Visual Analysis

of Form and Function
in Computational Biology

Von der Fakultat fur Mathematik und Informatik
der Universitat Leipzig
angenommene

DISSERTATION
zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM
(Dr. rer. nat.)

iIm Fachgebiet
Informatik

vorgelegt
von Master of Science Daniel Wiegreffe
geboren am 14. Oktober 1989 in Lingen (Ems)
Die Annahme der Dissertation wurde empfohlen von:
1. Prof. Dr. Gerik Scheuermann, Universitat Leizig
2. Prof. Dr. Ivo L. Hofacker, Universitat Wien

Die Verleihung des akademischen Grades erfolgte mit Bestehen
der Verteidigung am 20. Juni 2019 mit dem Gesamtpradikat 'magna cum laude’.

Abstract

In the last years, the amount of available data in the field of computational
biology steadily increased. In order to be able to analyze these data, various
algorithms have been developed by bioinformaticians to process them efficiently.
Moreover, computational models were developed to predict for instance biological
relationships of species. Furthermore, the prediction of properties like the
structure of certain biological molecules is modeled by complex algorithms.
Despite these advances in handling such complicated tasks with automated
workflows and a huge variety of freely available tools, the expert still needs to
supervise the data analysis pipeline inspecting the quality of both the input data
and the results. Additionally, choosing appropriate parameters of a model is
quite involved.

Visual support puts the expert into the data analysis loop by providing
visual encodings of the data and the analysis results together with interaction
facilities. In order to meet the requirements of the experts, the visualizations
usually have to be adapted for the application purpose or completely new
representations have to be developed. Furthermore, it is necessary to combine
these visualizations with the algorithms of the experts to prepare the data.
These in-situ visualizations are needed due to the amount of data handled within
the analysis pipeline in this domain.

In this thesis, algorithms and visualizations are presented that were developed
in two different research areas of computational biology. On the one hand, the
multi-replicate peak-caller Sierra Platinum was developed, which is capable of
predicting significant regions of histone modifications occurring in genomes based
on experimentally generated input data. This algorithm can use several input
data sets simultaneously to calculate statistically meaningful results. Multiple
quality measurements and visualizations were integrated into to the data analysis
pipeline to support the analyst. Based on these in-situ visualizations, the analyst
can modify the parameters of the algorithm to obtain the best results for a

given input data set. Furthermore, Sierra Platinum and related algorithms were

benchmarked against an artificial data set to evaluate the performance under
specific conditions of the input data set, e.g., low read quality or undersequenced
data. It turned out that Sierra Platinum achieved the best results in every test
scenario. Additionally, the performance of Sierra Platinum was evaluated with
experimental data confirming existing knowledge. It should be noticed that the
results of the other algorithms seemed to contradict this knowledge.

On the other hand, this thesis describes two new visualizations for RNA
secondary structures. First, the interactive dot plot viewer iDotter is described
that is able to visualize RNA secondary structure predictions as a web service.
Several interaction techniques were implemented that support the analyst
exploring RNA secondary structure dot plots. iDotter provides an API to share
or archive annotated dot plots. Additionally, the API enables the embedding of
iDotter in existing data analysis pipelines.

Second, the algorithm RNApuzzler is presented that generates (outer-)planar
graph drawings for all RNA secondary structure predictions. Previously presented
algorithms failed in always producing crossing-free graphs. First, several drawing
constraints were derived from the literature. Based on these, the algorithm
RNAturtle was developed that did not always produced planar drawings. There-
fore, some drawing constraints were relaxed and additional drawing constraints
were established. Building on these modified constraints, RNApuzzler was devel-
oped. It takes the drawing generated by RNAturtle as an input and resolves the
possible intersections of the graph. Due to the resolving mechanism, modified
loops can become very large during the intersection resolving step. Therefore,
an optimization was developed. During a post-processing step the radii of the
heavily modified loops are reduced to a minimum. Based on the constraints
and the intersection resolving mechanism, it can be shown that RNApuzzler is
able to produce planar drawings for any RNA secondary structure. Finally, the

results of RNApuzzler are compared to other algorithms.

Acknowledgments

First and foremost, | would like to thank my advisor Dirk Zeckzer. Without
your patience and devotion to science, this thesis would not have been possible.
Thank you for going this way with me and for always giving me your guidance.

| thank Gerik Scheuermann as my supervisor for his help and advice during
difficult times. | am looking forward to the next stage of our journey.

| thank Peter F. Stadler for his ideas and his probably infinite knowledge,
which | was privileged to use when needed.

| thank my collaborator Lydia Miiller, it is always a fun to do research with
you.

| thank my colleagues at the BSV and Bioinf for their feedback and sugges-
tions for improvement.

| thank my numerous bachelor and master students for allowing me to work
with them on many of my research ideas.

| thank the secretaries Karin Wenzel and Petra Pregel. No department can
do research without a skilled secretary and | was fortunate enough to work with
two of them.

Special thanks go to my family. Without your patience and help it would
not have been possible to study and write this thesis.

Last but not least, | thank my wife Kim and my children Paulina and Elisa
that they always understood long working days and that they always believed

that | someday will finish my thesis.

Contents

Vv

[I_Prefacel
2 Biological Background|
2.1 Molecular Biology| 7
2.2 Epigenetics| 14
2.3 RNA Secondary Structure Prediction|. 20
(3 Sierra Platinuml 27
[3. [ntroduction| 28
BIT _Goall. 28
[3.1.2 Overview of the Multi-Replicate Peak-Calling Process| 28
3.2 Related Worklo 33
3.3 Methods| 36
3.3.1 Window Constructionf. 36
[3.3.2 Window Jomning|. 42
3.3.3 Read Quality] 43
3.3.4 Poisson Distributionl 45
[3.3.5 Tag Count Frequencies| 46
[3.3.6 Scalingl 48
3.3./ Normalized Poisson Distributionf 49
[3.3.8 Neighborhoods| 50
[3.3.9 Single p-Value|. 52
[3.3.10 p2q Transformation|. 55
[3.3.11 Significant Windows| 57
[3.3.12 Pearson’s Correlation between Replicates| 59
[3.3.13 Combined p-Values| 63
[3.3.14 Filtering and Weighting|. 67
[3.3.15 Agreement between the Multi-Replicate Result and the |
Single Replicate Results| 69

Contents

VI

[3.3.16 Computing Peaks| 70
[3.3.17 Computing Peak Quality] 72
[3.3.18 Exporting Peaks|. 74

(3.4 Implementation| 75
[3.4.1 System| 75
42 Chent GUII. oo 76
[3.4.3 Replicates, Parameters, and Starting Computation| . . 77
[3.4.4 Quality Controll, 78
[3.4.5 Correlation Information, Recalculation Parameters, and |
Restarting Computation| 80

3.4.6 Peak Information 82
[3.4.7 Quality Information| 82
[3.4.8 Additional Functionality|. 83
3.49 OServerd 84
[3.4.10 Server Configuration Filef 84
[3.4.11 Service Implementation|. 85

3.5 Benchmark Data Setl 89
BoI Contextl 89
[3.5.2 State-of-the-Art and Gaps| 89
B3 Goall. 90
[3.5.4 Challenges|. 91
[3.5.5 Benchmarking Data Set Creation| 91
[3.5.6 Benchmarking Replicates| 94
[3.5.7 Benchmarking Data Sets| 95

[3.6 Statistical Measures for Quality Assessment| 96
3.7 Evaluationl 98
3.2.1 Introduction. 98
[3.7.2 Sierra Platinum Quality Measures and Visualizations| . 98
3.7.3 Parameter Selectionf 107
[3.7.4 Approach Comparision| 115

B8 Resultd.o 124
3.8.1 Real World Data Setsl 124
[3.8.2 Peak Agreement| 125
3.83 Peak-Calls. 126
.84 Hox-C and Hox-D Clusters| 133
[3.8.5 Peak Coverage Analysis| 138

Visual Analysis of Form and Function in Computational Biology

4__iDotter

£.42 Coordinate transformation and data structures

5.1 _Introductionl
5 €OrY|.
b.2.1 Directed Rooted [rees . .
[5.2.2 RNA Secondary Structure]
|5|2|3 |; J‘ s_ eeg
0.3 Method RNAturtlel
[5.3.1 Drawing Constraints| . . .
[5.3.2 Turtle Algorithm|
5.4 Method RNApuzzlenf.
5.4.1 Drawing Constraints| . . .
5.4.3 Main Algorithm|
5.5 Optimization|
b6 Benchmarks
B7 Resultd.
[5.8 Comparison to other algorithms| .
[5.8.1 Comparison to NAView| . .
[5.8.2 Comparison to other tools|
[6__Conclusion|

[Cist of Figures|

[List of Tables|

141
142
143
145
145
148
148
149
151
151
154
154

157
158
159
159
161
164
169
169
170
173
173
174
174
187
191
192
193
193
196

209

XX

VII

Contents

[Curriculum Scientiael XXIH1

VIII

Chapter 1
Preface

Verba docent, exempla trahunt.

In the last years, the amount of available data in the field of computational
biology steadily increased. In order to be able to analyze these data, various
algorithms have been developed by bioinformaticians to process them efficiently.
Moreover, computational models were developed to predict for instance biological
relationships of species. Furthermore, the prediction of properties like the
structure of certain biological molecules is modeled by complex algorithms.
Despite these advances in handling such complicated tasks with automated
workflows and a huge variety of freely available tools, the expert still needs to
supervise the data analysis pipeline inspecting the quality of both the input data
and the results. Additionally, choosing appropriate parameters of a model is
quite involved.

Visual support puts the expert into the data analysis loop by providing
visual encodings of the data and the analysis results together with interaction
facilities. In order to meet the requirements of the experts, the visualizations
usually have to be adapted for the application purpose or completely new
representations have to be developed. Furthermore, it is necessary to combine
these visualizations with the algorithms of the experts to prepare the data.
These in-situ visualizations are needed due to the amount of data handled within
the analysis pipeline in this domain.

In this thesis, algorithms and visualizations are presented that were developed
in two different research areas of computational biology. On the one hand, a
new multi-replicate peak-caller was developed, which is capable of predicting
significant regions of histone modifications occurring in genomes based on
experimentally generated input data. This algorithm can use several input data

Chapter 1. Preface

sets simultaneously to calculate statistically meaningful results. On the other
hand, this thesis describes two new visualizations for RNA secondary structures.
First, an interactive dot plot viewer is described that is able to visualize RNA
secondary structure predictions as a web service. Second, a new algorithm is
presented that generates (outer-)planar graph drawings for all RNA secondary
structure predictions. Previously presented algorithms failed in always producing
crossing-free graphs.

The thesis starts with an introduction of the biological background (Chap-
ter [2]). The first section of this chapter gives an overview of DNA, RNA, and
proteins (Section and their interaction. It is followed by an overview of
the research area Epigenetics, where the histone modifications are described in
detail (Section[2.2)). Finally, the basics of RNA secondary structure prediction
algorithms that are able to generate the necessary input data for the visualization
systems for RNA secondary structures are introduced (Section .

The chapter describing the new peak-caller 'Sierra Platinum’ (Chapter IS
mainly based on the following publications:

Sierra platinum: a fast and robust peak-caller for replicated ChlP-seq
experiments with visual quality-control and-steering: Lydia Miiller*,
Daniel Gerighausen*, Mariam Farman, Dirk Zeckzer. BMC Bioinformat-
ics, 2016. doi:10.1186/512859-016-1248-6

The Sierra Platinum Service for generating peak-calls for replicated
ChIP-seq experiments: Daniel Wiegreffe*, Lydia Miiller*, Jens Steuck,
Dirk Zeckzer, Peter F. Stadler. BMC Research Notes, 2018.
doi:10.1186/s13104-018-3633-x

* equally contributed

The chapter starts with an introduction of the peak-calling process of
histone modifications and the goals of the new algorithm Sierra Platinum
(Section . Then, a general overview of the analysis pipeline is given. In the
following, related algorithms are presented and compared to the Sierra Platinum
approach (Section . Afterwards, the methodology of the multi-replicate
peak-caller is described in detail (Section . Moreover, the algorithms and
visualizations of each pipeline step are described (Section . If it was possible
to optimize an analysis step, those optimizations are discussed in detail. Then,

2

Visual Analysis of Form and Function in Computational Biology

the implementation of Sierra Platinum and its usage to generate significant peak-
callings are described (Section . Furthermore, the service implementation
of Sierra Platinum is presented (Section [3.4.11)).

To evidence the usefulness and usability of Sierra Platinum, an artificial
benchmark data set that can be used to evaluate the performance of peak-callers
was developed (Section [3.5). Therefore (Section [3.5.7)), several data sets were
created to simulating a variety of common quality issues of experimentally
created input data sets for histone peak-callings. Together with statistical
measures (Section these benchmarks were used to evaluate the overall
performance of Sierra Platinum. First, the quality measurements of Sierra
Platinum are tested against the different data sets and it is discussed how the
provided visualizations encode the errors of these data sets. Next, the parameter
settings of Sierra Platinum are evaluated and general recommendations for using
it are provided. Finally, the performance of Sierra Platinum is tested against
other peak-callers and it is shown that Sierra Platinum performs better than
the others in any test scenario.

Finally, results for experimental data using the Sierra Platinum peak-caller
are presented (Section [3.8)). First, the data sets and their pre-processing are
introduced. Next, the methodology used to calculate the agreement of the
results of different peak-calling tools is described, since the detected regions
can be slightly different due to the different methods applied by the peak-callers.
If the peaks overlap up to certain threshold, one can suppose that these results
are similar. After that, the results of the comparison are presented. Then, the
results are analyzed at specific loci of the human genome. For these regions
biological experts provided background knowledge how the peak-callings should
look like and the results are verified against this knowledge.

The chapter describing the interactive dot plot viewer (Chapter IS mainly
based on the following publication:

iDotter - an interactive dot plot viewer: Daniel Gerighausen, Alrik

Hausdorf, Sebastian Zanker, Dirk Zeckzer. 25. International Conference
in Central Europe on Computer Graphics, Visualization and Computer
Vision WSCG, 2017

This chapter starts with a brief introduction to motivate the necessity to
develop a new dot plot viewer for RNA secondary structures. Furthermore, it

describes what kind of interactions were added to the visualization system to

3

Chapter 1. Preface

enhance it. Followed by that, the functions of related tools and visual repre-
sentations of RNA secondary structures are discussed (Section [4.2)). Based
on that, the current state and the issues of current dot plot viewers for RNA
secondary structures are elaborated upon (Section . Then, a solution for
the mentioned issues is proposed and the newly developed interactive dot plot
viewer iDotter is described (Section [4.4]). Within this section, the complete
data analysis pipeline is described and the features of the visualization system
are presented in detail. iDotter is implemented as freely available web service to
facilitate the usage of this tool. Finally, this chapter concludes with a discussion
of the results produced by iDotter (Section and an use case showing how
to interpret RNA secondary structure dot plots (Section [4.6)).

The subsequent chapter (Chapter [5) continues thematically in the domain
of RNA secondary structure visualizations, addressing planar graph layouts of

such structures. It is mainly based on the following publication:

RNApuzzler: efficient outerplanar drawing of RNA-secondary struc-
tures: Daniel Wiegreffe, Daniel Alexander, Peter F. Stadler, Dirk Zeckzer.
Bioinformatics, 2018. doi:10.1093/bioinformatics/bty817

This chapter starts with an extensive introduction of the theoretical back-
grounds of the graph representation of RNA secondary structures (Section .
The theoretical background begins with a collection of definitions related to
graphs that are used thereafter to describe the graph layout. Then, a formal
definition of RNA and its secondary structure is provided as well as its interpreta-
tion as an RNA-Tree. Derived from these definitions, specific properties of the
RNA-Tree are postulated, which will then be proven. Based on these properties,
a new algorithm was developed to visualize RNA secondary structures as a
graph that is provably planar for any RNA secondary structure. This algorithm
consists of two principle components. The first component is called RNAturtle
(Section [5.3). First, a collection of drawing constraints of RNA secondary
structure graph layouts is described and matched with the related literature.
These do not yet include planarity of the resulting drawing. Afterwards, the
RNAturtle algorithm is described. It is based on a turtle-graphics algorithm
and therefore, the RNA structure is drawn sequentially by iterating of over all
nucleotides of its sequence. The algorithm is evaluated against the previously
postulated drawing constraints. Despite fulfilling most of the constraints with

every possible structure, RNAturtle may not create planar drawings, especially

4

Visual Analysis of Form and Function in Computational Biology

for large RNAs. Therefore, based on this result, RNApuzzler was developed
(Section . First, the drawing constraints of RNAturtle are analyzed. Based
on this, new constraints were added and some existing constraints were relaxed
to enable RNApuzzler to create planar drawings. Furthermore, a more coarse
grained data structure for the RNA-Tree is proposed. Each of the elements
in this data structure represents a vertex (structural element: loop) and its
incoming edge (structural element: stem). If a stem is connected to another
loop segment, an edge between those two elements represents this connection.
After that, the main algorithm of RNApuzzler is described (Section .
Basically, RNApuzzler checks the output of RNAturtle for intersections within
the graph layout and resolves them. To achieve this, RNApuzzler checks three
different properties of the planarity in succession. As it was proven (Section ,
these proporties build upon each other and if all of them are fulfilled, the whole
graph layout is provably planar. If an intersection is detected during these tests,
the algorithm resolves it and continues the processing. Based on the resolving
mechanism, the loops of the RNA structure may become very large since their
radii are increased during the resolving step. Therefore, an optimization step
was developed that reduces the effects of the loop increase regarding drawing
space and readability of the visualization (Section . Then, the benchmarks
of RNApuzzler and RNAturtle are discussed (Section [5.6]). It is shown that
RNApuzzler fulfills all proposed drawing constraints at least in their relaxed
form and compared to other drawing algorithms it is the only known algorithm
that produces planar drawings for every possible RNA secondary structure. Fur-
thermore, the computational time of RNApuzzler was evaluated. RNApuzzler
needs only a fraction of the computational time that is needed to predict the
folding of the structure but it is slower than the previous (non-planar) standard
visualization algorithm, especially for large RNA structures. Finally, RNApuzzler
was compared to existing drawing algorithms with respect to readability of the
layout.

The last chapter summarizes the results of this thesis and an outlook for

further research is given (Chapter [6)).

Chapter 1. Preface

Chapter 2

Biological Background

2.1 Molecular Biology

Every living cell has basically the same setup where molecules called proteins
manage the cell, DNA (deoxy-ribonucleic acid) stores the construction plan for
the proteins, and RNA (ribonucleic acid) transmits messsages between the DNA

and the proteins.

DNA

In eukaryotes, the DNA is stored inside the nucleus (see Figure[2.1)) of the cell
and it is organized in subunits, called chromosomes. Human DNA, for example,
consists of 46 chromosomes. The DNA sequence is built up from four nu-
cleotides: deoxyadenosine monophosphate (A), deoxyguanosine monophosphate
(G), deoxycytidine monophosphate (C), and thymidine monophosphate (T).
Each of them have a 2-deoxyribose sugar and a phosphate group is bonded to
this sugar. Additionally, one of the four nucleobases adenine, guanine, cytosine,
or thymine is bonded to the sugar. Altogether, each combination of sugar,
phosphate, and one of the nucleobases forms a so-called nucleotide. These
nucleotides can form a chain: a single strand of DNA (see Figure . Fur-
thermore, the DNA can form a double strand with base pairs of nucleotides.
As Watson and Crick [82] proposed, DNA forms only specific base pairs, the
so-called Watson Crick base pairs: G-C and A-T (see Figure 2.3). The double
stranded structure forms the well known double helical structure of the DNA
like shown in Figure 2.1

The DNA is divided into so-called coding and non-coding regions. In the
coding regions, information is stored that can be used to generate proteins.

7

Chapter 2. Biological Background

Chromosome
Nucleus
~-Telomere
Ly
\%f/ -Centromere

Cell

-Telomere

DNA double-strand

Figure 2.1: DNA and its structural organization in the nucleus of eukaryotic
cells [1].

Visual Analysis of Form and Function in Computational Biology

O OH E\A/)
P—

I OH
O [P=

Il y O ﬁ Y | O
: kj k_j

OH OH OH

(a) The four DNA nucleotides C, G, A, (b) The four RNA nucleotides C, G, A,

and T forming a single stranded chain and U forming a single stranded chain
of DNA.

of RNA.

Figure 2.2: Single stranded pieces of DNA and RNA.

)4 Fk
(N ------- —N (N N—H---0_ CHj
: > \ \
N NN, N~ NN
W \= \ o \=/ %N
T \ 3 >
N—H-0 3
G H c A T

(a) The canonical base pair G-C (b) The canonical base pair A-T

Figure 2.3: Watson Crick base pairs

Which protein is created depends on the order of the nucleotides in the respective
DNA sequence. The non-coding regions can not be used to generate proteins.
However, the DNA has regions that do not encode information for proteins, the
non-coding regions. Nevertheless, these regions can be transcribed to RNAs

and also have a function. Figure shows an overview of transcription and
translation. Functional regions of the DNA are called genes.

Chapter 2. Biological Background

H @)
\
KN N—H------- O o H—N> \\/
=
/N / \N """" H—N \> (/ }_N\
1)"—\ Ng N "LLL'/N N—H------ 0] .r"rr
O _>a~' N=<
(a) The canonical base pair A-U, (b) The canonical Wobble base pair
which is replacing the A-T base G-U
pairs in RNA

Figure 2.4: Additional possible base pairs occuring in RNA molecules.

RNA

RNA molecules (Figure [2.2)) are rather similar to DNA molecules (see Fig-
ure . They are built up from a ribose sugar (compared to the desoxyribose
sugar of the DNA, a hydroxyl group is added to the sugar at the 2’ position of
the ring). Additionally, one nucleobase is exchanged in RNA: RNA uses uracil
instead of thymine. This base has an extra methyl group (HsC in Figure |2.4))
and like thymine forming a base pair with adenine. RNA molecules can also
form a chain of molecules but they do not form the double stranded helical
structures. Nevertheless, it can form a single stranded helical structure by com-
plementary base pairings. This structure is called the RNA secondary structure
and is described in more detail in Section [2.3] Besides Watson Crick base pairs,
RNA can form additional base pairs like the Wobble pair G-U (see Figure |2.4)).
Altogether, Watson Crick and Wobble pairs [28] form the canonical base pairs.
Additionally, even more base pair types exist in RNA, the so-called non-canonical

base pairs. However, these pairings are not treated as secondary structures.

RNA molecules have different functions in the cell. Best known are the
coding RNAs, that serve as intermediate messenger (mMRNA) between the DNA
and proteins. In addition to that, several other RNA types are known that
do not serve as a messenger, the so-called non-coding RNAs (ncRNA). Most
prominently are the groups of transfer RNAs (tRNA) and ribosomal RNAs
(rRNA). They act as assistants and regulators during the translation of mMRNAs
into proteins. Besides those, there are many more ncRNA types.

10

Visual Analysis of Form and Function in Computational Biology

MRNA

Protein ncRNA

Function Function

Figure 2.5: From a gene to function: either a region of the DNA is transcribed to
an mMRNA, which is translated into a functional protein or the DNA is transcribed
into a functional ncRNA [9].

Proteins

Proteins, on the other hand, are not built up from nucleotides but rather from
amino acids. Amino acids are a composition of amine and carboxyl groups
together with a specific side chain that determines the amino acid. Amino
acids can also form chains that build up proteins. Similar to DNA and RNA,
amino acids can establish additional pairings within a chain of amino acids
and interact with other amino acid chains or other molecules forming large
macromolecules. There are a multitude of different amino acids, but in known
life only 22 variants are translated. These amino acids are called proteinogenic
amino acids. From these 22 amino acids, 20 can be synthesized by translation,
the remaining 2 are synthesized by other processes [16]. As shown in Figure|2.5|
MRNAs are translated into proteins within a cell. This is done with the use of
macromolecules called ribosomes. During the translation, a ribosome assembles
the chain of amino acids with a specific order provided by the mRNA. Each triplet
of nucleotides of the mRNA, a so-called codon, represents a specific amino acid
and the ribosome reads the mRNA and forms the protein. Furthermore, mRNAs
have a specific start and a specific stop codon for controlling the translation.
Figure provides the codons for the 20 common amino acids.

The transfer of information from DNA over RNA to protein is described
in the Central Dogma of Molecular Biology [30], 29]. As shown in Figure [2.7],

11

Chapter 2. Biological Background

Figure 2.6: Overview of all amino acids that are encoded by codons. The
visualization is read from the center of the circle outwards so that each sequence
of nucleotides results in an amino acid or a start/stop codon.

the arrows show the direction of information transfer between DNA, RNA and
proteins. The solid arrows encode information transfer that were included into
the original model and describe the common information flow. However, the
original model was not complete, e.g., RNA can be reversely transcribed to
DNA. This mechanism is used by some viruses to transfer new information from
their RNA to the host genome. Therefore, dashed arrows showing additional

known information transfers were added to the original model.

12

Visual Analysis of Form and Function in Computational Biology

Protein

Figure 2.7: The Central Dogma of Molecular Biology proposed by Crick [30], 29].
The solid arrows show the common information flow and the dashed arrows
specialized transfer directions.

13

Chapter 2. Biological Background

2.2 Epigenetics

All cells of a multicellular organism share the same genetic information encoded
as DNA and thus the same set of genes. However, different cell types have
different functions and produce different transcripts of RNA by regulation of
gene expression. Beside the regulation by transcription factors and RNAs,
epigenetics was established as an additional research field in the domain of gene
regulation. Epigenetics is defined as "the study of heritable changes in gene

expression that are not mediated at the DNA sequence level” [27].

Nucleosome

As shown in Figure 2.1, the DNA of eukaryotes is located in the nucleus of
the cell and is partioned in structural units callled chromosomes. The DNA
is wrapped around proteins and forms a "beads on a string” like structure.
Together, they form the chromatin, which combine into the chromosome. In
detail, each "bead” is made up from two copies of four different histones: H3,
H4, H2A, and H2B. This protein complex is called histone octamer and with
146bp of DNA wrapped around it, it forms a nucleosome (see Figure [2.8)).
An additional histone H1 is attached to the open end of each nucleosome to
stabilize the linker between two nuclesomes [21]. The chromatin can be packed
differently tight, for example the Centromeres shown in Figure are packed
very tightly. Theses areas can not be accessed easily by the RNA-polymerase
and therefore this effect decreases expression of the genes located in this region.
Condensed regions of chromation are called heterochromatin [27]. Additionally,
the chromatin can be packed less tightly, and therefore easily can be accessed
by the RNA-polymerase. These regions which are often highly transcribed are
called euchromatin [27]. The histones of the octamer are modified by enzymes
to form these regions. These enzymes attach specific molecules to the histones
at certain amino acids. Due to this modification of the histone, the nucleosome

can be packed more tightly or less tightly within the chromatin.

Histone modifications

Many histone modifications with different effects on the chromatin organization
are known (see Figure . Most common are acetylation, methylation,
phosphorylation, and ubiquitination, which are all attached to so-called histone
tails. As shown in Figure [2.9d, the histone complex is not covered completely

14

Visual Analysis of Form and Function in Computational Biology

octamer of core histones:
H2A, H2B, H3, H4 (each one x2)
core DNA

- = /
histone H1 linker DNA

Figure 2.8: Schematic structure of a nucleosome [13].

by the DNA which is wrapped around it. The histone tails form the outside
accessible regions that can be modified by enzymes. Each modification can
have a different impact on the chromatin organization. Additionally, multiple
modifications can occur at the same octamer and can have additional effects
on the chromatin organization. For example, the histone H3 contains 8 lysine
amino acids and a methylation group can be attached to most of them. The
positions of the lysines are shown in Figure 2.11al Currently, the effects of
histone modifications are still a vivid subject of research.

Due to the variety of histone modifications, the position and the type of a
modification is described using a naming pattern. For example, the trimethylation
(‘'me3’) of the fourth lysine (biological abbreviation 'K") of the histone H3 is
named 'H3K4me3'. In this thesis, the modifications H3K4me3, H3K27me3,
H3K9me3, H3K27ac, and H3K9ac are analyzed:

H3K4me3 This modification is positively correlated with transcription [71]
and it occurs at tissue specific genes as well as so-called housekeeping genes
that are necessary for maintaining a cell and it's basic functions. Furthermore,

it is often found in embryonic stem cells.

H3K27me3 This modification is related to heterochromatin [25] and therefore

it is correlated with the downregulation of nearby genes.

15

Chapter 2. Biological Background

(a) The DNA component of the nucleosome (shown without the histone
complex).

(b) The histone complex: H3 is colored in green, H2A in orange, H2B in yellow,
and H4 in purple (shown without the DNA). The histone tail of the histone
H3 can clearly be seen.

(c) DNA and the histone complex form the nucleosome.

Figure 2.9: A nucleosome divided into its components. This model was generated
from the crystal structure published by Luger et al. [55].

16

Visual Analysis of Form and Function in Computational Biology

P Me Ac Ac e C e N
+ 5GRGKGGKGLGKGGAKRHRKVLRD Rssﬁ:KSKARAKGGQKGRGS
Ha @ PKKTESHHKAKGK
Ci Ac CiAc Ac Ac Ac Ac H3 HoR GTKAVTKYTSSK ¢
MePMe MeMePP Me MeAc Me MeMeP Me Ac Ub
+ ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKP \

KGDKKQAKTVAKKSGKKPAPASKAPEP
AcMe Ac AcP Ac Ac

Me Methylation AC Acetylation Ci Citrullination
Ub Ubiquitination P Phosphorylation

Figure 2.10: Overview of known histone modifications for the histones H4, H2A,
H3, and H2B [14].

H3K9me3 This modification acts as a repressor of transcription and it is
correlated with DNA methylation that silences the DNA so it can not be
expressed anymore [58].

H3K27ac This modification is found predominantly in promotor regions and
like H3K4me3 is positively correlated with transcription of nearby genes [80].

H3K9%9ac This modification is known to ease the packing density of a nucleo-
some and it occurs often at promotor regions [62]. It is correlated positively

with the activation of nearby genes.

Sequencing histone modifications

The most common method to measure histone modification is the chromatin
immunoprecipitation sequencing (ChiP-seq) protocol. In a first step, the DNA
is cross-linked with the histones that are bound to it. Afterwards, the DNA is
fragmented into pieces having a size between 200 and 1000 bases by sonification.
Then, specific antibodies are added to target a specific histone modification like
H3K4me3. If an antibody encounters the targeted modication at a fragment, it
binds to the modification as shown in Figure [2.11b] Next, all fragments that
are not targeted by an antibody are removed by washing them away. Then, the
cross-linking of the DNA with the histones is dissolved. After the dissolution,
the histones are washed away, too. Through this procedure, all unmodified
regions of the DNA are separated away. In the next step, the filtered DNA
fragments are sequenced.

Since histone modifications are distributed over the genome of an organism
and histone modifications occur frequently, it is recommended to use a next-
generation sequencing (NGS) method. A common NGS method is the Illumina

sequencing method. During this method, the DNA fragments are splitted

17

Chapter 2. Biological Background

Lysine 9

Lysine 27

Lysine 36 /.

Lysine 4

Lysine 23

(a) Position of all modifiable lysines of the histone H3.

(b) An antibody binds to it's target site (the histone modification H3K4me3).

Figure 2.11: A model of the histone H3 generated from the crystal structure
published by Luger et al. [55].

18

Visual Analysis of Form and Function in Computational Biology

into single strands that are amplified on a flow cell. After the amplification,
the fragments forms so-called DNA-clusters that should contain only DNA
fragments, which were created by the amplification of a single DNA fragment
from the previous step. In the following, the sequencing is performed with the
help of modified nucleotides. These nucleotides are fluorescently-labeled to
red and green laser light and are added step by step onto the single stranded
DNA-clusters. After each step, two lasers emit their specific red and green light
onto the DNA-clusters. A camera detects the specific reaction of each modified
nucleotide. Since A and C are excited only by the red laser and G and T only
by the green one, the camera needs to take four pictures after each step. The
camera uses different filters to detect the small variations in the spectra emitted
by A and C as well as G and T, respectively. Since the DNA-clusters contain
many identical fragments, the emitted light is strong enough for a camera to
capture it. Afterwards, a new nucleotide is added to the fragment until the
process iterated over the whole fragment.

This method is fast but errors during the amplification are distributed
exponentially within the DNA-cluster. Furthermore, the distinction between
the different spectra of A and C as well as G and T can fail and produce
errors. Therefore, it is recommended to sequence each experiment with a higher
coverage to detect possible errors in the post-processing steps.

With this method, it is possible to sequence single histone modifications. To
detect several histone modifications, it is neccessary to repeat the process with
specific antibodies for each histone modification. Furthermore, an unspecific
antibody is used during an additional run to create a so-called background
measurement. This background measurement is used during the post-processing
steps to normalize the data and to reduce the noise caused by errors during the

sequencing step.

19

Chapter 2. Biological Background

2.3 RNA Secondary Structure Prediction

As mentioned before, RNA can form a single stranded helical structure, the
RNA Secondary Structure. Since an RNA sequence is often not completely
complementary, not all nucleotides of a sequence form a base pair and base
pairs can not cross each other. The unpaired regions of an RNA secondary
structure are called loops. Every paired region of an RNA sequence is called
stem. Furthermore, one can distinguish between different types of loops. An
internal loop is a region that is connected to two stems. A special case of the
internal loop is the so-called bulge since only one side of the helical structure has
unpaired nucleotides. A loop with only one stem attached to it is called hairpin
loop. Additionally, a loop with more than two stems attached is called multi-loop.
A special case is the unpaired region at the start and at the end of the RNA
sequence. This region is called exterior loop. A formal description of these
elements of the RNA secondary structure is given in Section [5.2] Figure
shows the different elements of an RNA secondary structure.

Nussinov Algorithm

Predicting an optimal RNA secondary structure is called RNA folding and is still
an ongoing research topic since the 1970s. Nussinov et al. [63] published the
first algorithm to predict an optimal structure in which the number of base pairs
in a given sequence has been maximized. Due to the fact that base pairs do
not cross each other in a valid RNA secondary structure, every sequence can be
decomposed into subsequences and the optimal substructures can be calculated
recursively (Figure . Using this decomposition the maximal number of base
pairings can be calculated using a dynamic programming approach. Therefore,
a forward recursion is applied to fill a matrix E, ,, which holds all possible
substructures (see Algorithm [2.1]). After this, the backward recursion is started
at E; , to trace back the maximal number of possible base pairings for the
given sequence. Since it can happen that a maximal number of possible base
pairings can be formed by multiple valid structures, multiple equally optimized

paths can be found during the backward step.

20

Visual Analysis of Form and Function in Computational Biology

Algorithm 2.1
Initialization:
Ei i=0
Ei i-1=0

Forward Recursion:

Eiv1
E; j = max . (2.1)

max(E,-H, k—1 + Ek+1, J + S(I', k))

where
, 1,if / and k form a canonical base pair.
S(i, k)=
0, else
and
< k <y

Nearest Neighbor Model

The Nussinov Algorithm is a simple algorithm since it takes neither the different
binding energies of canonical base pairs nor the stacking effects of stems into
account. Therefore, a more complex algorithm is usually used to predict a more
realistic RNA secondary structure. It is based on thermodynamic principles
and experimental observations to model a secondary structure that maximizes
the free energy of the structure of the given sequence. For this purpose, the
structure is decomposed into its elementary substructures such as stems, hairpin
loops, internal loops, and multi-loops. Each of these elements adds a certain
amount of free energy to the structure, which is summed up for the given
sequence to find an optimal structure. Since it is not feasible to validate
every possible substructure, only a large amount of smaller substructures was
experimentally analyzed. The energy of larger structures is computationally
derived. Therefore, a nearest neighbor energy model [72] is used. The basic

21

Chapter 2. Biological Background

w,

Figure 2.12: Overview of the substructures of an RNA secondary structure.
E: exterior loop, | & B: internal loop, M: multi-loop, H: hairpin loop.

F F m F
° e — oo ° | ° ® 00 °
i j i i+l j i i+l k—=1k k+1 J
Figure 2.13: Decomposing an RNA secondary structure into substructures. The
folding space F of the nucleotides / and j can be decomposed into a subfolding

space of / + 1 and J, or into a bifurcation from i+ 1 to kK — 1 and from k+ 1
to j, where 1 < k < J, and / and k form a base pair.

22

Visual Analysis of Form and Function in Computational Biology

idea of this model is that only the base and its direct neighboring bases influence
the free energy of a base pair. With this model, it is possible to break down the

global free energy of a structure into multiple contributions of the substructures.

Zuker Algorithm

Unfortunately, the nearest neighbor energy model impedes the prediction of
multi-loops, since an unknown number of components can be attached to it.
But since the number of components of a multi-loop influences the energy
contribution, an accurate estimation of them is necessary. Therefore, Zuker
published a customized variant [92] [01] of the Nussinov Algorithm by adding
additional backtracking matrices to distinguish between the substructures of
the RNA. Algorithm denotes the Zuker algorithm in a version proposed by
Hofacker et al. [43]. Many RNA folding software systems like the ViennaRNA
Package [54] and RNAstructure [66] implemented this algorithm and developed
it further. In general, the algorithm decomposes the structure into substructures
and tracks the number of components of a multi-loop. Therefore, four tables
track the optimal free energy for the substructures. In detail, F; ; stores the
optimal free energy of the substructure between / and j. C; ; contains the
optimal free energy for the substructure between / and J, if / and j form a base
pair. Multi-loop substructures are stored in two tables. M; ; stores the optimal
free energy of a substructure between / and J, if the substructure is part of a
multi-loop and has at least one component attached to it. The second table
M,%J- holds the optimal free energy of a substructure between / and J, if the
substructure is part of a multi-loop and has exactly one component attached
to it. This second table for the multi-loop is not necessary to find an optimal
solution but it accelerates the computation of multiple sub-optimal RNA foldings
which is a common task in the area of RNA folding. The functions H(/, j) and
Z(i, j) (Algorithm calculate the optimal free energy for a hairpin loop and
an interior loop, respectively. Additionally, multiple energy constants are added
to model the effects of base pairs. The backtracking step of this algorithm is
applied just as the backtracking step of the Nussinov algorithm explained before.

23

Chapter 2. Biological Background

Algorithm 2.2

. F/+1, J
Fi j= min

min; < « < j(Ci. k + Fiy1, j)
(17,)
Ci,j=minsmin < x <1< (Ce. 1 +Z(, j:k, 1))
(mini < v < j(Miy1, u + Miy o1+ a)

(

M(II’ J) = min min; < 4 < j(M/, ut Cu—i—l, it b) (22)
\/V//, j-1+¢C
M +c
M} ;= min ot
Cij+b
with

H(i, j) = energy for a hairpin loop

Z(i, j: k, I) = energy for an internal loop

a = energy penalty for a closing base pair in a multi-loop
b = energy penalty for a base pair in a multi-loop

c = energy penalty for an unpaired base in a multi-loop

24

Visual Analysis of Form and Function in Computational Biology

i

interior
i j i j ‘ ik [j i+l uu+lj-1j
M
M ey _\ \AA A
i j i u u+l u u+l j

Ly i

Figure 2.14: Graphical representation of the structural decomposition by the
Zuker algorithm. Base pairs are shown as arcs, dotted lines represent unpaired
subregions. A not fully calculated multi-loop region is visualized as mountain

ridge.

25

Chapter 3

Sierra Platinum

27

Chapter 3. Sierra Platinum

3.1 Introduction

3.1.1 Goal

The goal of Sierra Platinum is to provide a mathematically sound method for
combining the results of replicated experiments. Each replicated experiment
consists of the experiment itself and the associated background, the experiment is
compared to. Moreover, quality measurements and their respective visualizations
are provided to make informed decisions about the quality of the replicates
and to select those replicates that should be used and those that should be
down-weighted or removed.

Sierra Platinum was developed with an equal contribution by Lydia Miiller,
as follows. Lydia Miiller contributed mainly to the methods of Sierra Platinum,
the creation of the benchmark data set, and the website of the service imple-
mentation. The visualizations, optimizations, and the implementation of Sierra
Platinum as a service within a docker container were mainly contributed by
the author of this thesis. The evaluation and the results were mainly produced
within the thesis.

3.1.2 Overview of the Multi-Replicate Peak-Calling Process

The multiple-replicate peak-calling process of Sierra Platinum is depicted in
Figure [3.1] The input data (circles on the left of the figure) consists of all tags
of an experiment (black circles) and its associated background (white circles)
which together form the replicate.

While computing the peaks, several quality measures for them are computed,
too. These quality measures and those intermediate results from the method that
allow assessing the quality of the input data are visualized. These visualizations
support assessing the quality of the input data and making informed decisions.
Moreover, this information can be used to remove or down-weight replicates
(experiments) that are qualitatively weak and to rate the final result. All points,
where visualizations are provided and interaction for changing parameters of the
method is possible are marked with a magnifying glass in Figure [3.1]

In the following, the ‘method’ paragraphs describe the computations needed
for establishing the peaks, the ‘quality measure’ paragraphs describe the com-
putations that are used for quality assessment only, and the ‘visualization’

paragraphs describe the visualizations that support the quality assessment.

The steps “Window Construction|—1Single p-Value]' are computed only once

28

Visual Analysis of Form and Function in Computational Biology

Q p-values

Qp-values Q peaks

. Experiment

(O Background

] Model
* p-values
A Peaks

Q Quality Control

Figure 3.1: Overview of the multiple-replicate peak-calling process. Phase I:
Windows are constructed and single replicate p-values for each window are
computed (pentagons) Phase Il: From the single p-values, combined p-values
are computed by combining windows using the inverse normal method (large
pentagon). Phase Ill: Suitable narrow and broad peaks (white triangle) are
computed based on the windows' combined p-values. The magnifying glass
symbolizes all points, where a visualization-based quality control is included in
the peak-calling process.

to establish single replicate p-values. The steps ‘[p2q Transformation| and

“lCombined p-Values|" depend on the p to g value conversion method and are

computed first with the default method. Moreover, the step ‘{Combined pi
Valueg|' is first performed with all replicates included and equally weighted.

After examining the results, the weights of the replicates can be changed or

replicates can be excluded (Section “Filtering and Weighting|'). Additionally, the

method for converting p to g values can be changed. Then, the steps ‘p2(|

[Transformation|—{Computing Peak Quality]' can be performed again with the

new configuration of replicates, weights, and p to g conversion method. This
process of changing the configuration and recomputing the combined peaks can
be repeated until a convincing configuration was found—i.e., a configuration
with optimal quality. Table gives an overview of the steps and if they

contribute to the method, compute quality measures, or provide visualizations.

29

Chapter 3. Sierra Platinum

Table 3.1: The steps performed by Sierra Platinum: section and name of the
step, and whether it is part of the method, a quality measure, or a visualization,
respectively.

Section Method Quality Visualiza-
Measure tion
Phase |
3.3.1 Window Construction| v
3.3.2 Window Joining| v
3.3.3 Read Quality| v v
3.3.4 Poisson Distribution| v v v
3.3.5 Tag Count Frequencies| v v v
3.3.6 Scaling| v
33.7 | v W) v
tion|
3.3.8 Neighborhoods| v
3.3.9 Single p-Valug| v v v
3.3.10 p2q Transformation| 4
3.3.11 Significant Windows| v v
Phase |l
3.3.12 [Pearson’s _Correlation bed v v
tween Replicates|
3.3.13 Combined p-Values| v v
3.3.14 Filtering and Weighting| v
Phase |l
3.3.15 |[Agreement between thel v v
[Multi-Replicate Result and|
the Single Replicate Results
3.3.16 Computing Peaks| v
3.3.17 Computing Peak Quality| v v
3.3.18 Exporting Peaks| v

30

Visual Analysis of Form and Function in Computational Biology

Sierra Platinum combines two established methods:

1. The approach of Zhang et al. [90] (implemented in MACS) was adopted
for splitting the genome into windows, for calculating the p-values for
each window replicate, and for generating narrow and broad peaks.

2. The inverse normal method as presented by Hedges and Olkin [42] and
as used by Wright et al. [87] is adapted to combine the p-values of the

different replicates for each window into one p-value for each window.

Phase | The steps of this phase are computed for each data set—experiment
and background of each replicate—or each replicate separately. However, two
quality measures compare the windows per replicate to the mean over all
replicates for the same window.

First, the windows are constructed (Section [3.3.1]). Each window has a
start position and a size. All tags overlapping this window are counted. Empty
windows are discarded. In principle, this leads to a list of windows. However, to
reduce the computation time, the first step is done in parallel on chunks of a
certain size. This necessitates a complex data structure, which in turn needs to
be transformed into a list (Section [3.3.2)).

The next step is not needed for performing the peak-calling itself. Computing
the mapped read quality serves as a quality assessment of experiment and
background of a replicate (Section [3.3.3)). It allows to decide, whether or not
to use this replicate for the computation of the combined peaks.

Afterwards, the Poisson distribution of the tag counts of the windows is
computed (Section[3.3.4]). Similar to Zhang et al. [90], this serves as a model for
computing the single replicate p-values (Section[3.3.9). As a quality estimate,
the real tag count frequencies are computed and compared to the theoretical
Poisson distribution (Section [3.3.5]). Moreover, the results is also used later
for computing the weights (Section [3.3.14)). As in general the amount of
used and mapped material differs between experiment and background, the
experiments are scaled (Section . This allows for a better comparison
between experiment and background. Based on the scaled experiments, the
normalized Poisson distributions are computed (Section [3.3.7)).

Next, the 1k, 5k, and 10k neighborhood of each window is determined
(Section . Now, single replicate p-values are calculated for each window
and each replicate based on the global A of the normalized Poisson distribution
and the X values computed for each neighborhood (Section [3.3.9)). These

31

Chapter 3. Sierra Platinum

p-values determine the peaks of the replicates. To reduce the effect from the
correlation between the p-values computed, they are transformed into so-called
g-values (Section [3.3.10)). As the g-values are (un-)corrected p-values, they are
called p-values in the subsequent sections. As additional quality measurements,
the amount of significant windows (Section and the p-value distribution

(Section |3.3.13]) are determined.

Phase Il During this phase, the information computed for the replicates is
combined. First, the correlation between the replicates is determined (Sec-
tion [3.3.12)). This information is used for adapting the configuration of the
replicates performed next. On the one hand, the replicates need to be corre-
lated to compute justified, combined peaks. On the other hand, correlation
is problematic for applying the combination method proposed. Therefore, the
configuration has to be corrected for the correlation found.

The replicates are filtered and weighted based on their quality assessment
(Section . To compute the combined p-values for each window, the
inverse normal method is applied (Section [3.3.13)). During this step, replicates,
which are filtered out, are discarded, and the correlation coefficients and weights
established previously are applied. Furthermore, the combined p-values are
used for computing additional quality information as well as narrow and broad
peaks. The combined p-values are again correlated and therefore converted into
g-values. As the g-values are (un-)corrected p-values, they are called p-values

in the subsequent sections.

Phase Il During this phase, the agreement between each single replicate and
the final combined results is computed and visualized (Section [3.3.15)). This
quality measure allows to assess the influence of each replicate on the final
combined result. Finally, the narrow peaks (Section and the broad peaks
(Section of the final combined results are determined together with
their quality (Section . Finally, the computed peaks can be exported for

further analysis (Section |3.3.18]).

32

Visual Analysis of Form and Function in Computational Biology

3.2 Related Work

Several peak-callers are available for single experiments. The largest difference
between the different methods is the statistical framework used to model the
background. Peaks are annotated at positions where the observed number
of reads is significantly higher than the one expected by chance given the
background model. Koohy et al. [49] and Wilbanks et al. [86] give a good
overview and comparison of state-of-the-art peak-callers used in several published
studies.

Peak-calling for replicated ChlP-seq experiments, however, is not well sup-
ported. Only two approaches exist that use a single experiment peak-caller
and either combine the replicates before peak-calling or combine the peaks
obtained from the single experiments (see Figure[3.2} MACS-CR and MACS-SA,
respectively). Combining the replicates before peak-calling requires equal library
sizes (total number of mapped reads) across all replicates or down-sampling to
a common library size. For example, the NIH Roadmap Epigenomics Project
uses the down-sampling approach to avoid artificial differences in the signal
strength with uniform depth of at most 30 million reads before merging the
replicates [68]. Similarly, MACS scales the two libraries which are compared to
the same amount of reads to make experiment and background library compara-
ble [90]. Down-sampling, however, may lead to an overestimation of the noise
level. Moreover, it is not possible to incorporate weights for the replicates based
on their quality or to backtrack the source of a specific signal to the supporting
replicates.

Combining the peaks of the single experiments includes all peaks in any of
the replicates. Thus, replicates with poor peak-call quality can have a large
effect on the final result. Furthermore, very long peaks can occur in the final
peak set by merging neighboring narrow peaks from different replicates. While
none of the replicates predicts those broad peaks, the final result contains them.

On the other hand, PePr [89] explicitly supports replicates of the same
condition during peak-calling (see Figure : PePr). It uses a binomial model
that expects the same dispersion for experiment and background. However,
for, e.g., experiments performed at different sequencing centers, it is unknown
if this condition holds and consequently it is not guaranteed that the results
obtained using this model are reliable. Also, PePr down-samples all libraries to
the same size and thus might overestimate the noise level.

Another peak-caller for multiple-replicate is BinQuasi [37]. Its model is based

33

Chapter 3. Sierra Platinum

Sierra Platinum PePr & BinQuasi MACS-CR MACS-SA

Y

Q p-values p-values

@ Experiment
(O Background
O Model
* p-values
YAN Peaks

Q Quality Control

Q p-values p-values p-values

Figure 3.2: Overview of the multiple-replicate peak-calling process showing
the basic steps of multiple-replicate peak-calling for Sierra Platinum, PePr,
BinQuasi, MACS-CR (combine replicates approach using MACS as single-
experiment peak-caller), and MACS-SA (combine peaks approach using MACS
as single-experiment peak-caller). The MACS approaches and Sierra Platinum
extract the parameters of the underlying model (squares) from the background
data (white circles) and use the model and the experimental data to calculate
p-values (pentagons) indicating how significantly enriched the experiment (black
circles) is. PePr and BinQuasi generate also a model for the experiment and
use both models to calculate p-values. Based on the p-values, peaks (triangles)
are calculated. Quality control (magnifier) is provided usually alongside with
the peaks. Only Sierra Platinum allows to examine the quality during the
peak-calling process, while all other methods only allow to examine the quality
of the peaks obtained.

on a negative binominal distribution and uses a one side quasi likelihood ratio
test to detect peaks. Due to the model, BinQuasi has the same properties as
PePr. The benchmark in Section [3.5 shows that BinQuasi reacts even more
sensitively to noisy data and in some cases does not detect any peaks at all.

Besides the so far mentioned peak-callers, there are several peak-callers
for differential peak-calling, i.e., finding peaks which occur in only one of two
groups of samples. The underlying statistical model assumes that there are
basically three types of peaks: peaks occurring in both groups of samples and
peaks occurring in only one of the two groups. In particular, none of the
groups is treated as background for which no peak should be found. Similar to
PePr, those peak-callers apply methods from differential gene expression which
fit two negative binomial distributions to the two groups for each locus and
compare the data based on these distributions. For example, csaw [56] uses
the edgeR package [69] to find differential peaks, while diffBind [70] uses peaks
predicted on each sample and compares the peaks based on read counts within
the peaks also using the edgeR package [69]. Sierra Platinum does not aim to
find differential peaks but peaks with respect to a background measurements

34

Visual Analysis of Form and Function in Computational Biology

which is a very different task from a statistical point of view [56]. Therefore,
these peak-callers are not further evaluated in detail.

The currently available approaches for replicate peak-calling are neither
designed to assess the replicates’ quality nor to handle replicates of different
quality. Moreover, the replicates’ quality can not be incorporated during peak-
calling. In the case of combining the peak-calls of the single experiments, it is
in principle possible to introduce weights to account for different qualities of
the replicates. However, doing this in a statistically sound way is hardly possible

since non-significant positions are not provided by the peak-caller.

35

Chapter 3. Sierra Platinum

3.3 Methods

3.3.1 Window Construction
Method

The whole genome is split into overlapping windows of size w with offset o.
According to the evaluations (Chapter , the window size should be the
fragment size used in the experiment, while the window offset should be a quarter
of the window size. Most frequently, ChlP-Seq data of histone modifications
is fragmented with an average fragment size of 200nt. Therefore, the Sierra
Platinum defaults are a window size of w = 200nt and a window offset of
o = 50nt. However, these parameters are accessible through the graphical user
interface (GUI, Section and thus can be changed according to the data
used.

Each window is compared to the tags obtained from the experiment and the
background, respectively. The number of tags overlapping each window is stored
separately for experiment and background for each replicate. Sierra Platinum
assumes that the data is stored in files that are in bam format and that artifacts
(PCR duplicates) were already removed using for example SAMtools [53] or
Picard tools [3]. To access the data, the HTSJDK library [2] is used. Counts
for experiment and background are calculated during the construction phase
of the windows. Windows, which do not overlap with any tag in any data set,
are removed since this is likely to be an artifact of either too low sequencing
depth, unknown genome sequence, or highly repetitive sequences to which no

tags were mapped (depending on the mapper).

Optimization

Constructing the windows is the first step of Sierra Platinum. Windows having
a length of / nt are searched for. The offset between two subsequent windows
is o nt. A window is constructed whenever the / nt under consideration overlap
with tags from at least one experiment or background of one replicate. The
number of overlaps is counted and stored with each window.

The general procedure for constructing windows is outlined in Algorithm [T

36

Visual Analysis of Form and Function in Computational Biology

Algorithm 1 Construct Windows
1: Determine windows overlapping at least one tag in one data set
2: Merge these windows (some strategies, see below)
3. Flattening: determine final, ordered window list

To accelerate this step, different parallelization strategies were developed
and tested:

[Tag Count Parallell count tags in parallel

[Chromosome Parallel create one thread per chromosome

[Chunk Parallell count chunks in parallel

One important constraint during optimization was to keep the space consump-
tion of all data structures—whether permanent or temporary—at a minimum.
Thus, the computation time was minimized while always considering to keep

the memory consumption low.

Tag Count Parallel The first idea was, to count tags in parallel. First, all
windows are constructed sequentially. Then, for each window, the number of
tags overlapping this window is counted for each data set. Parallelization was
achieved by assigning a certain number of windows to each available thread.
During flattening, only those windows are copied to the final list of windows
that contain at least one tag in one data set.

This method is simple, but a lot of windows do not overlap any tags. These
windows are empty and need not be generated and kept until flattening in the
first place. They need to be removed by the garbage collector which takes
additional time. The experiments show that the number of threads used for
computation should be maximal.

The method uses more than 9 and a half hours (offset: 100nt, size: 400nt)
and more than 37 hours (offset: 50nt, size: 200nt) of wall clock time, respec-
tively (Table[3.2). The additional time used for flattening is ~ 4 seconds (offset:
100nt, size: 400nt) and =~ 12 seconds (offset: 50nt, size 200nt), respectively.

Chromosome Parallel The second idea is, to count the tags for each chro-
mosome In parallel. For each chromosome, one thread is established and within
this thread Algorithm 2] is performed.

37

Chapter 3. Sierra Platinum

Table 3.2: Constructing all windows for 6 replicates: time for different strategies

Strategy 100nt, 400nt 50nt, 200nt
(hh:mm:ss) (hh:mm:ss)
Tag Count Parallel| 09:38:22 37:02:14
Chromosome Parallel| 15:13:13 29:56:02
Chunk — Window — Dataset 08:53:58 18:48:29
Chunk — Dataset — Window| 09:28:09 19:49:34
Dataset — Chunk — Window 10:12:28 out-of-memory
Chunk Parallel Coherent] 00:09:32 00:15:32

Algorithm 2 Chromosome Parallel

for each chromosome (parallel) do

for each window do
for all data sets do

count tags overlapping this window

end for

if at least one overlapping tag is found then

add window to window list

end if
end for
end for

38

Visual Analysis of Form and Function in Computational Biology

Algorithm 3 Chunk — Window — Dataset

for for all chunks (parallel) do
for for all windows of this chunk do
for for all data sets do
count tags overlapping this window
end for
end for
end for

As the chromosomes have very different lengths, this leads to an unbalanced
use of threads. It can be observed that the number of threads used reduces
over time until at the end only one thread is busy. This is reflected by the time
used for computing the windows.

Overall, this method needs more than 15 hours of wall clock time; 5 and a

half hours more than {lag Count Parallel| for a window offset of 100nt and a
window size of 400nt (Table . However, for a window offset of 50nt and
a window size of 400nt, it needs 7 hours less than {Tag Count Parallel’: ~ 30
hours (Table [3.2). The additional time used for flattening is ~ 14 seconds
(offset: 100nt, size: 400nt) and ~ 41 seconds (offset: 50nt, size: 200nt),

respectively.

Chunk Parallel To achieve a more equalized distribution of the workload for
each thread, while adding only those windows that contribute to the final result,
chunks of equal size are created. Each chunk contains ¢ windows, where c is
a predefined chunk size. Each chunk is assigned to a thread such that chunks
are computed in parallel. For each window, the tag count for each data set is
computed. Thus, three loops are used for the computation: one for the chunks,
one for the windows of the chunks, and one for the data sets. Rearranging these
loops yields the three variations of this strategy described by Algorithms [3H5]
After computing all windows, the final, ordered window list is determined.
This step is necessary, because nested data structures are used by the individual

variations of the strategy.

Chunk — Window — Dataset In this variation (Algorithm [3), all chunks are
handled in parallel, the windows of each chunk are constructed sequentially,
and the overlaps of each window with tags from each data set are computed
sequentially. Thus, it is always clear, if a window can be added to the list, or
not.

39

Chapter 3. Sierra Platinum

Algorithm 4 Chunk — Dataset — Window

for for all chunks (parallel) do
for for all data sets do
for for all windows of this chunk do
count tags overlapping this window
end for
end for
end for

For this strategy, the following data structure is used. Each window is
added to its chunk sequentially. All chunks of a chromosome are stored in a
list, according to their number. This yields a list of chunks, with each chunk
containing a list of windows. Finally, a map from each chromosome to its
ordered list of chunks is used. This nested structure is flattened to obtain the
final ordered window list.

For a window offset of 100nt and a window size of 400nt, the time needed
by this approach (= 9 hours, Table[3.2) is half an hour less than for {Tag Count]
[Parallel|, while the order of magnitude is the same. However, for a window
offset of 50 nt and a window size of 200nt, it is considerable faster (~ 19 hours,
Table [3.2) than both {Tag Count Parallell and {Chromosome Parallel. The
time used for flattening is &~ 20 seconds (offset: 100nt, size: 400nt) and ~ 53

seconds (offset: 50nt, size: 200nt), respectively.

Chunk — Dataset — Window In this variation (Algorithm [4)), all chunks are
again handled in parallel. However, only the tags for the current data set are
counted for each window.

Therefore, the data structure was changed. The chromosome is mapped
to a map from window start position to window. Thereby, windows having tag
counts for previously considered data sets are retrieved from the window map
and the new tag counts for the current data set are added.

The run-time needed is similar to {Chunk — Window — Dataset| (Table [3.2)).
Flattening takes &~ 20 seconds (offset: 100nt, size: 400nt) and & 2 : 10 minutes
(offset: 50nt, size 200nt), respectively.

Dataset — Chunk — Window The data structure used for this variation
(Algorithm , is the same as for the previous one. For a window offset of
100nt and a window size of 400nt, the computing times were similar to the
previous two strategies (Table [3.2). The time used is 45 minutes longer while

40

Visual Analysis of Form and Function in Computational Biology

Algorithm 5 Dataset — Chunk — Window

for for all data sets do
for for all chunks (parallel) do
for for all windows of this chunk do
count tags overlapping this window
end for
end for
end for

the time needed for flattening stayed the same. However, 26GB of memory are
not sufficient for computing the windows using a window offset of 50nt and a

window size of 200nt.

Summary All three strategies handling chunks in parallel decribed before
produce runtimes in the same order of magnitude. The overall load is the same.
It can be observed that the load is not |O bound as all threads use the complete
available computing time and use a maximum of available threads. Moreover, a
large number of disc locks can be observed. However, the strategy

|[Chunk — Window| needs more memory and could not be used to compute the

example with a window offset of 50nt and a window size of 200nt. Overall, the

strategy [Chunk — Window — Dataset] is fastest.

Chunk Parallel Coherent During the development, it was found that IO is
not yet the limit, an additional idea was exploited. The time consumption is
large, as long as the tags overlapping individual windows are fetched from the
file. As know from other domains like computer graphics, coherence is very
important to reduce the amount of work. Scan line algorithms and raytracing
are examples of using coherence to improve performance. At the same time,
it is known from database technology that fetching a set of items one by one
(several SQL statements) performs worse than fetching the set of items in
one step (one SQL statement) due to the additional cost for handling an SQL
statement that is independent of the number of items fetched.

Therefore, instead of fetching the tags for each window, the tags for the
complete chunk are fetched, and then the tags are counted for each window
belonging to this chunk. This strategy improved performance, i.e., reduced
computation time, by an order of magnitude from more than 9 hours to less
than 10 minutes (offset: 100nt, size: 400nt) and from more than 19 hours
to less than 16 minutes (offset: 50nt, size: 200nt), respectively (Table [3.2)).

41

Chapter 3. Sierra Platinum

Table 3.3: The time needed for constructing all windows for 6 replicates using
the strategy |Chunk Parallel Coherent| with different thread pool sizes

Number of ~ 100nt, 400nt 50nt, 200nt

Threads (mm:ss) (mm:ss)

1 17:48 22:53

2 14:00 14:47

4 11:31 12:10

6 08:53 10:45

8 10:23 13:05

16 10:10 14:03

32 11:06 15:07

Further, the load shows that now IO is the limiting factor and no longer CPU

power.

As all tags are already processed, this allows to compute the mapped read
quality (Section and the tag count of the data set (Section at the
same time as the windows instead of in separate steps. As the fetching of data
is comparatively slow—in fact it is the bottleneck of the computation—this

additionally reduces the time needed for these steps by a factor of three.

Testing sequential versus parallel execution showed that a certain number
of threads is beneficial for reducing the computation time (see Table [3.3)).
However, after saturation, adding threads will decrease performance again. For
the example and the computational environment used, an optimal number of
6 threads was determined. Please notice, that the optimal number of threads

depends on the system architecture and might vary.

3.3.2 Window Joining
Method

Due to parallelization, windows are kept in a hierarchical data structure during
window construction (Section [3.3.1]). However, for the subsequent calculations,
a linear data structure is more suitable. Therefore, the hierarchical data structure
is flattened into a linear list of windows preserving order by genomic start site

of the windows within the chromosomes.

42

Visual Analysis of Form and Function in Computational Biology

Q1 Q3

Minimum Maximum

Median

Figure 3.3: Example of a boxplot with lower and upper whisker representing the
minimum and the maximum in the data, respectively.

Optimization

This part is described together with the window construction in Section |3.3.1]

3.3.3 Read Quality

Quality Measures

Sierra Platinum provides the quality distribution of all mapped tags passed to
it as a quality control for the user. Therefore, Sierra Platinum retrieves the
quality as Phred Score for each base of each tag in the provided bam file. The

Phred score ranges between 0 and 40 and is calculated as
Phred = —10 - loguo (Tpp) € [0:40] (3.1)

where p is the probability that the base call is incorrect. However, using the
HTSJDK library [2], Sierra Platinum can obtain the base-wise Phred score
directly from the data.

For each data set, Sierra Platinum calculates the median, the lower and the
upper quartiles, as well as the minimum and the maximum value of the Phred

score distribution.

Visualization

The statistics computed are displayed in a boxplot. Boxplots show the median
as a line in a box between the lower and upper quartile. This box is extended by
the so-called whiskers, whose two ends represent the lowest and the highest
value in the data set (Figure [3.3]), respectively.

The range of Phred-scores is divided into three categories following the
approach of FastQC [18]. The colors and category ranges for the quality

43

Chapter 3. Sierra Platinum

Tag quality

Phred score
= =
= n

£

=

L

Experiment Background
Type

Figure 3.4: Example boxplot figure created by Sierra Platinum with the arranged
background.

scores used there are also used here. For each replicate, the boxplots for
both experiment and background are shown in the same figure for easing their
comparison (Figure |3.4)).

Ideally, the boxplots for experiment and background are similar, i.e., the
read quality was very similar, and most of the bases have a good quality. For
real data, this might not be the case. If the read quality distributions are very
different between experiment and background of the same replicate, one may
want to exclude or to down-weight the replicate. In particular, a bad background
quality and a good experiment quality can lead to a high rate of false positive
peaks. The other way around, a bad experiment quality and a good background
quality might be acceptable but comes with the side effect, that it is likely that
many peaks are missed. A result of reads with bad quality can be miss-mapped
reads and thus, decreased reliability of the peak-calls based on this data.

Optimization

To obtain the mapped read quality, Sierra Platinum calculates for each data
set the median, the lower and the upper quartiles, and the minimum and the

maximum value of the Phred score distribution.

44

Visual Analysis of Form and Function in Computational Biology

This step can be joined with the window construction step, if strategy {Chunk
[Parallel Coherent] is used (Section [3.3.1)). In this case, it will not use additional
time.

Otherwise, it takes ~ 11 minutes (offset: 100nt, size: 400nt) and ~ 13

minutes (offset: 50nt, size: 200nt), respectively. Parallelization using threads

does not decrease the time needed, as this step is essentially 10O limited.

3.3.4 Poisson Distribution
Method

Following MACS [90], Sierra Platinum models the tag distribution of the
background with a Poisson distribution and uses this as the noise model for
the experiment. For each window, it is then decided whether the observed tag
counts are significant according to the noise model. This will be discussed in
detail in Section 3.3.9]

A Poisson distribution is defined by one parameter A which describes both the
mean and the variance of the distribution. Thus, the noise model is generated
from the background, by simply calculating the mean of the number of tags in

each window for experiment and background of each replicate.

Quality Measures

Even though Sierra Platinum only needs the A based on the background, Sierra
Platinum also calculates the X of the experiment. The latter serves as quality
control for the user. Very different means between experiment and background
indicate very different library sizes and large differences between experiment
and background measurement. It is expected that they do not fit perfectly
and we account for this fact by scaling the experiment (see Section [3.3.6)).
However, scaling may lead to over-estimation of the noise level. Thus, the
Poisson distribution of the raw counts (namely the non-scaled counts) of the

experiment indicates whether the noise level might be over-estimated.

Visualization

To allow the user to observe such issues, we show the Poisson distribution of the
raw counts for both data sets, experiment and background, of each replicate as
two curves in a line chart (Figure [3.5a). The horizontal axis shows the number
of occurrences k of tags in a window and the vertical axis is the probability for

45

Chapter 3. Sierra Platinum

each number ablated. Since the number of occurrences can only be integers,
the lines between the k-values are only guidelines for a better perception of the
distribution. The red line represents the estimated Poisson distribution for the
experiment data and the blue line the estimated Poisson distribution for the
background data. It is possible to zoom the line chart to handle also bigger A

values, since their peaks can be far apart from each other.

Optimization

Computing the distribution of the data and its noise model is already fast—< 15
seconds (offset: 100nt, size: 400nt), < 45 seconds (offset: 50nt, 200nt)—and
therefore was not optimized.

3.3.5 Tag Count Frequencies
Method and Quality Measures

Even though in theory the tags should be Poisson distributed, real data usually
does not perfectly fit the theoretical distribution. A small deviation from the
theoretical model is acceptable. However, a high deviation or a completely
different distribution would mean that the model estimated from the background
data is not a good noise model and therefore would result in uninterpretable
p-values.

As a quality estimate, Sierra Platinum computes the tag count distribution
of the real data, i.e., it calculates the relative frequency for each observed tag
count. This distribution corresponds to the theoretically estimated Poisson
distribution. As a measure of fitness, Sierra Platinum calculates the least squares
difference between the theoretical and the real distribution for both, experiment
Bexp and background Bpack-

For each replicate, Sierra Platinum uses the sum of the least square dis-
tances of background and experiment to the corresponding theoretical Poisson

distributions as combined least square B for the whole replicate, i.e.:

5 = IBexp + .Bback (32)

Since the tool is able to weight replicates during peak-calling, Sierra Platinum
estimates weights w based on the least square distance 3 as follows:

1

Ww=-—-:
1+08

(3.3)

46

Visual Analysis of Form and Function in Computational Biology

Estimated poisson distribution
0275

0.250
0225
0.z00
0175
0.150
0125
0100
0.075
0.050

0.025

0.000
00 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

© Experiment A = 17.2022 © Background A = 2.4646

(a) Example of an estimated Poisson distribution for an experiment and the correspond-
ing background.

Count distribution for experiment and background
0.500

0.475
0.450
0.425
0.400
0375
0.350
0325
0.300
0275
0.250
0225
0.200
0175
0.150
0125
0.100
0.075
0.050
0.025
0.000

1 3162 10 31.623 100 316.228 1,000 3,162.278 10,000 100,00

O Experiment histogram O Background histogram

(b) Example of the tag count distribution visualization. The data corresponds to the
data used in Figure |§| The number of tags are displayed using a logarithmic scale.

Normalized estimated poisson distribution
0.275

0.250
0.225
0.200
0.175
0.150
0.125
0.100
0.075
0.050

0.025

0.000
00 25 50 75 100 125 150 175 200 225 250 275 30.0 325 350 375
O Experiment A = 2.4654 O Background A= 2.4646

(c) Example of the normalized estimated Poisson distributions. The normalized data
was derived from the data used in FigureEl

Figure 3.5: Distribution of tags

47

Chapter 3. Sierra Platinum

Visualization

The tag count distribution is visualized for each replicate using line charts
allowing to compare between the tag count distribution and the estimated
Poisson distribution (Figure [3.5b]). Since real data might contain large outliers,
it is necessary to display the number of occurrences of tags k using a logarithmic
scale on the horizontal axis. The vertical axis represents the relative frequency
k of tags. As for visualizing the Poisson distribution (Section [3.3.4)), the
experiment is mapped onto red lines and the background data onto blue lines.
As shown in Figure [3.5a] and Figure [3.5b] the overlap and differences between
the tag count distribution and the estimated Poisson distribution can easily be
seen. It is clearly visible that the estimated Poisson distributions fit inherently

to the data distributions in this example.

Optimization

Computing the tag count distribution of the real data, i.e., the relative frequency
for each observed tag count is performed in parallel for all replicates by assigning
each replicate to a thread. At the same time, the least square distances to the
Poisson distribution (for each data set), the bins (for each data set), and the
final weights (for each replicate) are computed. Overall, the computation times
are =~ 50 seconds (offset: 100nt, size: 400nt) and ~ 26 seconds (offset: 50nt,
size: 200nt), respectively.

3.3.6 Scaling
Method

A good noise model can only be estimated if the used and the mapped material
are of a comparable amount. For real data, this is usually not the case. Moreover,
real data usually suffers from very different library sizes. Therefore, scaling the
libraries to the same size is necessary.

In Sierra Platinum, the experiment is scaled such that the library sizes
measured as total number of mapped tags are equal. In more detail, we count
the total number of mapped tags in the input data separately for experiment
and background as tex, and tpack, respectively. Then, the scaling factor for the
experiment sf is:

. tback

sf = (3.4)

texp

48

Visual Analysis of Form and Function in Computational Biology

The raw tag counts t,,, of the experiment are then normalized to fit
the background counts. The normalized counts t,,,,, of the experiment are
calculated as:

thorm = ST+ traw (3.5)

Any further reference to experiment counts will refer to the normalized

experiment counts from now on.

Optimization

In Sierra Platinum, each experiment is scaled such that the library sizes of
experiment and background of a replicate measured as total number of mapped
tags are equal. Scaling is done for all windows in parallel. Therefore, each
window is assigned to a thread and all experiments of all replicates are scaled.
This step is very fast taking < 5 seconds (offset: 100nt, size: 400nt) and < 8
seconds (offset: 50nt, size: 200nt), respectively. Thus, no further optimization

IS necessary.

3.3.7 Normalized Poisson Distribution
Methods

The normalization ought scale background and experiment to the same level.
As a result also the differences between their respective Poisson distributions
should be reduced to a minimum. This can serve as an additional quality check.
If the theoretical Poisson distributions estimated from the normalized data are
still very different, the normalization was not able to make background and
experiment comparable. As a consequence, any p-values estimated based on
this data will be spurious and likely to be wrong.

The theoretical Poisson distributions for the normalized data are estimated
in the same way as the theoretical Poisson distributions for the raw counts
(Section by simply exchanging the raw counts by the normalized counts.

Visualization

It is possible to monitor the results of the scaling and normalization with a
visualization of the normalized estimated Poisson distribution in the GUI of
Sierra Platinum. Since the normalized Poisson distributions are created like
their raw Poisson distribution counterparts, the same visualization is used.

49

Chapter 3. Sierra Platinum

An example is shown in Figure [3.5¢, where the normalized data was derived
from the data used in Figure[3.5a] It is clearly visible that the experiment data
was normalized onto the background data since the A of the background did
not change. If for some reason the experiment and the background data are
too different, the experiment data can not be normalized that accurately and
the experiment and the background lines in the chart do not overlap each other

anymore.

Optimization

Computing the distribution of the scaled data and its noise model is already
very fast taking < 15 seconds (offset: 100nt, size: 400nt) and < 35 seconds
(offset: 50nt, size: 200nt), respectively, and therefore was not parallelized.

3.3.8 Neighborhoods
Method

Neighborhoods of sizes 1k, 5k, and 10k are established for each window. These
neighborhoods are required during the p-value calculations for the single repli-
cates (Section to account for local sequence composition biases.

The neighborhood Ns(w;) of the window w; of size s is the set of windows
that overlaps with the interval of size s centered at the mid-point of window w;.
The neighborhood consists of windows on the same chromosome, only.

Several options for storing and computing neighborhoods were explored.
The final solution does not store neighborhoods, but directly computes the
corresponding A that is then directly used for computing the single replicate
p-values (Section [3.3.9)). Therefore, each of the neighborhoods is initialized by
Its range, the window list, and the replicate list. Internally, the index into the
window list of the first and of the last neighbor is stored. As the windows are
processed sequentially to obtain the corresponding A-values, the neighborhood
indices are updated for each window. At the same time, the tag count of the
window'’s neighborhood is updated. Dividing the tag count of the neighborhood
of window w; by the number of windows in this neighborhood yields the A9(w;)
used for the p-value computation:

>t

weNs(w;)

dip) = —="7
>\S(Wl) |NS(WI)|

(3.6)

50

Visual Analysis of Form and Function in Computational Biology

where t9 is the tag count of window w for data set d (background or experiment
of a replicate) and |Ns(w;)| is the number of windows of the neighborhood

Ns(w;) of window w;.

Optimization

The neighborhoods of 1k, 5k, and 10k for each window are required during
the p-value calculations for the single replicates to account for local sequence
composition biases (Section [3.3.9)).

Several options for storing and computing neighborhoods were explored:

1. Compute and Store

(a) Store with window (computed and stored during flattening)

(b) Store separately (computed and stored before p-value computation)

2. Compute and Use during p-value computation

Compute and Store with Window The first solution computes the neighbor-
hood while constructing the window list during the flattening phase. The indices
of the first and of the last window of the respective neighborhood are stored
with each window, which requires six additional values per window. As flattening

is performed sequentially, the neighborhoods are also created sequentially.

Compute and Store Separately Storing the neighborhood with each window
is not necessary as it is only used for one step (Section . To minimize
space consumption, the two steps were separated and the neighborhoods are
constructed just before they are used. Thus, the second solution computes all
neighborhoods for all windows and stores them in a separate class. The storage
of the neighborhoods is released immediately after the single replicate p-value
computation (Section [3.3.9)).

This step is time consuming and therefore was parallelized. As neighborhoods
of a window belong to the same chromosome as the window itself and coherence

should be exploited, a parallelization over chromosomes was chosen.

Compute and Use During p-Value Computation The final solution does not
store neighborhoods any more, but directly computes the corresponding A that
is then directly used for computing the single replicate p-values (Section .
Therefore, each of the neighborhoods is initialized by its range, the window list,

51

Chapter 3. Sierra Platinum

Table 3.4: Computing window neighborhoods and p-values for 6 replicates and
3 different neighborhood sizes: time for different strategies.

Strategy Neighborhood p-value
(mm:ss) (mm:ss)
Compute and Store with Wlndow| < 00:30 02:57
Compute and Store Separately| 00:55 02:57
Compute and Use During p-Value | 02:06

and the replicate list. Internally, the indices into the window list of the first and
of the last neighbor are stored. As the windows are processed sequentially to
obtain the corresponding A-values, the indices are updated for each window. At
the same time, the tag count of the window's neighborhood is updated. The

parallelization is again over all chromosomes.

Summary The time consumption of the different solutions (including p-value
computation) is given in Table. It shows that the most space efficient solution
- computing and using the neighborhood directly during p-value computation -
Is also the fastest solution.

3.3.9 Single p-Value
Method

After preparing the experiment counts and the noise distribution, Sierra Platinum
uses this data to calculate for each window and replicate a p-value. The p-value
is the probability that one observes an at least as high tag count in random
data as observed in the experiment. Hereby, the random data is modeled by the
Poisson distribution with mean A. Thus, the p-value for observing at least ¢
tags in the experiment is calculated as the reciprocal of the cumulative Poisson

distribution with mean .
p = PX>c X

= 1—P(X<C,>\) (3_7)

-1)\i -
N -€
= 1= Z il
i=0

52

Visual Analysis of Form and Function in Computational Biology

It is known that due to biases in the library preparation and the local sequence
composition, local estimates of the mean tag count would serve as a better
noise model than the global estimate. Therefore, we use the same approach
as MACS [90] and calculate the mean tag counts in the 1k, 5k, and 10k
neighborhood of each window resulting in A1, Asx, and Aok, respectively.

The final mean of the Poisson distribution of the noise model is defined as:
A = max{Xgiobal, Mk, A5k, Aok } (3.8)

where Agiopar 1S the lambda estimated over all windows.

Quality Measures and Visualization

For each replicate, Sierra Platinum computes the distribution of the p-values
and visualizes this distribution using a bar chart histogram to check the quality
of the single replicate peak-calling step (Figure . The combined p-values
are binned into intervals from 1 to 1078 and visualized as bars. Both x- and
y-axis are logarithmically scaled. The numerical method behind the p-value
distribution produces values down to 1071°. Smaller values are assigned to bin
107!, The gap between 1071 and 107*8 is intentional pointing at this fact

visually.

Optimization

The final A value for each window is computed as the maximum of the global A
value and the A-values of each neighborhood (Equation [3.8]). For each window
and for each replicate, a p-value is computed from the final A value and the
tag counts.

When computing the neighborhoods explicitly for all windows, the single
replicate p-values are computed in parallel over all windows assigning an equal

number of windows to each thread:

_ |windows|

1 3.9
|cores| + (3.9)

except for the last thread, which handles the remaining windows. This heavily
reduces the time needed. It scales with the number of threads available. The
time used for the given configuration is ~ 3 minutes (Table .

Using the space efficient version, the single-replicate p-values for each
window are directly computed from the window and its neighborhood in one

53

Chapter 3. Sierra Platinum

P-value distribution over all windows

31,622,776.602

10,000,000

3,162,277.66
1,000,000
316,227.766
100,000+
31,622.777—
10,000+

3,162.278

1.000

316.228

100

31.623

10

3.162

l l I I I I l l I
-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 O

Il vcso 4 [l Median
Figure 3.6: Example of the p-value distribution generated during the single
peak-calling step. Red: p-values of one replicate. Orange: median of p-values

over all replicates. Please note, that the x-axis shows only the exponent to the
basis 10 and that both axes are scaled logarithmically.

54

Visual Analysis of Form and Function in Computational Biology

step. All chromosomes are computed in parallel by assigning each chromosome
to a thread that then computes the p-values (and the neighborhoods) for all
windows on this chromosome. The combined approach uses only =~ 2 minutes
(offset: 100nt, size: 400nt) (Table [3.4) and ~ 10 minutes (offset: 50nt, size:
200nt), respectively, and the space consumption is minimal.

Computing the distribution of the p-values uses & 50 seconds (offset: 100nt,
size: 400nt) and ~ 1 : 45 minutes (offset: 50nt, size: 200nt), respectively. The
first part of the computation is parallelized assigning each replicate to a thread,

while the second part is sequential.

3.3.10 p2qg Transformation
Method

Within one replicate and for the final significance test, Sierra Platinum repeats
the same test for each window to obtain p-values for each window. However,
it is well known that this leads to the so-called multiple testing problem. The
more often a test is performed, the higher the chance to obtain a false positive
result. With other words, the resulting p-values from the tests are too low due
to multiple testing.

Several methods exist that allow correcting the p-values thus controlling
the false discovery rate. The corrected values are referred to as g-values. In
Sierra Platinum, two different methods are implemented: one proposed by

Holm-Bonferroni and one proposed by Storey.

Holm-Bonferroni The Holm-Bonferroni correction [45] is a rather conserva-

tive method and thus may reduce the number of significant windows dramatically.

It assumes that the list of p-values is sorted ascending, i.e., i <j — p; < p;.
Sierra Platinum obtains such a list using a parallelized merge sort. The /-th

p-value p; is corrected to g; by
g = min(p; - (N = i), 1) (3.10)

where N is the number of tests performed. In this case, the number of tests is
equal to the number of windows since Sierra Platinum performs one test for

each window.

55

Chapter 3. Sierra Platinum

Storey Storey’'s g-values [77] also calculate the correction factor for the p-
values. However, the underlying method is different. It uses the fact that
random p-values are uniformly distributed but significance tests usually skew
the distribution towards 0 or 1. A good estimate for the rate of false positives
7o is the height of the uniform distribution while the rate of true positives is
the height of the p-value distribution without the uniformly distributed part.
Similarly to the Holm-Bonferroni correction, the correction is done stepwise
on the sorted list of p-values. Storey's g-value calculation uses a bottom-up

approach, i.e., starting with the largest p-value py:
an = o - P (3.11)

The subsequent g-values are calculated as follows:
(N
gi = min T To " Piv Git+1 (3.12)

where /7 is running from N — 1 to 1.
To obtain the height of the uniform distribution 7y, Storey proposes several
methods. Sierra Platinum provides two of them: ‘Storey Simple’ and ‘Storey

Bootstrap'.

Storey Simple The most simple method is to estimate the height 7y from a

representative p-value in the p-value distribution, i.e., 0.5.

Storey Bootstrap For the bootstrap method, a cubic spline is fitted to the p-
value distribution and the spline is used to estimate the height of the distribution
To. Sierra Platinum provides the bootstrap approach that makes fitting the

cubic spline more robust [77].

Interaction

The p-value correction method can be set using a drop-down-box (Figure m
Section [3.3.14]). The available p-value correction methods are ‘None’, ‘Holm-
Bonferroni’, ‘Storey Simple’, and ‘Storey Bootstrap’. The default is set to
‘Holm-Bonferroni’ to obtain a conservative correction.

As the g-values are (un-)corrected p-values, they are called p-values in the

following sections.

56

Visual Analysis of Form and Function in Computational Biology

Table 3.5: Time needed for transforming p- to g-values using different strategies

Strategy 100nt, 400nt (mm:ss) 50nt, 200nt (mm:ss)
Holm-Bonferroni 01:45 03:35
Storey-Simple 07:09 25:26
Storey-Bootstrap 04.04 03:52

Optimization

The p-value correction methods are run in parallel for each replicate. Each
method was split into two parts: sorting the p-values and converting p- to
g-values. For sorting the p-values, 32 threads are used, while for converting
6 from the 32 threads available are used, one per replicate. In principle, the
Holm-Bonferroni correction could be performed in parallel for each replicate,
further speeding up the computation. However, for the Storey methods, the
g-value computation is sequential per replicate and can not be sped up further.
The overall time needed by the three different methods implemented are shown
in Table 3.5 For a window offset of 100nt and a window size of 400nt, the
Holm-Bonferroni correction can be computed relatively fast using 1:45 minutes,
both Storey-Simple with 7:09 minutes and Storey-Bootstrap with 4:04 minutes
take longer. For a window offset of 50nt and a window size of 200nt, the
Holm-Bonferroni correction can be computed relatively fast using 3:46 minutes,
Storey-Bootstrap with 3:52 minutes takes approximately the same time, and
Storey-Simple takes much longer using 25:26 minutes. However, the Storey-
Bootstrap correction is dependent on random numbers and thus does not

produce consistent results over different runs.

3.3.11 Significant Windows
Quality Measures

The last quality measurement that Sierra Platinum provides for each replicate is
the distribution of the significant windows. More precisely, for each chromosome
c and each replicate /, Sierra Platinum counts the number of significant windows
S

s¢ = [{w € W < p}] (3.13)

where W€ is the set of all windows of chromosome ¢, p/ is the p-value of
window w for replicate /, and p is the significance cutoff. Additionally, Sierra
Platinum calculates the median distribution of the significant windows for each

57

Chapter 3. Sierra Platinum

chromosome. In detail, for each chromosome c, the algorithm calculates the

median significant window s¢:

s¢ = median{sf| Vi € [1, n]} (3.14)

where n is the number of replicates.

This measurement allows the user to investigate two facts.

Has the current replicate an odd distribution of the significant windows
compared to the median distribution? [f the overall distribution of significant
windows is very different from the median distribution, then the peak-calling of
this replicate will not overlap strongly with other replicates and may reduce the
quality of the combined peak-calling over all replicates. An odd distribution can
have several reasons. One possibility is that the conditions for the experiment
of one replicate were very different from the conditions of the other replicates,
which might have induced changes in the epigenetic state. Furthermore, it
might mean that part of the library preparation or sequencing did not work out
as they should. Since this approach is designed to do peak-calling for multiple
replicates, i.e., peak-calling for the repeated measurement of the same state,
one might prefer to exclude such replicates from peak-calling.

Is there a chromosome with an odd number of significant windows?
If the overall distribution is similar to the median but only a few chromosomes
diverge from the median, the replicate is suited for the multiple-replicate peak-
calling step. However, one might want to perform peak-calling on this single
replicate afterwards to investigate the differences in the peaks between this

replicate and the multiple-replicate peak-calling on this chromosome.

Visualization

The visualization shown in Figure provides the necessary information to help
the user to deal with the afore-mentioned facts. The amount of significant
windows for each chromosome is visualized as a bar chart. The red bars show
the number of significant windows for the replicate and can be compared to the
orange bars that show the median of significant windows for each chromosome.
The user can easily determine if the distribution of significant windows for each
replicate is anomalous by comparing it with the median distribution or detect

single chromosomes that deviate from the median.

58

Visual Analysis of Form and Function in Computational Biology

chrd chr7 chré chrS chré chr2l chr3 chr22 chrd chrl chr2 chr20 chrl0 chrll chrl2 chrl3 chrl8 chrl9 chrld chrlS chrlé chrl7 chry chrx

85,000

80,000

75,000

70,000

65,000

60,000

55,000

50,000

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

M ucsp 4 | Median

Figure 3.7: Example of a significant window distribution over all chromosomes.
Red: significant windows of one replicate. Orange: median of significant
windows over all replicates.

Optimization

Sierra Platinum provides for each replicate the distribution of the significant
windows: for each chromosome ¢ and for each replicate /, we count the number
of significant windows s°. Additionally, we calculate the median distribution of
the significant windows for each chromosome.

This step is already very fast using < 15 seconds (offset: 100nt, size: 400nt)
and < 30 seconds (offset: 50nt, size: 200nt), respectively, and therefore was

not parallelized.

3.3.12 Pearson’s Correlation between Replicates
Quality Measures

Sierra Platinum also provides quality measurements between replicates in addition
to those within replicates. The Pearson’s correlation between the replicates
allows to justify whether the replicates seem to agree on the significance of the

windows in consensus (positive correlation).

59

Chapter 3. Sierra Platinum

As a logical consequence from the fact that all replicates measured the same
modification (or chromatin bound protein) under comparable conditions and in
the same cell line, positive correlations between the replicates are expected.

A positive correlation close to 0 may result from differences in the protocol,
the conditions, the sequencing, or the mapping method for the tags. The
resulting peak-calls may be biased by this fact and likely contain false negatives
and false positives.

Negatively correlated replicates have to be treated with caution for two

reasons.

1. Negative correlation indicates that windows in one replicate are significant
while in the other replicate they are clearly not significant. This indicates

that something went wrong in one of the experimental procedures.

2. For the inverse normal method that we use to combine the p-values of
the replicates (see Section , negative correlations are problematic
and alter the significance level. Therefore, all replicates used for the
multiple-replicate peak-calling have to be positively correlated to each
other.

Pearson’s correlation assumes that the tested variables are normally dis-
tributed. However, p-values are uniformly distributed and are therefore not
suited for correlation estimates. This problem was solved by estimating the
correlations from the so-called probits instead of from the p-values. Probits
are obtained by transforming the p-values with the inverse cumulative standard
normal distribution. They are calculated using the inverse normal method, which
is also used to combine the p-values of each window of the replicates into one
single p-value for each window (see Section [3.3.13)).

Let 7, 7" be the vectors of all probits for two replicates and let n,, be the
number of windows and thus, also be the length of the vectors 7 and 7/. The

mean T of 7 is computed as

T=— Ti (315)

s = |2 iwj(f, AL (3.16)

60

Visual Analysis of Form and Function in Computational Biology

The mean 7/ and the standard deviation s, of 7 are calculated analogously.

The Pearson's correlation ppearson(7, T') is thus

Nw
T | — Ny TT
i=1

(ny — 1)s;5

ppearson(Tr T/) — (317)

Visualization

The correlations between all replicates are visualized in a heatmap (Figure [3.8]).
Each cell in the heatmap describes the strength of the correlation between the
corresponding column and row. Positive correlations are encoded with red and
negative correlations with blue, respectively. The strength of the correlation is

mapped to the saturation value, using the HSB color model.

HSB(0, ¢;;,1.0), ifc;,>0
CO/OI’,-JZ{ (0.€;,1.0) " (3.18)

HSB(240, (—C,'J), 10), if Gij < 0

In the GUI of Sierra Platinum, it is possible to see the strength of the
correlation for each cell by a tool tip. With this visualization it is easy to see how
the replicates are correlated to each other and the user can recognize replicates
that are problematic for the p-value combination step (see also Sections
and describing how to enable/disable replicates and how to set weights).

Optimization

To compute the Pearson’s correlation between the replicates, the mean and
the standard deviation of the probits over all windows for each replicate are
computed, as well as the correlation between the replicates themselves. Three
possible strategies were evaluated:

1. Sequential computation: one thread is used for all computations
2. Parallel: compute sequentially each of the following steps in parallel

(a) Computing the mean values of the replicates: one thread per replicate

(b) Computing the standard deviations of the replicates: one thread per
replicate

(c) Computing the Pearson correlation of each pair of replicates. This
results in a correlation matrix. The main diagonal of this correlation

matrix is always one and not computed. Further, upper and lower

61

Chapter 3. Sierra Platinum

= = c =

K K K 0

o o o = = a

= o] B (4] =1 =~
uUcsD 1
uUcsD 2
UCsD 4
Bl S
Bl &
UCSF 7

v'| Correct correlations

Figure 3.8: Top: heatmap of the Pearson’s correlations between the replicates.
Bottom: checkbox for enabling or disabling the correlation correction while
computing the combined p-value. If the checkbox is checked, p* is computed
as described in Section , otherwise p* is set to 0.

62

Visual Analysis of Form and Function in Computational Biology

Table 3.6: Computing Pearson’s correlation for 6 replicates: time for different
strategies.

Strategy 100nt, 400nt (mm:ss) 50nt, 200nt (mm:ss)

Sequential 3:38 8:00
Parallel row 0:53 1:50
Parallel all 0:22 0:45

triangle of the correlation matrix are symmetric. Therefore, only the

upper triangle is computed.

I. Row: compute one row after each other, one thread per column

ii. All: use one thread per correlation computed

The results for computing the correlation between six replicates are shown in
Table[3.6] Computing all correlations in parallel is fastest followed by computing

each row in parallel. Computing all steps sequentially is very slow, as expected.

3.3.13 Combined p-Values
Method

While MACS would generate a peak list using the calculated p-value at this
point, Sierra Platinum first applies the inverse normal method to calculate the
combined p-value and then generates the peak list based on the combined
p-value.

Let p; be the p-value for replicate /. To calculate the combined p-value,
the p-values p; of all replicates are transformed into probits 7; using the inverse

cumulative standard normal distribution ®~!:
T, = (p) (3.19)

Since the p-values p; are uniformly distributed for each window, the respective
probits are normally distributed with mean 0 and standard deviation 1 due to
the transformation. This step is done for each window and each replicate.

63

Chapter 3. Sierra Platinum

For each window, the combined probit is calculated based on the probits
of the replicates. In the simplest case, the replicates are not correlated. Then,
all replicates have equal weight and the combined test statistic T for the n,

replicates is computed as:

1 &
T = ST (3.20)

Again, the test statistic T follows a standard normal distribution.

The corresponding combined p-value p is calculated based on the cumulative
standard normal distribution ®: the p-value is the one-sided, left cumulative
probability calculated using the normal distribution with mean 0 and standard
deviation 1:

p=d(7T) (3.21)

However, the replicates and thus the probits are expected to be correlated
(see Section for more details). Therefore, Sierra Platinum uses a
weighted version of the inverse normal method based on the extension proposed
by Hartung [40] that can cope with correlations. Hence, Sierra Platinum assigns

weights to each replicate to be able to down-weight replicates that are of lower
quality (see Section [3.3.3)).

According to Hartung [40], the approximated correlation g between the

probits for n, replicates of a window is
p=1-52 (3.22)

where s, is calculated as given by Equation [3.16]

The correlation estimate p*, which will be used for the calculation of the

combined probit is then calculated as

1
pF = max{—n — 1,;3} (3.23)

For better readability of the equation to calculate the combined probit, the

sum of weights is defined as

w= iw, (3.24)
i=1

64

Visual Analysis of Form and Function in Computational Biology

and the sum of the squares of the weights is defined as
0= u (3.25)
i=1

whereby w; is the weight for the /-th replicate. The default for Sierra Platinum
is to use w; of replicate i according to Equation [3.3] (Section [3.3.5)).

The resulting combined probit is calculated as

Zr: Wi T;
T = =1 (3.26)

\/w 4 [w? — @) [ﬁ* N ﬁ*)}

The parameter k controls the significance level of the p-value as calculated
in Equation [3.21] Hartung [40] experimentally estimated two values for k from
which one should be chosen. Sierra Platinum uses the first value proposed, i.e.,
Kk =0.2.

Both values of k described control the significance level well for positive
correlations independent of the number of replicates and the variance of the
weights. Negative correlations, however, are problematic. In particular in
combination with a large variance of the weights, the actual significance level is
higher than the one calculated with Equation [3.2I] This would lead to false
positive peaks.

In the case of multiple-replicate peak-calling, Sierra Platinum combines
biological and/or technical replicates of the measurement of the same chromatin
bound protein under approximately the same conditions in the same cell type or
at least in similar cell types. Thus, it is expected that the replicates correlate
positively (or at least not negatively) with each other. Therefore, negative
correlation indicates that the replicates do not fit together and that they may
result from an error in the experimental protocol. As a consequence, one would
exclude those replicates from peak-calling. Hence, the chosen value of K is
suitable for the use in Sierra Platinum.

Sierra Platinum can also be used for peak-calling single replicates. In this
case, the inverse normal method step is skipped and the final p-value is identified
with the p-value of the replicate. All other steps are not affected by the number
of replicates.

Similar to the conversion of the single replicate p-values into g-values (Sec-
tion [3.3.10]), Sierra Platinum converts the combined, multiple-replicate p-value

65

Chapter 3. Sierra Platinum

Final p-value histogram

31,622,776.602
10,000,000
3,162,277.66
1,000,000
316,227.766
100,000
31622777
10,000
3,162.278
1,000
316.228

100

31.623

10

3.162

18 17 16 15 14 13 12 11 10 =] 8 7] 5 4 3 2 1 o

B Run 1 - Max-value: 57253622

Figure 3.9: Example of a combined p-value distribution.

into a g-value for each window. The methods described in Section [3.3.13] are
applied for the conversion and the resulting g-values are used in the subsequent
computations.

Interaction The p-value correction method can be set using a drop-down-box
(Figure [3.10). The available p-value correction methods are ‘None’, ‘Holm-
Bonferroni’, ‘Storey Simple’, and ‘Storey Bootstrap’. The default is set to
‘Holm-Bonferroni’ to obtain a conservative correction.

As the combined g-values are (un-)corrected combined p-values, we will

refer to them as p-values in the subsequent sections.

Visualization

The result of the combination of the p-values is shown in Figure 3.9, The
combined p-values are binned into intervals from 1 to 107 and visualized as
bars. Both x- and y-axis are logarithmically scaled. The numerical method
behind the p-value distribution produces values down to 1071°. Smaller values
are assigned to bin 10717 for values of 7 > —20, while values of 7 <= —20 are
assigned to bin 1078,

66

Visual Analysis of Form and Function in Computational Biology

Replicate v/| Weights Status
ucsD 1: 0.999972 = :m
ucsD 2: 0.999906 =
ucsD 4: 0.999956 =
BI 5: 0.999961 =
BI 6: 0.999941 =
UCSF 7: 0.999856 =
Enable guality counting g-Value correction method: Holm Benferroni ~
[] Recalculate

Figure 3.10: Overview of the options to weight replicates provided by the GUI
of Sierra Platinum. The upper part contains one row per replicate showing
the replicate identifier (left column), the assigned weight (middle column),
and whether the replicate is used (ON) or not (OFF, right column). The
weight checkbox on top of the middle column allows for disabling weights
altogether (if unchecked). The lower part contains a checkbox that allows to
enable or disable the computation of the quality of the peaks ('Enable quality
counting’, Section and a drop-down-box that allows to select the g-
value correction method (Sections [3.3.10] and [3.3.13]). Pressing the button
('Recalculate’, bottom right) starts the recomputation.

3.3.14 Filtering and Weighting
Visualization and Interaction

Sierra Platinum uses several parameters that influence the computation of
the combined peaks. First of all, the user can decide whether or not to use
the correlation correction based on Equation (Section [3.3.13)). If the
correlation correction is disabled using the checkbox shown in Figure 3.8 ¢*
is set to 0. Moreover, the user can decide whether or not to use a replicate
(right column of Figure . Further, she can assign a weight to each active
replicate (middle column of Figure or disable weights altogether (weight
checkbox in the first row of Figure [3.10)). Finally, she can decide whether or not
to compute the quality of the peaks (checkbox at the bottom of Figure m
for a description please see Section [3.3.17)).

During the initial run, default parameters are used: correlation correction
Is enabled, all replicates are enabled, the p-value correction method is set to
“Holm-Bonferroni”, and the weights are set to the w values of each replicate

67

Chapter 3. Sierra Platinum

Final p-value histogram
31,622,776.602
10,000,000
3,162,277.66

1,000,000

316,227.766
100,000
31622777
10,000
3,162.278
1,000
316.228
100
31.623

14 13 12 11 10 =] 8 7] 5 4 3 2 1 o

18 17 16 15

o

=
o

-

B Run 1 - Max-value: 57253622 Run 2 - Max-value: 57164587 [ll Run 3 - Max-value: 57165733

Figure 3.11: Comparison of the final p-value distributions with different weight
settings. Each run is assigned a different color according to the color legend
below the figure. The p-values of the bins are mapped to the x-axis while the
amount of windows having the respective p-value are mapped to the y-axis. A
logarithmic scale is used in both cases. Here, three different runs are shown
assigned to the colors red (run 1), orange (run 2), and green (run 3). From the
p-value distribution alone, run 1 would be preferred over run 3 over run 2.

(Equation [3.3] Section[3.3.5)). Further, the peak quality is computed by default.

These parameters can and should be changed based on the results of the
initial run. The single replicate peak-calling steps from the first part are not
influenced by these parameters and thus this part does not have to be recomputed

again. However, the second part of the computation (Section [3.3.13H3.3.18))
should be performed again (see also Section [3.4.5)). The results of all runs can
again be analyzed using a histogram (shown in Figure|3.11]) to compare the

p-value distributions for different parameters settings. The color of each bar
encodes a run with a specific parameter setting. As it is not advisable to use
more than 8 different colors [81], only the results for the last 8 runs are provided.
The results of each run are also stored separately by adding the number of the

run to the file name (Section |3.3.18]).

68

Visual Analysis of Form and Function in Computational Biology

Optimization

This step is purely interaction. Only its results are used as parameters for the

subsequent steps.

3.3.15 Agreement between the Multi-Replicate Result and
the Single Replicate Results

Quality Measures

As a further quality measurement, Sierra Platinum calculates the agreement
between the multiple-replicate result and the single replicate results. More
precisely, it calculates the fractions of the significant windows that according to
the combined p-value are also significant in the different replicates. Let C be

the set of windows that are significant according to the combined p-value, i.e.,
C={weW|p” < p} (3.27)

where W is the set of all windows, p* is the combined p-value of window w,
and p is the significance cutoff value.
Analogously, R, is the set of windows that are significant according to the

p-value for replicate /:
R ={w e W|p/ < pi} (3.28)

where p! is the p-value of replicate / for window w, and p; is the significance
cutoff value of replicate /. The agreement between the multiple-replicate result

and the result of replicate i is thus

|ENR

3= 3.29
il (3.29)

Visualization

This mutual agreement is visualized using a bar chart (Figure . Each bar
represents a replicate and the y-axis gives the percentage of agreement with
the multiple-replicate peak-calling result.

This quality measurement eases assessing if the replicates agree with each
other and thus with the combined results or if one replicate contributes much less

than the other replicates to the final result. A high agreement of all replicates

69

Chapter 3. Sierra Platinum

with the multiple-replicate result shows that the replicates themselves agree in

their peak-calls.

Again, for multiple runs, the overlap bar chart (Figure 3.12b]) is extended

with the overlap information of each run.

3.3.16 Computing Peaks
Method Narrow Peaks

Sierra Platinum adopts the computation of the narrow peaks from MACS [90].
Significant windows overlapping in their genomic position are merged into the
same peak. A window is significant if the combined p-value of this window does
not exceed the user-defined significance cutoff. Sierra Platinum reports the
lowest combined p-value of the combined p-values of the windows contributing
to the peak.

Narrow peaks should be calculated for those modifications known to produce
very sharp peaks such as H3K4me3.

Method Broad Peaks

It was found that many histone modifications form broad domains of consecutive
modified nucleosomes. Therefore, Sierra Platinumalso includes the computation

of broad peaks into Sierra Platinum and again adopted the procedure from
MACS [90].

If two peaks are less than two window sizes apart from each other, then they
are joined into the same broad peak. This copes with the fact that ChlP-seq is
a measurement of a population signal rather than a single cell protocol and that
the epigenetic state is controlled by stochastic processes. Thus, at the time
of measurement, nucleosomes might be completely unmodified or unmodified
in many cells of the population even though they are usually modified. This
results in gaps between the peaks. These gaps can also be an artifact of the
experimental or computational method. In both cases, one can close the gap
computing broad peaks.

70

Visual Analysis of Form and Function in Computational Biology

Overlaps
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
&
2 0.55
©
S 050
I~
@ 0.45
a
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00 -
ucsD 1 ucsDo 2 ucsD 4 BI 5 BI & UCSF 7
Replicate
HMRun1

(a) Example of the overlap visualization for all replicates for a single
run. The x-axis shows the replicate number while the percentage of
overlap of the respective replicate is mapped onto the y-axis.

QOverlaps
11
1.0
0.9
0.8
0.7
]
206
b
=
a
o
T 05
a
0.4
0.3
0.2
0.0
ucsD 1 ucsD 2 UCsD 4 BI S Bl 6 UCSF 7
Replicate
W run 1 [Run 2 [l Run 3

(b) Comparison of the overlap of the replicates for multiple runs.
During the first run (red) all replicates were used while during run
2 (orange) only replicates 3 and 4, and during run 3 (green) only
replicates 1, 2, 3, and 6 were used. While for run 3 the overlap of the
individual replicates is more or less balanced, for run 2 this is not the
case: replicate 4 overlaps more than 90% with the final result while
replicate 5 overlaps less than 10% with the final result.

Figure 3.12: Comparison of the overlap of the peaks between the replicates.

71

Chapter 3. Sierra Platinum

3.3.17 Computing Peak Quality
Quality Measures

Finally, Sierra Platinum provides a last quality control: the read quality within
the peaks. Therefore, Sierra Platinum calculates the median read quality for
each peak (which is also exported together with the peaks, Section|3.3.18)).

Visualization

For each replicate, Sierra Platinum again provides two boxplots for the median
peak quality distribution in the experiment and in the background similar to
those introduced in Section [3.3.3] As shown in Figure [3.13] the GUI of Sierra
Platinum provides an overview over all data sets. The whiskers of the boxplots
represent the minimum and the maximum value of the data set, respectively,
and the background of the plot shows the different quality levels thus assisting
the user to interpret the boxplots.

Replicates with a very low median peak quality distribution might be excluded
since they only contribute with low quality—and thus suspiciously—data to
the final result. Further, strong differences between the median peak quality
distributions of experiment and background indicate suspicious results. As

detailed analyses show, such replicates should be removed from the analysis (cf.

Section [3.5)).

Optimization

The peak quality method was optimized like the read quality method (Sec-

tion [3.3.3).

72

Visual Analysis of Form and Function in Computational Biology

Tag quality Tag quality

Phred score

hbbhoneonbRaa BN YREBERNYRRENE

o
g
b
g
£

a4
42
40
38
EQ
ED)
EF
0
28
26
24
22
20
18
16
14
12
10

B

&

4

2

o
-2
-4

Experiment Background Experiment Background
Type Type

Tag quality

]
E
2
&

44
az
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10

8

6

4

2

o
-2
-4

Phred score

LhonsoxBSRERRERNEEEEEEEESERE

Experiment Background Experiment Background
Type Type

Tag quality Tag quality

Phred score

bboveonb e BN ERRENEREENE

2
Fi
@
E
[

44
42
40
38
36
ED
2
30
28
26
24
22
20
18
16
14
12
10
8
3
4
2
o
-2
-4

Experiment Background Experiment Background
Type Type

Figure 3.13: Final peak quality boxplots for experiment and background of 6
replicates.

73

Chapter 3. Sierra Platinum

3.3.18 Exporting Peaks
Method

After each run of the multiple-replicate peak-calling process the broad and the
narrow peaks are exported and saved as bed or csv files with the p-value as the
score field on the server. Additionally, it is possible to export the peaks on the
client using the GUI of Sierra Platinum.

Sierra Platinum uses Google GSON [10] for all data storage. It is usually
faster and more robust than the previously used, dated object serialization
provided by Java. For efficiency reasons, all files are compressed.

More information is provided in Section [3.4]

74

Visual Analysis of Form and Function in Computational Biology

3.4 Implementation

3.4.1 System

Sierra Platinum is completely written in JAVA 8 and uses JavaFX as API for
the GUI. Therefore, it is possible to run Sierra Platinum on Windows, Linux,
and Mac. The libraries used are Apache Commons IO [4], Apache Commons
Logging [5], Apache Commons Math [6], Apache Commons Net [7], Apache
Commons VFS [8], HTSJDK [2], JFreeChart [11], Gson [10], and JSch [12].

Choosing Java supports the generation of graphical user interfaces in a
straight forward way. Moreover, its language concept based on software engi-
neering principles supports maintainability.

While the computational requirements could be substantially optimized, they
are still high and require a powerful workstation or a server. Since the input data
for the peak-calling process can be very large, its calculation needs a performant
workstation that is more powerful than current standard desktop computers.

Therefore, the program is split into two parts:

Sierra Platinum Server: performs the peak-calling itself and computes all qual-
ity measures. It takes its parameters from the client and transfers the
result to the client. The server is normally run on high-performance
machines with sufficient resources, i.e., CPUs with several cores, a large

amount of memory, and a high |/O bandwidth.

Sierra Platinum Client: the GUI that allows the user to select the data to
use (replicate data sets), to set and adjust the parameters, to assess the
results, and to export the results on the users’s client. The client can be

run on almost any current standard desktop computer.

Additionally, Sierra Platinum can be used in batch mode from a command
line. To do so, the user has to create a configuration file for the server. This
configuration file can be created with the client by selecting all replicates within
the GUI and exporting the client configuration. This can be useful, if, e.g.,
no direct server connection is possible because of security policies in the lab
environment. In principle, a skilled user can create the configuration files
manually since they are gzipped JSON files. An example of the configuration is
provided in the Section [3.4.10, With this configuration file, it possible to run
the server in batch mode without the need of a client connection. The server

will then read all the input data, perform the computations export all results,

75

Chapter 3. Sierra Platinum

b Connection Manager + - + X
Host: |
Server port: 9753
Password: Swaordfish
Start local server v
Connect

Figure 3.14: The server connection window of Sierra Platinum.

and then terminate. The user can import the results as a datamapper in the

client and then check the results offline, that is, without any server running.

3.4.2 Client GUI

The client lets the user interact with the server for selecting the input data of
the peak-calling process and for adjusting the parameters. After the calculation,
the client visualizes the quality control steps allowing the user to assess the

quality of the replicates and of the resulting peaks.

Communication with Server

First, the Sierra Platinum Client is connected to a server using the connection
dialog (Figure . If the calculation should be performed locally, since the
data set is small or because the local computer has enough resources, the
client can create it's own instance of the server (‘Start local server’ checkbox).
Besides the name of the server (‘Host'), the 'Server port’ is provided on which
the server is listening to connections and commands from potential clients.
Additionally, it is possible to connect more than one client to the server and
to secure the server with a password since it is possible to cancel jobs in the
GUI. The communication protocol is designed as stateful API, where the client
creates a connection to the server for each query. After accepting the query,
the server reponds on the same stream to the client and the client closes the
connection. Since the server can not establish a connection to the client, the
client constantly queries the state of the server using a heartbeat query.

After the calculation, the server sends a complete progress message with
the next heartbeat signal of a client. After evaluating this message, the client

76

Visual Analysis of Form and Function in Computational Biology

File Help

Replig Edit Server Connection Replii
Pull datamapper from server
Get broad peaks
Get narrow peaks

Save state

Figure 3.15: The Server Menu

queries for the data mapper object and shows it after receiving it. Furthermore,
it is possible to pull the data mapper from the server if the client was not
connected to the server when the server finished the job.

The connection dialog is opened automatically after starting the client.
Further, a new connection can be opened any time using the Menu entry ‘Server
— Edit Server Connection’ (Figure [3.15]).

3.4.3 Replicates, Parameters, and Starting Computation

To call peaks for a set of replicates, first a list of replicates is created followed
by setting the relevant parameters for the process (Figure . The complete
settings—Ilist of replicates and parameter settings—can be saved to file using
the menu ‘File — Config Management — Save config'. Alternatively, the
settings can be loaded by using ‘File — Config Management — Load config’
(Figure [3.16]).

Finally, the process is started by pressing the ‘Start’ button (Figure [3.17)).
The progress of the computation is shown by the progress bar to the right of
the ‘Start’ button.

Editing the list of replicates

The user adds replicates using the ‘Add replicate’ button (Figure . For
each of the added replicates, the file associated to the experiment and the
file associated to the background of the replicate are selected on the local
computer or on the server computer by using a file system browser [8]. A

7’

Chapter 3. Sierra Platinum

m Server Help
[Config Management #l Load Config Ctri+I

Datamapper Management Y| save Config Ctrl+

Save figures [

Close Ctri+Q

Figure 3.16: The File Menu showing the sub menu for storing and loading a
configuration.

context sensitive menu in the main window allows to change the files associated

with the replicates’ experiment and background and to delete replicates.

Setting parameters

The following settings for the current computation can be adjusted (Figure(3.17)):

‘window size' and ‘offset’ (Section [3.3.1]), ‘p-value cutoff’ (Sections|3.3.11}
3.3.15,13.3.16]), and the ‘number of threads’ that should be used for computation.
Further, the ‘job name’ can be set. The job name is used for assigning names

to the files used for the information exported.

3.4.4 Quality Control

After computation, for each replicate, a ‘Replicate’ tab is created showing all

relevant information computed for this replicate (Figure [3.18)):

e the estimated Poisson distribution for experiment and background (Fig-

ure 3.18| top left; Section 3.3.4] Figure|3.5al),

e the estimated Poisson distribution for adjusted experiment and background
(Figure [3.18] bottom left; Section [3.3.7] Figure [3.5d),

e the count distribution for experiment and background (Figure[3.18] top

middle; Section [3.3.5| Figure (3.5b]),

e the p-value distribution over all windows (Figure [3.18 bottom middle;
Section [3.3.4), Figure [3.6)),

e the mapping quality (Figure [3.18] top right; Section [3.3.3] Figure [3.4)),

78

Visual Analysis of Form and Function in Computational Biology

"= Sierra Platinum v A X

File Server Help

Replicates | UCSD 1 | UCSD 2 | UCSD 4 | Broad 5 | Broad 6| UCSF 7 | Summary | Peak information | Quality information
¥ UCSD 1
¥ Experiment
fscr/k61san/chromatin/H1/H1 testdata_chr20/L_UCSD/H3K4me3/chr20.H3K4me3.all.rmdup.bam
¥ Background
Jscr/k61san/chromatin/H1/H1_testdata_chr20/1_UCSD/input/chr20 SRR067870.rmdup.bam
v UCsD 2
¥ Experiment
fscr/k61san/chromatin/H1/H1 testdata_chr20/2_UCSD/H3K4me3/chr20.SRR067950.rmdup.bam
¥ Background
Jscr/k61san/chromatin/H1/H1_testdata_chr20/2_UCSD/input/chr20 SRR06 7877 .rmdup.bam
¥ UCSD 4
¥ Experiment
fscr/k61san/chromatin/H1/H1 testdata_chr20/4_UCSD/H3K4me3/chr20.5RR018455.rmdup.bam
¥ Background
Jscr/k61san/chromatin/H1/H1 testdata_chr20/4_UCSD/input/chr20.input.all.rmdup.bam
v Broad 5
v Experiment
fscr/k61san/chromatin/H1/H1 testdata_chr20/5_BI/H3K4me3/chr20.5SRR020515.rmdup.bam
¥ Background
fscr/k61san/chromatin/H1/H1 testdata_chr20/5_Bl/inputichr20.SRR020520.rmdup.bam
¥ Broad 6
v Experiment
fscr/k61san/chromatin/H1/H1_testdata_chr20/6_BI/H3K4me3/chr20.5RR10684 14.rmdup.bam
¥ Background
fscr/k61san/chromatin/H1/H1 testdata_chr20/6_Bl/inputichr20.SRR1068415.rmdup.bam
¥ UCSF 7
~ Experiment
fscr/k61san/chromatin/H1/H1_testdata_chr20/7_UCSF-UBC/H3K4me3/chr20.SRR109222 .rmdup.bam
¥ Background

fscr/ké1san/chromatin/H1/H1_testdata_chr20/7_UCSF-UBC/input/chr20.input.all.rmdup.bam

Add Replicate job name | hl chrl
window size 200 p-value cutoff | 1.OE-5 ‘
offset | 50 number of threads | 4 = start |

Figure 3.17: The settings-tab in the GUI of Sierra Platinum. In the large,
middle window, the replicate information is shown. For each replicate, the file
names for the experiment and the background are given. In the lower part, the
‘Add Replicate’ button allows adding additional replicates. Below this button,
the parameters for the ‘window size' and the ‘window offset’ can be changed.
Further, the ‘Job name’, the ‘p-value cutoff’, and the ‘number of threads’
can be assigned. Finally, to the right, the ‘Start’ button allows starting a
computation and the progress bar to the right of this button shows the progress
of the computation. A context sensitive menu in the main window allows to
change the files associated with the replicates’ experiment and background and
to delete replicates.

79

Chapter 3. Sierra Platinum

e the distribution of significant windows per chromosome (Figure [3.18]

bottom right; Section [3.3.11], Figure [3.7)).

This supports assessing the quality of each of the replicates and for deciding,
how to adjust the combination of replicates for the final results.

3.4.5 Correlation Information, Recalculation Parameters, and

Restarting Computation

The ‘Summary’ tab (Figure [3.19))

e shows the Pearson Correlation of the replicates (Figure [3.19] left top;

Section [3.3.12] Figure [3.8]),

e allows for enabling or disabling the correlation based correction (Fig-

ure [3.19] left bottom, checkbox; Section [3.3.12] Figure [3.8)),

e allows for setting weights affecting the combination of the single replicates

for creating the combined peaks (Figure [3.19] right top, middle column;

Section [3.3.14] Figure [3.10)),

e allows for enabling (ON) or disabling (OFF) a replicate (Figure[3.19] right
top, right column; Section |3.3.14] Figure [3.10)),

e allows for setting two parameters and restarting the computation (Fig-

ure[3.19] right bottom row; Section [3.3.14) Figure (3.10]).

The user can enable correlation correction and select a weight for each
replicate, which is used while combining the p-values. Additionally, it is possible
to exclude one or more replicates from the recalculation and to change the
g-value correction method. Moreover, quality counting can be enabled or
disabled.

The defaults used during the initial run (Section are: correlation
correction is enabled, all replicates are enabled, the p-value correction method
is set to “Holm-Bonferroni”, and the weights are set to the w values of each
replicate (Equation 3.3 Section [3.3.5)). Further, the peak quality is computed
by default.

Finally, the recalculation is started using the new settings. Therefore, it is
necessary to send the job to the server again.

30

Visual Analysis of Form and Function in Computational Biology

o
2
5 hrls.
: e
@
: S e
8 o>
= c
2 T~ §
5]
E g e =
5 HHE =
:] g - chrz g
7 B e 1§
g o
H o]
H]
H a8 2
3 s
2 g a 8 B] a El “ ° @ g g
21035 pa1ug o A
o S
2 I +
5 3 s
& A g "
4 n 0
[} 2= ©
il o o
2 v £ |T s
) N o |E .
A S g g E N o
o e m © 8
g s 2l ? 3
g £ 2 B|g s £
: i 508 ol
= g g 5 =
=) 5 ¢ E|L g
E ol s &= ~ o
B = SR a4 0w
] 5 s 2|2 78
@ = g £t n 2
5 S bB|g =
= cls - ||
E § 53 z
i m E = B
g a3 e
i1 g X |d o
2) ~
2 o -
. C g a
c © " 0
g
®
ks
E
2 334585492543 4583¢%88
] ¢ 323232333232 2 3 32
5
]
5| 2 G
]
£
5] H
E
=
8 o L
&
= nle m
£ w m|8 - B
mlg b
£ 203 g
@ c "2
i [}
2 § ~ =& ~ =
~| 3 = [22 °
1 g |o 2
ul 2 = =
S| & gls g
0 © 2l o o 2
= £ g
B AR o
EE 2|3 B
2l g o|g)
— 9 -
n| B a o (|8 n o
@8 | ® I
— 5 aE o
=g L AL ML
al & (8 [
@l e < <
Gl g Sl P
=R e @ G
— 7 m | 2N n g
~| & Elm £
a 3| e g
4] = g
L 5|8 &
~ 2 ~
o o)
g [=
T a
a
e = =
5 >
gl e
o (| &
]
8
gl B
£ 8
e

Figure 3.18: A replicate tab in the GUI of Sierra Platinum. Top left: the
estimated Poisson distribution for experiment and background (Figure [3.5a)).
Top middle: the count distribution for experiment and background (Figure 3.5b]).
Top right: the mapping quality (Figure. Bottom left: the estimated Poisson
distribution for adjusted experiment and background (Figure [3.5d). Bottom
middle: the p-value distribution over all windows (Figure . Bottom right:
the distribution of significant windows per chromosome (Figure .

81

Chapter 3. Sierra Platinum

* Sicrra Platinum v oQ

Quality information

ummary | Peak information | Qu
Pearson Correlation of the replicates

Replicate V| Weights Status

uuuuu

nnnnn

uuuuu

Figure 3.19: The ‘Summary’ tab in the GUI of Sierra Platinum. Left top:
the Pearson Correlation of the replicates. Left bottom: checkbox allowing
for enabling or disabling the correlation based correction (Figure . Right
top, middle column: weights affecting the combination of the single replicates
for creating the combined peaks. Right top, right column: enabling (ON) or
disabling (OFF) a replicate. Right bottom row: two parameters and restarting

the computation (Figure 3.10)).

3.4.6 Peak Information

The ‘Peak information’ tab shows two diagrams:

e the final p-value histogram showing the combined p-values for all windows

(Figure[3.20] left; Section [3.3.13] Figure[3.9] Section[3.3.14] Figure [3.11))

e the percentage of agreement of each replicate with the multiple-replicate

result (Figure [3.20] right; Section [3.3.15, Figure [3.12a] Section [3.3.14)
Figure [3.12b))

3.4.7 Quality Information

The ‘Quality information’ tab shows the distribution of the peak quality for all
replicates (Section |3.3.17], Figure [3.13]).

82

Visual Analysis of Form and Function in Computational Biology

Final p-value histogram el

verlaps
An
31622776602
10000000 10
B
0s
08
nnnnnn o
1622777 N
&6
nnnnn 2
3162278 §os
1000
04
ssssss ‘
100, ‘ 03
JJJJJ
‘ 02
10
| o
2162 ‘
: ‘ v |
s uls ale
o 8 7 & 5 4 3 2 1 0 Replicate
ue: 57164587l Run 3 - Max-value: 57165733 1Run 2 Ml Run 3

uuuuuuuuuu o ucse 7

ues
B Run 1- Max-value: 57253622 [l Run 2 - Maxval Mrun1

Figure 3.20: The ‘Peak information’ tab in the GUI of Sierra Platinum. Left (see
also Figure [3.11)): the final p-value histogram showing the combined p-values
for all windows. Right (see also Figure [3.12Db]): the percentage of agreement
of each replicate with the multiple-replicate result. Three runs with different
setting for weights and different replicate combinations are shown.

m Server Help

Config Management * || Replicate 3 | Replicate 4 | Ref

Datamapper Management #l Load Datamapper Ctrl+P

Save figures Save Datamapper Ctrl+L

Close Ctri+0Q Foi‘ie?HBKﬁi‘ﬁeB?HBKEi‘ﬁelﬁll.rmc

¥ Background

Figure 3.21: The File Menu showing the sub menu for storing and loading the
data mapper.

3.4.8 Additional Functionality

Loading and saving the data mapper

Sierra Platinum automatically exports a data mapper file for each run, which
contains all information that are presented in the GUI. With this mapper, it is
possible to archive all the additional data created by Sierra Platinum for the
peak-calling and to analyze this data even without a server connection. The
data mapper can be exported by using the menu entry ‘File — Datamapper
Management — Save Datamapper’ and imported by using ‘File — Datamapper
Management — Load Datamapper’ (Figure (3.21)).

The client configuration can be exported and imported like the Datamapper

using the ‘Config Management’ menu entry.

83

Chapter 3. Sierra Platinum

Export graphics

All figures created by Sierra Platinum can be exported as a bundle or as a single
figure for later utilization as .png files. The user can export all figures by using
the Menu Entry ‘File — Save figures’ (Figure [3.21)). Single figures can be
exported by clicking them with the right mouse button.

3.4.9 Server

When starting the server, the user can select the maximum number of threads,
which are used during 10 intensive operations. After every calculation, the server
exports the results in bed and csv format to disk. Additionally, it stores the
current data mapper and a log file with all information about the most recent
calculation.

The server can be started in server or in batch mode. In server mode, it
accepts connections from clients. When the server is running a job, it is sending
progress information to each client. Only one job can be run at a time, due
to the large amount of resources needed. Therefore, the server is locked while
performing the job, meaning, that it does not accept any additional jobs. In
batch mode a previously created job configuration file is provided to the server

that will compute all results and terminate afterwards.

3.4.10 Server Configuration File

The server configuration file for batch mode can be exported from the client
as described in Section [3.4.8 Since the configuration file is a gzipped JSON
file, it is also possible to create it manually or automatically for using the server
in pipelines. The syntax (format) of the file is given by the following example

(white space and line breaks added for readability purposes):

{"replicates":
[{"experiment":"expA.bam",
"background":"backA.bam",
"name":"ReplicateA"},
{"experiment":"expB.bam",
"background" : "backB.bam",
"name":"ReplicateB"}],

"windowsize" :200,

34

Visual Analysis of Form and Function in Computational Biology

"offset":50,
"pvaluecutoff":1.0E-5,
"peakmode":false,
"numCores" : 4,

"jobName" : "Example"

The first seven lines show, how an example with two replicates is generated.
The keyword “replicates” is followed by a list (between ‘[and ']") of replicates.
Each replicate is delimited by the curly brackets and contains three fields:
the “experiment” file name (e.g., “"expA.bam”), the “background” file name
(e.g., "backA.bam"), and the replicate “name” (e.g., “ReplicateA"). Furthermore,
the following parameters have to be provided: the window size, the window
offset, and the p-value cutoff. The variable 'peakmode’ is only for internal
use and should be always 'false’ if the configuration file is created manually.
The "numcores” entry determines the maximal number of threads used for the
computation. Finally, the “jobName” describes the file prefix which is added
to the output file's names. After creating the configuration file, all white
space (including tabs and line breaks) has to be removed to create a JSON file

containing exactly one line, and the file has to be compressed with gzip.

3.4.11 Service Implementation

The computational efforts for ChlP-seq analysis require hardware that may
not be available in labs without dedicated bioinformatics infrastructure due to
the size of the input files and the complexity of the algorithms that combine
multiple samples. To overcome this limitation, a service implementation of Sierra
Platinum called Sierra Platinum Service was developed that provides access to
the full functionality of Sierra Platinum in form of a web-based service hosted at
sierra.sca-ds.de. |t provides a publicly available web service that combines
user management, job control, and a queuing system as well as mechanisms for
uploading the input data and for downloading all results. It creates a dedicated
Sierra Platinum Server that allows the user to upload, analyze, inspect, and
manipulate his ChIP-seq data using the Sierra Platinum Client with very little
local resource consumption. Finally, the user can download all results—analysis
results as well as the final peaks. A convenient docker image was developed for
an easy deployment of private instances of the service, e.g., for institution-wide

use.

85

sierra.sca-ds.de

Chapter 3. Sierra Platinum

Technical Realization

The server is hosted within a docker container (see Figure [3.22)), which provides
a Java JRE for the Sierra Platinum Service, a fully configured nginx web server
with php5 support, and an SQLite database that stores the user management
of the service. The mail transmission is implemented by using sSSMTP that
allows using an existing email address without the need to setup an email server
within the service.

Since the Sierra Platinum Service is embedded in a docker container, it
can easily be deployed by pulling the Git repository https://github.com/
sierraplatinum/sierra-service|/and running the scripts build.sh for build-
ing the container and run.sh for starting it. At this stage, the service can be
configured by specifying TCP ports, the email address, and resource limitations
such as the number of concurrent Sierra Platinum Service instances or threads.
To handle the limited number of Sierra Platinum Service instances, a queuing
system was implemented to handle all user requests. Within the docker container
all services start automatically. The upload mechanism was implemented in the
client/server core. To address security concerns, every user of the service is
assigned his own FTPS directory and is jailed to it.

The client checks the validity of the uploaded files and the server can
compute missing .bam indices. Interrupted uploads can be continued on the fly
to accommodate for the large size of the input files.

Usage and Interaction

The service requires registration with a valid email address and allows the user
to start a dedicated Sierra Platinum Server for which he received the necessary
credentials by email. A Sierra Platinum Service runs for 72 hours or until
termination by the user. During this time, the user may disconnect from and
reconnect to the server at any time. At the end of the Sierra Platinum Service's
life time, all data is deleted from the server hardware.

To use the Sierra Platinum Service, the user connects with his credentials
through the Sierra Platinum Client and first uploads his data as bam files using
the integrated FTPS client. Then, the peak-calling can be started. Afterwards,
quality control information can be visually inspected (see Figure (3.18)) and
parameters may be adjusted as for any local installation of Sierra Platinum. At

any time, the results file can be downloaded for further, local analysis.

36

https://github.com/sierraplatinum/sierra-service
https://github.com/sierraplatinum/sierra-service

Visual Analysis of Form and Function in Computational Biology

Sierra Platinum Client
controls the server and
visualizes the results.

A
TCP connection TCP connection File upload
via FTPS

Webclient for
registration

NGiNX

Nginx webserver handles | ¢torts the server

the user requests to ————————> Sierra Platinum Server

start a server. performs the peak
calling and sends

the visualizations to
the client application.

Y

?SQLite

The database stores

the user information
and the server queue. doc er

y
~—
~——

Data storage for the
uploaded user files

Figure 3.22: Overview of the Sierra Platinum Service container. The web server
handles the user registrations and starts the Sierra Platinum Server after a valid
activation. All necessary user information are stored in an SQLite database.
After a successful registration the user can upload his data with the Sierra
Platinum Client and start the computation. Afterwards, it is possible to export
all results and visualizations within the client.

87

Chapter 3. Sierra Platinum

Limitations

The Sierra Platinum Service architecture is currently designed as a split in-
frastructure. The registration and the validation of a new user is handled by
a web interface whereas the data upload, the data processing, and the data
presentation is implemented within a Java GUI application. Therefore, the user
needs an up-to-date Java installation on his client. Moreover, the data upload of
the input files can take a long time depending on the user’s internet connection
and the input size. If the user has a very slow upload rate, the maximal runtime
of the service may be exceeded before finishing the upload. Further, the user
needs a valid email address for the registration process.

Currently, the Sierra Platinum Service instance at sierra.sca-ds.de is
able to compute 5 jobs simultaneously. If necessary, the service can be extended

easily to provide more slots since it is running on a cluster system.

38

sierra.sca-ds.de

Visual Analysis of Form and Function in Computational Biology

3.5 Benchmark Data Set

3.5.1 Context

Testing and benchmarking are essential steps while implementing new methods.
Hereby, testing refers to the robustness of the new tool: showing that even
with erroneous or bad data, the tool still produces reasonable results without
crashing. Benchmarking means running a tool with data for which the ideal
results are known and then calculating how close the computed results match
the ideal results. Typically, benchmarking results are compared to those of
existing tools/approaches performing the same task. While data sets for tests
are relatively easy to design, designing benchmarking data sets poses a major

challenge.

3.5.2 State-of-the-Art and Gaps

Surprisingly, even though there are tools to simulate the ChlP-seq experiments,
no benchmarking data set for peak-calling is published so far. Koohy et al. [49]
and Wilbanks et al. [86] already described the problem and therefore compared
the peak-calling results of different peak-callers based on the number of shared
peaks of 3 different transcription factors.

As benchmarking data sets are not available, workarounds are used, e.g.,
using real data instead of artificial data. However, for real data the ‘ground
truth’ is often not known and can just be approximated by verifying the results
using known information.

Depending on the tools task, this can be done in different ways. If already
other tools exist that fulfill the task, it can be asked how much of the results of
the other tools can be recovered by the new tool. However, in those cases It is
difficult to decide which tool is better because the reliability of the results can
not be decided upon, if the results differ.

Another frequent approach is to use experimentally validated results. In the
case of differential expression analysis, for example, gPCR results or spike-in
genes are used. However, in this case the set of benchmarking data points is
very small since experimental verification can not be done for all genes and also
has it's own limitations.

In the case of peak-calls for ChIP-seq data, two other approaches are often
chosen. One approach is to show that the resulting peaks are similar to the
results obtained when measuring the same results with ChlP-chip, i.e., the first

89

Chapter 3. Sierra Platinum

step of the experimental procedure is the same but the sequences pulled out
are measured using a chip instead of being sequenced. The other approach is
to test the tool with a transcription factor for which the binding motif is known.
The benchmark consists of testing whether the peaks detected with the new
tool contain a binding site according to the binding motif.

For the first approach, recall and false discovery rate can only be estimated
since ChlP-chip, too, does not guarantee to produce perfect results. For
the second approach, one can not guarantee that all binding sites are found
since the binding motif may be inaccurate and binding site prediction can be
erroneous, too. Furthermore, a binding site does not ensure that the measured
transcription factor was bound and thus, a peak is expected. In other words,
the second approach does not provide an estimate for the negative outcomes
of the experiment.

To be able to compare the new peak-calling method (Section , several
benchmarking data sets were created. Four statistical measures were applied
on the data sets for assessing the quality of peak-callers. In this section, the
method for creating these benchmarking data sets (Section and the
proposed benchmarking data sets (Section for assessing the quality are

described.

3.5.3 Goal

In general, benchmarking data sets should provide a combination of data sets

with the following properties:

Ideal case: Even though the real data sets will never be 'ideal’, the ideal case
should always be part of a benchmarking data set. A method, which
produces wrong/bad results in the ideal case, can not be assumed to
produce reliable results for non-ideal data and thus should not be applied
to real data.

Single noise case: For any source of noise, there should be at least one data
set simulating this type of noise varying the parameters representing this
type of noise. In this way, the robustness of the method with respect to

the different sources of noise can be estimated.

90

Visual Analysis of Form and Function in Computational Biology

Multi-noise case: At least one data set should be designed to demonstrate the
performance of the tool when different sources of noise appear together
in the same data set. Therefore, data sets with a useful combination of
different sources of noise should be part of the benchmarking data set.

Real case: A data set, which is inspired by the sources and the strength of

noise of real data would be desirable.

3.5.4 Challenges

Major challenges for constructing benchmarking data sets are:
1. to define a model that produces artificial data that looks like real data
2. to define which sources of noise exist

3. to model the sources of noise in the chosen model system

3.5.5 Benchmarking Data Set Creation

ChIPsim [46], an R package to simulate ChIP-seq, was used to generate a
benchmarking data set for peak-calling that shows characteristics of histone
modifications such as broad domains. Instead of using the default model, the
nucleosome density example in the manual was used as the basis and several
changes were made to adapt it to the test scenario. In principle, the simulation
procedure consists of the following steps:

1. Generate a genome sequence
2. Generate features using a Markov model

3. Generate a signal density for all features (i.e., how much signal at a specific

base is given to the annotated feature)

4. Calculate the read density according to the signal density and the fragment
length

5. Sample reads from the genome according to the read density

6. Sample the base quality for each base according to a defined quality
distribution

7. Introduce sequencing errors based on base quality

91

Chapter 3. Sierra Platinum

Table 3.7: Chromosome names and lengths

chromosome length

chrl 1-10°
chr2 2-10°
chr3 3-10°
chr4 4.10°
chr5 5.10°
chr6 6-10°
chr7 7-10°
chr8 8.10°
chr9 9.10°
chrl10 10-10°

This procedure was used in two configurations: one time to generate the
background and one time to generate the experiment data. Some aspects of
the configurations stay the same in both. The genome for background and
experiment is the same enabling mapping the simulated reads to the same
genome. Ten chromosomes were generated with different lengths as given in
Table [3.7] Each chromosome is obtained by sampling as many bases from the
set of DNA bases as desired. The Markov chain generating the features requires
a length parameter. This length corresponds to the length of the genomic
region assigned to the feature. A unique feature length of 146 bases was used
for all states, i.e., each feature corresponds to exactly one nucleosome. The
fragment length for sequencing follows a normal distribution with a mean of
200 bases and a standard deviation of 4 bases. Furthermore, the values were
bound to the interval [150;250]. Thus, the simulated fragments will have a

length between 150 bases and 250 bases and are on average 200 bases long.

Background data

Trivial features were generated using a one state Markov chain as model for
the background corresponding to an unspecific antibody. The density was taken
from a -distribution with shape parameter kK = 1 and scale parameter 8 = 20.
This setting was suggested by the nucleosome density example in the tutorial
of ChlPsim. Calculating the read density and sampling the reads are performed
as provided by ChlPsim. The read quality is generated either in “high”, “mid",
or “low” mode, which are explained below. The optimal sequencing depth was

taken from the tutorial (number of reads equal to 10% of the genome length)

92

Visual Analysis of Form and Function in Computational Biology

and was varied to 1% for under-sequenced and 40% for over-sequenced data,

respectively.

Experiment data

A two state Markov chain of order 1 is used to generate the features for the
experiment data. One state represents the background, i.e., the noise which is
unspecific to the theoretical antibody used. Its characteristics are the same as
those of the background data since both represent basically the same, unspecific
binding to the chromatin.

The second state represents the experimental data, i.e., the modified histone
the experiment wants to measure. Sticking to an example in the tutorial, a
single parameter Pareto distribution was used to generate the density for the
specific histone. The shape parameter r is set to 5 as in the tutorial. The

average density is calculated based on the background model as
avgDens =k -0-e (3.30)

where k is the shape parameter and 6 is the scale parameter of the background
[-distribution, while e is the enrichment over the background. The optimal
enrichment e is set to 5 and is varied to 2 for low and 4 for mid level enrichment,
respectively.
Based on the average density, the lower bound for the density is estimated
as
Ib=(r—1)-avgDens (3.31)

The density for each feature is then drawn from the single parameter Pareto
distribution with shape r and lower bound /b.

The sequencing depth is set analogously to the background data. The base
quality of the sequencing reads are generated in the modes “high”, “mid”, and
“low". Poisson distributions bound to the interval [0; 40] were used to generate
the probability for each possible Phred score. In detail, the probability of Phred
score ¢ is

P(d)) = PPoisson(4O - ¢v >\) (332)

where X is specific for the mode. In detail, A = 7 was selected for mode "high”,
A = 17 for mode "mid", and A = 29 for mode "low".

The probabilities are normalized such that they sum up to 1 in the interval
[0; 40].

93

Chapter 3. Sierra Platinum

3.5.6 Benchmarking Replicates

As described in the previous section, benchmarking data sets of different quality
were generated. This section gives an overview of the benchmarking data sets
generated and how they were processed. In addition to the generated genome
and read files, the reference signal, i.e., the gold standard for the peak’s location,
is provided as annotation file in BED [47] format.

Replicates Generated

The replicates generated can be subdivided according to their type into ‘noise

free’, ‘wrong signal’, and ‘noisy signal’.

Noise free 6 replicates with optimal parameters were generated for experiment
and background. These replicates can be used to evaluate the performance in

the ideal case as well as for finding optimal parameters for the peak-caller.

Wrong signal Three replicates with different features each were generated.
They can be used to test the performance of the peak-caller when ChlP-seq
data may be erroneous. This might happen, for example, when the antibodies
did not work correctly.

Noisy Signal Peak-calling can be affected by poor data quality. In particular,
low sequencing quality, over-sequencing, under-sequencing, and low signal en-
richment may affect the ability to find peaks and the quality of the predicted
peaks. Two replicates were designed for each combination of low, middle, and
high sequencing quality, sequencing depth, and enrichment (see Table [3.8)).

In total, 27 replicates of different quality were generated yielding 54 read
files; 27 for the experiment and 27 for the associated background. While the

read files are generated in pairs, i.e., always one file for the experiment and one

Table 3.8: Parameter settings for the different levels of quality. See Section[3.5.5]
for a description of the parameters.

| low middle high
sequencing quality | 29 17 7
sequencing depth | 0.01 0.1 0.4
enrichment 2 4 5

94

Visual Analysis of Form and Function in Computational Biology

file for the background with the same characteristic, read files with different
characteristics can be combined to replicates as well to study the effect of

unequal quality of background and experiment.

Post-Processing

Since no adapters were simulated, the read files of the replicates generated are
directly mapped onto the artificial genome generated during simulation. The
genome mapper segemehl [44] was used to index the genome and map the
reads onto the genome. Mapping was performed with 80% accuracy (i.e., 80%
of the alignment have to be identical between read and genome) and only the
best hit is reported. The resulting SAM [53] files are converted into BAM [53]
files and sorted using SAMtools [53]. Afterwards, SAMtools is used to remove
PCR replicates.

3.5.7 Benchmarking Data Sets

The generated replicates can be combined to different data sets for benchmarking.

As a minimal test for peak-calling, the following combinations are recommended:

Noise free: 6 noise free replicates—background and experiment data. Using
this data shows if the method produces useful results. Methods that

perform poorly on this data should not be used for real data.

Noise: 3 data sets with 6 replicates each combining 1, 2, and 3 replicates
with noisy signal but good quality otherwise with 5, 4, and 3 noise free
replicates, respectively. This will indicate the impact of experiments
resulting in a wrong signal (e.g., failure of the antibody).

Low quality: 2 data sets with 3 and 4 replicates. In each data set, 2 noise
free replicates are used together with either 1 or 2 replicates with low

sequencing quality and good quality otherwise.

Over-sequenced: 2 data sets with 3 and 4 replicates. In each data set, 2
noise free replicates are used together with either 1 or 2 replicates with a
(too) high sequencing depth and good quality otherwise.

Under-sequenced: 2 data sets with 3 and 4 replicates. In each data set, 2
noise free replicates are used together with either 1 or 2 replicates with a

(too) low sequencing depth and good quality otherwise.

95

Chapter 3. Sierra Platinum

Low enrichment: 2 data sets with 3 and 4 replicates. In each data set, 2
noise free replicates are used together with either 1 or 2 replicates with

low enrichment and good quality otherwise.

Bad: 2 data sets with 3 and 4 replicates. In each data set, 2 noise free replicates
are used together with either 1 or 2 replicates with low sequencing quality,
(too) low sequencing depth, and low enrichment. These data sets will

show the combined effect of the different sources of noise.

3.6 Statistical Measures for Quality Assessment

The benchmarking data sets allow evaluating statistical parameters to assess
the quality of the peak-calls produced with the peak-caller chosen. The gold
standard provides a list of peaks specified by the genomic location. Based on
the gold standard, the following statistical measures for quality assessment are
recommended: the number of peaks n,, the recall, the positive predictive value
(PPV), and the false discovery rate (FDR).

Let PC be the set of peak-callers and pc € PC a peak-caller. Let further
Ppc be a peak detected by peak-caller pc, p? a peak in the gold standard, and
pj. a peak in the gold standard found by the peak-caller pc. Then, n,, recall,
PPV, and FDR are defined as:

np(pc) = Kppc}l (3.33)
recall(pc) = %’%ﬁ” (3.34)
PPV (pc) = EPIZ’%C})' (3.35)
FDR(pe) — !{ppcﬁ{!p;\}ﬁpgc}l (3.36)

While p,c and p9 are easy to determine, pJ. needs a careful definition. This
definition has to consider the properties of the gold standard:

1. The length of the peaks in the gold standard are multiples of 146bp by
construction since all the features generated with the Markov chain have a
length of 146bp, i.e., individual histones were simulated rather than peaks.
A peak in the gold standard will always start and end with a feature but
may include more than one feature. Thus, peaks have a minimal length
of 146bp but can extend much further in length.

96

Visual Analysis of Form and Function in Computational Biology

2. Reads of length 36bp are generated assuming a fragment length of 200bp
on average for sequencing. Thus, enrichment will have the same resolution.
Therefore, peak-calling is restricted to the resolution given by the fragment
length for sequencing and will not reach the 146bp resolution of the

features.

As a consequence, gold standard peaks and predicted peaks will not match
up completely. Thus, taking a 100% identical peak match as criterion for finding
a peak of the gold standard would be too hard and will distort the performance of
the peak-caller evaluated. Therefore, it is recommended to soften the criterion
for re-discovering a peak of the gold standard. The criterion is motivated by

the following:
e The minimum peak length is 146bp.

e The resolution expected for one nucleosome is 200bp on average but lies
in the interval [150; 250].

e Given the 146bp resolution, even a perfect prediction would cover only up
to 73% (= 146/200) on average. However, the coverage might be as low
as 58.4% when the sequencing fragment length is 250bp.

e Not only perfect matches should be counted.

e Incompletely found peaks should also be counted as “found” when most

of the peak is found.

Therefore, the recommended soft criterion is a reciprocal overlap of at least

50% between prediction and gold standard:
Pac := {Ppc|3p? : reciprocal overlap(p?, ppc) > 0.5} (3.37)

With this criterion, it is now possible to calculate the assessment parameters
for any peak-caller based on the gold standard benchmarking data sets.

97

Chapter 3. Sierra Platinum

3.7 Evaluation

3.7.1 Introduction

This section presents multiple evaluations of Sierra Platinum. In a first step,
Sierra Platinum will be evaluated on the different benchmark data sets described
in Section [3.5] This evaluation is also a guide on how to recognize different
types of noisy data with the quality measure visualizations provided by Sierra
Platinum. Afterwards, the influence of the different parameter settings of Sierra
Platinum is evaluated on the quality of its peak-calling results. In a last step,

Sierra Platinum is compared against other state-of-the-art peak-calling tools.

3.7.2 Sierra Platinum Quality Measures and Visualizations

In Section [3.7.4] it is shown that down-weighting or deleting noisy replicates
is beneficial for the performance of Sierra Platinum. While it is known which
replicates have good quality and which replicates have bad quality in the case
of the benchmarking data sets, for real data this information is commonly
not available. However, the quality of the replicates is assessed using the
quality measures and the visualizations included in Sierra Platinum. Several
visualizations showing different quality measures of the replicates allow the user
to judge whether a replicate can be used for peak-calling, should be excluded
from peak-calling, or should be down-weighted during peak combination. This
section shows how the different types of noise can be recognized using the

visualizations provided by Sierra Platinum.

Noise-free data

Figure shows a noise free replicate. The theoretical distributions (at
least those calculated for the normalized ones) are (almost) identical (top and
bottom, left). Each tag distribution has a single peak and the peak of the
experiment is at lower tag counts than the peak of the background distribution
(top, middle). However, the respective means of the two distributions are
almost identical (location of the peak of the theoretical distribution). The
“boxes” of the boxplots are in the green area (top, right). The replicate specific
distributions for p-values (bottom, middle) and significant windows (bottom,
right) do not differ much from the corresponding median distributions. The

correlation with other replicates is high and thus, red is the predominant color

98

Visual Analysis of Form and Function in Computational Biology

in the heatmap (Figure [3.23b]). All significant windows of the replicates overlap

largely and to approximately the same amount with the final significant windows

(Figure [3.23d| right).

Poor Sequencing Quality

Replicates with low sequencing quality are easily recognizable since the “box”
of the boxplot is not in the green area and may even drop into the red area
of the boxplot (see Figure , top, right). However, also the distribution
of the significant windows and the amount of overlap with the final significant
windows indicate the low sequencing quality. One can observe that the number
of significant windows is lower than on average (see Figure , bottom, right)
and the amount of overlap of replicate 3 with the final significant windows is

noticable lower (see Figure [3.24b| right).

Low enrichment

For replicates with a too low signal-to-noise ratio, e.g., due to ineffective
antibodies, the visualizations look like those in Figure [3.25] Low enrichment
usually leads to an unclear peak in the experiment tag count distribution, i.e.,
there is no peak but a plateau (Figure , top, middle). Furthermore,
the significant windows are less frequent in the replicate than in the median
distribution of significant windows (Figure [3.25a bottom, right). All other
quality measurements and visualizations in the single replicate view are similar to
those of the good replicates. The result charts show a lower amount of overlap
for low enriched replicates with the final significant windows (Figure ,
right).

Low Sequencing Depth

Under-sequencing of the experiment leads to peaks close to zero in the tag count
distribution (Figure , top, middle) since not enough reads are sampled from
the data to cover the genome. Under these circumstances, it is hard to reliably
estimate the parameter of the background model which affects the peak-calls.
The number of significant windows in the replicate is much lower than that in
the median replicate (Figure , bottom, right) and the p-value distribution
of the replicate differs strongly from that of the median (Figure [3.26a] bottom,
middle). In particular, there are more windows with p-values close to one but

99

Chapter 3. Sierra Platinum

poisson distril for i and background Count distribution for experiment and background Tag quality
0085 085 “
a2
0080 080 o
0075 075 38
36
0070 070 =
0065 065 2f [] [1
0060 060 o1 1 L !
28
0055 055 2
o
0050 050 g
0045 045 %
0040 040 £
&6
0035 035 1
0030 030 1
025 0s °
0020 020 6
0015 015 N
2
0010 010 o
0005 005 2
4
0000 000 - P
00 25 5.0 7.510012515017.5 20,0225 25.0 27.5 30.0 325 35.0 37,5 40.0 425 45.0 1 3162 10 31623 0 3628 100 periment N ackorou
ype
© Experiment A = 23.5066 O Background A = 23.5070 © Experiment histogram © Background histogram [Erepicate 1]
Estimated poisson distribution for adjusted experiment and backagr... P-value distribution over all windows Distribution of significant windows
0085 100,000 3500
0080
31622777 220
0075
3000
0070 10000
oss 2750
00 3162278 2500
0055 1000 2250
0050 2000
0065 316228
1750
0040 100
0035 1500
0030 31623 1250
0025
" 1000
0020 o
0015 3162
s00
0010
0000 o
0.0 255 50 7.510012515017.5 200225 25.0 27.5 30.0 325 35.037.5 40.0 425 45.0) ESEGEREREEOE Ve bbRne CHRO CHRS CHR7 CHRG CHRS CHR4 CHR3 CHR2 CHRL CHR10
O Experiment A = 23.5066 O Background A= 23.5070 M Repiicate 1 [l Median M Repiicate 1 [l Median
k4 k4 k4 k4 k4
I I I I I o]
= = = = = =
o o o o o o
o o o o o o
o o o o o o
m m m m m o
- 9 w IS u o
Replicate 1
Replicate 2
Replicate 5
Replicate 6
Final p-value histogram Overlaps
100
095
31622777, a0
o085
10000 s
075
3162278 or0
065
1000
060
&oss
st6228 g
§ 050
o o0a4s
100 <
040
035
31623
030
025
10
020
3162 o
010
. 005
000
1 2 3 4 s 6
1 27 a6 5 A4 a3 a2 1 20 9 8 7 6 5 4 3 2 1 0 Replicate
M Run 1 - Max-value: 91825 MRun1

(c) Result charts.

Figure 3.23: Quality measurements for a noise free replicate.

100

Visual Analysis of Form and Function in Computational Biology

O Experiment A = 19.0578 O Background

=19.0551

M Repiicate 3 [l Median

poisson for and Count distribution for experiment and background Tag quality
010 0.80 e
@
075 p
009
0.70 e
3
0.08 065 34
0.60 a2
30
007 0.55 28
0.50 .
006 .
045 g2
i 20
0.05 0.40 g 18
035 £
004
s] []
003 025 10
s
oL | [|
0.02 015 N
010 :
0.01 e
005 2
4
oo 000 Experiment Background
00 25 50 7.5 100 125 150 17.5 200 225 250 27.5 300 325 350 37.5| 1 3162 10 31623 100 316.228 1,00¢ pert orour
Type
O Experiment A = 19.0697 O Background A = 19.0551 O Experiment histogram O Background histogram Repiicate 3
Estimated poisson distribution for adjusted experiment and backgr... P-value distribution over all windows Distribution of significant windows
010 100000 3250
0.9 31622777 3,000
2750
on 10000
2500
362278
0.07 2,250
1
s 2000
316228 1750
005
100 1500
004 1,250
31623
003 1000
10
750
00z 3162
500
oo
0.00 oI A IS o
00 25 50 7.5 100 125 150 175 200 225 250 275 300 325 350 375| LG REEEEee ve0benn CHRS CHRS CHR? CHRS CHRS CHR4 CHR3 CHR2 CHRL CHRIO

M Repiicate 3 [l Median

Final p-value histogram

31622777

10,000

3162278

316228

31623

W Run 1- Maxvalue: 92064

035
030
025
o
020
3162 o
010
o 005
000
6 a5 18 a3 a2 11 a0 8 7 s o4 03 o2 a1 o

(a) Replicate view.

100
095

Percentage

(b) Result charts.

Overlaps

1 2 3 4

Replicate

WRun 1

Figure 3.24: Quality measurements for a replicate with low sequencing quality

101

Chapter 3. Sierra Platinum

poisson distribution for iment and Count distribution for and Tag quality
0.085. 085 e
@
0080 080 w
0075 075, 38
3
0070 070 o
0065 065 2f [| I |
| [1 L 1
0060 050 2
00ss 055 .
0050 0s0 g
P
0045 0as 32
0040 040 B
£
0035 035 i
0030 030 12 [|
0.025 025 o
®
0020 020 i
oo1s 015 ‘
o010 010 B
0.005. 005 2
4
0000 000 experiment Backoround
0.0 2.5 5.0 7.5 10.012515017.520.022.5 25.0 27,5 30.0 325 35.0 37.5 40.0 42.5 45.0) 1 3162 10 31623 100 36228 1.00¢ herimes ackgro
Type
© Experiment A = 23.5044 O Background A = 23.5000 O Experiment histogram O Background histogram
poisson distribution for adjusted experiment and backgr... P-value distribution over all windows Distribution of significant windows
o085 100,000 3,250
0080 3000
oot 22777

2750

2500

'l-
o

& % CHRO CHRE CHR7 CHRG CHRS CHR4 CHR3 CHR2 CHRL CHR10

0o7o 10000
0065
000 3162278
0055 1,000
0050
0045 316228
4

0040)
0035
0030 31623
0025
0020
0015 3162
0010

1
0005
0000 Y

0.0 2.5 5.0 7.510.012515.017.520.022.525.0 27.5 30.0 32.5 35.037.5 40.0 42.5 45.)

O Experiment A = 23.5044 O Background A= 23.5000 M Repiicate 3 [l Median M Repiicate 3 [l Median

(a) Replicate view.

Final p-value histogram Overlaps

mm IIII
1 2 3 s

31623
0
E IIIII III
it
a6 15 14 13 12 a1 10 7 4 3 2 a1 o Replicate

M Run 1 - Max-value: 92522 MRun1

100
095
31622777

o085
10000 080
075
3162278

065
1000 e
055
050
045

Percentage

040
035
030
025

020
015
010
005

000

(b) Result charts.

Figure 3.25: Quality measurements for a replicate with low enrichment

102

Visual Analysis of Form and Function in Computational Biology

less with p-values close to zero in the replicate compared to the median of all
replicates. The correlation with the other replicates is lower (Figure , less
saturated squares) and the overlap with the final significant windows is very low
(Figure [3.26d] right). Furthermore, the p-value distribution of the final p-values
has a bathtub shape with a large amount of very low and very high p-values,

while there are only few windows with p-values between the lowest two and the

highest p-value (Figure [3.26d, left).

High Sequencing Depth

When replicates are over-sequenced, the tag count distributions have their peak
at almost the same position and low tag counts are particularly rare (Figure,
top, middle). For most p-values in the p-value distribution the window count is
lower than in the median replicate (Figure [3.273) bottom, middle). Furthermore,
high sequencing depth might lead to artifacts. Figure [3.27b] right, shows, for
example, that the significant windows of replicate 3 and 4 overlap to 100%
with the final significant windows. However, from the distribution of the good
replicates in Figure one can learn that even with perfect data the overlap
is not 100% but slightly below 100% since the input signals differ. Likewise
under-sequencing, also over-sequencing results in a strongly bathtub-shaped
distribution of the final p-values (Figure [3.27b] left).

Noisy Data Sets

When something went completely wrong during the experimental procedure or
when the antibody did not work correctly, this would result in a wrong signal.
Then, a replicate does not reflect the same signal as the other replicates, This
can be recognized using the heatmap. No or very low correlation with all
other replicates indicates a wrong signal (Figure [3.28a], white or red with low
saturation). Furthermore, the overlap with the final significant windows is also
low (Figure [3.28D} right) and the final p-value distribution is that extremely
bathtub-shaped that only three different p-values are observed, namely the
lowest two and the highest p-value (Figure [3.28D)} left).

103

Chapter 3. Sierra Platinum

poisson distribution for i and Count distribution for experiment and background . Tag quality
0275 060 e
22|
055 o
0250 ;a‘[
3
0225 00 ,,}
2 [] []
0200 0e sof [1 L 1
040 2
0475 1
035 g
0150 g
030 |
B
025 e
o —
0100 12}
020 21
oors o of
0050 010 i
0025 005 2]
o
0000 000 e
o 1 2 3 4 5 6 7 8 9 10 1n 1 3162 10 31623 100 Bxperimene .
Type
© Experiment A = 2.3498 O Background A = 2.3494 O Experiment histogram O Background histogram
poisson distribution for adjusted experiment and backgr... P-value distribution over all windows Distribution of significant windows
0275 100,000 3250
3000
02s0 31,622.777
2750
0ax:. 10,000
2500
0200 3162278
2250
0175 1,000 2000
0.150- 316228 1,750
0125 100 1500
1250
0100 31623
1000
0075 10
750
0050
3162 -
0025 1 250
0.000 ol Lo L L 5o i . o
o 1 2 3 a4 s & 7 8 3 1w u RS T CHRO CHRE CHR7 CHRG CHRS CHR4 CHR3 CHRZ CHRL CHR10
O Experiment A = 2.3498 O Background A= 2.3494 M Repiicate 3 [l Median M Repiicate 3 [l Median
=
o
k=l
5
@
ad
@
-
Replicate 1
Replicate 2
Replicate 3
Replicate 4
Final p-value histogram Overlaps
1
31622777 10
10,000, os
3162278 a8
07
1000
o
$os
316228 2
H
§os
100, -
04
31623
03
10
0z
3162
o1
' | -] - s—
LILIE e o -
1 2 3 s
18 17 -16 -15 -14 -13 12 11 -10 -9 8 7 6 5 4 3 2 1 o Replicate
I Run 1- Max-value: 96234 Mrun1

(c) Result charts.

Figure 3.26: Quality measurements for an under-sequenced replicate

104

Visual Analysis of Form and Function in Computational Biology

poisson distribution for i and Count distribution for experiment and background Tag quality
0.0425 065 a
a2
00400 060 a0
0.0375 38
055 36
0.0350 o
0.0325 050 2 [] []
sof 1 L 1
0.0300 045 o
0.0275 i ’
0250 g2
2
0.0225 035 L
o200 030 I
0.0175 =5
025 4
0.0150 12
00125 020 10
s
0.0100 015 5
n
0.0075 010 N
0.0050 °
0.0025 005 2
4
0.0000 000 erpenment o
0 10 20 30 40 50 6 70 & S 100 10 120 130 140 1 312 10 31623 10 316228 1000 3162278 1000 perimen ackorou
Type
© Experiment A = 94.0220 O Background A = 94.0156 © Experiment histogram O Background histogram Repicate 3
Estimated poisson distribution for adjusted experiment and backgr... P-value distribution over all windows Distribution of significant windows
0.0425 100,000 4,000
0.0400 3750
00375 31622777 .
0.0350 10000 2250
0.0325 Som
3162278
0.0300 .
0.0275 1000 2500
0.0250
2250
0.0225 316228
0.0200 a0
100 1750
00175
0.0150 31623 1500
0.0125 o i
0.0100 1000
0.0075 3162 750
0.0050 500
1
0.0025 250 "l
0.0000 Dol AR, .o °
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 538G XU REECe e sw CHR9 CHR8 CHR7 CHR6 CHRS CHR4 CHR3 CHR2 CHRL CHR10
O Experiment A = 94.0220 O Background A= 94.0156 M Repiicate 3 [l Median M Repiicate 3 [l Median
Final p-value histogram Overlaps
1
31622777 10

10000

3162278

1000

316228

31623

3162

W Run 1- Maxvalue: 89399

Percentage

0s
os
03
0z
o
R
. . . o
: 2 s .
G S L T

(b) Result charts.

Replicate

WRun 1

Figure 3.27: Quality measurements for an over-sequenced replicate

105

Chapter 3. Sierra Platinum

1 a1ednday
z @1ed1jday
€ ayednday
+ 23ed11day
g ayednday
g ajediday

Replicate 1

Replicate 2

Replicate 3

Replicate 4

Replicate 5

Replicate 6

(a) Heatmap.

Final p-value histogram Overlaps

31622777, 030
10000 080
3162278 070
1000 50

316228

Percentage

100
0.0

31623
- --.
3 4 s 6

18 7 a6 5 A4 3 12 11 0 9 8 7 6 5 4 3 2 1 0 Replicate

M Run 1- Max-value: 97104 Mrun1

(b) Result charts.

Figure 3.28: Quality measurements for a replicate having the wrong signal

106

Visual Analysis of Form and Function in Computational Biology

Summary

Sierra Platinum provides a wide range of visual quality controls. They allow
Judging, how well a replicate is suited for peak-calling in general and how well it
fits to the other replicates. Hereby, each quality control provides insights into
specific aspects of the data such as tag distributions or overall significance. This
allows not only to identify replicates with poor quality but also the identification
of the type of noise. Thus, the user of Sierra Platinum is able to react adequately
by deleting or down-weighting certain replicates or by taking lower quality into
account for further analysis of the data.

3.7.3 Parameter Selection

For obtaining optimal results, peak-callers frequently allow to change parameters
like window size, window offset, or cut-off value that have a direct impact on
the outcome of the peak-calling process. Moreover, most peak-callers provide
either default settings or estimates for the parameters provided. Sierra Platinum
provides default settings as a good starting point for initializing the parameters
of the peak-calling process. Estimates for the parameters based on the data
are helpful for good quality data where such estimates are reliable. Futhermore,
an evaluation of different parameter settings enables the user to judge by
himself/herself how to choose the parameters. Therefore, this section shows
the effects of different parameters for the p-value cutoff, the window size, the
window offset, and the method for calculating the g-values on the peak-calling
process. The three data sets evaluated are the noise-free data set, the data set
with with 3 noisy replicates, and a bad quality data set.

How to choose the p-value cutoff

The effect of the p-value cutoff is almost negligible (see Figure . Using a
cut-off value of 1 produces only significant windows. Thus, there is only one
peak on each chromosome covering the whole chromosome. Those peaks do
not meet the criteria of the reciprocal coverage and thus, result in a recall and a
PPV of 0 and a FDR of 1. There is also only a very small variation in the recall
down to a cut-off value of 107*. Therefore, a cutoff of 107° is recommended
to be sure to obtain best recall, PPV, and FDR.

107

Chapter 3. Sierra Platinum

Py
(1]
Q
2
1e-15 le-14 le-13 le-12 le-11 1e-10 1e-09 1e-08 1e-07 1e-06 le-05 1e-04 0.001 0.01
p-value cutoff
T
T
<
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
le-15 le-14 l1le-13 le-12 le-11 1e-10 1e-09 1e-08 1le-07 1le-06 le-05 le-04 0.001 0.01 0.1 1
p-value cutoff
1.00 -
0.75-
=
0.50 - g
Py
0.25-
0.00 -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
le-15 le-14 le-13 le-12 le-11 le-10 1e-09 1e-08 le-07 1le-06 le-05 le-04 0.001 0.01 0.1 1
p-value cutoff
120
900 -
el
600 - o
7
300 -

le—15 le—l4 le—13 le—12 le—ll le—lO le—09 le—08 le—O7 le—06 le—05 le—04 0.00l 0.0l 0.1 1
p-value cutoff

Figure 3.29: Evaluation of the p-value cutoff on the result quality for the
noise-free data set.

108

Visual Analysis of Form and Function in Computational Biology

How to choose the window size

Furthermore, the influence of the window size was tested on recall, PPV, and
FDR. Note, that the fragment size of the simulated data is on average 200nt.
To assure that the p-value cutoff is independent of the other parameters, not
only different window sizes were tested but also the p-value cutoff was varied.
With respect to the recall (see Figures(3.30al), one can observe that window sizes
between 100 to 200 nt have the best recalls for good quality data (with 150nt
being the very best). For the noise-3 and the bad-2 data set (see Figure ,
larger window sizes yield better recalls. In these cases, the best recall can
be achieved with a window size of 300nt. A similar behavior can be observed
for the positive predictive value (see Figure and the false discovery rate
(see Figure [3.32)).

The reasons for the observed FDRs, PPVs, and recalls become clear when
analyzing the number of peaks (see Figure [3.33). Small window sizes lead
to an overprediction of the number of peaks in the case of the noise-free
data set. It seems that some of the small windows are insignificant due to
local sequence composition biases and thus lead to a gap in the peak. Such
insignificant windows are less likely with large window sizes. In the case of bad
quality data, the number of predicted peaks is too low for small window sizes.
A reason therefore might be a low signal due to low enrichment of chromatin
fragments during the experiment in combination with local sequence composition
biases. Given the results, a window size equal to the average fragment length is
recommended (200nt in this benchmark data set). If it is obvious that the data

has bad quality, a larger window size should be chosen.

109

OTT

50 75 100

0.8-

0.6-

0.4-

) III

0.0-

13 25 38 44 19 38 56 66 25 50 75 88

50 75 100

0.6-

0.4-

0.2-

oo (T II..
y 2‘5 5‘() 7‘5 B‘B

0.2-

0o BB L Ee——— l.--

Figure 3.30: Recall of the peak-calls using different combinations of window size, window offset, and cutoff.

Irevsy

cutoff
le-11
1e-09
1e-07
1e-05
0.001

63 94 109 38 75 113 131 44 88 131 153 50 100 150 175 75 150 225 263 100 200 300 350
offset

(a) Noise-free data set

125 150

cutoff
te-11
1e-09
1e-07
1e-05
||| ||I ||| o001

63 94 1()9 38 75 113 131 44 BB 131 153 ‘Aﬂ 100 150 175 75 150 225 263 IOG 200 30() 350
offset

2%y

(b) Noise-3 data set

125 150 175

cutoff
le-11
1e-09
1e-07
1e-05
II I 0.001

63 94 100 38 75 113 131 44 88 131 163 50 100 150 175 75 150 225 263 100 200 300 350
offset

(c) Bad-2 data set

1103y

"¢ Jandeyd

winuile|d eaalg

1T

50 75 100
1.00-

°
a

)
8

o
&

o

13 25 38 44 19 38 56 66 25 50 75 88

50 75 100

°
N

o

13 25 38 44 19 38 56 66 25 50 75 88

50 75 100
1.00 -
0.75 -
0.50 -
0.25-
D [T

13 25 38 44 19 38 56 66 25 50 75 88

Figure 3.31: Positive predictive value of the peak-calls using different combinations of window size, window offset, and cutoff.

31 63 94 109 38 75 113 131 44 88 131 153

50 100 150 175

(a) Noise-free data set

125 150 175

- I II I III
"

31 63 94 100 38 75 113 131 44 83 131 153
offset

(b) Noise-3 data set

125 150 175

31 63 94 109 38 75 113 131 44 88 131 153
offset

(c) Bad-2 data set

200

50 100 150 175

200

50 100 150 175

75 150 225 263

75 150 225 263

75 150 225 263

100 200 300 350

100 200 300 350

300 400

100 200 300 350

125 150 175 200 300 400
- 3
<
uol."
300 400
3
2

Add

cutoff

|
1e-09

I 1e-07

I 1e-05

0.001

cutoff

le-11
le-09
1e-07
1e-05
0.001

cutoff
le-11
1e-09
1e-07
1e-05
0.001

ABojorg [euoizeandwo) Ul UoIldUNH pue Wio- JO SIsAjeuy |ensin

48!

100 125 150 175 200 300 400

cutoff
le-11
1e-09
1e-07
1le-05
I 0.001
...I —-.. p— Il--
38

63 94 109 38 75 113 131 44 88 131 153 50 100 150 175 75 150 225 263 100 200 300 350
offset

a4

(a) Noise-free data set

125 150 175 200 300 400
0.751 cutoff
le-11
0.50 S 1e-09
1e o7
1e 05
I I I III I I -
38 9 63 94 109 38 75 113 131 44 88 131 153 50 100 l:)ﬂ 175 75 l:)ﬂ 225 253 100 ZDO JDO 350
offset
150 175 200 300 400
cutoff
1e-11
o 1e-09
0.501 2 1e-07
1e-05
0.001
0.25-
0.004 I L e e W

63 94 109 38 75 113 131 44 83 131 1563 50 100 150 175 75 150 225 263 100 200 300 350
offset

(c) Bad-2 data set

Figure 3.32: False discovery rate of the peak-calls using different combinations of window size, window offset, and cutoff.

"¢ Jandeyd

winuile|d eaalg

3000

2000

1000

0

1500 -

1000

0

1500 -

1000

0

ETT

13 25 38 44

50

13 25 38 44

50

13 25 38 44

50

75

19 38 56 66

75

100

1e-05
I I I II IIII IIII IIII IIII :

25 50 75 88

100

0 125
le-11

E 1e-09

5 1e-07

le-05

0001

125 150 175 200 300 400

cutoff

|
< 1e-09
2
2 1e-07
31 63 94 100 38 75 113 131 44 88 131 153 50 100 150 175 75 150 225 263 100 200 300 350

(a) Noise-free data set

150 175 200 300 400

cutoff

19 38 56 66 25 50 75 88 31 63 94 109 38 75 113 131 44 88 131 153 50 100 150 175 75 150 225 263 100 200 300 350
offset

75

19 38 56 66

10

25 50 75 88

0 125
1e-11
3 1e-09
S 1e-07
1e-05
0.001

(b) Noise-3 data set

150 175 200 300 400

cutoff

31 63 94 109 38 75 113 131 44 88 131 153 50 100 150 175 75 150 225 263 100 200 300 350
offset

(c) Bad-2 data set

Figure 3.33: Number of peaks found using different combinations of window size, window offset, and cutoff.

ABojorg [euoizeandwo) Ul UoIldUNH pue Wio- JO SIsAjeuy |ensin

Chapter 3. Sierra Platinum

How to choose the window offset

To capture the effect of different offsets in combination with the window size
and the p-value cutoff, 4 different window offset settings were evaluated for
each window size with Sierra Platinum. Each combination of window size and
offset was tested with 5 different p-value cutoffs. As window offset, one quarter,
one half, three-quarters, and seven-eighth of the window size were selected.
The results are shown in Figures [3.30H3.33]

For small window sizes (50—125 nt), one can see that small offsets (one
quarter of the window size) give the best results (highest recall and PPV, and
lowest FDR). The window offset for the proposed window size of 200nt does
not strongly affect PPV, FDR, or recall on the noise-free data set. Nevertheless,
small offsets (one quarter or one half) are slightly better than large offsets. For
bad quality data, one quarter window offsets always produced the best results
with respect to recall, PPV, FDR, and number of predicted peaks. When using
a window size of 400nt, the recommendation for the window offset changes to
the half of the window size (200nt), which reflects the fragment size of the
input data. Consequently, the recommendation for the window offset is one
quarter for window sizes < 200nt and half of the window size for window sizes
> 200nt.

Which method for the g-value calculation should be used

Sierra Platinum provides different methods to compute the g-value. The most
traditional but also most strict method is the Holm-Bonferroni method. Both
methods from Storey are less strict and thus are expected to be more suitable for
noisy data with bad quality where very strict methods may lead to non-significant
windows only. Storey proposes both a simple and a bootstrap version. The
latter one is more robust. All three methods were tested with window size 200nt,
offset 50nt, and two different cutoff values (1e-5 and 1e-10). The results are
shown in Figure [3.34]

On noisy data without other quality issues, the Holm-Bonferroni correction
performs best regardless of the cut-off value. Storey's less strict methods lead
both to high FDRs as well as low recall and PPV in those cases. On data
sets with replicates of bad quality, Storey's methods for the calculation of the
g-value perfom best. Using noise-free data, the recall is almost equal for the
different methods but PPV is higher and FDR is lower for Holm-Bonferroni

correction.

114

Visual Analysis of Form and Function in Computational Biology

Summary

Sierra Platinum has four parameters to fine tune the performance of the peak-
calling results. The nature of these parameters implies that a bad parameter
choice can strongly affect the quality of the results. This section showed, how
to adapt the parameters of Sierra Platinum to the given data sets.

The window size should be about the size of the fragments in the experiment.
If the fragment size varies across the replicates or is completely unknown, shorter
windows are recommended rather than longer ones except if the data quality is
overall very low when larger window sizes perform best. The offset should be
one quarter of the window size < 200nt. When using an even larger window size,
half of the window size is recommended. The p-value cut-off does not affect
the performance strongly. However, a default p-value of 107° is recommended
since for higher p-value cut-offs variation in their performance could still be
observed. The last parameter is the method for the g-value calculation. The
performance differences between the different methods depend on the type of
noise in the data and on the chosen p-value cut-off for significance. Holm-
Bonferroni corrections perform well and fast in most cases but can not handle
combinations of noise and quality issues very well. However, for those cases

Storey's g-value methods perform well and robust.

3.7.4 Approach Comparision

To compare the results generated by Sierra Platinum with existing other ap-
proaches, several tools were used to generate peak-calls based on the benchmark

data set. The following methods were used:
PePr The multiple-replicate peak-caller PePr v1.0.1 [89].

MACS-SA For each of the replicates, MACS2 v2.1.0 [90] was started in the
'callpeak’ mode and called broad peaks. These peaks were then merged

to obtain the final resulting peak list.

MACS-CR SAMtools [53] were used to merge the bam files of the experiments
of the replicates into a single experiment bam file and the bam files of the
background of the replicates into a single background bam file. MACS2

v2.1.0 [90] was started as for the single replicates.

BinQuasi The multi-replicate peak-caller BinQuasi v0.1-3 [37].

115

Chapter 3. Sierra Platinum

0.8-
dataset
. 3noise
06~ B bac2
o . noisefree
0.4- §
= QValueMethod
HB
0.2-
bootstrap
simple
0.0-
1 1
1e-10 1e-05
cut-off
(a) Recall
1.00 -
dataset
Wsoise
0.75- bad2
noisefree
0.50- 3
< QValueMethod
HB
0.25-
bootstrap
simple
0.00 -
1 1
1e-10 1e-05
cut-off
0.8- dataset
. 3noise
0.6- B vadz
. noisefree
=
0.4- g
QValueMethod
0.2 He
’ bootstrap
simple
0.0-
! !
1e-10 1e-05
cut-off
(c) FDR
dataset
W sroise
2000 - bad2
g'? noisefree
% QvalueMethod
1000 - HB
bootstrap
simple
0-
[[
1e-10 1e-05
cut-off

(d) Number of peaks found

Figure 3.34: Evaluation of the g-value methods on the noisy, the bad, and the
noise-free data set (Section [3.5.7)).

116

Visual Analysis of Form and Function in Computational Biology

If not stated explicitly, the parameter settings were the same for all peak-
calling methods: window size = 200nt (equal to the fragment size), window
offset = 50nt, p-value cut-off = 107> and peak type = ‘broad’.

Except for the ‘noise free’ set of replicates in the benchmark, Sierra Platinum
was used to generate peak-calls using all replicates with equal weight (Sierral,
without down-weighting or excluding bad replicates), excluding the ‘noisy’
replicates (Sierra2), and down-weighting the ‘noisy’ replicates (Sierra3). In all
data sets (Section [3.5.7)), the ‘noisy’ replicates could be identified using at least
one quality measurement (Section .

The results are shown in Figures [3.35H3.37] From top to bottom Recall,
Positive Predictive Value (PPV), False Discovery Rate (FDR), and Number
of Peaks are reported. In addition to the results obtained by the different
peak-calling methods, the number of peaks is provided that would be optimally
found (gold standard, GS).

Noise-free data

For the noise-free data (Figure [3.35)), Sierra Platinum has the highest recall,
followed by BinQuasi with a slightly smaller recall. Both variations of MACS
show more than 10% less recall, while PePr has a recall of ~ 30% less than Sierra
Platinum. Although the recall of BinQuasi is comparable with Sierra Platinum,
the PPV and the FDR of BinQuasi are much worse than Sierra Platinum. Both
approaches of MACS show moderate results while PePr provides the worst
results. The high number of peaks generated by BinQuasi and PePr comes
at the expense of a high FDR, while both methods are relying on the same
model. In total, Sierra Platinum gives significantly better results, since BinQuasi
produces a similarly good recall, but also generates many false positives. With
data sets created in labratories, no gold standard is given. Then, the analyst
can only rely on the peak-calling results and a low FDR rate, since it is not

possible to distinguish between false and true positive results in these data sets.

Poor Sequencing Quality

For poor sequencing quality, two benchmarking data sets were used. Each
of them contains two good replicates and either one or two bad replicates
(Figure [3.36}, first column). It does not make a large difference whether one or
two data sets with a low sequencing quality, and thus more sequencing errors,
were added to two high quality data sets: the results are quite similar to those

117

Chapter 3. Sierra Platinum

noisefree
0.6
0.4 g
2
0.2
0.0
1.00

Add

0.75
0.50
PeakCaller
0.25 . BinQuasi
B viacs_cr
0.00

I vacs_sa

. PePr
0.4 . Sierra
n GS
o
s}
0.2
0.0 - -]
1500
1000 ??
7
500

0
PeakCaller

Figure 3.35: Evaluation results for the noise-free data set (6 replicates).

118

Visual Analysis of Form and Function in Computational Biology

of the noise-free data set. Excluding the low quality replicates improves the
results a bit with respect to recall, PPV, and FDR. Like with the noisefree
data set, BinQuasi achieves a very good recall rate, but provides a considerably
lower PPV and significantly higher FDR compared to Sierra Platinum. Again,
BinQuasi provides a lot of false positive results. Compared to MACS and
PePr, any approach of Sierra Platinum (all replicates, removing bad replicates,
down-weighting bad replicates) performs better with respect to all three quality

measurements.

Low enrichment

A low enrichment, i.e., the signal to noise ratio is low, does not much affect
the performance of all peak-callers (Figure [3.36, second column). The result of
Sierra Platinum can be equally well improved by deleting or down-weighting the

low enriched replicates.

Low Sequencing Depth

A low sequencing depth does not have a strong influence on the peak-calling
quality of Sierra Platinum (Figure , third column). Deleting or down-
weighting the replicates with low sequencing quality improves the results even
more. Deleting is just marginally better than down-weighting. Still, MACS-CR
and MACS-SA have lower recall but a higher PPV than PePr. The recall is
about 3% lower than in the noise-free data for MACS. BinQuasi provides a
better recall rate than Sierra Platinum, but comes with a worse PPV and FDR

comparable to PePr.

High Sequencing Depth

Replicates with a too high sequencing depth are not affecting the peak-calls of
MACS-CR and MACS-SA (Figure[3.36] fourth column). This might be an effect
of the two good quality replicates always included in the data sets. Surprisingly,
two replicates with a high sequencing depth produce better results than just
one replicate with too many reads in the case of PePr (recall and PPV increase
by about 10%). In the case of BinQuasi, the recall is comparable to Sierra
Platinum, but again PPV and FDR rate is much worse. It is also noticeable that
BinQuasi finds significantly more peaks in these data sets than in the previous

benchmarks. The results of Sierra Platinum in its default settings are affected by

119

Chapter 3. Sierra Platinum

lowquall lowenr1 undersequenced1 oversequenced1

0.50
- I I

1

0.75
0.50
0.25 I

0.00
1.00

[E=0]

Add

0.75

Had

0.50

0.25
Eul_ _ IIII_ - I==fl_ _ IIII_ 1

0.00
2000

1500

PeakCaller
1000 eakCallel
M eincuasi
500 B wacs_cr
0 [macs _sa

sfead

. PePr
1.00 lowqual2 lowenr2 undersequenced2 oversequenced2 . Sierral
Sierra2
07 . Sierra3
[es

Ileoay

0.50
0.25
0.00

75
0.50
0.25
0.00

1.00

Add

0.75

0.50

0.25 I I
gl.nl_ il Ill _ — Emmlle - Emsf_ _

1500

Had

1000

0

Figure 3.36: Evaluation results for data sets with noise. First column: low
sequencing quality. Second column: low enrichment. Third column: too low
sequencing depth. Fourth column: too high sequencing depth. First four rows:
one bad replicate; three replicates in total. Second four rows: two bad replicates;
four replicates in total.

sfead

the replicates with the too high sequencing depth. Deleting the replicates with
too many reads, the recall drops slightly but the PPV increases. Down-weighting
these replicate shows similar results. In the case of two over-sequenced samples,
the results of the effect of down-weighting or deleting bad replicates can be

seen even stronger.

120

Visual Analysis of Form and Function in Computational Biology

Bad replicates

In the next step, Sierra Platinum, MACS-SA, MACS-CR, and PePr were also
evaluated on data sets with a mixture of noises used in the data sets proposed
before. The data sets badl and bad2 (Figure are composed of two good
replicates, and 1 respectively 2 under-sequenced replicates with low enrichment
and low quality. With both data sets the recall drops and the FDR increases
with Sierra Platinum. Interestingly, the down weighting mechanism decreases
the recall rate using the badl data set. This behaviour only occurs with this
data set. BinQuasi generates again a comparable recall rate, but also shows
a higher FDR rate. In comparison to the other peak-callers, even using Sierra
Platinum with equal weights generates a higher recall and lower FDR.

The data set likeK4 contains a mixture of qualities (Figure , i.e.,
experiment and background may not have comparable data quality and the
quality between replicates differs as well. Simirlarly to the previous data sets,
Sierra Platinum outperforms the other peak-calling methods and BinQuasi shows
an even higher FDR rate. Since the data set /ikeK4 models a realistic data
set from labratories, this indicates a problem of BinQuasi with noisy replicates.
Similarly to the previous data set, recall and FDR are better compared to the

other peak-callers independently of the approach used for Sierra Platinum.

Noisy data sets

All peak-callers were evaluated on data sets containing 1, 2, or 3 noisy replicates
(Figure [3.37] bottom row), i.e., replicates with a different signal track. Each
data set is filled up with replicates of perfect quality until they contain 6
replicates in total. Using the noisel data set, BinQuasi calculates only a very
small amount of peaks. Depending on this, the recall rate drops considerably
under 25%. Using even more noisy replicates, BinQuasi fails to build a model
for the peak-calling process and can not find any peak any more.

The recall of the other peak-callers decreases with an increasing amount
of noise. In particular, MACS-SA and PePr show a large drop in the recall.
Furthermore, the FDR increases considerably. The largest increase of the FDR
is found for MACS-SA since the peaks of all replicates are simply merged. Thus,
all peaks from the noisy replicates are kept. Again, any approach of Sierra
Platinum outperforms the other peak-callers with respect to all 3 quality metrics.

121

Chapter 3. Sierra Platinum

bad1 bad2 likeK4

1.00

0.75

0.

@

0

l1eoay

0.

o
3

0.00
1.00

0.

3

5

0.

@

0

Add

0.

o
o

0.00
1.00

0.75

0.50

Ha4

0.25

0.00
2000

1500

> PeakCaller
1000
. BinQuasi
5 B vacs_cr
0 [macs_sa

o
o
sye

- PePr
noisel noise2 noise3 . Sierral
1.00 Sierra2
0.75 . Sierra3
Mo

|ledsy

II.II I IIII I IIII I
0.75
0.50
| 1l Il
0.00 .. l— — [| — -]

2000

0.00
1.00

0.

3

5

0.

15

0

Add

0.

o

5

0.00
1.00

Ha4

)

1500

1000
, m

Figure 3.37: Evaluation results for quality deficits in some of the data sets.
First four rows, left to right: one under-sequenced replicate with low enrichment
and low quality, two under-sequenced replicates with low enrichment and low
quality, and a mixture of quality inspired by real data for H3K4me3 in embryonic
stem cells. Second four rows, left to right: one, two, and three noisy replicates.

syead

=3

122

Visual Analysis of Form and Function in Computational Biology

Summary

Even using the defaults settings—no deletion or down-weighting of replicates—
the performance of Sierra Platinum on noisy data is superior compared to the
performance of other peak-callers on noise-free data. In general, deleting or
down-weighting replicates increases the performance of Sierra Platinum on noisy
data reaching the performance of Sierra Platinum on noise-free data. Thus,
the method implemented in Sierra Platinum is robust against any kind of noise
in the data. Moreover, the implemented user interactions for deleting and
down-weighting replicates in combination with the visual quality control features
allow fine-tuning of the peak-calling results to obtain the optimal results for

each data set.

123

Chapter 3. Sierra Platinum

3.8 Results

3.8.1 Real World Data Sets
Reference Data

The peak-calls for the epigenome E003 generated by the NIH Roadmap Epigenome
project [68] were used as reference. From these, the consolidated broad peaks
for the embryonic stem cell line H1 were used.

According to the Roadmap Epigenomics Consortium [68], the ‘MACS-CR
approach’ (Section was used to obtain the peak-calls for E003. In this
approach, first all libraries for H1 are down-sampled to 30M reads per sample.
Next, libraries measuring the same modification belonging to the input were
merged into one file. Afterwards, MACS2 was applied on this data to generate

the peak-calls for the different modifications.

Input Data of Sierra Platinum

Data Set for H1 As test data set for Sierra Platinum, the replicates of
the H1 cell line (an embryonic stem cell line) from the NIH Roadmap Epige-
nomics Project [68] were used. In a first step, the raw data for five histone
modifications—H3K4me3, H3K27me3, H3K9me3, H3K27ac, and H3K9ac—
and the corresponding ChlP-input as background was downloaded if available.
Table [3.9 provides the GEO identifications and the sequencing center, which
produced the data set. An ID was assigned to each replicate for further reference
to the replicates.

Data Set for ESCs As a second test data set (Table [3.11]), the data for all
other embryonic stem cell lines available at the NIH Roadmap Epigenomics
Project were also downloaded. For this data set, 4 modifications—H3K4me3,
H3K27me3, H3K9me3, and H3K27ac—and the corresponding ChlP-Input as
background were downloaded, if available. In all cases, only those modification
data were used for which a fitting ChIP-input was available. For this data set,
it was possible to obtain up to 16 replicates for each modification.

For each modification and replicate the available sra files from GEO [33, [20]
were downloaded. Then, the sra files were converted into fastq files and
an adapter clipping was applied. Afterwards, the reads were mapped using

segemehl [44] with an accuracy of 80% against the human genome version

124

Visual Analysis of Form and Function in Computational Biology

hgl9 [5I]. Using SAMtools [53], the results were converted into one bam
file for each data set. Since not all embryonic stem cell lines were male, the
chromosomes X and Y were removed in the data of the second test set. In the
cases where the data set consists of multiple fastq files, the mapping results
were merged in addition to sorting and indexing them. In a last step, the Picard

Tools [3] were used to remove PCR duplicates.

3.8.2 Peak Agreement

The analysis of the agreement of the peaks predicted by Sierra Platinum and by
different publicly available peak-callers is based on H3K4me3 measurements of
all three replicates of BMP4 Trophoblast Cells in the GEO Series GSE16256.
The procedure described in Section [3.6] was used to calculate the agreement
between the different results. Since there is no gold standard to decide, if a
peak is valid or not, only the agreement between the methods was calculated.
In a first step, all pairwise overlaps were calculated and for each overlap the
original peak of both inputs was stored.

Calculating the overlap of three methods is slightly involved, since one has to
take into account that pairwise overlapping peaks can not simply be intersected
with each other. In a first step, one would overlap two pairwise overlapped
peak sets, where one method was used in both pairwise overlappings. As shown
in Figure [3.38], four different cases can occur while calculating the overlap
of three different methods (without consideration of the symmetrical cases).
The first case is the valid peak overlapping for the three methods, since each
peak generated by the different methods overlaps at least 50% with the other
peaks. Case 2 and 3 are the trivial cases were no overlap exists between all
three methods. Case 4 is slightly more difficult, because the overlaps of the
pairwise overlappings have to be intersected. Overlapping a peak with a merged
overlap of two peaks would not lead to the correct result, since the overlap
of the merged peaks is probably larger than the two peaks. Therefore, it is
necessary to intersect the peaks from each method with each other to detect
this non-overlapping case.

After calculating each triple overlap, it is necessary again to overlap the peaks
of each method while calculating the quad overlap. Since BinQuasi was not
able to detect any significant peak on the used data set, it is not necessary to

calculate even higher overlaps.

125

Chapter 3. Sierra Platinum

Figure 3.38: Overview of the possible peak overlaps with three replicates. Only
the first overlap (marked with green) is a valid peak overlap and should be
counted, the other three (marked with red) are discarded. Similarly, the merging
process overlaps the peaks of all four peak-calling methods.

To calculate the agreement of the different methods, peaks were predicted
with Sierra Platinum, the MACS-SA and MACS-CR approaches, PePr, and
BinQuasi. Unfortunately, BinQuasi was not able to predict any peaks with the
given data. In addition, BinQuasi was also tested with the other data sets
from the NIH Roadmap Epigenome project [68]. Here, too, BinQuasi could
not detect any peak. Due to a similar methodology, PePr can not find any
peaks in many data sets. One explanation for this is the higher amount of noise
between the replicates. This behavior of BinQuasi and PePr has already been
demonstrated in the benchmarks (see Section [3.5)), whereby BinQuasi reacts
significantly more sensitive to noise than PePr.

The overlap of the peak predictions is shown in Figure 3.39, MACS-CR
predicted the largest amount of peak with 68754 segments, followed by MACS-
SA (44845 peaks) and Sierra Platinum (47442 peaks). PePr predicted 32186
peaks. As stated above, BinQuasi was not able to predict any peak. Only
the MACS-SA side overlaps nearly completely with the MACS-CR side and all

approaches show large overlaps among each other.

3.8.3 Peak-Calls

Sierre Platinum was configured to generate peak-calls with a window size of
200nt, a window offset of 50nt, and a p-value cutoff of 107°. Probits were
corrected for inter-replicate correlation. The Holm-Bonferroni method is used

to calculate the g-value.

Peak-Calls for H1

Using the visual quality controls, the replicates for H1 were analyzed with
respect to noise. Given the results, the decisions shown in Table [3.10| were
made where the replicate ID refers to the ID given in Table 3.9 the weight

126

Visual Analysis of Form and Function in Computational Biology

MACS-SA

N\

MACS-CR

Figure 3.39: Agreement of the peak predictions: The overlap of the peaks
predicted by Sierra Platinum (blue), MACS-SA (green), MACS-CR (orange),
and PePr (red) is shown.

127

Chapter 3. Sierra Platinum

specifies the weight that was used for weighting the replicate, and off means

that the replicate was excluded.

Peak-calls for ESCs

Using the visual quality controls, the replicates for ESCs were analyzed with
respect to noise. Given the results, the decisions shown in Table were
made where the replicate ID refers to the ID given in Table [3.11] the weight
specifies the weight that was used for weighting the replicate, and off means
that the replicaten was excluded.

128

Visual Analysis of Form and Function in Computational Biology

8 14 T 9 ¢ 9 sojedl|daiF
68C8CYINSD | L08OTHINSD 1628CYINSD 09dN-4SON 8
0,Z0S¥INSD 9920G¥INSD C6ETEYINSD | DGN-4SDN 2
C89/EGINSD 189/ESINSD 19 9
6LTIEEVINSD | TLTIEEHINGD YLIEEPINSD LOTEEHINSD OLIEEHINSD 19 G
¥EEG09INSD | G8LYEVINSD 9L.¥EVINSD 80E60VINSD ason 4
Z¥9/99INSD /S08T8INSD ason ¢
6EES09INSD | €TES09INSD LZES09INSD GTES09INSD ason C
£EEG09INSD 2€L997INSD GTESOOINSD ¥EL997INSD T.6697INSD ason !
nduj-diyd Se6MEH dBJTMEH COWBMEH EPW/CMEH £aWpMEH SEIIC]S) al

Indui-d|yD pue ‘De6YEH 'DBJZHMEH ‘EIWEMEH €AW/ THIEH

‘oW YEH SI9S Biep ay3 Joj papiroid aJe suoilediiluspl O 2yl pue ‘eiep ayi padnpoud yoiym ‘I91usd buiousnbas ayl ‘o1edijdas yoes
104 “TH Joj d|qe|ieae sajedijdal JuaJa)ip 3y ysinbuilsip 03 Ajjeusajul pasn Ajuo aJe Sq| "TH 404 pPasn S3aS B1EP Y3} 4O MIIAIRAQ :6°E d|qe |

129

Chapter 3. Sierra Platinum

Table 3.10: Decisions based on visual inspection of the quality of the replicates
listed in Table[3.9] /D: ID given Table [3.9] Weight: weight used, off: replicate
excluded, empty cell: replicate not available.

ID | H3K4me3 H3K27me3 H3K9Ime3 H3K27ac H3K9ac
1 0.1 1 0.05 1
2 0.1 0.05 1
3 1
4 1 0.05 0.1
5 0.1 0.1 0.1 1
6 off
7 1 off
8 1 off

130

131

91 ! ! 1! €T sajeol|dalF#

0,20G¥INSD 9920G¥INSD C6ETEYINSD | DIN-4SDN 91
> 6828CYINSD 16C8CYINSD S628THINSD 2dN-4SDON GI
< L¥9/ESINSD | 0L92EGINSD 6E£9.EGINSD 879/EGINSD G99/EGINSD 19 Al
M GG/TLLINSD | 96.CLLINSD 99/CLLINSD 16.CLLINSD kS| eT
© ¥6.CLLINSD | ET00L9INSD 66.CLLINSD ZF6699INSD 9E6699INSD 19 4!
2 6.6CLLINSD | €00€LLINSD C00ELLINSD 19 T
S CT6CLLINSD | 086CLLINSD 9S8TLLINSD L/6CLLINSD 826CLLINSD fS| 0T
3 G68699INSD | 068699INSD ¥68699INSD L68699INSD £68699INSD 9 6
S 888699INSD | £96699INSD 988699INSD /88699INSD 638699INSD 19 8
= C89/€GINSD €89/EGINSD T89/EGINSD 19 i
S 6LTIEEYINSD | TLZTEEPINSD ¥LTIEEPINSD LOTEEHINSD 0LTEEHINSD 19 9
m GEES09INSD JTES09INSD ason G
5 €¥9/99INSD | 6ZTITIINSD €£9299INSD 99090ZINSD 8ZTITIINSD ason ¥
= G8/YEVINSD | €CES09INSD 80ES09INSD GTES09INSD ason ¢
© £EES09INSD GZESOONSD YEL99VINSD TL669VINSD ason C
m ¥EES09INSD | G8LYEVINSD 9L/¥EVINSD 80E60VINSD ason T
- nduj-diyd Je6MEH COWBMEH SOW/CMEH £awpMeH SEIClS) Pl
o
2 ‘Indul-dyD 2yl pue DeGMEH ‘COWEMEH ‘€W /THMEH ‘ERWHMEH S19S elep ay3 104 papiroid
W 9Je suolleousapl OJ5 9yl pue ‘elep ayl paocnpoad yoiym ‘U93uad buipuanbas ayi ‘91edijdal yoes o4 "Saul| |90 WIS dluoAiquid U0y
M d|qe|ieAe saiedidas JuaJaJ4Ip 3yl usamiaq ysinbuiisip o1 Ajjeusaiul pasn Ajuo aJe sq| DS 404 pasn S13s e1ep 3yl 4O MIIAIRAQ :TT°E d|9el
T
2
>

Chapter 3. Sierra Platinum

Table 3.12: Decisions based on visual inspection of the quality of the replicates
ID: ID given Table [3.11], Weight: weight used, off:

listed in Table [3.11]

replicate excluded, empty cell: replicate not available.

ID | H3K4me3 H3K27me3 H3K9Ime3 H3K9ac

—

0.02
0.02
1
off

0.02
off

O 00 ~N O O b WN

e e
g P~ WDND O
O V) (@)
= o
N

'_l
o
©
o
o

132

1
0.8
1
0.02

0.01
off

N Gy R W TR W T W T

0.02
0.02

0.8

0.8
0.01

off

0.01
0.01
off

1

1

1
off

Visual Analysis of Form and Function in Computational Biology

3.8.4 Hox-C and Hox-D Clusters

In this section, the epigenome state of whole clusters of genes are analyzed, i.e.,
the Hox-C and the Hox-D clusters. The Hox clusters (there are also Hox-A and
Hox-B) are clusters of transcription factors that are important for embryonal
development and differentiation. Therefore, the regulation of these clusters is
crucial.

They are conserved in all mammals. However, within the Hox-C cluster, the
famous IncRNA HOTAIR is located. HOTAIR was found to drive the regulation
of the Hox-D cluster by repressing it [67]. However, the function of HOTAIR
might be specific to humans since it was so far not found in other mammal.
Furthermore, its function was even disproved in mouse [17].

Firstly, the epigenomic state predicted with Sierra Platinum on the H1
data set (see Table [3.9). Secondly, the epigenomic state predicted with Sierra
Platinum on the ESCs data set (see Table [3.11]). Thirdly, the consolidated
epigenomic state of the H1 cell lines downloaded from the NIH Roadmap
Epigenomics Webportal of the Washington University (epigenome E003, only
H3K4me3, H3K27me3, and H3K9me3).

In Figures [3.40H3.42] one can see the HOTAIR locus, the containing Hox-C
cluster, and the Hox-D cluster. Given the knowledge about the clusters, one
would expect that most of the promoters are inactive (marked with H3K27me3)
or poised (marked with H3K4me3). Thus, the genes in the clusters are inactive
or are already primed for activity. One would not expect to find H3K9me3
marks in there.

The presence of H3K27me3 at all loci is predicted by all three approaches.
However, E003 predicts more H3K4me3 marks. While in the case of HOTAIR
this might be correct (even though neither the H1 nor the ESCs based prediction
of Sierra Platinum do predict H3K4me3 peaks), the abundance of peaks which

Table 3.13: Color coding used in the figures showing the peaks as UCSC tracks
at selected genomic positions.

H1 ESC E003
H3K4me3 . r
H3k2Tme3 |l I B
H3K9me3 B B
H3k27ac | |}
H3K9%ac .

133

Sierra Platinum

Chapter 3.

scale S ket | haig
chr1E: 54,356, agal 54,357, agal 54,358, eve| 54,359, 088 54,360, 098] 54,361, agal 54,362, agal 54,363, 088| 54,364, e0e| 54,365, 088 54,366, agal 54,367, agal 54,368, egal 54,369, 0e8|
Bersic Gene Annotation Set from GENGODE Version 13
HaTATR
ROTRIR
HOTATR RO 1 Y 1+ et e s o
HOTATR O L1 1+ se s s+ T
HOTATR
UCEC Genes (RefSeq, GenBank, CCDE, Rfam, tRNAS & Comparative Genomics)
HoTRIR Harc
HOTATR 4
HOTATR_S
ESC HaKemed consoliemted from 11 Saples of ERGs except Hi
EsCrakaES
H3K4mes broad peaks for E883 (consolidated epigenome for Hi cell line)
EnearakAES I
o HokaTnes consslidsted from a1l samilss of ESCs sxcent H
EscHakETIES e
Hi H3K27meS consolidated from a1l Salples of Hi
e] T T E oo B
H3k27med broad peaks for E8BE (consolidated epigenome for Hi cell line)
EreoHaKETIeS e
S MGKRIES Coss | 1HRTEd TGN 511 SAi 155 0 ESCS SREERT ML
e —
K1 HaKSned consoljdated From 311 Samples of HI
HarakeS
HaKSeS brosd nesks ror £993 CconsolidaTsd e iSSNGME o Hi c=11 lines
e] - S - - F o] —— —— —
ESC H3KZa¢ consolidated from a1l samples of ESCS except HI
Escrakanc
Wi HoKETRG onse)iasTed frem a1l samRles of Hi
HinakaTac
FubTications: Sequences in Scientific Articles
stes
Hutsn WRNRS Trom GEngsnK
Human mRHAs - - - u
Fuman ESTE That Maye Geen Sp1iced
Spliced EsTs — - - — 3
Cpis Islands (Islands < 388 Bases are Light Green)
o 16 S crei 16s

e] :
48m _ 180 vertebrates Dasewiss COMServaTion bu PhuloP
186 Wert, Cons ‘R sl il g il F F b, e ks F ik EE .tE EF -_z
-

-4.5 _|

RepestHasker

Repeat ing Elements by Repeathasker

Figure 3.40: Genomic location of HOTAIR locus: The peak-calls are shown below the transcript annotation of HOTAIR. Peak-calls for
the different modifications and data sets are color coded as shown in Table E

134

Visual Analysis of Form and Function in Computational Biology

£1°¢|3|qe] Ul UMOYS SB Pap0d JOJOD 3JB S19S B1eP PUB SUOITRDIJIPOW JUSISJHIP SY] J0J S|[eI-Ye3d ")-XOH JO
uorjejouue 1duosuesy ayl Mojaq UMOYS dJe Sjjed-yead ay | :auab Y|V OH 2yl buluiejuod sndo|)-XOH JO UOI3BD0| DIWOUSL) ¢ 24nbi4

JSATENIEECSY AR S3USWSLD Bul Jeadsy

[RO ERTCEEEY

5t

-
a L ﬂ.qg.x.i an. L i q Ll —.: .‘:‘. a44j._ Gl & ..._.._44 : q.‘adﬂ AL d..gg.!. ._i‘qﬂ_. .4...3. __!.S._ q__ ﬂﬂ. _:.44 a 4 T TR m ddﬂ v L TT — T g. " suen caumn vet
JOLRUD e UD13EAISSUGD SSLMSSED 23408354 BAT ~eae

| ECLE]

- o
Bos ioan | =TSR Wz oo Wi aun 52 ioda [E-t0)
£z iodn EleL oda 1= P2 000 Mt coon Elco oun | EEREEY | EEMREEE] ot oun Wl e oun | EEREE-"5] 22 1oua WS iodn | IR LY
CUssin UG sde s HAS o SUELST) S9USIST sd
— + | ——HEHD T ——— 41— - 153 pantias
10g uaag aneq UL S1E3 LEWnH
— -met————+—H————— . - -—. m—a] | N -|—. ——H—i—-—— L= | 1 - = SUHE Uenng
HUEELSD WOAS SONEN UswH
! | | 1 zans
SAL34 A 34443USHIE u SSIUSABEE 1SUOHIET: Land
eLEHEHIH
TH e SslaWEs 18 UGUS REIERYLGEUSY JECEMEH TH
oesmeHosa
S 3tieDxa 5353 #0 Saloes ||E Wous PAIERELOSUOD DeEdEH 053
Imm LB N) | NN] D I I EIE HEE | .. NN Il NS Il N N . . - L i 8 B _Num iy __Nu§ B N BN B R W NI EEESUSEIETE]
CoUEL LLED TH b SMGUSCI QB REIER|GRUDI) SRET ol SAESH REDUE CRUSHEN
pr——
1M 40 Saldmes |1E ok po3cn Lasuo) SalENEH TH
canssizasa
§ii csaxe S0Ss U0 SSLaWEs LLE Wy paasntlosuSy Ssuscd 553
o HeHER93
TSN LL2D TH oG] SUGLED G PSR LOSUGS) S0a5 D3 SHES RO SENLDIGH
I E—— S S I N I : 5 ZHCH T
JH0 S5 GRS L LE Wi DaSERE LOSU0S BULEHEH TH
I I
T A6E3NE E053 40 SELAUSE LB WD.3 RELER: | GFUGD SRNLTACH D53
I = [] E 1 m [] | |] - | . n — - 1 1] —-— censcHEnea
M Lo (RY suouss, Bopsido T ooa03) £963 wos Swesd pecia| Seuken
CAUEASHIET
T 3dsaxe 2053 40 SSLOMES LR Wl EISRLIOSUSH SsubSH 353
| sraum
L s JESEGE] 157AIHL0H
- 0s0H 1 ¢ AIHLOH
-i-§ FIOH
4 szez1e0d SO0H 1 ZHSE LA TH el £TOHOH
- +o0H e SOY0OH - 20%0H - £2%0H el & T3%0H T T20H e — 2 THLOH -l =toxoH e e] SEH-230H
(SILWOUSD antjedednod 7 SHNyY TWedy "$000 “jueguag ‘bagiay) Saus9 0zIn
Vs V2 15 ooH ik P
Y= Torea- T
<khm s TTavER=-TTdY gl SO0 B TEH-0ROH el & TINOH B W THLOH
L E=VG — E [SEETEOM B 2SH-0H0H = £SU-0%OH T T0H P W THLOH
V3 Troksa- 11 [N -0 om cEu-aNOH et e atuL
+OHOH -] SIROH) E200H — - 00 - SEU-0H] 1 1350H el HTULOH — CE TESETHOM el STOHOH
$OHOH e— - S230H el EANOH | SHIETHTH — T U-OH It W TH L OH o =T050H e e) SEH-230H
7 UoySuan, JO00NED Mo A UoLS30ULY SUag 21 Sed
368 BSE S 806 ShE RS [886 BEE RS |86 SCEIES 866 GCEES |080 STE PG |80 BSFFS |A08 STE RS |B00 ATE PG [886 TSEE FS [A08 08k bS [BAGSECTES |A88 BES RS [BRBCSECTES |BAGTESCTES (986 SLC RS (888 BLC ES [A08SOSTES (86 BOSTES 088 TSSSTES [BE6ESC RS [BERSEETES |80 RS RS [A08°SESES | EEI N0
| |
i Jod arens

a1y |

135

Sierra Platinum

Chapter 3.

seale 6 kin} | heia
chr2r | 176,965, 688] 176,965, 866 175,976,808 175,975,688 178,986, 888] 176,935,808 176,998,608 176,995,888 177,800,008 177,665, 688] 177,016,868 177, 015,668] 177,826, aaa| 177,625,608 177,836,668 177,835, 008 177,648,006 177,845,008 177,856, 608] 177, 655, 6es|
Basic Gene Annotation Set From GENCODE version 19
HOKDS Q- HOXDL2 - HOADL L HOKD 165 ol HOADS v HOKES morro-m WIRLGE 1 KOS Bttt OO -
HOAD1Z B HORDLL i HOAD-AS2 HEKDS A —
ACAASEIE. 11 HORDS il HOADS ml-f— HOXD il HOADS bttt i
HHOMDL 5 B HOXDE mill-- RFL1-357A1, S m— HORD-F51 e—-
HOXDS b HORD-FAZ1
HOXDS -l HOXKD-AS1 mmeen
HOXD-AS2 me—- HOXD-AE1
HORD-AS1 Meted
HORD-AST meted
HORD-AST metad
HORD-AS1
HORD-AS1 Beeim
HOHD-AS1 Bothi
HORD-AZ1
HOXD-AZ1
ACE03336, 24 mm
UCSC Genes (RefSeq, GenBank, CCDE, Rfam, tRNAS & Comparative Genomics)
HOXD13 —f— Hoxo1z EH HOKD L b HO#D1 0 e HOXDD - A4 7T HOXD-ASE bt MIR1GE | HOADS bl HOXD1 aifi-—
HORD12 e Hoxo1 1 747372 . 04705 B HORD4 il HORO-AS1 ee—t HOKD1 oo
HOADS b 005
HOXDE -
HOXDE gl
ESC HOK4NeS COMsolioaTed FROm 511 Salpes of ESCS Sxcept HL
ESCH3Kk4mes -] [] 1 - -
HiK4mes broad peaks for Eass (consolidated epigenome for H1 cell line)
EBBIHIK NS | I I . | 1 n LB | L |] [] 1 o 1 . [N Nl [- I | L}
ESC HOKETNes COMSDlidaTed £rol 511 Samplss OF ESCE excent Hi
EscHaKaTnes I I S |
Hi H3KETwes consolidated from 211 samples of HL
Hinzka 7 I I I N I N N I Y D § N N
HaKETNES hroad beaks For E0E3 (oONS0lidaTed ebigenoie for Hi cell line)
EBAEHIK2TIES e e e e
ESC HaKomed consol idated from a1l sawples of ESGs except HL
ESCHaKameS
Hi HiKSned consolidated from 311 saneles of HI
HiHokImeS,
HIKSWES BIOAY RERKS FOP E@03 (CORSC)iaTEY SHiZJEMOME FOR HI C11 1ines
EgesHzkames B 0 1 NN N LN I N N B N | I . . [BN W | . I NN BN IS D N D D B I N) N b || EE] =N]
ESC Hikdac tonsolidated from a1l sanples of ESCs except HI
EscHakaac]
Hi H3kZ7ac consolidated from a1l samples of HI
HiHZKaTaC
Fublications: Sequences in Scientific Articles
SHPs. L | | |
Human WENAS From GenBank
Human mRHAS [1] | - L | | ——— - H—a——ma [} [; [[} I
Human ESTs That Have Been 3p1iced
Spliced ESTS = Hm —-——a—a
CRE 1T lands CIS1aA0S < D08 BASES Are LiSNT Gresh)
cpGi 17 cpst 31l cpc: Safll Ces: 26 opGt 19 opc: 24 cpc: 172 I CpG: 16 cpc: 51l opG: 35 cpc: 25 opo: 23 cpc: 54+ MM cpo: 4S5 H cpG: o5 cpsi 7o Ml cpci 141 N
CpGi 188 - cpGi 115 N cpsi 83 M cpci 55 M CpGi 21 cpc: 156 tpG: 28 PG 18 cec 27l EIREL] |
chG: 17
488 _ 189 VErTenraTes BASEWiSs COMSErVATiON bu Fhulor
186 Wert, Cons ‘_r_ t— _ -E_EE k.- E _EE ‘ —l;—- — F Eh ___ -F.h~E_= F_‘—z—_ E :E aki | i R i
-
—4.5 _
REREAT iNg ETENENTs by Repsatmasker
I (B} 1 | [N rn | | | mnm | | 1 mEiln n | L}

Repeatrias ker

Figure 3.42: Genomic location of Hox-D locus: The peak-calls are shown below the transcript annotation of Hox-D. Peak-calls for the
different modifications and data sets are color coded as shown in Table[3.13

136

Visual Analysis of Form and Function in Computational Biology

do not co-occur with promoter regions is suspicious and may indicate an over-
prediction of H3K4me3 marks. Even more suspicious is the massive amount
of H3K9me3 marks predicted by the EO03 epigenome. This would mean that
these regions are strongly repressed, which was not found so far for embryonic
stem cells. Furthermore, it is not possible to confirm the presence of H3K9me3

in the clusters using Sierra Platinum on the two embryonic stem cell data sets.

137

Chapter 3. Sierra Platinum

3.8.5 Peak Coverage Analysis

In this section it is analyzed whether the predicted peaks for the combined
replicates are supported by the single replicates. Therefore, the read coverage
was calculated of each peak by the corresponding replicate. The resulting
coverage distributions are simplified by counting only how often peaks are not
covered at all, by 1 - 200 reads and by more than 200 reads. For replicates
having a high weight, one can expect to find a strong support of almost all peaks
since those are the replicates having a strong influence on the final p-value.
Replicates having a low weight are not expected to fully support the peaks
predicted by Sierra Platinum. Those replicates having low weights are noisy or of
bad quality and therefore, may not reflect the true epigenome state. Replicates,
which are that are even worse, were excluded from peak-calling, since they are
not expected to support the peaks.

Figure shows the analysis results. For all replicates, most peaks fall
into the categories 1-200 reads coverage and more than 200 reads coverage.
Thus, in all replicates most peaks have at least a weak support.

Peaks with no support are almost only found when the replicate is strongly
down-weighted during peak-calling. For example replicate 16 was down-weighted
for peak-calling since the correlation with the other replicates was low and
because the tag distribution indicated under-sequencing effects. About 10.000
peaks are unsupported by this replicate. This strongly supports the decision to
not rely to much on the replicates and shows that Sierra Platinum overcomes
the problem that peaks may not be supported by all replicates. While the
support of replicate 16 was used for the remaining 50.000 peaks, the 10.000
unsupported peaks are not strongly affected by the presence of replicate 16.

On the other hand, replicates having a high weight (such as replicate 8
and 9) support most of the peaks. In the case of replicate 8, 9, and 10, most
peaks are supported with more than 200 reads. In summary, the peak-calls are

supported by the replicates.

138

50000 - 50000 - 50000 -
40000 - 40000 - 40000 -
30000 - 30000 - 30000 -
20000 - 20000 - 20000 -
10000 - 10000 - - 10000 -

1 200 >200
50000 - 50000 - 50000 -
40000 - 40000 - 40000 -
30000 - 30000 - 30000 -
20000 - 20000 - 20000 -
10000 - 10000 - 10000 -
o - - — - .

0 >200
50000 - 50000 - 50000 -
40000 - 40000 - 40000 -
30000 - 30000 - 30000 -
20000 - 20000 - 20000 -
10000 - . 10000 - . 10000 -
0- | T 0- 0-

0 >200 1 200 >200
50000 - 50000 - 50000 -
40000 - 40000 - 40000 -

30000 - 30000 - 30000 -
20000 - 20000 - 20000 -
10000 - 10000 - 10000 -

0-

1 200 >200 1-200 >200 0 1-200 >200

50000 -

40000 - category

30000 - 0
1-200

20000 - 2200

1 200 >200

Figure 3.43: Peak coverage for each replicate: For each peak, the number of
supporting reads is calculated. Peaks are counted in the categories no supporting
reads (red), 1-200 supporting reads (blue), and more than 200 supporting reads
(green). The peaks are the H3K4me3 peaks predicted by the data set ESC.
Replicate numbers refer to those in Table @

Chapter 4

iDotter

141

Chapter 4. iDotter

4.1 Introduction

In bioinformatics, one frequent task is judging the likelihood of the overall RNA
secondary structure. As described in Section [2.3] the secondary structure of
an RNA is defined by its base pairs. These base pairs can be predicted with
special algorithms and therefore, the probability for two nucleotides of an RNA
sequence forming a base pair. Dot plots are used for displaying probabilities or
similarity measures between a row and a column of a matrix. Hence, dot plots
are frequently used for analyzing RNA secondary structure likelihood displaying
the probability of a row and a column nucleotide forming a base pair.

Most currently available tools generate dot plots in post-script (ps) format
(e.g., [54], 39]). These ps-images are then viewed using suitable postscript
viewers. However, postscript itself is no longer actively developed and was
replaced by the portable document format (pdf). Moreover, the images are
static and possible interactions are restricted to standard viewing interactions
like geometric zooming and panning the image. Further, the scalability of this
approach is low as during zoom-in the nucleotide sequence that is displayed at
the border of the image might not be visible any more.

Therefore, iDotter, an interactive tool for analyzing RNA secondary struc-
tures, was developed that overcomes these limitations. Concretely, the contri-

butions of this tool are:

e Sophisticated zooming and panning methods, preserving the context of

the zoomed and the panned area [75]

Presenting details for each dot on demand [75]

Highlighting of semantic units in the dot plot

Recoloring of the dot plot for annotation and presentation

Exporting parts or the whole dot plot for further analysis and for presen-

tation

A powerful API for using iDotter within analysis pipelines

A sharing function for collaborative analyses

142

Visual Analysis of Form and Function in Computational Biology

4.2 Background and Related Work

Dot plots were introduced by Gibbs and Mcintyre [36]. Originally, dot plots
were used to visualize alignments of two nucleotide sequences or proteins. A
dot plot is a two dimensional matrix where the sequences ‘A’ and ‘B’, that are
compared, are visualized on the x- and y-axis, respectively. A dot in a cell means
that Sequence ‘A’ is similar to Sequence ‘B’ at this nucleotide/amino acid
(position). Both color and size of a dot represent the strength of the similarity
of the sequences calculated using application dependent measurements. With
the aid of dot plots, identifying highly similar regions between two sequences is
easily possible. These regions are the diagonal lines in the matrix. An example
for an interactive dot plot viewer for alignments was introduced by Sonnhammer
and Durbin [76]. In this thesis, however, the focus is on RNA folding structures
that can not be handled by their program. Moreover, their tool does not
provide additional interactions like highlighting, semantic zoom, and export of
(sub-)sequences.

While the nucleotide sequence (RNA primary structure) is important for the

analysis of RNA sequences, the folded structure of the RNA (RNA secondary
structure) provides additional vital information. With the emergence of RNA
folding tools [54), 57, 66], visualizing RNA secondary structure became more
and more important to foster its analysis. Tools like Varna [31] or the NAVIEW
algorithm [22] generate graph-based, node-link visualizations of a single RNA
secondary structure showing one possible folding of the RNA, only.
In addition to the graph-based visualizations, dot plots were adapted to visualize
the predicted base pair probabilities within a single RNA sequence. Furthermore,
they support analyzing the changes of two similar RNA sequences of different
species. Usually, the size of a dot describes the probability of a base pair between
the corresponding nucleotides.

Static dot plots can be calculated with R using the R package R-CHIE [26].
The ViennaRNA package [54] can generate one dot plot in postscript format for
each RNA secondary structure prediction (an example being shown in Figure[4.1)).
Moreover, the ViennaRNA Web Services [39] provide the functionality of the
ViennaRNA package without the necessity to compile the package. Therefore,
it can be used platform independently.

While the original dot plots of Gibbs and Mcintyre [36] for alignments show
the same information in the upper and the lower triangle, dot plots generated
by RNA folding software contain two different folding predictions as shown

143

Chapter 4. iDotter

in Figure [4.1], e.g., the energetically best solution and all possible base pair

probabilities in the lower and upper triangles, respectively.

An alternative for visualizing RNA secondary structure predictions is the arc
diagram introduced by Wattenberg [83] and later implemented as arc plot in
R [50]. The RNA sequence is plotted as a linear sequence and an arc between
two nucleotides describes a base pair while the color of an arc might encode

the probability of the pair. Besides the fact, that this approach has limited

Figure 4.1: Overview of the postscript dot plot generated by ViennaRNA [54]
showing base pair probabilities of an RNA. Black squares are used for showing
the possibility of two nucleotides forming a base pair. The probability for forming
this base pair is encoded in the size of these squares: large squares imply a high
probability, while small squares imply a low probability. The diagonal is used
as a landmark only. It divides the upper-right triangle showing the consensus
probabilities from the lower-left triangle showing the probabilities according to
the energetically best solution.

144

Visual Analysis of Form and Function in Computational Biology

scalability, the arcs produce a lot of clutter and it is hard to determine the
corresponding base pairs.

Arc diagrams and dot plots can be used for character sequence comparison
(alignment) in general. For arc diagrams this was already introduced in the
original paper [83]. Abdul-Rahman et al. [I5] use dot plots to visualize text

alignments between different documents.

4.3 Problem Statement: Current State and Issues

A dot plot fulfills the standard design goals taken from the information visual-
ization literature [81]. Dot plots

1. are flexible (can be used for different tasks and application areas)
2. are space efficient

3. provide a good overview of the data

4. ease the identification of pattern in the data

5. are fast to create

However, dot plots are static images without any interaction provided.
Figure shows a relatively small RNA having a length 165nt. As can be
seen in the ps version (Figure , the nucleotide names are barely readable.
Moreover, it is difficult to impossible to spot small base pair probabilities.
Zooming into a part of the ps view is possible (Figure . Then, all dots
become larger and small base pair probabilities are more easily spotted. However,
due to the limitations of the ps-viewers, the nucleotide sequence related to the

zoomed-in area might no longer be visible.

4.4 Solution

To overcome the limitations of existing dot plot generators, iDotter was devel-
oped: a fully interactive web-interface that supports users in analyzing RNA
secondary structure. 1Dotter is based on the dot plots generated by existing
folding tools. After importing the data (Section [4.4.1]), the dot plot is shown in
the web browser (Section . Then, the user can zoom in and out as well as
pan the view (Section . Moreover, the user can mark rectangular regions
of dots as well as single columns and single rows in the dot plot (Section [4.4.3)).

145

Chapter 4.

iDotter

B o

ax| 0

B

X

Figure 4.2: Overview of the iDotter interface showing the same dot plot as
Figure 4.1l The nucleotide sequence is only shown at the borders, if the

nucleotides are readable in the current zoom level.

146

Visual Analysis of Form and Function in Computational Biology

(a) PostScript-View, zoom-in of Figure

2 @i
€ 5 0 [@ Secu | Mups dankin deidatn {37695 10035 a1t 3ab1 00)
Blc ACCCCUGCGAUUUCCCCAAAUGUGGGAAACUCGACUGSGC
©

[5)

“n
o
f.

> > c>»00kco>»®0cCco>»>»» 00 0COGC>»>» » 00Do0o0occcz>»6o0o6lkoo di

B> >c>»00icCo0o>»@0Co>»>»» 0@ 0@ Ce®@C>»>»>»0I000CcCCcCc>»®00ICO0

GACCCCUGCGAUUUCCCCAAAUGUGGGAAACUCGACUGEGC

(b) iDotter view, zoom-in of Figure

Figure 4.3: Comparison of the dot plot interfaces after zooming into a sub-
sequence. In the postscript view (a), the nucleotide sequence is no longer
visible, while in iDotter (b) it stays visible at all borders easing the analysis of
sub-sequences.

147

Chapter 4. iDotter

Finally, the highlighted part of the dot plot or the complete dot plot can be
exported in postscript-format (Section [4.4.3)). A web-based API provides a
connection to dot plot generating services (Section [4.4.4)).

4.4.1 Data Import
Parsing Postscript

After starting iDotter, the original ps-file generated by the ViennaRNA pack-
age [54] is transformed into a JSON file by iDotter, if the JSON file does not
already exist. To do so, the RNA sequence, as well as the ubox and the Ibox
containers are extracted from the ps-file and stored in a JSON array representing
the box plot. Each ubox and Ibox container comprises an x- and a y-coordinate
designating the cell in the dot plot matrix, the size of the dot, and the color
of the dot. The color information is optional. By transforming the input file
into a generic JSON file iDotter can easily be extended to other input types by

implementing a corresponding import routine.

Reformat Data

During the parsing of the original ps-file iDotter converts the color values of
the dots, if they are present. Due to numerous different implementations of
the color model that can be used in the dot plot, the color value is mapped
to a value between 0 and 1. This value is later used as the hue value in the
internal color model of iDotter. However, all original values are stored besides
the converted value in the JSON file so that the user can export selected regions
with the original color model to a ps-file (Section |4.4.3]).

4.4.2 \Visualization

The JSON file is imported by iDotter and the complete dot plot (zoom out) is
displayed in the browser (Figure . This follows the Shneiderman Mantra,
presenting an “overview first” [75]. On each border, the nucleotide sequence is
displayed. For convenience, the diagonal showing the same nucleotide on both
the x- and the y-axis is shown in red. At the same time, this diagonal separates
the upper from the lower triangle of the matrix. In the upper and the lower
triangle, either the same or two different base pair probabilities (encoded as
size in the input file) are shown. The size of each dot is encoded depending on

148

Visual Analysis of Form and Function in Computational Biology

the zoom level so that the user can compare the probabilities easily on each
zooming level. As default, the consensus probabilities are shown in the upper
and the energetically best solution probabilities are shown in the lower triangle
of the matrix, respectively. The probability of a dot is mapped to its size. The
color can be used to represent, e.g., the conservation of the sequence during
evolution. An adaptive background grid is displayed to enable an easy counting
of the base pairs. Matching the zoom-level of the dot plot, the different grid
levels can be shown or faded out. This view corresponds to the zoomed out
standard dot plots, except that the nucleotide sequence is always shown, except

if the text becomes unreadable.

4.4.3 Interaction
Zooming and Panning

The second step in Shneiderman’s Mantra is “zoom and filter” [75]. The user
can use the semantic zoom to more closely analyze a sub-sequence (Figure.
The user benefits from the sequence labels staying visible at all borders of the
dot plot all the time. This improves the scalability with respect to the size of
the data that can be analyzed conveniently, which is an improvement over the
state of the art (Figure where the nucleotide sequence might disappear
during zooming. Moreover, the individual nucleotides of the nucleotide sequence
are only shown, if the zoom level allows displaying them in a readable manner.
Otherwise, they are hidden (Figure . The semantic zoom s triggered by
mouse wheel motion. Moreover, the user can pan the viewport by holding the
left mouse button and moving the mouse. Also during panning, all sequence
labels are staying visible all the time as long they are readable.

Filtering of the original data is not provided, because it would not be useful
in this context. However, parts of the dot plot can be selected and this selection
can then be exported (see below). This corresponds to a filtering step its primary

applications being reporting and collaborating.

Details on Demand

The third step in Shneiderman's Mantra is “details on demand” [75]. While
working with the dot plot, information about individual dots can be displayed on
demand as a tool tip by mouse over. Then, all available information is shown
(Figure[4.4). Thus, the user can get the exact information about the nucleotides

149

Chapter 4. iDotter

o8 |ar
i

Element: 297
X2 C (435) _.-' ' "

H V78 G (53)

.
"

Size: 0.95
Color: 0.45714

. .__..=

1] x

Figure 4.4: Each dot provides details on demand by mouse-over showing a tool
tip: element ID, X showing the nucleotide of the column and its position, and Y
showing the nucleotide of the row and its position. The (biological) attributes
mapped onto ‘Size' and ‘Color’ are application dependent.

(names and positions) involved in a base pair even though the respective names
are no longer visible at the corners because they would be too small to be read.
Moreover, the values for the size (here: representing the base pair probability)
and the color are shown.

Highlighting

Following the taxonomy of Yi et al. [88], selecting dots is provided by iDotter.
The user can mark a dot by left clicking on it (Figure . Then, the selected
dot is highlighted with the 'Selected Dot Color’ (Figure [4.7)). Moreover, the
user can select multiple dots by left clicking into the viewing area and dragging
the mouse while holding the ‘Shift" key pressed. This creates a rectangular
region. Within this region, all columns and rows that contain dots are highlighted
with the 'Dotmarker Color’ (Figure [4.7)). Additionally, the selected dots are
highlighted using the 'Selected Dot Color’ (currently yellow) in both cases.
Deselecting a region of dots is achieved by pressing the ‘Ctrl’ key while using
the mouse. Besides marking dots, the user can mark single columns by left
clicking on them (Figure [4.5b]). Then, the selected column is highlighted with
the 'Linemarker Color’ (see Figure . In the same way, the user left clicks on
a row to select it (Figure[4.5b]). Both—marking dots as well as marking columns
and rows—can be combined (Figure to mark those parts of the dot plot

150

Visual Analysis of Form and Function in Computational Biology

that are of interest to the user. Finally, the selection can be reset by pressing
the button having the ‘three horizontal bars’ icon in the upper right corner of
the dot plot invoking the settings dialog (Figure [4.7]), and then pressing the
'Remove Marker’ button there.

Data Export

After working with the data, the user can export the highlighted parts of the
dot plot into a new ps-file for publication or other purposes by pressing the disc
icon in the upper left corner and selecting the menu item 'export only selection’.
Further, the user can export the complete dot plot into a new ps-file by pressing

the disc icon and selecting the menu item "export all’.

URL Export

The URL export is triggered by pressing the clipboard icon in the lower left
corner. The URL contains all necessary parameters and is copied into the
clipboard of the operating system. The user can copy it afterwards to any

application.

4.4.4 API

iDotter comes with a web-based API that provides a connection with dot
plot generating services like the ViennaRNA Web Services [39]. This API
supports direct import of ps-files into the view, pre-selecting highlighted regions,
and exporting the highlighted regions for automatic workflows. The API is
controlled by URL parameters. This type of control provides iDotter with
additional possibilities for collaboration between users. The user can export his
current settings, like zoom level, position, and color settings, and share these
with his collaborators or save them for documentation purposes.

4.4.5 Implementation

iDotter provides an interactive web interface that is implemented using the cur-
rent state of the art web-programming languages HTML5, PHP, and JavaScript.
The upload functionality and the API are implemented in PHP, because the web
server executes them on the server hardware. All other functions are executed
on the local machine of the user to reduce the computational overhead of the

server. Therefore, this application consumes only a low amount of run time

151

Chapter 4. iDotter

e
EVC T

W

oc:oo»lnoomcnnnom»mcmmcom:!
I I N 1 A A)

_AGGUUCUUUQAGUCCUUUGQG UGUUAUGGGCAACCCUAAGGUGAIR

(a) The 'mark dot’ interaction allows selecting single dots by clicking on them. In this
case, the selected dot is highlighted with the 'Selected Dot Color’ (see Figure .
Moreover, multiple dots can be selected by marking a rectangular region. (Clicking into
the viewing area and dragging the mouse while holding the ‘Shift’ key pressed. For
deselection, the 'Ctrl" key should be pressed instead.) All columns and rows that contain
dots in the selected region are highlighted with the 'Dotmarker Color’ (Figure [4.7)),
while the selected dots are highlighted using the 'Selected Dot Color’ (Figure .

QGGUUCUUUQAGUCCUUUGQGGAUCUGUCQACUCCUGAugCUGUUAUGGQ

(b) The ‘'mark row’ interaction allows selecting single rows by clicking on them. In this
case, the selected row will be highlighted with the 'Linemarker Color’ (see Figure .
In the same way, columns can be selected.

Figure 4.5: Highlighting dots as well as rows and columns m
152

Visual Analysis of Form and Function in Computational Biology

J

UUCUUUGAGUCCUUUGGG

oml»ocmmcomcgm "

u
DGGUUCUUUQAGUCCUUUGEG CACUCCUGAUGCUGUUAUGGGCAACCCUAAGGUGA

Figure 4.6: Marking dots and regions of dots (Figure |4.5a]) and marking rows
and columns (Figure [4.5b|) can be combined.

[®c>>r00>0>00>>0

Settings

Dotmarker Color: | [l ¥

Linemarker Color ‘- v ‘
Selected Dot Color “:l v ‘

Color flow
] =

Remove Marker | cancel [T

Figure 4.7: In contrast to the postscript visualization, iDotter provides choosing
the color gradient. Additionally, choosing the highlighting colors for dots
('Selected Dot Color’, Figure and columns/rows ('Linemarker Color’,
Figure is possible. Moreover, it is possible to reset highlighting in the dot
plot by pressing the ‘Remove Marker’ button.

153

Chapter 4. iDotter

and memory on the server. In addition, the server stores the dot plots that
have already been used locally so that the user can select them from a list when
navigation to the start page of the web service in order to facilitate its usage of
the web service.

4.5 Results

In a small testcase study, a biological collaborator used iDotter for analyzing
the evolution of long non coding RNAs (IncRNA). Since these RNAs are longer
than 200nt, it is challenging to analyze the generated dot plots in ps-format
due the lack of interactivity. Furthermore, it is hard to compare specific regions
between different dot plots. For that reason, the expert used the interactivity
features for selecting regions of interests. By exporting these regions with the
APl from all investigated RNA samples, it was possible to detect evolutionary
changes between several species. According to the biological collaborator that
regularly uses dot plot viewer, iDotter outperforms previous approaches with

respect to facilitating dot plot based analysis of RNA secondary structures.

4.6 Use Case

Each dot of the dot plot shown in Figure |4.2| represents the probability how likely
a base pair between the row and the column nucleotide is. The energetically
best solution is presented in the lower triangle of the dot plot. Since only
one prediction is shown here, exactly one probability per nucleotide is shown.
This predicted folding is also shown in Figure as a graph layout drawn by
RNApuzzler.

A diagonal sequence of directly consecutive dots represents a stem in the
RNA secondary structure. If this sequence is interrupted by a single column,
the stem contains a bulge at this position (Figure [4.8a]). If a sequence of dots
is interrupted by more than one column, the stem contains an internal loop
(Figure [4.8b)). A hairpin of the RNA secondary structure is encoded as the free
columns between a stem and the main diagonal of the dot plot (Figure .
Multi-loops are harder to detect in the dot plot but they usually occur with
larger gaps between the stems (Figure |4.8d]).

The upper triangle of the dot plot represents the probabilities of the consensus

folding of several suboptimal folding predictions. Therefore, it is possible that a

154

Visual Analysis of Form and Function in Computational Biology

H
H -~
B e

_.l iy

u .
| -

(a) The bulge annotated with '1" in (b) The internal loop annotated with
Figure @‘ 2" in Figure .
- I
L
l...-
l.-.
u =
N,
-
||
] F]
2

(c) The hairpin loop annotated with '3’ (d) The multi-loop annotated with '4’
in Figure . in Figure .

Figure 4.8: Representation of a bulge, an internal loop, a hairpin loop, and a
multi-loop in iDotter. The highlighted regions annotate the structural elements.

single nucleotide has multiple base pairing options represented by several dots in
the same row or column. If the size of these dots deviates considerably (as shown
in Figure [4.4)), the alternative folding suggestions are rather unlikely. If the
dot sizes are of similar size, then the consensus probabilities show other similar
base pairings for the sequence and the RNA secondary structure might have
additional possible foldings that can occur, e.g., depending on the temperature

or on the interaction with other molecules.

155

Chapter 4. iDotter

~ 9,
0 G
\
0 &
~
e Y 6 4 (A
& ~
U
G >~
¢ / A /)
~
S Iy G v !
G 4 / / ¢ = ~
SN U / / Y S @ g
b / / ~
G G e g
s ¢ G
G / / T~y \
A : |
G <1 oG A
@
> 7/
~)
\ a 7/ 5
@ G > O~4
~ I\
4 v 7 A
\ Vo]
A N
~ o
4 @
~ ‘ ——G
~N —
G _ A N G
e ¢ J
N -
@
~ C——4 \——&

Figure 4.9: The predicted energetically best solution for the RNA shown in
Figure[4.2]lower left visualized as graph using RNApuzzler. '1" annotates a bulge,
'2" annotates an internal loop, '3’ annotates a hairpin loop, and "4’ annotates a
multi-loop.

156

Chapter 5

RNApuzzler

157

Chapter 5. RNApuzzler

5.1 Introduction

Besides the dot plots described in Chapter [4, RNA secondary structures can
be visualized as graphs. Using this representation, the expert can more easily
identify structural elements such as loops and stems and analyze them for
determining possible binding sites or other interactions. Therefore, it is very
common to visualize RNA secondary structures using a graph layout.

RNA secondary structures are outerplanar graphs, hence they can be drawn
in the plane without intersection following the contour of a tree. In order
to facilitate the interpretation by the expert, a meaningful drawing has to
conform—at least approximately—to a series of constraints, such as parallel
arrangement of stacked base pairs, or circular layout of loops. These additional
requirements make RNA drawing difficult.

The current implementation of ViennaRNA uses a default layout algorithm
proposed three decades ago by Bruccoleri and Heinrich [22], which does not
always produce a planar (i.e., self-intersection-free) drawing. Many other RNA
drawing algorithms suffer from the same shortcoming [64], [74] because the
desirable properties of the RNA secondary structure layout are incompatible
with a planar drawing. We refer to the recent review by Ponty and Leclerc [64]
for an overview of available programs, their capabilities, and their output.

RNApuzzler approaches the problem of drawing RNA secondary structure in
two steps. First, a drawing method was devised that fulfills drawing constraints
with respect to nucleotide distances (RNAturtle). Then, relaxations of these
drawing constraints in a manner that guarantees an intersection-free layout were

investigated. RNApuzzler is designed along the guidelines of Muller et al. [59]:

e Simplicity: The elements of the RNA secondary structure as well as the

start and the end of the sequence should be clearly and easily recognizable.

e Robustness: The RNA drawing should be robust against small changes
within the folding. This supports the experts comparing RNAs by identify-

ing similar regions as well as differences between the RNAs.
e Automation: The (planar) RNA drawing should be created automatically.

e Aesthetics: The RNA drawing should have an aesthetic character.

158

Visual Analysis of Form and Function in Computational Biology

5.2 Theory

This section describes the graph-theoretical basis of the algorithm (Section|5.2.1]),
the formal definition of the RNA secondary structure elements (Section |5.2.2)),
and the combination of both for defining RNA-Trees (Section |5.2.3)).

5.2.1 Directed Rooted Trees

The following paragraphs define directed rooted trees and all related concepts
that are needed subsequently. A general overview over graphs, trees, and
networks as well as over drawing algorithms for them is given in the Handbook
of Graph Drawing and Visualization [78].

Definition 1 (Directed Graph). A directed graph G = (V, E) consists of a finite
set of vertices V' and a finite set of edges E C V x V such that each edge
e € E is a tuple of vertices, i.e., E CV x V. One can say that e = (u, v) is an
outgoing edge of u and an incoming edge of v.

Definition 2 (In-degree and out-degree). Let v € V be a vertex. The in-degree
of v is the number of incoming edges of v [{u|(u, v) € E}|, while the out-degree

of v is the number of outgoing edges of v |{w|(v, w) € E}|.

Definition 3 (Directed Path). A directed path p is a sequence of | vertices
(i, Vo, ..., v/), | > 2 such that
(I)V1<i<Il:vieVandVvVl1<i<I—1:(v,Vvi1) € E and

(2) the v; are pairwise distinct with the possible exception of the end points v;
and v;. The length of the path is | — 1.

Definition 4 (Cycle). A cycle is a directed path with v; = v;.

Definition 5 (Directed Rooted Tree). A directed rooted tree T = (V, E) is a
directed graph with the following properties:

e | is weakly connected.
e [does not contain cycles.

e [here is a dedicated vertex named root vertex with in-degree zero. It is
the only vertex with in-degree zero.

e There are dedicated vertices named leafs with out-degree zero.

159

Chapter 5. RNApuzzler

o Let|V| > 2. For each leaf, there is exactly one path from the root vertex
to the leaf.

e All other vertices are called internal vertices.

This definition implies that for each internal vertex v, there is a directed

path from the root to v and from v to at least one leaf.

Corollary 1 (Directed Rooted Tree: Properties). Let T = (V, E) be a directed

rooted tree.
e All vertices of T except the root vertex have in-degree 1.
e T has at least one leaf.
e /f|V| =1 then the root vertex is also a leaf vertex.

Definition 6 (Subtree). Let T = (V, E) be a directed rooted tree and v € V
be a vertex. Then, the subtree T' = (V’, E') rooted at v is defined as

oV CV
e vV
e E'CEN(V xV)

e Forall paths p=(v=v,..., v)):
(v e VIVI<i<I)A
((V,‘, V,‘+1) ceE'VI<i<I|-— 1)

Definition 7 (Relationships). Let T = (V, E) be a directed rooted tree and

v €V be a vertex.
e Ifan edge (u,v) € E exists, then u is called the parent of v.

e For all vertices w such that (v,w) € E, w is called a child of v.

Ifw,w"”" eV, w #w" are children of the same vertex v, then they are

called siblings.

For all paths p = (u, ..., v), u €V, uis called ancestor of v.

For all paths p = (v, ..., w), w € V, w is called descendant of v.

160

Visual Analysis of Form and Function in Computational Biology

Corollary 2 (Relationships: Properties). Let T = (V, E) be a directed rooted

tree.

e Fach vertex v € V except the root has exactly one parent.

e All vertices v € V' except the leaves have at least one child.

Definition 8 (Lowest Common Ancestor). Let u,v € V, u# v. Further, u is

neither an ancestor nor a descendant of v.

e A common ancestor ca(u,v) is defined as being a vertex that is an

ancestor of both u and v.

e The lowest common ancestor /ca(u, v) is defined as being the common
ancestor of u and v such that the path p, = (Ica(u,v), ..., u) is the

shortest path for all common ancestors of u and v.

Corollary 3 (Lowest Common Ancestor). Let p, = (Ica(u,v),...,u) and
p, = (Ica(u,v), ..., v). Then their lengths |p,| and |p,| are the shortest ones

among all paths from a common ancestor to u and v, respectively.

5.2.2 RNA Secondary Structure

An RNA sequence is a string over the alphabet of nucleotides A := {A, U, G, C}.

Definition 9 (Secondary Structure). A secondary structure on the vertex set
X ={12,..., n} is the disjoint union of the backbone B, i.e., the path

1—2—---—nand a set of base pairs 2 with the following properties:

(1) Q is a matching, i.e., for every x € X there is at most one base pair b € Q2
with x € b.

(2) Q is non-crossing, r.e., | < k < j impliesi < | < j for all {i,j}, {k, 1} € Q.
(3) i —i| >3 forall {i,j} € Q.

An secondary structure is compatible with an RNA sequence if {/,j} € Q
implies that the nucleotides x; and x; form one of the six allowed base pairs
A-U U-AG-C,C—-G,G—-U,orU—-aG.

The graph (X, BUQ) of a secondary structure is outerplanar, i.e., it can
be drawn in the plane in such a way that all vertices are incident to the infinite
outer face and boundaries between finite faces are formed by base pairs. This
outerplanar embedding in unique [52]. It gives rise to a unique tree representation

of the secondary structure graph as follows (Figure [5.1b)):

161

Chapter 5. RNApuzzler

1. The vertices of the fully resolved tree are the faces of the outerplanar

embedding.
2. The infinite outer face corresponds to the root of the tree.

3. An edge connects two vertices of this tree if and only if the corresponding
faces share a base pair. Please note, that this construction differs from
the usual notion of the dual graph by omitting edges between the infinite
face and any finite face that does not share a base pair with the infinite
face. It follows immediately from outerplanarity that this restricted dual

graph is indeed a tree.

For the purpose of drawing the RNA secondary structure, faces are catego-
rized (Figure [5.1a)). The corresponding geometric representation of each face
or each set of faces is shown in Figure [5.1d]

The first characteristic used is the number of outgoing edges. If the number
of outgoing edges is 0, then the face is bounded by a single base pair and a
sequence of consecutive unpaired bases belonging to the backbone. This face is
called a hairpin-loop (H). Hairpin-loops will be drawn using a circle whose radius
is determined by number of unpaired nucleotides and the backbone distance
together with the base pair distance.

If the number of outgoing edges is > 2, then the face is called a multi-loop
(M). Multi-loops will also be drawn as circles. Multi-loops will be characterized
by their radii and by the angles of the outgoing base pairs compared to the
incoming base pair. Changing these parameters allows to create outerplanar
drawings.

If the number of outgoing edges is exactly 1, an additional characteristic for
categorizing the corresponding faces is used. If the boundary of the face does
not contain any unpaired nucleotides, two base pairs are directly connected
to each other. All adjacent faces having these properties are connected and
called stem. The faces will be represented by a rectangle with the two parallel
paired nucleotides lying on edges of this rectangle. The stem is then formed
by stacking this rectangle on top of each other. If the boundary of the face
contains exactly one unpaired nucleotide, then this face is called a bulge-loop
or simply bulge (B). Bulges and stems will be connected into one structure
such that all lines connecting base pairs are parallel to each other. Bulges are
represented by triangles formed by a sequence of three nucleotides (paired—
unpaired—paired) attached to one side of the stem. Two edges are formed by

162

Visual Analysis of Form and Function in Computational Biology

(a) Different loop types using the nu- (b) Mapping of the RNA secondary
cleotide sequence introduced in the def- structure to a fine grained tree struc-
initions section [5.2.2] E: exterior-loop, ture, where each face is represented as
B: bulge-loop, I: internal-loop, M: multi- a vertex in the tree. The red vertices
loop, H: hairpin-loop. Please note, that correspond to the vertices of the coarse
only single unpaired nucleotide bulge- grained RNA-tree structure .

loops are considered as being bulges.

\ Vo
l \
- 0 VY

\ !

(c) Simplification of the fine grained (d) Geometries representing the RNA
tree structure (b)) into the coarse secondary structure elements. These
grained RNA-tree (Section that geometries are used for the intersection
is used by RNApuzzler. Each vertex tests of RNApuzzler.

represents a loop and a stem (incoming

edge) that is connected to this loop.

Figure 5.1: Different elements of the RNA secondary structure (E[) and the
corresponding fine grained @ and coarse grained trees as well as the
corresponding geometries @

163

Chapter 5. RNApuzzler

two base pairs connecting the stem to a loop. Stems, including intervening
bulges, are considered as rigid objects for the purpose of drawing.

All other faces with exactly 1 outgoing edge are called internal-loop (1). Their
boundary is formed by the two base pairs and at least 2 unpaired nucleotides.
In the following no distinction is made between internal-loops with one or two
sequences of consecutive nucleotides. It should be noted that the distinction
of bulge and internal-loop is different from the one in the standard energy
model [79], where all internal-loops with a single contiguous interval of unpaired
positions are termed “bulge”.

Finally, all nucleotides not bounding faces form the exterior-loop together
with the base pairs that are neighbors to some of them with respect to the
backbone structure. The root of the tree is associated with the exterior-loop.

Representing each face by a vertex of the tree, a fine grained tree rep-
resentation is obtained (Figure [5.1b)). Similar to coarse tree models used in
other contexts [43], it is useful to retain only those vertices that belong to
hairpin-loops, internal-loops, and multi-loops as well as to the root of the tree.
Altogether, they determine the topological structure of the tree (Figure |5.1d)).

All remaining bounded faces are coalesced into the stem structure. As each
of the loops described before has exactly one incoming base pair, the stem
containing this base pair is associated with the respective loop. This stem—loop

pair is called a node and is associated with its tree vertex.

5.2.3 RNA-Trees

Definition 10 (RNA-Tree). The RNA secondary structure can be represented
by a rooted directed tree T = (V, E) called RNA-tree having the following
properties:

e [he exterior-loop is represented by a node. This node has no incoming
edges and is the root vertex of the tree.

e All nodes constructed by combining stems and the associated loops are
vertices of the tree.

e There is an edge (u, v) € E between two vertices u, v € V iff the stem of

v is connected to the loop of u in the RNA secondary structure.

164

Visual Analysis of Form and Function in Computational Biology

Corollary 4 (RNA-Tree). Let T = (V, E) be an RNA-tree.

e [ach leaf of the tree contains exactly one hairpin-loop.
e Each node containing an internal-loop has exactly one child.

e Fach node containing a multi-loop has two or more children.

Every RNA secondary structure allows for a outerplanar drawing [64]. In
the following the RNApuzzler algorithm (Section is used to construct
such a planar drawing that builds upon the RNAturtle algorithm (Section
and resolves intersections in the layout generated by the latter. Therefore, it
necessary to characterize intersections in the RNA-tree. Let T = (V, E) be an
RNA-tree.

Definition 11 (Intersection between two nodes). Let u, v € V' be two nodes of
the RNA-tree. u and v intersect each other, if the geometries represented by u

and v intersect.

Definition 12 (Ancestor Intersection). Let u,v € V be two nodes of the

RNA-tree such that u is an ancestor of v. If u and v intersect each other, then

e the intersection is called an ancestor intersection
e 1 Is called intersected node
e v /s called intersecting node
The expression used in the following is: v causes an ancestor intersection.

Definition 13 (Exterior Intersection). Let r,v € V, r being the root node of T.

An ancestor intersection between r and v is called exterior intersection.

Definition 14 (Sibling Intersection). Let u,v',v" € V/, v/ # v" being children
of u. Let further T,, = (V,., E») be the subtree of T with root v and T,» =
(Vin, E,n) be the subtree of T with root v". If there exist nodes w' € V., and
w” € V,» such that w' and w” intersect each other, the intersection is called a

sibling intersection and one can say that “u has a sibling intersection”.

Corollary 5 (Sibling Intersection). If u has a sibling intersection and w', w" are

the intersecting nodes given in the previous definition, then u = Ica(w’, w").

Definition 15 (Exterior Subtree Intersection). Let r € V' be the root node of T.
If r has a sibling intersection, then the intersection is called an exterior subtree

intersection.

165

Chapter 5. RNApuzzler

Based on these definitions of the different intersection types that will be

considered, the absence of intersections is defined as:

Definition 16 (A-planar). A node v € V is called A-planar iff the parent node

u of v is A-planar and v does not cause any ancestor intersection.

Definition 17 (S-planar). A node v € V is called S-planar if v does not have a
sibling intersection.

Definition 18 (T-planar). Let v € V' be the root of the subtree T, = (V,,, E,)
of T. v is called T-planar iffVYw €V, : w is A-planar and S-planar.

Definition 19 (Planar Tree). Let r € VV by the root of T. T is called a planar
tree iff r is T-planar.

These definitions are the foundation of the subsequent conclusions. Alto-
gether, the definitions and the conclusions build the theoretical background
for the RNApuzzler algorithm and for showing that the RNApuzzler algorithm
computes a planar layout of the RNA-Tree and thus of the RNA secondary
structure.

Next, conclusions will be drawn based on the definition of A-planar (Defini-

tion [16]).

Lemma 1. The root r € V of T is A-planar.

Proof. The statement follows trivially since r has no ancestor. []
Lemma 2. /fv € V is A-planar and u € V' is an ancestor of v then u is A-planar.

Proof. Every ancestor u of v lies on the (unique) directed path from the root to
v. Proceed by induction on the length / of the path from r to v. For / =1, the
only ancestor is r, which is A-planar by Lemma[i] In the general case assume
that the statement is true for all ancestors of u of v with a path of length /
between r and v. Now, let w € V be a child of v. Thus, the path from r to w
has length / + 1. The ancestors of w are its parent v as well as all ancestors of
v. The induction hypothesis implies that all ancestors of v are A-planar. By
definition, the fact that w is A-planar implies that its parent v is also A-planar.
Therefore all ancestors of w are A-planar. []

Lemma 3. /fv € V is A-planar and u € V' is an ancestor of v then u does not

cause any ancestor intersection.

Proof. This follows directly from Lemma [2| and the definition of A-planar. [

166

Visual Analysis of Form and Function in Computational Biology

Lemma 4. /f neither v € V. nor any ancestor u € VV of v causes an ancestor

intersection, then v is A-planar.

Proof. Every ancestor u of v lies on the (unique) directed path from the root
to v. Proceed by induction on the length / of the path from r to v. For [=1,
the only ancestor is r, which is A-planar by Lemma [1] By assumption, v does
not cause an ancestor intersection and thus by definition v is A-planar. In the
general case assume that the statement is true for all nodes v with a path of
length | between r and v. Now, let w € V be a child of v. Then, the path
from r to w has length /4 1. The ancestors of w are its parent v as well as all
ancestors of v. The induction hypothesis implies that v and all its ancestors
are A-planar. As by assumption w does not cause an ancestor intersection, it is
A-planar by definition. [

Theorem 1 (A-planar). A node v € V of T is A-planar if and only if neither v

nor any ancestor u € \V of v causes an ancestor intersection.

Proof. One can show the equivalendce by showing each implication:

“=": Let v be A-planar. Then neither v nor any ancestor u € V' of v causes an
ancestor intersection by Lemma[3]

“<". Neither v nor any ancestor u € V' of v causes an ancestor intersection.
Then v is A-planar by Lemma [4] H

In the next step, it is shown that leafs are always S-planar (Definition [17]).
Lemma 5. Every leaf v € V of T is S-planar.
Proof. This follows trivially from the definition since leaves have no children. [

Further, if a node is T-planar, all descendants are T-planar, too. Moreover,
if all children are T-planar and the node itself is both A-planar and S-planar, the
node is T-planar, too.

Lemma 6. Let v € V be the root of the subtree T, = (V,,, E,) of T. If v is

T-planar, then w is T-planar for all w € V,.

Proof. Let w € V, be a descendant of v. By Definition [I8], w is A-planar and
S-planar. Moreover, all descendants of w are A-planar and S-planar as they
are descendants of v, too. Let T, = (V,,, E,,) be the subtree rooted at w. As
V,, contains w and all its descendants, all w’ € V,, are A-planar and S-planar.
Therefore, w is T-planar by definition. []

167

Chapter 5. RNApuzzler

Lemma 7. Let v € V be the root of the subtree T, = (V,,E,) of T. v is
T-planar, if all children w € V,, of v are T-planar and v is A-planar and S-planar.

Proof. V, contains v and all descendants of v. By assumption, all children w
of v are T-planar. Therefore, all children w and their descendants are A-planar
and S-planar by Definition [18] Together, these are all descendants of v. Thus,
all descendants of v are A-planar and S-planar. As by assumption, v is A-planar
and S-planar, too, v is T-planar by Definition [18|]

Some important consequences are given next.
Corollary 6. Let v € V be a leaf. If v is A-planar, then it is T-planar.

Proof. v is A-planar by assumption and S-planar according to Lemma[5] More-
over, T, = (N,, E,) = ({v},0) is the subtree of T rooted at v as v is a leaf
and thus has no descendants. Thus, all v € N, are A-planar and S-planar and
thus v is T-planar by Lemma [7]]

Corollary 7. Let r € V be the root of T. Then, r is T-planar, if r is S-planar
andVw €V : w is a child of r — w is T-planar.

Proof. r is A-planar according to Lemma [I] and S-planar by assumption. More-
over, all children w of r are T-planar by assumption. Thus, r is T-planar by
Lemma [71 H

168

Visual Analysis of Form and Function in Computational Biology

5.3 Method RNAturtle

5.3.1 Drawing Constraints

The initial drawing is created satisfying the following constraints:
1. The drawing starts at a defined position.

2. The exterior nucleotides are drawn on a straight horizontal line (increasing

x-value).

3. Stems attached to the exterior loop point upwards only (increasing y-
value). These stems are perpendicular to the horizontal straight line

defined by the exterior nucleotides forming the exterior loop.

4. The distance between two neighboring exterior nucleotides is constant
(backbone distance) [64].

5. The distance between two neighboring nucleotides of a stem is constant
[64]. It is the same as that of two neighboring exterior nucleotides

(backbone distance).

6. The distance between two neighboring nucleotides of a loop is constant
[64]. However, the arc-length between two neighboring nucleotides of a
loop depends on the loop radius and thus is constant for a specific loop,

but might differ for different loops.

7. The distance between two paired nucleotides of a stem is constant (base
pair distance) [64].

8. Stems should be drawn as rectangles [19].

9. Loops should be drawn as circles [19].
10. Loops should be drawn as compact as possible [59].
11. Bulges should not change stem direction [84].

All of these constraints can be satisfied simultaneously. However, the resulting

drawing will in general not be intersection-free.

169

Chapter 5. RNApuzzler

Figure 5.2: The turtle starts at P; and walks a fixed distance to . There, it
changes its direction by an angle a, and walks a fixed distance to Ps.

5.3.2 Turtle Algorithm

The initial drawing is created using a so-called turtle graphics algorithm (Algo-
rithm [6]) imagine a turtle walking and leaving a trail. First, the starting point of
the turtle is specified and the first nucleotide of the RNA-sequence is positioned
at this point. Then, two actions are possible by the turtle: change direction
and walk a fixed distance. Change direction instructs the turtle to change its
direction by an angle between —180° and 180°, exclusive. Walk a fixed distance

instructs the turtle to walk a fixed distance in its current direction.

The turtle is initially put onto a pre-defined position (Constraint 1). The
standard angle is 0° and the standard distance is equal to the backbone distance.
In the beginning, the turtle with 0° would walk along the increasing x-axis
(Constraint 2). Thus, the turtle moves forward the distance between two
neighboring nucleotides in the RNA-sequence satisfying Constraints 4 and 5
(Figure [5.2)).

At each point reached by the turtle, the direction might be changed once
before walking. Here, different cases have to be distinguished. In the case
that the turtle is on the exterior loop and reaches a nucleotide belonging to a
stem, the angle is set to —90° changing the direction from going to the right to
going up (Constraint 3). In the case that the turtle is on a stem and reaches a
nucleotide belonging to the exterior loop, the angle is set to —90° changing the
direction from going down to going to the right (Constraint 3). If the current
and the next nucleotide belong to the same stem, the angle is set to the default
angle of 0°. Bulges are also easily drawn by changing the angle from stem to
unpaired nucleotide to —120° and making one step forward, followed by setting
the angle to 60° and making another step forward, followed by setting the
angle to —120° and making a final step forward. Thus, bulges neither bend the

170

Visual Analysis of Form and Function in Computational Biology

Figure 5.3: The turtle walks through a loop: First, the radius of the loop is
approximated. Then, the turtle changes its direction based on the arc segment
that the current and the next position form in the loop. Please note, that
the turtle walks on the chords of the loop. The arcs are drawn during a
post-processing step.

corresponding stem nor do they cause the backbone distances of the involved
nucleotides to be modified (Constraint 11). Thus far, the computation is simple

and straightforward.

The situation becomes slightly more involved whenever a loop other than the
exterior loop is connected to a stem. Then, the calculation of the angle depends
on the radius of the loop and thus on its structure. A loop consists of multiple
free nucleotides whose distance from each other and to neighboring paired
nucleotides equals the backbone distance. Further, two stems of a loop that
are next to each other, i.e., that are not separated by an unpaired nucleotide,
are separated by the backbone distance, too. On the other hand, the distance
between two paired nucleotides is equal to the base pair distance. As it is
not possible to calculate the exact radius if the backbone and the base pair
distance are different, the radius of the loop is approximated using the Newton
Raphson method. The upper and lower bounds of the radius are set to the
radius of a loop having the same number of loop elements but using only the
backbone or the base pair distance since the real radius of the loop lies within
this interval. After calculating an appropriate radius for the loop, the nucleotides
are positioned by the turtle algorithm onto the loop by calculating the correct
angles (Figure [5.3)).

Lonely base pairs have to be treated as a special case and require the com-
putation of the sum of consecutive loop-stem and the stem-loop angles. They

can also occur when such a lonely base pair connects the exterior nucleotides to

171

Chapter 5. RNApuzzler

|

@ (b) ©

Figure 5.4: The RNAfold-predicted minimum free energy structure of the
Magn 3109 RNA of Magnetospirillum magnetotacticum sequence, retrieved
from RFAM [38]. (a) Drawing generated by RNAturtle. (b) Tree structure
superimposed on the RNAturtle drawing. (c) Extracted tree only.

a loop, i.e., the two nucleotides belong to all three structures at the same time.
The resulting sum is taken as the angle for pointing the turtle to the correct
direction.

This approach has the property that it fulfills all constraints. Drawings
created by RNAturtle are shown in Figures[5.4a (planar) and (not planar).

The turtle graphics approach makes it possible to reposition complete
subgraphs by changing just the originating point or direction. This property
will be used extensively in the next stage. During the initial drawing stage, the
algorithm furthermore detects all structural segments of the RNA and stores it

for the subsequent processing steps.

Algorithm 6 RNAturtle
for each nucleotide do
check structural type of the nucleotide
if start of a new loop then
approximate radius
end if
calculate distance and angle to its predecessor based on the type
end for

172

Visual Analysis of Form and Function in Computational Biology

5.4 Method RNApuzzler

5.4.1 Drawing Constraints

Drawings generated by RNAturtle may already be intersection-free (planar,
Figure [5.4a)). In particular for larger RNAs, however, this is usually not the case
(Figure . RNApuzzler starts from the RNAturtle output. The key idea is
to replace Constraints 4 and 6 and add two new constraints:

4’ The distance between two neighboring exterior nucleotides is constant
between two stems attached to the exterior loop only. It can be larger

than the backbone distance.

6'. The distance between two unpaired neighboring nucleotides of a loop
segment is constant. It can be larger than the backbone distance.

12'. The resulting drawing is intersection-free, i.e., planar [59].
13'. Between any pair of bases, there is a minimum distance [59].

Constraint 6’ relaxes the requirement of a minimum loop radius with constant
distance between paired and unpaired nucleotides of the loop, respectively. Thus,
it makes it possible to change the directions of sub-sequences starting at a
loop so that Constraint 12" can be satisfied for each subtree attached to
the exterior loop. Allowing larger distances between the exterior nucleotides
(Constraint 4') allows the algorithm to handle each subtree attached to the
exterior loop individually and then to place the subtrees next to each other

without intersection (Constraint 12").

Moreover, the drawing can be made more compact by relaxing Constraint 3.

3'. Stems attached to an exterior loop point upwards or downwards only
(increasing or decreasing y-value). These stems are perpendicular to the
horizontal straight line defined by the exterior loop.

Constraint 3" provides more flexibility for placing subtrees attached to the
exterior loop. However, this might make it harder to locate the exterior loop
in certain cases. In the same way, Constraints 6, 4, and 3’ enable fulfilling

Constraint 13" which prevents bases from overlapping.

173

Chapter 5. RNApuzzler

Algorithm 7 RNApuzzler Main Algorithm
for all nodes from the exterior to the leaves do
detect ancestor intersections {Algorithm
if current node is a leaf then
detect sibling intersections {Algorithm [L1])}
end if
end for

5.4.2 Coordinate transformation and data structures

Consider the secondary structure of the Magnetospirillum magnetotacticum
Magn 3109 RNA as computed with ViennaRNA, which is shown in Figure [5.4a
First, a tree structure is extracted from the secondary structure as follows:
the tree nodes are the hairpin, internal, multi-branch, and external loops of
the secondary structure; the tree edges correspond to stems (Figure .
This tree is rooted at the exterior loop. Hairpin loops therefore correspond to
leaves (Figure . Each stem is followed by exactly one loop, which will be
associated with this stem. It should be noted that the base pair that joins the
stem with its loop is the closing pair of the loop, which plays an important role
in the RNA folding algorithms. One can then re-interpret the tree vertices as
representing a stem and its associated loop. The edges thus no longer represent
geometry. To distinguish between the tree structure and its associated geometry,
the elements of a tree structure are called vertices and the combination of stem

and loop geometry associated with a vertex is called the corresponding node.

5.4.3 Main Algorithm

The RNApuzzler uses the output of RNAturtle as input for producing the final
layout. The major requirement for this final layout is planarity. This necessitates
the removal of any intersection present in the layout produced by RNAturtle.
The first step uses this layout for building the data structures, and especially
the RNA-tree. Now, the theoretical foundations (Section are used as the
basis for the main algorithm (Algorithm [7]).

Let T = (V, E) be an RNA-tree. By Definition [L9] T is planar, if the root
node r € V is T-planar. By Corollary [7] it is sufficient that r is S-planar and all
children of r are T-planar. T-planarity of a node v € V requires A-planarity and
S-planarity. As the root r is A-planar (Lemma [1)) it is a good starting point for
checking A-planarity. If a node v € V' is A-planar, then a child w € V is either

A-planar, too, or it intersects an ancestor. In the latter case, this intersection is

174

Visual Analysis of Form and Function in Computational Biology

resolved by Algorithm [9] Thus, A-planarity is constructed on the way from the
root node of the RNA-tree to its leaves for all nodes on that path recursively.

On the other hand, each leaf is S-planar (Lemma/5]). Thus, on the way back
from the leaves to the root, S-planarity can be checked and established for all
nodes v € V. Therefore, consider a node v € V such that all its descendants
are S-planar. Now, v is either S-planar itself in which case it is also T-planar by
construction, or v has a sibling intersection that then is resolved.

While resolving both types of intersections, new intersections might be
generated. However, the nodes that have to be reconsidered are restricted.
In case of A-planarity, the algorithm continues with the node v € V' used for
resolving the intersection and checks all nodes in its subtree. As the ancestors
of v are not changed, none of them can cause new ancestor intersections. In
case of S-planarity, the algorithm re-evaluates the current node v € V and all
its children. In this case, S-planarity for disjoint subtrees has been or will be
established independently, while S-planarity of ancestor nodes will be established
at a later step. Due to these repetitions in case of intersection removal, the
complexity of the algorithm is difficult to assess.

However, it is easy to see that the depth-first traversal proposed is better
suited than a breadth-first traversal. In the latter case, all nodes would be
checked for A-planarity first. After all nodes are A-planar, S-planarity is checked
and achieved. In both cases, if removing an intersection necessitates checking
a subtree again, all nodes of the subtree will be considered. This leads to all
nodes of these subtrees being checked for A-planarity several times—as often
as they are re-assessed. During depth-first traversal, however, only those nodes
already checked in the subtree are re-assessed while those not yet handled by
the algorithm are treated at a later point, only. This reduces the overall amount
of nodes to be checked.

Even if the complexity is difficult to estimate, the algorithm is correct and
terminating:

Correctness refers to the fact that the resulting drawing satisfies the Con-
straints 1-3, 4', 5, 6', 7-11, 12', and 13". Constraints 1-3 are met by RNAturtle.
RNApuzzler also satisfies these constraints because it leaves the starting po-
sition, the orientation of the exterior loop, and the orientation of the stems
attached to the exterior loop unchanged. Constraint 4’ is trivially met as
distances between exterior loop subtrees and thus distances between exterior
nucleotides are only increased compared to the RNAturtle drawing. As RNA-

puzzler does not change the geometry of stems, Constraints 5 and 7 are still

175

Chapter 5. RNApuzzler

met. RNApuzzler constructs the drawing such that Constraint 6’ is met. The
algorithm draws stems as rectangles (satisfying Constraint 8) and loops as
circles (satisfying Constraint 9). Further, bulges do not change stem direction
(satisfying Constraint 11). Constraint 12 is equivalent to the drawing being
intersection-free. Section provides a proof that this is always the case.
Moreover, the algorithm guarantees minimal distances between any two bases
satisfying Constraint 13'. The optimization performed (see Section [5.5]) reduces
the loop sizes as much as possible. Thus, Constraint 10 is met.

It is not obvious that RNApuzzler indeed terminates. The recursion ter-
minates at the leaves and Algorithm [8] moves from the root to all leaves.
Algorithm [9] however, involve repetitions. Algorithm [L1] might cause all three
steps to be applied repeatedly to the node including a depth-first traversal of the
subtree. Algorithm [8| might even cause to repeat the whole process at any node
between the root node and the current node. The reason why the recursion
nevertheless terminates is due to the particular way in which intersections are
solved.

This is achieved by changing the angles between the stems attached to
a loop and by increasing the radius of the loop. Due to Constraint 6, it is
necessary to increase the radius of a loop for changing the angle of certain loop
segments, since the minimal distance between two unpaired nucleotides of a
loop segment can not be smaller than the backbone distance. Increasing the
loop radius automatically leads to a state where all siblings can be spaced such
that they do not intersect any more. As illustrated in Figure [5.5] it is always
possible to resolve the intersection by increasing the radius only. Since this
would lead to vast radii, the angle between the two intersecting siblings is also
increased. One might choose to increase only the angle between the siblings.
This would make it necessary to compress the angles of all other siblings of the
loop, which in turn would also compress the distances between the unpaired
bases of these segments. Reducing them below the minimal distance, however,
would violate Constraint 6°.

A transformation from polar to Cartesian coordinates shows that enlarging
the radii is sufficient. In Cartesian coordinates, each subtree of the node has a
certain height and a certain width. The sum of the widths of all subtrees plus
some space between them is an upper bound on the width required to place
all subtrees without intersections. A similar approach was used in [19], albeit
without proof. The width in Cartesian coordinates required for intersection free

placement of subtrees translates to a circumference in polar coordinates, from

176

Visual Analysis of Form and Function in Computational Biology

(a) (b) (c)

Figure 5.5: Any sibling intersection can be resolved (inefficiently) by only
increasing the radius of the common multi-loop. Changing the angles of
outgoing stems up to a certain degree to resolve intersections in addition to
increasing the loop's radius improves the efficiency of the approach. (a) A
sibling intersection between the two stems of the multi-loop. (b) The sibling
intersection is resolved by only increasing the radius of the multi-loop. (c) The
sibling intersection is resolved by changing the angles of the outgoing stems in
addition to increasing the radius of the multi-loop.

which the appropriate radius can be computed. The same idea can be used to

resolve all ancestor intersections.

A-Planarity

The first step of the main algorithm checks for ancestor intersections (Detect]

IAncestor Intersections, Algorithm [8)) and if necessary resolves them. If the

ancestor found is the root node, then the special case of an exterior intersection
is resolved (Resolve Exterior Intersections, Algorithm [10). Otherwise, the
general algorithm for resolving ancestor intersections is used (Resolve Ancestor|

[ntersections, Algorithm [9)).

Detect Ancestor Intersections |n principle there can be zero, one, or several
intersections between the current node and one of its ancestors. If there are no
intersections, then the current node is A-planar and no further action has to
be performed. If there is exactly one intersection, this intersection is resolved.
Otherwise, the algorithm resolves the intersection with the closest ancestor.

For this, the current node is checked recursively against its ancestors starting
with its parent and ending with the root node (Figure [5.6]). If there is an
ancestor intersection (Figure , the current node is the intersecting node
(red) and the ancestor is the intersected node (blue).

177

Chapter 5. RNApuzzler

Algorithm 8 Detect ancestor intersection

if node intersects with an ancestor then
solve ancestor intersection
end if

(a) Intersection between the current node (red) and one of its ancestors (blue).
The blue node and all green nodes do not intersect any of their ancestors.

O

(b) After resolving the intersection shown in (E[) the algorithm proceeds with the
green node marked with an orange arrow used for resolving the intersection.

Figure 5.6: Ancestor intersection (El) and its resolution (IEI)

Resolve Ancestor Intersections The ancestor intersection between the red
intersecting node v; and the blue intersected node v, can be resolved using the
loop marked with an orange arrow (Figure . The latter is called rotation
loop and belongs to the node v, being used to rotate the intersecting node
away from the intersected node. The principal solution consists of selecting
a loop between the intersected and the intersecting node, and changing the

178

Visual Analysis of Form and Function in Computational Biology

angle of the child v, of the rotation loop v, that is either the intersecting node
v; itself or the ancestor of the intersecting node. Thus, there exists a path
p= (Vs,Vs,Ve,...,Vv;) from v, to v; such that v, # v.. The nodes v, and
v, as well as v, and v; might be identical. Therefore, the length of the path
Ip| > 2.

Algorithmically, three steps are performed. First, the direction of rotation is
determined. Therefore, the path from the intersected node to the intersecting
node is closed by adding an edge from the intersecting node to the intersected
node. This sequence of nodes is intersection free except for the intersection
found between the intersecting and the intersected node. Thus, it can be
determined if the enclosed area lies to the left or to the right of the path.
In the former case, the path is counter-clockwise and the rotation should be
clockwise. In the latter case, the path is clockwise and the rotation should be
counter-clockwise.

Second, the rotation node v, is computed by searching backwards from the
parent of the intersecting node v; to the intersected node v,. Thereby, the
direction of the rotation is taken into account. Moreover, heuristics restrict the
selection process. It should be noted that bulge-loops are fixed and hairpin-loops
have no children. Moreover, the exterior-loop is handled separately. Therefore,
only internal-loops and multi-loops are candidates for v,.

The basis of the first set of heuristics is that internal-loops can be treated
differently from multi-loops. Internal-loops are supposed to be optimal if they
do not change the stem direction from incoming to outgoing stem [84]. Sev-
eral algorithms even start by making all internal-loops straight [23]. Thus,
the algorithm prefers internal-loops over multi-loops (Heuristic 1). Moreover,
internal-loops can only be changed towards being straight (Heuristic 2). If an
internal-loop is straight, it is optimal and thus can be safely ignored (Heuristic 3).
These heuristics can be safely applied, as in case of an ancestor intersection
and all internal-loops being straight, at least on multi-loop exists that can be
chosen as rotation loop.

Heuristic 4 chooses loops as close as possible to the intersecting node.
This is due to the fact, that the rotation node is the starting point of the
depth-first traversal after resolving the intersection. Thus, choosing it closer to
the intersecting node reduces the number of nodes that need to be checked for
ancestor intersections again. Moreover, the position of less nodes is changed

and thus the probability of introducing new intersections is reduced.

179

Chapter 5. RNApuzzler

Due to Heuristic 1, the algorithm for determining the rotation node performs
two passes. During the first pass, only internal nodes are considered as possible
rotation nodes. Hereby, Heuristic 3 and Heuristic 2 are applied. During the
second pass, only multi-loops are considered as possible rotation nodes. To
implement Heuristic 4, both passes start searching for the rotation node at the
parent of the intersecting node towards the intersected node. The first suitable
rotation node is taken.

Finally, the rotation angle ¢, is determined such that after rotating v. by
this angle, the intersection is resolved and the minimal distance constraint is
satisfied. Rotating v, at the loop of v, by ¢, might necessitate increasing the
radius of the rotation loop. As this can cause an ancestor intersection of v,, the
tree traversal algorithm goes back to v,. As shown in Figure[5.6], the distance
between the rotation loop and the loop of the green child of v, is smaller after
resolving the intersection (Figure than before (Figure due to the
rotation loop’s radius increase.

It is possible that v. can not be rotated by the complete amount of ¢,.
This might be the case, if the rotation loop v, is an internal-loop. Then, it is
necessary to change two or more different loops until the original intersection is
resolved even if no new intersections are introduced. Therefore, RNApuzzler
applies the heuristics again to resolve the intersections completely. This can lead
to the case, where all internal-loops in the region of interest get straightened.
After straightening the internal-loops, the remaining rotation angle ¢, is applied
on a multi-loop. Since the algorithm can modify multi-loops with any rotation
angle @,, it is possible to resolve any intersection by rotating the children of

multi-loops.

Algorithm 9 Resolve ancestor intersection

for each node from intersecting to intersected node do
if node is an interior loop & bending possible then
bend loop
restart ancestor intersection at current node
end if
end for
for each node from intersecting to intersected node do
if node is a multi-loop then
bend loop
restart ancestor intersection at current node
end if
end for

180

Visual Analysis of Form and Function in Computational Biology

Resolve Exterior Intersections The root node is special as its geometry is
that of a horizontal line. This implies that this line spans the interval [—oo, o0].
However, no additional special algorithms based on this line were developed for
resolving exterior intersections. Instead, the algorithms for ancestor intersection
resolution were reused. Therefore, a special node consisting of an artificial stem
and an artificial loop is created. This node is called root ancestor (Figure [5.7]
blue node). The loop of this node is constructed such that its center is directly
below the center of the child stem. Its radius is computed from the base pair
distance. The stem of the root ancestor has as width the base pair distance. Its
orientation is parallel to the line formed by the exterior nucleotides. If possible,
a single stem to the left or to the right of the loop is constructed. Its length
is determined by the horizontal width of the axis-aligned bounding box of the
intersecting node. If it is not possible to use a single stem only, two stems to
the left and to the right of the loop are constructed and the one intersected
first is used for resolving the exterior intersection. In fact, the intersecting node
will always intersect the stem of the root ancestor before intersecting the loop

of the root ancestor.

After creating the geometry of the root ancestor, it is assigned to be the
intersected node. Then, the same algorithm that is used for resolving standard
ancestor intersections is applied, whereby the root ancestor can not be used
for resolving the intersection since this would violate the constraints concerning

the exterior-loop.

Due to the structure of the exterior-loop, no child can intersect it. This also
holds for the root ancestor: no child of the root ancestor can intersect the root
ancestor. The reason for this is that the angle between root ancestor and any
child is either 90° of 270°.

An exterior intersection before and after resolving the intersection is shown
in Figure [5.7] The color coding is the same as for the ancestor intersection
example: the red node is the intersecting node, the blue node is the intersected
node, and the green nodes are the intermediate nodes on the path from the
intersected node to the intersecting node. The green node marked with an
orange arrow is the rotation node used for resolving the exterior intersection.
As can be seen, the length of the root ancestor stem and thus of the stem of
the intersected node (blue) matches horizontally the axis-aligned bounding box

of the intersecting node.

181

Chapter 5. RNApuzzler

(a) Intersection between the current node (red) and the root ancestor node (blue). All
green nodes do not intersect the root ancestor node.

(b) After resolving the intersection shown in Figure the algorithm proceeds with
the green node marked with an orange arrow used for resolving the intersection.

Figure 5.7: Exterior intersection (ED and its resolution (]E[)

Visual Analysis of Form and Function in Computational Biology

Algorithm 10 Resolve exterior intersection

construct geometry for the exterior loop
assign exterior node to the be intersected node
Solve ancestor intersection {Algorithm [9}

Algorithm 11 Detect sibling intersection

for each child of the current node do
if pair of subtrees then
Resolve sibling intersection
end if
start sibling intersection at the ancestor of the current node
end for

S-Planarity

Detecting and resolving sibling intersections are performed by the third step

of the algorithm. If the detection algorithm ([Detect Sibling Intersections|
Algorithm does not find any sibling intersection for the current node, then

the current node is S-planar and no further actions have to be performed. If

a sibling intersection Is detected and the current node is the root node, the

algorithm for resolving exterior subtree intersections is invoked (Resolve Exterior|
[Subtree Intersections], Algorithm [13]). Otherwise, the algorithm for resolving
sibling intersections is used ([Resolve Sibling Intersections, Algorithm .

Detect Sibling Intersections In order to detect a sibling intersection of a
node v € V, all the subtrees T; = (V}, E;) of its children w; € V, (v, w;) € E are
checked. If v has no children, then it is S-planar. The same holds if v has only
one child. If v has n children, the sibling intersection is checked as follows.

Vi<i<n-1
Vi<j<n
Vw; € Vi Vw; € V] : check if w; and w; intersect

If no intersection is found, then v is S-planar. Otherwise, the first intersection

found is reported and resolved.

Resolve Sibling Intersections The violet node in Figure has a sibling
intersection between the blue subtree and the red subtree. The intersection
angle v (green sector) is computed by first finding the smallest enclosing sector

of each subtree with respect to the center of the violet node (blue and red circle

183

Chapter 5. RNApuzzler

184

(a) Intersection between the red child tree and the blue child tree of
the violet node.

(b) After resolving the intersection shown in (El) an ancestor intersec-
tion of the gray child tree with the exterior-loop occurs and needs to
be resolved.

Figure 5.8: Siblings intersection (El) and its resolution (]EI)

Visual Analysis of Form and Function in Computational Biology

Algorithm 12 Resolve sibling intersection

identify segments for bending

calculate overlap angle

distribute overlap angle equally over identified segments
subtract overlap angle from the remaining segments

Algorithm 13 Resolve intersection of two subtrees of the exterior

calculate overlap of the siblings with bounding boxes
if flipping then
if check if second sibling can be flipped without intersections then
flip the second sibling
return
end if
end if
calculate minimal overlap configuration
stretch exterior loop segments between the siblings

sectors, respectively). Then, the smaller angle of the red sector is subtracted
from the larger angle of the blue sector. Hereby, the angle is computed clockwise.
To resolve this intersection, the blue subtree is rotated counter-clockwise by
(7 + 6)/2, while the red subtree is rotated clockwise by (v 4+ §)/2. Here, the
angle ¢ is the minimal angle between two subtree sectors. To allow for this
rotation while maintaining a minimum distance between unpaired nucleotides as
well as between unpaired and paired nucleotides of the violet loop, the radius of
this loop might have to be increased.

Resolve Exterior Subtree Intersections The blue subtree and the red subtree
of the exterior-loop intersect in Figure [5.9a] The overlap between the blue
bounding box and the red bounding box is computed. Onto this overlap, a
minimal distance is added. The resulting increase necessary to separate the
blue and the red subtree is distributed equally among the distances between the

exterior nucleotides connecting both subtrees (Figure |5.9b)).

Alternatively, the red subtree might be reflected at the line of the exterior-
loop (Figure[5.9d). This does not cause any new intersection between the red
subtree and the exterior-loop, or within the red subtree. The resulting drawing
is more compact. Allowing this type of resolving exterior subtree intersections
might make it harder locating the exterior-loop.

185

Chapter 5. RNApuzzler

(a) Intersection between the red child tree and the blue child tree of the orange
exterior-loop.

(b) The intersection is resolved by increasing the distance between the nucleotides of
the exterior-loop between the two child trees.

(c) The intersection is resolved by changing the direction of the second child tree now
pointing downwards.

Figure 5.9: Exterior subtree intersection @) and its resolution by stretching (]EI)
or flipping .

186

Visual Analysis of Form and Function in Computational Biology

AABB Box Intersection

The detection of intersections is performed using standard algorithms. Efficient
intersection tests for pairs of simple geometric objects can be found in books
such as the one by Ericson [34]. As accelerating structure, axis-aligned bounding
boxes (AABB) are used. These are updated immediately after the position or
the orientation of a node is changed. Overall, this is sufficient for obtaining
a high performance of the algorithm while using minimal space and minimal

computational overhead.

5.5 Optimization

Creating intersection-free drawings as described before leads to inner and multi-
loops having a very large radius. The radius of hairpin loops is not changed by
the algorithm and bulge loops are fixed. Overly large inner and multi-loops are
shrunk by an optimization step that reduces the radius of these loops. This

optimization step is performed if all of the following conditions are met:

1. the subtree at the current node has no sibling intersections
2. the subtree and the ancestors of the current node do not intersect
3. one of the following conditions is met

(a) the radius of the current node has increased by at least a factor of

ten compared to its minimum radius

(b) the parent of the current node is the exterior

Conditions 1 and 2 hold whenever the handling of a node finished during
depth-first traversal. If Condition 3a is met, loops that grew too much (by a
factor of ten in relation to their minimum radius) are shrunk. This avoids a
too large increase of the loops’ radii during planarization. If the parent of the
current node is the exterior (Condition 3b), the complete subtree attached to
the exterior loop is intersection-free (planar) and will be optimized.

Conceptually, optimization starts at the leaves of the tree constructed—the
hairpin loops—and proceeds towards the root of the tree—the exterior loop.
The algorithm starts at the current node and optimizes all its children recursively,
using depth-first traversal. As long as the radius of at least one child of the

current node has been reduced, all children of this node are optimized again. If

187

Chapter 5. RNApuzzler

no child could be optimized further, the algorithm attempts to reduce the radius
of the current node. If the current node can be optimized, the optimization
procedure is started again because it is possible that the radii of the children
can be improved further.

Optimization proceeds in two alternating steps. The first step reduces the
radius of a loop by performing a binary or a linear search for the smallest radius
such that the drawing remains intersection-free. Here, the minimum radius is
the one that can be reached while respecting the minimum distance between
consecutive nucleotides and the current configuration of the loop. Moreover,
the maximal radius is the one created by the intersection-free drawing. The
search starts with the maximal radius that is then iteratively decreased by a
fixed amount until the minimum radius is reached. The second step changes
the angles between each pair of adjacent stems of a loop. This allows attaining
a smaller radius, which is closer the optimal minimum radius. During this
step, the algorithm calculates the angles between the unpaired bases for each
segment of a loop. Afterwards, the segment with the largest angle is chosen for
optimization. Therefore, the free angle between the stems of the segment is
calculated based on the minimal backbone distance. Next, similar to the sibling
intersection in Section [5.4.3] the algorithm constructs two wedges to present
the neighboring stems. Using these wedges, the free angle between each pair
of stems is calculated. Afterwards, the algorithms evaluates the results these
calculations and picks the smallest one for the angle reduction. By using this
minimal free angle, the algorithm decreases the angle of the selected segment
by 50% of the chosen free angle. Finally, the algorithm checks, if the reduction
introduced a new intersection and discards the change if necessary. If an angle
Is changed by this step, both steps are repeated.

All optimization steps are only performed if the corresponding subtree is
planar and does not intersect any ancestor, i.e., if Constraints 12" and 13’ are
met. These constraints are conserved by the optimization process.

In order to demonstrate the effects of the optimization, we have drawn
our example RNAs using RNApuzzler with the optimization being deactivated.
The results are shown in Figure [5.10 To ease comparison with the final
results of RNApuzzler, we added the drawings generated using RNApuzzler
with optimizations being activated below the figures. It is clearly visible that
the optimizations reduce the amount of drawing space needed considerably
and that they avoid unnecessary radii enlargements. Due to the fact that all
optimizations are applied locally to a single loop, it is only possible to reduce

188

Visual Analysis of Form and Function in Computational Biology

Algorithm 14 Optimize Loop

repeat
calculate a new radius for the loop with no new intersection
calculate a new loop configuration:
for all stems of the loop do
create a wedge for the stem
end for
calculate free angle between the wedges
select segment with largest free angle
reduce free angle of the segment by 50%
if new intersection was introduced then
revoke angle change
end if
until (radius or configuration did not change)

the radius of the targeted loop as long as no new intersections are introduced

by the optimization.

189

Chapter 5. RNApuzzler

g 1 Gy© o 5 ® B -“3 E

(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens without opti-
mization.

(b) Secondary structure of AADC01167538.1/2439-571 Homo sapiens with optimiza-
tion.

y @ireip e © yol
RO, e S o
¢ E E "“’
& ° Q

g <9 Q 9 X, g
f = \o 4 X R, Rey
to Faf A
&, N . g
g Q40 g :
? il X a © Q &

(c) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla without opti-
mization.

Figure 5.10: Comparison of the human and the gorilla SSU rRNA drawn using
RNApuzzler without and with optimization.

190

Visual Analysis of Form and Function in Computational Biology

5.6 Benchmarks

A main goal in the development of RNApuzzler was to keep the overall runtime
of the drawing algorithm smaller than the actual folding time. To verify this goal,
RNAfold from the ViennaRNA Package version 2.35 [54] was used to fold 5000
RNAs from the family RF00012 that contains smaller RNAs (around 215nt) and
50 large sequences from family RF01960 (around 1860nt) from the RFAM [38].
The benchmark was performed on a machine with an Intel i7-7700HQ CPU
and a Samsung Evo 850 EVO M.2 SSD. The results are shown in Table [5.1]
RNApuzzler draws the secondary structure in less than 10% of the folding time.
Compared to NAView [22], the standard drawing algorithm of the ViennaRNA
Package [54], which draws the RNA in nearly linear time, it takes considerably
more computing time. Drawing larger RNAs, most of the time is needed by the
optimization algorithm reducing the size of the multi-loops. This behavior is
related to the increase of the number of structures in general and the number
of multi-loops in particular with increasing length of the RNA. Other algorithms
can only be compared using this benchmark to a limited extent, as they are
usually not directly manageable via a batch job. Additionally, most of these
tools are designed as GUI applications. Therefore, they were excluded from
this benchmark. In general, the force directed layout based algorithms shown in

Section [5.7] are at least one order of magnitude slower than RNApuzzler.

As a stress test for the algorithm, it was applied to all RNAs provided by the
RFAM Version 12.2 [60]. All sequences were folded using RNAfold [54] drawn
using RNApuzzler, and checked for the absence of intersections. All RNAs
collected in this database were drawn without intersections. The complete
process took approximately 2 days on a 48 core workstation running up to 46

processes in parallel.

RNApuzzler

RNAfold | NAView
simple \ optimized

5000 sequences
RF0012
50 sequences
RF01960

76.14s 1.66s 2.761s 5.58bs

129.48s 0.138s 0.262s 10.907s

Table 5.1: Benchmark results comparing folding and drawing time for different
RFAM families.

191

Chapter 5. RNApuzzler

Table 5.2: Constraints met by different algorithms: ¢: met, *%: not fully met,
?. unclear, X: not met

. Constraint
Algorithm 23 47 8 9 10 11 12 13
RNApuzzler % v vV % v vV /
RNAturtle v v v /v vV v X X
NAView [22] X % v X X X
forna [48] X X X X v x X X

Viz.RNA 2.0 [85] X X X X v X X X

Viz.RNA 4.0 [73] X X v / 1 X X X

RNAfd| [41] X X X % v X v X

VARNA (radia) BI] | v % v v v X X X

RNAstructure [66] X % vV X X v X X

PseudoViewer 3 [24] | X % v v X X X X

Auber et al. [19] X Xx v x x v 1 7

5.7 Results

Table [5.2] shows which constraints introduced in Section [5.4] are met by different
RNA drawing tools. By design, RNAturtle meets Constraints 1-11. RNApuzzler
meets all constraints with Constraints 4, 6, and 10 being met in their relaxed
forms, respectively. Constraint 10 is still satisfied, however, planarity has
precedence: after finding a planar solution, all loops are made as compact
as possible by the optimization step. A detailed comparison is provided in
Section (.8

All other tools only meet the constraints to a lesser extent. In the following,
the layouts of these tools for the human and the gorilla SSU rRNAs are presented
together with additional information about the different algorithms. Further,

the tools’ advantages and issues are discussed in detail.

192

Visual Analysis of Form and Function in Computational Biology

5.8 Comparison to other algorithms

5.8.1 Comparison to NAView

A planar drawing generated by RNAturtle is shown in Figure[5.4a] However, not
all RNAs can be drawn planar by this algorithm, as demonstrated by the more
complex example in Figure [5.11al This RNA contains 447 nucleotides forming
11 internal loops, 3 multi-loops, and 9 hairpin loops. The same structure drawn
by RNApuzzler is shown in Figure [5.11b] Here, the loops marked 1, 2, 3, and
4 were enlarged and changed. These four changes suffice to obtain a planar
drawing.

For comparison, the drawing generated by NAview, the current default
algorithm of the ViennaRNA package [54] is shown in Figure [5.11d. As can
be seen, there are intersections and overlaps (a) as well as dense packings of
nucleotides (4). Furthermore, it is not easy to determine where the exterior
loop is located and it is unclear why loop (1) forms a 'hand’-like structure,
where the upper stems form the 'fingers’ and the lower stem looks like the 'arm’.
Furthermore, one 'finger’ of the hand (marked (a)) is not a stem! In fact, it
is a sequence of unpaired bases of the loop that looks like a stem and that is
very hard to differentiate from a real stem. RNApuzzler was tested to find out
whether similar drawings can be obtained for similar RNAs. For this comparison
the SSU rRNA from human and gorilla were used as examples from the RFAM
family RF01960 [38]. Both sequences were first aligned to the RFAM SSU
model with cmalign [61]. The base pairs of the consensus model were used as
folding constraints by RNAfold [54]. The drawings generated using RNApuzzler
and NAView are shown in Figure[5.12] It is noticeable that RNApuzzler requires
more drawing space since the exterior loop Is drawn as a linear structure. By
doing so, it is very easy to detect the exterior loop, whereas with the NAView
algorithm the exterior loop is difficult to locate. Furthermore, it is clearly
observable that RNApuzzler creates planar drawings for both structures whereas
NAView creates non-planar drawings with huge intersections. Although it is
possible to detect larger structural changes between the two NAView layouts,
the details remain unclear. Since the drawings are intersecting massively in some
regions, it is nearly impossible to differentiate between the structural elements
within these regions. On the other hand, with RNApuzzler it is feasible following
the path of each structural element to detect structural changes between two

different species.

193

Chapter 5. RNApuzzler

(c) Drawing generated by the NAView algorithm using the ViennaRNA package [54].

Figure 5.11: Drawings of the secondary structure of the tRNA-Leu (trnL) gene
and trnL-trnF intergenic spacer from the chloroplast of Streptocarpus papangae
isolate S106 (FJ501444.1/1-447 retrieved from RF00028 [38]).

194

GoT

Figure 5.12: Comparison of the human and gorilla SSU rRNA. (a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens
drawn with NAView. (b) Secondary structure of AADC01167538.1/2439-571 Homo sapiens drawn with RNApuzzler. (c) Secondary
structure of CABD02136541.1/885-2750 Gorilla gorilla drawn with NAView. (d) Secondary structure of CABD02136541.1/885-2750
Gorilla gorilla drawn with RNApuzzler.

ABojorg [euoizeandwo) Ul UoIldUNH pue Wio- JO SIsAjeuy |ensin

Chapter 5. RNApuzzler

5.8.2 Comparison to other tools

The additional algorithms described in Table were used to compare the
results of RNApuzzler with state of the art tools. To facilitate the comparison,

the tools have been classified into two algorithm categories: force-directed
layouts (Section [5.8.2)) and tree-based layouts (Section [5.8.2]).

Comparison to FDL-based Layouts

One group of tools for drawing RNA secondary structures relies on force-
directed layouts (FDL). The simplest approach for calculating FDLs is based
on the structure of the graph. The basic idea is to have repelling forces
between vertices that are not connected and attracting forces between the
vertices connected by edges [78]. These forces are used to iteratively adapt the
positions of the vertices. Practical applications of this paradigm require several
improvements, including parameters and heuristics for assuring termination of
the process, additional forces for keeping the drawing centered, or simplifications
for computing approximations of the forces [78]. One possibility for speeding
up the calculation of the layout is based on providing an initial layout of the
graph that is then optimized by the FDL algorithm. The complexity of the FDL
algorithm varies widely based on the implementation. Simpler algorithms provide
a complexity of O(n- (|E| + [V/[?)), where n is the number of iterations of the
algorithm [32]. By using more sophisticated implementations, it is possible to
reduce the complexity towards O(n - (E + |V| - log|V|)) [65].

Forna Forna [48] is implemented as a web service in JavaScript and uses a
preprocessed layout created by the NAView algorithm as the initial layout for
the FDL algorithm. To avoid crossings of the edges connecting the nucleotides
of two adjacent base pairs (backbone edges), support edges between these base

pairs are added such that these base pairs form a complete k;. As shown in

the Figures |[5.13al and |5.13b| Forna does not always produce planar drawings

because stems attached to a multi-loop may be flipped to the inner side of
this loop. This behavior can impede the analysis and the comparison of RNA
structures. In Figure[5.13] for example, it is hard to detect the changes between
the two species.

196

Visual Analysis of Form and Function in Computational Biology

(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.13: Comparison of the human () and the gorilla (b)) SSU rRNA drawn
using Forna [48].

197

Chapter 5. RNApuzzler

jViz.RNA 2.0 jViz.RNA 2.0 [85] is implemented in Java and uses the simple
circle layout of the RNA as its initial layout, which is planar in the absence of

pseudoknots. Nevertheless, the results of jViz.RNA 2.0 are often non-planar, as

shown, e.g., in Figures|5.14aand [5.14b| Furthermore, the layouts are not stable

because the results differ for several runs with the same input. This makes it

even harder to compare different sequences.

jViz.RNA 4.0 Viz.RNA 4.0 [73] improves the runtime of the FDL algorithm
by applying numerical integration methods. The developers improved also the
layout of stems and loops by using what they call a “compressed graph” of the
RNA structure. It reduces stems and loops similar to our RNA-Tree approach.
After calculating the layout, they apply a static template for each loop and each
stem. The results obtained are shown in Figures[5.15al and [5.15b] Compared
to jViz.RNA 2.0 this approach may produce additional intersections. It is also

possible to create swinging stems that circulate endlessly around a loop. The
clutter in Figure is a result of this effect.

RNAfdl RNAfdl [41] is implemented in C. Like jViz, the circle layout is used as
an initial layout but RNAfdI takes much more time to compute the layouts shown
in Figures [5.16a| and [5.16b| (= 4 hours). In contrast to the other FDL-based

tools, it produces planar drawings. However, whose drawings are very densely

packed with curved stems and deformed loops. Therefore, these drawings are
hard to compare. Another drawback of this tool is its excessive computation

time.

198

Visual Analysis of Form and Function in Computational Biology

/:/i/:?'?f_m e

|

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.14: Comparison of the human () and the gorilla (b)) SSU rRNA drawn
using jViz.RNA 2.0 [85]. Edge crossings are annotated with arrows.

199

Chapter 5. RNApuzzler

1\“)
»-»‘{ R 3

y
2
gesss

&L

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla. Please note,
that this is a snapshot after 10 minutes of calculation. The overlapping clutter at
the bottom is rotating in every step, as jViz 4.0 fails to resolve the intersection.

Figure 5.15: Comparison of the human (El) and the gorilla (]EI) SSU rRNA drawn
using jViz.RNA 4.0 [73].

200

Visual Analysis of Form and Function in Computational Biology

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.16: Comparison of the human (EI) and the gorilla (IEI) SSU rRNA drawn
using RNAfdI [41].

201

Chapter 5. RNApuzzler

Comparison to Tree-based Layouts

Several layouting algorithms for RNA secondary structure use a tree-based
layout. These algorithms are based on the tree structure of the RNA folding
and most of them visualize the RNA starting from the exterior-loop. Since tree
layouts can run in O(n) time, most of these algorithms have this complexity.
Postprocessing steps might increase the complexity, however. The NAView
algorithm [22] is also a tree-based algorithm. However, since it was compared
in detail in Section [5.8.1], it will not be discussed further here.

VARNA Radial Layout VARNA [64] is a Java-based tool and provides multiple
drawing algorithms for RNA secondary structures. Beside the basic circle and
arc layouts [83], it provides the so-called “radial layout”. The algorithm for
drawing this radial layout is similar to our RNAturtle algorithm, since it draws
the RNA secondary structures using a linear approach. VARNA comes with
a GUI and provides several interaction methods so that the user can resolve
intersections manually. It is notable that VARNA draws the exterior-loop as a
straight line. As shown in Figure [5.17a] and [5.17b] the drawings of larger RNAs

contain many overlaps and require tedious manual postprocessing.

VARNA NAView Layout The VARNA NAView layout is based on the original
NAView layout [22] but has slight modifications. It still tends to overlap in
complex regions but reduces the ‘hand-like" structures. By using different colors
for the backbone and the base pair connections, the ‘stem-like’ regions within
complex multi-loops are also easier to distinguish. However, due to the overlaps
created by this algorithm, it is hard to compare the visualizations as shown In
Figure [5.18a] and [5.18b]|

RNAstructure RNAstructure [66] is written in C++ and is the basic layout
algorithm of the RNA folding package RNAstructure. It tries to arrange the
outgoing stems of multi-loops on a circular arc, which produces “hand-shaped”
structures similar to the ones generated by NAView. Furthermore, it arranges
the stems connected to the exterior-loop on a circle. |t remains unclear, why
the calculated radii of the exterior-loops can become very large as shown in
Figure and Figure[5.19b] This algorithm is not suitable for larger RNAs

since it produces several intersections and uses unnecessary much drawing space.

202

Visual Analysis of Form and Function in Computational Biology

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.17: Comparison of the human (&) and the gorilla (b)) SSU rRNA drawn
using the VARNA radial layout [64].

203

Chapter 5. RNApuzzler

PseudoViewer 3 PseudeViewer 3 [23] is a sophisticated RNA secondary struc-
ture layout algorithm implemented in C# that additionally layouts all possible

types of pseudoknots. The layouts generated using PseudoViewer 3 are useful

as shown in Figures [5.21a] and [5.21b| However, while the authors claim that all

layouts are planar, this is only true for a majority of cases. A non-planar example
is shown in Figure [5.20] Unfortunately, details of the algorithm remain unclear
since the description of the drawing mechanism for the pseudoknot-free regions
is kept very brief [24]. The latest version of the software was published in 2012,
and no open source version is available. The standalone client is not stable and
crashes while loading specific RNA sequences. PseudoViewer 3 is also hosted as
a web service, which loads the same sequences reliably. The complexity of the
algorithm remains unclear and a detailed benchmarking is impossible due to the
instability of the standalone client. Finally, the implementation in C# makes it

cumbersome to use PseudoViewer 3 on operating systems other than Windows.

ARNA Auber et al. [19] presented an algorithm for creating RNA secondary
structure layouts. They included the tool “ARNA" implementing this algorithm in
their graph drawing framework named “Tulip” [35]. Unfortunately, the algorithm
does not seem to be maintained any more and could not be found in the current
Tulip version. Additionally, only a high level overview of the algorithm is given in
the publications. The available information there does neither permit to assess
whether or not the algorithm always produces planar layouts as claimed by the

authors, nor to assess its time complexity.

204

Visual Analysis of Form and Function in Computational Biology

(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.18: Comparison of the human () and the gorilla (b)) SSU rRNA drawn
using the VARNA NAView layout (see also Bruccoleri and Heinrich [22]).

205

Chapter 5. RNApuzzler

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.19: Comparison of the human () and the gorilla (b)) SSU rRNA drawn
using RNAstructure [66]).

206

Visual Analysis of Form and Function in Computational Biology

Figure 5.20: Example of a non-planar drawing produced by PseudoViewer 3

207

Chapter 5. RNApuzzler

(a) Secondary structure of AADC01167538.1/2439-571 Homo sapiens.

(b) Secondary structure of CABD02136541.1/885-2750 Gorilla gorilla.

Figure 5.21: Comparison of the human () and the gorilla (b)) SSU rRNA drawn
using PseudoViewer 3 [23]).

208

Chapter 6

Conclusion

In Detail

Sierra Platinum

Sierra Platinum is a fast and robust multiple-replicate peak-caller. So far, it is
the only peak-caller allowing visual quality control and -steering. Its sophisticated
statistical computation leads to provably better peak-calls compared to current
approaches and tools. The procedure and parameters are chosen to produce
an optimal result with respect to recall and FDR. Sierra Platinum is robust
against noise and thus allows multiple-replicate peak-calling even for replicates
not produced by the same lab or study. Alongside with Sierra Platinum, a
benchmark data set was provided which allows to compare the performance of
peak-callers with respect to specificity and sensitivity. The implementation of
the method is optimized such that only as much memory as required to ensure

a fast computation of the peak-calls is consumed.

iDotter

Dot plots are one of the default visualizations for the analysis of RNA secondary
structure predictions. iDotter enhances and extends this visualization with
state of the art interaction techniques. It is implemented using modern web
programming languages and is provided as freely available web service. Based on
its AP, it is possible to integrate iDotter easily in analysis workflows. The expert
can highlight regions of interest for documenting insights gained during the
exploration of the dot plot. Furthermore, the exporting feature offers functions

for collaboration.

209

Chapter 6. Conclusion

RNApuzzler

RNApuzzler provides a new planar layout algorithm to draw RNA secondary
structures taking into account aesthetic constraints. The algorithms for drawing
RNAs—RNAturtle and RNApuzzler—are implemented in the ViennaRNA pack-
age [54]. Due to the modularity of the implementations, they support testing
alternatives for each of the individual steps. Furthermore, RNApuzzler creates
comparable and deterministic drawings of RNA secondary structures. Compared
to the folding time of an RNA by RNAfold [54], this is achieved with a fraction of
the workload. Moreover, RNApuzzler outperforms most of the available layout
algorithms since they do not produce planar drawings and/or require much more
computation time. Finally, extensions and modifications of both RNAturtle and
RNApuzzler can easily be included into the current implementation since the

algorithms were implemented modularly in ViennaRNA.

In General

In visualization, one usually needs a cooperation partner from the fields of
applied research in order to generate questions and to obtain the necessary data.
Especially in the field of computational biology it is necessary to involve the
domain expert into the design process of the visualizations to create meaningful
representations that are then also used by this community. Based on the size and
the age of this community, several visualization were already developed by this
community. However, they are highly specialized and can not easily be generalized
from a visualization point of view. The majority of these representations are
only well-known in this community, which is why an extensive literature search
was necessary at the beginning of this thesis. A further characteristic is that
the visualizations are directly integrated into the software packages of the
bioinformaticians so that it is possible to interact directly with the processed
data. Furthermore, it is possible to visualize results of intermediate steps of a

workflow without exporting a huge amount of data for a post-processing step.

210

Bibliography

[1] Model of the fine structure of a chromosome.

Last accessed at

10.11.2014 and modified (changed the telomere sequence): http://

upload.wikimedia.org/wikipedia/commons/1/1a/Chromoson.svg,.

[2] A Java API for high-throughput sequencing data (HTS) formats. http:

//samtools.github.io/htsjdk/|

[3] A set of tools (in Java) for working with next generation sequencing

data in the BAM (http://samtools.sourceforge.net) format. http:

//broadinstitute.github.io/picard/.

[4] Apache Commons 0. https

commons-10/.

[5] Apache Commons Logging. https

commons-logging/.

[6] Apache Commons Math. https

commons-math/.

[7] Apache Commons Net. https

commons-net/.

[8] Apache Commons VFS. https

commons-vfs/.

[9] DNA to protein or ncRNA.

://commons .

://commons .

://commons .

://commons .

://commons .

Last accessed

apache.

apache.

apache.

apache.

apache.

org/proper/

org/proper/

org/proper/

org/proper/

org/proper/

at 28.11.2018:

https://commons.wikimedia.org/wiki/File:DNA_to_protein_

or_ncRNA.svg,

[10] Google Gson. https://github.com/google/gson/|

[11] JFreeChart. http://www.jfree.org/jfreechart/|

http://upload.wikimedia.org/wikipedia/commons/1/1a/Chromosom.svg
http://upload.wikimedia.org/wikipedia/commons/1/1a/Chromosom.svg
http://samtools.github.io/htsjdk/
http://samtools.github.io/htsjdk/
http://samtools.sourceforge.net
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://commons.apache.org/proper/commons-io/
https://commons.apache.org/proper/commons-io/
https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-net/
https://commons.apache.org/proper/commons-net/
https://commons.apache.org/proper/commons-vfs/
https://commons.apache.org/proper/commons-vfs/
https://commons.wikimedia.org/wiki/File:DNA_to_protein_or_ncRNA.svg
https://commons.wikimedia.org/wiki/File:DNA_to_protein_or_ncRNA.svg
https://github.com/google/gson/
http://www.jfree.org/jfreechart/

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

JSch - Java Secure Channel. http://www. jcraft.com/jsch/.

Nucleosome organization schema. Last accessed at 27.11.2018:
https://commons.wikimedia.org/wiki/File:Nucleosome_

organization.png.

Schematic representation of histone modifications. Last accessed at
20.11.2018: https://commons.wikimedia.org/wiki/File:Histone_

modifications.png.

A. Abdul-Rahman, G. Roe, M. Olsen, C. Gladstone, R. Whaling, N. Cronk,
R. Morrissey, and M. Chen. Constructive Visual Analytics for Text Similarity
Detection. Computer Graphics Forum, 36(1):237-248, 2016.

A. Ambrogelly, S. Palioura, and D. Soll. Natural expansion of the genetic
code. Nature chemical biology, 3(1):29, 2007.

A. R. Amandio, A. Necsulea, E. Joye, B. Mascrez, and D. Duboule. Hotair
Is Dispensible for Mouse Development. PLOS Genetics, 12(12):1-27, 12
2016.

S. Andrews. FastQC - A Quality Control tool for High Throughput

Sequence Data.

D. Auber, M. Delest, J.-P. Domenger, and S. Dulucq. Efficient drawing
of RNA secondary structure. J. Graph Algorithms Appl., 10(2):329-351,
2006.

T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, |. F. Kim, M. Toma-
shevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko,
A. Yefanov, H. Lee, N. Zhang, C. L. Robertson, N. Serova, S. Davis,
and A. Soboleva. NCBI GEO: archive for functional genomics data sets—
update. Nucleic Acids Res, 41(Database issue):D991-5, Jan 2013.

R. Berezney and K. Jeon. Nuclear Matrix: Structural and Functional
Organization. A Single Volume Reprint of Volumes 162 a and B in

International Review of Cytology Series. Academic Press, 1995.

R. E. Bruccoleri and G. Heinrich. An improved algorithm for nucleic acid
secondary structure display. Computer applications in the biosciences:
CABIOS, 4(1):167-173, 1988.

http://www.jcraft.com/jsch/
https://commons.wikimedia.org/wiki/File:Nucleosome_organization.png
https://commons.wikimedia.org/wiki/File:Nucleosome_organization.png
https://commons.wikimedia.org/wiki/File:Histone_modifications.png
https://commons.wikimedia.org/wiki/File:Histone_modifications.png

Visual Analysis of Form and Function in Computational Biology

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Y. Byun and K. Han. PseudoViewer3: generating planar drawings of large-
scale RNA structures with pseudoknots. Bioinformatics, 25(11):1435-1437,
2009.

Y. Byun and K. Han. An efficient algorithm for planar drawing of RNA
structures with pseudoknots of any type. Journal of bioinformatics and
computational biology, 14(03):1650009, 2016.

R. Cao, L. Wang, H. Wang, L. Xia, H. Erdjument-Bromage, P. Tempst,
R. S. Jones, and Y. Zhang. Role of histone H3 lysine 27 methylation in
Polycomb-group silencing. Science, 298(5595):1039-43, Nov 2002.

D. Charif and J. Lobry. SeqinR 1.0-2: a contributed package to the R
project for statistical computing devoted to biological sequences retrieval
and analysis. In U. Bastolla, M. Porto, H. Roman, and M. Vendruscolo,
editors, Structural approaches to sequence evolution: Molecules, networks,
populations, Biological and Medical Physics, Biomedical Engineering, pages
207-232, New York, 2007. Springer Verlag.

P. Cheung and P. Lau. Epigenetic regulation by histone methylation and
histone variants. Molecular endocrinology (Baltimore, Md.), 19(3):563—
573, Mar. 2005.

F. Crick. Codon-anticodon pairing: the wobble hypothesis. 1966.

F. Crick. Central dogma of molecular biology. Nature, 227(5258):561,
1970.

F. H. Crick. On protein synthesis. In Symp Soc Exp Biol, volume 12,
page 8, 1958.

K. Darty, A. Denise, and Y. Ponty. VARNA: Interactive drawing and editing
of the RNA secondary structure. Bioinformatics, 25(15):1974, 2009.

P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149—
160, 1984.

R. Edgar, M. Domrachev, and A. E. Lash. Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository. Nucleic
Acids Res, 30(1):207-10, Jan 2002.

C. Ericson. Real-Time Collision Detection. Elsevier, 2004.

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

G. Gainant and D. Auber. ARNA: Interactive Comparison and Alignment
of RNA Secondary Structure. In 10th IEEE Symposium on Information
Visualization (InfoVis 2004), 10-12 October 2004, Austin, TX, USA, 2004.

A. J. Gibbs and G. A. Mcintyre. The Diagram, a Method for Comparing
Sequences. European Journal of Biochemistry, 16(1):1-11, 1970.

E. Goren, P. Liu, C. Wang, and C. Wang. BinQuasi: a peak detection
method for ChlP-sequencing data with biological replicates. Bioinformatics,
1:9, 2018.

S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S. R. Eddy.
Rfam: an RNA family database. Nucleic Acids Research, 31(1):439-441,
2003.

A. R. Gruber, R. Lorenz, S. H. Bernhart, R. Neubock, and I. L. Hofacker.
The vienna RNA websuite. Nucleic acids research, 36(suppl 2):W70-W74,
2008.

J. Hartung. A Note on Combining Dependent Tests of Significance.
Biometrical Journal, 41(7):849-855, 1999.

N. Hecker, T. Wiegels, and A. E. Torda. RNA secondary structure diagrams
for very large molecules: RNAfdI. Bioinformatics, 29(22):2941-2942, 2013.

L. V. Hedges and |. Olkin. Statistical methods for meta-analysis. Academic
Press, 1985.

|. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker,
and P. Schuster. Fast folding and comparison of RNA secondary structures.
Monatshefte fiir Chemie/Chemical Monthly, 125(2):167—188, 1994.

S. Hoffmann, C. Otto, S. Kurtz, C. M. Sharma, P. Khaitovich, J. Vogel,
P. F. Stadler, and J. Hackermiiller. Fast mapping of short sequences
with mismatches, insertions and deletions using index structures. PLoS
Computational Biology, 5(9):€1000502, Sep 2009.

S. Holm. A Simple Sequentially Rejective Multiple Test Procedure. Scan-
dinavian Journal of Statistics, 6(2):65-70, 1979.

P. Humburg. ChIPsim: Simulation of ChlP-seq experiments, 2011. R

package version 1.18.0.

Visual Analysis of Form and Function in Computational Biology

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.
Zahler, and D. Haussler. The human genome browser at UCSC. Genome
research, 12(6):996-1006, 2002.

P. Kerpedjiev, S. Hammer, and |. L. Hofacker. Forna (force-directed
RNA): Simple and effective online RNA secondary structure diagrams.
Bioinformatics, 31(20):3377-3379, 2015.

H. Koohy, T. A. Down, M. Spivakov, and T. Hubbard. A Comparison
of Peak Callers Used for DNase-Seq Data. PLoS ONE, 9(5):e96303, 05
2014.

D. Lai, J. R. Proctor, J. Y. A. Zhu, and |I. M. Meyer. R-CHIE: a web
server and R package for visualizing RNA secondary structures. Nucleic
acids research, page gks241, 2012.

E. S. Lander, L. M. Linton, B. Birren, and et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860-921, Feb 2001.

J. Leydold and P. F. Stadler. Minimal Cycle Basis of Outerplanar Graphs.
Elec. J. Comb., 5:209-222 [R16: 14 p.], 1998.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Sub-
group. The Sequence Alignment/Map format and SAMtools. Bioinformat-
ics, 25(16):2078-9, Aug 2009.

R. Lorenz, S. H. Bernhart, C. H. Zu Siederdissen, H. Tafer, C. Flamm,
P. F. Stadler, and I|. L. Hofacker. ViennaRNA Package 2.0. Algorithms for
Molecular Biology, 6(1):26, 2011.

K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J.
Richmond. Crystal structure of the nucleosome core particle at 2.8 A
resolution. Nature, 389(6648):251-260, 1997.

A. T. Lun and G. K. Smyth. csaw: a Bioconductor package for differential
binding analysis of ChlP-seq data using sliding windows. Nucleic Acids
Research, 44(5):e45, 2016.

N. R. Markham and M. Zuker. UNAFold. Bioinformatics: Structure,
Function and Applications, pages 3—-31, 2008.

Bibliography

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

VI

T.S. Mikkelsen, M. Ku, D. B. Jaffe, B. Issac, E. Lieberman, G. Giannoukos,
P. Alvarez, W. Brockman, T.-K. Kim, R. P. Koche, et al. Genome-wide
maps of chromatin state in pluripotent and lineage-committed cells. Nature,
448(7153):553-560, 2007.

G. Muller, C. Gaspin, A. Etienne, and E. Westhof. Automatic display of
rna secondary structures. Bioinformatics, 9(5):551-561, 1993.

E. P. Nawrocki, S. W. Burge, A. Bateman, J. Daub, R. Y. Eberhardt,
S. R. Eddy, E. W. Floden, P. P. Gardner, T. A. Jones, J. Tate, and R. D.
Finn. Rfam 12.0: updates to the RNA families database. Nucleic Acids
Research, 43(D1):D130-D137, 2015.

E. P. Nawrocki and S. R. Eddy. Infernal 1.1: 100-fold faster RNA homology
searches. Bioinformatics, 29(22):2933-2935, 2013.

H. Nishida, T. Suzuki, S. Kondo, H. Miura, Y.-i. Fujimura, and
Y. Hayashizaki. Histone H3 acetylated at lysine 9 in promoter is as-
sociated with low nucleosome density in the vicinity of transcription start
site in human cell. Chromosome research, 14(2):203-211, 2006.

R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman. Algorithms
for loop matchings. SIAM Journal on Applied mathematics, 35(1):68—82,
1978.

Y. Ponty and F. Leclerc. Drawing and Editing the Secondary Structure(s)
of RNA. In E. Picardi, editor, RNA Bioinformatics, pages 63—100. Springer
New York, New York, NY, 2015.

A. Quigley and P. Eades. Fade: Graph drawing, clustering, and visual
abstraction. In International Symposium on Graph Drawing, pages 197-210.
Springer, 2000.

J. S. Reuter and D. H. Mathews. RNAstructure: software for RNA
secondary structure prediction and analysis. BMC bioinformatics, 11(1):129,
2010.

J. L. Rinn, M. Kertesz, J. K. Wang, S. L. Squazzo, X. Xu, S. A. Brugmann,
L. H. Goodnough, J. A. Helms, P. J. Farnham, E. Segal, and H. Y. Chang.
Functional Demarcation of Active and Silent Chromatin Domains in Human
HOX Loci by Noncoding RNAs. Cell, 129(7):1311 — 1323, 2007.

Visual Analysis of Form and Function in Computational Biology

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Roadmap Epigenomics Consortium. Integrative analysis of 111 reference
human epigenomes. Nature, 518(7539):317-30, Feb 2015.

M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics, 26(1):139-140, 2010.

C. S. Ross-Innes, R. Stark, A. E. Teschendorff, K. A. Holmes, H. R.
Ali, M. J. Dunning, G. D. Brown, O. Gojis, I. O. Ellis, A. R. Green,
S. Ali, S.-F. Chin, C. Palmieri, C. Caldas, and J. S. Carroll. Differential
oestrogen receptor binding is associated with clinical outcome in breast
cancer. Nature, 481(7381):389-393, Jan. 2012.

D. Schiibeler, D. M. MacAlpine, D. Scalzo, C. Wirbelauer, C. Kooper-
berg, F. Van Leeuwen, D. E. Gottschling, L. P. O'Neill, B. M. Turner,
J. Delrow, et al. The histone modification pattern of active genes revealed
through genome-wide chromatin analysis of a higher eukaryote. Genes &
development, 18(11):1263-1271, 2004.

M. J. Serra and D. H. Turner. Predicting thermodynamic properties of
RNA. In Methods in enzymology, volume 259, pages 242—-261. Elsevier,
1995.

B. Shabash and K. C. Wiese. Numerical integration methods and lay-
out improvements in the context of dynamic RNA visualization. BMC
bioinformatics, 18(1):282, 2017.

B. Shabash and K. C. Wiese. RNA Visualization: Relevance and the Current
State-of-the-Art Focusing on Pseudoknots. /EEE/ACM Transactions on
Computational Biology and Bioinformatics, 14(3):696—712, May 2017.

B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations. VL '96. IEEE Computer Society, Washington,
DC, USA, 1996.

E. L. Sonnhammer and R. Durbin. A dot-matrix program with dynamic
threshold control suited for genomic DNA and protein sequence analysis.
Gene, 167(1):GC1-GC10, 1995.

J. D. Storey and R. Tibshirani. Statistical significance for genomewide
studies. Proceedings of the National Academy of Sciences, 100(16):9440—
9445, 2003.

VII

Bibliography

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

VIII

R. Tamassia. Handbook of Graph Drawing and Visualization. Discrete
Mathematics and Its Applications. CRC Press, 2013.

D. H. Turner and D. H. Mathews. NNDB: the nearest neighbor parameter

database for predicting stability of nucleic acid secondary structure. Nucleic
Acids Res, 38:D0280-D282, 2010.

Z.Wang, C. Zang, J. A. Rosenfeld, D. E. Schones, A. Barski, S. Cuddapah,
K. Cui, T.-Y. Roh, W. Peng, M. Q. Zhang, et al. Combinatorial patterns
of histone acetylations and methylations in the human genome. Nature
genetics, 40(7):897, 2008.

C. Ware. Information Visualization: Perception for Design. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2 edition, 2004.

J. D. Watson and F. H. Crick. The structure of DNA. In Cold Spring
Harbor Symposia on Quantitative Biology, volume 18, pages 123—-131.
Cold Spring Harbor Laboratory Press, 1953.

M. Wattenberg. Arc diagrams: visualizing structure in strings. In I[EEE
Symposium on Information Visualization, 2002. INFOVIS 2002., pages
110-116, 2002.

Z. Weinberg and R. R. Breaker. R2R-software to speed the depiction

of aesthetic consensus RNA secondary structures. BMC bioinformatics,
12(1):3, 2011.

K. C. Wiese, E. Glen, and A. Vasudevan. jViz.RNA - A Java tool for RNA
secondary structure visualization. |EEE transactions on nanobioscience,
4(3):212-218, 2005.

E. G. Wilbanks and M. T. Facciotti. Evaluation of Algorithm Performance
in ChlP-Seq Peak Detection. PLoS ONE, 5(7):e11471, 07 2010.

P. R. Wright, A. S. Richter, K. Papenfort, M. Mann, J. Vogel, W. R.
Hessa, R. Backofen, and J. Georg. Comparative genomics boosts target
prediction for bacterial small RNAs. Proceedings of the National Academy
of Science of the United States of America, 110(37):E3487-96, Sep 2013.

J. S.Yi, Y. ah Kang, J. Stasko, and J. Jacko. Toward a Deeper Under-

standing of the Role of Interaction in Information Visualization. [EEE

Visual Analysis of Form and Function in Computational Biology

Transactions on Visualization and Computer Graphics, 13(6):1224-1231,
Nov 2007.

[89] Y. Zhang, Y.-H. Lin, T. D. Johnson, L. S. Rozek, and M. A. Sartor. PePr:

a peak-calling prioritization pipeline to identify consistent or differential
peaks from replicated ChlP-Seq data. Bioinformatics, 30(18):2568—75,
Sep 2014.

[90] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E.

[91]

[92]

Bernstein, C. Nusbaum, R. M. Myers, M. Brown, W. Li, et al. Model-
based analysis of ChIP-Seq (MACS). Genome biology, 9(9):R137, 2008.

M. Zuker and D. Sankoff. RNA secondary structures and their prediction.
Bulletin of mathematical biology, 46(4):591-621, 1984.

M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic acids research,
9(1):133-148, 1981.

Bibliography

List

of Figures

[2.1 DNA and its structural organization in the nucleus of eukaryotic |
| cells [1]. oo 8
[2.2 Single stranded pieces of DNA and RNA.| 9
2.3 Watson Crick base pairs] 9
[2.4 Additional possible base pairs occuring in RNA molecules.|. . . 10
[2.5 From a gene to function: either a region of the DNA Is tran- |
[scribed to an mRNA, which is translated into a functional protein |
| or the DNA is transcribed into a functional ncRNA [9].| 11
2.6 Overview of all amino acids that are encoded by codons. [he |

[wvisualization Is read from the center of the circle outwardsso |

that each sequence of nucleotides results In an amino acid or a

start/stop codon.|

12

[2.7 The Central Dogma of Molecular Biology proposed by Crick [30, |
| 29]. The solid arrows show the common information flow and |
[the dashed arrows specialized transfer directions.| 13

[2.8 Schematic structure of a nucleosome [13].|. 15

[2.9 A nucleosome divided Iinto 1its components. [his model was |
[generated from the crystal structure published by Luger et al. |
| 35 16

[2.10 Overview of known histone modifications for the histones H4, |
| H2A, H3, and H2B {14} 17

[2.11 A model of the histone H3 generated from the crystal structure |
| published by Lugeretal. [55[. 18

[2.12 Overview of the substructures of an RNA secondary structure. |
| E: exterior loop, | & B: internal loop, M: multi-loop, H: hairpin |
[loop. | 22

List of Figures

[2.13

Decomposing an RNA secondary structure into substructures.

‘I'he folding space F of the nucleotides / and j can be decom-

posed Into a subfolding space of 141 and J, or into a bifurcation

from/+1to k—1and from k+ 1 to J, where 1 < k <y, and i

and k forma basepair.|

[2.14

Graphical representation of the structural decomposition by the

Zuker algorithm. Base palrs are shown as arcs, dotted lines

represent unpaired subregions. A not fully calculated multi-loop

region Is visualized as mountain ridge.|

25

3.1

Overview of the multiple-replicate peak-calling process. Phase |:

Windows are constructed and single replicate p-values for each

window are computed (pentagons) Phase II: From the single p-

values, combined p-values are computed by combining windows

using the inverse normal method (large pentagon). Phase Il

Suitable narrow and broad peaks (white triangle) are computed

based on the windows combined p-values. [he magnifying

glass symbolizes all points, where a visualization-based quality

control Is included In the peak-calling process. |

29

[3.2

Overview of the multiple-replicate peak-calling process showing

the basic steps of multiple-replicate peak-calling for Sierra Plat-

inum, PePr, BinQuasi, MACS-CR (combine replicates approach

using MACS as single-experiment peak-caller), and MACS-SA

(combine peaks approach using MACS as single-experiment

peak-caller). The MACS approaches and Sierra Platinum ex-

tract the parameters of the underlying model (squares) from

the background data (white circles) and use the model and the

experimental data to calculate p-values (pentagons) indicating

how significantly enriched the experiment (black circles) is. PePr

and BinQuasl generate also a model for the experiment and

use both models to calculate p-values. Based on the p-values,

peaks (triangles) are calculated. Quality control (magnifier) is

provided usually alongside with the peaks. Only Sierra Platinum

allows to examine the quality during the peak-calling process,

while all other methods only allow to examine the quality of the

peaks obtained. |.

X1

Visual Analysis of Form and Function in Computational Biology

[3.3

Example of a boxplot with lower and upper whisker representing

the minimum and the maximum in the data, respectively| . . .

43

[3.4

Example boxplot figure created by Sierra Platinum with the

arranged background.|o

[3.5

Distribution of tags|

44

47

[3.6

Example of the p-value distribution generated during the single

peak-calling step. Red: p-values of one replicate. Orange:

median of p-values over all replicates. Please note, that the

x-axIs shows only the exponent to the basis 10 and that both

axes are scaled logartthmically. |.

[3.7

Example of a significant window distribution over all chromo-

somes. Red: significant windows of one replicate. Orange:

median of significant windows over all replicates. |.

[3.8

Top: heatmap of the Pearson's correlations between the repli-

cates. Bottom: checkbox for enabling or disabling the cor-

relation correction while computing the combined p-value. If

the checkbox Is checked, p* Is computed as described in Sec-

tion[3.3.13] otherwise p* 1Issetto O. |

[3.9

Example of a combined p-value distribution.|.

[3.10

Overview of the options to weight replicates provided by the

GUI of Sierra Platinum. The upper part contains one row

per replicate showing the replicate identifier (left column), the

assigned weight (middle column), and whether the replicate is

used (ON) or not (OFF, right column). The weight checkbox on

top of the middle column allows for disabling weights altogether

(if unchecked). The lower part contains a checkbox that allows

to enable or disable the computation of the quality of the

peaks ("Enable quality counting’, Section [3.3.17]) and a drop-

down-box that allows to select the g-value correction method

(Sections|3.3.10[and|3.3.13]). Pressing the button ('Recalculate’,

bottom right) starts the recomputation. |

X1

List of Figures

[3.11

Comparison of the final p-value distributions with different

welght settings. Each run Is assigned a different color according

to the color legend below the figure. The p-values of the bins

are mapped to the x-axis while the amount of windows having

the respective p-value are mapped to the y-axis. A logarithmic

scale Is used In both cases. Here, three different runs are shown

assigned to the colors red (run 1), orange (run 2), and green

(run 3). From the p-value distribution alone, run 1 would be

preferred over run 3overrun 2. | L.

312

Comparison of the overlap of the peaks between the replicates. |

68

71

[3.13

Final peak quality boxplots for experiment and background of 6

replicates. |

73

76

7

[3.16

‘I'he File Menu showing the sub menu for storing and loading a

configuration. |

78

[3.17

‘T'he settings-tab in the GUI of Sierra Platinum. In the large,

middle window, the replicate information i1s shown. For each

replicate, the file names for the experiment and the background

are given. In the lower part, the "Add Replicate” button allows

adding additional replicates. Below this button, the parameters

for the ‘'window size' and the ‘'window offset’ can be changed.

Further, the "Job name’, the "p-value cutoff’, and the 'number

of threads' can be assigned. Finally, to the right, the 'Start’

button allows starting a computation and the progress bar to the

right of this button shows the progress of the computation. A

context sensitive menu In the main window allows to change the

files associated with the replicates’ experiment and background

and to delete replicates. |

XV

Visual Analysis of Form and Function in Computational Biology

[3.18 A replicate tab Iin the GUI of Sierra Platinum. Top left: the

estimated Poisson distribution for experiment and background

(Figure [3.5a)). Top middle: the count distribution for experi-

ment and background (Figure [3.5b)). Top right: the mapping

quality (Figure[3.4]). Bottom left: the estimated Poisson distri-

bution for adjusted experiment and background (Figure [3.5c]).

Bottom middle: the p-value distribution over all windows (Fig-

ure [3.6)). Bottom right: the distribution of significant windows

per chromosome (Figure3.7). [.

81

[3.19 The "Summary tab in the GUI of Sierra Platinum. Left top: the

Pearson Correlation of the replicates. Left bottom: checkbox

allowing for enabling or disabling the correlation based correction

(Figure [3.8]). Right top, middle column: weights affecting the

combination of the single replicates for creating the combined

peaks. Right top, right column: enabling (ON) or disabling

(OFF) a replicate. Right bottom row: two parameters and

restarting the computation (Figure[3.10). |.

B20 The P F ; the GULoF S Pl [eF l

(see also Figure|3.11)): the final p-value histogram showing the

combined p-values for all windows. Right (see also Figure|3.12b|):

the percentage of agreement of each replicate with the multiple-

replicate result. Three runs with different setting for weights

and different replicate combinations are shown. |. 83
[3.21 The File Menu showing the sub menu for storing and loading |
the data mapper. |. L 83

[3.22 Overview of the Sierra Platinum Service container. The web |

server handles the user registrations and starts the Sierra Plat-

Inum Server after a valid activation. All necessary user Infor-

mation are stored In an SQLite database. After a successful

registration the user can upload his data with the Sierra Plat-

inum Client and start the computation. Afterwards, It Is possible

to export all results and visualizations within the client.|

[3.23 Quality measurements for a noise free replicate.|

100

[3.24 Quality measurements for a replicate with low sequencing quality[101

[3.25 Quality measurements for a replicate with low enrichment]

[3.26 Quality measurements for an under-sequenced replicate]

[3.27 Quality measurements for an over-sequenced replicate]

102
104
105

XV

List of Figures

[3.28 Quality measurements for a replicate having the wrong signal|. 106
[3.29 Evaluation of the p-value cutoff on the result quality for the |
noise-free dataset. |. 108
[3.30 Recall of the peak-calls using different combinations of window |
size, window offset, and cutoff. 110
[3.31 Positive predictive value of the peak-calls using different combi- |
nations of window size, window offset, and cutoff,. 111
[3.32 False discovery rate of the peak-calls using different combina- |
tions of window size, window offset, and cutoff,) 112
[3.33 Number of peaks found using different combinations of window |
size, window offset, and cutoff.. 113
[3.34 Evaluation of the g-value methods on the noisy, the bad, and |
the noise-free data set (Section3.5.7).] 116
[3.35 Evaluation results for the noise-free data set (6 replicates). | . 118

[3.36 Evaluation results for data sets with noise. First column: fow |

sequencing quality. Second column: low enrichment. Third

column: too low sequencing depth. Fourth column: too high

sequencing depth. First four rows: one bad replicate; three

replicates In total. Second four rows: two bad replicates; four

replicatesintotal. |,

120

[3.37

Evaluation results for quality deficits in some of the data sets.

First four rows, left to right: one under-sequenced replicate with

low enrichment and low quality, two under-sequenced replicates

with low enrichment and low quality, and a mixture of quality

Inspired by real data for H3K4me3 In embryonic stem cells.

Second four rows, left to right: one, two, and three noisy

replicates. |

122

[3.38

Overview of the possible peak overlaps with three replicates.

Only the first overlap (marked with green) is a valid peak overlap

and should be counted, the other three (marked with red) are

discarded. Similarly, the merging process overlaps the peaks of

all four peak-calling methods.|.

126

[3.39

Agreement of the peak predictions: [he overlap of the peaks

predicted by Sierra Platinum (blue), MACS-SA (green), MACS-

CR (orange), and PePr (red) is shown.|.

XVI

127

Visual Analysis of Form and Function in Computational Biology

[3.40 Genomic location of HO TAIR locus: ['he peak-calls are shown |
[below the transcript annotation of HO [AIR. Peak-calls for the |

[n fablelB.I3L 1 134

[3.41 Genomic location of Hox-C locus containing the HO TAIR gene: |

[‘' he peak-calls are shown below the transcript annotation of |

[3.42 Genomic location of Hox-D locus: The peak-calls are shown |

[below the transcript annotation of Hox-D. Peak-calls for the |

| in Tablel3. 130 136

[3.43 Peak coverage for each replicate: For each peak, the number

of supporting reads Is calculated. Peaks are counted In the

(blue), and more than 200 supporting reads (green). The peaks

|
|
categories no supporting reads (red), 1-200 supporting reads |
|
|

are the H3K4me3 peaks predicted by the data set ESC. Replicate
[numbers refer to those in Table3. 1111 139

[4.1 Overview of the postscript dot plot generated by ViennaRNA [54]

showing base pair probabilities of an RNA. Black squares are

used for showing the possibility of two nucleotides forming a

the size of these squares: large squares imply a high probability,

while small squares imply a low probability. The diagonal Is used

as a landmark only. It divides the upper-right triangle showing

|
|
|
pase palr. | he probability for forming this base pair Is encoded In |
|
|
|
|

the consensus probabllities from the lower-left triangle showing

the probabilities according to the energetically best solution.| . 144

[4.2 Overview of the iDotter interface showing the same dot plot |

[as Figure }4.1l The nucleotide sequence Is only shown at the |

| borders, If the nucleotides are readable In the current zoom level.]146

[4.3 Comparison of the dot plot interfaces after zooming Into a sub- |

| sequence. In the postscript view (a), the nucleotide sequence |

| is no longer visible, while in iDotter (b) it stays visible at all |

[borders easing the analysis of sub-sequences. | 147

List of Figures

!

Each dot provides detalls on demand by mouse-over showing a

tool tip: element ID, X showing the nucleotide of the column

and Its position, and Y showing the nucleotide of the row and

its position. The (biological) attributes mapped onto ‘Size’ and

"Color” are application dependent. |

[4.5

Highlighting dots |4.5a[as well as rows and columns [4.5b]. |

150

152

46

Marking dots and regions of dots (Figure |4.5a) and marking

rows and columns (Figure [4.5b)) can be combined. |

153

[4.7

In contrast to the postscript visualization, iDotter provides

choosing the color gradient. Additionally, choosing the high-

lighting colors for dots ('Selected Dot Color’, Figure |4.5a])

and columns/rows ('Linemarker Color’, Figure|4.5b) is possible.

Moreover, It Is possible to reset highlighting in the dot plot by

pressing the 'Remove Marker' button. |.

153

[4.8

Representation of a bulge, an internal loop, a hairpin loop, and

a multi-loop In 1Dotter. The highlighted regions annotate the

(4.9

‘I'he predicted energetically best solution for the RNA shown In

Figure [4.2] lower left visualized as graph using RNApuzzler. "1

annotates a bulge, 2" annotates an internal loop, '3" annotates

a hairpin loop, and '4" annotates a multi-loop.|.

5.1

Different elements of the RNA secondary structure (ja)) and the

corresponding fine grained (b)) and coarse grained (|c)) trees as

well as the corresponding geometries (d). |.

[5.2

‘|'he turtle starts at P; and walks a fixed distance to /. [here,

It changes Its direction by an angle o, and walks a fixed distance

to ID3|

[5.3

‘I'he turtle walks through a loop: First, the radius of the loop Is

approximated. [hen, the turtle changes Its direction based on

the arc segment that the current and the next position form in

the loop. Please note, that the turtle walks on the chords of

the loop. The arcs are drawn during a post-processing step.|

XVIII

171

Visual Analysis of Form and Function in Computational Biology

[5.4

I'he RNAfold-predicted minimum free energy structure of the

Magn 3109 RNA of Magnetospirillum magnetotacticum se-

quence, retrieved from RFAM [38]. (a) Drawing generated by

RNAturtle. (b) Tree structure superimposed on the RNAturtle

drawing. (c) Extracted treeonly|.

G5

Any sibling intersection can be resolved (inefficiently) by only

Increasing the radius of the common multi-loop. Changing the

angles of outgoing stems up to a certain degree to resolve

Intersections In addition to Increasing the loop's radius Improves

the efficiency of the approach. (a) A sibling intersection between

the two stems of the multi-loop. (b) The sibling intersection

is resolved by only increasing the radius of the multi-loop. (c)

‘I'he sibling Intersection Is resolved by changing the angles of

the outgoing stems In addition to increasing the radius of the

multi-loop. |

5.6

Ancestor intersection (jal) and its resolution (bf). |

57

Exterior intersection (ja]) and its resolution (b)). |

[5.8

Siblings intersection ([af) and its resolution (b)). |

177
178
182
184

59

Exterior subtree intersection ([a) and its resolution by stretching

(b)) or flipping (). |

186

[5.10

Comparison of the human and the gorilla SSU rRNA drawn

using RNApuzzler without and with optimization. |

190

G.11

Drawings of the secondary structure of the tRNA-Leu (trnlL)

gene and trnlL-trnk Intergenic spacer from the chloroplast of

Streptocarpus papangae isolate S106 (FJ501444.1/1-447 re-

trieved from RFO0028 [38])]

.12

Comparison of the human and gorilla SSU rRNA. (a) Secondary

structure of AADC01167538.1/2439-571 Homo sapiens drawn

with NAView. (b) Secondary structure of AADC01167538.1/2439-

571 Homo sapiens drawn with RNApuzzler. (c) Secondary struc-

ture of CABD02136541.1/885-2750 Gorilla gorilla drawn with

NAView. (d) Secondary structure of CABD02136541.1/885-

2750 Gorilla gorilla drawn with RNApuzzler| 195
[5.13 Comparison of the human (la) and the gorilla (b)) SSU rRNA |
drawn using Forna [48[. | 197

List of Figures

.14

Comparison of the human (a)) and the gorilla (b)) SSU rRNA

drawn using jViz.RNA 2.0 [85]. Edge crossings are annotated

XX

[with arrows.)o 199
[5.15 Comparison of the human ([a) and the gorilla (b)) SSU rRNA |
| drawn using VizRNA 40 [73].] 200
[5.16 Comparison of the human ([a)) and the gorilla (b)) SSU rRNA |
| drawn using RNAfdI [41]. | 201
[5.17 Comparison of the human ([a)) and the gorilla (b)) SSU rRNA |
| drawn using the VARNA radial layout [64]. | 203
[5.18 Comparison of the human (la)) and the gorilla (b)) SSU rRNA |
| drawn using the VARNA NAView layout (see also Bruccoleri [
| and Heinrich [22D).], 205
[5.19 Comparison of the human ([a)) and the gorilla (b)) SSU rRNA |
| drawn using RNAstructure [66]). | 206
[5.20 Example of a non-planar drawing produced by PseudoViewer 3| 207
[5.21 Comparison of the human ([a)) and the gorilla (b)) SSU rRNA |
| drawn using PseudoViewer 3 23]).] 208

List

of Tables

3.1

'he steps performed by Sierra Platinum: section and name

of the step, and whether 1t I1s part of the method, a quality

measure, or a visualization, respectively. |

[3.2

Constructing all windows for 6 replicates: time for different

strategles | L

[3.3

‘I'he time needed for constructing all windows for 6 replicates

using the strategy |Chunk Parallel Coherent| with different thread

pool sizes|

[3.4

Computing window neighborhoods and p-values for 6 replicates

and 3 different neighborhood sizes: time for different strategies.

| 52

[3.5

Time needed for transforming p- to g-values using different

strategles|

57

[3.6

Computing Pearson's correlation for 6 replicates: time for dif-

ferent strategles. | L

[3.7

Chromosome names and lengths|

63
92

[3.8

Parameter settings for the different levels of quality. See Sec-

tion [3.5.5/ for a description of the parameters.|.

[3.9

Overview of the data sets used for H1. |Ds are only used

internally to distinguish the different replicates available for H1.

For each replicate, the sequencing center, which produced the

data, and the GEO identifications are provided for the data

sets H3K4me3, H3K27me3, H3K9me3, H3K27ac, H3K9ac, and

ChlP-mnput. |.

129

[3.10

Decisions based on visual Inspection of the quality of the repli-

cates listed Iin Table[3.9] /D: ID given Table(3.9] Weight: weight

used, off: replicate excluded, empty cell: replicate not available

130

XXI

List of Tables

[3.11

Overview of the data sets used for ESC: IDs are only used

Internally to distinguish between the different replicates avallable

for embryonic stem cell lines. For each replicate, the sequencing

center, which produced the data, and the GEO identifications

are provided for the data sets H3K4me3, H3K27/me3, H3K9me3,

H3K9ac, and the ChlP-input. | 131

[3.12 Decisions based on visual inspection of the quality of the repli- |

[cates listed In Table |3.11] /D: ID given Table[3.11] Weight: |
[welght used, off: replicate excluded, empty cell: replicate not |
[avallable. |o 132
[3.13 Color coding used In the figures showing the peaks as UCSC |

[tracks at selected genomic positions.|. 133
5.1 Benchmark results comparing folding and drawing time for dif- |

[ferent REAM families). 191
[5.2 Constraints met by different algorithms: v': met, *%: not fully |

[met, ?: unclear, X: not met| 192

XXII

Visual Analysis of Form and Function in Computational Biology

Fullname
Born Name
Date of Birth
Place of Birth

03,/2015

10/2013 —
03/2015

09/2013

10/2009 —
09/2013

since 08/2018

4/2015 —
07/2018

Wiegreffe

Curriculum Scientiae

Personal Information

Daniel Wiegreffe
Gerighausen
14.10.1989
Lingen (Ems)

Education

Master of Science, Computer Science, Universitit Leipzig,
Thesis Title: TiBi-3D - a Guide through the World of Epigenetics,
Supervisor: Prof. Scheuermann, Prof. Prohaska.

Study of Master of Science, Computer Science, Universitit
Leipzig.

Bachelor of Science, Computer Science, Universitit Leipzig,
Thesis Title: Kombination von K-means++ Clustering und
PCA zur Analyse von Chromatin-Daten, Supervisor: Prof.
Scheuermann.

Study of Bachelor of Science, Computer Science, Univer-
sitdt Leipzig.

Academic Appointments

Project Coordinator, Universitit Leipzig,
Coordination of the EFRE project "Data Mining and Value
Added".

PhD student, Universitit Leipzig,
Developing new visualizations for Big Data from biological
sources.

XX

Chapter 7. Curriculum Scientiae

XXIV

4/2013 -
12/2014

2018

2018

2017

2016

2019

2018

2016

2016

2014

2014

Student Assistant, Universitit Leipzig,
Assistance in the 'ChromatinVis' project, Supervisor: Prof.
Scheuermann, Prof. J. Prohaska, Dr. Zeckzer.

Publications related to the Dissertation

Method Paper, RNApuzzler: Efficient Outerplanar Drawing
of RNA-Secondary Structures, Wiegreffe, Alexander, Stadler,
Zeckzer, Oxford Bioinformatics.

Research Note, The Sierra Platinum Service for generating
peak-calls for replicated ChlP-seq experiments, Wiegreffe, Miiller,
Steuck, Zeckzer, Stadler, BMC Research Notes.

Application Paper, iDotter - an interactive dot plot viewer,
Gerighausen, Hausdorf, Zanker, Zeckzer, WSCG 2017 - Pilsen.

Method Paper, Sierra platinum: a fast and robust peak-caller
for replicated ChlP-seq experiments with visual quality-control
and -steering, Miiller, Gerighausen, Farman, Zeckzer, BMC
Bioinformatics.

Publications

Summary Paper, Big Data Competence Center ScaDS Dres-
den/Leipzig: Overview and selected research activities, Rahm,
Nagel, Peukert, Jakel, Gartner, Stadler, Wiegreffe, Zeckzer,
Lehner, Datenbanken-Spektrum (accepted).

Application Paper, Analyzing Histone Modifications Using
Tiled Binned Clustering and 3D Scatter Plots, Zeckzer, Wiegreffe,
Muller, WSCG 2018 - Pilsen.

Method Paper, Analyzing Histone Modifications in iPS Cells
Using Tiled Binned 3D Scatter Plots, Zeckzer, Gerighausen,
Muller, BDVA 2016 - Sydney.

Research Paper, A consensus network of gene regulatory factors
in the human frontal lobe, Berto, Perdomo-Sebogal, Gerighausen,
Qin, Nowick, Frontiers in Genetics.

Short Paper, Using Significant Word Co-occurences for the
Lexical Access Problem, Feist, Gerighausen, Konrad, Richter,
Eckart, Goldhahn, Quasthoff, CogAlex Workshop 2014.

Method Paper, Analyzing Chromatin Using Tiled Binned Scat-
terplot Matrices, Zeckzer, Gerighausen, Steiner, J. Prohaska,
BioVis 2014 — Boston.

Visual Analysis of Form and Function in Computational Biology

2018
2017

2017

2016
2015
2014

2014

2014

2013

04/2016 —
07/2016

10/2015 —
02/2016

10/2012 —
02/2013

09/2012 -
09/2012

05/2012 —
07/2012

Conferences
Conference Talk, Introduction of the Supergenome Browser,
33rd TBI Winterseminar in Bled (Slovenia).

Conference Talk, RNApuzzler 1V, 15th Bioinf Herbstseminar
in Doubice (Czech republic).

Poster, A fast and robust peak-caller for replicated ChlP-seq
experiments with visual quality-control and -steering, Miiller,

Gerighausen, Farman, Zeckzer, at BiVi 2017 - Edinburgh (United

Kingdom).
Conference Talk, RNApuzzler Il, 31st TBI Winterseminar in
Bled (Slovenia).

Conference Talk, RNApuzzler, 13th Bioinf Herbstseminar in
Doubice(Czech republic).

Conference Talk, iDotter - An interactive dotplot viewer, 12th
Bioinf Herbstseminar in Doubice (Czech republic).

Poster, ChromatinVis: a tool for analyzing epigenetic data,

Gerighausen, Zeckzer, Steiner, J. Prohaska, at Vizbi 2014 -

Heidelberg.

Conference Talk, Clustering to the power of 2, Application of
clustering algorithms on epigenetic data, 29th TBI Winterseminar
in Bled (Slovenia).

Conference Talk, New visualizations of chromatin data, 11th
Bioinf Herbstseminar in Doubice (Czech republic).

Teaching Experience

Teaching Assistant, Universitat Leipzig,
'Praktikum Objektorientierte Programmierung’, Lecturer: Dr.
Zeckzer.

Teaching Assistant, Universitat Leipzig,
'Modellierung und Programmierung I', Lecturer: Prof. Prohaska.

Student Assistant, Universitit Leipzig,
'Grundlagen der Informatik und Numerik’, Lecturer: Dr. Meiler.

Student Assistant, Universitit Leipzig,
Remidial course 'c programming’, Lecturer: Dr. Meiler.

Student Assistant, Universitit Leipzig,
'Praktikum Objektorientierte Programmierung’, Lecturer: Dr.
Meiler.

XXV

Chapter 7. Curriculum Scientiae

XXVI

2018

2018

2018

2018

2017

2017

2017

2016

2016

2016

2014

Co-Supervised Bachelor- and Masterthesis
Bachelorthesis, Visualization of 3D Tiled Binned Scatter Plots
Using a Virtual Reality Enviroment, Michelle Kampfrath.

Masterthesis, segemehlQC - A quality control tool for mapped
NGS data, Marcel Winter.

Bachelorthesis, Sierra Platinum as a Webservice, Matthias
HaeBner.

Masterthesis, Visualization of synteny-based orthology data,
Yuan Peng.

Masterthesis, Planares Zeichnen von RNA-Sekundarstrukturen,
Daniel Alexander.

Bachelorthesis, Visualisierung von Chromatindaten in Virtual
Reality, Dominik Michael.

Masterthesis, Masakari - Algorithms for Segmenting Chromatin,
Alrik Hausdorf & Nicole Hinzmann.

Bachelorthesis, Tiled-Binned Clustering of Multi-Variate Data,
Karl Kaiser.

Bachelorthesis, Zeichnen von RNA-Sekundarstrukturen mittels
Konfigurationen im ViennaRNA Package, Daniel Alexander.

Bachelorthesis, iDotter - a RNA Dot Plot Viewer, Sebastian
Zanker.

Bachelorthesis, Analyse von Chromatin durch den k-Median
und das Consensus Clustering, Daniel Abitz.

Programming skills

Java, R, C, C++, and Perl
advanced knowledge of Linux and Bash
advanced knowledge of LaTeX and BibTeX

Languages

German

English

Eidesstattliche Erklarung

Hiermit erklare ich, die vorliegende Dissertation selbststandig und ohne unzulas-
sige fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angefiihrten
Quellen und Hilfsmittel benutzt und samtliche Textstellen, die wortlich oder
sinngemald aus veroffentlichten oder unveroffentlichten Schriften entnommen
wurden, und alle Angaben, die auf miindlichen Auskiinften beruhen, als solche
kenntlich gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten

Materialien oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, den 20. Dezember 2018

Daniel Wiegreffe

	Preface
	Biological Background
	Molecular Biology
	Epigenetics
	RNA Secondary Structure Prediction

	Sierra Platinum
	Introduction
	Goal
	Overview of the Multi-Replicate Peak-Calling Process

	Related Work
	Methods
	Window Construction
	Window Joining
	Read Quality
	Poisson Distribution
	Tag Count Frequencies
	Scaling
	Normalized Poisson Distribution
	Neighborhoods
	Single p-Value
	p2q Transformation
	Significant Windows
	Pearson's Correlation between Replicates
	Combined p-Values
	Filtering and Weighting
	Agreement between the Multi-Replicate Result and the Single Replicate Results
	Computing Peaks
	Computing Peak Quality
	Exporting Peaks

	Implementation
	System
	Client GUI
	Replicates, Parameters, and Starting Computation
	Quality Control
	Correlation Information, Recalculation Parameters, and Restarting Computation
	Peak Information
	Quality Information
	Additional Functionality
	Server
	Server Configuration File
	Service Implementation

	Benchmark Data Set
	Context
	State-of-the-Art and Gaps
	Goal
	Challenges
	Benchmarking Data Set Creation
	Benchmarking Replicates
	Benchmarking Data Sets

	Statistical Measures for Quality Assessment
	Evaluation
	Introduction
	Sierra Platinum Quality Measures and Visualizations
	Parameter Selection
	Approach Comparision

	Results
	Real World Data Sets
	Peak Agreement
	Peak-Calls
	Hox-C and Hox-D Clusters
	Peak Coverage Analysis

	iDotter
	Introduction
	Background and Related Work
	Problem Statement: Current State and Issues
	Solution
	Data Import
	Visualization
	Interaction
	API
	Implementation

	Results
	Use Case

	RNApuzzler
	Introduction
	Theory
	Directed Rooted Trees
	RNA Secondary Structure
	RNA-Trees

	Method RNAturtle
	Drawing Constraints
	Turtle Algorithm

	Method RNApuzzler
	Drawing Constraints
	Coordinate transformation and data structures
	Main Algorithm

	Optimization
	Benchmarks
	Results
	Comparison to other algorithms
	Comparison to NAView
	Comparison to other tools

	Conclusion
	List of Figures
	List of Tables
	Curriculum Scientiae

