the host genome. Therefore, dashed arrows showing additional

known information transfers were added to the original model.
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RNA

DNA Protein

Figure 2.7: The Central Dogma of Molecular Biology proposed by Crick [30, 29].
The solid arrows show the common information flow and the dashed arrows
specialized transfer directions.
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2.2 Epigenetics

All cells of a multicellular organism share the same genetic information encoded

as DNA and thus the same set of genes. However, different cell types have

different functions and produce different transcripts of RNA by regulation of

gene expression. Beside the regulation by transcription factors and RNAs,

epigenetics was established as an additional research field in the domain of gene

regulation. Epigenetics is defined as ”the study of heritable changes in gene

expression that are not mediated at the DNA sequence level” [27].

Nucleosome

As shown in Figure 2.1, the DNA of eukaryotes is located in the nucleus of

the cell and is partioned in structural units callled chromosomes. The DNA

is wrapped around proteins and forms a ”beads on a string” like structure.

Together, they form the chromatin, which combine into the chromosome. In

detail, each ”bead” is made up from two copies of four different histones: H3,

H4, H2A, and H2B. This protein complex is called histone octamer and with

146bp of DNA wrapped around it, it forms a nucleosome (see Figure 2.8).

An additional histone H1 is attached to the open end of each nucleosome to

stabilize the linker between two nuclesomes [21]. The chromatin can be packed

differently tight, for example the Centromeres shown in Figure 2.1 are packed

very tightly. Theses areas can not be accessed easily by the RNA-polymerase

and therefore this effect decreases expression of the genes located in this region.

Condensed regions of chromation are called heterochromatin [27]. Additionally,

the chromatin can be packed less tightly, and therefore easily can be accessed

by the RNA-polymerase. These regions which are often highly transcribed are

called euchromatin [27]. The histones of the octamer are modified by enzymes

to form these regions. These enzymes attach specific molecules to the histones

at certain amino acids. Due to this modification of the histone, the nucleosome

can be packed more tightly or less tightly within the chromatin.

Histone modifications

Many histone modifications with different effects on the chromatin organization

are known (see Figure 2.10). Most common are acetylation, methylation,

phosphorylation, and ubiquitination, which are all attached to so-called histone

tails. As shown in Figure 2.9c, the histone complex is not covered completely
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Figure 2.8: Schematic structure of a nucleosome [13].

by the DNA which is wrapped around it. The histone tails form the outside

accessible regions that can be modified by enzymes. Each modification can

have a different impact on the chromatin organization. Additionally, multiple

modifications can occur at the same octamer and can have additional effects

on the chromatin organization. For example, the histone H3 contains 8 lysine

amino acids and a methylation group can be attached to most of them. The

positions of the lysines are shown in Figure 2.11a. Currently, the effects of

histone modifications are still a vivid subject of research.

Due to the variety of histone modifications, the position and the type of a

modification is described using a naming pattern. For example, the trimethylation

(’me3’) of the fourth lysine (biological abbreviation ’K’) of the histone H3 is

named ’H3K4me3’. In this thesis, the modifications H3K4me3, H3K27me3,

H3K9me3, H3K27ac, and H3K9ac are analyzed:

H3K4me3 This modification is positively correlated with transcription [71]

and it occurs at tissue specific genes as well as so-called housekeeping genes

that are necessary for maintaining a cell and it’s basic functions. Furthermore,

it is often found in embryonic stem cells.

H3K27me3 This modification is related to heterochromatin [25] and therefore

it is correlated with the downregulation of nearby genes.
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(a) The DNA component of the nucleosome (shown without the histone
complex).

(b) The histone complex: H3 is colored in green, H2A in orange, H2B in yellow,
and H4 in purple (shown without the DNA). The histone tail of the histone
H3 can clearly be seen.

(c) DNA and the histone complex form the nucleosome.

Figure 2.9: A nucleosome divided into its components. This model was generated
from the crystal structure published by Luger et al. [55].
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Figure 2.10: Overview of known histone modifications for the histones H4, H2A,
H3, and H2B [14].

H3K9me3 This modification acts as a repressor of transcription and it is

correlated with DNA methylation that silences the DNA so it can not be

expressed anymore [58].

H3K27ac This modification is found predominantly in promotor regions and

like H3K4me3 is positively correlated with transcription of nearby genes [80].

H3K9ac This modification is known to ease the packing density of a nucleo-

some and it occurs often at promotor regions [62]. It is correlated positively

with the activation of nearby genes.

Sequencing histone modifications

The most common method to measure histone modification is the chromatin

immunoprecipitation sequencing (ChiP-seq) protocol. In a first step, the DNA

is cross-linked with the histones that are bound to it. Afterwards, the DNA is

fragmented into pieces having a size between 200 and 1000 bases by sonification.

Then, specific antibodies are added to target a specific histone modification like

H3K4me3. If an antibody encounters the targeted modication at a fragment, it

binds to the modification as shown in Figure 2.11b. Next, all fragments that

are not targeted by an antibody are removed by washing them away. Then, the

cross-linking of the DNA with the histones is dissolved. After the dissolution,

the histones are washed away, too. Through this procedure, all unmodified

regions of the DNA are separated away. In the next step, the filtered DNA

fragments are sequenced.

Since histone modifications are distributed over the genome of an organism

and histone modifications occur frequently, it is recommended to use a next-

generation sequencing (NGS) method. A common NGS method is the Illumina

sequencing method. During this method, the DNA fragments are splitted
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Lysine 4

Lysine 9

Lysine 14
Lysine 18

Lysine 23

Lysine 27
Lysine 36

(a) Position of all modifiable lysines of the histone H3.

me3

(b) An antibody binds to it’s target site (the histone modification H3K4me3).

Figure 2.11: A model of the histone H3 generated from the crystal structure
published by Luger et al. [55].
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into single strands that are amplified on a flow cell. After the amplification,

the fragments forms so-called DNA-clusters that should contain only DNA

fragments, which were created by the amplification of a single DNA fragment

from the previous step. In the following, the sequencing is performed with the

help of modified nucleotides. These nucleotides are fluorescently-labeled to

red and green laser light and are added step by step onto the single stranded

DNA-clusters. After each step, two lasers emit their specific red and green light

onto the DNA-clusters. A camera detects the specific reaction of each modified

nucleotide. Since A and C are excited only by the red laser and G and T only

by the green one, the camera needs to take four pictures after each step. The

camera uses different filters to detect the small variations in the spectra emitted

by A and C as well as G and T, respectively. Since the DNA-clusters contain

many identical fragments, the emitted light is strong enough for a camera to

capture it. Afterwards, a new nucleotide is added to the fragment until the

process iterated over the whole fragment.

This method is fast but errors during the amplification are distributed

exponentially within the DNA-cluster. Furthermore, the distinction between

the different spectra of A and C as well as G and T can fail and produce

errors. Therefore, it is recommended to sequence each experiment with a higher

coverage to detect possible errors in the post-processing steps.

With this method, it is possible to sequence single histone modifications. To

detect several histone modifications, it is neccessary to repeat the process with

specific antibodies for each histone modification. Furthermore, an unspecific

antibody is used during an additional run to create a so-called background

measurement. This background measurement is used during the post-processing

steps to normalize the data and to reduce the noise caused by errors during the

sequencing step.
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2.3 RNA Secondary Structure Prediction

As mentioned before, RNA can form a single stranded helical structure, the

RNA Secondary Structure. Since an RNA sequence is often not completely

complementary, not all nucleotides of a sequence form a base pair and base

pairs can not cross each other. The unpaired regions of an RNA secondary

structure are called loops. Every paired region of an RNA sequence is called

stem. Furthermore, one can distinguish between different types of loops. An

internal loop is a region that is connected to two stems. A special case of the

internal loop is the so-called bulge since only one side of the helical structure has

unpaired nucleotides. A loop with only one stem attached to it is called hairpin

loop. Additionally, a loop with more than two stems attached is called multi-loop.

A special case is the unpaired region at the start and at the end of the RNA

sequence. This region is called exterior loop. A formal description of these

elements of the RNA secondary structure is given in Section 5.2. Figure 2.12

shows the different elements of an RNA secondary structure.

Nussinov Algorithm

Predicting an optimal RNA secondary structure is called RNA folding and is still

an ongoing research topic since the 1970s. Nussinov et al. [63] published the

first algorithm to predict an optimal structure in which the number of base pairs

in a given sequence has been maximized. Due to the fact that base pairs do

not cross each other in a valid RNA secondary structure, every sequence can be

decomposed into subsequences and the optimal substructures can be calculated

recursively (Figure 2.13). Using this decomposition the maximal number of base

pairings can be calculated using a dynamic programming approach. Therefore,

a forward recursion is applied to fill a matrix En, n, which holds all possible

substructures (see Algorithm 2.1). After this, the backward recursion is started

at E1, n to trace back the maximal number of possible base pairings for the

given sequence. Since it can happen that a maximal number of possible base

pairings can be formed by multiple valid structures, multiple equally optimized

paths can be found during the backward step.
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Algorithm 2.1

Initialization:

Ei , i = 0

Ei , i−1 = 0

Forward Recursion:

Ei , j = max

⎧⎨⎩Ei+1, jmax(Ei+1, k−1 + Ek+1, j + S(i , k))
(2.1)

where

S(i , k) =

⎧⎨⎩1, if i and k form a canonical base pair.

0, else

and

i < k ≤ j

Nearest Neighbor Model

The Nussinov Algorithm is a simple algorithm since it takes neither the different

binding energies of canonical base pairs nor the stacking effects of stems into

account. Therefore, a more complex algorithm is usually used to predict a more

realistic RNA secondary structure. It is based on thermodynamic principles

and experimental observations to model a secondary structure that maximizes

the free energy of the structure of the given sequence. For this purpose, the

structure is decomposed into its elementary substructures such as stems, hairpin

loops, internal loops, and multi-loops. Each of these elements adds a certain

amount of free energy to the structure, which is summed up for the given

sequence to find an optimal structure. Since it is not feasible to validate

every possible substructure, only a large amount of smaller substructures was

experimentally analyzed. The energy of larger structures is computationally

derived. Therefore, a nearest neighbor energy model [72] is used. The basic
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Figure 2.12: Overview of the substructures of an RNA secondary structure.
E: exterior loop, I & B: internal loop, M: multi-loop, H: hairpin loop.

i jj i i+1 j i k k+1
|=

FFF

i+1 k−1

F

Figure 2.13: Decomposing an RNA secondary structure into substructures. The
folding space F of the nucleotides i and j can be decomposed into a subfolding
space of i + 1 and j , or into a bifurcation from i + 1 to k − 1 and from k + 1
to j , where i < k ≤ j , and i and k form a base pair.
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idea of this model is that only the base and its direct neighboring bases influence

the free energy of a base pair. With this model, it is possible to break down the

global free energy of a structure into multiple contributions of the substructures.

Zuker Algorithm

Unfortunately, the nearest neighbor energy model impedes the prediction of

multi-loops, since an unknown number of components can be attached to it.

But since the number of components of a multi-loop influences the energy

contribution, an accurate estimation of them is necessary. Therefore, Zuker

published a customized variant [92, 91] of the Nussinov Algorithm by adding

additional backtracking matrices to distinguish between the substructures of

the RNA. Algorithm 2.2 denotes the Zuker algorithm in a version proposed by

Hofacker et al. [43]. Many RNA folding software systems like the ViennaRNA

Package [54] and RNAstructure [66] implemented this algorithm and developed

it further. In general, the algorithm decomposes the structure into substructures

and tracks the number of components of a multi-loop. Therefore, four tables

track the optimal free energy for the substructures. In detail, Fi , j stores the

optimal free energy of the substructure between i and j . Ci , j contains the

optimal free energy for the substructure between i and j , if i and j form a base

pair. Multi-loop substructures are stored in two tables. Mi , j stores the optimal

free energy of a substructure between i and j , if the substructure is part of a

multi-loop and has at least one component attached to it. The second table

M1i , j holds the optimal free energy of a substructure between i and j , if the

substructure is part of a multi-loop and has exactly one component attached

to it. This second table for the multi-loop is not necessary to find an optimal

solution but it accelerates the computation of multiple sub-optimal RNA foldings

which is a common task in the area of RNA folding. The functions H(i , j) and

I(i , j) (Algorithm 2.2) calculate the optimal free energy for a hairpin loop and

an interior loop, respectively. Additionally, multiple energy constants are added

to model the effects of base pairs. The backtracking step of this algorithm is

applied just as the backtracking step of the Nussinov algorithm explained before.
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Algorithm 2.2

Fi , j = min

⎧⎨⎩Fi+1, jmini < k ≤ j(Ci , k + Fk+1, j)

Ci , j = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(i , j)

mini < k < l < j(Ck, l + I(i , j : k, l))

mini < u < j(Mi+1, u +M
1
u+1, j−1 + a)

M(i , j) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mini < u < j((u − i + 1) · c + Cu+1, j + b)

mini < u < j(Mi , u + Cu+1, j + b)

Mi , j−1 + c

(2.2)

M1i , j = min

⎧⎨⎩M1i , j−1 + cCi , j + b

with

H(i , j) = energy for a hairpin loop

I(i , j : k, l) = energy for an internal loop

a = energy penalty for a closing base pair in a multi-loop

b = energy penalty for a base pair in a multi-loop

c = energy penalty for an unpaired base in a multi-loop
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Figure 2.14: Graphical representation of the structural decomposition by the
Zuker algorithm. Base pairs are shown as arcs, dotted lines represent unpaired
subregions. A not fully calculated multi-loop region is visualized as mountain
ridge.
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3.1 Introduction

3.1.1 Goal

The goal of Sierra Platinum is to provide a mathematically sound method for

combining the results of replicated experiments. Each replicated experiment

consists of the experiment itself and the associated background, the experiment is

compared to. Moreover, quality measurements and their respective visualizations

are provided to make informed decisions about the quality of the replicates

and to select those replicates that should be used and those that should be

down-weighted or removed.

Sierra Platinum was developed with an equal contribution by Lydia Müller,

as follows. Lydia Müller contributed mainly to the methods of Sierra Platinum,

the creation of the benchmark data set, and the website of the service imple-

mentation. The visualizations, optimizations, and the implementation of Sierra

Platinum as a service within a docker container were mainly contributed by

the author of this thesis. The evaluation and the results were mainly produced

within the thesis.

3.1.2 Overview of the Multi-Replicate Peak-Calling Process

The multiple-replicate peak-calling process of Sierra Platinum is depicted in

Figure 3.1. The input data (circles on the left of the figure) consists of all tags

of an experiment (black circles) and its associated background (white circles)

which together form the replicate.

While computing the peaks, several quality measures for them are computed,

too. These quality measures and those intermediate results from the method that

allow assessing the quality of the input data are visualized. These visualizations

support assessing the quality of the input data and making informed decisions.

Moreover, this information can be used to remove or down-weight replicates

(experiments) that are qualitatively weak and to rate the final result. All points,

where visualizations are provided and interaction for changing parameters of the

method is possible are marked with a magnifying glass in Figure 3.1.

In the following, the ‘method’ paragraphs describe the computations needed

for establishing the peaks, the ‘quality measure’ paragraphs describe the com-

putations that are used for quality assessment only, and the ‘visualization’

paragraphs describe the visualizations that support the quality assessment.

The steps “Window Construction”–“Single p-Value” are computed only once
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p-values

peaks

Experiment

Background

Model

p-values

Peaks

Quality Control

p-values

Figure 3.1: Overview of the multiple-replicate peak-calling process. Phase I:
Windows are constructed and single replicate p-values for each window are
computed (pentagons) Phase II: From the single p-values, combined p-values
are computed by combining windows using the inverse normal method (large
pentagon). Phase III: Suitable narrow and broad peaks (white triangle) are
computed based on the windows’ combined p-values. The magnifying glass
symbolizes all points, where a visualization-based quality control is included in
the peak-calling process.

to establish single replicate p-values. The steps “p2q Transformation” and

“Combined p-Values” depend on the p to q value conversion method and are

computed first with the default method. Moreover, the step “Combined p-

Values” is first performed with all replicates included and equally weighted.

After examining the results, the weights of the replicates can be changed or

replicates can be excluded (Section “Filtering and Weighting”). Additionally, the

method for converting p to q values can be changed. Then, the steps “p2q

Transformation”–“Computing Peak Quality” can be performed again with the

new configuration of replicates, weights, and p to q conversion method. This

process of changing the configuration and recomputing the combined peaks can

be repeated until a convincing configuration was found—i.e., a configuration

with optimal quality. Table 3.1 gives an overview of the steps and if they

contribute to the method, compute quality measures, or provide visualizations.
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Table 3.1: The steps performed by Sierra Platinum: section and name of the
step, and whether it is part of the method, a quality measure, or a visualization,
respectively.

Section Method Quality
Measure

Visualiza-
tion

Phase I

3.3.1 Window Construction ✔

3.3.2 Window Joining ✔

3.3.3 Read Quality ✔ ✔

3.3.4 Poisson Distribution ✔ ✔ ✔

3.3.5 Tag Count Frequencies ✔ ✔ ✔

3.3.6 Scaling ✔

3.3.7 Normalized Poisson Distribu-
tion

✔ (✔) ✔

3.3.8 Neighborhoods ✔

3.3.9 Single p-Value ✔ ✔ ✔

3.3.10 p2q Transformation ✔

3.3.11 Significant Windows ✔ ✔

Phase II

3.3.12 Pearson’s Correlation be-
tween Replicates

✔ ✔

3.3.13 Combined p-Values ✔ ✔

3.3.14 Filtering and Weighting ✔

Phase III

3.3.15 Agreement between the
Multi-Replicate Result and
the Single Replicate Results

✔ ✔

3.3.16 Computing Peaks ✔

3.3.17 Computing Peak Quality ✔ ✔

3.3.18 Exporting Peaks ✔
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Sierra Platinum combines two established methods:

1. The approach of Zhang et al. [90] (implemented in MACS) was adopted

for splitting the genome into windows, for calculating the p-values for

each window replicate, and for generating narrow and broad peaks.

2. The inverse normal method as presented by Hedges and Olkin [42] and

as used by Wright et al. [87] is adapted to combine the p-values of the

different replicates for each window into one p-value for each window.

Phase I The steps of this phase are computed for each data set—experiment

and background of each replicate—or each replicate separately. However, two

quality measures compare the windows per replicate to the mean over all

replicates for the same window.

First, the windows are constructed (Section 3.3.1). Each window has a

start position and a size. All tags overlapping this window are counted. Empty

windows are discarded. In principle, this leads to a list of windows. However, to

reduce the computation time, the first step is done in parallel on chunks of a

certain size. This necessitates a complex data structure, which in turn needs to

be transformed into a list (Section 3.3.2).

The next step is not needed for performing the peak-calling itself. Computing

the mapped read quality serves as a quality assessment of experiment and

background of a replicate (Section 3.3.3). It allows to decide, whether or not

to use this replicate for the computation of the combined peaks.

Afterwards, the Poisson distribution of the tag counts of the windows is

computed (Section 3.3.4). Similar to Zhang et al. [90], this serves as a model for

computing the single replicate p-values (Section 3.3.9). As a quality estimate,

the real tag count frequencies are computed and compared to the theoretical

Poisson distribution (Section 3.3.5). Moreover, the results is also used later

for computing the weights (Section 3.3.14). As in general the amount of

used and mapped material differs between experiment and background, the

experiments are scaled (Section 3.3.6). This allows for a better comparison

between experiment and background. Based on the scaled experiments, the

normalized Poisson distributions are computed (Section 3.3.7).

Next, the 1k, 5k, and 10k neighborhood of each window is determined

(Section 3.3.8). Now, single replicate p-values are calculated for each window

and each replicate based on the global λ of the normalized Poisson distribution

and the λ values computed for each neighborhood (Section 3.3.9). These
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p-values determine the peaks of the replicates. To reduce the effect from the

correlation between the p-values computed, they are transformed into so-called

q-values (Section 3.3.10). As the q-values are (un-)corrected p-values, they are

called p-values in the subsequent sections. As additional quality measurements,

the amount of significant windows (Section 3.3.11) and the p-value distribution

(Section 3.3.13) are determined.

Phase II During this phase, the information computed for the replicates is

combined. First, the correlation between the replicates is determined (Sec-

tion 3.3.12). This information is used for adapting the configuration of the

replicates performed next. On the one hand, the replicates need to be corre-

lated to compute justified, combined peaks. On the other hand, correlation

is problematic for applying the combination method proposed. Therefore, the

configuration has to be corrected for the correlation found.

The replicates are filtered and weighted based on their quality assessment

(Section 3.3.14). To compute the combined p-values for each window, the

inverse normal method is applied (Section 3.3.13). During this step, replicates,

which are filtered out, are discarded, and the correlation coefficients and weights

established previously are applied. Furthermore, the combined p-values are

used for computing additional quality information as well as narrow and broad

peaks. The combined p-values are again correlated and therefore converted into

q-values. As the q-values are (un-)corrected p-values, they are called p-values

in the subsequent sections.

Phase III During this phase, the agreement between each single replicate and

the final combined results is computed and visualized (Section 3.3.15). This

quality measure allows to assess the influence of each replicate on the final

combined result. Finally, the narrow peaks (Section 3.3.16) and the broad peaks

(Section 3.3.16) of the final combined results are determined together with

their quality (Section 3.3.17). Finally, the computed peaks can be exported for

further analysis (Section 3.3.18).
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3.2 Related Work

Several peak-callers are available for single experiments. The largest difference

between the different methods is the statistical framework used to model the

background. Peaks are annotated at positions where the observed number

of reads is significantly higher than the one expected by chance given the

background model. Koohy et al. [49] and Wilbanks et al. [86] give a good

overview and comparison of state-of-the-art peak-callers used in several published

studies.

Peak-calling for replicated ChIP-seq experiments, however, is not well sup-

ported. Only two approaches exist that use a single experiment peak-caller

and either combine the replicates before peak-calling or combine the peaks

obtained from the single experiments (see Figure 3.2: MACS-CR and MACS-SA,

respectively). Combining the replicates before peak-calling requires equal library

sizes (total number of mapped reads) across all replicates or down-sampling to

a common library size. For example, the NIH Roadmap Epigenomics Project

uses the down-sampling approach to avoid artificial differences in the signal

strength with uniform depth of at most 30 million reads before merging the

replicates [68]. Similarly, MACS scales the two libraries which are compared to

the same amount of reads to make experiment and background library compara-

ble [90]. Down-sampling, however, may lead to an overestimation of the noise

level. Moreover, it is not possible to incorporate weights for the replicates based

on their quality or to backtrack the source of a specific signal to the supporting

replicates.

Combining the peaks of the single experiments includes all peaks in any of

the replicates. Thus, replicates with poor peak-call quality can have a large

effect on the final result. Furthermore, very long peaks can occur in the final

peak set by merging neighboring narrow peaks from different replicates. While

none of the replicates predicts those broad peaks, the final result contains them.

On the other hand, PePr [89] explicitly supports replicates of the same

condition during peak-calling (see Figure 3.2: PePr). It uses a binomial model

that expects the same dispersion for experiment and background. However,

for, e.g., experiments performed at different sequencing centers, it is unknown

if this condition holds and consequently it is not guaranteed that the results

obtained using this model are reliable. Also, PePr down-samples all libraries to

the same size and thus might overestimate the noise level.

Another peak-caller for multiple-replicate is BinQuasi [37]. Its model is based

33



Chapter 3. Sierra Platinum
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Figure 3.2: Overview of the multiple-replicate peak-calling process showing
the basic steps of multiple-replicate peak-calling for Sierra Platinum, PePr,
BinQuasi, MACS-CR (combine replicates approach using MACS as single-
experiment peak-caller), and MACS-SA (combine peaks approach using MACS
as single-experiment peak-caller). The MACS approaches and Sierra Platinum
extract the parameters of the underlying model (squares) from the background
data (white circles) and use the model and the experimental data to calculate
p-values (pentagons) indicating how significantly enriched the experiment (black
circles) is. PePr and BinQuasi generate also a model for the experiment and
use both models to calculate p-values. Based on the p-values, peaks (triangles)
are calculated. Quality control (magnifier) is provided usually alongside with
the peaks. Only Sierra Platinum allows to examine the quality during the
peak-calling process, while all other methods only allow to examine the quality
of the peaks obtained.

on a negative binominal distribution and uses a one side quasi likelihood ratio

test to detect peaks. Due to the model, BinQuasi has the same properties as

PePr. The benchmark in Section 3.5 shows that BinQuasi reacts even more

sensitively to noisy data and in some cases does not detect any peaks at all.

Besides the so far mentioned peak-callers, there are several peak-callers

for differential peak-calling, i.e., finding peaks which occur in only one of two

groups of samples. The underlying statistical model assumes that there are

basically three types of peaks: peaks occurring in both groups of samples and

peaks occurring in only one of the two groups. In particular, none of the

groups is treated as background for which no peak should be found. Similar to

PePr, those peak-callers apply methods from differential gene expression which

fit two negative binomial distributions to the two groups for each locus and

compare the data based on these distributions. For example, csaw [56] uses

the edgeR package [69] to find differential peaks, while diffBind [70] uses peaks

predicted on each sample and compares the peaks based on read counts within

the peaks also using the edgeR package [69]. Sierra Platinum does not aim to

find differential peaks but peaks with respect to a background measurements
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which is a very different task from a statistical point of view [56]. Therefore,

these peak-callers are not further evaluated in detail.

The currently available approaches for replicate peak-calling are neither

designed to assess the replicates’ quality nor to handle replicates of different

quality. Moreover, the replicates’ quality can not be incorporated during peak-

calling. In the case of combining the peak-calls of the single experiments, it is

in principle possible to introduce weights to account for different qualities of

the replicates. However, doing this in a statistically sound way is hardly possible

since non-significant positions are not provided by the peak-caller.
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3.3 Methods

3.3.1 Window Construction

Method

The whole genome is split into overlapping windows of size w with offset o.

According to the evaluations (Chapter 3.5), the window size should be the

fragment size used in the experiment, while the window offset should be a quarter

of the window size. Most frequently, ChIP-Seq data of histone modifications

is fragmented with an average fragment size of 200nt. Therefore, the Sierra

Platinum defaults are a window size of w = 200nt and a window offset of

o = 50nt. However, these parameters are accessible through the graphical user

interface (GUI, Section 3.4.2) and thus can be changed according to the data

used.

Each window is compared to the tags obtained from the experiment and the

background, respectively. The number of tags overlapping each window is stored

separately for experiment and background for each replicate. Sierra Platinum

assumes that the data is stored in files that are in bam format and that artifacts

(PCR duplicates) were already removed using for example SAMtools [53] or

Picard tools [3]. To access the data, the HTSJDK library [2] is used. Counts

for experiment and background are calculated during the construction phase

of the windows. Windows, which do not overlap with any tag in any data set,

are removed since this is likely to be an artifact of either too low sequencing

depth, unknown genome sequence, or highly repetitive sequences to which no

tags were mapped (depending on the mapper).

Optimization

Constructing the windows is the first step of Sierra Platinum. Windows having

a length of l nt are searched for. The offset between two subsequent windows

is o nt. A window is constructed whenever the l nt under consideration overlap

with tags from at least one experiment or background of one replicate. The

number of overlaps is counted and stored with each window.

The general procedure for constructing windows is outlined in Algorithm 1.
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Algorithm 1 Construct Windows
1: Determine windows overlapping at least one tag in one data set
2: Merge these windows (some strategies, see below)
3: Flattening: determine final, ordered window list

To accelerate this step, different parallelization strategies were developed

and tested:

Tag Count Parallel: count tags in parallel

Chromosome Parallel: create one thread per chromosome

Chunk Parallel: count chunks in parallel

One important constraint during optimization was to keep the space consump-

tion of all data structures—whether permanent or temporary—at a minimum.

Thus, the computation time was minimized while always considering to keep

the memory consumption low.

Tag Count Parallel The first idea was, to count tags in parallel. First, all

windows are constructed sequentially. Then, for each window, the number of

tags overlapping this window is counted for each data set. Parallelization was

achieved by assigning a certain number of windows to each available thread.

During flattening, only those windows are copied to the final list of windows

that contain at least one tag in one data set.

This method is simple, but a lot of windows do not overlap any tags. These

windows are empty and need not be generated and kept until flattening in the

first place. They need to be removed by the garbage collector which takes

additional time. The experiments show that the number of threads used for

computation should be maximal.

The method uses more than 9 and a half hours (offset: 100nt, size: 400nt)

and more than 37 hours (offset: 50nt, size: 200nt) of wall clock time, respec-

tively (Table 3.2). The additional time used for flattening is ≈ 4 seconds (offset:

100nt, size: 400nt) and ≈ 12 seconds (offset: 50nt, size 200nt), respectively.

Chromosome Parallel The second idea is, to count the tags for each chro-

mosome in parallel. For each chromosome, one thread is established and within

this thread Algorithm 2 is performed.
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Table 3.2: Constructing all windows for 6 replicates: time for different strategies

Strategy 100nt, 400nt
(hh:mm:ss)

50nt, 200nt
(hh:mm:ss)

Tag Count Parallel 09:38:22 37:02:14
Chromosome Parallel 15:13:13 29:56:02
Chunk – Window – Dataset 08:53:58 18:48:29
Chunk – Dataset – Window 09:28:09 19:49:34
Dataset – Chunk – Window 10:12:28 out-of-memory
Chunk Parallel Coherent 00:09:32 00:15:32

Algorithm 2 Chromosome Parallel

for each chromosome (parallel) do
for each window do

for all data sets do
count tags overlapping this window

end for
if at least one overlapping tag is found then

add window to window list
end if

end for
end for
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Algorithm 3 Chunk – Window – Dataset

for for all chunks (parallel) do
for for all windows of this chunk do

for for all data sets do
count tags overlapping this window

end for
end for

end for

As the chromosomes have very different lengths, this leads to an unbalanced

use of threads. It can be observed that the number of threads used reduces

over time until at the end only one thread is busy. This is reflected by the time

used for computing the windows.

Overall, this method needs more than 15 hours of wall clock time; 5 and a

half hours more than ‘Tag Count Parallel’ for a window offset of 100nt and a

window size of 400nt (Table 3.2). However, for a window offset of 50nt and

a window size of 400nt, it needs 7 hours less than ‘Tag Count Parallel’: ≈ 30
hours (Table 3.2). The additional time used for flattening is ≈ 14 seconds

(offset: 100nt, size: 400nt) and ≈ 41 seconds (offset: 50nt, size: 200nt),

respectively.

Chunk Parallel To achieve a more equalized distribution of the workload for

each thread, while adding only those windows that contribute to the final result,

chunks of equal size are created. Each chunk contains c windows, where c is

a predefined chunk size. Each chunk is assigned to a thread such that chunks

are computed in parallel. For each window, the tag count for each data set is

computed. Thus, three loops are used for the computation: one for the chunks,

one for the windows of the chunks, and one for the data sets. Rearranging these

loops yields the three variations of this strategy described by Algorithms 3–5.

After computing all windows, the final, ordered window list is determined.

This step is necessary, because nested data structures are used by the individual

variations of the strategy.

Chunk – Window – Dataset In this variation (Algorithm 3), all chunks are

handled in parallel, the windows of each chunk are constructed sequentially,

and the overlaps of each window with tags from each data set are computed

sequentially. Thus, it is always clear, if a window can be added to the list, or

not.
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Algorithm 4 Chunk – Dataset – Window

for for all chunks (parallel) do
for for all data sets do

for for all windows of this chunk do
count tags overlapping this window

end for
end for

end for

For this strategy, the following data structure is used. Each window is

added to its chunk sequentially. All chunks of a chromosome are stored in a

list, according to their number. This yields a list of chunks, with each chunk

containing a list of windows. Finally, a map from each chromosome to its

ordered list of chunks is used. This nested structure is flattened to obtain the

final ordered window list.

For a window offset of 100nt and a window size of 400nt, the time needed

by this approach (≈ 9 hours, Table 3.2) is half an hour less than for ‘Tag Count

Parallel’, while the order of magnitude is the same. However, for a window

offset of 50 nt and a window size of 200nt, it is considerable faster (≈ 19 hours,

Table 3.2) than both ‘Tag Count Parallel’ and ‘Chromosome Parallel’. The

time used for flattening is ≈ 20 seconds (offset: 100nt, size: 400nt) and ≈ 53
seconds (offset: 50nt, size: 200nt), respectively.

Chunk – Dataset – Window In this variation (Algorithm 4), all chunks are

again handled in parallel. However, only the tags for the current data set are

counted for each window.

Therefore, the data structure was changed. The chromosome is mapped

to a map from window start position to window. Thereby, windows having tag

counts for previously considered data sets are retrieved from the window map

and the new tag counts for the current data set are added.

The run-time needed is similar to ‘Chunk – Window – Dataset’ (Table 3.2).

Flattening takes ≈ 20 seconds (offset: 100nt, size: 400nt) and ≈ 2 : 10 minutes

(offset: 50nt, size 200nt), respectively.

Dataset – Chunk – Window The data structure used for this variation

(Algorithm 5), is the same as for the previous one. For a window offset of

100nt and a window size of 400nt, the computing times were similar to the

previous two strategies (Table 3.2). The time used is 45 minutes longer while
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Algorithm 5 Dataset – Chunk – Window
for for all data sets do

for for all chunks (parallel) do
for for all windows of this chunk do

count tags overlapping this window
end for

end for
end for

the time needed for flattening stayed the same. However, 26GB of memory are

not sufficient for computing the windows using a window offset of 50nt and a

window size of 200nt.

Summary All three strategies handling chunks in parallel decribed before

produce runtimes in the same order of magnitude. The overall load is the same.

It can be observed that the load is not IO bound as all threads use the complete

available computing time and use a maximum of available threads. Moreover, a

large number of disc locks can be observed. However, the strategy Dataset –

Chunk – Window needs more memory and could not be used to compute the

example with a window offset of 50nt and a window size of 200nt. Overall, the

strategy Chunk – Window – Dataset is fastest.

Chunk Parallel Coherent During the development, it was found that IO is

not yet the limit, an additional idea was exploited. The time consumption is

large, as long as the tags overlapping individual windows are fetched from the

file. As know from other domains like computer graphics, coherence is very

important to reduce the amount of work. Scan line algorithms and raytracing

are examples of using coherence to improve performance. At the same time,

it is known from database technology that fetching a set of items one by one

(several SQL statements) performs worse than fetching the set of items in

one step (one SQL statement) due to the additional cost for handling an SQL

statement that is independent of the number of items fetched.

Therefore, instead of fetching the tags for each window, the tags for the

complete chunk are fetched, and then the tags are counted for each window

belonging to this chunk. This strategy improved performance, i.e., reduced

computation time, by an order of magnitude from more than 9 hours to less

than 10 minutes (offset: 100nt, size: 400nt) and from more than 19 hours

to less than 16 minutes (offset: 50nt, size: 200nt), respectively (Table 3.2).
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Table 3.3: The time needed for constructing all windows for 6 replicates using
the strategy Chunk Parallel Coherent with different thread pool sizes

Number of
Threads

100nt, 400nt
(mm:ss)

50nt, 200nt
(mm:ss)

1 17:48 22:53
2 14:00 14:47
4 11:31 12:10
6 08:53 10:45
8 10:23 13:05

16 10:10 14:03
32 11:06 15:07

Further, the load shows that now IO is the limiting factor and no longer CPU

power.

As all tags are already processed, this allows to compute the mapped read

quality (Section 3.3.3) and the tag count of the data set (Section 3.3.5) at the

same time as the windows instead of in separate steps. As the fetching of data

is comparatively slow—in fact it is the bottleneck of the computation—this

additionally reduces the time needed for these steps by a factor of three.

Testing sequential versus parallel execution showed that a certain number

of threads is beneficial for reducing the computation time (see Table 3.3).

However, after saturation, adding threads will decrease performance again. For

the example and the computational environment used, an optimal number of

6 threads was determined. Please notice, that the optimal number of threads

depends on the system architecture and might vary.

3.3.2 Window Joining

Method

Due to parallelization, windows are kept in a hierarchical data structure during

window construction (Section 3.3.1). However, for the subsequent calculations,

a linear data structure is more suitable. Therefore, the hierarchical data structure

is flattened into a linear list of windows preserving order by genomic start site

of the windows within the chromosomes.
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Figure 3.3: Example of a boxplot with lower and upper whisker representing the
minimum and the maximum in the data, respectively.

Optimization

This part is described together with the window construction in Section 3.3.1.

3.3.3 Read Quality

Quality Measures

Sierra Platinum provides the quality distribution of all mapped tags passed to

it as a quality control for the user. Therefore, Sierra Platinum retrieves the

quality as Phred Score for each base of each tag in the provided bam file. The

Phred score ranges between 0 and 40 and is calculated as

Phred = −10 · log10
(
p

1− p

)
∈ [0; 40] (3.1)

where p is the probability that the base call is incorrect. However, using the

HTSJDK library [2], Sierra Platinum can obtain the base-wise Phred score

directly from the data.

For each data set, Sierra Platinum calculates the median, the lower and the

upper quartiles, as well as the minimum and the maximum value of the Phred

score distribution.

Visualization

The statistics computed are displayed in a boxplot. Boxplots show the median

as a line in a box between the lower and upper quartile. This box is extended by

the so-called whiskers, whose two ends represent the lowest and the highest

value in the data set (Figure 3.3), respectively.

The range of Phred-scores is divided into three categories following the

approach of FastQC [18]. The colors and category ranges for the quality
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Figure 3.4: Example boxplot figure created by Sierra Platinum with the arranged
background.

scores used there are also used here. For each replicate, the boxplots for

both experiment and background are shown in the same figure for easing their

comparison (Figure 3.4).

Ideally, the boxplots for experiment and background are similar, i.e., the

read quality was very similar, and most of the bases have a good quality. For

real data, this might not be the case. If the read quality distributions are very

different between experiment and background of the same replicate, one may

want to exclude or to down-weight the replicate. In particular, a bad background

quality and a good experiment quality can lead to a high rate of false positive

peaks. The other way around, a bad experiment quality and a good background

quality might be acceptable but comes with the side effect, that it is likely that

many peaks are missed. A result of reads with bad quality can be miss-mapped

reads and thus, decreased reliability of the peak-calls based on this data.

Optimization

To obtain the mapped read quality, Sierra Platinum calculates for each data

set the median, the lower and the upper quartiles, and the minimum and the

maximum value of the Phred score distribution.
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This step can be joined with the window construction step, if strategy ‘Chunk

Parallel Coherent’ is used (Section 3.3.1). In this case, it will not use additional

time.

Otherwise, it takes ≈ 11 minutes (offset: 100nt, size: 400nt) and ≈ 13
minutes (offset: 50nt, size: 200nt), respectively. Parallelization using threads

does not decrease the time needed, as this step is essentially IO limited.

3.3.4 Poisson Distribution

Method

Following MACS [90], Sierra Platinum models the tag distribution of the

background with a Poisson distribution and uses this as the noise model for

the experiment. For each window, it is then decided whether the observed tag

counts are significant according to the noise model. This will be discussed in

detail in Section 3.3.9.

A Poisson distribution is defined by one parameter λ which describes both the

mean and the variance of the distribution. Thus, the noise model is generated

from the background, by simply calculating the mean of the number of tags in

each window for experiment and background of each replicate.

Quality Measures

Even though Sierra Platinum only needs the λ based on the background, Sierra

Platinum also calculates the λ of the experiment. The latter serves as quality

control for the user. Very different means between experiment and background

indicate very different library sizes and large differences between experiment

and background measurement. It is expected that they do not fit perfectly

and we account for this fact by scaling the experiment (see Section 3.3.6).

However, scaling may lead to over-estimation of the noise level. Thus, the

Poisson distribution of the raw counts (namely the non-scaled counts) of the

experiment indicates whether the noise level might be over-estimated.

Visualization

To allow the user to observe such issues, we show the Poisson distribution of the

raw counts for both data sets, experiment and background, of each replicate as

two curves in a line chart (Figure 3.5a). The horizontal axis shows the number

of occurrences k of tags in a window and the vertical axis is the probability for
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each number ablated. Since the number of occurrences can only be integers,

the lines between the k-values are only guidelines for a better perception of the

distribution. The red line represents the estimated Poisson distribution for the

experiment data and the blue line the estimated Poisson distribution for the

background data. It is possible to zoom the line chart to handle also bigger λ

values, since their peaks can be far apart from each other.

Optimization

Computing the distribution of the data and its noise model is already fast—≤ 15
seconds (offset: 100nt, size: 400nt), ≤ 45 seconds (offset: 50nt, 200nt)—and

therefore was not optimized.

3.3.5 Tag Count Frequencies

Method and Quality Measures

Even though in theory the tags should be Poisson distributed, real data usually

does not perfectly fit the theoretical distribution. A small deviation from the

theoretical model is acceptable. However, a high deviation or a completely

different distribution would mean that the model estimated from the background

data is not a good noise model and therefore would result in uninterpretable

p-values.

As a quality estimate, Sierra Platinum computes the tag count distribution

of the real data, i.e., it calculates the relative frequency for each observed tag

count. This distribution corresponds to the theoretically estimated Poisson

distribution. As a measure of fitness, Sierra Platinum calculates the least squares

difference between the theoretical and the real distribution for both, experiment

βexp and background βback .

For each replicate, Sierra Platinum uses the sum of the least square dis-

tances of background and experiment to the corresponding theoretical Poisson

distributions as combined least square β for the whole replicate, i.e.:

β = βexp + βback (3.2)

Since the tool is able to weight replicates during peak-calling, Sierra Platinum

estimates weights ω based on the least square distance β as follows:

ω =
1

1 + β
(3.3)
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(a) Example of an estimated Poisson distribution for an experiment and the correspond-
ing background.

(b) Example of the tag count distribution visualization. The data corresponds to the
data used in Figure a. The number of tags are displayed using a logarithmic scale.

(c) Example of the normalized estimated Poisson distributions. The normalized data
was derived from the data used in Figure a.

Figure 3.5: Distribution of tags
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Visualization

The tag count distribution is visualized for each replicate using line charts

allowing to compare between the tag count distribution and the estimated

Poisson distribution (Figure 3.5b). Since real data might contain large outliers,

it is necessary to display the number of occurrences of tags k using a logarithmic

scale on the horizontal axis. The vertical axis represents the relative frequency

k of tags. As for visualizing the Poisson distribution (Section 3.3.4), the

experiment is mapped onto red lines and the background data onto blue lines.

As shown in Figure 3.5a and Figure 3.5b, the overlap and differences between

the tag count distribution and the estimated Poisson distribution can easily be

seen. It is clearly visible that the estimated Poisson distributions fit inherently

to the data distributions in this example.

Optimization

Computing the tag count distribution of the real data, i.e., the relative frequency

for each observed tag count is performed in parallel for all replicates by assigning

each replicate to a thread. At the same time, the least square distances to the

Poisson distribution (for each data set), the bins (for each data set), and the

final weights (for each replicate) are computed. Overall, the computation times

are ≈ 50 seconds (offset: 100nt, size: 400nt) and ≈ 26 seconds (offset: 50nt,

size: 200nt), respectively.

3.3.6 Scaling

Method

A good noise model can only be estimated if the used and the mapped material

are of a comparable amount. For real data, this is usually not the case. Moreover,

real data usually suffers from very different library sizes. Therefore, scaling the

libraries to the same size is necessary.

In Sierra Platinum, the experiment is scaled such that the library sizes

measured as total number of mapped tags are equal. In more detail, we count

the total number of mapped tags in the input data separately for experiment

and background as texp and tback , respectively. Then, the scaling factor for the

experiment sf is:

sf =
tback
texp

(3.4)
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The raw tag counts traw of the experiment are then normalized to fit

the background counts. The normalized counts tnorm of the experiment are

calculated as:

tnorm = sf · traw (3.5)

Any further reference to experiment counts will refer to the normalized

experiment counts from now on.

Optimization

In Sierra Platinum, each experiment is scaled such that the library sizes of

experiment and background of a replicate measured as total number of mapped

tags are equal. Scaling is done for all windows in parallel. Therefore, each

window is assigned to a thread and all experiments of all replicates are scaled.

This step is very fast taking ≤ 5 seconds (offset: 100nt, size: 400nt) and ≤ 8
seconds (offset: 50nt, size: 200nt), respectively. Thus, no further optimization

is necessary.

3.3.7 Normalized Poisson Distribution

Methods

The normalization ought scale background and experiment to the same level.

As a result also the differences between their respective Poisson distributions

should be reduced to a minimum. This can serve as an additional quality check.

If the theoretical Poisson distributions estimated from the normalized data are

still very different, the normalization was not able to make background and

experiment comparable. As a consequence, any p-values estimated based on

this data will be spurious and likely to be wrong.

The theoretical Poisson distributions for the normalized data are estimated

in the same way as the theoretical Poisson distributions for the raw counts

(Section 3.3.4) by simply exchanging the raw counts by the normalized counts.

Visualization

It is possible to monitor the results of the scaling and normalization with a

visualization of the normalized estimated Poisson distribution in the GUI of

Sierra Platinum. Since the normalized Poisson distributions are created like

their raw Poisson distribution counterparts, the same visualization is used.
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An example is shown in Figure 3.5c, where the normalized data was derived

from the data used in Figure 3.5a. It is clearly visible that the experiment data

was normalized onto the background data since the λ of the background did

not change. If for some reason the experiment and the background data are

too different, the experiment data can not be normalized that accurately and

the experiment and the background lines in the chart do not overlap each other

anymore.

Optimization

Computing the distribution of the scaled data and its noise model is already

very fast taking ≤ 15 seconds (offset: 100nt, size: 400nt) and ≤ 35 seconds

(offset: 50nt, size: 200nt), respectively, and therefore was not parallelized.

3.3.8 Neighborhoods

Method

Neighborhoods of sizes 1k, 5k, and 10k are established for each window. These

neighborhoods are required during the p-value calculations for the single repli-

cates (Section 3.3.9) to account for local sequence composition biases.

The neighborhood Ns(wi) of the window wi of size s is the set of windows

that overlaps with the interval of size s centered at the mid-point of window wi .

The neighborhood consists of windows on the same chromosome, only.

Several options for storing and computing neighborhoods were explored.

The final solution does not store neighborhoods, but directly computes the

corresponding λ that is then directly used for computing the single replicate

p-values (Section 3.3.9). Therefore, each of the neighborhoods is initialized by

its range, the window list, and the replicate list. Internally, the index into the

window list of the first and of the last neighbor is stored. As the windows are

processed sequentially to obtain the corresponding λ-values, the neighborhood

indices are updated for each window. At the same time, the tag count of the

window’s neighborhood is updated. Dividing the tag count of the neighborhood

of window wi by the number of windows in this neighborhood yields the λds (wi)

used for the p-value computation:

λds (wi) =

∑
w∈Ns(wi )

tdw

|Ns(wi)|
(3.6)
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where tdw is the tag count of window w for data set d (background or experiment

of a replicate) and |Ns(wi)| is the number of windows of the neighborhood

Ns(wi) of window wi .

Optimization

The neighborhoods of 1k, 5k, and 10k for each window are required during

the p-value calculations for the single replicates to account for local sequence

composition biases (Section 3.3.9).

Several options for storing and computing neighborhoods were explored:

1. Compute and Store

(a) Store with window (computed and stored during flattening)

(b) Store separately (computed and stored before p-value computation)

2. Compute and Use during p-value computation

Compute and Store with Window The first solution computes the neighbor-

hood while constructing the window list during the flattening phase. The indices

of the first and of the last window of the respective neighborhood are stored

with each window, which requires six additional values per window. As flattening

is performed sequentially, the neighborhoods are also created sequentially.

Compute and Store Separately Storing the neighborhood with each window

is not necessary as it is only used for one step (Section 3.3.9). To minimize

space consumption, the two steps were separated and the neighborhoods are

constructed just before they are used. Thus, the second solution computes all

neighborhoods for all windows and stores them in a separate class. The storage

of the neighborhoods is released immediately after the single replicate p-value

computation (Section 3.3.9).

This step is time consuming and therefore was parallelized. As neighborhoods

of a window belong to the same chromosome as the window itself and coherence

should be exploited, a parallelization over chromosomes was chosen.

Compute and Use During p-Value Computation The final solution does not

store neighborhoods any more, but directly computes the corresponding λ that

is then directly used for computing the single replicate p-values (Section 3.3.9).

Therefore, each of the neighborhoods is initialized by its range, the window list,
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Table 3.4: Computing window neighborhoods and p-values for 6 replicates and
3 different neighborhood sizes: time for different strategies.

Strategy Neighborhood
(mm:ss)

p-value
(mm:ss)

Compute and Store with Window < 00:30 02:57
Compute and Store Separately 00:55 02:57
Compute and Use During p-Value
Computation

02:06

and the replicate list. Internally, the indices into the window list of the first and

of the last neighbor are stored. As the windows are processed sequentially to

obtain the corresponding λ-values, the indices are updated for each window. At

the same time, the tag count of the window’s neighborhood is updated. The

parallelization is again over all chromosomes.

Summary The time consumption of the different solutions (including p-value

computation) is given in Table 3.4. It shows that the most space efficient solution

- computing and using the neighborhood directly during p-value computation -

is also the fastest solution.

3.3.9 Single p-Value

Method

After preparing the experiment counts and the noise distribution, Sierra Platinum

uses this data to calculate for each window and replicate a p-value. The p-value

is the probability that one observes an at least as high tag count in random

data as observed in the experiment. Hereby, the random data is modeled by the

Poisson distribution with mean λ. Thus, the p-value for observing at least c

tags in the experiment is calculated as the reciprocal of the cumulative Poisson

distribution with mean λ.

p = P (X ≥ c, λ)

= 1− P (X < c, λ)

= 1−
c−1∑
i=0

λi ·e−λ
i!

(3.7)
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It is known that due to biases in the library preparation and the local sequence

composition, local estimates of the mean tag count would serve as a better

noise model than the global estimate. Therefore, we use the same approach

as MACS [90] and calculate the mean tag counts in the 1k, 5k, and 10k

neighborhood of each window resulting in λ1k , λ5k , and λ10k , respectively.

The final mean of the Poisson distribution of the noise model is defined as:

λ = max{λglobal , λ1k , λ5k , λ10k} (3.8)

where λglobal is the lambda estimated over all windows.

Quality Measures and Visualization

For each replicate, Sierra Platinum computes the distribution of the p-values

and visualizes this distribution using a bar chart histogram to check the quality

of the single replicate peak-calling step (Figure 3.6). The combined p-values

are binned into intervals from 1 to 10−18 and visualized as bars. Both x- and

y-axis are logarithmically scaled. The numerical method behind the p-value

distribution produces values down to 10−16. Smaller values are assigned to bin

10−18. The gap between 10−16 and 10−18 is intentional pointing at this fact

visually.

Optimization

The final λ value for each window is computed as the maximum of the global λ

value and the λ-values of each neighborhood (Equation 3.8). For each window

and for each replicate, a p-value is computed from the final λ value and the

tag counts.

When computing the neighborhoods explicitly for all windows, the single

replicate p-values are computed in parallel over all windows assigning an equal

number of windows to each thread:

n =
|windows|
|cores| + 1 (3.9)

except for the last thread, which handles the remaining windows. This heavily

reduces the time needed. It scales with the number of threads available. The

time used for the given configuration is ≈ 3 minutes (Table 3.4).

Using the space efficient version, the single-replicate p-values for each

window are directly computed from the window and its neighborhood in one
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Figure 3.6: Example of the p-value distribution generated during the single
peak-calling step. Red: p-values of one replicate. Orange: median of p-values
over all replicates. Please note, that the x-axis shows only the exponent to the
basis 10 and that both axes are scaled logarithmically.

54



Visual Analysis of Form and Function in Computational Biology

step. All chromosomes are computed in parallel by assigning each chromosome

to a thread that then computes the p-values (and the neighborhoods) for all

windows on this chromosome. The combined approach uses only ≈ 2 minutes

(offset: 100nt, size: 400nt) (Table 3.4) and ≈ 10 minutes (offset: 50nt, size:

200nt), respectively, and the space consumption is minimal.

Computing the distribution of the p-values uses ≈ 50 seconds (offset: 100nt,

size: 400nt) and ≈ 1 : 45 minutes (offset: 50nt, size: 200nt), respectively. The

first part of the computation is parallelized assigning each replicate to a thread,

while the second part is sequential.

3.3.10 p2q Transformation

Method

Within one replicate and for the final significance test, Sierra Platinum repeats

the same test for each window to obtain p-values for each window. However,

it is well known that this leads to the so-called multiple testing problem. The

more often a test is performed, the higher the chance to obtain a false positive

result. With other words, the resulting p-values from the tests are too low due

to multiple testing.

Several methods exist that allow correcting the p-values thus controlling

the false discovery rate. The corrected values are referred to as q-values. In

Sierra Platinum, two different methods are implemented: one proposed by

Holm-Bonferroni and one proposed by Storey.

Holm-Bonferroni The Holm-Bonferroni correction [45] is a rather conserva-

tive method and thus may reduce the number of significant windows dramatically.

It assumes that the list of p-values is sorted ascending, i.e., i < j → pi ≤ pj .
Sierra Platinum obtains such a list using a parallelized merge sort. The i-th

p-value pi is corrected to qi by

qi = min(pi · (N − i), 1) (3.10)

where N is the number of tests performed. In this case, the number of tests is

equal to the number of windows since Sierra Platinum performs one test for

each window.
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Storey Storey’s q-values [77] also calculate the correction factor for the p-

values. However, the underlying method is different. It uses the fact that

random p-values are uniformly distributed but significance tests usually skew

the distribution towards 0 or 1. A good estimate for the rate of false positives

π̂0 is the height of the uniform distribution while the rate of true positives is

the height of the p-value distribution without the uniformly distributed part.

Similarly to the Holm-Bonferroni correction, the correction is done stepwise

on the sorted list of p-values. Storey’s q-value calculation uses a bottom-up

approach, i.e., starting with the largest p-value pN:

qN = π̂0 · pN (3.11)

The subsequent q-values are calculated as follows:

qi = min

(
N

i
· π̂0 · pi , qi+1

)
(3.12)

where i is running from N − 1 to 1.

To obtain the height of the uniform distribution π̂0, Storey proposes several

methods. Sierra Platinum provides two of them: ‘Storey Simple’ and ‘Storey

Bootstrap’.

Storey Simple The most simple method is to estimate the height π̂0 from a

representative p-value in the p-value distribution, i.e., 0.5.

Storey Bootstrap For the bootstrap method, a cubic spline is fitted to the p-

value distribution and the spline is used to estimate the height of the distribution

π̂0. Sierra Platinum provides the bootstrap approach that makes fitting the

cubic spline more robust [77].

Interaction

The p-value correction method can be set using a drop-down-box (Figure 3.10,

Section 3.3.14). The available p-value correction methods are ‘None’, ‘Holm-

Bonferroni’, ‘Storey Simple’, and ‘Storey Bootstrap’. The default is set to

‘Holm-Bonferroni’ to obtain a conservative correction.

As the q-values are (un-)corrected p-values, they are called p-values in the

following sections.
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Table 3.5: Time needed for transforming p- to q-values using different strategies

Strategy 100nt, 400nt (mm:ss) 50nt, 200nt (mm:ss)
Holm-Bonferroni 01:45 03:35
Storey-Simple 07:09 25:26
Storey-Bootstrap 04:04 03:52

Optimization

The p-value correction methods are run in parallel for each replicate. Each

method was split into two parts: sorting the p-values and converting p- to

q-values. For sorting the p-values, 32 threads are used, while for converting

6 from the 32 threads available are used, one per replicate. In principle, the

Holm-Bonferroni correction could be performed in parallel for each replicate,

further speeding up the computation. However, for the Storey methods, the

q-value computation is sequential per replicate and can not be sped up further.

The overall time needed by the three different methods implemented are shown

in Table 3.5. For a window offset of 100nt and a window size of 400nt, the

Holm-Bonferroni correction can be computed relatively fast using 1:45 minutes,

both Storey-Simple with 7:09 minutes and Storey-Bootstrap with 4:04 minutes

take longer. For a window offset of 50nt and a window size of 200nt, the

Holm-Bonferroni correction can be computed relatively fast using 3:46 minutes,

Storey-Bootstrap with 3:52 minutes takes approximately the same time, and

Storey-Simple takes much longer using 25:26 minutes. However, the Storey-

Bootstrap correction is dependent on random numbers and thus does not

produce consistent results over different runs.

3.3.11 Significant Windows

Quality Measures

The last quality measurement that Sierra Platinum provides for each replicate is

the distribution of the significant windows. More precisely, for each chromosome

c and each replicate i , Sierra Platinum counts the number of significant windows

sci :

sci = |{w ∈ W c |pwi < p̂}| (3.13)

where W c is the set of all windows of chromosome c, pwi is the p-value of

window w for replicate i , and p̂ is the significance cutoff. Additionally, Sierra

Platinum calculates the median distribution of the significant windows for each
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chromosome. In detail, for each chromosome c, the algorithm calculates the

median significant window s̄c :

s̄c = median{sci | ∀i ∈ [1, n]} (3.14)

where n is the number of replicates.

This measurement allows the user to investigate two facts.

Has the current replicate an odd distribution of the significant windows
compared to the median distribution? If the overall distribution of significant

windows is very different from the median distribution, then the peak-calling of

this replicate will not overlap strongly with other replicates and may reduce the

quality of the combined peak-calling over all replicates. An odd distribution can

have several reasons. One possibility is that the conditions for the experiment

of one replicate were very different from the conditions of the other replicates,

which might have induced changes in the epigenetic state. Furthermore, it

might mean that part of the library preparation or sequencing did not work out

as they should. Since this approach is designed to do peak-calling for multiple

replicates, i.e., peak-calling for the repeated measurement of the same state,

one might prefer to exclude such replicates from peak-calling.

Is there a chromosome with an odd number of significant windows?
If the overall distribution is similar to the median but only a few chromosomes

diverge from the median, the replicate is suited for the multiple-replicate peak-

calling step. However, one might want to perform peak-calling on this single

replicate afterwards to investigate the differences in the peaks between this

replicate and the multiple-replicate peak-calling on this chromosome.

Visualization

The visualization shown in Figure 3.7 provides the necessary information to help

the user to deal with the afore-mentioned facts. The amount of significant

windows for each chromosome is visualized as a bar chart. The red bars show

the number of significant windows for the replicate and can be compared to the

orange bars that show the median of significant windows for each chromosome.

The user can easily determine if the distribution of significant windows for each

replicate is anomalous by comparing it with the median distribution or detect

single chromosomes that deviate from the median.
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Figure 3.7: Example of a significant window distribution over all chromosomes.
Red: significant windows of one replicate. Orange: median of significant
windows over all replicates.

Optimization

Sierra Platinum provides for each replicate the distribution of the significant

windows: for each chromosome c and for each replicate i , we count the number

of significant windows sci . Additionally, we calculate the median distribution of

the significant windows for each chromosome.

This step is already very fast using ≤ 15 seconds (offset: 100nt, size: 400nt)

and ≤ 30 seconds (offset: 50nt, size: 200nt), respectively, and therefore was

not parallelized.

3.3.12 Pearson’s Correlation between Replicates

Quality Measures

Sierra Platinum also provides quality measurements between replicates in addition

to those within replicates. The Pearson’s correlation between the replicates

allows to justify whether the replicates seem to agree on the significance of the

windows in consensus (positive correlation).
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As a logical consequence from the fact that all replicates measured the same

modification (or chromatin bound protein) under comparable conditions and in

the same cell line, positive correlations between the replicates are expected.

A positive correlation close to 0 may result from differences in the protocol,

the conditions, the sequencing, or the mapping method for the tags. The

resulting peak-calls may be biased by this fact and likely contain false negatives

and false positives.

Negatively correlated replicates have to be treated with caution for two

reasons.

1. Negative correlation indicates that windows in one replicate are significant

while in the other replicate they are clearly not significant. This indicates

that something went wrong in one of the experimental procedures.

2. For the inverse normal method that we use to combine the p-values of

the replicates (see Section 3.3.13), negative correlations are problematic

and alter the significance level. Therefore, all replicates used for the

multiple-replicate peak-calling have to be positively correlated to each

other.

Pearson’s correlation assumes that the tested variables are normally dis-

tributed. However, p-values are uniformly distributed and are therefore not

suited for correlation estimates. This problem was solved by estimating the

correlations from the so-called probits instead of from the p-values. Probits

are obtained by transforming the p-values with the inverse cumulative standard

normal distribution. They are calculated using the inverse normal method, which

is also used to combine the p-values of each window of the replicates into one

single p-value for each window (see Section 3.3.13).

Let τ, τ ′ be the vectors of all probits for two replicates and let nw be the

number of windows and thus, also be the length of the vectors τ and τ ′. The

mean τ̄ of τ is computed as

τ̄ =
1

nw

nw∑
i=1

τi (3.15)

and the standard deviation sτ of τ is computed as

sτ =

√ 1

nw − 1

nw∑
i=1

(τi − τ̄)2 (3.16)
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The mean τ̄ ′ and the standard deviation sτ ′ of τ ′ are calculated analogously.

The Pearson’s correlation ρpearson(τ, τ ′) is thus

ρpearson(τ, τ
′) =

(
nw∑
i=1

τiτ
′
i

)
− nw τ̄ τ̄ ′

(nw − 1)sτsτ ′
(3.17)

Visualization

The correlations between all replicates are visualized in a heatmap (Figure 3.8).

Each cell in the heatmap describes the strength of the correlation between the

corresponding column and row. Positive correlations are encoded with red and

negative correlations with blue, respectively. The strength of the correlation is

mapped to the saturation value, using the HSB color model.

colori ,j =

{
HSB(0, ci ,j , 1.0), if ci ,j ≥ 0

HSB(240, (−ci ,j), 1.0), if ci ,j < 0
(3.18)

In the GUI of Sierra Platinum, it is possible to see the strength of the

correlation for each cell by a tool tip. With this visualization it is easy to see how

the replicates are correlated to each other and the user can recognize replicates

that are problematic for the p-value combination step (see also Sections 3.3.14

and 3.4.5 describing how to enable/disable replicates and how to set weights).

Optimization

To compute the Pearson’s correlation between the replicates, the mean and

the standard deviation of the probits over all windows for each replicate are

computed, as well as the correlation between the replicates themselves. Three

possible strategies were evaluated:

1. Sequential computation: one thread is used for all computations

2. Parallel: compute sequentially each of the following steps in parallel

(a) Computing the mean values of the replicates: one thread per replicate

(b) Computing the standard deviations of the replicates: one thread per

replicate

(c) Computing the Pearson correlation of each pair of replicates. This

results in a correlation matrix. The main diagonal of this correlation

matrix is always one and not computed. Further, upper and lower
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Figure 3.8: Top: heatmap of the Pearson’s correlations between the replicates.
Bottom: checkbox for enabling or disabling the correlation correction while
computing the combined p-value. If the checkbox is checked, ρ̂∗ is computed
as described in Section 3.3.13, otherwise ρ̂∗ is set to 0.
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Table 3.6: Computing Pearson’s correlation for 6 replicates: time for different
strategies.

Strategy 100nt, 400nt (mm:ss) 50nt, 200nt (mm:ss)
Sequential 3:38 8:00
Parallel row 0:53 1:50
Parallel all 0:22 0:45

triangle of the correlation matrix are symmetric. Therefore, only the

upper triangle is computed.

i. Row: compute one row after each other, one thread per column

ii. All: use one thread per correlation computed

The results for computing the correlation between six replicates are shown in

Table 3.6. Computing all correlations in parallel is fastest followed by computing

each row in parallel. Computing all steps sequentially is very slow, as expected.

3.3.13 Combined p-Values

Method

While MACS would generate a peak list using the calculated p-value at this

point, Sierra Platinum first applies the inverse normal method to calculate the

combined p-value and then generates the peak list based on the combined

p-value.

Let pi be the p-value for replicate i . To calculate the combined p-value,

the p-values pi of all replicates are transformed into probits τi using the inverse

cumulative standard normal distribution Φ−1:

τi = Φ
−1(pi) (3.19)

Since the p-values pi are uniformly distributed for each window, the respective

probits are normally distributed with mean 0 and standard deviation 1 due to

the transformation. This step is done for each window and each replicate.
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For each window, the combined probit is calculated based on the probits

of the replicates. In the simplest case, the replicates are not correlated. Then,

all replicates have equal weight and the combined test statistic τ̄ for the nr
replicates is computed as:

τ̄ =
1
√
nr
·
nr∑
i=1

τi (3.20)

Again, the test statistic τ̄ follows a standard normal distribution.

The corresponding combined p-value p is calculated based on the cumulative

standard normal distribution Φ: the p-value is the one-sided, left cumulative

probability calculated using the normal distribution with mean 0 and standard

deviation 1:

p = Φ(τ̄) (3.21)

However, the replicates and thus the probits are expected to be correlated

(see Section 3.3.12 for more details). Therefore, Sierra Platinum uses a

weighted version of the inverse normal method based on the extension proposed

by Hartung [40] that can cope with correlations. Hence, Sierra Platinum assigns

weights to each replicate to be able to down-weight replicates that are of lower

quality (see Section 3.3.3).

According to Hartung [40], the approximated correlation ρ̂ between the

probits for nr replicates of a window is

ρ̂ = 1− s2τ (3.22)

where sτ is calculated as given by Equation 3.16.

The correlation estimate ρ̂∗, which will be used for the calculation of the

combined probit is then calculated as

ρ̂∗ = max

{
−
1

nr − 1
, ρ̂

}
(3.23)

For better readability of the equation to calculate the combined probit, the

sum of weights is defined as

ω =

nr∑
i=1

ωi (3.24)
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and the sum of the squares of the weights is defined as

ω̂ =

nr∑
i=1

ω2i (3.25)

whereby ωi is the weight for the i-th replicate. The default for Sierra Platinum

is to use ωi of replicate i according to Equation 3.3 (Section 3.3.5).

The resulting combined probit is calculated as

τ =

nr∑
i=1

ωiτi√
ω̂ + [ω2 − ω̂]

[
ρ̂∗ + κ

√
2
nr+1
(1− ρ̂∗)

] (3.26)

The parameter κ controls the significance level of the p-value as calculated

in Equation 3.21. Hartung [40] experimentally estimated two values for κ from

which one should be chosen. Sierra Platinum uses the first value proposed, i.e.,

κ = 0.2.

Both values of κ described control the significance level well for positive

correlations independent of the number of replicates and the variance of the

weights. Negative correlations, however, are problematic. In particular in

combination with a large variance of the weights, the actual significance level is

higher than the one calculated with Equation 3.21. This would lead to false

positive peaks.

In the case of multiple-replicate peak-calling, Sierra Platinum combines

biological and/or technical replicates of the measurement of the same chromatin

bound protein under approximately the same conditions in the same cell type or

at least in similar cell types. Thus, it is expected that the replicates correlate

positively (or at least not negatively) with each other. Therefore, negative

correlation indicates that the replicates do not fit together and that they may

result from an error in the experimental protocol. As a consequence, one would

exclude those replicates from peak-calling. Hence, the chosen value of κ is

suitable for the use in Sierra Platinum.

Sierra Platinum can also be used for peak-calling single replicates. In this

case, the inverse normal method step is skipped and the final p-value is identified

with the p-value of the replicate. All other steps are not affected by the number

of replicates.

Similar to the conversion of the single replicate p-values into q-values (Sec-

tion 3.3.10), Sierra Platinum converts the combined, multiple-replicate p-value
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Figure 3.9: Example of a combined p-value distribution.

into a q-value for each window. The methods described in Section 3.3.13 are

applied for the conversion and the resulting q-values are used in the subsequent

computations.

Interaction The p-value correction method can be set using a drop-down-box

(Figure 3.10). The available p-value correction methods are ‘None’, ‘Holm-

Bonferroni’, ‘Storey Simple’, and ‘Storey Bootstrap’. The default is set to

‘Holm-Bonferroni’ to obtain a conservative correction.

As the combined q-values are (un-)corrected combined p-values, we will

refer to them as p-values in the subsequent sections.

Visualization

The result of the combination of the p-values is shown in Figure 3.9. The

combined p-values are binned into intervals from 1 to 10−18 and visualized as

bars. Both x- and y-axis are logarithmically scaled. The numerical method

behind the p-value distribution produces values down to 10−16. Smaller values

are assigned to bin 10−17 for values of τ̄ > −20, while values of τ̄ <= −20 are

assigned to bin 10−18.
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Figure 3.10: Overview of the options to weight replicates provided by the GUI
of Sierra Platinum. The upper part contains one row per replicate showing
the replicate identifier (left column), the assigned weight (middle column),
and whether the replicate is used (ON) or not (OFF, right column). The
weight checkbox on top of the middle column allows for disabling weights
altogether (if unchecked). The lower part contains a checkbox that allows to
enable or disable the computation of the quality of the peaks (’Enable quality
counting’, Section 3.3.17) and a drop-down-box that allows to select the q-
value correction method (Sections 3.3.10 and 3.3.13). Pressing the button
(’Recalculate’, bottom right) starts the recomputation.

3.3.14 Filtering and Weighting

Visualization and Interaction

Sierra Platinum uses several parameters that influence the computation of

the combined peaks. First of all, the user can decide whether or not to use

the correlation correction based on Equation 3.23 (Section 3.3.13). If the

correlation correction is disabled using the checkbox shown in Figure 3.8, ρ̂∗

is set to 0. Moreover, the user can decide whether or not to use a replicate

(right column of Figure 3.10). Further, she can assign a weight to each active

replicate (middle column of Figure 3.10) or disable weights altogether (weight

checkbox in the first row of Figure 3.10). Finally, she can decide whether or not

to compute the quality of the peaks (checkbox at the bottom of Figure 3.10;

for a description please see Section 3.3.17).

During the initial run, default parameters are used: correlation correction

is enabled, all replicates are enabled, the p-value correction method is set to

“Holm-Bonferroni”, and the weights are set to the ω values of each replicate
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Figure 3.11: Comparison of the final p-value distributions with different weight
settings. Each run is assigned a different color according to the color legend
below the figure. The p-values of the bins are mapped to the x-axis while the
amount of windows having the respective p-value are mapped to the y-axis. A
logarithmic scale is used in both cases. Here, three different runs are shown
assigned to the colors red (run 1), orange (run 2), and green (run 3). From the
p-value distribution alone, run 1 would be preferred over run 3 over run 2.

(Equation 3.3, Section 3.3.5). Further, the peak quality is computed by default.

These parameters can and should be changed based on the results of the

initial run. The single replicate peak-calling steps from the first part are not

influenced by these parameters and thus this part does not have to be recomputed

again. However, the second part of the computation (Section 3.3.13–3.3.18)

should be performed again (see also Section 3.4.5). The results of all runs can

again be analyzed using a histogram (shown in Figure 3.11) to compare the

p-value distributions for different parameters settings. The color of each bar

encodes a run with a specific parameter setting. As it is not advisable to use

more than 8 different colors [81], only the results for the last 8 runs are provided.

The results of each run are also stored separately by adding the number of the

run to the file name (Section 3.3.18).
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Optimization

This step is purely interaction. Only its results are used as parameters for the

subsequent steps.

3.3.15 Agreement between the Multi-Replicate Result and
the Single Replicate Results

Quality Measures

As a further quality measurement, Sierra Platinum calculates the agreement

between the multiple-replicate result and the single replicate results. More

precisely, it calculates the fractions of the significant windows that according to

the combined p-value are also significant in the different replicates. Let C be

the set of windows that are significant according to the combined p-value, i.e.,

C = {w ∈ W |pw < p̂} (3.27)

where W is the set of all windows, pw is the combined p-value of window w ,

and p̂ is the significance cutoff value.

Analogously, Ri is the set of windows that are significant according to the

p-value for replicate i :

Ri = {w ∈ W |pwi < p̂i} (3.28)

where pwi is the p-value of replicate i for window w , and p̂i is the significance

cutoff value of replicate i . The agreement between the multiple-replicate result

and the result of replicate i is thus

ai =
|C ∩ Ri |
|C| (3.29)

Visualization

This mutual agreement is visualized using a bar chart (Figure 3.12a). Each bar

represents a replicate and the y-axis gives the percentage of agreement with

the multiple-replicate peak-calling result.

This quality measurement eases assessing if the replicates agree with each

other and thus with the combined results or if one replicate contributes much less

than the other replicates to the final result. A high agreement of all replicates
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with the multiple-replicate result shows that the replicates themselves agree in

their peak-calls.

Again, for multiple runs, the overlap bar chart (Figure 3.12b) is extended

with the overlap information of each run.

3.3.16 Computing Peaks

Method Narrow Peaks

Sierra Platinum adopts the computation of the narrow peaks from MACS [90].

Significant windows overlapping in their genomic position are merged into the

same peak. A window is significant if the combined p-value of this window does

not exceed the user-defined significance cutoff. Sierra Platinum reports the

lowest combined p-value of the combined p-values of the windows contributing

to the peak.

Narrow peaks should be calculated for those modifications known to produce

very sharp peaks such as H3K4me3.

Method Broad Peaks

It was found that many histone modifications form broad domains of consecutive

modified nucleosomes. Therefore, Sierra Platinumalso includes the computation

of broad peaks into Sierra Platinum and again adopted the procedure from

MACS [90].

If two peaks are less than two window sizes apart from each other, then they

are joined into the same broad peak. This copes with the fact that ChIP-seq is

a measurement of a population signal rather than a single cell protocol and that

the epigenetic state is controlled by stochastic processes. Thus, at the time

of measurement, nucleosomes might be completely unmodified or unmodified

in many cells of the population even though they are usually modified. This

results in gaps between the peaks. These gaps can also be an artifact of the

experimental or computational method. In both cases, one can close the gap

computing broad peaks.
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(a) Example of the overlap visualization for all replicates for a single
run. The x-axis shows the replicate number while the percentage of
overlap of the respective replicate is mapped onto the y-axis.

(b) Comparison of the overlap of the replicates for multiple runs.
During the first run (red) all replicates were used while during run
2 (orange) only replicates 3 and 4, and during run 3 (green) only
replicates 1, 2, 3, and 6 were used. While for run 3 the overlap of the
individual replicates is more or less balanced, for run 2 this is not the
case: replicate 4 overlaps more than 90% with the final result while
replicate 5 overlaps less than 10% with the final result.

Figure 3.12: Comparison of the overlap of the peaks between the replicates.
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3.3.17 Computing Peak Quality

Quality Measures

Finally, Sierra Platinum provides a last quality control: the read quality within

the peaks. Therefore, Sierra Platinum calculates the median read quality for

each peak (which is also exported together with the peaks, Section 3.3.18).

Visualization

For each replicate, Sierra Platinum again provides two boxplots for the median

peak quality distribution in the experiment and in the background similar to

those introduced in Section 3.3.3. As shown in Figure 3.13, the GUI of Sierra

Platinum provides an overview over all data sets. The whiskers of the boxplots

represent the minimum and the maximum value of the data set, respectively,

and the background of the plot shows the different quality levels thus assisting

the user to interpret the boxplots.

Replicates with a very low median peak quality distribution might be excluded

since they only contribute with low quality—and thus suspiciously—data to

the final result. Further, strong differences between the median peak quality

distributions of experiment and background indicate suspicious results. As

detailed analyses show, such replicates should be removed from the analysis (cf.

Section 3.5).

Optimization

The peak quality method was optimized like the read quality method (Sec-

tion 3.3.3).
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Figure 3.13: Final peak quality boxplots for experiment and background of 6
replicates.
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3.3.18 Exporting Peaks

Method

After each run of the multiple-replicate peak-calling process the broad and the

narrow peaks are exported and saved as bed or csv files with the p-value as the

score field on the server. Additionally, it is possible to export the peaks on the

client using the GUI of Sierra Platinum.

Sierra Platinum uses Google GSON [10] for all data storage. It is usually

faster and more robust than the previously used, dated object serialization

provided by Java. For efficiency reasons, all files are compressed.

More information is provided in Section 3.4.
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3.4 Implementation

3.4.1 System

Sierra Platinum is completely written in JAVA 8 and uses JavaFX as API for

the GUI. Therefore, it is possible to run Sierra Platinum on Windows, Linux,

and Mac. The libraries used are Apache Commons IO [4], Apache Commons

Logging [5], Apache Commons Math [6], Apache Commons Net [7], Apache

Commons VFS [8], HTSJDK [2], JFreeChart [11], Gson [10], and JSch [12].

Choosing Java supports the generation of graphical user interfaces in a

straight forward way. Moreover, its language concept based on software engi-

neering principles supports maintainability.

While the computational requirements could be substantially optimized, they

are still high and require a powerful workstation or a server. Since the input data

for the peak-calling process can be very large, its calculation needs a performant

workstation that is more powerful than current standard desktop computers.

Therefore, the program is split into two parts:

Sierra Platinum Server: performs the peak-calling itself and computes all qual-

ity measures. It takes its parameters from the client and transfers the

result to the client. The server is normally run on high-performance

machines with sufficient resources, i.e., CPUs with several cores, a large

amount of memory, and a high I/O bandwidth.

Sierra Platinum Client: the GUI that allows the user to select the data to

use (replicate data sets), to set and adjust the parameters, to assess the

results, and to export the results on the users’s client. The client can be

run on almost any current standard desktop computer.

Additionally, Sierra Platinum can be used in batch mode from a command

line. To do so, the user has to create a configuration file for the server. This

configuration file can be created with the client by selecting all replicates within

the GUI and exporting the client configuration. This can be useful, if, e.g.,

no direct server connection is possible because of security policies in the lab

environment. In principle, a skilled user can create the configuration files

manually since they are gzipped JSON files. An example of the configuration is

provided in the Section 3.4.10. With this configuration file, it possible to run

the server in batch mode without the need of a client connection. The server

will then read all the input data, perform the computations export all results,
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Figure 3.14: The server connection window of Sierra Platinum.

and then terminate. The user can import the results as a datamapper in the

client and then check the results offline, that is, without any server running.

3.4.2 Client GUI

The client lets the user interact with the server for selecting the input data of

the peak-calling process and for adjusting the parameters. After the calculation,

the client visualizes the quality control steps allowing the user to assess the

quality of the replicates and of the resulting peaks.

Communication with Server

First, the Sierra Platinum Client is connected to a server using the connection

dialog (Figure 3.14). If the calculation should be performed locally, since the

data set is small or because the local computer has enough resources, the

client can create it’s own instance of the server (‘Start local server’ checkbox).

Besides the name of the server (‘Host’), the ’Server port’ is provided on which

the server is listening to connections and commands from potential clients.

Additionally, it is possible to connect more than one client to the server and

to secure the server with a password since it is possible to cancel jobs in the

GUI. The communication protocol is designed as stateful API, where the client

creates a connection to the server for each query. After accepting the query,

the server reponds on the same stream to the client and the client closes the

connection. Since the server can not establish a connection to the client, the

client constantly queries the state of the server using a heartbeat query.

After the calculation, the server sends a complete progress message with

the next heartbeat signal of a client. After evaluating this message, the client
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Figure 3.15: The Server Menu

queries for the data mapper object and shows it after receiving it. Furthermore,

it is possible to pull the data mapper from the server if the client was not

connected to the server when the server finished the job.

The connection dialog is opened automatically after starting the client.

Further, a new connection can be opened any time using the Menu entry ‘Server

→ Edit Server Connection’ (Figure 3.15).

3.4.3 Replicates, Parameters, and Starting Computation

To call peaks for a set of replicates, first a list of replicates is created followed

by setting the relevant parameters for the process (Figure 3.17). The complete

settings—list of replicates and parameter settings—can be saved to file using

the menu ‘File → Config Management → Save config’. Alternatively, the

settings can be loaded by using ‘File → Config Management → Load config’

(Figure 3.16).

Finally, the process is started by pressing the ‘Start’ button (Figure 3.17).

The progress of the computation is shown by the progress bar to the right of

the ‘Start’ button.

Editing the list of replicates

The user adds replicates using the ‘Add replicate’ button (Figure 3.17). For

each of the added replicates, the file associated to the experiment and the

file associated to the background of the replicate are selected on the local

computer or on the server computer by using a file system browser [8]. A
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Figure 3.16: The File Menu showing the sub menu for storing and loading a
configuration.

context sensitive menu in the main window allows to change the files associated

with the replicates’ experiment and background and to delete replicates.

Setting parameters

The following settings for the current computation can be adjusted (Figure 3.17):

‘window size’ and ‘offset’ (Section 3.3.1), ‘p-value cutoff’ (Sections 3.3.11,

3.3.15, 3.3.16), and the ‘number of threads’ that should be used for computation.

Further, the ‘job name’ can be set. The job name is used for assigning names

to the files used for the information exported.

3.4.4 Quality Control

After computation, for each replicate, a ‘Replicate’ tab is created showing all

relevant information computed for this replicate (Figure 3.18):

• the estimated Poisson distribution for experiment and background (Fig-

ure 3.18, top left; Section 3.3.4, Figure 3.5a),

• the estimated Poisson distribution for adjusted experiment and background

(Figure 3.18, bottom left; Section 3.3.7, Figure 3.5c),

• the count distribution for experiment and background (Figure 3.18, top

middle; Section 3.3.5, Figure 3.5b),

• the p-value distribution over all windows (Figure 3.18, bottom middle;

Section 3.3.4, Figure 3.6),

• the mapping quality (Figure 3.18, top right; Section 3.3.3, Figure 3.4),
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Figure 3.17: The settings-tab in the GUI of Sierra Platinum. In the large,
middle window, the replicate information is shown. For each replicate, the file
names for the experiment and the background are given. In the lower part, the
‘Add Replicate’ button allows adding additional replicates. Below this button,
the parameters for the ‘window size’ and the ‘window offset’ can be changed.
Further, the ‘Job name’, the ‘p-value cutoff’, and the ‘number of threads’
can be assigned. Finally, to the right, the ‘Start’ button allows starting a
computation and the progress bar to the right of this button shows the progress
of the computation. A context sensitive menu in the main window allows to
change the files associated with the replicates’ experiment and background and
to delete replicates.
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• the distribution of significant windows per chromosome (Figure 3.18,

bottom right; Section 3.3.11, Figure 3.7).

This supports assessing the quality of each of the replicates and for deciding,

how to adjust the combination of replicates for the final results.

3.4.5 Correlation Information, Recalculation Parameters, and
Restarting Computation

The ‘Summary’ tab (Figure 3.19)

• shows the Pearson Correlation of the replicates (Figure 3.19, left top;

Section 3.3.12, Figure 3.8),

• allows for enabling or disabling the correlation based correction (Fig-

ure 3.19, left bottom, checkbox; Section 3.3.12, Figure 3.8),

• allows for setting weights affecting the combination of the single replicates

for creating the combined peaks (Figure 3.19, right top, middle column;

Section 3.3.14, Figure 3.10),

• allows for enabling (ON) or disabling (OFF) a replicate (Figure 3.19, right

top, right column; Section 3.3.14, Figure 3.10),

• allows for setting two parameters and restarting the computation (Fig-

ure 3.19, right bottom row; Section 3.3.14, Figure 3.10).

The user can enable correlation correction and select a weight for each

replicate, which is used while combining the p-values. Additionally, it is possible

to exclude one or more replicates from the recalculation and to change the

q-value correction method. Moreover, quality counting can be enabled or

disabled.

The defaults used during the initial run (Section 3.3.14) are: correlation

correction is enabled, all replicates are enabled, the p-value correction method

is set to “Holm-Bonferroni”, and the weights are set to the ω values of each

replicate (Equation 3.3, Section 3.3.5). Further, the peak quality is computed

by default.

Finally, the recalculation is started using the new settings. Therefore, it is

necessary to send the job to the server again.
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Figure 3.18: A replicate tab in the GUI of Sierra Platinum. Top left: the
estimated Poisson distribution for experiment and background (Figure 3.5a).
Top middle: the count distribution for experiment and background (Figure 3.5b).
Top right: the mapping quality (Figure 3.4). Bottom left: the estimated Poisson
distribution for adjusted experiment and background (Figure 3.5c). Bottom
middle: the p-value distribution over all windows (Figure 3.6). Bottom right:
the distribution of significant windows per chromosome (Figure 3.7).
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Figure 3.19: The ‘Summary’ tab in the GUI of Sierra Platinum. Left top:
the Pearson Correlation of the replicates. Left bottom: checkbox allowing
for enabling or disabling the correlation based correction (Figure 3.8). Right
top, middle column: weights affecting the combination of the single replicates
for creating the combined peaks. Right top, right column: enabling (ON) or
disabling (OFF) a replicate. Right bottom row: two parameters and restarting
the computation (Figure 3.10).

3.4.6 Peak Information

The ‘Peak information’ tab shows two diagrams:

• the final p-value histogram showing the combined p-values for all windows

(Figure 3.20, left; Section 3.3.13, Figure 3.9; Section 3.3.14, Figure 3.11)

• the percentage of agreement of each replicate with the multiple-replicate

result (Figure 3.20, right; Section 3.3.15, Figure 3.12a; Section 3.3.14,

Figure 3.12b)

3.4.7 Quality Information

The ‘Quality information’ tab shows the distribution of the peak quality for all

replicates (Section 3.3.17, Figure 3.13).
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Figure 3.20: The ‘Peak information’ tab in the GUI of Sierra Platinum. Left (see
also Figure 3.11): the final p-value histogram showing the combined p-values
for all windows. Right (see also Figure 3.12b): the percentage of agreement
of each replicate with the multiple-replicate result. Three runs with different
setting for weights and different replicate combinations are shown.

Figure 3.21: The File Menu showing the sub menu for storing and loading the
data mapper.

3.4.8 Additional Functionality

Loading and saving the data mapper

Sierra Platinum automatically exports a data mapper file for each run, which

contains all information that are presented in the GUI. With this mapper, it is

possible to archive all the additional data created by Sierra Platinum for the

peak-calling and to analyze this data even without a server connection. The

data mapper can be exported by using the menu entry ‘File → Datamapper

Management → Save Datamapper’ and imported by using ‘File → Datamapper

Management → Load Datamapper’ (Figure 3.21).

The client configuration can be exported and imported like the Datamapper

using the ‘Config Management’ menu entry.
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Export graphics

All figures created by Sierra Platinum can be exported as a bundle or as a single

figure for later utilization as .png files. The user can export all figures by using

the Menu Entry ‘File → Save figures’ (Figure 3.21). Single figures can be

exported by clicking them with the right mouse button.

3.4.9 Server

When starting the server, the user can select the maximum number of threads,

which are used during IO intensive operations. After every calculation, the server

exports the results in bed and csv format to disk. Additionally, it stores the

current data mapper and a log file with all information about the most recent

calculation.

The server can be started in server or in batch mode. In server mode, it

accepts connections from clients. When the server is running a job, it is sending

progress information to each client. Only one job can be run at a time, due

to the large amount of resources needed. Therefore, the server is locked while

performing the job, meaning, that it does not accept any additional jobs. In

batch mode a previously created job configuration file is provided to the server

that will compute all results and terminate afterwards.

3.4.10 Server Configuration File

The server configuration file for batch mode can be exported from the client

as described in Section 3.4.8. Since the configuration file is a gzipped JSON

file, it is also possible to create it manually or automatically for using the server

in pipelines. The syntax (format) of the file is given by the following example

(white space and line breaks added for readability purposes):

{"replicates":

[{"experiment":"expA.bam",

"background":"backA.bam",

"name":"ReplicateA"},

{"experiment":"expB.bam",

"background":"backB.bam",

"name":"ReplicateB"}],

"windowsize":200,

84



Visual Analysis of Form and Function in Computational Biology

"offset":50,

"pvaluecutoff":1.0E-5,

"peakmode":false,

"numCores":4,

"jobName":"Example"

}

The first seven lines show, how an example with two replicates is generated.

The keyword “replicates” is followed by a list (between ‘[’ and ‘]’) of replicates.

Each replicate is delimited by the curly brackets and contains three fields:

the “experiment” file name (e.g., “expA.bam”), the “background” file name

(e.g., “backA.bam”), and the replicate “name” (e.g., “ReplicateA”). Furthermore,

the following parameters have to be provided: the window size, the window

offset, and the p-value cutoff. The variable ’peakmode’ is only for internal

use and should be always ’false’ if the configuration file is created manually.

The “numcores” entry determines the maximal number of threads used for the

computation. Finally, the “jobName” describes the file prefix which is added

to the output file’s names. After creating the configuration file, all white

space (including tabs and line breaks) has to be removed to create a JSON file

containing exactly one line, and the file has to be compressed with gzip.

3.4.11 Service Implementation

The computational efforts for ChIP-seq analysis require hardware that may

not be available in labs without dedicated bioinformatics infrastructure due to

the size of the input files and the complexity of the algorithms that combine

multiple samples. To overcome this limitation, a service implementation of Sierra

Platinum called Sierra Platinum Service was developed that provides access to

the full functionality of Sierra Platinum in form of a web-based service hosted at

sierra.sca-ds.de. It provides a publicly available web service that combines

user management, job control, and a queuing system as well as mechanisms for

uploading the input data and for downloading all results. It creates a dedicated

Sierra Platinum Server that allows the user to upload, analyze, inspect, and

manipulate his ChIP-seq data using the Sierra Platinum Client with very little

local resource consumption. Finally, the user can download all results—analysis

results as well as the final peaks. A convenient docker image was developed for

an easy deployment of private instances of the service, e.g., for institution-wide

use.

85

sierra.sca-ds.de


Chapter 3. Sierra Platinum

Technical Realization

The server is hosted within a docker container (see Figure 3.22), which provides

a Java JRE for the Sierra Platinum Service, a fully configured nginx web server

with php5 support, and an SQLite database that stores the user management

of the service. The mail transmission is implemented by using sSMTP that

allows using an existing email address without the need to setup an email server

within the service.

Since the Sierra Platinum Service is embedded in a docker container, it

can easily be deployed by pulling the Git repository https://github.com/

sierraplatinum/sierra-service and running the scripts build.sh for build-

ing the container and run.sh for starting it. At this stage, the service can be

configured by specifying TCP ports, the email address, and resource limitations

such as the number of concurrent Sierra Platinum Service instances or threads.

To handle the limited number of Sierra Platinum Service instances, a queuing

system was implemented to handle all user requests. Within the docker container

all services start automatically. The upload mechanism was implemented in the

client/server core. To address security concerns, every user of the service is

assigned his own FTPS directory and is jailed to it.

The client checks the validity of the uploaded files and the server can

compute missing .bam indices. Interrupted uploads can be continued on the fly

to accommodate for the large size of the input files.

Usage and Interaction

The service requires registration with a valid email address and allows the user

to start a dedicated Sierra Platinum Server for which he received the necessary

credentials by email. A Sierra Platinum Service runs for 72 hours or until

termination by the user. During this time, the user may disconnect from and

reconnect to the server at any time. At the end of the Sierra Platinum Service’s

life time, all data is deleted from the server hardware.

To use the Sierra Platinum Service, the user connects with his credentials

through the Sierra Platinum Client and first uploads his data as bam files using

the integrated FTPS client. Then, the peak-calling can be started. Afterwards,

quality control information can be visually inspected (see Figure 3.18) and

parameters may be adjusted as for any local installation of Sierra Platinum. At

any time, the results file can be downloaded for further, local analysis.
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The database stores
the user information
and the server queue.

TCP connection 
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uploaded user files
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controls the server and 
visualizes the results.

Sierra Platinum Server 
performs the peak
calling and sends
the visualizations to 
the client application.
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File upload
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Figure 3.22: Overview of the Sierra Platinum Service container. The web server
handles the user registrations and starts the Sierra Platinum Server after a valid
activation. All necessary user information are stored in an SQLite database.
After a successful registration the user can upload his data with the Sierra
Platinum Client and start the computation. Afterwards, it is possible to export
all results and visualizations within the client.
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Limitations

The Sierra Platinum Service architecture is currently designed as a split in-

frastructure. The registration and the validation of a new user is handled by

a web interface whereas the data upload, the data processing, and the data

presentation is implemented within a Java GUI application. Therefore, the user

needs an up-to-date Java installation on his client. Moreover, the data upload of

the input files can take a long time depending on the user’s internet connection

and the input size. If the user has a very slow upload rate, the maximal runtime

of the service may be exceeded before finishing the upload. Further, the user

needs a valid email address for the registration process.

Currently, the Sierra Platinum Service instance at sierra.sca-ds.de is

able to compute 5 jobs simultaneously. If necessary, the service can be extended

easily to provide more slots since it is running on a cluster system.
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3.5 Benchmark Data Set

3.5.1 Context

Testing and benchmarking are essential steps while implementing new methods.

Hereby, testing refers to the robustness of the new tool: showing that even

with erroneous or bad data, the tool still produces reasonable results without

crashing. Benchmarking means running a tool with data for which the ideal

results are known and then calculating how close the computed results match

the ideal results. Typically, benchmarking results are compared to those of

existing tools/approaches performing the same task. While data sets for tests

are relatively easy to design, designing benchmarking data sets poses a major

challenge.

3.5.2 State-of-the-Art and Gaps

Surprisingly, even though there are tools to simulate the ChIP-seq experiments,

no benchmarking data set for peak-calling is published so far. Koohy et al. [49]

and Wilbanks et al. [86] already described the problem and therefore compared

the peak-calling results of different peak-callers based on the number of shared

peaks of 3 different transcription factors.

As benchmarking data sets are not available, workarounds are used, e.g.,

using real data instead of artificial data. However, for real data the ‘ground

truth’ is often not known and can just be approximated by verifying the results

using known information.

Depending on the tools task, this can be done in different ways. If already

other tools exist that fulfill the task, it can be asked how much of the results of

the other tools can be recovered by the new tool. However, in those cases it is

difficult to decide which tool is better because the reliability of the results can

not be decided upon, if the results differ.

Another frequent approach is to use experimentally validated results. In the

case of differential expression analysis, for example, qPCR results or spike-in

genes are used. However, in this case the set of benchmarking data points is

very small since experimental verification can not be done for all genes and also

has it’s own limitations.

In the case of peak-calls for ChIP-seq data, two other approaches are often

chosen. One approach is to show that the resulting peaks are similar to the

results obtained when measuring the same results with ChIP-chip, i.e., the first
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step of the experimental procedure is the same but the sequences pulled out

are measured using a chip instead of being sequenced. The other approach is

to test the tool with a transcription factor for which the binding motif is known.

The benchmark consists of testing whether the peaks detected with the new

tool contain a binding site according to the binding motif.

For the first approach, recall and false discovery rate can only be estimated

since ChIP-chip, too, does not guarantee to produce perfect results. For

the second approach, one can not guarantee that all binding sites are found

since the binding motif may be inaccurate and binding site prediction can be

erroneous, too. Furthermore, a binding site does not ensure that the measured

transcription factor was bound and thus, a peak is expected. In other words,

the second approach does not provide an estimate for the negative outcomes

of the experiment.

To be able to compare the new peak-calling method (Section 3.3), several

benchmarking data sets were created. Four statistical measures were applied

on the data sets for assessing the quality of peak-callers. In this section, the

method for creating these benchmarking data sets (Section 3.5.5) and the

proposed benchmarking data sets (Section 3.5.6) for assessing the quality are

described.

3.5.3 Goal

In general, benchmarking data sets should provide a combination of data sets

with the following properties:

Ideal case: Even though the real data sets will never be ’ideal’, the ideal case

should always be part of a benchmarking data set. A method, which

produces wrong/bad results in the ideal case, can not be assumed to

produce reliable results for non-ideal data and thus should not be applied

to real data.

Single noise case: For any source of noise, there should be at least one data

set simulating this type of noise varying the parameters representing this

type of noise. In this way, the robustness of the method with respect to

the different sources of noise can be estimated.
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Multi-noise case: At least one data set should be designed to demonstrate the

performance of the tool when different sources of noise appear together

in the same data set. Therefore, data sets with a useful combination of

different sources of noise should be part of the benchmarking data set.

Real case: A data set, which is inspired by the sources and the strength of

noise of real data would be desirable.

3.5.4 Challenges

Major challenges for constructing benchmarking data sets are:

1. to define a model that produces artificial data that looks like real data

2. to define which sources of noise exist

3. to model the sources of noise in the chosen model system

3.5.5 Benchmarking Data Set Creation

ChIPsim [46], an R package to simulate ChIP-seq, was used to generate a

benchmarking data set for peak-calling that shows characteristics of histone

modifications such as broad domains. Instead of using the default model, the

nucleosome density example in the manual was used as the basis and several

changes were made to adapt it to the test scenario. In principle, the simulation

procedure consists of the following steps:

1. Generate a genome sequence

2. Generate features using a Markov model

3. Generate a signal density for all features (i.e., how much signal at a specific

base is given to the annotated feature)

4. Calculate the read density according to the signal density and the fragment

length

5. Sample reads from the genome according to the read density

6. Sample the base quality for each base according to a defined quality

distribution

7. Introduce sequencing errors based on base quality
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Table 3.7: Chromosome names and lengths

chromosome length
chr1 1 · 105
chr2 2 · 105
chr3 3 · 105
chr4 4 · 105
chr5 5 · 105
chr6 6 · 105
chr7 7 · 105
chr8 8 · 105
chr9 9 · 105
chr10 10 · 105

This procedure was used in two configurations: one time to generate the

background and one time to generate the experiment data. Some aspects of

the configurations stay the same in both. The genome for background and

experiment is the same enabling mapping the simulated reads to the same

genome. Ten chromosomes were generated with different lengths as given in

Table 3.7. Each chromosome is obtained by sampling as many bases from the

set of DNA bases as desired. The Markov chain generating the features requires

a length parameter. This length corresponds to the length of the genomic

region assigned to the feature. A unique feature length of 146 bases was used

for all states, i.e., each feature corresponds to exactly one nucleosome. The

fragment length for sequencing follows a normal distribution with a mean of

200 bases and a standard deviation of 4 bases. Furthermore, the values were

bound to the interval [150; 250]. Thus, the simulated fragments will have a

length between 150 bases and 250 bases and are on average 200 bases long.

Background data

Trivial features were generated using a one state Markov chain as model for

the background corresponding to an unspecific antibody. The density was taken

from a Γ-distribution with shape parameter k = 1 and scale parameter θ = 20.

This setting was suggested by the nucleosome density example in the tutorial

of ChIPsim. Calculating the read density and sampling the reads are performed

as provided by ChIPsim. The read quality is generated either in “high”, “mid”,

or “low” mode, which are explained below. The optimal sequencing depth was

taken from the tutorial (number of reads equal to 10% of the genome length)
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and was varied to 1% for under-sequenced and 40% for over-sequenced data,

respectively.

Experiment data

A two state Markov chain of order 1 is used to generate the features for the

experiment data. One state represents the background, i.e., the noise which is

unspecific to the theoretical antibody used. Its characteristics are the same as

those of the background data since both represent basically the same, unspecific

binding to the chromatin.

The second state represents the experimental data, i.e., the modified histone

the experiment wants to measure. Sticking to an example in the tutorial, a

single parameter Pareto distribution was used to generate the density for the

specific histone. The shape parameter r is set to 5 as in the tutorial. The

average density is calculated based on the background model as

avgDens = k · θ · e (3.30)

where k is the shape parameter and θ is the scale parameter of the background

Γ-distribution, while e is the enrichment over the background. The optimal

enrichment e is set to 5 and is varied to 2 for low and 4 for mid level enrichment,

respectively.

Based on the average density, the lower bound for the density is estimated

as

lb = (r − 1) · avgDens (3.31)

The density for each feature is then drawn from the single parameter Pareto

distribution with shape r and lower bound lb.

The sequencing depth is set analogously to the background data. The base

quality of the sequencing reads are generated in the modes “high”, “mid”, and

“low”. Poisson distributions bound to the interval [0; 40] were used to generate

the probability for each possible Phred score. In detail, the probability of Phred

score φ is

P (φ) = PPoisson(40− φ, λ) (3.32)

where λ is specific for the mode. In detail, λ = 7 was selected for mode ”high”,

λ = 17 for mode ”mid”, and λ = 29 for mode ”low”.

The probabilities are normalized such that they sum up to 1 in the interval

[0; 40].
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3.5.6 Benchmarking Replicates

As described in the previous section, benchmarking data sets of different quality

were generated. This section gives an overview of the benchmarking data sets

generated and how they were processed. In addition to the generated genome

and read files, the reference signal, i.e., the gold standard for the peak’s location,

is provided as annotation file in BED [47] format.

Replicates Generated

The replicates generated can be subdivided according to their type into ‘noise

free’, ‘wrong signal’, and ‘noisy signal’.

Noise free 6 replicates with optimal parameters were generated for experiment

and background. These replicates can be used to evaluate the performance in

the ideal case as well as for finding optimal parameters for the peak-caller.

Wrong signal Three replicates with different features each were generated.

They can be used to test the performance of the peak-caller when ChIP-seq

data may be erroneous. This might happen, for example, when the antibodies

did not work correctly.

Noisy Signal Peak-calling can be affected by poor data quality. In particular,

low sequencing quality, over-sequencing, under-sequencing, and low signal en-

richment may affect the ability to find peaks and the quality of the predicted

peaks. Two replicates were designed for each combination of low, middle, and

high sequencing quality, sequencing depth, and enrichment (see Table 3.8).

In total, 27 replicates of different quality were generated yielding 54 read

files; 27 for the experiment and 27 for the associated background. While the

read files are generated in pairs, i.e., always one file for the experiment and one

Table 3.8: Parameter settings for the different levels of quality. See Section 3.5.5
for a description of the parameters.

low middle high
sequencing quality 29 17 7
sequencing depth 0.01 0.1 0.4
enrichment 2 4 5
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file for the background with the same characteristic, read files with different

characteristics can be combined to replicates as well to study the effect of

unequal quality of background and experiment.

Post-Processing

Since no adapters were simulated, the read files of the replicates generated are

directly mapped onto the artificial genome generated during simulation. The

genome mapper segemehl [44] was used to index the genome and map the

reads onto the genome. Mapping was performed with 80% accuracy (i.e., 80%

of the alignment have to be identical between read and genome) and only the

best hit is reported. The resulting SAM [53] files are converted into BAM [53]

files and sorted using SAMtools [53]. Afterwards, SAMtools is used to remove

PCR replicates.

3.5.7 Benchmarking Data Sets

The generated replicates can be combined to different data sets for benchmarking.

As a minimal test for peak-calling, the following combinations are recommended:

Noise free: 6 noise free replicates—background and experiment data. Using

this data shows if the method produces useful results. Methods that

perform poorly on this data should not be used for real data.

Noise: 3 data sets with 6 replicates each combining 1, 2, and 3 replicates

with noisy signal but good quality otherwise with 5, 4, and 3 noise free

replicates, respectively. This will indicate the impact of experiments

resulting in a wrong signal (e.g., failure of the antibody).

Low quality: 2 data sets with 3 and 4 replicates. In each data set, 2 noise

free replicates are used together with either 1 or 2 replicates with low

sequencing quality and good quality otherwise.

Over-sequenced: 2 data sets with 3 and 4 replicates. In each data set, 2

noise free replicates are used together with either 1 or 2 replicates with a

(too) high sequencing depth and good quality otherwise.

Under-sequenced: 2 data sets with 3 and 4 replicates. In each data set, 2

noise free replicates are used together with either 1 or 2 replicates with a

(too) low sequencing depth and good quality otherwise.

95



Chapter 3. Sierra Platinum

Low enrichment: 2 data sets with 3 and 4 replicates. In each data set, 2

noise free replicates are used together with either 1 or 2 replicates with

low enrichment and good quality otherwise.

Bad: 2 data sets with 3 and 4 replicates. In each data set, 2 noise free replicates

are used together with either 1 or 2 replicates with low sequencing quality,

(too) low sequencing depth, and low enrichment. These data sets will

show the combined effect of the different sources of noise.

3.6 Statistical Measures for Quality Assessment

The benchmarking data sets allow evaluating statistical parameters to assess

the quality of the peak-calls produced with the peak-caller chosen. The gold

standard provides a list of peaks specified by the genomic location. Based on

the gold standard, the following statistical measures for quality assessment are

recommended: the number of peaks np, the recal l , the positive predictive value

(PPV ), and the false discovery rate (FDR).

Let PC be the set of peak-callers and pc ∈ PC a peak-caller. Let further

ppc be a peak detected by peak-caller pc , pg a peak in the gold standard, and

pgpc a peak in the gold standard found by the peak-caller pc. Then, np, recall,

PPV, and FDR are defined as:

np(pc) = |{ppc}| (3.33)

recal l(pc) =
|{pgpc}|
|{pg}| (3.34)

PPV (pc) =
|{pgpc}|
np(pc)

(3.35)

FDR(pc) =
|{ppc}| − |{pgpc}|

|{ppc}|
(3.36)

While ppc and pg are easy to determine, pgpc needs a careful definition. This

definition has to consider the properties of the gold standard:

1. The length of the peaks in the gold standard are multiples of 146bp by

construction since all the features generated with the Markov chain have a

length of 146bp, i.e., individual histones were simulated rather than peaks.

A peak in the gold standard will always start and end with a feature but

may include more than one feature. Thus, peaks have a minimal length

of 146bp but can extend much further in length.
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2. Reads of length 36bp are generated assuming a fragment length of 200bp

on average for sequencing. Thus, enrichment will have the same resolution.

Therefore, peak-calling is restricted to the resolution given by the fragment

length for sequencing and will not reach the 146bp resolution of the

features.

As a consequence, gold standard peaks and predicted peaks will not match

up completely. Thus, taking a 100% identical peak match as criterion for finding

a peak of the gold standard would be too hard and will distort the performance of

the peak-caller evaluated. Therefore, it is recommended to soften the criterion

for re-discovering a peak of the gold standard. The criterion is motivated by

the following:

• The minimum peak length is 146bp.

• The resolution expected for one nucleosome is 200bp on average but lies

in the interval [150; 250].

• Given the 146bp resolution, even a perfect prediction would cover only up

to 73% (= 146/200) on average. However, the coverage might be as low

as 58.4% when the sequencing fragment length is 250bp.

• Not only perfect matches should be counted.

• Incompletely found peaks should also be counted as “found” when most

of the peak is found.

Therefore, the recommended soft criterion is a reciprocal overlap of at least

50% between prediction and gold standard:

pgpc := {ppc |∃pg : reciprocal overlap(pg, ppc) ≥ 0.5} (3.37)

With this criterion, it is now possible to calculate the assessment parameters

for any peak-caller based on the gold standard benchmarking data sets.
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3.7 Evaluation

3.7.1 Introduction

This section presents multiple evaluations of Sierra Platinum. In a first step,

Sierra Platinum will be evaluated on the different benchmark data sets described

in Section 3.5. This evaluation is also a guide on how to recognize different

types of noisy data with the quality measure visualizations provided by Sierra

Platinum. Afterwards, the influence of the different parameter settings of Sierra

Platinum is evaluated on the quality of its peak-calling results. In a last step,

Sierra Platinum is compared against other state-of-the-art peak-calling tools.

3.7.2 Sierra Platinum Quality Measures and Visualizations

In Section 3.7.4 it is shown that down-weighting or deleting noisy replicates

is beneficial for the performance of Sierra Platinum. While it is known which

replicates have good quality and which replicates have bad quality in the case

of the benchmarking data sets, for real data this information is commonly

not available. However, the quality of the replicates is assessed using the

quality measures and the visualizations included in Sierra Platinum. Several

visualizations showing different quality measures of the replicates allow the user

to judge whether a replicate can be used for peak-calling, should be excluded

from peak-calling, or should be down-weighted during peak combination. This

section shows how the different types of noise can be recognized using the

visualizations provided by Sierra Platinum.

Noise-free data

Figure 3.23a shows a noise free replicate. The theoretical distributions (at

least those calculated for the normalized ones) are (almost) identical (top and

bottom, left). Each tag distribution has a single peak and the peak of the

experiment is at lower tag counts than the peak of the background distribution

(top, middle). However, the respective means of the two distributions are

almost identical (location of the peak of the theoretical distribution). The

“boxes” of the boxplots are in the green area (top, right). The replicate specific

distributions for p-values (bottom, middle) and significant windows (bottom,

right) do not differ much from the corresponding median distributions. The

correlation with other replicates is high and thus, red is the predominant color
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in the heatmap (Figure 3.23b). All significant windows of the replicates overlap

largely and to approximately the same amount with the final significant windows

(Figure 3.23c, right).

Poor Sequencing Quality

Replicates with low sequencing quality are easily recognizable since the “box”

of the boxplot is not in the green area and may even drop into the red area

of the boxplot (see Figure 3.24a, top, right). However, also the distribution

of the significant windows and the amount of overlap with the final significant

windows indicate the low sequencing quality. One can observe that the number

of significant windows is lower than on average (see Figure 3.24a, bottom, right)

and the amount of overlap of replicate 3 with the final significant windows is

noticable lower (see Figure 3.24b, right).

Low enrichment

For replicates with a too low signal-to-noise ratio, e.g., due to ineffective

antibodies, the visualizations look like those in Figure 3.25. Low enrichment

usually leads to an unclear peak in the experiment tag count distribution, i.e.,

there is no peak but a plateau (Figure 3.25a, top, middle). Furthermore,

the significant windows are less frequent in the replicate than in the median

distribution of significant windows (Figure 3.25a, bottom, right). All other

quality measurements and visualizations in the single replicate view are similar to

those of the good replicates. The result charts show a lower amount of overlap

for low enriched replicates with the final significant windows (Figure 3.25b,

right).

Low Sequencing Depth

Under-sequencing of the experiment leads to peaks close to zero in the tag count

distribution (Figure 3.26a, top, middle) since not enough reads are sampled from

the data to cover the genome. Under these circumstances, it is hard to reliably

estimate the parameter of the background model which affects the peak-calls.

The number of significant windows in the replicate is much lower than that in

the median replicate (Figure 3.26a, bottom, right) and the p-value distribution

of the replicate differs strongly from that of the median (Figure 3.26a, bottom,

middle). In particular, there are more windows with p-values close to one but
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(a) Replicate view.

(b) Heatmap.

(c) Result charts.

Figure 3.23: Quality measurements for a noise free replicate.
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(a) Replicate view.

(b) Result charts.

Figure 3.24: Quality measurements for a replicate with low sequencing quality
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(a) Replicate view.

(b) Result charts.

Figure 3.25: Quality measurements for a replicate with low enrichment
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less with p-values close to zero in the replicate compared to the median of all

replicates. The correlation with the other replicates is lower (Figure 3.26b, less

saturated squares) and the overlap with the final significant windows is very low

(Figure 3.26c, right). Furthermore, the p-value distribution of the final p-values

has a bathtub shape with a large amount of very low and very high p-values,

while there are only few windows with p-values between the lowest two and the

highest p-value (Figure 3.26c, left).

High Sequencing Depth

When replicates are over-sequenced, the tag count distributions have their peak

at almost the same position and low tag counts are particularly rare (Figure 3.27a,

top, middle). For most p-values in the p-value distribution the window count is

lower than in the median replicate (Figure 3.27a, bottom, middle). Furthermore,

high sequencing depth might lead to artifacts. Figure 3.27b, right, shows, for

example, that the significant windows of replicate 3 and 4 overlap to 100%

with the final significant windows. However, from the distribution of the good

replicates in Figure 3.23 one can learn that even with perfect data the overlap

is not 100% but slightly below 100% since the input signals differ. Likewise

under-sequencing, also over-sequencing results in a strongly bathtub-shaped

distribution of the final p-values (Figure 3.27b, left).

Noisy Data Sets

When something went completely wrong during the experimental procedure or

when the antibody did not work correctly, this would result in a wrong signal.

Then, a replicate does not reflect the same signal as the other replicates, This

can be recognized using the heatmap. No or very low correlation with all

other replicates indicates a wrong signal (Figure 3.28a, white or red with low

saturation). Furthermore, the overlap with the final significant windows is also

low (Figure 3.28b, right) and the final p-value distribution is that extremely

bathtub-shaped that only three different p-values are observed, namely the

lowest two and the highest p-value (Figure 3.28b, left).
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(a) Replicate view.

(b) Heatmap.

(c) Result charts.

Figure 3.26: Quality measurements for an under-sequenced replicate
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(a) Replicate view.

(b) Result charts.

Figure 3.27: Quality measurements for an over-sequenced replicate
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(a) Heatmap.

(b) Result charts.

Figure 3.28: Quality measurements for a replicate having the wrong signal
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Summary

Sierra Platinum provides a wide range of visual quality controls. They allow

judging, how well a replicate is suited for peak-calling in general and how well it

fits to the other replicates. Hereby, each quality control provides insights into

specific aspects of the data such as tag distributions or overall significance. This

allows not only to identify replicates with poor quality but also the identification

of the type of noise. Thus, the user of Sierra Platinum is able to react adequately

by deleting or down-weighting certain replicates or by taking lower quality into

account for further analysis of the data.

3.7.3 Parameter Selection

For obtaining optimal results, peak-callers frequently allow to change parameters

like window size, window offset, or cut-off value that have a direct impact on

the outcome of the peak-calling process. Moreover, most peak-callers provide

either default settings or estimates for the parameters provided. Sierra Platinum

provides default settings as a good starting point for initializing the parameters

of the peak-calling process. Estimates for the parameters based on the data

are helpful for good quality data where such estimates are reliable. Futhermore,

an evaluation of different parameter settings enables the user to judge by

himself/herself how to choose the parameters. Therefore, this section shows

the effects of different parameters for the p-value cutoff, the window size, the

window offset, and the method for calculating the q-values on the peak-calling

process. The three data sets evaluated are the noise-free data set, the data set

with with 3 noisy replicates, and a bad quality data set.

How to choose the p-value cutoff

The effect of the p-value cutoff is almost negligible (see Figure 3.29). Using a

cut-off value of 1 produces only significant windows. Thus, there is only one

peak on each chromosome covering the whole chromosome. Those peaks do

not meet the criteria of the reciprocal coverage and thus, result in a recall and a

PPV of 0 and a FDR of 1. There is also only a very small variation in the recall

down to a cut-off value of 10−4. Therefore, a cutoff of 10−5 is recommended

to be sure to obtain best recall, PPV, and FDR.
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Figure 3.29: Evaluation of the p-value cutoff on the result quality for the
noise-free data set.
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How to choose the window size

Furthermore, the influence of the window size was tested on recall, PPV, and

FDR. Note, that the fragment size of the simulated data is on average 200nt.

To assure that the p-value cutoff is independent of the other parameters, not

only different window sizes were tested but also the p-value cutoff was varied.

With respect to the recall (see Figures 3.30a), one can observe that window sizes

between 100 to 200 nt have the best recalls for good quality data (with 150nt

being the very best). For the noise-3 and the bad-2 data set (see Figure 3.30b,

3.30c) larger window sizes yield better recalls. In these cases, the best recall can

be achieved with a window size of 300nt. A similar behavior can be observed

for the positive predictive value (see Figure 3.31) and the false discovery rate

(see Figure 3.32).

The reasons for the observed FDRs, PPVs, and recalls become clear when

analyzing the number of peaks (see Figure 3.33). Small window sizes lead

to an overprediction of the number of peaks in the case of the noise-free

data set. It seems that some of the small windows are insignificant due to

local sequence composition biases and thus lead to a gap in the peak. Such

insignificant windows are less likely with large window sizes. In the case of bad

quality data, the number of predicted peaks is too low for small window sizes.

A reason therefore might be a low signal due to low enrichment of chromatin

fragments during the experiment in combination with local sequence composition

biases. Given the results, a window size equal to the average fragment length is

recommended (200nt in this benchmark data set). If it is obvious that the data

has bad quality, a larger window size should be chosen.
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(a) Noise-free data set
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(b) Noise-3 data set
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(c) Bad-2 data set

Figure 3.30: Recall of the peak-calls using different combinations of window size, window offset, and cutoff.
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(a) Noise-free data set
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(b) Noise-3 data set
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(c) Bad-2 data set

Figure 3.31: Positive predictive value of the peak-calls using different combinations of window size, window offset, and cutoff.
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(a) Noise-free data set
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(b) Noise-3 data set
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(c) Bad-2 data set

Figure 3.32: False discovery rate of the peak-calls using different combinations of window size, window offset, and cutoff.
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(a) Noise-free data set
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(b) Noise-3 data set
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(c) Bad-2 data set

Figure 3.33: Number of peaks found using different combinations of window size, window offset, and cutoff.
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How to choose the window offset

To capture the effect of different offsets in combination with the window size

and the p-value cutoff, 4 different window offset settings were evaluated for

each window size with Sierra Platinum. Each combination of window size and

offset was tested with 5 different p-value cutoffs. As window offset, one quarter,

one half, three-quarters, and seven-eighth of the window size were selected.

The results are shown in Figures 3.30–3.33.

For small window sizes (50–125 nt), one can see that small offsets (one

quarter of the window size) give the best results (highest recall and PPV, and

lowest FDR). The window offset for the proposed window size of 200nt does

not strongly affect PPV, FDR, or recall on the noise-free data set. Nevertheless,

small offsets (one quarter or one half) are slightly better than large offsets. For

bad quality data, one quarter window offsets always produced the best results

with respect to recall, PPV, FDR, and number of predicted peaks. When using

a window size of 400nt, the recommendation for the window offset changes to

the half of the window size (200nt), which reflects the fragment size of the

input data. Consequently, the recommendation for the window offset is one

quarter for window sizes ≤ 200nt and half of the window size for window sizes

> 200nt.

Which method for the q-value calculation should be used

Sierra Platinum provides different methods to compute the q-value. The most

traditional but also most strict method is the Holm-Bonferroni method. Both

methods from Storey are less strict and thus are expected to be more suitable for

noisy data with bad quality where very strict methods may lead to non-significant

windows only. Storey proposes both a simple and a bootstrap version. The

latter one is more robust. All three methods were tested with window size 200nt,

offset 50nt, and two different cutoff values (1e-5 and 1e-10). The results are

shown in Figure 3.34.

On noisy data without other quality issues, the Holm-Bonferroni correction

performs best regardless of the cut-off value. Storey’s less strict methods lead

both to high FDRs as well as low recall and PPV in those cases. On data

sets with replicates of bad quality, Storey’s methods for the calculation of the

q-value perfom best. Using noise-free data, the recall is almost equal for the

different methods but PPV is higher and FDR is lower for Holm-Bonferroni

correction.
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Summary

Sierra Platinum has four parameters to fine tune the performance of the peak-

calling results. The nature of these parameters implies that a bad parameter

choice can strongly affect the quality of the results. This section showed, how

to adapt the parameters of Sierra Platinum to the given data sets.

The window size should be about the size of the fragments in the experiment.

If the fragment size varies across the replicates or is completely unknown, shorter

windows are recommended rather than longer ones except if the data quality is

overall very low when larger window sizes perform best. The offset should be

one quarter of the window size ≤ 200nt. When using an even larger window size,

half of the window size is recommended. The p-value cut-off does not affect

the performance strongly. However, a default p-value of 10−5 is recommended

since for higher p-value cut-offs variation in their performance could still be

observed. The last parameter is the method for the q-value calculation. The

performance differences between the different methods depend on the type of

noise in the data and on the chosen p-value cut-off for significance. Holm-

Bonferroni corrections perform well and fast in most cases but can not handle

combinations of noise and quality issues very well. However, for those cases

Storey’s q-value methods perform well and robust.

3.7.4 Approach Comparision

To compare the results generated by Sierra Platinum with existing other ap-

proaches, several tools were used to generate peak-calls based on the benchmark

data set. The following methods were used:

PePr The multiple-replicate peak-caller PePr v1.0.1 [89].

MACS-SA For each of the replicates, MACS2 v2.1.0 [90] was started in the

’callpeak’ mode and called broad peaks. These peaks were then merged

to obtain the final resulting peak list.

MACS-CR SAMtools [53] were used to merge the bam files of the experiments

of the replicates into a single experiment bam file and the bam files of the

background of the replicates into a single background bam file. MACS2

v2.1.0 [90] was started as for the single replicates.

BinQuasi The multi-replicate peak-caller BinQuasi v0.1-3 [37].
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Figure 3.34: Evaluation of the q-value methods on the noisy, the bad, and the
noise-free data set (Section 3.5.7).
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If not stated explicitly, the parameter settings were the same for all peak-

calling methods: window size = 200nt (equal to the fragment size), window

offset = 50nt, p-value cut-off = 10−5 and peak type = ‘broad’.

Except for the ‘noise free’ set of replicates in the benchmark, Sierra Platinum

was used to generate peak-calls using all replicates with equal weight (Sierra1,

without down-weighting or excluding bad replicates), excluding the ‘noisy’

replicates (Sierra2), and down-weighting the ‘noisy’ replicates (Sierra3). In all

data sets (Section 3.5.7), the ‘noisy’ replicates could be identified using at least

one quality measurement (Section 3.7).

The results are shown in Figures 3.35–3.37. From top to bottom Recall,

Positive Predictive Value (PPV), False Discovery Rate (FDR), and Number

of Peaks are reported. In addition to the results obtained by the different

peak-calling methods, the number of peaks is provided that would be optimally

found (gold standard, GS).

Noise-free data

For the noise-free data (Figure 3.35), Sierra Platinum has the highest recall,

followed by BinQuasi with a slightly smaller recall. Both variations of MACS

show more than 10% less recall, while PePr has a recall of ≈ 30% less than Sierra

Platinum. Although the recall of BinQuasi is comparable with Sierra Platinum,

the PPV and the FDR of BinQuasi are much worse than Sierra Platinum. Both

approaches of MACS show moderate results while PePr provides the worst

results. The high number of peaks generated by BinQuasi and PePr comes

at the expense of a high FDR, while both methods are relying on the same

model. In total, Sierra Platinum gives significantly better results, since BinQuasi

produces a similarly good recall, but also generates many false positives. With

data sets created in labratories, no gold standard is given. Then, the analyst

can only rely on the peak-calling results and a low FDR rate, since it is not

possible to distinguish between false and true positive results in these data sets.

Poor Sequencing Quality

For poor sequencing quality, two benchmarking data sets were used. Each

of them contains two good replicates and either one or two bad replicates

(Figure 3.36, first column). It does not make a large difference whether one or

two data sets with a low sequencing quality, and thus more sequencing errors,

were added to two high quality data sets: the results are quite similar to those
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Figure 3.35: Evaluation results for the noise-free data set (6 replicates).
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of the noise-free data set. Excluding the low quality replicates improves the

results a bit with respect to recall, PPV, and FDR. Like with the noisefree

data set, BinQuasi achieves a very good recall rate, but provides a considerably

lower PPV and significantly higher FDR compared to Sierra Platinum. Again,

BinQuasi provides a lot of false positive results. Compared to MACS and

PePr, any approach of Sierra Platinum (all replicates, removing bad replicates,

down-weighting bad replicates) performs better with respect to all three quality

measurements.

Low enrichment

A low enrichment, i.e., the signal to noise ratio is low, does not much affect

the performance of all peak-callers (Figure 3.36, second column). The result of

Sierra Platinum can be equally well improved by deleting or down-weighting the

low enriched replicates.

Low Sequencing Depth

A low sequencing depth does not have a strong influence on the peak-calling

quality of Sierra Platinum (Figure 3.36, third column). Deleting or down-

weighting the replicates with low sequencing quality improves the results even

more. Deleting is just marginally better than down-weighting. Still, MACS-CR

and MACS-SA have lower recall but a higher PPV than PePr. The recall is

about 3% lower than in the noise-free data for MACS. BinQuasi provides a

better recall rate than Sierra Platinum, but comes with a worse PPV and FDR

comparable to PePr.

High Sequencing Depth

Replicates with a too high sequencing depth are not affecting the peak-calls of

MACS-CR and MACS-SA (Figure 3.36, fourth column). This might be an effect

of the two good quality replicates always included in the data sets. Surprisingly,

two replicates with a high sequencing depth produce better results than just

one replicate with too many reads in the case of PePr (recall and PPV increase

by about 10%). In the case of BinQuasi, the recall is comparable to Sierra

Platinum, but again PPV and FDR rate is much worse. It is also noticeable that

BinQuasi finds significantly more peaks in these data sets than in the previous

benchmarks. The results of Sierra Platinum in its default settings are affected by
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Figure 3.36: Evaluation results for data sets with noise. First column: low
sequencing quality. Second column: low enrichment. Third column: too low
sequencing depth. Fourth column: too high sequencing depth. First four rows:
one bad replicate; three replicates in total. Second four rows: two bad replicates;
four replicates in total.

the replicates with the too high sequencing depth. Deleting the replicates with

too many reads, the recall drops slightly but the PPV increases. Down-weighting

these replicate shows similar results. In the case of two over-sequenced samples,

the results of the effect of down-weighting or deleting bad replicates can be

seen even stronger.
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Bad replicates

In the next step, Sierra Platinum, MACS-SA, MACS-CR, and PePr were also

evaluated on data sets with a mixture of noises used in the data sets proposed

before. The data sets bad1 and bad2 (Figure 3.37) are composed of two good

replicates, and 1 respectively 2 under-sequenced replicates with low enrichment

and low quality. With both data sets the recall drops and the FDR increases

with Sierra Platinum. Interestingly, the down weighting mechanism decreases

the recall rate using the bad1 data set. This behaviour only occurs with this

data set. BinQuasi generates again a comparable recall rate, but also shows

a higher FDR rate. In comparison to the other peak-callers, even using Sierra

Platinum with equal weights generates a higher recall and lower FDR.

The data set likeK4 contains a mixture of qualities (Figure 3.37), i.e.,

experiment and background may not have comparable data quality and the

quality between replicates differs as well. Simirlarly to the previous data sets,

Sierra Platinum outperforms the other peak-calling methods and BinQuasi shows

an even higher FDR rate. Since the data set likeK4 models a realistic data

set from labratories, this indicates a problem of BinQuasi with noisy replicates.

Similarly to the previous data set, recall and FDR are better compared to the

other peak-callers independently of the approach used for Sierra Platinum.

Noisy data sets

All peak-callers were evaluated on data sets containing 1, 2, or 3 noisy replicates

(Figure 3.37, bottom row), i.e., replicates with a different signal track. Each

data set is filled up with replicates of perfect quality until they contain 6

replicates in total. Using the noise1 data set, BinQuasi calculates only a very

small amount of peaks. Depending on this, the recall rate drops considerably

under 25%. Using even more noisy replicates, BinQuasi fails to build a model

for the peak-calling process and can not find any peak any more.

The recall of the other peak-callers decreases with an increasing amount

of noise. In particular, MACS-SA and PePr show a large drop in the recall.

Furthermore, the FDR increases considerably. The largest increase of the FDR

is found for MACS-SA since the peaks of all replicates are simply merged. Thus,

all peaks from the noisy replicates are kept. Again, any approach of Sierra

Platinum outperforms the other peak-callers with respect to all 3 quality metrics.
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Figure 3.37: Evaluation results for quality deficits in some of the data sets.
First four rows, left to right: one under-sequenced replicate with low enrichment
and low quality, two under-sequenced replicates with low enrichment and low
quality, and a mixture of quality inspired by real data for H3K4me3 in embryonic
stem cells. Second four rows, left to right: one, two, and three noisy replicates.
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Summary

Even using the defaults settings—no deletion or down-weighting of replicates—

the performance of Sierra Platinum on noisy data is superior compared to the

performance of other peak-callers on noise-free data. In general, deleting or

down-weighting replicates increases the performance of Sierra Platinum on noisy

data reaching the performance of Sierra Platinum on noise-free data. Thus,

the method implemented in Sierra Platinum is robust against any kind of noise

in the data. Moreover, the implemented user interactions for deleting and

down-weighting replicates in combination with the visual quality control features

allow fine-tuning of the peak-calling results to obtain the optimal results for

each data set.
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3.8 Results

3.8.1 Real World Data Sets

Reference Data

The peak-calls for the epigenome E003 generated by the NIH Roadmap Epigenome

project [68] were used as reference. From these, the consolidated broad peaks

for the embryonic stem cell line H1 were used.

According to the Roadmap Epigenomics Consortium [68], the ‘MACS-CR

approach’ (Section 3.7.4) was used to obtain the peak-calls for E003. In this

approach, first all libraries for H1 are down-sampled to 30M reads per sample.

Next, libraries measuring the same modification belonging to the input were

merged into one file. Afterwards, MACS2 was applied on this data to generate

the peak-calls for the different modifications.

Input Data of Sierra Platinum

Data Set for H1 As test data set for Sierra Platinum, the replicates of

the H1 cell line (an embryonic stem cell line) from the NIH Roadmap Epige-

nomics Project [68] were used. In a first step, the raw data for five histone

modifications—H3K4me3, H3K27me3, H3K9me3, H3K27ac, and H3K9ac—

and the corresponding ChIP-input as background was downloaded if available.

Table 3.9 provides the GEO identifications and the sequencing center, which

produced the data set. An ID was assigned to each replicate for further reference

to the replicates.

Data Set for ESCs As a second test data set (Table 3.11), the data for all

other embryonic stem cell lines available at the NIH Roadmap Epigenomics

Project were also downloaded. For this data set, 4 modifications—H3K4me3,

H3K27me3, H3K9me3, and H3K27ac—and the corresponding ChIP-Input as

background were downloaded, if available. In all cases, only those modification

data were used for which a fitting ChIP-input was available. For this data set,

it was possible to obtain up to 16 replicates for each modification.

For each modification and replicate the available sra files from GEO [33, 20]

were downloaded. Then, the sra files were converted into fastq files and

an adapter clipping was applied. Afterwards, the reads were mapped using

segemehl [44] with an accuracy of 80% against the human genome version
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hg19 [51]. Using SAMtools [53], the results were converted into one bam

file for each data set. Since not all embryonic stem cell lines were male, the

chromosomes X and Y were removed in the data of the second test set. In the

cases where the data set consists of multiple fastq files, the mapping results

were merged in addition to sorting and indexing them. In a last step, the Picard

Tools [3] were used to remove PCR duplicates.

3.8.2 Peak Agreement

The analysis of the agreement of the peaks predicted by Sierra Platinum and by

different publicly available peak-callers is based on H3K4me3 measurements of

all three replicates of BMP4 Trophoblast Cells in the GEO Series GSE16256.

The procedure described in Section 3.6 was used to calculate the agreement

between the different results. Since there is no gold standard to decide, if a

peak is valid or not, only the agreement between the methods was calculated.

In a first step, all pairwise overlaps were calculated and for each overlap the

original peak of both inputs was stored.

Calculating the overlap of three methods is slightly involved, since one has to

take into account that pairwise overlapping peaks can not simply be intersected

with each other. In a first step, one would overlap two pairwise overlapped

peak sets, where one method was used in both pairwise overlappings. As shown

in Figure 3.38, four different cases can occur while calculating the overlap

of three different methods (without consideration of the symmetrical cases).

The first case is the valid peak overlapping for the three methods, since each

peak generated by the different methods overlaps at least 50% with the other

peaks. Case 2 and 3 are the trivial cases were no overlap exists between all

three methods. Case 4 is slightly more difficult, because the overlaps of the

pairwise overlappings have to be intersected. Overlapping a peak with a merged

overlap of two peaks would not lead to the correct result, since the overlap

of the merged peaks is probably larger than the two peaks. Therefore, it is

necessary to intersect the peaks from each method with each other to detect

this non-overlapping case.

After calculating each triple overlap, it is necessary again to overlap the peaks

of each method while calculating the quad overlap. Since BinQuasi was not

able to detect any significant peak on the used data set, it is not necessary to

calculate even higher overlaps.
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Figure 3.38: Overview of the possible peak overlaps with three replicates. Only
the first overlap (marked with green) is a valid peak overlap and should be
counted, the other three (marked with red) are discarded. Similarly, the merging
process overlaps the peaks of all four peak-calling methods.

To calculate the agreement of the different methods, peaks were predicted

with Sierra Platinum, the MACS-SA and MACS-CR approaches, PePr, and

BinQuasi. Unfortunately, BinQuasi was not able to predict any peaks with the

given data. In addition, BinQuasi was also tested with the other data sets

from the NIH Roadmap Epigenome project [68]. Here, too, BinQuasi could

not detect any peak. Due to a similar methodology, PePr can not find any

peaks in many data sets. One explanation for this is the higher amount of noise

between the replicates. This behavior of BinQuasi and PePr has already been

demonstrated in the benchmarks (see Section 3.5), whereby BinQuasi reacts

significantly more sensitive to noise than PePr.

The overlap of the peak predictions is shown in Figure 3.39. MACS-CR

predicted the largest amount of peak with 68754 segments, followed by MACS-

SA (44845 peaks) and Sierra Platinum (47442 peaks). PePr predicted 32186

peaks. As stated above, BinQuasi was not able to predict any peak. Only

the MACS-SA side overlaps nearly completely with the MACS-CR side and all

approaches show large overlaps among each other.

3.8.3 Peak-Calls

Sierre Platinum was configured to generate peak-calls with a window size of

200nt, a window offset of 50nt, and a p-value cutoff of 10−5. Probits were

corrected for inter-replicate correlation. The Holm-Bonferroni method is used

to calculate the q-value.

Peak-Calls for H1

Using the visual quality controls, the replicates for H1 were analyzed with

respect to noise. Given the results, the decisions shown in Table 3.10 were

made where the replicate ID refers to the ID given in Table 3.9, the weight
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Figure 3.39: Agreement of the peak predictions: The overlap of the peaks
predicted by Sierra Platinum (blue), MACS-SA (green), MACS-CR (orange),
and PePr (red) is shown.
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specifies the weight that was used for weighting the replicate, and off means

that the replicate was excluded.

Peak-calls for ESCs

Using the visual quality controls, the replicates for ESCs were analyzed with

respect to noise. Given the results, the decisions shown in Table 3.12 were

made where the replicate ID refers to the ID given in Table 3.11, the weight

specifies the weight that was used for weighting the replicate, and off means

that the replicaten was excluded.
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Table 3.10: Decisions based on visual inspection of the quality of the replicates
listed in Table 3.9. ID: ID given Table 3.9, Weight: weight used, off : replicate
excluded, empty cell : replicate not available.

ID H3K4me3 H3K27me3 H3K9me3 H3K27ac H3K9ac
1 0.1 1 0.05 1
2 0.1 0.05 1
3 1
4 1 0.05 0.1
5 0.1 0.1 0.1 1
6 off
7 1 off
8 1 off
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Table 3.12: Decisions based on visual inspection of the quality of the replicates
listed in Table 3.11. ID: ID given Table 3.11, Weight: weight used, off :
replicate excluded, empty cell : replicate not available.

ID H3K4me3 H3K27me3 H3K9me3 H3K9ac
1 0.02 1 0.8
2 0.02 0.8 1
3 1 1 0.8
4 off 0.02 1 0.01
5 1
6 0.02 0.01 1 off
7 off off
8 1 1 1 0.01
9 1 1 1 0.01

10 0.02 1 1 off
11 1 1
12 1 1 1 1
13 1 1 1
14 off 0.02 1 off
15 0.02 1
16 0.02 1
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3.8.4 Hox-C and Hox-D Clusters

In this section, the epigenome state of whole clusters of genes are analyzed, i.e.,

the Hox-C and the Hox-D clusters. The Hox clusters (there are also Hox-A and

Hox-B) are clusters of transcription factors that are important for embryonal

development and differentiation. Therefore, the regulation of these clusters is

crucial.

They are conserved in all mammals. However, within the Hox-C cluster, the

famous lncRNA HOTAIR is located. HOTAIR was found to drive the regulation

of the Hox-D cluster by repressing it [67]. However, the function of HOTAIR

might be specific to humans since it was so far not found in other mammal.

Furthermore, its function was even disproved in mouse [17].

Firstly, the epigenomic state predicted with Sierra Platinum on the H1

data set (see Table 3.9). Secondly, the epigenomic state predicted with Sierra

Platinum on the ESCs data set (see Table 3.11). Thirdly, the consolidated

epigenomic state of the H1 cell lines downloaded from the NIH Roadmap

Epigenomics Webportal of the Washington University (epigenome E003, only

H3K4me3, H3K27me3, and H3K9me3).

In Figures 3.40–3.42, one can see the HOTAIR locus, the containing Hox-C

cluster, and the Hox-D cluster. Given the knowledge about the clusters, one

would expect that most of the promoters are inactive (marked with H3K27me3)

or poised (marked with H3K4me3). Thus, the genes in the clusters are inactive

or are already primed for activity. One would not expect to find H3K9me3

marks in there.

The presence of H3K27me3 at all loci is predicted by all three approaches.

However, E003 predicts more H3K4me3 marks. While in the case of HOTAIR

this might be correct (even though neither the H1 nor the ESCs based prediction

of Sierra Platinum do predict H3K4me3 peaks), the abundance of peaks which

Table 3.13: Color coding used in the figures showing the peaks as UCSC tracks
at selected genomic positions.

H1 ESC E003
H3K4me3 X X X

H3K27me3 X X X

H3K9me3 X X X

H3K27ac X

H3K9ac X X
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do not co-occur with promoter regions is suspicious and may indicate an over-

prediction of H3K4me3 marks. Even more suspicious is the massive amount

of H3K9me3 marks predicted by the E003 epigenome. This would mean that

these regions are strongly repressed, which was not found so far for embryonic

stem cells. Furthermore, it is not possible to confirm the presence of H3K9me3

in the clusters using Sierra Platinum on the two embryonic stem cell data sets.
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3.8.5 Peak Coverage Analysis

In this section it is analyzed whether the predicted peaks for the combined

replicates are supported by the single replicates. Therefore, the read coverage

was calculated of each peak by the corresponding replicate. The resulting

coverage distributions are simplified by counting only how often peaks are not

covered at all, by 1 - 200 reads and by more than 200 reads. For replicates

having a high weight, one can expect to find a strong support of almost all peaks

since those are the replicates having a strong influence on the final p-value.

Replicates having a low weight are not expected to fully support the peaks

predicted by Sierra Platinum. Those replicates having low weights are noisy or of

bad quality and therefore, may not reflect the true epigenome state. Replicates,

which are that are even worse, were excluded from peak-calling, since they are

not expected to support the peaks.

Figure 3.43 shows the analysis results. For all replicates, most peaks fall

into the categories 1-200 reads coverage and more than 200 reads coverage.

Thus, in all replicates most peaks have at least a weak support.

Peaks with no support are almost only found when the replicate is strongly

down-weighted during peak-calling. For example replicate 16 was down-weighted

for peak-calling since the correlation with the other replicates was low and

because the tag distribution indicated under-sequencing effects. About 10.000

peaks are unsupported by this replicate. This strongly supports the decision to

not rely to much on the replicates and shows that Sierra Platinum overcomes

the problem that peaks may not be supported by all replicates. While the

support of replicate 16 was used for the remaining 50.000 peaks, the 10.000

unsupported peaks are not strongly affected by the presence of replicate 16.

On the other hand, replicates having a high weight (such as replicate 8

and 9) support most of the peaks. In the case of replicate 8, 9, and 10, most

peaks are supported with more than 200 reads. In summary, the peak-calls are

supported by the replicates.
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4.1 Introduction

In bioinformatics, one frequent task is judging the likelihood of the overall RNA

secondary structure. As described in Section 2.3, the secondary structure of

an RNA is defined by its base pairs. These base pairs can be predicted with

special algorithms and therefore, the probability for two nucleotides of an RNA

sequence forming a base pair. Dot plots are used for displaying probabilities or

similarity measures between a row and a column of a matrix. Hence, dot plots

are frequently used for analyzing RNA secondary structure likelihood displaying

the probability of a row and a column nucleotide forming a base pair.

Most currently available tools generate dot plots in post-script (ps) format

(e.g., [54, 39]). These ps-images are then viewed using suitable postscript

viewers. However, postscript itself is no longer actively developed and was

replaced by the portable document format (pdf). Moreover, the images are

static and possible interactions are restricted to standard viewing interactions

like geometric zooming and panning the image. Further, the scalability of this

approach is low as during zoom-in the nucleotide sequence that is displayed at

the border of the image might not be visible any more.

Therefore, iDotter, an interactive tool for analyzing RNA secondary struc-

tures, was developed that overcomes these limitations. Concretely, the contri-

butions of this tool are:

• Sophisticated zooming and panning methods, preserving the context of

the zoomed and the panned area [75]

• Presenting details for each dot on demand [75]

• Highlighting of semantic units in the dot plot

• Recoloring of the dot plot for annotation and presentation

• Exporting parts or the whole dot plot for further analysis and for presen-

tation

• A powerful API for using iDotter within analysis pipelines

• A sharing function for collaborative analyses
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4.2 Background and Related Work

Dot plots were introduced by Gibbs and Mcintyre [36]. Originally, dot plots

were used to visualize alignments of two nucleotide sequences or proteins. A

dot plot is a two dimensional matrix where the sequences ‘A’ and ‘B’, that are

compared, are visualized on the x- and y-axis, respectively. A dot in a cell means

that Sequence ‘A’ is similar to Sequence ‘B’ at this nucleotide/amino acid

(position). Both color and size of a dot represent the strength of the similarity

of the sequences calculated using application dependent measurements. With

the aid of dot plots, identifying highly similar regions between two sequences is

easily possible. These regions are the diagonal lines in the matrix. An example

for an interactive dot plot viewer for alignments was introduced by Sonnhammer

and Durbin [76]. In this thesis, however, the focus is on RNA folding structures

that can not be handled by their program. Moreover, their tool does not

provide additional interactions like highlighting, semantic zoom, and export of

(sub-)sequences.

While the nucleotide sequence (RNA primary structure) is important for the

analysis of RNA sequences, the folded structure of the RNA (RNA secondary

structure) provides additional vital information. With the emergence of RNA

folding tools [54, 57, 66], visualizing RNA secondary structure became more

and more important to foster its analysis. Tools like Varna [31] or the NAVIEW

algorithm [22] generate graph-based, node-link visualizations of a single RNA

secondary structure showing one possible folding of the RNA, only.

In addition to the graph-based visualizations, dot plots were adapted to visualize

the predicted base pair probabilities within a single RNA sequence. Furthermore,

they support analyzing the changes of two similar RNA sequences of different

species. Usually, the size of a dot describes the probability of a base pair between

the corresponding nucleotides.

Static dot plots can be calculated with R using the R package R-CHIE [26].

The ViennaRNA package [54] can generate one dot plot in postscript format for

each RNA secondary structure prediction (an example being shown in Figure 4.1).

Moreover, the ViennaRNA Web Services [39] provide the functionality of the

ViennaRNA package without the necessity to compile the package. Therefore,

it can be used platform independently.

While the original dot plots of Gibbs and Mcintyre [36] for alignments show

the same information in the upper and the lower triangle, dot plots generated

by RNA folding software contain two different folding predictions as shown
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in Figure 4.1, e.g., the energetically best solution and all possible base pair

probabilities in the lower and upper triangles, respectively.

An alternative for visualizing RNA secondary structure predictions is the arc

diagram introduced by Wattenberg [83] and later implemented as arc plot in

R [50]. The RNA sequence is plotted as a linear sequence and an arc between

two nucleotides describes a base pair while the color of an arc might encode

the probability of the pair. Besides the fact, that this approach has limited
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Figure 4.1: Overview of the postscript dot plot generated by ViennaRNA [54]
showing base pair probabilities of an RNA. Black squares are used for showing
the possibility of two nucleotides forming a base pair. The probability for forming
this base pair is encoded in the size of these squares: large squares imply a high
probability, while small squares imply a low probability. The diagonal is used
as a landmark only. It divides the upper-right triangle showing the consensus
probabilities from the lower-left triangle showing the probabilities according to
the energetically best solution.
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scalability, the arcs produce a lot of clutter and it is hard to determine the

corresponding base pairs.

Arc diagrams and dot plots can be used for character sequence comparison

(alignment) in general. For arc diagrams this was already introduced in the

original paper [83]. Abdul-Rahman et al. [15] use dot plots to visualize text

alignments between different documents.

4.3 Problem Statement: Current State and Issues

A dot plot fulfills the standard design goals taken from the information visual-

ization literature [81]. Dot plots

1. are flexible (can be used for different tasks and application areas)

2. are space efficient

3. provide a good overview of the data

4. ease the identification of pattern in the data

5. are fast to create

However, dot plots are static images without any interaction provided.

Figure 4.2 shows a relatively small RNA having a length 165nt. As can be

seen in the ps version (Figure 4.1), the nucleotide names are barely readable.

Moreover, it is difficult to impossible to spot small base pair probabilities.

Zooming into a part of the ps view is possible (Figure 4.3a). Then, all dots

become larger and small base pair probabilities are more easily spotted. However,

due to the limitations of the ps-viewers, the nucleotide sequence related to the

zoomed-in area might no longer be visible.

4.4 Solution

To overcome the limitations of existing dot plot generators, iDotter was devel-

oped: a fully interactive web-interface that supports users in analyzing RNA

secondary structure. iDotter is based on the dot plots generated by existing

folding tools. After importing the data (Section 4.4.1), the dot plot is shown in

the web browser (Section 4.4.2). Then, the user can zoom in and out as well as

pan the view (Section 4.4.3). Moreover, the user can mark rectangular regions

of dots as well as single columns and single rows in the dot plot (Section 4.4.3).
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Figure 4.2: Overview of the iDotter interface showing the same dot plot as
Figure 4.1. The nucleotide sequence is only shown at the borders, if the
nucleotides are readable in the current zoom level.
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(a) PostScript-View, zoom-in of Figure 4.1

(b) iDotter view, zoom-in of Figure 4.2

Figure 4.3: Comparison of the dot plot interfaces after zooming into a sub-
sequence. In the postscript view (a), the nucleotide sequence is no longer
visible, while in iDotter (b) it stays visible at all borders easing the analysis of
sub-sequences.
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Finally, the highlighted part of the dot plot or the complete dot plot can be

exported in postscript-format (Section 4.4.3). A web-based API provides a

connection to dot plot generating services (Section 4.4.4).

4.4.1 Data Import

Parsing Postscript

After starting iDotter, the original ps-file generated by the ViennaRNA pack-

age [54] is transformed into a JSON file by iDotter, if the JSON file does not

already exist. To do so, the RNA sequence, as well as the ubox and the lbox

containers are extracted from the ps-file and stored in a JSON array representing

the box plot. Each ubox and lbox container comprises an x- and a y-coordinate

designating the cell in the dot plot matrix, the size of the dot, and the color

of the dot. The color information is optional. By transforming the input file

into a generic JSON file iDotter can easily be extended to other input types by

implementing a corresponding import routine.

Reformat Data

During the parsing of the original ps-file iDotter converts the color values of

the dots, if they are present. Due to numerous different implementations of

the color model that can be used in the dot plot, the color value is mapped

to a value between 0 and 1. This value is later used as the hue value in the

internal color model of iDotter. However, all original values are stored besides

the converted value in the JSON file so that the user can export selected regions

with the original color model to a ps-file (Section 4.4.3).

4.4.2 Visualization

The JSON file is imported by iDotter and the complete dot plot (zoom out) is

displayed in the browser (Figure 4.2). This follows the Shneiderman Mantra,

presenting an “overview first” [75]. On each border, the nucleotide sequence is

displayed. For convenience, the diagonal showing the same nucleotide on both

the x- and the y-axis is shown in red. At the same time, this diagonal separates

the upper from the lower triangle of the matrix. In the upper and the lower

triangle, either the same or two different base pair probabilities (encoded as

size in the input file) are shown. The size of each dot is encoded depending on
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the zoom level so that the user can compare the probabilities easily on each

zooming level. As default, the consensus probabilities are shown in the upper

and the energetically best solution probabilities are shown in the lower triangle

of the matrix, respectively. The probability of a dot is mapped to its size. The

color can be used to represent, e.g., the conservation of the sequence during

evolution. An adaptive background grid is displayed to enable an easy counting

of the base pairs. Matching the zoom-level of the dot plot, the different grid

levels can be shown or faded out. This view corresponds to the zoomed out

standard dot plots, except that the nucleotide sequence is always shown, except

if the text becomes unreadable.

4.4.3 Interaction

Zooming and Panning

The second step in Shneiderman’s Mantra is “zoom and filter” [75]. The user

can use the semantic zoom to more closely analyze a sub-sequence (Figure 4.3b).

The user benefits from the sequence labels staying visible at all borders of the

dot plot all the time. This improves the scalability with respect to the size of

the data that can be analyzed conveniently, which is an improvement over the

state of the art (Figure 4.3a) where the nucleotide sequence might disappear

during zooming. Moreover, the individual nucleotides of the nucleotide sequence

are only shown, if the zoom level allows displaying them in a readable manner.

Otherwise, they are hidden (Figure 4.2). The semantic zoom is triggered by

mouse wheel motion. Moreover, the user can pan the viewport by holding the

left mouse button and moving the mouse. Also during panning, all sequence

labels are staying visible all the time as long they are readable.

Filtering of the original data is not provided, because it would not be useful

in this context. However, parts of the dot plot can be selected and this selection

can then be exported (see below). This corresponds to a filtering step its primary

applications being reporting and collaborating.

Details on Demand

The third step in Shneiderman’s Mantra is “details on demand” [75]. While

working with the dot plot, information about individual dots can be displayed on

demand as a tool tip by mouse over. Then, all available information is shown

(Figure 4.4). Thus, the user can get the exact information about the nucleotides
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Figure 4.4: Each dot provides details on demand by mouse-over showing a tool
tip: element ID, X showing the nucleotide of the column and its position, and Y
showing the nucleotide of the row and its position. The (biological) attributes
mapped onto ‘Size’ and ‘Color’ are application dependent.

(names and positions) involved in a base pair even though the respective names

are no longer visible at the corners because they would be too small to be read.

Moreover, the values for the size (here: representing the base pair probability)

and the color are shown.

Highlighting

Following the taxonomy of Yi et al. [88], selecting dots is provided by iDotter.

The user can mark a dot by left clicking on it (Figure 4.5a). Then, the selected

dot is highlighted with the ’Selected Dot Color’ (Figure 4.7). Moreover, the

user can select multiple dots by left clicking into the viewing area and dragging

the mouse while holding the ‘Shift’ key pressed. This creates a rectangular

region. Within this region, all columns and rows that contain dots are highlighted

with the ’Dotmarker Color’ (Figure 4.7). Additionally, the selected dots are

highlighted using the ’Selected Dot Color’ (currently yellow) in both cases.

Deselecting a region of dots is achieved by pressing the ‘Ctrl’ key while using

the mouse. Besides marking dots, the user can mark single columns by left

clicking on them (Figure 4.5b). Then, the selected column is highlighted with

the ’Linemarker Color’ (see Figure 4.7). In the same way, the user left clicks on

a row to select it (Figure 4.5b). Both—marking dots as well as marking columns

and rows—can be combined (Figure 4.6) to mark those parts of the dot plot
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that are of interest to the user. Finally, the selection can be reset by pressing

the button having the ‘three horizontal bars’ icon in the upper right corner of

the dot plot invoking the settings dialog (Figure 4.7), and then pressing the

’Remove Marker’ button there.

Data Export

After working with the data, the user can export the highlighted parts of the

dot plot into a new ps-file for publication or other purposes by pressing the disc

icon in the upper left corner and selecting the menu item ’export only selection’.

Further, the user can export the complete dot plot into a new ps-file by pressing

the disc icon and selecting the menu item ’export all’.

URL Export

The URL export is triggered by pressing the clipboard icon in the lower left

corner. The URL contains all necessary parameters and is copied into the

clipboard of the operating system. The user can copy it afterwards to any

application.

4.4.4 API

iDotter comes with a web-based API that provides a connection with dot

plot generating services like the ViennaRNA Web Services [39]. This API

supports direct import of ps-files into the view, pre-selecting highlighted regions,

and exporting the highlighted regions for automatic workflows. The API is

controlled by URL parameters. This type of control provides iDotter with

additional possibilities for collaboration between users. The user can export his

current settings, like zoom level, position, and color settings, and share these

with his collaborators or save them for documentation purposes.

4.4.5 Implementation

iDotter provides an interactive web interface that is implemented using the cur-

rent state of the art web-programming languages HTML5, PHP, and JavaScript.

The upload functionality and the API are implemented in PHP, because the web

server executes them on the server hardware. All other functions are executed

on the local machine of the user to reduce the computational overhead of the

server. Therefore, this application consumes only a low amount of run time
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(a) The ‘mark dot’ interaction allows selecting single dots by clicking on them. In this
case, the selected dot is highlighted with the ’Selected Dot Color’ (see Figure 4.7).
Moreover, multiple dots can be selected by marking a rectangular region. (Clicking into
the viewing area and dragging the mouse while holding the ‘Shift’ key pressed. For
deselection, the ‘Ctrl’ key should be pressed instead.) All columns and rows that contain
dots in the selected region are highlighted with the ’Dotmarker Color’ (Figure 4.7),
while the selected dots are highlighted using the ’Selected Dot Color’ (Figure 4.7).

(b) The ‘mark row’ interaction allows selecting single rows by clicking on them. In this
case, the selected row will be highlighted with the ’Linemarker Color’ (see Figure 4.7).
In the same way, columns can be selected.

Figure 4.5: Highlighting dots 4.5a as well as rows and columns 4.5b.
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Figure 4.6: Marking dots and regions of dots (Figure 4.5a) and marking rows
and columns (Figure 4.5b) can be combined.

Figure 4.7: In contrast to the postscript visualization, iDotter provides choosing
the color gradient. Additionally, choosing the highlighting colors for dots
(’Selected Dot Color’, Figure 4.5a) and columns/rows (’Linemarker Color’,
Figure 4.5b) is possible. Moreover, it is possible to reset highlighting in the dot
plot by pressing the ‘Remove Marker’ button.
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and memory on the server. In addition, the server stores the dot plots that

have already been used locally so that the user can select them from a list when

navigation to the start page of the web service in order to facilitate its usage of

the web service.

4.5 Results

In a small testcase study, a biological collaborator used iDotter for analyzing

the evolution of long non coding RNAs (lncRNA). Since these RNAs are longer

than 200nt, it is challenging to analyze the generated dot plots in ps-format

due the lack of interactivity. Furthermore, it is hard to compare specific regions

between different dot plots. For that reason, the expert used the interactivity

features for selecting regions of interests. By exporting these regions with the

API from all investigated RNA samples, it was possible to detect evolutionary

changes between several species. According to the biological collaborator that

regularly uses dot plot viewer, iDotter outperforms previous approaches with

respect to facilitating dot plot based analysis of RNA secondary structures.

4.6 Use Case

Each dot of the dot plot shown in Figure 4.2 represents the probability how likely

a base pair between the row and the column nucleotide is. The energetically

best solution is presented in the lower triangle of the dot plot. Since only

one prediction is shown here, exactly one probability per nucleotide is shown.

This predicted folding is also shown in Figure 4.9 as a graph layout drawn by

RNApuzzler.

A diagonal sequence of directly consecutive dots represents a stem in the

RNA secondary structure. If this sequence is interrupted by a single column,

the stem contains a bulge at this position (Figure 4.8a). If a sequence of dots

is interrupted by more than one column, the stem contains an internal loop

(Figure 4.8b). A hairpin of the RNA secondary structure is encoded as the free

columns between a stem and the main diagonal of the dot plot (Figure 4.8c).

Multi-loops are harder to detect in the dot plot but they usually occur with

larger gaps between the stems (Figure 4.8d).

The upper triangle of the dot plot represents the probabilities of the consensus

folding of several suboptimal folding predictions. Therefore, it is possible that a
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(a) The bulge annotated with ’1’ in
Figure 4.9.

(b) The internal loop annotated with
’2’ in Figure 4.9.

(c) The hairpin loop annotated with ’3’
in Figure 4.9.

(d) The multi-loop annotated with ’4’
in Figure 4.9.

Figure 4.8: Representation of a bulge, an internal loop, a hairpin loop, and a
multi-loop in iDotter. The highlighted regions annotate the structural elements.

single nucleotide has multiple base pairing options represented by several dots in

the same row or column. If the size of these dots deviates considerably (as shown

in Figure 4.4), the alternative folding suggestions are rather unlikely. If the

dot sizes are of similar size, then the consensus probabilities show other similar

base pairings for the sequence and the RNA secondary structure might have

additional possible foldings that can occur, e.g., depending on the temperature

or on the interaction with other molecules.
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RNApuzzler
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5.1 Introduction

Besides the dot plots described in Chapter 4, RNA secondary structures can

be visualized as graphs. Using this representation, the expert can more easily

identify structural elements such as loops and stems and analyze them for

determining possible binding sites or other interactions. Therefore, it is very

common to visualize RNA secondary structures using a graph layout.

RNA secondary structures are outerplanar graphs, hence they can be drawn

in the plane without intersection following the contour of a tree. In order

to facilitate the interpretation by the expert, a meaningful drawing has to

conform—at least approximately—to a series of constraints, such as parallel

arrangement of stacked base pairs, or circular layout of loops. These additional

requirements make RNA drawing difficult.

The current implementation of ViennaRNA uses a default layout algorithm

proposed three decades ago by Bruccoleri and Heinrich [22], which does not

always produce a planar (i.e., self-intersection-free) drawing. Many other RNA

drawing algorithms suffer from the same shortcoming [64, 74] because the

desirable properties of the RNA secondary structure layout are incompatible

with a planar drawing. We refer to the recent review by Ponty and Leclerc [64]

for an overview of available programs, their capabilities, and their output.

RNApuzzler approaches the problem of drawing RNA secondary structure in

two steps. First, a drawing method was devised that fulfills drawing constraints

with respect to nucleotide distances (RNAturtle). Then, relaxations of these

drawing constraints in a manner that guarantees an intersection-free layout were

investigated. RNApuzzler is designed along the guidelines of Muller et al. [59]:

• Simplicity : The elements of the RNA secondary structure as well as the

start and the end of the sequence should be clearly and easily recognizable.

• Robustness: The RNA drawing should be robust against small changes

within the folding. This supports the experts comparing RNAs by identify-

ing similar regions as well as differences between the RNAs.

• Automation: The (planar) RNA drawing should be created automatically.

• Aesthetics: The RNA drawing should have an aesthetic character.
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5.2 Theory

This section describes the graph-theoretical basis of the algorithm (Section 5.2.1),

the formal definition of the RNA secondary structure elements (Section 5.2.2),

and the combination of both for defining RNA-Trees (Section 5.2.3).

5.2.1 Directed Rooted Trees

The following paragraphs define directed rooted trees and all related concepts

that are needed subsequently. A general overview over graphs, trees, and

networks as well as over drawing algorithms for them is given in the Handbook

of Graph Drawing and Visualization [78].

Definition 1 (Directed Graph). A directed graph G = (V, E) consists of a finite

set of vertices V and a finite set of edges E ⊆ V × V such that each edge

e ∈ E is a tuple of vertices, i.e., E ⊆ V × V . One can say that e = (u, v) is an

outgoing edge of u and an incoming edge of v .

Definition 2 (In-degree and out-degree). Let v ∈ V be a vertex. The in-degree

of v is the number of incoming edges of v |{u|(u, v) ∈ E}|, while the out-degree

of v is the number of outgoing edges of v |{w |(v , w) ∈ E}|.

Definition 3 (Directed Path). A directed path p is a sequence of l vertices

(v1, v2, . . . , vl), l ≥ 2 such that

(1) ∀1 ≤ i ≤ l : vi ∈ V and ∀1 ≤ i ≤ l − 1 : (vi , vi+1) ∈ E and

(2) the vi are pairwise distinct with the possible exception of the end points v1
and vl . The length of the path is l − 1.

Definition 4 (Cycle). A cycle is a directed path with vl = v1.

Definition 5 (Directed Rooted Tree). A directed rooted tree T = (V, E) is a

directed graph with the following properties:

• T is weakly connected.

• T does not contain cycles.

• There is a dedicated vertex named root vertex with in-degree zero. It is

the only vertex with in-degree zero.

• There are dedicated vertices named leafs with out-degree zero.
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• Let |V | ≥ 2. For each leaf, there is exactly one path from the root vertex

to the leaf.

• All other vertices are called internal vertices.

This definition implies that for each internal vertex v , there is a directed

path from the root to v and from v to at least one leaf.

Corollary 1 (Directed Rooted Tree: Properties). Let T = (V, E) be a directed

rooted tree.

• All vertices of T except the root vertex have in-degree 1.

• T has at least one leaf.

• If |V | = 1 then the root vertex is also a leaf vertex.

Definition 6 (Subtree). Let T = (V, E) be a directed rooted tree and v ∈ V
be a vertex. Then, the subtree T ′ = (V ′, E ′) rooted at v is defined as

• V ′ ⊆ V

• v ∈ V ′

• E ′ ⊆ E ∩ (V ′ × V ′)

• For all paths p = (v = v1, . . . , vl):

(vi ∈ V ′ ∀1 ≤ i ≤ l) ∧
((vi , vi+1) ∈ E ′ ∀1 ≤ i ≤ l − 1)

Definition 7 (Relationships). Let T = (V, E) be a directed rooted tree and

v ∈ V be a vertex.

• If an edge (u, v) ∈ E exists, then u is called the parent of v .

• For all vertices w such that (v , w) ∈ E, w is called a child of v .

• If w ′, w ′′ ∈ V , w ′ ̸= w ′′ are children of the same vertex v , then they are

called siblings.

• For all paths p = (u, . . . , v), u ∈ V , u is called ancestor of v .

• For all paths p = (v , . . . , w), w ∈ V , w is called descendant of v .
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Corollary 2 (Relationships: Properties). Let T = (V, E) be a directed rooted

tree.

• Each vertex v ∈ V except the root has exactly one parent.

• All vertices v ∈ V except the leaves have at least one child.

Definition 8 (Lowest Common Ancestor). Let u, v ∈ V , u ≠ v . Further, u is

neither an ancestor nor a descendant of v .

• A common ancestor ca(u, v) is defined as being a vertex that is an

ancestor of both u and v .

• The lowest common ancestor lca(u, v) is defined as being the common

ancestor of u and v such that the path pu = (lca(u, v), . . . , u) is the

shortest path for all common ancestors of u and v .

Corollary 3 (Lowest Common Ancestor). Let pu = (lca(u, v), . . . , u) and

pv = (lca(u, v), . . . , v). Then their lengths |pu| and |pv | are the shortest ones

among all paths from a common ancestor to u and v , respectively.

5.2.2 RNA Secondary Structure

An RNA sequence is a string over the alphabet of nucleotides A := {A,U, G, C}.

Definition 9 (Secondary Structure). A secondary structure on the vertex set

X = {1, 2, . . . , n} is the disjoint union of the backbone B, i.e., the path

1− 2− · · · − n and a set of base pairs Ω with the following properties:

(1) Ω is a matching, i.e., for every x ∈ X there is at most one base pair b ∈ Ω
with x ∈ b.

(2) Ω is non-crossing, i.e., i < k < j implies i < l < j for all {i , j}, {k, l} ∈ Ω.

(3) |j − i | > 3 for all {i , j} ∈ Ω.

An secondary structure is compatible with an RNA sequence if {i , j} ∈ Ω
implies that the nucleotides xi and xj form one of the six allowed base pairs

A− U, U − A, G − C, C − G, G − U, or U − G.

The graph (X,B ∪Ω) of a secondary structure is outerplanar, i.e., it can

be drawn in the plane in such a way that all vertices are incident to the infinite

outer face and boundaries between finite faces are formed by base pairs. This

outerplanar embedding in unique [52]. It gives rise to a unique tree representation

of the secondary structure graph as follows (Figure 5.1b):

161



Chapter 5. RNApuzzler

1. The vertices of the fully resolved tree are the faces of the outerplanar

embedding.

2. The infinite outer face corresponds to the root of the tree.

3. An edge connects two vertices of this tree if and only if the corresponding

faces share a base pair. Please note, that this construction differs from

the usual notion of the dual graph by omitting edges between the infinite

face and any finite face that does not share a base pair with the infinite

face. It follows immediately from outerplanarity that this restricted dual

graph is indeed a tree.

For the purpose of drawing the RNA secondary structure, faces are catego-

rized (Figure 5.1a). The corresponding geometric representation of each face

or each set of faces is shown in Figure 5.1d.

The first characteristic used is the number of outgoing edges. If the number

of outgoing edges is 0, then the face is bounded by a single base pair and a

sequence of consecutive unpaired bases belonging to the backbone. This face is

called a hairpin-loop (H). Hairpin-loops will be drawn using a circle whose radius

is determined by number of unpaired nucleotides and the backbone distance

together with the base pair distance.

If the number of outgoing edges is ≥ 2, then the face is called a multi-loop

(M). Multi-loops will also be drawn as circles. Multi-loops will be characterized

by their radii and by the angles of the outgoing base pairs compared to the

incoming base pair. Changing these parameters allows to create outerplanar

drawings.

If the number of outgoing edges is exactly 1, an additional characteristic for

categorizing the corresponding faces is used. If the boundary of the face does

not contain any unpaired nucleotides, two base pairs are directly connected

to each other. All adjacent faces having these properties are connected and

called stem. The faces will be represented by a rectangle with the two parallel

paired nucleotides lying on edges of this rectangle. The stem is then formed

by stacking this rectangle on top of each other. If the boundary of the face

contains exactly one unpaired nucleotide, then this face is called a bulge-loop

or simply bulge (B). Bulges and stems will be connected into one structure

such that all lines connecting base pairs are parallel to each other. Bulges are

represented by triangles formed by a sequence of three nucleotides (paired–

unpaired–paired) attached to one side of the stem. Two edges are formed by
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(a) Different loop types using the nu-
cleotide sequence introduced in the def-
initions section 5.2.2. E: exterior-loop,
B: bulge-loop, I: internal-loop, M: multi-
loop, H: hairpin-loop. Please note, that
only single unpaired nucleotide bulge-
loops are considered as being bulges.

(b) Mapping of the RNA secondary
structure to a fine grained tree struc-
ture, where each face is represented as
a vertex in the tree. The red vertices
correspond to the vertices of the coarse
grained RNA-tree structure (c).

(c) Simplification of the fine grained
tree structure (b) into the coarse
grained RNA-tree (Section 5.2.3) that
is used by RNApuzzler. Each vertex
represents a loop and a stem (incoming
edge) that is connected to this loop.

(d) Geometries representing the RNA
secondary structure elements. These
geometries are used for the intersection
tests of RNApuzzler.

Figure 5.1: Different elements of the RNA secondary structure (a) and the
corresponding fine grained (b) and coarse grained (c) trees as well as the
corresponding geometries (d).
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two base pairs connecting the stem to a loop. Stems, including intervening

bulges, are considered as rigid objects for the purpose of drawing.

All other faces with exactly 1 outgoing edge are called internal-loop (I). Their

boundary is formed by the two base pairs and at least 2 unpaired nucleotides.

In the following no distinction is made between internal-loops with one or two

sequences of consecutive nucleotides. It should be noted that the distinction

of bulge and internal-loop is different from the one in the standard energy

model [79], where all internal-loops with a single contiguous interval of unpaired

positions are termed “bulge”.

Finally, all nucleotides not bounding faces form the exterior-loop together

with the base pairs that are neighbors to some of them with respect to the

backbone structure. The root of the tree is associated with the exterior-loop.

Representing each face by a vertex of the tree, a fine grained tree rep-

resentation is obtained (Figure 5.1b). Similar to coarse tree models used in

other contexts [43], it is useful to retain only those vertices that belong to

hairpin-loops, internal-loops, and multi-loops as well as to the root of the tree.

Altogether, they determine the topological structure of the tree (Figure 5.1c).

All remaining bounded faces are coalesced into the stem structure. As each

of the loops described before has exactly one incoming base pair, the stem

containing this base pair is associated with the respective loop. This stem–loop

pair is called a node and is associated with its tree vertex.

5.2.3 RNA-Trees

Definition 10 (RNA-Tree). The RNA secondary structure can be represented

by a rooted directed tree T = (V, E) called RNA-tree having the following

properties:

• The exterior-loop is represented by a node. This node has no incoming

edges and is the root vertex of the tree.

• All nodes constructed by combining stems and the associated loops are

vertices of the tree.

• There is an edge (u, v) ∈ E between two vertices u, v ∈ V iff the stem of

v is connected to the loop of u in the RNA secondary structure.
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Corollary 4 (RNA-Tree). Let T = (V, E) be an RNA-tree.

• Each leaf of the tree contains exactly one hairpin-loop.

• Each node containing an internal-loop has exactly one child.

• Each node containing a multi-loop has two or more children.

Every RNA secondary structure allows for a outerplanar drawing [64]. In

the following the RNApuzzler algorithm (Section 5.4) is used to construct

such a planar drawing that builds upon the RNAturtle algorithm (Section 5.3)

and resolves intersections in the layout generated by the latter. Therefore, it

necessary to characterize intersections in the RNA-tree. Let T = (V, E) be an

RNA-tree.

Definition 11 (Intersection between two nodes). Let u, v ∈ V be two nodes of

the RNA-tree. u and v intersect each other, if the geometries represented by u

and v intersect.

Definition 12 (Ancestor Intersection). Let u, v ∈ V be two nodes of the

RNA-tree such that u is an ancestor of v . If u and v intersect each other, then

• the intersection is called an ancestor intersection

• u is called intersected node

• v is called intersecting node

The expression used in the following is: v causes an ancestor intersection.

Definition 13 (Exterior Intersection). Let r, v ∈ V , r being the root node of T .

An ancestor intersection between r and v is called exterior intersection.

Definition 14 (Sibling Intersection). Let u, v ′, v ′′ ∈ V , v ′ ̸= v ′′ being children

of u. Let further Tv ′ = (Vv ′, Ev ′) be the subtree of T with root v ′ and Tv ′′ =

(Vv ′′, Ev ′′) be the subtree of T with root v ′′. If there exist nodes w ′ ∈ Vv ′ and

w ′′ ∈ Vv ′′ such that w ′ and w ′′ intersect each other, the intersection is called a

sibling intersection and one can say that “u has a sibling intersection”.

Corollary 5 (Sibling Intersection). If u has a sibling intersection and w ′, w ′′ are

the intersecting nodes given in the previous definition, then u = lca(w ′, w ′′).

Definition 15 (Exterior Subtree Intersection). Let r ∈ V be the root node of T .

If r has a sibling intersection, then the intersection is called an exterior subtree

intersection.
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Based on these definitions of the different intersection types that will be

considered, the absence of intersections is defined as:

Definition 16 (A-planar). A node v ∈ V is called A-planar iff the parent node

u of v is A-planar and v does not cause any ancestor intersection.

Definition 17 (S-planar). A node v ∈ V is called S-planar if v does not have a

sibling intersection.

Definition 18 (T-planar). Let v ∈ V be the root of the subtree Tv = (Vv , Ev)

of T . v is called T-planar iff ∀w ∈ Vv : w is A-planar and S-planar.

Definition 19 (Planar Tree). Let r ∈ V by the root of T . T is called a planar

tree iff r is T-planar.

These definitions are the foundation of the subsequent conclusions. Alto-

gether, the definitions and the conclusions build the theoretical background

for the RNApuzzler algorithm and for showing that the RNApuzzler algorithm

computes a planar layout of the RNA-Tree and thus of the RNA secondary

structure.

Next, conclusions will be drawn based on the definition of A-planar (Defini-

tion 16).

Lemma 1. The root r ∈ V of T is A-planar.

Proof. The statement follows trivially since r has no ancestor.

Lemma 2. If v ∈ V is A-planar and u ∈ V is an ancestor of v then u is A-planar.

Proof. Every ancestor u of v lies on the (unique) directed path from the root to

v . Proceed by induction on the length l of the path from r to v . For l = 1, the

only ancestor is r , which is A-planar by Lemma 1. In the general case assume

that the statement is true for all ancestors of u of v with a path of length l

between r and v . Now, let w ∈ V be a child of v . Thus, the path from r to w

has length l + 1. The ancestors of w are its parent v as well as all ancestors of

v . The induction hypothesis implies that all ancestors of v are A-planar. By

definition, the fact that w is A-planar implies that its parent v is also A-planar.

Therefore all ancestors of w are A-planar.

Lemma 3. If v ∈ V is A-planar and u ∈ V is an ancestor of v then u does not

cause any ancestor intersection.

Proof. This follows directly from Lemma 2 and the definition of A-planar.
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Lemma 4. If neither v ∈ V nor any ancestor u ∈ V of v causes an ancestor

intersection, then v is A-planar.

Proof. Every ancestor u of v lies on the (unique) directed path from the root

to v . Proceed by induction on the length l of the path from r to v . For l = 1,

the only ancestor is r , which is A-planar by Lemma 1. By assumption, v does

not cause an ancestor intersection and thus by definition v is A-planar. In the

general case assume that the statement is true for all nodes v with a path of

length l between r and v . Now, let w ∈ V be a child of v . Then, the path

from r to w has length l + 1. The ancestors of w are its parent v as well as all

ancestors of v . The induction hypothesis implies that v and all its ancestors

are A-planar. As by assumption w does not cause an ancestor intersection, it is

A-planar by definition.

Theorem 1 (A-planar). A node v ∈ V of T is A-planar if and only if neither v

nor any ancestor u ∈ V of v causes an ancestor intersection.

Proof. One can show the equivalendce by showing each implication:

“⇒”: Let v be A-planar. Then neither v nor any ancestor u ∈ V of v causes an

ancestor intersection by Lemma 3.

“⇐”: Neither v nor any ancestor u ∈ V of v causes an ancestor intersection.

Then v is A-planar by Lemma 4.

In the next step, it is shown that leafs are always S-planar (Definition 17).

Lemma 5. Every leaf v ∈ V of T is S-planar.

Proof. This follows trivially from the definition since leaves have no children.

Further, if a node is T-planar, all descendants are T-planar, too. Moreover,

if all children are T-planar and the node itself is both A-planar and S-planar, the

node is T-planar, too.

Lemma 6. Let v ∈ V be the root of the subtree Tv = (Vv , Ev) of T . If v is

T-planar, then w is T-planar for all w ∈ Vv .

Proof. Let w ∈ Vv be a descendant of v . By Definition 18, w is A-planar and

S-planar. Moreover, all descendants of w are A-planar and S-planar as they

are descendants of v , too. Let Tw = (Vw , Ew) be the subtree rooted at w . As

Vw contains w and all its descendants, all w ′ ∈ Vw are A-planar and S-planar.

Therefore, w is T-planar by definition.
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Lemma 7. Let v ∈ V be the root of the subtree Tv = (Vv , Ev) of T . v is

T-planar, if all children w ∈ Vv of v are T-planar and v is A-planar and S-planar.

Proof. Vv contains v and all descendants of v . By assumption, all children w

of v are T-planar. Therefore, all children w and their descendants are A-planar

and S-planar by Definition 18. Together, these are all descendants of v . Thus,

all descendants of v are A-planar and S-planar. As by assumption, v is A-planar

and S-planar, too, v is T-planar by Definition 18.

Some important consequences are given next.

Corollary 6. Let v ∈ V be a leaf. If v is A-planar, then it is T-planar.

Proof. v is A-planar by assumption and S-planar according to Lemma 5. More-

over, Tv = (Nv , Ev) = ({v}, ∅) is the subtree of T rooted at v as v is a leaf

and thus has no descendants. Thus, all v ∈ Nv are A-planar and S-planar and

thus v is T-planar by Lemma 7.

Corollary 7. Let r ∈ V be the root of T . Then, r is T-planar, if r is S-planar

and ∀w ∈ V : w is a child of r → w is T-planar.

Proof. r is A-planar according to Lemma 1 and S-planar by assumption. More-

over, all children w of r are T-planar by assumption. Thus, r is T-planar by

Lemma 7.
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5.3 Method RNAturtle

5.3.1 Drawing Constraints

The initial drawing is created satisfying the following constraints:

1. The drawing starts at a defined position.

2. The exterior nucleotides are drawn on a straight horizontal line (increasing

x-value).

3. Stems attached to the exterior loop point upwards only (increasing y -

value). These stems are perpendicular to the horizontal straight line

defined by the exterior nucleotides forming the exterior loop.

4. The distance between two neighboring exterior nucleotides is constant

(backbone distance) [64].

5. The distance between two neighboring nucleotides of a stem is constant

[64]. It is the same as that of two neighboring exterior nucleotides

(backbone distance).

6. The distance between two neighboring nucleotides of a loop is constant

[64]. However, the arc-length between two neighboring nucleotides of a

loop depends on the loop radius and thus is constant for a specific loop,

but might differ for different loops.

7. The distance between two paired nucleotides of a stem is constant (base

pair distance) [64].

8. Stems should be drawn as rectangles [19].

9. Loops should be drawn as circles [19].

10. Loops should be drawn as compact as possible [59].

11. Bulges should not change stem direction [84].

All of these constraints can be satisfied simultaneously. However, the resulting

drawing will in general not be intersection-free.
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Figure 5.2: The turtle starts at P1 and walks a fixed distance to P2. There, it
changes its direction by an angle α2 and walks a fixed distance to P3.

5.3.2 Turtle Algorithm

The initial drawing is created using a so-called turtle graphics algorithm (Algo-

rithm 6) imagine a turtle walking and leaving a trail. First, the starting point of

the turtle is specified and the first nucleotide of the RNA-sequence is positioned

at this point. Then, two actions are possible by the turtle: change direction

and walk a fixed distance. Change direction instructs the turtle to change its

direction by an angle between −180◦ and 180◦, exclusive. Walk a fixed distance

instructs the turtle to walk a fixed distance in its current direction.

The turtle is initially put onto a pre-defined position (Constraint 1). The

standard angle is 0◦ and the standard distance is equal to the backbone distance.

In the beginning, the turtle with 0◦ would walk along the increasing x-axis

(Constraint 2). Thus, the turtle moves forward the distance between two

neighboring nucleotides in the RNA-sequence satisfying Constraints 4 and 5

(Figure 5.2).

At each point reached by the turtle, the direction might be changed once

before walking. Here, different cases have to be distinguished. In the case

that the turtle is on the exterior loop and reaches a nucleotide belonging to a

stem, the angle is set to −90◦ changing the direction from going to the right to

going up (Constraint 3). In the case that the turtle is on a stem and reaches a

nucleotide belonging to the exterior loop, the angle is set to −90◦ changing the

direction from going down to going to the right (Constraint 3). If the current

and the next nucleotide belong to the same stem, the angle is set to the default

angle of 0◦. Bulges are also easily drawn by changing the angle from stem to

unpaired nucleotide to −120◦ and making one step forward, followed by setting

the angle to 60◦ and making another step forward, followed by setting the

angle to −120◦ and making a final step forward. Thus, bulges neither bend the
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Figure 5.3: The turtle walks through a loop: First, the radius of the loop is
approximated. Then, the turtle changes its direction based on the arc segment
that the current and the next position form in the loop. Please note, that
the turtle walks on the chords of the loop. The arcs are drawn during a
post-processing step.

corresponding stem nor do they cause the backbone distances of the involved

nucleotides to be modified (Constraint 11). Thus far, the computation is simple

and straightforward.

The situation becomes slightly more involved whenever a loop other than the

exterior loop is connected to a stem. Then, the calculation of the angle depends

on the radius of the loop and thus on its structure. A loop consists of multiple

free nucleotides whose distance from each other and to neighboring paired

nucleotides equals the backbone distance. Further, two stems of a loop that

are next to each other, i.e., that are not separated by an unpaired nucleotide,

are separated by the backbone distance, too. On the other hand, the distance

between two paired nucleotides is equal to the base pair distance. As it is

not possible to calculate the exact radius if the backbone and the base pair

distance are different, the radius of the loop is approximated using the Newton

Raphson method. The upper and lower bounds of the radius are set to the

radius of a loop having the same number of loop elements but using only the

backbone or the base pair distance since the real radius of the loop lies within

this interval. After calculating an appropriate radius for the loop, the nucleotides

are positioned by the turtle algorithm onto the loop by calculating the correct

angles (Figure 5.3).

Lonely base pairs have to be treated as a special case and require the com-

putation of the sum of consecutive loop-stem and the stem-loop angles. They

can also occur when such a lonely base pair connects the exterior nucleotides to

171



Chapter 5. RNApuzzler

(a) (b) (c)

Figure 5.4: The RNAfold-predicted minimum free energy structure of the
Magn_3109 RNA of Magnetospirillum magnetotacticum sequence, retrieved
from RFAM [38]. (a) Drawing generated by RNAturtle. (b) Tree structure
superimposed on the RNAturtle drawing. (c) Extracted tree only.

a loop, i.e., the two nucleotides belong to all three structures at the same time.

The resulting sum is taken as the angle for pointing the turtle to the correct

direction.

This approach has the property that it fulfills all constraints. Drawings

created by RNAturtle are shown in Figures 5.4a (planar) and 5.11a (not planar).

The turtle graphics approach makes it possible to reposition complete

subgraphs by changing just the originating point or direction. This property

will be used extensively in the next stage. During the initial drawing stage, the

algorithm furthermore detects all structural segments of the RNA and stores it

for the subsequent processing steps.

Algorithm 6 RNAturtle
for each nucleotide do

check structural type of the nucleotide
if start of a new loop then

approximate radius
end if
calculate distance and angle to its predecessor based on the type

end for
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5.4 Method RNApuzzler

5.4.1 Drawing Constraints

Drawings generated by RNAturtle may already be intersection-free (planar,

Figure 5.4a). In particular for larger RNAs, however, this is usually not the case

(Figure 5.11a). RNApuzzler starts from the RNAturtle output. The key idea is

to replace Constraints 4 and 6 and add two new constraints:

4’. The distance between two neighboring exterior nucleotides is constant

between two stems attached to the exterior loop only. It can be larger

than the backbone distance.

6’. The distance between two unpaired neighboring nucleotides of a loop

segment is constant. It can be larger than the backbone distance.

12’. The resulting drawing is intersection-free, i.e., planar [59].

13’. Between any pair of bases, there is a minimum distance [59].

Constraint 6’ relaxes the requirement of a minimum loop radius with constant

distance between paired and unpaired nucleotides of the loop, respectively. Thus,

it makes it possible to change the directions of sub-sequences starting at a

loop so that Constraint 12’ can be satisfied for each subtree attached to

the exterior loop. Allowing larger distances between the exterior nucleotides

(Constraint 4’) allows the algorithm to handle each subtree attached to the

exterior loop individually and then to place the subtrees next to each other

without intersection (Constraint 12’).

Moreover, the drawing can be made more compact by relaxing Constraint 3.

3’. Stems attached to an exterior loop point upwards or downwards only

(increasing or decreasing y -value). These stems are perpendicular to the

horizontal straight line defined by the exterior loop.

Constraint 3’ provides more flexibility for placing subtrees attached to the

exterior loop. However, this might make it harder to locate the exterior loop

in certain cases. In the same way, Constraints 6’, 4’, and 3’ enable fulfilling

Constraint 13’ which prevents bases from overlapping.
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Algorithm 7 RNApuzzler Main Algorithm
for all nodes from the exterior to the leaves do

detect ancestor intersections {Algorithm 8}
if current node is a leaf then

detect sibling intersections {Algorithm 11)}
end if

end for

5.4.2 Coordinate transformation and data structures

Consider the secondary structure of the Magnetospirillum magnetotacticum

Magn_3109 RNA as computed with ViennaRNA, which is shown in Figure 5.4a.

First, a tree structure is extracted from the secondary structure as follows:

the tree nodes are the hairpin, internal, multi-branch, and external loops of

the secondary structure; the tree edges correspond to stems (Figure 5.4b).

This tree is rooted at the exterior loop. Hairpin loops therefore correspond to

leaves (Figure 5.4c). Each stem is followed by exactly one loop, which will be

associated with this stem. It should be noted that the base pair that joins the

stem with its loop is the closing pair of the loop, which plays an important role

in the RNA folding algorithms. One can then re-interpret the tree vertices as

representing a stem and its associated loop. The edges thus no longer represent

geometry. To distinguish between the tree structure and its associated geometry,

the elements of a tree structure are called vertices and the combination of stem

and loop geometry associated with a vertex is called the corresponding node.

5.4.3 Main Algorithm

The RNApuzzler uses the output of RNAturtle as input for producing the final

layout. The major requirement for this final layout is planarity. This necessitates

the removal of any intersection present in the layout produced by RNAturtle.

The first step uses this layout for building the data structures, and especially

the RNA-tree. Now, the theoretical foundations (Section 5.2) are used as the

basis for the main algorithm (Algorithm 7).

Let T = (V, E) be an RNA-tree. By Definition 19, T is planar, if the root

node r ∈ V is T-planar. By Corollary 7, it is sufficient that r is S-planar and all

children of r are T-planar. T-planarity of a node v ∈ V requires A-planarity and

S-planarity. As the root r is A-planar (Lemma 1) it is a good starting point for

checking A-planarity. If a node v ∈ V is A-planar, then a child w ∈ V is either

A-planar, too, or it intersects an ancestor. In the latter case, this intersection is

174



Visual Analysis of Form and Function in Computational Biology

resolved by Algorithm 9. Thus, A-planarity is constructed on the way from the

root node of the RNA-tree to its leaves for all nodes on that path recursively.

On the other hand, each leaf is S-planar (Lemma 5). Thus, on the way back

from the leaves to the root, S-planarity can be checked and established for all

nodes v ∈ V . Therefore, consider a node v ∈ V such that all its descendants

are S-planar. Now, v is either S-planar itself in which case it is also T-planar by

construction, or v has a sibling intersection that then is resolved.

While resolving both types of intersections, new intersections might be

generated. However, the nodes that have to be reconsidered are restricted.

In case of A-planarity, the algorithm continues with the node v ∈ V used for

resolving the intersection and checks all nodes in its subtree. As the ancestors

of v are not changed, none of them can cause new ancestor intersections. In

case of S-planarity, the algorithm re-evaluates the current node v ∈ V and all

its children. In this case, S-planarity for disjoint subtrees has been or will be

established independently, while S-planarity of ancestor nodes will be established

at a later step. Due to these repetitions in case of intersection removal, the

complexity of the algorithm is difficult to assess.

However, it is easy to see that the depth-first traversal proposed is better

suited than a breadth-first traversal. In the latter case, all nodes would be

checked for A-planarity first. After all nodes are A-planar, S-planarity is checked

and achieved. In both cases, if removing an intersection necessitates checking

a subtree again, all nodes of the subtree will be considered. This leads to all

nodes of these subtrees being checked for A-planarity several times—as often

as they are re-assessed. During depth-first traversal, however, only those nodes

already checked in the subtree are re-assessed while those not yet handled by

the algorithm are treated at a later point, only. This reduces the overall amount

of nodes to be checked.

Even if the complexity is difficult to estimate, the algorithm is correct and

terminating:

Correctness refers to the fact that the resulting drawing satisfies the Con-

straints 1-3, 4’, 5, 6’, 7-11, 12’, and 13’. Constraints 1-3 are met by RNAturtle.

RNApuzzler also satisfies these constraints because it leaves the starting po-

sition, the orientation of the exterior loop, and the orientation of the stems

attached to the exterior loop unchanged. Constraint 4’ is trivially met as

distances between exterior loop subtrees and thus distances between exterior

nucleotides are only increased compared to the RNAturtle drawing. As RNA-

puzzler does not change the geometry of stems, Constraints 5 and 7 are still
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met. RNApuzzler constructs the drawing such that Constraint 6’ is met. The

algorithm draws stems as rectangles (satisfying Constraint 8) and loops as

circles (satisfying Constraint 9). Further, bulges do not change stem direction

(satisfying Constraint 11). Constraint 12’ is equivalent to the drawing being

intersection-free. Section 5.2 provides a proof that this is always the case.

Moreover, the algorithm guarantees minimal distances between any two bases

satisfying Constraint 13’. The optimization performed (see Section 5.5) reduces

the loop sizes as much as possible. Thus, Constraint 10 is met.

It is not obvious that RNApuzzler indeed terminates. The recursion ter-

minates at the leaves and Algorithm 8 moves from the root to all leaves.

Algorithm 9, however, involve repetitions. Algorithm 11 might cause all three

steps to be applied repeatedly to the node including a depth-first traversal of the

subtree. Algorithm 8 might even cause to repeat the whole process at any node

between the root node and the current node. The reason why the recursion

nevertheless terminates is due to the particular way in which intersections are

solved.

This is achieved by changing the angles between the stems attached to

a loop and by increasing the radius of the loop. Due to Constraint 6’, it is

necessary to increase the radius of a loop for changing the angle of certain loop

segments, since the minimal distance between two unpaired nucleotides of a

loop segment can not be smaller than the backbone distance. Increasing the

loop radius automatically leads to a state where all siblings can be spaced such

that they do not intersect any more. As illustrated in Figure 5.5, it is always

possible to resolve the intersection by increasing the radius only. Since this

would lead to vast radii, the angle between the two intersecting siblings is also

increased. One might choose to increase only the angle between the siblings.

This would make it necessary to compress the angles of all other siblings of the

loop, which in turn would also compress the distances between the unpaired

bases of these segments. Reducing them below the minimal distance, however,

would violate Constraint 6’.

A transformation from polar to Cartesian coordinates shows that enlarging

the radii is sufficient. In Cartesian coordinates, each subtree of the node has a

certain height and a certain width. The sum of the widths of all subtrees plus

some space between them is an upper bound on the width required to place

all subtrees without intersections. A similar approach was used in [19], albeit

without proof. The width in Cartesian coordinates required for intersection free

placement of subtrees translates to a circumference in polar coordinates, from
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(a) (b) (c)

Figure 5.5: Any sibling intersection can be resolved (inefficiently) by only
increasing the radius of the common multi-loop. Changing the angles of
outgoing stems up to a certain degree to resolve intersections in addition to
increasing the loop’s radius improves the efficiency of the approach. (a) A
sibling intersection between the two stems of the multi-loop. (b) The sibling
intersection is resolved by only increasing the radius of the multi-loop. (c) The
sibling intersection is resolved by changing the angles of the outgoing stems in
addition to increasing the radius of the multi-loop.

which the appropriate radius can be computed. The same idea can be used to

resolve all ancestor intersections.

A-Planarity

The first step of the main algorithm checks for ancestor intersections (Detect

Ancestor Intersections, Algorithm 8) and if necessary resolves them. If the

ancestor found is the root node, then the special case of an exterior intersection

is resolved (Resolve Exterior Intersections, Algorithm 10). Otherwise, the

general algorithm for resolving ancestor intersections is used (Resolve Ancestor

Intersections, Algorithm 9).

Detect Ancestor Intersections In principle there can be zero, one, or several

intersections between the current node and one of its ancestors. If there are no

intersections, then the current node is A-planar and no further action has to

be performed. If there is exactly one intersection, this intersection is resolved.

Otherwise, the algorithm resolves the intersection with the closest ancestor.

For this, the current node is checked recursively against its ancestors starting

with its parent and ending with the root node (Figure 5.6). If there is an

ancestor intersection (Figure 5.6a), the current node is the intersecting node

(red) and the ancestor is the intersected node (blue).

177



Chapter 5. RNApuzzler

Algorithm 8 Detect ancestor intersection
if node intersects with an ancestor then

solve ancestor intersection
end if

(a) Intersection between the current node (red) and one of its ancestors (blue).
The blue node and all green nodes do not intersect any of their ancestors.

(b) After resolving the intersection shown in (a), the algorithm proceeds with the
green node marked with an orange arrow used for resolving the intersection.

Figure 5.6: Ancestor intersection (a) and its resolution (b).

Resolve Ancestor Intersections The ancestor intersection between the red

intersecting node vi and the blue intersected node va can be resolved using the

loop marked with an orange arrow (Figure 5.6b). The latter is called rotation

loop and belongs to the node vr being used to rotate the intersecting node

away from the intersected node. The principal solution consists of selecting

a loop between the intersected and the intersecting node, and changing the
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angle of the child vc of the rotation loop vr that is either the intersecting node

vi itself or the ancestor of the intersecting node. Thus, there exists a path

p = (va, . . . , vr , vc , . . . , vi) from va to vi such that vr ̸= vc . The nodes va and

vr as well as vc and vi might be identical. Therefore, the length of the path

|p| ≥ 2.
Algorithmically, three steps are performed. First, the direction of rotation is

determined. Therefore, the path from the intersected node to the intersecting

node is closed by adding an edge from the intersecting node to the intersected

node. This sequence of nodes is intersection free except for the intersection

found between the intersecting and the intersected node. Thus, it can be

determined if the enclosed area lies to the left or to the right of the path.

In the former case, the path is counter-clockwise and the rotation should be

clockwise. In the latter case, the path is clockwise and the rotation should be

counter-clockwise.

Second, the rotation node vr is computed by searching backwards from the

parent of the intersecting node vi to the intersected node va. Thereby, the

direction of the rotation is taken into account. Moreover, heuristics restrict the

selection process. It should be noted that bulge-loops are fixed and hairpin-loops

have no children. Moreover, the exterior-loop is handled separately. Therefore,

only internal-loops and multi-loops are candidates for vr .

The basis of the first set of heuristics is that internal-loops can be treated

differently from multi-loops. Internal-loops are supposed to be optimal if they

do not change the stem direction from incoming to outgoing stem [84]. Sev-

eral algorithms even start by making all internal-loops straight [23]. Thus,

the algorithm prefers internal-loops over multi-loops (Heuristic 1). Moreover,

internal-loops can only be changed towards being straight (Heuristic 2). If an

internal-loop is straight, it is optimal and thus can be safely ignored (Heuristic 3).

These heuristics can be safely applied, as in case of an ancestor intersection

and all internal-loops being straight, at least on multi-loop exists that can be

chosen as rotation loop.

Heuristic 4 chooses loops as close as possible to the intersecting node.

This is due to the fact, that the rotation node is the starting point of the

depth-first traversal after resolving the intersection. Thus, choosing it closer to

the intersecting node reduces the number of nodes that need to be checked for

ancestor intersections again. Moreover, the position of less nodes is changed

and thus the probability of introducing new intersections is reduced.
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Due to Heuristic 1, the algorithm for determining the rotation node performs

two passes. During the first pass, only internal nodes are considered as possible

rotation nodes. Hereby, Heuristic 3 and Heuristic 2 are applied. During the

second pass, only multi-loops are considered as possible rotation nodes. To

implement Heuristic 4, both passes start searching for the rotation node at the

parent of the intersecting node towards the intersected node. The first suitable

rotation node is taken.

Finally, the rotation angle ϕr is determined such that after rotating vc by

this angle, the intersection is resolved and the minimal distance constraint is

satisfied. Rotating vc at the loop of vr by ϕr might necessitate increasing the

radius of the rotation loop. As this can cause an ancestor intersection of vr , the

tree traversal algorithm goes back to vr . As shown in Figure 5.6, the distance

between the rotation loop and the loop of the green child of va is smaller after

resolving the intersection (Figure 5.6b) than before (Figure 5.6a) due to the

rotation loop’s radius increase.

It is possible that vc can not be rotated by the complete amount of ϕr .

This might be the case, if the rotation loop vr is an internal-loop. Then, it is

necessary to change two or more different loops until the original intersection is

resolved even if no new intersections are introduced. Therefore, RNApuzzler

applies the heuristics again to resolve the intersections completely. This can lead

to the case, where all internal-loops in the region of interest get straightened.

After straightening the internal-loops, the remaining rotation angle ϕr is applied

on a multi-loop. Since the algorithm can modify multi-loops with any rotation

angle ϕr , it is possible to resolve any intersection by rotating the children of

multi-loops.

Algorithm 9 Resolve ancestor intersection
for each node from intersecting to intersected node do

if node is an interior loop & bending possible then
bend loop
restart ancestor intersection at current node

end if
end for
for each node from intersecting to intersected node do

if node is a multi-loop then
bend loop
restart ancestor intersection at current node

end if
end for
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Resolve Exterior Intersections The root node is special as its geometry is

that of a horizontal line. This implies that this line spans the interval [−∞,∞].
However, no additional special algorithms based on this line were developed for

resolving exterior intersections. Instead, the algorithms for ancestor intersection

resolution were reused. Therefore, a special node consisting of an artificial stem

and an artificial loop is created. This node is called root ancestor (Figure 5.7,

blue node). The loop of this node is constructed such that its center is directly

below the center of the child stem. Its radius is computed from the base pair

distance. The stem of the root ancestor has as width the base pair distance. Its

orientation is parallel to the line formed by the exterior nucleotides. If possible,

a single stem to the left or to the right of the loop is constructed. Its length

is determined by the horizontal width of the axis-aligned bounding box of the

intersecting node. If it is not possible to use a single stem only, two stems to

the left and to the right of the loop are constructed and the one intersected

first is used for resolving the exterior intersection. In fact, the intersecting node

will always intersect the stem of the root ancestor before intersecting the loop

of the root ancestor.

After creating the geometry of the root ancestor, it is assigned to be the

intersected node. Then, the same algorithm that is used for resolving standard

ancestor intersections is applied, whereby the root ancestor can not be used

for resolving the intersection since this would violate the constraints concerning

the exterior-loop.

Due to the structure of the exterior-loop, no child can intersect it. This also

holds for the root ancestor: no child of the root ancestor can intersect the root

ancestor. The reason for this is that the angle between root ancestor and any

child is either 90◦ of 270◦.

An exterior intersection before and after resolving the intersection is shown

in Figure 5.7. The color coding is the same as for the ancestor intersection

example: the red node is the intersecting node, the blue node is the intersected

node, and the green nodes are the intermediate nodes on the path from the

intersected node to the intersecting node. The green node marked with an

orange arrow is the rotation node used for resolving the exterior intersection.

As can be seen, the length of the root ancestor stem and thus of the stem of

the intersected node (blue) matches horizontally the axis-aligned bounding box

of the intersecting node.
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(a) Intersection between the current node (red) and the root ancestor node (blue). All
green nodes do not intersect the root ancestor node.

(b) After resolving the intersection shown in Figure 5.7a, the algorithm proceeds with
the green node marked with an orange arrow used for resolving the intersection.

Figure 5.7: Exterior intersection (a) and its resolution (b).
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Algorithm 10 Resolve exterior intersection
construct geometry for the exterior loop
assign exterior node to the be intersected node
Solve ancestor intersection {Algorithm 9}

Algorithm 11 Detect sibling intersection
for each child of the current node do

if pair of subtrees then
Resolve sibling intersection

end if
start sibling intersection at the ancestor of the current node

end for

S-Planarity

Detecting and resolving sibling intersections are performed by the third step

of the algorithm. If the detection algorithm (Detect Sibling Intersections,

Algorithm 11) does not find any sibling intersection for the current node, then

the current node is S-planar and no further actions have to be performed. If

a sibling intersection is detected and the current node is the root node, the

algorithm for resolving exterior subtree intersections is invoked (Resolve Exterior

Subtree Intersections, Algorithm 13). Otherwise, the algorithm for resolving

sibling intersections is used (Resolve Sibling Intersections, Algorithm 12).

Detect Sibling Intersections In order to detect a sibling intersection of a

node v ∈ V , all the subtrees Ti = (Vi , Ei) of its children wi ∈ V, (v , wi) ∈ E are

checked. If v has no children, then it is S-planar. The same holds if v has only

one child. If v has n children, the sibling intersection is checked as follows.

∀1 ≤ i ≤ n − 1

∀i < j ≤ n

∀wi ∈ Vi ∀wj ∈ Vj : check if wi and wj intersect

If no intersection is found, then v is S-planar. Otherwise, the first intersection

found is reported and resolved.

Resolve Sibling Intersections The violet node in Figure 5.8a has a sibling

intersection between the blue subtree and the red subtree. The intersection

angle γ (green sector) is computed by first finding the smallest enclosing sector

of each subtree with respect to the center of the violet node (blue and red circle
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γ

(a) Intersection between the red child tree and the blue child tree of
the violet node.

(b) After resolving the intersection shown in (a), an ancestor intersec-
tion of the gray child tree with the exterior-loop occurs and needs to
be resolved.

Figure 5.8: Siblings intersection (a) and its resolution (b).
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Algorithm 12 Resolve sibling intersection
identify segments for bending
calculate overlap angle
distribute overlap angle equally over identified segments
subtract overlap angle from the remaining segments

Algorithm 13 Resolve intersection of two subtrees of the exterior
calculate overlap of the siblings with bounding boxes
if flipping then

if check if second sibling can be flipped without intersections then
flip the second sibling
return

end if
end if
calculate minimal overlap configuration
stretch exterior loop segments between the siblings

sectors, respectively). Then, the smaller angle of the red sector is subtracted

from the larger angle of the blue sector. Hereby, the angle is computed clockwise.

To resolve this intersection, the blue subtree is rotated counter-clockwise by

(γ + δ)/2, while the red subtree is rotated clockwise by (γ + δ)/2. Here, the

angle δ is the minimal angle between two subtree sectors. To allow for this

rotation while maintaining a minimum distance between unpaired nucleotides as

well as between unpaired and paired nucleotides of the violet loop, the radius of

this loop might have to be increased.

Resolve Exterior Subtree Intersections The blue subtree and the red subtree

of the exterior-loop intersect in Figure 5.9a. The overlap between the blue

bounding box and the red bounding box is computed. Onto this overlap, a

minimal distance is added. The resulting increase necessary to separate the

blue and the red subtree is distributed equally among the distances between the

exterior nucleotides connecting both subtrees (Figure 5.9b).

Alternatively, the red subtree might be reflected at the line of the exterior-

loop (Figure 5.9c). This does not cause any new intersection between the red

subtree and the exterior-loop, or within the red subtree. The resulting drawing

is more compact. Allowing this type of resolving exterior subtree intersections

might make it harder locating the exterior-loop.
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(a) Intersection between the red child tree and the blue child tree of the orange
exterior-loop.

(b) The intersection is resolved by increasing the distance between the nucleotides of
the exterior-loop between the two child trees.

(c) The intersection is resolved by changing the direction of the second child tree now
pointing downwards.

Figure 5.9: Exterior subtree intersection (a) and its resolution by stretching (b)
or flipping (c).
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AABB Box Intersection

The detection of intersections is performed using standard algorithms. Efficient

intersection tests for pairs of simple geometric objects can be found in books

such as the one by Ericson [34]. As accelerating structure, axis-aligned bounding

boxes (AABB) are used. These are updated immediately after the position or

the orientation of a node is changed. Overall, this is sufficient for obtaining

a high performance of the algorithm while using minimal space and minimal

computational overhead.

5.5 Optimization

Creating intersection-free drawings as described before leads to inner and multi-

loops having a very large radius. The radius of hairpin loops is not changed by

the algorithm and bulge loops are fixed. Overly large inner and multi-loops are

shrunk by an optimization step that reduces the radius of these loops. This

optimization step is performed if all of the following conditions are met:

1. the subtree at the current node has no sibling intersections

2. the subtree and the ancestors of the current node do not intersect

3. one of the following conditions is met

(a) the radius of the current node has increased by at least a factor of

ten compared to its minimum radius

(b) the parent of the current node is the exterior

Conditions 1 and 2 hold whenever the handling of a node finished during

depth-first traversal. If Condition 3a is met, loops that grew too much (by a

factor of ten in relation to their minimum radius) are shrunk. This avoids a

too large increase of the loops’ radii during planarization. If the parent of the

current node is the exterior (Condition 3b), the complete subtree attached to

the exterior loop is intersection-free (planar) and will be optimized.

Conceptually, optimization starts at the leaves of the tree constructed—the

hairpin loops—and proceeds towards the root of the tree—the exterior loop.

The algorithm starts at the current node and optimizes all its children recursively,

using depth-first traversal. As long as the radius of at least one child of the

current node has been reduced, all children of this node are optimized again. If
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no child could be optimized further, the algorithm attempts to reduce the radius

of the current node. If the current node can be optimized, the optimization

procedure is started again because it is possible that the radii of the children

can be improved further.

Optimization proceeds in two alternating steps. The first step reduces the

radius of a loop by performing a binary or a linear search for the smallest radius

such that the drawing remains intersection-free. Here, the minimum radius is

the one that can be reached while respecting the minimum distance between

consecutive nucleotides and the current configuration of the loop. Moreover,

the maximal radius is the one created by the intersection-free drawing. The

search starts with the maximal radius that is then iteratively decreased by a

fixed amount until the minimum radius is reached. The second step changes

the angles between each pair of adjacent stems of a loop. This allows attaining

a smaller radius, which is closer the optimal minimum radius. During this

step, the algorithm calculates the angles between the unpaired bases for each

segment of a loop. Afterwards, the segment with the largest angle is chosen for

optimization. Therefore, the free angle between the stems of the segment is

calculated based on the minimal backbone distance. Next, similar to the sibling

intersection in Section 5.4.3, the algorithm constructs two wedges to present

the neighboring stems. Using these wedges, the free angle between each pair

of stems is calculated. Afterwards, the algorithms evaluates the results these

calculations and picks the smallest one for the angle reduction. By using this

minimal free angle, the algorithm decreases the angle of the selected segment

by 50% of the chosen free angle. Finally, the algorithm checks, if the reduction

introduced a new intersection and discards the change if necessary. If an angle

is changed by this step, both steps are repeated.

All optimization steps are only performed if the corresponding subtree is

planar and does not intersect any ancestor, i.e., if Constraints 12’ and 13’ are

met. These constraints are conserved by the optimization process.

In order to demonstrate the effects of the optimization, we have drawn

our example RNAs using RNApuzzler with the optimization being deactivated.

The results are shown in Figure 5.10. To ease comparison with the final

results of RNApuzzler, we added the drawings generated using RNApuzzler

with optimizations being activated below the figures. It is clearly visible that

the optimizations reduce the amount of drawing space needed considerably

and that they avoid unnecessary radii enlargements. Due to the fact that all

optimizations are applied locally to a single loop, it is only possible to reduce
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Algorithm 14 Optimize Loop
repeat

calculate a new radius for the loop with no new intersection
calculate a new loop configuration:
for all stems of the loop do

create a wedge for the stem
end for
calculate free angle between the wedges
select segment with largest free angle
reduce free angle of the segment by 50%
if new intersection was introduced then

revoke angle change
end if

until (radius or configuration did not change)

the radius of the targeted loop as long as no new intersections are introduced

by the optimization.
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(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens without opti-
mization.
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(b) Secondary structure of AADC01167538.1/2439-571 Homo sapiens with optimiza-
tion.
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(c) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla without opti-
mization.
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(d) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla with optimization.

Figure 5.10: Comparison of the human and the gorilla SSU rRNA drawn using
RNApuzzler without and with optimization.
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5.6 Benchmarks

A main goal in the development of RNApuzzler was to keep the overall runtime

of the drawing algorithm smaller than the actual folding time. To verify this goal,

RNAfold from the ViennaRNA Package version 2.35 [54] was used to fold 5000

RNAs from the family RF00012 that contains smaller RNAs (around 215nt) and

50 large sequences from family RF01960 (around 1860nt) from the RFAM [38].

The benchmark was performed on a machine with an Intel i7-7700HQ CPU

and a Samsung Evo 850 EVO M.2 SSD. The results are shown in Table 5.1.

RNApuzzler draws the secondary structure in less than 10% of the folding time.

Compared to NAView [22], the standard drawing algorithm of the ViennaRNA

Package [54], which draws the RNA in nearly linear time, it takes considerably

more computing time. Drawing larger RNAs, most of the time is needed by the

optimization algorithm reducing the size of the multi-loops. This behavior is

related to the increase of the number of structures in general and the number

of multi-loops in particular with increasing length of the RNA. Other algorithms

can only be compared using this benchmark to a limited extent, as they are

usually not directly manageable via a batch job. Additionally, most of these

tools are designed as GUI applications. Therefore, they were excluded from

this benchmark. In general, the force directed layout based algorithms shown in

Section 5.7 are at least one order of magnitude slower than RNApuzzler.

As a stress test for the algorithm, it was applied to all RNAs provided by the

RFAM Version 12.2 [60]. All sequences were folded using RNAfold [54] drawn

using RNApuzzler, and checked for the absence of intersections. All RNAs

collected in this database were drawn without intersections. The complete

process took approximately 2 days on a 48 core workstation running up to 46

processes in parallel.

RNAfold NAView RNApuzzler
simple optimized

5000 sequences
RF0012

76.14s 1.66s 2.761s 5.585s

50 sequences
RF01960

129.48s 0.138s 0.262s 10.907s

Table 5.1: Benchmark results comparing folding and drawing time for different
RFAM families.
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Table 5.2: Constraints met by different algorithms: ✓: met, ✽: not fully met,
?: unclear, ✗: not met

Algorithm
Constraint

2,3 4-7 8 9 10 11 12’ 13’
RNApuzzler ✓ ✽ ✓ ✓ ✽ ✓ ✓ ✓

RNAturtle ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

NAView [22] ✗ ✽ ✓ ✗ ✗ ✗ ✗ ✗

forna [48] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

jViz.RNA 2.0 [85] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

jViz.RNA 4.0 [73] ✗ ✗ ✓ ✓ ? ✗ ✗ ✗

RNAfdl [41] ✗ ✗ ✗ ✽ ✓ ✗ ✓ ✗

VARNA (radial) [31] ✓ ✽ ✓ ✓ ✓ ✗ ✗ ✗

RNAstructure [66] ✗ ✽ ✓ ✗ ✗ ✓ ✗ ✗

PseudoViewer 3 [24] ✗ ✽ ✓ ✓ ✗ ✗ ✗ ✗

Auber et al. [19] ✗ ✗ ✓ ✗ ✗ ✓ ? ?

5.7 Results

Table 5.2 shows which constraints introduced in Section 5.4 are met by different

RNA drawing tools. By design, RNAturtle meets Constraints 1-11. RNApuzzler

meets all constraints with Constraints 4, 6, and 10 being met in their relaxed

forms, respectively. Constraint 10 is still satisfied, however, planarity has

precedence: after finding a planar solution, all loops are made as compact

as possible by the optimization step. A detailed comparison is provided in

Section 5.8.

All other tools only meet the constraints to a lesser extent. In the following,

the layouts of these tools for the human and the gorilla SSU rRNAs are presented

together with additional information about the different algorithms. Further,

the tools’ advantages and issues are discussed in detail.
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5.8 Comparison to other algorithms

5.8.1 Comparison to NAView

A planar drawing generated by RNAturtle is shown in Figure 5.4a. However, not

all RNAs can be drawn planar by this algorithm, as demonstrated by the more

complex example in Figure 5.11a. This RNA contains 447 nucleotides forming

11 internal loops, 3 multi-loops, and 9 hairpin loops. The same structure drawn

by RNApuzzler is shown in Figure 5.11b. Here, the loops marked 1, 2, 3, and

4 were enlarged and changed. These four changes suffice to obtain a planar

drawing.

For comparison, the drawing generated by NAview, the current default

algorithm of the ViennaRNA package [54] is shown in Figure 5.11c. As can

be seen, there are intersections and overlaps (a) as well as dense packings of

nucleotides (4). Furthermore, it is not easy to determine where the exterior

loop is located and it is unclear why loop (1) forms a ’hand’-like structure,

where the upper stems form the ’fingers’ and the lower stem looks like the ’arm’.

Furthermore, one ’finger’ of the hand (marked (a)) is not a stem! In fact, it

is a sequence of unpaired bases of the loop that looks like a stem and that is

very hard to differentiate from a real stem. RNApuzzler was tested to find out

whether similar drawings can be obtained for similar RNAs. For this comparison

the SSU rRNA from human and gorilla were used as examples from the RFAM

family RF01960 [38]. Both sequences were first aligned to the RFAM SSU

model with cmalign [61]. The base pairs of the consensus model were used as

folding constraints by RNAfold [54]. The drawings generated using RNApuzzler

and NAView are shown in Figure 5.12. It is noticeable that RNApuzzler requires

more drawing space since the exterior loop is drawn as a linear structure. By

doing so, it is very easy to detect the exterior loop, whereas with the NAView

algorithm the exterior loop is difficult to locate. Furthermore, it is clearly

observable that RNApuzzler creates planar drawings for both structures whereas

NAView creates non-planar drawings with huge intersections. Although it is

possible to detect larger structural changes between the two NAView layouts,

the details remain unclear. Since the drawings are intersecting massively in some

regions, it is nearly impossible to differentiate between the structural elements

within these regions. On the other hand, with RNApuzzler it is feasible following

the path of each structural element to detect structural changes between two

different species.
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1

2
3

4

(a) Drawing generated by RNAturtle; not planar.

1
2

3

4

(b) Drawing generated by RNApuzzler; planar.

1

2

3

4

a

(c) Drawing generated by the NAView algorithm using the ViennaRNA package [54].

Figure 5.11: Drawings of the secondary structure of the tRNA-Leu (trnL) gene
and trnL-trnF intergenic spacer from the chloroplast of Streptocarpus papangae
isolate S106 (FJ501444.1/1-447 retrieved from RF00028 [38]).
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Figure 5.12: Comparison of the human and gorilla SSU rRNA. (a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens
drawn with NAView. (b) Secondary structure of AADC01167538.1/2439-571 Homo sapiens drawn with RNApuzzler. (c) Secondary
structure of CABD02136541.1/885-2750 Gorilla gorilla drawn with NAView. (d) Secondary structure of CABD02136541.1/885-2750
Gorilla gorilla drawn with RNApuzzler.

195



Chapter 5. RNApuzzler

5.8.2 Comparison to other tools

The additional algorithms described in Table 5.2 were used to compare the

results of RNApuzzler with state of the art tools. To facilitate the comparison,

the tools have been classified into two algorithm categories: force-directed

layouts (Section 5.8.2) and tree-based layouts (Section 5.8.2).

Comparison to FDL-based Layouts

One group of tools for drawing RNA secondary structures relies on force-

directed layouts (FDL). The simplest approach for calculating FDLs is based

on the structure of the graph. The basic idea is to have repelling forces

between vertices that are not connected and attracting forces between the

vertices connected by edges [78]. These forces are used to iteratively adapt the

positions of the vertices. Practical applications of this paradigm require several

improvements, including parameters and heuristics for assuring termination of

the process, additional forces for keeping the drawing centered, or simplifications

for computing approximations of the forces [78]. One possibility for speeding

up the calculation of the layout is based on providing an initial layout of the

graph that is then optimized by the FDL algorithm. The complexity of the FDL

algorithm varies widely based on the implementation. Simpler algorithms provide

a complexity of O(n · (|E|+ |V |2)), where n is the number of iterations of the

algorithm [32]. By using more sophisticated implementations, it is possible to

reduce the complexity towards O(n · (E + |V | · log|V |)) [65].

Forna Forna [48] is implemented as a web service in JavaScript and uses a

preprocessed layout created by the NAView algorithm as the initial layout for

the FDL algorithm. To avoid crossings of the edges connecting the nucleotides

of two adjacent base pairs (backbone edges), support edges between these base

pairs are added such that these base pairs form a complete k4. As shown in

the Figures 5.13a and 5.13b, Forna does not always produce planar drawings

because stems attached to a multi-loop may be flipped to the inner side of

this loop. This behavior can impede the analysis and the comparison of RNA

structures. In Figure 5.13, for example, it is hard to detect the changes between

the two species.
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Visual Analysis of Form and Function in Computational Biology

(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.13: Comparison of the human (a) and the gorilla (b) SSU rRNA drawn
using Forna [48].
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jViz.RNA 2.0 jViz.RNA 2.0 [85] is implemented in Java and uses the simple

circle layout of the RNA as its initial layout, which is planar in the absence of

pseudoknots. Nevertheless, the results of jViz.RNA 2.0 are often non-planar, as

shown, e.g., in Figures 5.14a and 5.14b. Furthermore, the layouts are not stable

because the results differ for several runs with the same input. This makes it

even harder to compare different sequences.

jViz.RNA 4.0 jViz.RNA 4.0 [73] improves the runtime of the FDL algorithm

by applying numerical integration methods. The developers improved also the

layout of stems and loops by using what they call a “compressed graph” of the

RNA structure. It reduces stems and loops similar to our RNA-Tree approach.

After calculating the layout, they apply a static template for each loop and each

stem. The results obtained are shown in Figures 5.15a and 5.15b. Compared

to jViz.RNA 2.0 this approach may produce additional intersections. It is also

possible to create swinging stems that circulate endlessly around a loop. The

clutter in Figure 5.15b is a result of this effect.

RNAfdl RNAfdl [41] is implemented in C. Like jViz, the circle layout is used as

an initial layout but RNAfdl takes much more time to compute the layouts shown

in Figures 5.16a and 5.16b (≈ 4 hours). In contrast to the other FDL-based

tools, it produces planar drawings. However, whose drawings are very densely

packed with curved stems and deformed loops. Therefore, these drawings are

hard to compare. Another drawback of this tool is its excessive computation

time.
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(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.14: Comparison of the human (a) and the gorilla (b) SSU rRNA drawn
using jViz.RNA 2.0 [85]. Edge crossings are annotated with arrows.
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Chapter 5. RNApuzzler

(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla. Please note,
that this is a snapshot after 10 minutes of calculation. The overlapping clutter at
the bottom is rotating in every step, as jViz 4.0 fails to resolve the intersection.

Figure 5.15: Comparison of the human (a) and the gorilla (b) SSU rRNA drawn
using jViz.RNA 4.0 [73].
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(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.
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(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.16: Comparison of the human (a) and the gorilla (b) SSU rRNA drawn
using RNAfdl [41].
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Comparison to Tree-based Layouts

Several layouting algorithms for RNA secondary structure use a tree-based

layout. These algorithms are based on the tree structure of the RNA folding

and most of them visualize the RNA starting from the exterior-loop. Since tree

layouts can run in O(n) time, most of these algorithms have this complexity.

Postprocessing steps might increase the complexity, however. The NAView

algorithm [22] is also a tree-based algorithm. However, since it was compared

in detail in Section 5.8.1, it will not be discussed further here.

VARNA Radial Layout VARNA [64] is a Java-based tool and provides multiple

drawing algorithms for RNA secondary structures. Beside the basic circle and

arc layouts [83], it provides the so-called “radial layout”. The algorithm for

drawing this radial layout is similar to our RNAturtle algorithm, since it draws

the RNA secondary structures using a linear approach. VARNA comes with

a GUI and provides several interaction methods so that the user can resolve

intersections manually. It is notable that VARNA draws the exterior-loop as a

straight line. As shown in Figure 5.17a and 5.17b, the drawings of larger RNAs

contain many overlaps and require tedious manual postprocessing.

VARNA NAView Layout The VARNA NAView layout is based on the original

NAView layout [22] but has slight modifications. It still tends to overlap in

complex regions but reduces the ‘hand-like’ structures. By using different colors

for the backbone and the base pair connections, the ‘stem-like’ regions within

complex multi-loops are also easier to distinguish. However, due to the overlaps

created by this algorithm, it is hard to compare the visualizations as shown in

Figure 5.18a and 5.18b.

RNAstructure RNAstructure [66] is written in C++ and is the basic layout

algorithm of the RNA folding package RNAstructure. It tries to arrange the

outgoing stems of multi-loops on a circular arc, which produces “hand-shaped”

structures similar to the ones generated by NAView. Furthermore, it arranges

the stems connected to the exterior-loop on a circle. It remains unclear, why

the calculated radii of the exterior-loops can become very large as shown in

Figure 5.19a and Figure 5.19b. This algorithm is not suitable for larger RNAs

since it produces several intersections and uses unnecessary much drawing space.
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Visual Analysis of Form and Function in Computational Biology

(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.17: Comparison of the human (a) and the gorilla (b) SSU rRNA drawn
using the VARNA radial layout [64].
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PseudoViewer 3 PseudeViewer 3 [23] is a sophisticated RNA secondary struc-

ture layout algorithm implemented in C# that additionally layouts all possible

types of pseudoknots. The layouts generated using PseudoViewer 3 are useful

as shown in Figures 5.21a and 5.21b. However, while the authors claim that all

layouts are planar, this is only true for a majority of cases. A non-planar example

is shown in Figure 5.20. Unfortunately, details of the algorithm remain unclear

since the description of the drawing mechanism for the pseudoknot-free regions

is kept very brief [24]. The latest version of the software was published in 2012,

and no open source version is available. The standalone client is not stable and

crashes while loading specific RNA sequences. PseudoViewer 3 is also hosted as

a web service, which loads the same sequences reliably. The complexity of the

algorithm remains unclear and a detailed benchmarking is impossible due to the

instability of the standalone client. Finally, the implementation in C# makes it

cumbersome to use PseudoViewer 3 on operating systems other than Windows.

ARNA Auber et al. [19] presented an algorithm for creating RNA secondary

structure layouts. They included the tool “ARNA” implementing this algorithm in

their graph drawing framework named “Tulip” [35]. Unfortunately, the algorithm

does not seem to be maintained any more and could not be found in the current

Tulip version. Additionally, only a high level overview of the algorithm is given in

the publications. The available information there does neither permit to assess

whether or not the algorithm always produces planar layouts as claimed by the

authors, nor to assess its time complexity.
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Visual Analysis of Form and Function in Computational Biology

(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.18: Comparison of the human (a) and the gorilla (b) SSU rRNA drawn
using the VARNA NAView layout (see also Bruccoleri and Heinrich [22]).
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(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.
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(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.19: Comparison of the human (a) and the gorilla (b) SSU rRNA drawn
using RNAstructure [66]).
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Figure 5.20: Example of a non-planar drawing produced by PseudoViewer 3
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Chapter 5. RNApuzzler

(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.21: Comparison of the human (a) and the gorilla (b) SSU rRNA drawn
using PseudoViewer 3 [23]).
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Chapter 6

Conclusion

In Detail

Sierra Platinum

Sierra Platinum is a fast and robust multiple-replicate peak-caller. So far, it is

the only peak-caller allowing visual quality control and -steering. Its sophisticated

statistical computation leads to provably better peak-calls compared to current

approaches and tools. The procedure and parameters are chosen to produce

an optimal result with respect to recall and FDR. Sierra Platinum is robust

against noise and thus allows multiple-replicate peak-calling even for replicates

not produced by the same lab or study. Alongside with Sierra Platinum, a

benchmark data set was provided which allows to compare the performance of

peak-callers with respect to specificity and sensitivity. The implementation of

the method is optimized such that only as much memory as required to ensure

a fast computation of the peak-calls is consumed.

iDotter

Dot plots are one of the default visualizations for the analysis of RNA secondary

structure predictions. iDotter enhances and extends this visualization with

state of the art interaction techniques. It is implemented using modern web

programming languages and is provided as freely available web service. Based on

its API, it is possible to integrate iDotter easily in analysis workflows. The expert

can highlight regions of interest for documenting insights gained during the

exploration of the dot plot. Furthermore, the exporting feature offers functions

for collaboration.
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Chapter 6. Conclusion

RNApuzzler

RNApuzzler provides a new planar layout algorithm to draw RNA secondary

structures taking into account aesthetic constraints. The algorithms for drawing

RNAs—RNAturtle and RNApuzzler—are implemented in the ViennaRNA pack-

age [54]. Due to the modularity of the implementations, they support testing

alternatives for each of the individual steps. Furthermore, RNApuzzler creates

comparable and deterministic drawings of RNA secondary structures. Compared

to the folding time of an RNA by RNAfold [54], this is achieved with a fraction of

the workload. Moreover, RNApuzzler outperforms most of the available layout

algorithms since they do not produce planar drawings and/or require much more

computation time. Finally, extensions and modifications of both RNAturtle and

RNApuzzler can easily be included into the current implementation since the

algorithms were implemented modularly in ViennaRNA.

In General

In visualization, one usually needs a cooperation partner from the fields of

applied research in order to generate questions and to obtain the necessary data.

Especially in the field of computational biology it is necessary to involve the

domain expert into the design process of the visualizations to create meaningful

representations that are then also used by this community. Based on the size and

the age of this community, several visualization were already developed by this

community. However, they are highly specialized and can not easily be generalized

from a visualization point of view. The majority of these representations are

only well-known in this community, which is why an extensive literature search

was necessary at the beginning of this thesis. A further characteristic is that

the visualizations are directly integrated into the software packages of the

bioinformaticians so that it is possible to interact directly with the processed

data. Furthermore, it is possible to visualize results of intermediate steps of a

workflow without exporting a huge amount of data for a post-processing step.
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