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ABSTRACT 

The p85 subunit of phosphatidylinositol 3’-kinase (PI3K) has long been thought of 

as a regulatory subunit that has no other function than the regulation of the p110 

catalytic subunit.  Our laboratory is studying other roles of the p85 subunit, in particular 

determining the role of the p85 BH domain.  The BH domain has homology to GTPase 

activating protein (GAP) domains that are involved in the stimulation of monomeric G 

proteins to hydrolyze their bound GTP to GDP.  This converts the G protein from its 

active conformation to its inactive conformation.  We have determined that p85 interacts 

with Rab proteins, monomeric G proteins that regulate vesicle fusion during the 

endocytosis of receptors.  We have shown that p85 binds to Rab5 regardless of 

nucleotide-bound state of Rab5.  The p85 subunit of PI3K has in vitro GAP activity 

towards Rab5.  It was determined that p85 also has in vitro GAP activity towards Rab4, 

Rab7, Rab6 as well as the Rho-family G proteins, Rac1 and Cdc42.  This GAP activity 

was localized to the BH domain of p85 and mutation of Arg 274 to Ala abolishes the 

GAP activity of p85.  When this p85R274A mutant was expressed in cells, PDGFR 

degradation was severely inhibited and there was a corresponding increase in the 

duration of MAPK and Akt signalling.  This increase in cell signalling caused a 

transformed phenotype in cells expressing the p85 protein with the Arg 274 mutation.  

These cells have lost contact inhibition for growth, are able to grow independent of 

attachment as well as in the presence of limited growth factors.  They also form tumours 

in nude mice.  These cellular effects seem to be due to an increase in receptor recycling 
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because of the loss of the GAP activity of p85.  This increase in receptor recycling may 

interfere with receptor targeting to the late endosome, which would cause the decrease in 

receptor degradation that is seen in the p85R274A cells. 
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1.0 INTRODUCTION 

1.1 Overview of Signal Transduction Pathways 

Signal transduction is the process that allows a cell to interact with its 

environment.  Cells are the basic building blocks of life and in higher organisms they are 

highly differentiated into specialized tissues.  These specialized cells must communicate 

with cells in the same tissue and cells in other tissues for the organism to function 

properly.  If this communication breaks down it can cause cell death or disease, which 

could lead to the death of the entire organism.  Signal transduction allows the cell to 

regulate itself in the context of the larger organism, including when to grow and divide 

in response to the levels of nutrients available for these and other functions. 

Signal transduction starts at the exterior of the cell with the binding of a ligand to a 

receptor.  There are many types of receptors, which respond to varied stimuli such as 

temperature, light, sound, pressure, vitamins, hormones, neurotransmitters, growth 

factors, immunoglobulins, oxygen and other chemicals or environmental signals 

(Schuller, 1991).  The receptor transduces the information supplied from the ligand at 

the exterior of the cell to the interior of the cell.  The signalling cascade that is initiated 

by a few receptors is amplified by the activation of signalling proteins.  The challenge 

for a cell is to convey all the information required, but to use as few unique signalling 

molecules and proteins as possible (Csiszar, 2006).  Efficiency is required in order to 

allow for cellular survival.  If the cell was obliged to have a large set of unique proteins 

and signalling molecules for each possible receptor, the energy demands required to 
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produce the molecules would be too large for the viability of the cell (Csiszar, 2006).  

By having a single protein function in multiple pathways within the cell, the total 

number of required proteins can be greatly reduced.  In addition, if the cell had to design 

new proteins for every pathway, the time it would take to evolve new signalling 

pathways would be horrendously long (Csiszar, 2006).  These signalling cascades are 

often illustrated as linear pathways but in reality the signalling cascades are complicated 

networks of intersecting pathways (Citri and Yarden, 2006).  The activation of a receptor 

can induce many responses within the cell for both short-term and long-term cellular 

changes.  For example, the short-term quick responses can be the activation of neurons 

or the mobilization of the cytoskeleton, while the long-term responses can be the 

differentiation or division of the cell.  Activation of a single receptor can cause many 

different effects in the cell due to either the duration and/or strength of the signal, or the 

activation of multiple signalling cascades.  Also, cells use the same downstream 

signalling proteins in multiple different signalling cascades that have various effects on 

the cell.  Such intricacies create the problem of how cells use the same receptors and 

downstream proteins to control and activate multiple different pathways at one time.  

This is accomplished through modification of the proteins and sequestering proteins in 

space and/or time. 

The most common way in which a signal is transmitted through the cell is by the 

serial phosphorylation or dephosphorylation of proteins to change their activation states.  

Proteins are typically phosphorylated on one or more tyrosine, serine and threonine 

residues.  The level of protein activation or its binding specificity can be altered by these 

phosphorylation events.  Other common modifications including methylation, 

acetylation, ubiquitylation, glycosylation, myristoylation and prenylation also alter the 
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activity or function of a protein.  All of these modifications can have several different 

effects.  They can increase or decrease the activity of enzymes, or alter their subcellular 

location.  They can also change the conformation of the protein to form or unmask 

binding sites for lipids, small molecules and other proteins.  For example, a 

phosphorylated tyrosine plus three to six adjacent amino acids form a binding motif for a 

specific Src homology region 2 (SH2) domain (Bradshaw and Waksman, 2002; Grucza 

et al., 1999).  This SH2 binding motif is created by the phosphorylation of the tyrosine 

contained in the context of a specific sequence. 

Apart from the physical modification of individual proteins, sequestering proteins 

in time and space can alter signalling cascades.  The proteins can have varied expression 

profiles where the proteins can be expressed concurrently or individually and this can 

change the activities of the proteins.  Proteins can also be degraded so that they cannot 

interact until they are resynthesized at the proper time.  Protein function may be 

influenced through interactions with other proteins such as in cases where activation of a 

protein is dependent on a secondary protein.  An example of this is the cell cycle 

proteins cyclin-dependent kinases (CDKs) and cyclins.  The progression of cells through 

the cell cycle is regulated by CDKs, which in turn are activated by cyclins (Deshpande 

et al., 2005; Murray, 2004).  The levels of CDKs remain constant in the cell while the 

level of cyclins are low in the cell until the appropriate stage of the cell cycle when the 

cyclin levels increase (Deshpande et al., 2005; Murray, 2004).  The increase in the 

amount of cyclin causes the formation of the cyclin-CDK complexes that activate the 

CDK and allow the progression of the cell through the cell cycle (Deshpande et al., 

2005; Murray, 2004). 
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Proteins are very commonly sequestered in space, either from each other, a co-

activator, an inhibitor or a substrate.  A classical example of this is the co-activator Ca++.  

Calcium is a second messenger that is sequestered in the endoplasmic reticulum (ER) 

(Chin and Means, 2000; Thomas et al., 1996; Vetter and Leclerc, 2003).  Upon release 

from the ER the calcium binds to calmodulin to bind and activate various proteins 

resulting in signal propagation (Chin and Means, 2000; Thomas et al., 1996; Vetter and 

Leclerc, 2003).  In signalling cascades, all of the modifications and methods mentioned 

above can be used in combination to control and fine tune the signalling information 

sent to the cell.  This allows the same signalling proteins to generate different signals for 

the cell.  These signals are very diverse and regulate several signalling pathways 

including cell proliferation and survival, differentiation and chemotaxis of cells 

(Aaronson, 2005).  At the whole organism level these cellular functions permit 

developmental processes, tissue differentiation, immune responses, wound healing and 

tissue repair (Aaronson, 2005).  A deregulation of cell signalling can cause the cell to 

proliferate in an uncontrolled manner resulting in cancer.  Elucidation of the various 

components of the signalling pathways and how the components interact and are 

deregulated will give a better understanding of cell function and how cancer develops.   

 

1.2 Receptor Tyrosine Kinases 

The receptor tyrosine kinase (RTK) family of proteins are integral membrane 

proteins that are composed of an extracellular ligand-binding domain, a transmembrane 

domain that passes once through the plasma membrane and an intracellular kinase 

domain.  There are several RTK subfamilies identified according to the structural 

characteristics of the receptors and the ligands that bind to the receptors.  The main 
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structural classifications are according to the organization of the extracellular domain 

and the presence of an insert in the kinase domain (Fig. 1.1)(Reith and Panayotou, 

1997).  The major RTK subfamilies include the epidermal growth factor receptors 

(EGFR/ErbB), the insulin and insulin-like growth factor receptors (IR and IGFR), the 

platelet-derived growth factor receptors (PDGFR), the vascular endothelial growth 

factor receptors (VEGFR), the fibroblast growth factor receptors (FGFR), the hepatocyte 

growth factor receptors (HGFR) and the nerve growth factor receptors (NGFR) (Reith 

and Panayotou, 1997).  Each of these RTK subfamilies drives different but overlapping 

processes of cell survival and cell division with some specific functions.  This can be 

illustrated with the insulin receptor.  Although insulin binding to the receptor promotes 

cell survival similar to other RTKs, its main and unique function is energy regulation 

through glucose metabolism and glucose uptake via the glucose transporter, GLUT4 

(Kanzaki, 2006; Saltiel and Kahn, 2001).   

Another example of a specific but overlapping function is that activation of the 

PDGFR and VEGFR both have the ability to stimulate angiogenesis (Conway et al., 

2001; Reigstad et al., 2005).  The reason why growth factor receptors have overlapping 

function is redundancy.  Redundancy is important because it allows the cell to function 

normally with a small amount of deregulation due to loss or mutation of proteins.  

Although most cell types can and do express several different receptors they may not be 

expressed at the same time or the ligand may not be available; therefore, the redundancy 

in signalling allows cells to function in changing environments and to integrate cellular 

responses to several external stimuli. 
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EGFR PDGFR FGFR NGFRInsulin
Receptor VEGFR HGFR

Figure 1.1  Receptor Tyrosine Kinase Subfamilies. The receptors are 
classified by three elements, the growth factors they bind, if they contain an 
insert in their kinase domain and the conformation of their extracellular 
domains.
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The ligands that bind to RTK are proteins that are usually expressed as pro-

ligands, which are proteolytically cleaved into the active ligand (Fredriksson et al., 

2004; Harris et al., 2003; Heldin and Westermark, 1999; Reith and Panayotou, 1997).  

Most pro-ligands are bound within the membrane or extracellular matrix (Fredriksson et 

al., 2004; Harris et al., 2003; Heldin and Westermark, 1999; Reith and Panayotou, 1997) 

and are activated by proteolytic cleavage by proteinases (Fredriksson et al., 2004; Harris 

et al., 2003; Heldin and Westermark, 1999; Reith and Panayotou, 1997).  The activation 

of the pro-ligand also allows for cross-talk between the G protein-coupled receptor 

(GPCR) signalling pathway and the RTK signalling pathway because GPCRs activate 

metalloproteinases which in turn, activate the pro-ligands of the RTK (Gschwind et al., 

2001).  The activated ligands are frequently growth factors that can act in an autocrine, 

paracrine or endocrine fashion.  Most growth factors tend to work in an autocrine or 

paracrine function except for insulin that works in an endocrine fashion.  

The activation of RTKs is due to autophosphorylation of the receptor upon binding 

of the ligand (Heldin and Ostman, 1996; Heldin and Westermark, 1999).  The exact 

method of activation may vary between the different RTKs but some basic information 

is known about RTK activation mainly through the study of EGFR and insulin receptors.  

Most RTKs are initially monomeric and ligand binding causes receptor dimerization, 

activation and autophosphorylation (Heldin and Ostman, 1996).  This raises the question 

of the actual mechanism of receptor activation upon ligand binding.  The ligand could 

physically bring together the two receptor monomers, allowing the dimer to activate 

itself or it could also cause a conformational change in the dimerized receptor to activate 

the receptor (Heldin and Ostman, 1996).  For the EGFR there is a shift from monomers 

to dimers with the addition of EGF; however, there is also a small amount of EGFR 
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dimers even in the absence of EGF (Boni-Schnetzler and Pilch, 1987).  This research did 

not look at the downstream signalling events of the EGFR dimers without EGF to 

determine if they were active, but our knowledge of RTKs to date suggests that they are 

inactive (Boni-Schnetzler and Pilch, 1987).  These dimerized but inactive receptors 

show an increased affinity for EGF, which would increase the sensitivity of the cell to 

the growth factor (Boni-Schnetzler and Pilch, 1987).  It also leads to the question does 

the ligand stabilize receptor dimers or cause the dimerization.  It has been suggested that 

the extracellular domain of receptors could have an inhibitory effect that is not overcome 

until the ligand is bound (Heldin and Westermark, 1999; Warren and Landgraf, 2006).  

However, when the receptor dimerizes it leads to the activation of the receptor and the 

trans-phosphorylation of the dimerized receptors.  This increases the catalytic activity of 

the receptors and creates binding sites for signalling proteins.  The dimerization of the 

receptor also allows for signalling diversity because the receptors can form heterodimers 

with other receptors within the same subfamily as well as homodimers (Heldin and 

Ostman, 1996).  The EGFR subfamily has four isoforms that are expressed in various 

cells and can be overexpressed in cancers. 

Many types of cancers either have RTK mutations or overexpression (Arteaga, 

2003; Hanahan and Weinberg, 2000; Holbro et al., 2003; Pelengaris and Khan, 2006; 

Teich, 1997).  This is because RTKs are one of the key components of the signalling 

pathways; therefore, unregulated activation of the receptor leads to increased signalling 

from the receptor.  There are three ways in which RTKs are deregulated in cancer: 1) the 

receptor is overexpressed, increasing the amount of a normal receptor protein 2) there is 

a mutation or deletion that constitutively activates the receptor 3) a chromosomal 

translocation generates a fusion protein that activates the receptor (Li and Hristova, 
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2006).  Different types of cancers are associated with activation of different subfamilies 

of RTKs.  For example, the EGFR family is deregulated in many types of cancers 

including colon, pancreas, breast, ovary, gliomas and lung (Arteaga, 2003; Sebastian et 

al., 2006; Teich, 1997).  A truncated form of EGFR (v-erbB) was one of the first 

oncogenes identified (Sebastian et al., 2006).  It was discovered as an oncogenic protein 

expressed by the avian erythroblastosis virus (Holbro et al., 2003).  Another oncogene 

that was identified around the same time as v-erbB was v-sis from the simian sarcoma 

virus and was found to be homologous to PDGF-B, the ligand for the PDGFR (Teich, 

1997).  PDGF and its receptors are also involved in several types of cancer and are 

overexpressed in many glial tumours, sarcomas, germ cell tumours and gastrointestinal 

carcinomas (Heldin and Westermark, 1999; Shih and Holland, 2006). 

 

1.2.1 Platelet-derived Growth Factor Receptor 

There are two isoforms of PDGFR, PDGFRα and PDGFRβ, which bind four 

different PDGF ligand isoforms A, B, C and D (Fig. 1.2).  The PDGF isoforms dimerize 

to form five known active dimers, PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC and 

PDGF-DD (Reigstad et al., 2005).  These growth factors are of the cysteine knot 

superfamily which is characterized by a conserved pattern of six cysteine residues 

making disulfide bridges that main the structure of the growth factor (Reigstad et al., 

2005).  PDGF A and B are secreted by the cell in an active form after undergoing 

dimerization in the ER and proteolytic cleavage in the trans-Golgi (Fredriksson et al., 

2004).  PDGF C and D are dimerized inside the cell but are activated by proteolytic 

cleavage outside the cell (Fredriksson et al., 2004). 

9  
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Figure 1.2 Binding of PDGF isoforms to the different PDGFR dimers.
The PDGF dimers have different affinity for the three PDGFR dimers.  The 
PDGFR-αα dimer interacts with PDGF-AA, -AB, -BB and -CC.  The 
PDGFR-αβ dimer interacts with PDGF-AB, -BB and -CC.  The PDGFR-ββ
dimer interacts with PDGF-BB and -DD.  
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There are three different receptor dimers, PDGFRαα, PDGFRαβ and PDGFRββ, 

that bind to the PDGF isoforms with varying degrees of affinity (Bornfeldt et al., 1995; 

Claesson-Welsh, 1994; Reigstad et al., 2005).  PDGF-AA binds to only PDGFRαα, 

PDGF-BB binds to all three receptors, PDGF-DD binds to PDGFRββ and PDGF-AB 

and PDGF-CC both interact with PDGFRαα and PDGFRαβ (Fig. 1.2).  The PDGFR is 

activated by dimerization induced by the binding of the PDGF to the extracellular 

domain of the receptor monomers.  The extracellular domain contains five 

immunoglobulin domains; the first three-immunoglobulin domains are thought to bind 

to the ligand.  The fourth immunoglobulin domain of each allows the receptor 

monomers to interact with each other to stabilize the structure (Heldin et al., 1998).  

This dimerization allows the receptors to trans-phosphorylate each other to activate the 

dimer.  The phosphorylated tyrosine residues on the receptors have two functions.  The 

first is to control the activation state of the receptor and the second is to create binding 

sites for adaptor and signalling proteins.  The binding of multiple growth factors to the 

different PDGFR dimers allows for specificity in the activated signalling pathways 

(Claesson-Welsh, 1994).  This is because each of the PDGFR isoforms have different 

phosphorylation sites that activate several different downstream signalling proteins (Fig. 

1.3)(Claesson-Welsh, 1994).  The two major signalling pathways associated with the 

PDGFR are the phosphatidylinositol 3’-kinase (PI3K)-Akt and Ras-mitogen activated 

protein kinase (MAPK) signalling pathways (discussed in greater detail below).   
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Figure 1.3  Binding sites for adaptor and signalling proteins created 
by tyrosine phosphorylation of  PDGFR isoforms. The PDGFR-α is 
phosphorylated at 8 sites and is known to bind to 5 different protein 
families. The PDGFR-β is phosphorylated at 10 sites and is known to 
bind to 9 different protein families.
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The two PDGFR isoforms have overlapping biological functions for the cell 

(Table 1.1)(Claesson-Welsh, 1994). 

Table 1.1  The Physiological Effects of the PDGFR Isoforms. 
PDGFRα PDGFRβ 

Proliferation Proliferation 

Migration* Migration 

Membrane Ruffles Membrane Ruffles 

Cytoskeletal Rearrgement Cytoskeletal Rearrgement 

Calcium Flux Calcium Flux 

Phosphatidylinositol Turnover* Phosphatidylinositol Turnover 

Timing of Differentiation Angiogenesis 
* cell type dependent  

 

Not only do the two isoforms have some specialized biological functions, but they 

are also expressed at different levels in various cell types.  For example, in smooth 

muscle cells, the PDGFRβ is expressed at levels 10 times higher than PDGFRα 

(Bornfeldt et al., 1995).  Both PDGFR α and β are expressed in fibroblasts, kidney 

mesangial cells, Leydig cells, vascular smooth muscle cells, neurons, Schwann cells and 

retinal pigment epithelial cells (Heldin and Westermark, 1999).  Only PDGFRα is 

expressed in liver sinusoidal endothelial cells, astrocytes, platelets and megakaryocytes, 

and PDGFRβ is the only isoform expressed in Itoh cells of the liver, myoblasts, capillary 

endothelial cells, pericytes, mammary epithelial cells, T cells, myeloid hematopoietic 

cells and macrophages (Heldin and Westermark, 1999).  This means that the different 

cell types can have different responses to the same PDGF stimulation, which causes the 

tissues to act in different ways when stimulated in the same way.  

After the PDGFR is activated it is endocytosed (discussed below).  The 

internalized receptor continues to signal until it is downregulated.  There are two 
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methods of downregulation.  Immediate downregulation is accomplished via 

dephosphorylation while the definitive long-term downregulation occurs by receptor 

degradation (discussed below).  Upon PDGF stimulation of the receptor only 30 to 40 % 

of the total amount of the receptor in the cell is degraded (Chiarugi et al., 2002).  This 

allows the PDGFR to be stimulated several times before the receptor levels are depleted.  

The major mechanism for deactivation of the receptor is dephosphorylation by tyrosine 

phosphatases (Chiarugi et al., 2002). 

 

1.3 Signalling Pathways from PDGFR 

There are many signalling pathways that are activated by the PDGFRs (Fig. 1.3).  

Two major pathways that are activated by the PDGFR are the Ras/MAPK and PI3K/Akt 

signalling pathways (Sections 1.3.1 and 1.3.2).  These pathways are involved in many 

cellular events that are important for cell survival and proliferation.  There are also 

several other signalling pathways activated from the PDGFR.   

Several signalling pathways are activated by both isoforms of the PDGFR, 

including the Src, phospholipase C γ (PLC-γ), SH2 domain-containing phosphatase 2 

(SHP-2) and PI3K pathways.  The Src protein is a cytoplasmic tyrosine kinase that binds 

to the receptor and activates pathways involved in cell division and cytoskeletal 

rearrangement (Erpel and Courtneidge, 1995).  PLC-γ is a phospholipase C that converts 

phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and 

diacylglycerol that mobilize cellular Ca++ and activate several members of the protein 

kinase C family (Heldin and Westermark, 1999).  SHP-2 is a tyrosine phosphatase that 

dephosphorylates the PDGFR to turn off its signalling (Heldin and Westermark, 1999). 
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 The alpha isoform of the PDGFR also binds Crk, an adaptor protein that binds to 

several proteins including the E3 ubiquitin ligase Cbl (Yokote et al., 1998).  There are 

also several proteins that bind only the beta isoform of the PDGFR.  These include 

growth factor receptor-bound protein 2 (Grb2), Nck, GTPase activating protein (GAP), 

signal transducer and activator of transcription (STAT) and Src homologous and 

collagen-like protein (Shc).  Grb2 is an adaptor protein that is part of the Ras/MAPK 

signalling pathway.  Nck and Shc are also adaptor proteins that activate downstream 

signalling pathways.  Nck interacts with PAK1 and NIK to activate the JNK/SAPK 

signalling pathway (Heldin and Westermark, 1999).  Shc binds to Grb2, activating the 

Ras/MAPK signalling pathway (Heldin and Westermark, 1999).  GAP is a RasGAP that 

inactivates the Ras/MAPK signalling pathway (Heldin and Westermark, 1999).  The 

STAT family of proteins are transcription factors with several family members that bind 

to PDGFR and are phosphorylated.  This causes them to dimerize and translocate into 

the nucleus where they function (Heldin and Westermark, 1999). 

 

1.3.1 The Ras/MAPK Signalling Pathway 

The Ras/MAPK signalling pathway is important for cell proliferation, one 

signalling output of growth factor receptors including PDGFR.  The importance of this 

signalling pathway in this thesis is that the phosphorylation of MAPK is used as a 

measurement of signalling output from the activated PDGFR.  The Ras/MAPK 

signalling pathway starts with Shc binding to the activated PDGFR through the 

phosphotyrosines 579, 740 and 771 (Claesson-Welsh, 1994; Heldin et al., 1998).  This 

allows the receptor to phosphorylate Shc on tyrosine 317, which forms a binding site for 

the Grb2-Sos complex (Heldin et al., 1998).  Grb2 can also bind directly to the PDGFR 
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through interaction with phosphotyrosines 716 and 775 (Claesson-Welsh, 1994; Heldin 

et al., 1998).  Sos (Son of Sevenless) is a guanine nucleotide exchange factor (GEF) for 

the monomeric G protein Ras; therefore, Sos activates Ras by causing it to release GDP 

and bind GTP (Anderson, 2006; Heldin et al., 1998; Heldin and Westermark, 1999).  

Activated Ras binds to and activates the Raf serine/threonine kinase (Avruch et al., 

1994; Barnard et al., 1995).  MAPK/Erk kinase (MEK), is activated by phosphorylation 

on serine residues 218 and 222 by Raf (Zheng and Guan, 1994).  MEK is a duel 

threonine/tyrosine kinase which continues the signalling cascade by phosphorylating 

mitogen activated protein kinase (MAPK), also known as extracellular regulated kinase 

(ERK), on threonine 183 and tyrosine 185 (Payne et al., 1991).  Activated MAPK 

translocates into the nucleus where it regulates various transcription factors including 

Myc, Fos and Jun by phosphorylation (Fig. 1.4) (Pelengaris and Khan, 2006).  These 

transcription factors are involved in the expression of genes required for cell cycle 

progression and cell proliferation. 

 

1.3.2 The PI3K/Akt Signalling Pathway 

When the PDGFR is activated, the receptor is phosphorylated on multiple tyrosine 

residues including 740 and 751 (Fig. 1.3)(Claesson-Welsh, 1994; Heldin et al., 1998).  

This forms a binding site for the SH2 domains of p85 (Piccione et al., 1993; Shoelson et 

al., 1993).  p85 is the regulatory subunit of phosphatidylinositol 3’-kinase (PI3K) 

(Carpenter and Cantley, 1996; Fruman et al., 1998).  This regulatory subunit is 

associated with the catalytic subunit, p110; therefore, p85 brings p110 to the activated 

receptor and the plasma membrane where PI3K is activated.  The main products of p85-

p110 are phosphatidylinositol 3,4-bisphosphate (PI3,4P2) and phosphatidylinositol 3,4,5- 
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Figure 1.4  The Ras/MAPK signalling pathway. The binding of PDGF to 
PDGFR activates it to dimerize and autophosphorylate.  This forms a 
binding site on the PDGFR for Shc.  The receptor phosphorylates Shc, 
forming a binding site for Grb2, which is bound to Sos.  The relocalized 
Sos activates Ras by exchanging GDP for GTP.  Ras-GTP binds Raf, 
activating it to phosphorylate MEK, which phosphorylates MAPK.  MAPK 
enters the nucleus and regulates various transcription factors including 
Myc, Fos and Jun.
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trisphosphate (PI3,4,5P3) (Carpenter and Cantley, 1996; Fruman et al., 1998).  These 

lipids are dephosphorylated by the lipid phosphatase PTEN (phosphatase and tensin 

homolog (mutated in multiple advanced cancers 1)).  PTEN removes the phosphate from 

the 3’ position of the phosphatidylinositol, which was added by PI3K, downregulating 

this signalling pathway (Maehama and Dixon, 1998).  PI3,4,5P3 and PI3,4P2 lipids act as 

second messengers in several important cellular pathways.  They cause Akt to migrate to 

the plasma membrane where it is activated by phosphorylation of threonine residue 308 

by phosphoinositide (3)-dependent kinase 1 (PDK1) (Song et al., 2005).  Complete 

activation of Akt also requires phosphorylation of serine residue 473.  The kinases 

responsible for phosphorylation of Ser473 are not well understood since several possible 

kinases may phosphorylate this site.  Four possibilities are phosphoinositide (3)-

dependent kinase 2 (PDK2), PDK1, integrin-linked kinase (ILK) or Akt itself (Song et 

al., 2005).  More recently it has been suggested that Ser473 is phosphorylated by the 

TORC2 complex (Jacinto et al., 2006).  Akt is a serine/threonine kinase that 

phosphorylates many downstream proteins including glycogen synthase kinase 3 

(GSK3), Bad, S6 kinase, murine double minute 2 (Mdm2), FoxO Forkhead and nuclear 

factor-kappa B (NF-κB) (Fig. 1.5)(Song et al., 2005).  The downstream effects of the 

PI3K/Akt signalling pathway include cell survival, protein synthesis, cell growth and 

gene expression. 

 

1.3.2.1 Phosphatidylinositol 3’-kinase 

The PI3K family of kinases is a large super-family with three classes of lipid 

kinases.  Class I PI3K is a heterodimer that consists of a p110 catalytic subunit and a 

p85 regulatory subunit and are the only PI3Ks activated in response to RTK activation 
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Figure 1.5  The PI3K/Akt signalling pathway. The binding of PDGF 
to the PDGFR activates it to dimerize and autophosphorylate.  This 
forms a binding site on the PDGFR for the regulatory subunit of PI3K, 
p85, which recruits p110 to the membrane where it can phosphorylate 
PI4,5P2 to form PI3,4,5P3.  This lipid product recruits Akt to the 
membrane which allows it to be activated. Akt phosphorylates several 
other downstream proteins that activate cell survival and proliferation 
pathways.
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(Carpenter and Cantley, 1996; Fruman et al., 1998).  PI3K can also be activated through 

direct interactions between the p110 catalytic subunit and Ras-GTP, although p85 can 

inhibit this activation (Jimenez et al., 2002; Kodaki et al., 1994; Kodaki et al., 1995).  

There are several isoforms of each subunit.  For the catalytic subunit there are the 

p110α, β, γ and δ isoforms (Fig. 1.6)(Fruman et al., 1998)..  For the regulatory subunit 

there are the p85α and β isoforms, as well as subunits of different sizes p55γ and p101 

(Fig. 1.6)(Fruman et al., 1998).  

The p85α subunit also has two splice variants, p55α and p50α, which lack the N-

terminal portion of the protein (Fruman et al., 1998).  The p110 subunit is both a protein 

serine kinase and a lipid kinase that can catalyze the phosphorylation of 

phosphatidylinositol (PI), PI4-phosphate (PI4P) and PI4,5-bisphosphate (PI4,5P2) to 

produce the lipid products phosphatidylinositol 3-phosphate (PI3P), PI3,4P2 and 

PI3,4,5P3 respectively (Carpenter and Cantley, 1996).  While p85-p110 can generate 

PI3P in vitro, the main physiological products of p85-p110 are the phospholipids 

PI3,4P2 and PI3,4,5P3.  These phosphorylated lipids act as second messengers in several 

important cellular pathways.  The p85 regulatory subunit controls p110 lipid 

phosphorylation activity by inhibiting the activity of p110 until p85 binds the receptor.  

This causes a conformational change that relieves the inhibitory effects of p85 (Yu et al., 

1998).  The p85 subunit also localizes the p110 catalytic subunit in the cytosol in 

quiescent cells and then relocates it to the plasma membrane through interactions with 

activated growth factor receptors, including the PDGFR (Engelman et al., 2006). 

The p85 subunit has a domain structure that includes several protein-protein 

interaction domains (Fig. 1.7).  These domains are an N-terminal Src homology 3 (SH3) 
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Figure 1.6  The isoforms of PI3K. There are six different regulatory 
subunits of p85.  The first three subunits, p85α, p55α and p50α are formed 
from alternative splicing of a single gene, while the other three regulatory 
subunits are from different genes.  The regulatory subunit p101 is the only 
one that binds to p110γ.  The p101 protein also has a different domain 
structure from the other regulatory subunits and interacts with G protein 
coupled receptors.  All of the other subunits have the same domain structures 
and bind to RTKs.  The four p110 isoforms are all similar in domain 
structure containing a p85 binding domain, a Ras binding domain, two 
domains of homology (HD) and a kinase domain except for p110γ that has a 
lipid binding, pleckstrin homology (PH) domain instead of a p85 binding 
domain.
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domain, a breakpoint cluster region homology (BH) domain flanked by two proline rich 

regions, an N-terminal SH2 domain, a p110 binding domain that binds the PI3K 

catalytic subunit and a C-terminal SH2 domain (Fruman et al., 1998).  The SH3 domain 

of p85 binds the consensus motif φ-P-p-φ-P, where P is a proline, p is a weakly 

conserved proline and φ is an aliphatic amino acid.  Although the SH3 domain is not 

well characterized in terms of function, it is known to interact with the GTPase dynamin, 

focal adhesion kinase, Cbl and the N-terminal proline rich region in p85 causing p85 to 

dimerize (Booker et al., 1993; Guinebault et al., 1995; Harpur et al., 1999; Hunter et al., 

1997).  The BH domain can also dimerize although the function of this interaction is 

unknown (Harpur et al., 1999).  The proline rich regions of p85 are also not well 

characterized for function but they are known to bind the SH3 domains of Src family 

tyrosine kinases and the Abl tyrosine kinase (Kapeller et al., 1994; Pleiman et al., 1994).  

The BH domain contains sequence homology to GTPase activating proteins (GAPs) and 

will be discussed in greater detail later.  The two SH2 domains bind to the 

phosphorylated tyrosine sequence pY-X-X-M (where pY is phosphotyrosine) in proteins 

such as activated receptors, to activate PI3K (Piccione et al., 1993; Shoelson et al., 

1993). 

The class II PI3K is a single catalytic protein with no regulatory protein.  There are 

three proteins in this class C2α, C2β and C2γ (Carpenter and Cantley, 1996; Fruman et 

al., 1998).  The main lipid product of the class II PI3K is PI3P.  The class III PI3K is a 

heterodimer between the p150 regulatory subunit and the hVps34 catalytic subunit 

(Carpenter and Cantley, 1996; Fruman et al., 1998).  The class III PI3K is involved in 

membrane trafficking (discussed in detail later) and its main lipid product is also PI3P. 
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1.4 Endocytosis 

Endocytosis is the process by which a cell internalizes extracellular material.  

There are two types of endocytosis: phagocytosis and pinocytosis (Fig. 1.8).  

Phagocytosis means “to eat” and is the uptake of large material by the cell such as 

apoptotic bodies, bacteria and viruses.  In the body, specialized cells like macrophages 

primarily perform phagocytosis but any cell type can be induced to phagocytose material 

under specific circumstances such as the uptake of apoptotic bodies (Mukherjee et al., 

1997).  Pinocytosis means “to drink” and is the uptake of smaller material such as 

proteins, nutrients and solutes.  There are several types of pinocytosis but the three best 

characterized are: macropinocytosis, caveolae endocytosis and clathrin-mediated 

endocytosis (Fig. 1.8)(Mukherjee et al., 1997). 

Macropinocytosis is the non-specific bulk uptake of extracellular fluid.  The cell 

membrane invaginates and pinches off to form a vesicle.  This type of endocytosis tends 

to occur at the leading edge of migrating cells and at cellular ruffles.  Caveolae 

endocytosis is a specific process where the uptake happens at special structures called 

caveolae.  Caveolae, which means little cave, are enriched in cholesterol and 

glycosphingolipids and are thought to be a specialized form of lipid raft (Anderson, 

1998; Miaczynska and Zerial, 2002).  They are invaginations of the plasma membrane 

containing the protein caveolin.  Caveolin binds to the membrane in a spiral pattern that 

may force the membrane to curve in to form the caveolae (Anderson, 1998).  Caveolae 

are involved in the uptake of receptors and lipids.  Clathrin-mediated endocytosis is the 

best studied type of endocytosis.  Clathrin is a protein lattice that forms a mesh around 

the membrane to form a clathrin-coated pit (Edeling et al., 2006).  Clathrin-mediated 
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Figure 1.8  Types of Endocytosis. A) Phagocytosis is the uptake of large 
molecules such as bacteria or apoptotic bodies.  B) Macropinocytosis is 
the bulk uptake of fluid and small molecules that happens at the leading 
edge of cells or membrane ruffles.  Several invaginations of the cell 
membrane form in close proximity to each other. C) Caveolae form in 
lipid rafts (yellow) and endocytose several types of lipids and receptors.
Caveolin (purple) binds to the membrane and forms a coat that causes the
membrane to invaginate. D) Clathrin-mediated endocytosis is the main 
method by which receptors (green) are endocytosed.  A clathrin cage (red) 
forms around the invaginating membrane containing the receptors.  The
invaginated membrane is pinched off the plasma membrane by dynamin
(Blue).
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endocytosis is the main route for the endocytosis of several receptors so it is also called 

receptor-mediated endocytosis (reviewed in greater detail below). 

Regardless of the initial method of endocytosis, all material taken up by the cell is 

routed through the endosomal pathway.  The endosomal pathway is made up of several 

dynamic non-permanent fluid membrane structures called vesicles and endosomes.  

Vesicles are small membrane structures that transport proteins between the endosomal 

structures.  Endosomes are larger membrane structures, semi-permanent in nature.  The 

main types of endosomes are early/sorting endosomes, recycling endosomes and late 

endosomes (Miaczynska and Zerial, 2002).  Vesicles that originate at the plasma 

membrane from the various forms of endocytosis fuse together and form an early/sorting 

endosome.  Material in the early endosome can be sorted either for degradation in the 

lysosome through the late endosome, or recycled back to the plasma membrane directly 

or via the recycling endosome (Fig. 1.9).  The flow of material through the endosomal 

pathway will be explained in more detail below using receptors as an example.  The 

endosomal organelles are distinct structures that perform specific functions but at the 

same time are fluidly and dynamically connected to each other.  So the question is how 

do they maintain their structure, specificity and directionality of protein trafficking.  

Some models suggest that they may be composed of distinct protein and lipid domains 

that self-assemble, which allows these endosomal domains to maintain their organization 

as they exchange material (Miaczynska and Zerial, 2002). 

 

1.4.1 Rab Proteins 

A family of monomeric G proteins called Rab proteins regulate the composition of 

these endosomal domains as well as the fusion and fission of endosomes.  There are 
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Figure 1.9  Rab proteins involved in the Endosomal Pathway. Rab5 
(blue) allows the fusion events between the plasma membrane and the 
early endosome to take place.  Rab4 (red) is involved with recycling 
membranes and receptors back to the plasma membrane from the early 
endosome and recycling endosome.  Rab11 (green) is involved in transport 
through the recycling endosome.  The multivesicular body (MVB) form in 
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is on the late endosome and allows the fusion of the late endosome to the 
mature MVB and the lysosome.  The early endosome contains at least four 
domains that are involved in these different functions.
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more than 60 Rab proteins that have been reported in the literature (Seabra and 

Wasmeier, 2004; Stenmark and Olkkonen, 2001).  Each Rab protein governs a specific 

function of vesicle trafficking or endosomal domain structure (Fig. 1.9).  Some of the 

Rab proteins, such as Rab5, are ubiquitously expressed in all tissues.  While other Rab 

proteins have very specific functions and are expressed in only a few tissues such as 

Rab27 involved in the movement of melanosomes to the periphery of melanocytes and 

the lytic granules in cytotoxic T cells (Stenmark and Olkkonen, 2001).   

Rab proteins have two different states and they act as molecular switches by 

alternating between these states.  The active state is the GTP-bound conformation and 

the inactive state is the GDP-bound conformation (Seabra and Wasmeier, 2004; 

Stenmark and Olkkonen, 2001).  Binding of the GTP molecule to the Rab protein causes 

a conformational change in two switch regions of the Rab protein allowing effector 

proteins to bind (Pereira-Leal and Seabra, 2000).  This can be seen in the crystal 

structure of Sec4p, a yeast Rab, bound to both GDP and a GTP analog (Fig. 

1.10)(Deneka et al., 2003). 

The inactive, GDP-bound form of Rab proteins are found in the cytosol bound to a 

guanine dissociation inhibitor (GDI) protein (Fig. 1.11).  The GDI binds the Rab protein 

and forms a pocket around the prenyl group used by the Rab protein to associate with 

the membrane.  The prenyl group of the Rab protein is inserted into the membrane with 

the help of the GDI-displacement factors (GDFs).  The active, GTP-bound form of Rab 

proteins can be associated with endosomes, vesicles or other cellular structures.  Two 

classes of proteins, GEFs and GAPs, facilitate the conversions between these 

conformations (Fig. 1.10)(Seabra and Wasmeier, 2004; Stenmark and Olkkonen, 2001). 

GEFs facilitate the exchange of bound GDP to GTP whereas GAPs stimulate the 
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Figure 1.10  Conformational change of the Switch Regions. The 
crystal structures of Sec4p, a yeast Rab protein, show the conformations 
when binding GTP and GDP.  A) The conformation of active Sec4p 
bound to GTP.  B) The conformation of inactive Sec4p bound to GDP.  
Modified from Deneka, et al., 2003.
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Figure 1.11  Regulatory proteins of Rab function and model of Rab 
cycle.  The inactive Rab5-GDP is bound to GDI in the cytosol.  The Rab5-
GDP is then recruited to the membrane, dissociates from GDI and is inserted 
into the membrane by the GDF complex.  A GEF protein then causes Rab5 
to release the GDP and bind to GTP.  The active Rab5-GTP binds to effector 
proteins such as EEA1 to carry out its function.  GAP proteins stimulate 
Rab5 to hydrolyse bound GTP to GDP to inactivate Rab5 and GDI removes 
it from the membrane.
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intrinsic GTPase activity of the Rab protein to hydrolyse bound GTP to GDP.  The 

inactive Rab protein is removed from the membrane and binds GDI. 

There are still many questions surrounding the method by which Rab proteins are 

inserted into membranes, but some of the basics are known.  There are only two known 

GDI proteins in humans that act as carriers of all the Rab proteins in the cytosol 

(Stenmark and Olkkonen, 2001).  There is also a protein with high homology to the GDI 

proteins called Rab escort protein.  It has exactly the same function as the GDI but it 

only binds to newly synthesized Rab proteins and allows them to be prenylated by 

geranylgeranyl transferase so that they can be inserted into the membrane (Stenmark and 

Olkkonen, 2001).  This lipid modification is added to the C-terminal end of the Rab 

protein in a cysteine motif (CXXX, CC, CXC, CCXX or CCXXX where X is any amino 

acid) (Stenmark and Olkkonen, 2001).  With only two GDIs and 60 Rab proteins in 

humans, the membrane targeting of the Rab proteins cannot come from the GDI. 

The mechanism of this targeting to a specific endosomal domain is currently 

unknown, but it is thought that the C-terminal hypervariable region of the Rab protein 

interacts with unidentified targeting factors on the membrane (Pfeffer and Aivazian, 

2004).  After the Rab-GDI complex associates with the membrane, the Rab protein must 

be associated with the membrane by insertion of the lipid group into the membrane.  The 

disassociation of the Rab protein from GDI and the insertion of the lipid group into the 

membrane are carried out by a complex of proteins called GDI-displacement factors 

(GDFs).  The GDFs in humans have not been well characterized but in yeast the Yip 

proteins function as GDFs (Pfeffer and Aivazian, 2004).  Once the Rab protein is 

associated with the membrane, it will interact with a GEF and become activated by the 
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exchange of its GDP with GTP.  The activated Rab protein recruits effector proteins to 

the endosome/vesicle to promote membrane fusion or fission.   

The best described example is fusion of vesicles from the plasma membrane with 

the early endosome, which is governed by the Rab5 protein.  The active form of Rab5 is 

associated with the early endosome or clathrin-coated vesicles (Armstrong, 2000; Mills 

et al., 1999; Mohrmann and van der Sluijs, 1999; Somsel Rodman and Wandinger-Ness, 

2000; Ullrich et al., 1994).  The active Rab5-GTP, along with PI3P, a lipid product of 

class III PI3K, recruits the effector protein early endosomal antigen 1 (EEA1) to the 

endosome.  The presence of EEA1 is an absolute requirement for the fusion event 

between endosomes (Christoforidis et al., 1999a; Mills et al., 1998; Rubino et al., 2000; 

Simonsen et al., 1998).  EEA1 tethers the two membranes together, allowing the 

formation of a soluble NSF (N-ethylmaleimide sensitive factor) attachment receptor 

(SNARE) complex to form that fuses the membranes together (Fig. 1.12) (McBride et 

al., 1999).  Membrane fusion by SNARE complexes is the method by which most 

endosomal compartments are formed and is how receptors are transported through the 

endosomal system. 

 

1.4.2 Receptor-mediated Endocytosis 

Receptor-mediated endocytosis is the main method of permanent downregulation 

of signalling receptors and the major pathway of nutrient uptake by receptors such as 

iron by the transferrin receptor (Conner and Schmid, 2003).  When a growth factor 

receptor is activated on the plasma membrane, it migrates to a clathrin-coated pit (Fig. 

1.12).  In the clathrin-coated pit, the receptor associates with several adaptor proteins 

that link the receptor to clathrin and lock it into the invaginating membrane.  There are at 
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Figure 1.12  Regulation of receptor transport and endosomal fusion. A) 
The activated receptor travels into the clathrin-coated pit during the 
signalling process.  B) The clathrin-coated pit is pinched off from the plasma 
membrane by dynamin.  C) The vesicle is uncoated and the clathrin is 
recycled to a newly forming pit.  Also Rab5-GTP binds to vesicles and binds
effector proteins including PI 4-phosphatase and PI 5-phosphatase that 
convert PI3,4,5P3 to PI3P.  D) Rab5-GTP and PI3P bind to EEA1 to form a 
tether between vesicles and the early endosome.  This brings the vesicle into 
close proximity to the endosome allowing the SNARE complex to form and 
fuse the two membranes together.  After the fusion of the membranes, some 
of the Rab5-GTP is downregulated to Rab5-GDP and recycled by GDI back 
to the newly forming vesicles to continue the fusion process.
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least 20 adaptor proteins that are involved in binding of receptors, clathrin and the lipid 

membrane.  Adaptor proteins such as AP2 can interact with both the membrane, via a 

PI4,5P2 binding domain and to the cargo (i.e. the receptor) via several protein binding 

motifs that bind YXXΦ (where X is any amino acid and Φ is a hydrophobic amino acid), 

NPXY or acidic dileucine motifs (eg. [DE]XXXL[LI]) (Bonifacino and Traub, 2003; 

Owen et al., 2004).  Other adaptor proteins can also bind cargo via a ubiquitin-binding 

site (Bonifacino and Traub, 2003; Owen et al., 2004).  This allows complexes of adaptor 

proteins and other proteins to bind together, locking cargo into the clathrin-coated pit.  

These adaptor complexes vary depending on the cargo being endocytosed.  The 

invaginated membrane is pinched off from the plasma membrane by the large GTPase 

dynamin and the clathrin coat is dissociated from the nascent vesicle (Hinshaw, 2000).   

Rab5-GTP is recruited to the forming vesicle to target the new vesicles to the early 

endosome (Section 1.4.1).  The Rab5 GAP, RN-tre, regulates the formation of the new 

vesicles that bud from the plasma membrane.  RN-tre interacts with Grb2 and Eps8 at 

the plasma membrane to decrease the rate of EGFR endocytosis (Lanzetti et al., 2000; 

Martinu et al., 2002).  This allows the proper amount of EGFR signalling to take place 

and overexpression of RN-tre has been linked to cancer (Matoskova et al., 1996).  The 

active Rab5 recruits several effector proteins including EEA1.  Rab5 also recruits two 

lipid phosphatases, PI 4-phosphatase and PI 5-phosphatase, which convert PI3,4,5P3 to 

PI3P on the early endosome (Shin et al., 2005).  This suggests that althought the class III 

PI3K is thought to be responsible for PI3P generation on the early endosome some of the 

PI3P can come from class I PI3Ks.  Multiple vesicles fuse together and then fuse with 

the early endosome.  This traffics the activated receptor complex into the early 

endosome.  Throughout this process and in the early endosome, the activated receptor 
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complex continues to signal (Burke et al., 2001; Cavalli et al., 2001a; Wang et al., 2004; 

Wiley and Burke, 2001).  At some point in the endosomal pathway the ligand dissociates 

from its receptor due to the change in pH.  The pH in the endosomal compartments 

decreases as the endosomes mature towards the lysosome (Fig. 1.9)(Maxfield and 

McGraw, 2004).  The receptor is also dephosphorylated by phosphatases to deactivate it 

that are recruited to the activated receptor either directly or indirectly by phosphorylated 

tyrosines on the receptor (Ostman and Bohmer, 2001).  This downregulated receptor is 

then diverted to either the recycling or degradation pathway.  There are two possible 

fates for the receptor in the early endosome; it is either diverted back to the plasma 

membrane or targeted for degradation in the lysosome.  The exact methods of receptor 

sorting are not completely elucidated but a basic understanding of each pathway is 

known. 

The early endosome contains three different and distinct Rab domains that 

function in different roles in the flow of material through the early endosome (Fig. 1.9).  

These domains are characterized by the content of Rab proteins.  There is a Rab5 

domain where receptors enter the early endosome (Miaczynska and Zerial, 2002).  Rab4 

and Rab11 domains from which receptors are recycled back to the plasma membrane 

(Miaczynska and Zerial, 2002).  There is also another domain in the early endosome, 

which is not known to have a Rab protein associated with it, where receptors are 

targeted to the late endosome and then to the lysosome for degradation (Cavalli et al., 

2001a; Deneka et al., 2003).  It is believed that the receptor is diverted to the recycling 

pathway by default and that there needs to be a specific molecular mechanism for the 

receptor to be targeted for degradation (Mayor et al., 1993).   There are two known 

methods of receptor recycling that seem to work concurrently (Sheff et al., 1999).  The 
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first method, mediated by Rab4, involves direct recycling of the receptor from the early 

endosome to the plasma membrane.  The second method, mediated by both Rab4 and 

Rab11, involves a less direct route, traveling from the early endosome through the 

recycling endosome and then to the plasma membrane (Sheff et al., 1999). 

The process of receptor degradation is complicated but much better characterized.  

Receptors targeted for degradation travel to a domain of the early endosome that forms a 

multivesicular body (MVB) that matures into the late endosome (Cavalli et al., 2001a; 

Deneka et al., 2003).  The late endosome can then fuse with the lysosome to degrade the 

receptors.  Targeting of the receptor for degradation is achieved by the mono-

ubiquitylation of the receptor by the protein Cbl (Haglund et al., 2003; Holler and Dikic, 

2004; Levkowitz et al., 1998).  Cbl is an E3 ubiquitin ligase that associates with several 

activated RTKs and mono-ubiquitylates them on several sites. 

Mono-ubiquitylated receptors are targeted into the MVB by interactions with 

ubiquitin binding domains within proteins in the Hrs-STAM complex and the 

Endosomal Sorting Complex Required for Transport (ESCRT) protein complexes 

(Raiborg and Stenmark, 2002).  There are three ESCRT complexes plus the Hrs-STAM 

complex that help mono-ubiquitylated receptors enter into the interior vesicles of the 

MVB (Fig. 1.13)(Hurley and Emr, 2006; Katzmann et al., 2002; Row et al., 2005).  The 

mono-ubiquitylated receptor first interacts with the Hrs-STAM complex, targeting the 

receptor to the ESCRT-I complex.  Three ESCRT complexes in co-operation target the 

receptor into the MVB vesicle in the lumen of the endosome and remove the ubiquitin 

from the receptor.  By being sequestered in the interior vesicles of the MVB the 

receptors cannot interact with any signalling components in the cytosol of the cell.  This 

ensures that the receptors are permanently downregulated and cannot be reactivated by 
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Figure 1.13  Targeting of the mono-ubiquitylated receptors into the 
interior vesicles of the MVB. The Hrs-STAM complex binds to the mono-
ubiquitylated receptor.  The receptor is past from the ESCRT-I, ESCRT-II 
and ESCRT-III complexes and into an invaginating pit in the endosome that 
forms the MVB.  As the receptor enters the forming MVB the ubiquitin tag is 
removed.  Modified from Katzmann, et al., 2002.
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mistake.  The nascent MVB that is forming from the early endosome matures into a 

tubular structure that may bud off the early endosome.  This MVB then matures into 

and/or fuses with a late endosome in a Rab7 dependent manner (Bucci et al., 2000; 

Ceresa and Bahr, 2006).  This also allows the enzymes of the lysosome access to the 

receptors to degrade them.  Cells must synthesize new receptor proteins to regain their 

responsiveness to the ligand. 

The PDGFR was first shown to be ubiquitylated in 1992 (Mori et al., 1992).  It 

was believed at the time to be poly-ubiquitylated and it was shown that the receptor 

needed to be functional for ubiquitylation to occur and was not ubiquitylated if it was 

missing the last 98 amino acids of the receptor (Mori et al., 1992).  It was later shown 

that PDGFR is mono-ubiquitylation on multiple sites (Haglund et al., 2003). 

 

1.5 The Interplay between Signalling and Endocytosis 

As more information about signalling and endocytosis pathways has become 

available, it has become obvious that the two pathways are intimately intertwined.  

When examining how these two pathways are regulated, there are many places where 

cross-talk is possible between the two processes.  There have been many studies that 

show that several different receptors are activated and continue to signal not only from 

the plasma membrane but also from intracellular structures like the early endosome 

(Burke et al., 2001; Miaczynska et al., 2004b; Pennock and Wang, 2003; Sorkin and 

Von Zastrow, 2002; Wang et al., 2002a; Wang et al., 2002b; Wang et al., 2004; Wiley 

and Burke, 2001).  It has also been shown that an activated receptor can change its 

signalling output as it is endocytosed (Burke et al., 2001; Miaczynska et al., 2004b; 

Pennock and Wang, 2003; Sorkin and Von Zastrow, 2002; Wang et al., 2002a; Wang et 
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al., 2002b; Wang et al., 2004; Wiley and Burke, 2001).  Most of these studies 

investigating signalling from endosomal compartments examined only the Ras/MAPK 

signalling pathway and found it to be active in endosomal compartments (Burke et al., 

2001; Miaczynska et al., 2004b; Pennock and Wang, 2003; Sorkin and Von Zastrow, 

2002; Wang et al., 2002b; Wiley and Burke, 2001).  There are scaffolding proteins of 

the Ras/MAPK pathway that bind to Raf, MEK and ERK specifically at the plasma 

membrane, early endosome and late endosome (Anderson, 2006; Kolch, 2005).   

Several groups have also shown that PI3K/Akt signalling can be propagated from 

the early endosome (Ceresa et al., 1998; Kelly and Ruderman, 1993; Wang et al., 2002a; 

Wang et al., 2002b; Wang et al., 2004).  However, there is some debate about PI3K/Akt 

signalling from the early endosome since some studies have shown that the lipid 

substrate (PI4,5P2) and product (PI3,4,5P3) of class I PI3K (p85-p110) are not found in 

the early endosome (Haugh and Meyer, 2002; Sorkin and Von Zastrow, 2002).  Some 

laboratories have even suggested there is a specific sub-population of early endosomes, 

coined “signalling endosomes”, involved in compartmentalized signalling (Miaczynska 

et al., 2004b).  A signalling endosome is thought to a sub-population of endosomes that 

may contain specialized signalling complexes from which activated receptors signal.  

These signalling endosomes also may have different fates for their cargo and different 

paths of travel when compared to endosomes that contain transferrin. 

There may be several different types of signalling endosomes that carry out 

specific signalling roles with different subsets of activated receptors.  An example of this 

is the APPL protein, which interacts with a subset of activated EGFR within a distinct 

sub-population of early endosomes (Miaczynska et al., 2004a).  This interaction 

activates APPL, allowing it to translocate into the nucleus where it interacts with the 
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histone deacetylase complex, NuRD/MeCP1, thereby altering transcriptional regulation 

(Miaczynska et al., 2004a).  These results suggest that the location of the activated 

receptor can change the level and type of signalling pathway activated.  Therefore, the 

process of endocytosis may directly alter signalling of activated receptors. 

Another major area of cross-talk between signalling and endocytosis is the lipid 

PI3P, produced primarily by the class III PI3K (Carpenter and Cantley, 1996; Fruman et 

al., 1998).  Over the last decade it has come to light that PI3P is involved in endocytosis 

as well as signalling.  The early endosome is enriched with PI3P (Di Paolo and De 

Camilli, 2006; Miaczynska and Zerial, 2002).  It has been suggested that some of the 

PI3P in the early endosome may come from the dephosphorylation of the PI3,4,5P3 

lipids generated by class I PI3K (p85-p110) and not from class III PI3K (Behnia and 

Munro, 2005; Ivetac et al., 2005; Munro, 2002).  The Corvera laboratory found that the 

vesicle tethering protein, EEA1, binds to PI3P via its FYVE domain and suggested that 

this lipid helps in the recruitment of EEA1 to the membrane (Patki et al., 1998; Patki et 

al., 1997).  Wortmannin, an inhibitor of PI3Ks, causes cells to produce enlarged 

endosomes and the PDGFRs are not targeted to the lysosome for degradation (Lawe et 

al., 2000; Shpetner et al., 1996).  A constitutively activated Rab5 mutant (Rab5Q79L; 

locked in its GTP-bound state due to lost GTPase activity) can reverse the inhibition of 

endocytosis caused by wortmannin (Lawe et al., 2000).  This suggests that although the 

PI3P lipid products of PI3K play a role in the endocytosis process, they are not 

absolutely mandatory for receptor endocytosis to take place. 

It has also been discovered that Hrs, part of the Hrs-STAM complex, has a FYVE 

domain that binds PI3P and is recruited to the membrane by PI3P (Komada and Soriano, 

1999).  Interestingly, when PI3P production is blocked by wortmannin or a FYVE 
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domain is overexpressed to block protein binding, the transport of EGFR to the late 

endosome, but not bulk solvent transport, is blocked (Petiot et al., 2003).  This blockage 

of receptor degradation occurs because Hrs is important for receptor transport into the 

late endosome but not for the transport of bulk solvent.  Several other ESCRT complex 

proteins contain GLUE (GRAM-like ubiquitin binding in EAP45) domains that bind 

several phosphatidylinositides including PI3P, PI4P, PI3,4P2, PI3,5P2 and PI3,4,5P3 

(Teo et al., 2006).  The interaction between EEA1, Hrs and ESCRT proteins with 3’- 

phosphatidylinositides can explain the effects of the wortmannin treatment on 

endocytosis.  The interaction of several proteins involved in endocytosis with 

phosphatidylinositides suggests that several classes of PI3K and other lipid kinases and 

phosphatases may also have a role to play in regulating lipid structures important for 

endocytosis. 

There is other evidence to suggest that the class I PI3Ks are involved in receptor 

endocytosis.  Mutations that block the binding of the p85 subunit of PI3K to the PDGFR 

disrupt the trafficking so that the receptor is internalized but is then exclusively recycled 

back to the cell membrane instead of being targeted to the lysosome for degradation 

(Hiles et al., 1992; Kapeller et al., 1993; Schu et al., 1993).  It has recently been 

suggested that this is because the binding site on PDGFR has a dual function of binding 

p85 and acting as a tyrosine internalization motif (Wu et al., 2003).  This study replaced 

the p85 binding motifs (GY740MDMSKAESVDY751MPM) with two copies of the 

lysosomal associated membrane protein 1 (LAMP-1) sorting motif 

(GY740QTISKDESVGY751QTI), causing the receptor to be degraded “normally” even 

though it does not bind p85.  LAMP-1 is normally associated with the lysosome and the 

targeting of it to the lysosome is by the GYQTI motif that was added to the PDGFR.  
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The problem with this experiment is that it does not prove that PI3K has no role in 

targeting for degradation.  It only determines that another method of receptor targeting 

can be used.  It has also been shown that the catalytic activity of p85-p110 is not needed 

for the degradation of the EGFR (Chen and Wang, 2001).   

The Ras/MAPK signalling pathway also regulates the endocytic pathway.  During 

endocytosis of the µ opioid receptor, which is a GPCR, p38 MAPK phosphorylates two 

Rab5 effector proteins EEA1 and Rabenosyn-5 (Mace et al., 2005).  These two effector 

proteins are involved in early endosome fusion and contain FYVE domains that bind to 

PI3P.  EEA1 is phosphorylated on threonine 1392 and Rabenosyn-5 is phosphorylated 

on serine 215.  These phosphorylation sites are located in the FYVE domains of the 

proteins and increase the membrane recruitment of the two proteins.  This increases the 

rate of receptor endocytosis.   

MAPK can also phosphorylate GDI, which also increases the rate of endocytosis.  

When GDI is phosphorylated on serine 121, GDI is activated to remove Rab5 from the 

membrane (Cavalli et al., 2001b).  This allows GDI to deliver Rab5 to the membranes of 

vesicles that are waiting to fuse with the early endosome, thus increasing the rate of 

endocytosis because the amount of Rab5 is the rate limiting factor (Cavalli et al., 

2001b).  The authors also reported the same interaction between Rab7 and GDI although 

they did not show the results (Cavalli et al., 2001b).   

Several proteins in the Ras/MAPK pathway also interact directly with Rab 

proteins.  ERK1 phosphorylates Rab4, causing it to be redistributed to the cytosol from 

GLUT4 containing endosomes after stimulation with insulin (Cormont et al., 1994).  

The catalytic subunit, p110β, of PI3K also binds to Rab5-GTP although the function of 

this interaction is not known (Christoforidis et al., 1999b). 
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To summarize, there are several levels of cross-talk between signalling and 

endocytosis pathways and it is likely that more will be discovered in the future.  Both of 

the main signalling pathways of RTKs are involved in endocytosis.  Several PI3K lipid 

products recruit endocytic machinery to the membrane; while, Ras/MAPK is involved in 

phosphorylating several endocytic proteins to regulate their activity and change the rate 

of endocytosis.  We wanted to determine if there was cross-talk between the PI3K/Akt 

signalling pathway and the endocytosis pathway in addition to the known role the PI3K 

lipid products play in the recruitment of the endocytosis machinery.  
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2.0 RATIONALE AND OBJECTIVES 

Our laboratory studies the interaction of the class I PI3K, p85-p110, with other 

proteins and the role of these protein complexes in signalling pathways.  We have 

studied the interaction of PI3K with A-Raf (Anderson, 2006; Fang et al., 2002; Johnson 

et al., 2005; King et al., 2000; Mahon et al., 2005), ankyrin3 (Ignatiuk et al., 2006) and 

PTEN (Chagpar et al., 2007).  We are particularly interested in the role of p85 subunit 

interactions with other proteins.  To determine the different roles of p85 we decided to 

look at the possible function(s) of its BH domain.  The BH domain of p85 has a high 

degree of sequence homology with known GAP domains.  GAP domains have been 

shown to increase the catalytic rate of G proteins.  G proteins possess intrinsic GTPase 

activity to catalyze the hydrolysis of GTP to GDP.  They do this at a very slow rate but 

GAP proteins increase the rate of catalysis of G proteins (Fidyk and Cerione, 2002; 

Scheffzek et al., 1998).   

The GAP protein increases the catalytic rate in two ways.  First, it binds to the 

switch regions of the G protein stabilizing it in such a way that the GAP protein changes 

the conformation of the active site, which increases the rate of hydrolysis (Fidyk and 

Cerione, 2002; Scheffzek et al., 1998).  Second, GAP protein participates directly in the 

hydrolysis of the GTP by inserting a catalytic arginine into the reaction which is often 

referred to as an arginine finger (Fidyk and Cerione, 2002; Scheffzek et al., 1998).  This 

arginine stabilizes the transition state of the hydrolyzing GTP, allowing the reaction to 

proceed (Fidyk and Cerione, 2002; Scheffzek et al., 1998).   
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The BH domain of p85 has not previously been shown to have GAP activity 

towards any G proteins that it has so far been tested against.  Although it has been 

shown to bind to the GTP-bound forms of the G proteins, Rac1 and Cdc42, it did not 

have GAP activity towards them at p85 concentrations of up to 1 µM (Tolias et al., 

1995).  Cdc42 and Rac1 are G proteins that are involved in many cellular processes 

including maintaining cell shape, cell movement, cell adhesion and vesicle movement, 

by regulating the actin cytoskeleton structure (Wittmann and Waterman-Storer, 2001). 

In the literature there is evidence for the possibility of p85 interacting with the Rab 

family of monomeric G proteins.  There are two sets of experimental data that suggested 

p85 interacts with Rab proteins, specifically Rab5, and could regulate receptor 

degradation.  First, Rab5 has been shown to bind to the catalytic subunit of PI3K, p110β 

(Christoforidis et al., 1999b; Kurosu and Katada, 2001).  The p85α protein also 

associates with the p110β:Rab5-GTP complex.  This suggested that p85 could be a GAP 

towards Rab proteins, specifically Rab5 because p85 and Rab5 are localized on the same 

membranes in the early endosome and they both bind to p110β.  The second set of 

experiments that supported the role of p85 in receptor endocytosis was that mutations, 

which block the binding of the p85 subunit of PI3K to the PDGFR disrupt trafficking.  

Trafficking was disrupted such that the receptor is internalized but is then exclusively 

recycled back to the plasma membrane instead of some fraction of the receptor being 

targeted to the lysosome for degradation.  The lipid kinase activity of PI3K is not 

required for the degradation of the receptor, suggesting this role for the p85-p110 (PI3K) 

is not dependent on the generation of its lipid products (Chen and Wang, 2001; Hiles et 

al., 1992; Kapeller et al., 1993; Schu et al., 1993).  This data leads to the following: 
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2.1 Hypothesis 

That the p85 regulatory subunit of PI3K is a GAP for Rab proteins of the early 

endosome (eg. Rab5) that regulate the endocytosis of the PDGFR. 

 

2.2 Objectives 

The goal of this thesis is to characterize the role of the p85 subunit of 

phosphatidylinositol 3-kinase in the regulation of endocytosis and downregulation of the 

PDGFR through the interaction with and regulation of Rab proteins. 

 

2.3 Specific Objectives of Thesis Work 

1) To determine if p85 can bind directly to Rab5 and if this interaction is 

dependent upon the nucleotide bound state of the Rab protein (i.e. GTP, GDP 

and GDP+AlF4). 

2) To determine if p85 has GAP activity towards Rab5. 

3) To determine if p85 has GAP activity towards other Rab proteins that are 

involved in endocytosis. 

4) To determine if p85 mutants have effects on Rab regulation and on receptor 

endocytosis, recycling and degradation in cells. 

5) To characterize cell lines containing p85 and the p85 mutants, p85∆BH and 

p85R274A, for transformed properties. 

   

The information obtained from these experiments will give us a better 

understanding of the role of p85 in growth factor receptor endocytosis.  From this data 

we will be able to construct a model of receptor endocytosis that includes p85 and Rab 
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proteins.  This model can then be used to test the role of p85 in endocytosis and give us 

ideas for future experiments to better understand the mechanism of receptor endocytosis 

and downregulation. 
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3.0 MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Reagents and Supplies 

All of the chemicals were of analytical grade or higher and were purchased from 

VWR, Sigma or BDH unless otherwise stated.  Glutathione Sepharose beads (Amersham 

Pharmacia Biotech) were prepared according to manufacturer’s instructions and were 

used for purification of GST fusion proteins and pull-down experiments.  Glutathione 

Sepharose beads were stored at 4°C and were stable for several months.  The 

radioisotopes, [α-32P]GTP (Cat #: BLU506H) and [γ-32P]ATP (Cat #: BLU502A) were 

purchased from PerkinElmer and were stored at 4°C.  All experiments using 

radioisotopes met with regulations as mandated by the University of Saskatchewan.  The 

Swiss nude mice were purchased from Charles River Laboratories and all animal 

handling was done according to the University of Saskatchewan guidelines. 

The following primary antibodies were used for the experiments: anti-Akt (New 

England Biolaboratory, 9272), anti-FLAG M2 (Sigma, F3165), anti-MAPK 

(Transduction Laboratory, M12320), anti-p85 (Upstate Biotechnology Institute, 05-217), 

several anti-p85 (specific for amino acids: 78-332 or 312-722, (Chamberlain et al., 2004; 

Fang et al., 2002; King et al., 2000)), anti-pAkt (New England Biolaboratory, 9271, 

pS473), anti-pMAPK (Cell Signalling, 9101, phospho-44/42 MAPK T202/Y204) and 
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anti-Rabaptin5 (Transduction Laboratory, R78620).  Several of the primary antibodies 

and the secondary antibodies used were from Santa Cruz Biotechnology.  The primary 

antibodies are anti-GST (sc-138), anti-Myc (sc-789), anti-PDGFR (sc-432), anti-pTyr 

(sc-508) and anti-Rab5 (sc-309).  The secondary antibodies used were horseradish 

peroxidase-coupled anti-rabbit IgG (sc-2004), horseradish peroxidase-coupled anti-

mouse IgG (sc-2005) and horseradish peroxidase-coupled anti-goat IgG (sc-2020).  

 

3.2 Methods 

If a specific method for basic molecular biology and protein science, such as DNA 

digests, ligations, competent cell production, transformation of competent cells and 

transfection of cells is not giving in specific detail, then the method comes from either 

Current Protocols in Molecular Biology or Current Protocols in Protein Science 

(Ausubel et al., 2007; Coligan et al., 2007). 

 

3.2.1 Plasmids and Vectors 

GST-fusion Proteins 

The pGEX2T, pGEX3X and pGEX6P1 vectors (Amersham Pharmacia) are 

designed for inducible protein production in bacteria.  Transformation with these vectors 

produces high levels of proteins fused with glutathione S-transferase (GST) after 

induction with isopropyl β–D-thiogalactopyranoside (IPTG).  They all contain 

ampicillin resistance genes and have a similar overall architecture.  The major difference 

between the three vectors is that they have different protease cleavage sites between the 

fusion protein and GST.  The pGEX2T has a thrombin cleavage site (LVPR*GS, the 

asterisk indicates the cleavage site) whereas pGEX3X has a factor Xa cleavage site 
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(I(E/N)GR*) and pGEX6P1 has a PreScission cleavage site (LEVLFQ*GP).  Several 

plasmids encoding different proteins have been used (Table 3.1).  Dr. G. Li (Liu and Li, 

1998) generously provided the pGEX3X plasmids encoding human Rab5 (wild type and 

the mutants Q79L and S34N) as well as human Rab4 and human Rab6.  The human 

Rab7, Rab11, Rac1 and Cdc42 cDNA were obtained by reverse transcription (Promega 

kit) from total RNA obtained from HeLa cells, followed by polymerase chain reaction 

(PCR) with Pfu (Stratagene).  Primers were designed to incorporate 5’ BamHI and 3’ 

EcoRI sites immediately upstream of the start codon and downstream of the stop codon, 

respectively.  The amplified products were cloned into pGEX6P1 and sequenced to 

verify the accuracy of the sequence (Chamberlain et al., 2004). 

GAPette is the catalytic domain of the p120 Ras GAP and is used as a positive 

control in the GAP assays (Liu and Li, 1998).  A plasmid containing human p120 

RasGAP previously obtained from F. McCormick (University of California, San 

Francisco) was used to generate the GAPette.  The fragment encoding the catalytic 

domain of p120 RasGAP (GAPette) was obtained by digesting the pUC101a plasmid 

encoding p120 RasGAP with ScaI and EcoRI and the resulting insert was gel purified on 

a 0.8% low melt agarose gel (VWR).  The insert was ligated into the pGEX2T vector 

digested with SmaI and EcoRI.  This plasmid encoded a GST-GAPette protein 

containing amino acids 450-1047 of human p120 RasGAP. 

 

 

 

50  



 

Table 3.1  Plasmids encoding the Proteins used in this Thesis. 
Protein Species Amino Acids Vector Backbone Expression Vector Tag Selection 

Cdc42 Human 1-192 pGEX6P1 Bacterial GST Ampicillin

Rab4 Human 1-218 pGEX3X Bacterial GST Ampicillin

Rab5 Human 1-215 pGEX3X Bacterial GST Ampicillin

Rab5 Human 1-215 pHA3 Mammalian NA Geneticin

Rab5Q79L Human 1-215 pGEX3X Bacterial GST Ampicillin

Rab5S34N Human 1-215 pGEX3X Bacterial GST Ampicillin

Rab6 Human 1-208 pGEX3X Bacterial GST Ampicillin

Rab7 Human 1-207 pGEX6P1 Bacterial GST Ampicillin

Rab11 Human 2-216 pGEX6P1 Bacterial GST Ampicillin

Rac1 Human 1-192 pGEX6P1 Bacterial GST Ampicillin

p110α Human 1-1068 pMyc3 Mammalian Myc Geneticin

p85 Bovine 1-724 pGEX2T Bacterial GST Ampicillin

  Bovine 1-724 pGEX6P1 Bacterial GST Ampicillin

  Bovine 1-724 pFLAG3 Mammalian FLAG Geneticin

  Bovine 1-724 pGEX6P-His Bacterial GST/His Ampicillin

p85SH3 Bovine 1-83 pGEX2T Bacterial GST Ampicillin

p85BH Bovine 77-322 pGEX2T Bacterial GST Ampicillin

p85(N+C)SH2 Bovine 314-724 pGEX2T Bacterial GST Ampicillin

p85∆BH Bovine 1-83,314-724 pGEX2T Bacterial GST Ampicillin

  Bovine 1-83,314-724 pFLAG3 Mammalian FLAG Geneticin

p85R151A Bovine 1-724 pGEX6P1 Bacterial GST Ampicillin

p85R274A Bovine 1-724 pGEX6P1 Bacterial GST Ampicillin

  Bovine 1-724 pFLAG3 Mammalian  FLAG Geneticin
 

The plasmids pGEX2T and pGEX6P1 were both used to express the bovine p85 

wild type and p85 mutants/domains (p85SH3, p85BH, p85(N+C)SH2, p85∆BH, 

p85R151A and p85R274A) (Chamberlain et al., 2004; King et al., 2000). The p85∆BH 

mutant was generated by fusing the p85 sequences encoding the p85SH3 domain (amino 

acids 1-83) and the p85(N+C)SH2 (amino acids 314-724) as described (Chamberlain et 

al., 2004; King et al., 2000).  The point mutations (p85R151A and p85R274A) were 

generated using the Quikchange mutagenesis method (Stratagene)(Chamberlain et al., 
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2004).  Wild type p85 was also expressed with a C-terminal His6 tag from an altered 

pGEX6P1 plasmid, pGEX6P-His, for use in the enzyme-linked immunosorbent assay 

(ELISA) binding assay (Chamberlain et al., 2004). The altered pGEX6P1 plasmid, 

pGEX6P-His, was generated by inserting a pair of oligonucleotides encoding six 

histidine residues and a stop codon, between the EcoRI and SalI sites such that the 

sequence of this region is now (5’GAA TTC CAT CAT CAC CAT CAC CAT TGA 

GTC GAC-3’).  The p85 encoding insert (not including the stop codon), amplified by 

polymerase chain reaction, was subcloned into the BamHI and EcoRI sites of pGEX6P-

His.   

The vectors pFLAG3, pMyc3 and pHA3 are all mammalian expression plasmids.  

They were used for expression of proteins in eukaryotic cell lines.  All three vectors 

contain both ampicillin and geneticin selection genes. 

 

HA-Rab Proteins 

The pHA3 vector was previously generated by Yun Fang and is based on the 

pRc/CMV2 vector (Invitrogen) originally modified and obtained from the Tremblay 

laboratory (Charest et al., 1995).  Inserts expressed in this vector encode three copies of 

the hemagglutinin (HA)-epitope (YPYDVPDYA) fused to the N-terminus of the protein 

(King et al., 2000).  The Rab5 insert was excised from the pGEX3X vector using BamHI 

and EcoRI and subcloned into BglII and EcoRI digested pHA3.  The BamHI and BglII 

restriction cleavage sequences have compatible overhanging cleavage sites that can join 

together by ligation but this destroys both the BamHI and BglII sites. 

 

 

52  



 

FLAG-p85 Proteins 

The pFLAG3 vector was derived from the pHA3 vector (Chamberlain et al., 2004).  

The small HindIII-BglII fragment upstream of the multiple cloning site in the pHA3 

vector was replaced by the following sequence to make the new pFLAG3 vector: 5’-AA 

GCT TCC ACC ATG GAC TAC AAG GAC GAC GAT GAC AAG GCT AGT GAC 

TAC AAG GAC GAC GAC GAT AAA GCG GCC GCT GAT TAC AAG GAC GAC 

GAC GAT AAA GCT AGC AGA TCT-3’ (Chamberlain et al., 2004). The newly 

generated plasmid was verified by DNA sequencing.  The pFLAG3 vector encodes three 

copies of the FLAG-epitope (DYKDDDDK) in place of the three HA sequences fused to 

the N-terminus of the protein.  Inserts encoding full-length wild type p85, p85∆BH, 

p85R151A and p85R274A were excised from the pGEX vectors described above, using 

BamHI and EcoRI and subcloned into BglII and EcoRI digested pFLAG3 (Chamberlain 

et al., 2004).  The BamHI and BglII restriction cleavage sequences have compatible 

overhanging cleavage sites that can join together by ligation but this destroys both the 

BamHI and BglII sites. 

 

Myc-p110 Proteins 

The pMyc3 vector was modified from the pFLAG3 vector and encoded three 

copies of the Myc-epitope (EQKLISEEDL) upstream of the multiple cloning site.  The 

small HindIII-NheI fragment from the pFLAG3 vector was replaced by the following 

sequence in the new pMyc3 vector: 5’-AA GCT TCC ACC ATG GAA CAG AAA CTG 

ATC AGC GAA GAG GAT CTG CTG AGC GAG CAG AAA CTG ATC AGC GAG 

GAA GAA CTG GCC GCG GAA CAG AAA CTG ATC AGC GAA GAG GAT CTG 
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GCT AGC-3’ (Chamberlain et al., 2004). A pair of oligonucleotides (5’-AAT TCG 

CGG CCG CGG GCC-3’ and 5’-CGC GGC CGC G-3’) were ligated into the EcoRI-

ApaI-digested FLAG-modified vector, as described above, to alter the multiple cloning 

site so that it contained a new unique NotI site between these two restriction sites 

(Chamberlain et al., 2004).   This entire region of the new pMyc3 vector was verified by 

DNA sequencing.  An insert encoding full-length wild type mouse p110α was amplified 

by PCR from the pCMV-p110myc plasmid (generously provided Dr. L.T. Williams 

(University of California San Francisco, CA)).  The BamHI-NotI-digested insert DNA 

(p110α) was subcloned into the BglII-NotI-digested pMyc3 vector.  The integrity of all 

inserts containing PCR-generated DNA inserts were verified by sequencing to ensure 

that no mutations had been introduced. 

 

3.2.2 Bacterial Strains 

For protein purification, the pGEX2T, pGEX3X, pGEX6P1 and pGEX6P-His 

plasmids containing inserts were expressed in Escherichia coli (E. coli) BL21 cells [F- 

ompT hsdSB (r B
-mB

-) gal dcm] (Novagen).  These cells are protease deficient to 

minimize protein degradation during purification.  The E. coli BL21 cells were grown in 

Luria-Bertani Broth (LB, Sigma) containing 1%(w/v) bacto-tryptone, 0.5%(w/v) bacto-

yeast extract and 1%(w/v) sodium chloride (NaCl) pH 7.0, per litre.  All of the plasmids 

contained an ampicillin resistance gene, therefore the E. coli BL21 cells were grown in 

LB containing 100 µg/mL ampicillin (LBA, Sigma).  For the production of plasmid 

DNA, E. coli TOP10 cells [F- mcrA (mrr-hsdRMS-mcrBC) 80lacZM15 lacX74 recA1 
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ara139 (ara-leu)7697 galU galK rpsL (StrR) endA1 nupG] (Invitrogen) were used and 

they were grown in the same conditions as the E. coli BL21 cells. 

 

3.2.3 Mammalian Cell Lines 

Mouse fibroblast cells, NIH 3T3 and African green monkey kidney fibroblast-like 

cells, COS-1, were obtained from American Type Culture Collection (CRL-1658) and 

grown in Dulbecco’s Modified Eagle Medium (DMEM, Gibco) supplemented with 10% 

fetal bovine serum (FBS, Hyclone), 100 units/mL penicillin G and 100 µg/mL 

streptomycin (P/S, Gibco) at 37°C with 5% CO2.  NIH 3T3 cells transfected with 

plasmids derived from pFLAG3 were grown in selection media (DMEM + 10% FBS + 

P/S) containing 400 µg/mL Geneticin (G418, Gibco).  COS-1 cells were transiently 

transfected with pFLAG3-p85 and/or pMyc3-p110 and/or pHA3-Rab5 and grown in 

media (DMEM + 10% FBS + P/S) at 37°C with 5% CO2. 

 

3.2.4 Protein Analysis 

3.2.4.1 Induction and Purification 

LBA (100 mL) was inoculated with E. coli BL21 cells transformed with the 

plasmid encoding the protein of interest fused to GST and grown overnight at 37˚C.  The 

next day 1 L of LBA was inoculated with the entire 100 mL overnight culture.  The 

culture was grown at 37ºC until an OD600 of 0.5-0.7 was reached (~ 1 hr).  IPTG (Sigma) 

was added to a concentration of 0.1 mM to induce protein expression.  After the addition 

of IPTG, the culture was grown at 37ºC for 4 hr and the cells were harvested by 

centrifugation at 4200 x g for 15 min at 4ºC.  The cell pellet was frozen at –20ºC or 

lysed immediately. 
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For lysis, the cell pellet was resuspended in 10 mL phosphate buffered saline 

(PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM sodium phosphate, 1.4 mM potassium 

phosphate, pH 7.3) containing 10 µg/mL aprotinin (Sigma), 10 µg/mL leupeptin (Sigma) 

and 1 mM phenylmethylsulfonyl fluoride (PMSF; Sigma), which were added fresh.  The 

cells were lysed by 3 bursts of sonification for a duration of 30 sec. at the setting of 2.5 

using a Model 250/450 Sonifier (Branson Ultrasonics) with 2 min of chilling on ice 

between bursts.  Triton X-100 (Sigma) was added to a concentration of 1% (to minimize 

protein-protein interactions and reduce contamination of the sample) and the sample was 

centrifuged at 12,000 x g for 30 min at 4ºC to remove cell debris.  The supernatant was 

filtered through a 0.45 µM cellulose acetate membrane (Nalgene) and mixed with 1 mL 

of a 50% slurry of Glutathione Sepharose beads (Amersham Biosciences).  The lysate 

and beads were incubated together for 1 hr at room temperature (RT) with rocking.  The 

beads were recovered by centrifugation at 800 x g for 5 min and washed 3 times with 50 

mL of ice-cold PBS. 

For pull-down experiments, the GST fusion proteins were left bound to the 

glutathione Sepharose beads, resuspended in PBS to make a 50% slurry and were stored 

at 4°C.  A sample of each protein suspension was resolved by sodium dodecyl sulfate 

(SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) and stained with Coomassie 

blue to determine protein purity, integrity and recovery.  The protein concentrations 

were also determined by visually comparing GST-fusion protein amounts to bovine 

serum albumin (BSA) standards on the SDS-PAGE gel. 

To cleave the protein of interest from the GST tag, the immobilized GST-fusion 

protein was treated with a protease.  The protease added depended on the cleavage site 
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present in the vector and was either 100 NIH units of Thrombin (Sigma), 50 units of 

Factor Xa (Amersham Biosciences) or 35 units of PreScission protease (Amersham 

Biosciences).  The Thrombin and Factor Xa cleavage reactions were carried out in PBS.  

For PreScission cleavage, the beads were washed 3 times in 20 mL PreScission buffer 

(50 mM Tris-HCl, pH 7.0, 150 mM NaCl, 1 mM ethylenediaminetetraacetic acid 

(EDTA), 1 mM dithiothreitol (DTT)) and the cleavage reaction was performed in 

PreScission buffer.  The cleavage reactions were carried out for 4 hr or overnight at RT 

(4˚C for PreScission) depending on the protein.  A four hour cleavage time was used for 

Rab5 as longer cleavage times sometimes resulted in proteolysis of the Rab5 protein.  To 

recover the cleaved protein, the sample was centrifuged at 2000 x g and the supernatant 

containing the purified protein was collected.  The beads were washed 4 times with 1 

mL of PBS or PreScission buffer to recover any residual protein trapped between the 

beads. 

After PreScission cleavage from GST, the C-terminal His6-tag was used to further 

purify p85-His6.  The protein that had been previously buffer-exchanged into Talon 

extraction/wash buffer (50 mM NaH2PO4, 300 mM NaCl) using an Amicon Ultra 

Centrifugal Filter (MW 30,000, Millipore) was bound to 1 mL of a 50% slurry of Talon 

beads (Clontech).  Samples were mixed end-over-end for 20 min at RT.  Beads were 

recovered by centrifugation at 800 x g for 5 min and washed in 20 mL Talon 

extraction/wash buffer 3 times, recovering the washed beads by centrifugation as 

described above.  The Talon beads were transferred into a small column using additional 

Talon extraction/wash buffer.  The p85-His6 protein was eluted from the resin using 3 

successive 1 mL additions of Talon elution buffer (50 mM NaH2PO4, 300 mM NaCl, 

150 mM imidazole) and collecting the elution buffer containing the p85-His6 protein.  

57  



 

For storage the p85-His6 protein was concentrated and exchanged into Talon 

extraction/wash buffer (not protein storage buffer) as above.  Glycerol was added to 

20% and aliquots were stored at –80ºC.   

For the ELISA-based binding assay, the Rab5 protein was further purified after 

factor Xa cleavage from GST using gel filtration chromatography on a Sephacryl HR-

200 column in phosphate buffer (50 mM NaH2PO4, pH 7.0, 150 mM NaCl) before 

exchange into protein storage buffer.  Also for the ELISA assay, purified GST protein 

was eluted from glutathione Sepharose beads using 15 mM reduced glutathione.  To 

concentrate all the proteins, the samples of protein were pooled and concentrated using 

an Amicon Ultra Centrifugal Filter (Millipore) with a molecular weight cut-off 2 to 3 

times smaller than the molecular weight of the protein being purified.  The protein was 

buffer exchanged into protein storage buffer (50 mM N-2-hydroxyethylpiperazine-H’-2-

ethanesulfonic acid (Hepes), pH 7.5, 50 mM NaCl, 1 mM EDTA) and glycerol was 

added to a concentration of 10% to 40%.  All purified proteins were flash-frozen in 

liquid nitrogen and stored at –80ºC.  A sample of all proteins was resolved by SDS-

PAGE and stained with Coomassie blue to determine purity.  The protein concentrations 

were determined by Bradford assay (Bio-Rad). 

  The PreScission protease (Amersham Biosciences), 3C, was expressed as a GST-

3C fusion protein, purified as described above except that it was eluted from the 

Glutathione Sepharose beads using 15 mM reduced glutathione (Sigma) in 50 mM Tris-

HCl pH 8.0 and stored at –20°C. 
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3.2.4.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were resolved by SDS-PAGE for protein staining with Coomassie blue or 

for Western blot analysis (Laemmli, 1970).  SDS-PAGE was performed using the Mini-

Protean II apparatus (Bio-Rad).  Gels were cast between two glass plates with one mm 

spacers.  The resolving gels contained between 7.5% to 15% acrylamide solution 

(29.2:0.8 acrylamide: bisacrylamide), 37 mM Tris-HCl pH 8.8 and 0.1%(w/v) SDS.  

Polymerization was initiated by the addition of 0.06%(w/v) ammonium persulfate and 

0.1%(v/v) N,N,N’,N’-Tetra-methylethylenediamine (TEMED).  After the resolving gel 

was set, a 2 mL stacking gel containing 4.5% acrylamide solution, 125 mM Tris-HCl pH 

7.0 and 0.1%(w/v) SDS was added to the top of the gel and a comb was inserted to form 

wells.  The stacking gel was polymerized with the same procedure as the resolving gel.  

After the stacking gel was set, the gel was assembled into the electrophoresis apparatus.  

The protein samples were prepared in SDS sample buffer (62.5 mM Tris-HCl, pH 6.8, 

5%(v/v) β–mercaptoethanol, 2.3%(w/v) SDS, 0.1%(w/v) bromophenol blue, 10%(v/v) 

glycerol) and heated to 100°C for 5 min.  The samples and prestained molecular weight 

markers (Sigma, SDS-7B or Fermentas, SM0671) were loaded on the gel and resolved.  

The electrophoresis was performed at a constant voltage of 180V in running buffer (25 

mM Tris, 250 mM glycine and 0.1%(w/v) SDS) until the bromophenol blue dye had run 

off the bottom of the gel as described (Laemmli, 1970).  For protein staining, the gel was 

incubated in Coomassie blue stain (0.14% w/v Coomassie blue R-250 (Bio-Rad), 41.4% 

v/v methanol and 5.4% acetic acid) at RT for 30 min and destained in destaining 

solution (41.4% v/v methanol and 5.4% acetic acid) until bands were visible.  The gel 

was dried onto 3MM paper and scanned using an Epson Perfection 1260 scanner. 
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3.2.4.3 Western blot analysis 

Following protein separation by electrophoresis, the SDS-PAGE gel was soaked in 

transfer buffer (48 mM Tris, 39 mM glycine, 0.0375% SDS, 20% methanol) for 15 min.  

At the same time, 6 pieces of 3MM filter paper (Whatman) were soaked in transfer 

buffer and one piece of nitrocellulose membrane (Schleicher and Schuell) was 

rehydrated in distilled water.  The proteins were transferred to the nitrocellulose 

membrane using a Panther semi-dry Electroblotter Owl Separation System (VWR) at 

constant current of 400 mA for 15 min per gel being transferred.  After transfer, the 

nitrocellulose was blocked in blocking solution [5% Carnation skim milk powder in 

TBST (100 mM Tris-HCl, pH 8, 150 mM NaCl, 0.05% polyoxyethylenesorbitan 

monolaurate (Tween-20))] for 1 hour at RT or overnight at 4˚C.  The membrane was 

incubated with primary antibody in blocking solution for one hour at RT or overnight at 

4˚C and washed 3 times in TBST for 5 min each.  The membrane was probed with 

horseradish peroxidase conjugated secondary antibody for one hour at RT or overnight 

at 4˚C and washed as described above.  The nitrocellulose membrane was incubated for 

1 min in Western Lightning enhanced chemiluminescence reagent (PerkinElmer) and 

exposed to X-Omat Blue XB-1 film (Kodak) for up to 5 min in a darkroom.  The film 

was developed in a Kodak M35A X-Omat processor. 

To reprobe the membrane with subsequent antibodies, the membrane was washed 

as described above and incubated with stripping buffer (62.5 mM Tris-HCl pH 6.8, 

2%(w/v) SDS, 100 mM β-mercaptoethanol) for 30 min at 60°C.  The membrane was 

washed again and incubated in blocking solution before reprobing using the method 

described above. 
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3.2.4.4 GAP assay 

This three-step assay measures the hydrolysis of GTP by the Rab5 protein by 

determining the amount of GDP produced.  The Rab5 protein was loaded with [α-

32P]GTP, a hydrolysis reaction converts the bound [α-32P]GTP to [α-32P]GDP and the 

[α-32P]GDP was separated from the [α-32P]GTP by thin-layer chromatography (TLC).  

Two different variations of the GAP assay were used that were adapted from the method 

used by the Li laboratory (Liu and Li, 1998).  The first was the Steady State GAP Assay, 

which was simple to perform but could not measure the catalytic rate.  The second was 

the Single Turnover GAP Assay used to determine the catalytic rate. 

It should be noted that high concentrations of glycerol adversely affected both 

GAP assays.  Thus, if the concentrations of the p85 or Rab5 proteins were low, it was 

necessary to add less glycerol to the proteins prior to freezing.  We found with 40% 

glycerol in the Rab5 protein, there was no experimental effect from the glycerol if the 

Rab5 was diluted 1:100 with loading buffer before using it for nucleotide loading.  For 

p85, we found that 10% glycerol could be added without a significant effect on the GAP 

assay even though the p85 was not always diluted before addition into the assay reaction 

mixture.  We also noted that different preparations of the proteins had slightly different 

specific activities; therefore, the same batches of Rab5 and p85 proteins were used for 

particular sets of experiments. 

 

3.2.4.4.1 Steady State GAP Assay 

This assay measured the amount of GDP generated via hydrolysis by Rab5 for a 

fixed time with increasing concentrations of the GAP protein, p85.  This assay allowed 
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the possibility of new [α-32P]GTP loading onto the Rab5 protein and therefore could not 

be used to determine the catalytic rate.  

 

Preparation for the GAP Assay 

The TLC chamber was pre-equilibrated with the developing solvent (0.75 M 

KH2PO4) for 1 - 24 hr.  The PEI Cellulose F plates (VWR, Cat #: CAM05725-01) were 

labelled using a pencil.  Lanes were marked with a small “x” 2 cm from the bottom edge 

and at 1.5 cm intervals starting 2 cm from the outside edge of the plate.  Labelled TLC 

plates were dried for 1 to 24 hr at ~75˚C. 

 

GAP Assay 

1) Nucleotide loading of the Rab protein 

The Rab5 protein was diluted in loading buffer (20 mM Tris-HCl, pH 8.0, 2 mM 

EDTA, 1 mM DTT) to a final concentration of 200 nM.  [α-32P]GTP (Perkin Elmer; 

3000 Ci/mmol; 0.51 µL) was added to the Rab5 protein to a final concentration of 85 

nM.  The total reaction volume of the Rab5 protein plus the [α-32P]GTP was 20 µL per 

sample.  The reaction mix was incubated at RT for 30 min, which allowed the formation 

of the Rab5-[α-32P]GTP complex.  A negative control of nucleotide ([α-32P]GTP) 

without any Rab5 protein was prepared as well. 

 

2) Hydrolysis Reaction 

As the [α-32P]GTP/Rab5 mix incubated, tubes containing the various 

concentrations of GAP protein (p85 or GAPette) were prepared.  The hydrolysis reaction 
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was carried out in a total volume of 30 µL: 9 µL p85 protein (diluted in loading buffer; 

sufficiently concentrated to give a final concentration of 0 – 35 µM in the 30 µL assay 

volume), 1 µL MgCl2 (300 mM made fresh; final concentration of 10 mM), and 20 µL 

of the [α-32P]GTP/Rab5 (prepared above in section 1).  Therefore, a set of tubes 

containing various concentrations of p85 and the MgCl2 in a total volume of 10 µL were 

prepared, that gave the appropriate final concentrations of p85 and MgCl2 after the 20 

µL of [α-32P]GTP/Rab5 were added.  For the positive control of GAPette, 9 µL of 

GAPette plus 1 µL of 300 mM MgCl2 was used with a final concentration of 0.8 µM of 

GAPette in the 30 µL assay volume and for the negative control 9 µL loading buffer and 

1 µL of 300 mM MgCl2 was used. 

After the Rab5 protein and the nucleotide mixture, from step 1, was finished 

incubating, 20 µL of this mix was added to the p85 protein plus MgCl2, as well as to 

each of the control tubes.  This was mixed by inversion and incubated for 10 min at RT.  

The MgCl2 locked the [α-32P]GTP into the Rab5-[α-32P]GTP complex.  After 10 min 

the reaction was stopped by the addition of 6 µL of elution buffer (1% SDS, 25 mM 

EDTA, 25 mM GDP, 25 mM GTP) and heated for 2 min at 65˚C. 

 

3) Separation of [α-32P]GTP/[α-32P]GDP by TLC 

The samples were spotted onto the TLC plates 5 µL at a time until the entire 

sample was applied, allowing the spots to dry between additions.  After the entire 

sample was added, the plate was allowed to dry at RT.  When the plate was inserted into 

the TLC chamber, the developing solvent was several mm below the line marking the 

lanes so that the developing solvent did not smear the spots.  The samples were allowed 
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to migrate in the TLC chamber until the solvent front was ~1 cm from the top of the 

plate (~2 hr).  After the plate was removed and dried at RT, the separated [α-32P]GTP 

and [α-32P]GDP were visualized using a phosphorimager (Molecular Imager FX Pro 

Plus; Bio-Rad) and quantified using Quantity One software (Bio-Rad).  The amount of 

GTP hydrolyzed was calculated as femtomoles of [α-32P]GDP produced or as a relative 

GAP activity using the ratio of [α-32P]GDP to [α-32P]GTP on the TLC plate.  The value 

from the nucleotide alone (negative control) sample was subtracted from the 

experimental values since it was the background of [α-32P]GDP present in the absence 

of Rab5.  The relative GAP activity was determined by normalizing the data to the 

amount of [α-32P]GDP produced by the Rab5 protein in the absence of a GAP protein.  

The results were graphed and statistical analysis was performed using Prism software 

(GraphPad Software, Inc.). 

 

3.2.4.4.2 Single Turnover GAP Assay 

This assay measured the rate of Rab5 GTP hydrolysis over time with a fixed 

concentration of p85 protein.  There was no possibility of [α-32P]GTP reloading due to 

the presence of a large excess of unlabeled GTP.  Using this assay it was possible to 

measure the catalytic rate of GTP hydrolysis by the Rab5 protein and how that rate was 

changed by the addition of the p85 protein. 

The single turnover GAP assay was performed the same way as the steady state 

GAP assay with the following changes.  Unlabeled GTP (1.7 mM) was added to the tube 

containing the p85 protein and the MgCl2.  Also the concentration of the p85 protein was 

held constant and the time of incubation was varied from 0 to 25 min in 5 min intervals.  
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When choosing a concentration to use for the p85 protein, it was ideal to choose a 

concentration that was sub maximal in the steady state GAP assay.  This allowed for 

either increases or decreases in rates to be observed easily.  For the purposes of our 

experiments we used 10 µM p85. 

 

3.2.4.5 ELISA 

The ELISA binding assay was used to determine if there was an interaction 

between the Rab5 and p85 proteins.  The first step was to load the Rab5 protein with 

nucleotides and then bind the complex to the ELISA plate.  The second step was to 

incubate the p85 protein with the Rab5 and the last step was to develop the assay and 

read the absorbance. 

Rab5 was diluted to 40 µg/mL in PBS + 2 mM EDTA and incubated for 20 min at 

RT to remove any bound nucleotide.  To prepare Rab5 with no bound nucleotide, an 

equal volume of 20 mM MgCl2 in PBS was added.  To prepare Rab5 with bound GDP, 

an equal volume of 20 mM MgCl2 + 200 µM GDP (Sigma) in PBS was added.  To 

prepare Rab5 with bound GTPγS (a non-hydrolyzable form of GTP), an equal volume of 

20 mM MgCl2 + 200 µM GTPγS (Sigma) in PBS was added.  Each was incubated for a 

further 20 min at RT to load each of the nucleotides onto the Rab5 protein. 

Immulon 4 flat-bottomed 96-well ELISA plates (VWR) were used for the assay.  

All incubations were carried out at RT, unless otherwise indicated, in a humidified 

plastic container (i.e. damp paper towels in the bottom of a plastic container with a lid).  

Determinations were carried out at least in duplicate.  The wells around the perimeter of 

the plate were avoided since they showed larger well-to-well differences in absorbance 
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(at 450 nm) even when empty (0.036-0.042), as compared to the interior wells (0.036-

0.039). 

The Rab5 protein that had been preloaded with nucleotide was bound to 12 wells 

for each test protein (20 µg/mL in PBS, 50 µL per well; 1 µg total) overnight.  For 

controls, 4 wells were prepared with PBS.  The next day, wells were emptied and excess 

liquid was removed by inverting the plates onto paper towels.  The wells were blocked 

by filling each well completely with blocking buffer (5% Carnation skim milk, 0.2% 

Tween-20 in PBS) and incubated for 2 hours.  Blocking was removed, excess liquid was 

removed by percussion and the wells were washed 4 times with distilled water.  To wash 

the ELISA plate, a plastic basin was filled 1/2 to 3/4 full of distilled water and with the 

ELISA plate at a 45˚ angle, it was submerged to fill the wells with water.  This was 

repeated, tipping a different edge of the plate down each time until all 4 edges had been 

done.  Excess water was removed onto a paper towel.  In duplicate wells, 50 µL of a 

serial dilution of the p85-His6 or GST (control for background non-specific binding) in 

blocking buffer was added.  For the dilutions 2-fold serial dilutions of protein in 

blocking buffer (e.g. 250 nM, 125 nM, 62.5 nM, 31.25 nM, 15.6 nM), as well as 0 nM 

wells were used.  As an additional control, the highest concentration of p85-His6 or GST 

test protein (e.g. 250 nM) was added to wells, which received PBS instead of Rab5 

protein initially.  Samples were incubated for 2 hours at RT.  After the incubation, 16 

washes were carried out in distilled water: 4 times for one leading edge, then the water 

was changed and repeated for each of the 3 remaining edges of the plate.  Excess water 

was removed as before.  To the p85-His6 wells (including wells that did not receive any 

test protein) 100 µL of anti-p85 (affinity purified rabbit antibody directed against p85 
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amino acids 314-724) at a concentration of 0.25 µg/mL in blocking buffer was added.  

To the wells where GST had been added (including 0 nM wells), 100 µL of anti-GST at 

a concentration of 0.0625 µg/mL in blocking buffer was added.  Primary antibody was 

incubated for 1 hour at RT.  ELISA plates were washed 16 times as before.  The anti-

p85 wells had 100 µL of horseradish peroxidase-coupled anti-rabbit IgG (0.125 µg/mL) 

in blocking buffer added to them.  The anti-GST wells had 100 µL of horseradish 

peroxidase-coupled anti-mouse IgG (0.25 µg/mL) in blocking buffer added to them.  

The secondary antibodies were incubated for 1 hour at RT.  The ELISA plates were 

washed 16 times as before.  To each well a 100 µL 3,3’5,5’-tetramethylbenzidine (TMB) 

solution (Kirkegaard & Perry Labs) was added and incubated for 30 min at RT.  

Reactions were stopped by adding 100 µL of 1 M H3PO4 per well and the absorbance 

was read at 450 nm. 

In the absence of Rab5 bound to the plate, wells containing 250 nM p85-His6 

typically had an absorbance of 0.06-0.09, while those containing 250 nM GST had an 

absorbance of 0.05.  When Rab5 was bound to the plate, the “background absorbance” 

in the absence of p85-His6 protein (i.e. 0 nM test protein in step 5) was relatively small 

(for Rab5 it was 0.06-0.07; for Rab5-GDP it was 0.09-0.11; for Rab5-GTPγS it was 

0.11).  The corresponding background absorbance in the absence of GST protein was 

0.06-0.08.  Each experiment was carried out at least twice, with duplicate determinations 

each time.  After subtracting the “background absorbance” from each experimental 

value, the results were averaged and plotted using Prism software (GraphPad Software, 

Inc.) ± standard error from the mean. 
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Before starting the ELISA assay, titrations of the primary (anti-p85, generated in 

our laboratory; 1, 0.5, 0.25, 0.125, 0.0625 µg/mL) and secondary (anti-rabbit 

horseradish peroxidase; 0.25, 0.125, 0.0625 µg/mL) antibodies were carried out using 

p85-His6 protein bound to the wells.  The lowest concentrations of antibody that still 

gave maximal sensitivity were selected and these were the ones used in the above 

method.  A similar antibody titration has been carried out for the anti-GST antibody 

(Fang et al., 2002). 

 

3.2.4.6 Purified protein pull-down experiments 

An aliquot of bead suspension for each different immobilized GST-fusion protein 

(GST, GST-Rab5, GST-Rab5S34N and GST-Rab5Q79L prepared in section 3.2.4.1) 

corresponding to 5 µg was transferred to a 1.5 mL microcentrifuge tube.  An additional 

20 µL of 50% glutathione Sepharose beads was added to aid in visibility of the bead 

pellet during the wash steps.  Beads were centrifuged at 2000 x g for 1 min and 

supernate was aspirated.  The GST-Rab5 proteins were loaded with nucleotide.  To each 

sample, 500 µL of Buffer A (20 mM Tris-HCl, pH 7.5, 50 mM NaCl, 1 mM DTT, 5% 

glycerol, 0.1% Triton X-100, 10 µg/ml aprotinin, 10 µg/mL leupeptin) + 10 mM EDTA 

was added to remove nucleotide.  The beads were incubated for 20 min at RT and 

centrifuged at 2000 x g for 1 min and the buffer removed.  One of the following was 

added: 

i.   For no nucleotide: 400 µL Buffer A + 10 mM EDTA 

ii.   For Mg/GTPγS: 400 µL Buffer A + 10 mM MgCl2 + 200 µM GTPγS  

iii.  For Mg/GDP: 400 µL Buffer A + 10 mM MgCl2 + 200 µM GDP 
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iv. For Mg/GDP-AlF4 (the transition state analogue): 400 µL Buffer A + 10 mM 

MgCl2 + 1 mM AlCl3 + 10 mM NaF + 1 mM GDP 

Samples were allowed to bind nucleotide for 30 min at RT.  The beads were 

centrifuged at 2000 x g for 1 min and supernate was aspirated.  The p85 test protein (10 

µg) was added in a volume of 50 µL of the corresponding buffer used to load the 

nucleotide plus 5% Carnation skim milk powder.  Samples were incubated for 1 – 2 

hours at 4˚C.  The beads were centrifuged at 2000 x g for 1 min and washed 3 times with 

500 µL wash buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% nonidet P-40).  After 

the final wash the beads were resuspended in SDS sample buffer and resolved on SDS-

PAGE gel followed by anti-p85 Western analysis. 

 

3.2.5 Cell Culture Techniques 

3.2.5.1 Growth Factor Stimulation 

NIH 3T3 cells were grown as described in section 3.2.3 until they were 

approximately 80% confluent.  The cells were deprived of serum for 24 hrs in DMEM 

containing 0.5% FBS.  The cells were stimulated for the time indicated in the 

experiments with 50 ng/mL of PDGF-BB (Calbiochem) in the DMEM that the cells 

were starved in that contained 0.5% FBS at 37°C.  The cells were placed on ice, the 

media removed and they were washed with cold PBS.  The cells were lysed in either 

SDS sample buffer or PLC lysis buffer (50 mM Hepes, pH 7.5, 150 mM NaCl, 10% 

glycerol, 1% Triton X-100, 1.5 mM MgCl2, 1 mM ethylene glycol-bis(2-

aminoethylether) N,N,N’,N’-tetraacetic acid (EGTA), 10 mM sodium pyrophosphate 
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(NaPP) and 100 mM NaF) containing 10 µg/ml aprotinin, 10 µg/mL leupeptin, 1 mM 

PMSF and 1 mM sodium orthovanadate (Na3VO4).   

The SDS-solubilized cell lysates were used as whole cell lysates for Western blot 

analysis.  The cells lysed in SDS sample buffer were passed through a 27 gauge needle 

several times to reduce the viscosity of the cell lysates.  The cell lysates were heated to 

100°C for 5 min to completely denature the proteins.  The lysates were used 

immediately or stored at –80°C.  The protein concentration of the lysates was 

determined by Lowry protein assay (Sigma) according to the manufacturer’s directions. 

The cells lysed in PLC buffer were used for immunoprecipitation.  The PLC 

lysates were clarified by centrifugation (14,000 x g) for 10 min at 4°C.  The supernatants 

were used immediately or stored at –80°C.  The protein concentration of the samples 

were determined using the Lowry protein assay (Sigma) according to the manufacturer’s 

directions. 

 

3.2.5.2 Immunoprecipitation 

To standardize immunoprecipitation experiments, a given amount (either volume 

or concentration) of lysate was used.  For all experiments where a standard 

concentration was used, 200 µg total protein was used.  The lysates were pre-cleared 

with 2 µg of anti-rabbit/mouse IgG agarose conjugate beads (depending on the species 

of the primary antibody) and 20 µL of the 50% suspension of Protein A or G beads 

(depending on the species of the IgG; Sigma).  The lysates were pre-cleared with 

nutation for 1 hr at 4°C and the supernatant was collected after pelleting the beads at 

14000 x g for 10 min.  The proteins of interest were immunoprecipitated from the 
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precleared supernatant with 10 µg of anti-FLAG (mouse) or 5 µg of anti-PDGFR 

(rabbit).  20 µL of Protein G (for mouse) or A (for rabbit) beads (depending on the 

species of the primary antibody; Sigma) were also added with the antibodies and 

incubated for 90 min at 4°C with nutation.  The beads were pelleted at 2000 x g for 1 

min, the supernatant discarded and the beads were washed 3 times with 500 µL HNTG 

(20 mM Hepes, pH 7.5, 150 mM NaCl, 0.1%(v/v) Triton X-100 and 10% glycerol).  The 

samples were either assayed for PI3K activity (section 3.2.5.3) or used in a Western blot 

analysis (section 3.2.4.3). 

 

3.2.5.3 PI3K assay 

Samples were immunoprecipitated using either anti-PDGFR antibodies (5 µg, 

Santa Cruz Biotechnology) or anti-FLAG M2 (10 µg, Sigma) as described in section 

3.2.5.2.  Immunoprecipitates were washed twice with each of the following: wash 1 

(PBS), wash 2 (100 mM Tris-HCl pH 7.4, 50 mM LiCl), and wash 3 (10 mM Tris-HCl 

pH 7.4, 100 mM NaCl, 1 mM EDTA).  Excess liquid was removed from the 

immunoprecipitates.  Lipid micelles were generated by sonicating phosphatidylserine 

(PS) and phosphatidylinositol (PI) in PI3K assay buffer (25 mM Hepes pH 7.4, 10 mM 

MgCl2) in a sonicating water bath for 20 min.  Each sample was incubated with lipid 

micelles (5 µg PS + 2.5 µg PI) in PI3K assay buffer and 10 µCi [γ-32P]ATP in a total 

volume of 50 µl for 15 min at 20˚C.  The reaction was stopped by the addition of HCl 

(to 1.7 M).  Lipids were extracted by chloroform: methanol (1:1 v/v) and washed with 

methanol: 1 N HCl (1:1 v/v).  The reaction products were dried down, resuspended in 

chloroform: methanol (1:1 v/v) and spotted onto a Silica Gel 60 TLC plate (VWR).  The 

71  



 

plate was developed in 1-propanol: water: acetic acid (17.4: 7.9: 1) in a chromatography 

chamber for 4 hours, dried and exposed to a phosphorimager screen.  Results were 

visualized using a phosphorimager (Molecular Imager FX Pro Plus; Bio-Rad) and 

quantified using Quantity One software (Bio-Rad), and the statistical analysis was 

performed using Prism software (GraphPad Software, Inc.). 

 

3.2.5.4 Proliferation assay 

Cell proliferation was assayed using the Cell Titer 96 nonradioactive proliferation 

kit (Promega) according to the manufacturer’s instructions.  The cells were serum-

starved in 0.5% fetal bovine serum-containing media for 24 hrs before being plated at a 

density of 5000 cells per well in a 96-well plate.  The cells were tested for growth over 5 

days in media containing either 2% fetal bovine serum or 50 ng/ml PDGF BB.  Each 

experiment was done in duplicate in at least three independent experiments.  The results 

were plotted using Prism software (GraphPad Software Inc.) and the standard error of 

the mean was indicated with error bars. 

 

3.2.5.5 Apoptosis assay 

Apoptotic cells were assayed using Vybrant Apoptosis Assay Kit 2 (Invitrogen) 

according to the manufacturer’s instructions.  Two 10 cm plates of proliferating cells 

were treated for 4 hrs with 1 mM hydrogen peroxide, washed with PBS and treated with 

trypsin-EDTA to remove them from the plate.  The cells were washed once with media 

followed by a wash with PBS.  The cells were counted and 106 cells were used for the 

assay according to the manufacturer’s instructions.  The number of viable cells were 

determined by lack of annexin V and propidium iodide staining by fluorescence 
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activated cell sorting (FACS) analysis.  For a control, cells not treated with hydrogen 

peroxide were also assayed.  The results from three independent experiments were 

plotted using Prism software and the standard error of the mean was indicated with error 

bars. 

 

3.2.5.6 Contact inhibition assay 

For the contact inhibition assay, cells (100 000) were seeded on a 10 cm plate and 

allowed to grow for 12 days.  The media was changed every two to three days.  Foci 

were counted and photographs were taken under phase contrast using a Coolpix 990 

digital camera (Nikon) attached to an Eclipse TE300 microscope (Nikon).  The total 

magnification was 100x.  The plates of cells were fixed with methanol and stained with 

Giemsa stain (Sigma) according to manufacturers instructions.  Photographs of each 

entire plate were taken with a Gel Doc 2000 (Bio Rad).  The results shown are typical 

for three independent experiments. 

 

3.2.5.7 Colony formation assay 

To measure anchorage independent growth, a colony formation assay was 

performed in which the cells were grown in soft agar.  An underlay of 0.6% agar 

containing media (DMEM, 10% FBS, 5x MEM vitamin solution (Gibco, 11120-052), 

0.6% agar (Sigma, A-7002)) was poured into each 6 cm dish (approximately 5 mL) and 

allowed to set.  Growing cells were trypsinized and counted.  Three different amounts of 

cells (50 000, 100 000 and 250 000) were suspended in 2 mL soft agar (DMEM, 10% 

FBS, 3.75x MEM vitamin solution, 0.36% agar) at 40°C and added on top of the agar 

underlay.  The cells were grown for 15 days at 37°C and 5% CO2 and fed by adding 
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either 1 mL of soft agar or 2 mL of DMEM plus 10% FBS and P/S to each plate every 

three days.  The feeding was alternated between the soft agar or DMEM every feeding 

starting with the soft agar feeding.  Photographs were taken as described in section 

3.2.5.6.  The colonies formed were reported as the number of colonies per 10 000 cells 

seeded.  Colonies were determined by their ability to increase in size over time.  

Colonies often had uneven edges with smaller satellite colonies growing around them.  

Three independent experiments were done. 

 

3.2.5.8 Tumour formation assay  

Male Swiss nude mice were injected subcutaneously with 2.5 x 106 cells (either 

NIH 3T3 or p85R274A) in the right flank as described (Cairns et al., 2001).  The cells 

for injection were grown in 10 cm plates until they were approximately 80% confluent 

and harvested by trypsinization.  The cells were resuspended in PBS and washed 3 times 

with 25 mL of PBS before injection into the mice.  The cells were resuspended in PBS 

so that the total volume of the PBS and cells was 100 µL for injection.  Tumour 

development was monitored every two to three days by measuring the length and width 

of the tumour using callipers.  The tumour volume was determined by the equation 

V=(4/3)π*length*width2.  The average tumour volume was plotted using Prism software 

and the standard error of the mean was indicated with error bars.  After the tumour 

reached approximately 1 cm by 1 cm the animal was sacrificed and the tumour excised.  

The tumour was cut into three pieces; one was frozen at –80˚C, one was fixed with 

formalin and one used for tissue culture.  The paraffin-embedding and hematoxylin-

eosin staining was performed as described (Cairns et al., 2001). 
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For generation of tumour cell lines, half of the tumour was washed aseptically with 

sterile PBS and incubated with 0.1% Trypsin-EDTA for 4 hr at 4˚C to breakdown the 

extracellular matrix of the tumour.  The tumour was passed through a sterile fine steel 

mesh to break the tumour into single cells.  These cells were incubated on 6 cm plates in 

DMEM media until the cells attached and started dividing.  The media was not changed 

for at least 48 hr and more media was added if it took longer for the cells to attach.  

Once the cells attached, the media was changed normally.  When the cells were 80% 

confluent, the cells were transferred to two 10 cm plates.  One plate was treated with 

selection media containing 400 µg/mL G418 and the other was continued to be grown in 

DMEM media without selection.  Once the cells were expanded, cell lysates were tested 

for FLAG expression by Western blot analysis and a sample of cells where frozen for 

long-term storage. 

 

3.2.5.9 Endocytosis assay 

Cells were grown on 10 cm plates to approximately 80% confluence and starved 

for 24 hr with DMEM plus 0.5% FBS and P/S.  The cells were placed on ice and washed 

three times with 5 mL of ice-cold PBS++ (PBS plus 1 mM MgCl2 and 2.5 mM CaCl2).  

The cells were incubated with 2 mL of 1.5 µg/mL biotin (sulfo-NHS-SS-biotin; Pierce, 

21331) in PBS++ for 30 min at 4°C.  The cells were washed three times with 5 mL of 50 

mM glycine (EM science) in PBS++ at 4°C to remove and inactivate the excess biotin.  

The cells were stimulated for the time indicated with 50 ng/mL of PDGF-BB 

(Calbiochem) in DMEM containing 0.5% FBS and P/S at 37°C and 5% CO2.  The cells 

were washed once with 5 mL of ice-cold PBS++ and incubated with 5 mL of glutathione 

cleavage buffer (50 mM glutathione in 75 mM NaCl, 10 mM EDTA, 1% BSA and 0.075 
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N NaOH) for 20 min at 4°C three times to remove the surface-bound biotin.  The cells 

were washed three times with 5 mL of 5 mg/mL iodoacetamide (Sigma) at 4°C to 

inactivate the glutathione.  Cells were trypsinized and resupended in 10 mL of ice-cold 

PBS.  The cells were pelleted (2000 x g) and fixed with 2% paraformaldehyde (Electron 

Microscope Sciences) overnight at 4°C.  They were washed with 10 mL of PBS and 

pelleted at 2000 x g.  The cells were permeabilized with 0.05% saponin (Sigma) for 30 

min at RT with gently mixing.  They were washed with PBS as above and incubated 

with Streptavidin (SA)-FITC (eBioscience, 11-4317-87).  The amount of endocytosed 

biotin was measured by FACS analysis. 

 

3.2.6 Statistical Analysis 

 All of the statistical analysis, plotting of graphs and lines were done using Prism 

software (GraphPad Software, Inc.).  Unless otherwise noted, ANOVA statistical 

analysis followed by a Tukey’s test was used to determine the significance of the 

differences between experimental groups. 
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4.0 RESULTS 

4.1 Interaction of p85 with Rab5 

It has been shown in two studies that Rab5-GTP binds to the p110β subunit of 

PI3K; however, one of the studies did not test p85 and the other could not detect a direct 

interaction between p85 and Rab5 using in vitro translated p85 (Christoforidis et al., 

1999b; Kurosu and Katada, 2001).  Because p85 was shown to bind other monomeric G 

proteins (Rac1 and Cdc42; (Fidyk and Cerione, 2002; Zheng et al., 1994)) and there was 

some evidence that p85 is involved in endocytosis, we set out to determine if p85 could 

bind to Rab5.  We looked for interaction between p85 and Rab5 by three different 

methods including: immunoprecipitation, enzyme-linked immunosorbent assay (ELISA) 

and a pull-down assay using purified proteins. 

The first experiment consisted of immunoprecipitating FLAG-tagged p85 with 

HA-tagged Rab5 or vice versa from COS-1 lysates that were either unstimulated or 

stimulated with EGF for 5 min.  These experiments did not show any interaction 

between the two proteins (data not shown) but in the interim we learned that the 

nucleotide bound states of G proteins are fragile because nucleotide dissociation can 

occur if the lysates are not used quickly.  The lysates were routinely frozen at –80°C so 

we may have lost the interaction between p85 and Rab5 due to the nucleotide 

dissociating from Rab5.  This may cause the complex between p85 and Rab5 to fall 

apart, especially if there is a multiprotein complex formed around Rab5-GTP.  Another 

possible reason for the inability to see the Rab5-p85 complex was that it may be very 
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transient and relatively small amounts of p85 and Rab5 were likely interacting at any 

one time.  The other experiments to test the direct interaction between p85 and Rab5 

used purified proteins. 

For the ELISA experiments, Rab5 was preloaded with nucleotide (either no 

nucleotide, GDP or GTPγS (a non-hydrolyzable form of GTP)) and was immobilized on 

an ELISA plate.  After blocking, samples were incubated with increasing concentrations 

of purified p85 protein, or a control protein (glutathione S-transferase (GST)).  Bound 

p85 and GST proteins were detected using anti-p85 and anti-GST antibodies, 

respectively (Fig. 4.1A).  The control GST protein was not able to bind to Rab5.  The 

p85 protein bound directly to Rab5 in a concentration-dependent manner, and this 

interaction was similar in the absence of nucleotide, or in the presence of GDP or 

GTPγS.   

As a complementary approach, we also used a pull-down assay with immobilized 

GST-Rab5 fusion proteins preloaded with different nucleotides (Fig. 4.1B).  Purified 

p85 protein bound best to Rab5 (no nucleotide), followed by Rab5-GTPγS.  Significant 

amounts of p85 also bound to the transition state analogue conformation of Rab5 (GDP-

AlF4), and to Rab5-GDP.  As a control we performed the same experiment with 

Rabaptin5 instead of p85.  Rabaptin5 is reported to bind to only Rab5-GTP and not other 

nucleotide-bound states of Rab5 (Stenmark et al., 1995).  It was shown to bind to only 

Rab5-GTP as expected, confirming that the nucleotide loading of Rab5 was successful 

(Fig. 4.1C).  We found similar results using a pull-down assay with two Rab5 mutants 

(Fig. 4.1D).  The Rab5S34N mutant preferentially binds to GDP, while the Rab5Q79L 

mutant is unable to hydrolyze bound GTP since it lacks GTPase activity.  Purified p85 
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Figure 4.1 The p85 protein binds directly to Rab5. A)  Wells containing Rab5 
(1 µg) in the absence of nucleotide (circles), Rab5-GDP (triangles), or Rab5-GTPγS
(squares) were blocked and incubated with increasing concentrations of purified 
p85 protein (open symbols) or control GST protein (closed symbols).  Bound p85 
(or GST) protein was detected using anti-p85 (or anti-GST) antibodies, followed by 
a secondary antibody conjugated to horseradish peroxidase and quantified by 
measuring the absorbance of the acidified product at 450 nm.  The mean absorbance 
was plotted for three replicate experiments.  B)  GST and GST-Rab5 were 
immobilized on glutathione Sepharose beads and loaded with the indicated 
nucleotide.  Purified p85 (10 µg) was added in blocking solution to the samples and 
incubated for 1 to 2 hr at 4˚C.  The unbound p85 was washed off.  The samples 
were resolved by SDS-PAGE and transferred to nitrocellulose.  Using Western blot 
analysis, p85 was detected with anti-p85 antibodies and corresponding secondary 
antibodies conjugated to horseradish peroxidase.  The blot was visualize using 
chemiluminescence and film. C) GST and GST-Rab5 were immobilized on 
glutathione Sepharose beads and loaded with the indicated nucleotide.  The beads 
were incubated with purified Rabaptin5 and after washing, bound Rabaptin5 was 
detected by Western blot analysis with anti-Rabaptin5 antibodies. D)  GST and 
GST-Rab5 mutants known to selectively bind GDP (S34N) or GTP (Q79L) were 
used in a pull-down assay with wild type p85 protein, as described for panel B. The 
results shown are typical for at least three independent experiments.
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bound to both GST-Rab5S34N and GST-RabQ79L, immobilized on glutathione 

Sepharose beads, preloaded with GDP and GTP, respectively (Fig. 4.1D).  These results 

indicate there was a direct interaction between p85 and Rab5, which was not 

significantly altered by the nucleotide-bound state of Rab5. 

 

4.2 The GAP activity of p85 

Having shown p85 and Rab5 interact, we determined whether p85 had GAP 

activity towards Rab5.  A putative GAP domain had been reported within p85 but it was 

not clear whether this domain was functional.  To determine if p85 had GAP activity 

towards Rab5, a steady state GAP assay and a single turnover GAP assay were 

performed.  The steady state GAP assay measured the hydrolysis of GTP to GDP and 

allowed for the rebinding of GTP to the Rab protein, whereas the single turnover GAP 

assay did not allow rebinding of radiolabelled GTP to the Rab protein.  Thus, it 

measured the catalytic rate (Anderson and Chamberlain, 2005). 

 

4.2.1 p85 has GAP activity towards Rab5 

The GAP activity of p85 towards Rab5 was determined using a GAP assay in 

which Rab5 was preloaded with [α-32P]GTP and assayed alone, or with increasing 

concentrations of p85 protein.  The reaction was initiated by the addition of MgCl2, and 

the resulting [α-32P]GTP and [α-32P]GDP were separated by thin layer chromatography, 

prior to detection using a phosphorimager (Fig. 4.2A).  The mean fmoles of 

radiolabelled GDP generated by Rab5 GTPase activity from three independent 

experiments were plotted as a function of p85 concentration (Fig. 4.2B).   
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Figure 4.2 The p85 protein stimulates Rab5 GTP hydrolysis. A)  Rab5 
(200 nM) was loaded with [α-32P]GTP, and hydrolysis to [α-32P]GDP was 
assayed for 10 minutes in the absence and presence of increasing
concentrations of p85 as indicated.  Nucleotides were resolved by thin layer 
chromatography and visualized using a Phosphorimager.  B)  The results in 
panel A were quantified with Quantity One software and the fmoles of GDP 
calculated.  The results of three independent determinations were used to 
calculate the mean and the SEM error bars, which are smaller in size than 
the circles of the data points.  C)  Rab5 was loaded with [α-32P]GTP and 
hydrolysis to [α-32P]GDP was assayed for different times in the presence of 
a large excess of unlabelled GTP (1.7 mM), either alone (circles), or in the 
presence of wild type p85 (10 µM, squares), or the mutant p85R274A (10
µM; triangles).  The results were quantified with Quantity One software and 
the relative GAP activity was calculated.  The mean of three independent 
experiments are shown and the error bars are the SEM.
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The GAP activity of two different p85 preparations was tested.  The p85 prepared 

using the PreScission cleavage method (max. 900 fmol GDP produced in 10 min) was 

found to be higher in activity than that of the p85 liberated by thrombin cleavage (max. 

300 fmol GDP produced in 10 min).  The thrombin cleaved p85 was used in all 

subsequent figures.  The p85 protein stimulated the hydrolysis of GTP to GDP by Rab5 

in a concentration-dependent manner with a maximum stimulation of approximately 570 

to 1700-fold, depending upon the preparation of p85 protein used.   

To ensure p85 could accelerate the catalytic rate of Rab5 GTP hydrolysis and not 

act by stimulating nucleotide exchange, we used a single turnover GAP assay.  Rab5 

was preloaded with [α-32P]GTP and the reaction was carried out in the presence of 

excess unlabelled GTP, in the presence or absence of added p85.  Aliquots were taken at 

various time points and the amount of hydrolyzed [α-32P]GDP generated was visualized 

after separation by TLC and quantified using a phosphorimager (Fig. 4.2C).  The 

addition of p85 to the assay substantially accelerated the Rab5-mediated hydrolysis of 

the bound [α-32P]GTP to [α-32P]GDP, suggesting that p85 stimulated GTP hydrolysis by 

Rab5 and not by simply promoting nucleotide exchange.  A point mutation in p85, 

changing Arg274 to Ala, is described in more detail in section 4.2.5 and was found to 

compromise the GAP activity of p85 towards Rab5 (Fig. 4.2C) 

 

4.2.2 p85 has GAP activity towards other Rab proteins 

To test whether the GAP activity of p85 was specific for the Rab5 GTPase, or 

would also stimulate the GTPase activities of other Rab proteins, p85 was added to GAP 

assays containing several different Rab proteins: Rab4, Rab6, Rab7 and Rab11 (Fig. 
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4.3).  Rab proteins play important roles in membrane fusion events of various trafficking 

steps in the endosomal pathways.  Each Rab protein regulates a specific part of the 

endosomal pathway.  Rab4 and Rab11 are involved in transport of receptors from early 

endosomes to recycling endosomes and the plasma membrane, whereas Rab7 is 

involved in receptor transport from late endosomes to lysosomes for receptor 

degradation.  Rab6 is involved in membrane fusion events important during retrograde 

transport from the Golgi back to the endoplasmic reticulum.  The p85 protein displayed 

similar GAP activity towards Rab4, Rab5 and Rab7 (Fig. 4.3).  The GTPase activity of 

Rab6 was also stimulated by p85, but to a lesser degree, while Rab11 GTPase activity 

was not significantly altered by p85 addition.  These results suggest that p85 is a GAP 

protein for several different Rab-family GTPases; in particular, it can stimulate the 

downregulation of Rab4, Rab5 and Rab7.   

 

4.2.3 p85 has GAP activity towards Rho-family proteins 

Previous studies have tested the ability of p85 to bind to and act as a GAP protein 

towards Rac1 and Cdc42, two Rho GTPases involved in the regulation of actin 

structures (Bokoch et al., 1996; Zheng et al., 1994).  While p85 was shown to bind Rac1 

and Cdc42 at concentrations of 0.1-1 µM, at these concentrations p85 was not found to 

possess GAP activity towards these two G proteins.  There have, however, been reports 

of GAP proteins (e.g. ArfGAP) that require µM concentrations to stimulate GTP 

hydrolysis towards their cognate monomeric G protein (Goldberg, 1999).  Since the 

concentration of p85 used in our Rab GAP assays was typically in the 10-20 µM range, 

and given the precedent for some GAP proteins requiring higher concentrations, we 
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Figure 4.3 The GAP activity of p85 towards GTPases of the Rab
family. Increasing concentrations of p85 were added to each Rab (200
nM) preloaded with [α-32P]GTP and assayed as for GAP activity in 
Figure 4.2A-B.  Rab5 (circles), Rab4 (squares), Rab6 (triangles), Rab7 
(inverted triangles), Rab11 (diamonds), no Rab (closed circles). The 
mean of at least three independent experiments are shown and the error 
bars are the SEM.
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 retested p85 for GAP activity towards Rac1 and Cdc42 (Fig. 4.4).  At these higher 

concentrations of p85, we observed p85 did have GAP activity towards both Rac1 and 

Cdc42.  The GAP activity was similar in magnitude to the activity towards Rab5.  Thus, 

while p85 does not act as a general GAP towards all Rab proteins (i.e. not Rab11, and to 

lesser extent towards Rab6), it is able to regulate the GTP hydrolysis of some Rab 

proteins and also some Rho proteins. 

 

4.2.4 The BH domain of p85 contains the GAP activity 

Given the sequence similarity between the BH domain of p85 and several other 

GAP domains (Musacchio et al., 1996; Zheng et al., 1994), we suspected it was the BH 

domain of p85 which encoded the observed Rab5 GAP activity.  We generated 

polypeptides encompassing different p85 domains (Fig. 4.5A), and tested each for Rab5 

GAP activity (Fig. 4.5B).  As expected, the BH domain of p85 contained substantial 

Rab5 GAP activity.  The p85 SH3 domain, the (N+C)SH2 domains (which included the 

p110-binding domain of p85), and a mutant of p85 lacking the BH domain (∆BH; 

missing amino acids 84-313), showed little or no GAP activity towards Rab5.  Although 

the isolated BH domain was not as active as the full-length p85 protein, these results 

suggest it is the BH domain of p85 that possesses Rab5 GAP activity and it can adopt a 

suitable conformation to demonstrate partial activity when expressed as an isolated 

domain.   

 

4.2.5 p85 has an arginine finger 

GAP proteins typically act in two ways to accelerate GTP hydrolysis of the 

GTPase (Scheffzek et al., 1998).  First, many GAP proteins contain an arginine finger 
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Figure 4.4 The GAP activity of p85 towards GTPases of the Rho
family. The ability of p85 to stimulate Rac1 (triangles) and Cdc42 
(squares) GTP hydrolysis was tested as in figure 4.2A-B.  For 
comparison, the dashed line indicates p85 GAP activity towards Rab5 
(open circles). The mean of at least three independent experiments are 
shown and the error bars are the SEM.
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Figure 4.5 The BH domain of p85α encodes Rab5 GAP activity.
A)  The regions of p85 that were bacterial-expressed and purified.  B)  
GAP assay testing the ability of different domains of p85 (10 µM
each) to stimulate the GTPase activity of Rab5, as described in figure 
4.2A-B. The mean of at least three independent experiments are 
shown and the error bars are the SEM.
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positioned in the active site of the GTPase, which stabilizes the transition state during 

the hydrolysis reaction.  Second, GAPs bind to the switch II region of the GTPase, 

which stabilizes and orients the critical glutamine residue within the active site of the 

GTPase.  The literature on GAP proteins and their folded structures suggests it is often 

difficult to predict from a sequence alignment which arginine residue corresponds to the 

arginine finger.  The BH domain of human p85 has been crystallized and a pocket of the 

domain containing a cluster of conserved residues has been proposed as a monomeric G 

protein binding site (Musacchio et al., 1996).  There are two arginine residues (R151 and 

R274) within this proposed monomeric G protein binding site of the p85 BH domain.  

Each of these residues were mutated to alanine in the context of the full length p85 

protein, and each mutant was tested for Rab5 GAP activity (Fig. 4.6).  The p85R151A 

protein had about 65% of the GAP activity of wild type p85, whereas the p85R274A 

mutant had less than 5% GAP activity remaining.  The GAP activity of the p85R274A 

mutant protein was also assayed using the single turnover GAP assay and was found to 

have little GAP activity, as compared to the wild type p85 protein (Fig. 4.2C).  Thus, 

while both arginine residues are required for full p85 Rab5 GAP activity, R274 appears 

to play a more critical role than R151. 

The ability of the p85 mutants deficient in GAP activity (p85∆BH, p85R151A and 

p85R274A) to bind to Rab5S34N-GDP and Rab5Q79L-GTP was explored to determine 

if the loss of GAP activity was because the p85 mutants could no longer bind to Rab5 

(Fig. 4.7).  All three mutants, including the p85 protein lacking the entire BH domain, 

still bound some form of Rab5 suggesting additional domains other than the BH domain 

of p85 participate in Rab5 binding.  The p85R151A protein, which retains 65% 
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Figure 4.6 The p85 protein has an arginine finger. GAP assay 
comparing the ability of wild type (p85, WT) and mutant p85 proteins 
(p85R151A, p85R274A) to accelerate the GTPase activity of Rab5. The 
assay was performed as described in figure 4.2A-B and the GAP activity 
was compared to wild type p85 as a percentage.  The mean of at least 
three independent experiments are shown and the error bars are the SEM.  
An ANOVA was done to determine the significance of the differences 
between wild type p85 and the p85 mutants.  * = p < 0.05; ** = p < 0.001.
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Figure 4.7 Binding of p85 mutants to Rab5. The indicated p85 mutants 
were tested for their ability to bind to GST (control), GST-Rab5S34N-
GDP and GST-Rab5Q79L-GTP.  GST and GST-Rab5 mutants were 
immobilized on glutathione Sepharose beads and loaded with the 
indicated nucleotide.  Purified p85 mutants were added and bound p85 
mutants were detected after washing, using an Western blot analysis with 
anti-p85 antibodies as described in figure 4.1B and D.  This is a typical 
results for at least three independent experiments.
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of its GAP activity, bound to the GDP- and GTP-bound forms of Rab5, much as the wild 

type p85 protein.  In contrast, the two BH mutations (p85∆BH and p85R274A) that 

dramatically decreased the GAP activity of p85 had large and opposite effects in their 

abilities to bind Rab5.  The p85∆BH mutant only bound Rab5Q79L-GTP, whereas the 

p85R274A mutant only bound Rab5S34N-GDP.  This suggests that other domains in 

addition to the BH domain bind to Rab5 but the BH domain may have control over the 

nucleotide form of Rab5 that p85 binds to.  This showed that although the p85 mutants 

do not have GAP activity, they can all bind to Rab5 to some degree. 

 

4.3 Cellular effects of expression of p85 mutants defective for GAP activity 

To determine the effects of mutations within the BH domain of p85 on cellular 

functions, we first needed to establish whether these mutations also compromised other 

known functions of p85 such as binding to the catalytic subunit of PI3K, p110, and 

growth factor dependent receptor binding.  COS-1 cells were co-transfected with a Myc-

epitope tagged p110α (Myc-p110α), and either a wild type or mutant version of a 

FLAG-epitope tagged p85 (FLAG-p85).  Lysates from these transfected cells were 

confirmed to express both Myc-p110α and FLAG-p85 fusion proteins, as determined 

using Western blot analysis with anti-Myc and anti-FLAG antibodies (Fig. 4.8A).  Anti-

FLAG immunoprecipitates of these cell lysates were divided in half and either used for 

Western blot analysis to test for the presence of Myc-p110 protein, followed by FLAG-

p85 protein (Fig. 4.8B), or used in a PI3K assay (Fig. 4.8C).  As a control, anti-p85 

immunoprecipitates from untransfected cells were also assayed for PI3K activity.  These 
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Figure 4.8 The p85 BH domain mutants retain their ability to bind to p110 
and associate with PI3K activity. COS-1 cells were cotransfected with the 
indicated FLAG-p85 encoding plasmid together with one encoding Myc-
p110α, or left untransfected as a control.  A)  Lysates (20 µg total protein) from 
each transfectant were probed with anti-Myc antibodies, stripped and reprobed
with anti-FLAG antibodies in a Western blot analysis.  B)  Lysates (200 µg 
total protein) were immunoprecipitated (IP) with anti-FLAG antibodies and 
Western blots were probed with anti-Myc antibodies, stripped and reprobed 
with anti-FLAG antibodies.  C)  Anti-FLAG immunoprecipitates were assayed 
for associated PI3K activity.  Radiolabelled PI3K lipid products were resolved 
by thin layer chromatography and visualized using a phosphorimager.  As a 
positive control, an anti-p85 immunoprecipitate of lysates from untransfected
NIH 3T3 cells was also assayed for associated PI3K activity.  This is a typical 
result for at least three independent experiments.
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results indicated that all of the FLAG-p85 proteins (wild type, p85∆BH, p85R274A and 

p85R151A mutants) can associate with the Myc-p110α protein and PI3K activity. 

NIH 3T3 cells were also transfected with wild type FLAG-p85 or mutants lacking 

the GAP activity encoded by the BH domain (FLAG-p85∆BH and FLAG-p85R274A).  

Cell lines stably expressing these FLAG-p85 proteins were treated with PDGF-BB for 

various times.  The PDGFR typically binds p85 in a PDGF-dependent manner, as shown 

by the presence of p85 in anti-PDGFR immunoprecipitates from PDGF treated NIH 3T3 

cell lysates (Fig. 4.9A).  Similarly, we found anti-PDGFR immunoprecipitates contained 

FLAG-p85 proteins (wild type p85, p85∆BH and p85R274A) after PDGF stimulation 

(Fig. 4.9A).  PDGFR immunoprecipitates from all of these cell lines also contained 

substantial amounts of associated PI3K activity after PDGF treatment (Fig. 4.9B).  Thus, 

while p85∆BH and p85R274A have severely decreased Rab5 GAP activity, they are still 

able to bind the p110 catalytic subunit of PI3K and associate with the PDGFR in a 

PDGF-dependent manner comparable to the wild type p85 protein. 

 

4.3.1 Decrease in the rate of PDGFR degradation 

To determine the effects of mutations of the p85 BH domain on PDGFR 

downregulation and cell signalling pathways, we characterized the NIH 3T3 cells stably 

expressing FLAG-p85, FLAG-p85∆BH and FLAG-p85R274A (Fig. 4.10A).  Cells were 

treated with PDGF for various times and the amount of PDGFR protein was analyzed 

using Western blot analysis (Fig. 4.10B).  The lower band in the PDGFR blots is the 

immature incompletely glycosylated form of PDGFR.  The PDGFR is both N-linked and 

O-link glycosylated (Bejcek et al., 1993).  Untransfected NIH 3T3 cells stimulated with 
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Figure 4.9 The p85 BH domain mutants retain their ability to bind to 
activated PDGFRs and do not prevent PDGF-dependent association of 
PI3K activity with the receptor.  NIH 3T3 cells stably expressing the 
indicated FLAG-p85 proteins were stimulated for various times with PDGF 
BB.  A) Lysates (200 µg) from each cell line were immunoprecipitated (IP) 
with anti-PDGFR antibodies and Western blots were probed with anti-FLAG 
antibodies (for cells expressing FLAG-p85, FLAG-p85∆BH and FLAG-
p85R274A), or with anti-p85 antibodies (for untransfected NIH 3T3 cells).  
B) Lysates from cells that had been stimulated with PDGF BB (5 min; +) or 
not (-) were immunoprecipitated with anti-PDGFR antibodies and were 
assayed for PDGFR-associated PI3K activity using radioactive PI4,5P.  This 
is a typical result for at least three independent experiments.
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Figure 4.10 Overexpression of FLAG-p85∆BH or FLAG-p85R274A 
slows the downregulation of the activated PDGFR. Untransfected NIH 
3T3 cells, or cells stably expressing either wild type FLAG-p85, FLAG-
p85∆BH or FLAG-p85R274A, were stimulated with PDGF BB for the 
indicated times.  Cell lysates (20 µg protein per lane) were analyzed by 
Western blot analysis with the indicated antibodies.  A) The levels of 
expression for the transfected proteins.  B)  The upper panel is the amount 
of phosphorylated PDGFR and the lower panel is the amount of total 
PDGFR.  Results are typical for at least three independent experiments.
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PDGF for increasing times typically showed a reduction in PDGFR protein levels due to 

the degradation of receptor protein as part of the downregulation mechanism.  By 60 

minutes the majority of the receptor had been degraded (Fig. 4.10B, lower).  Similar 

results were obtained for NIH 3T3 cells expressing wild type FLAG-p85.  In contrast, 

cells expressing the FLAG-p85∆BH or FLAG-p85R274A mutants showed a delay in the 

PDGFR degradation profile, with the majority of the receptor still present at 60 minutes 

or longer (Fig. 4.10B, lower).  The corresponding anti-phosphotyrosine blots (Fig. 

4.10B, upper) show enhanced tyrosine phosphorylation of a protein that likely 

corresponds to the PDGFR, most markedly in cells expressing p85R274A.  Thus, 

mutation or loss of the p85 BH domain was sufficient to compromise its GAP activity, 

impair the ability of the PDGF receptor to be degraded and increase the half-life of the 

activated PDGFR.  This suggests the loss of GAP activity by p85 decreased the targeting 

of the receptor from the early endosome to the late endosome and lysosome for 

degradation by altering the flow of receptor through the early endosome. 

 

4.3.2 Changes to signalling from PDGFR 

To assess if the enhanced activated PDGFR levels at the later time points gave rise to 

enhanced receptor signalling, the levels of activated Akt and activated MAPK were 

determined (Fig. 4.11).  Cells expressing FLAG-p85∆BH or FLAG-p85R274A showed 

minor increases in the phosphorylation of Akt (pAkt) during the PDGF stimulation time 

course, when compared to the parental NIH 3T3 or FLAG-p85 expressing cells (Fig. 

4.11A).  However, striking differences were observed for activated MAPK (Fig. 4.11B).  

Cells expressing FLAG-p85∆BH or FLAG-p85R274A showed 
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Figure 4.11 Expression of FLAG-p85∆BH and FLAG-p85R274A 
increases signalling from the PDGFR. Untransfected NIH 3T3 cells or 
cells stably transfected with plasmids containing either FLAG-p85, 
FLAG-p85∆BH or FLAG-p85R274A were stimulated with PDGF for the 
indicated times (min).  Cell lysates (20 µg total protein) were probed with 
the indicated antibodies in a Western blot analysis.  A) The upper panel is 
the amount of phosphorylated Akt in the cells and the lower panel is the 
amount of total Akt in the cells.  B) The upper panel is the amount of
phosphorylated MAPK in the cells and the lower panel is the amount of 
total MAPK in the cells.  The results are typical for three independent 
trials.
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enhanced MAPK activation even prior to PDGF treatment, and maintained high levels of 

phosphorylated MAPK (pMAPK) for 60 minutes or longer (Fig. 4.11B, upper).  This 

result suggests that MAPK signalling pathways remain active while PDGFR levels were 

high in FLAG-p85∆BH- or FLAG-p85R274A-expressing cells.  These results are 

consistent with a previous report that suggested that MAPK signalling, but not PI3K 

signalling, is dependent upon internalized PDGFR (Chiarugi et al., 2002). 

 

4.3.3 Increased rate of PDGFR recycling 

The loss of GAP activity of p85 can have one of two effects on the cell.  The first 

is to limit the amount of the inactive Rab protein bound to GDP needed for new rounds 

of Rab targeting to the membrane.  Second, it can increase the overall levels of active 

Rab proteins bound to GTP.  Which of these two effects happens depends on how the 

GAP protein functions in the cell.  If the GAP acts only after the Rab has performed its 

function in membrane fusion, then the first case happens but if the GAP acts at any time 

on the Rab protein, then the second situation is more likely.  Also, if there is more than 

one GAP protein for a Rab protein this could change the effects of the loss of the p85-

encoded GAP activity. 

There are several mechanisms that could account for the decrease in receptor 

degradation seen in the FLAG-p85R274A and the FLAG-p85∆BH cells (Fig. 4.12).  The 

regulation of receptor traffic through the early endosome may account for the decrease 

in receptor degradation.  There are three points of receptor trafficking that may be 

perturbed by the p85 mutants that could account for the decrease in receptor 

degradation.  The p85 mutants could cause a decrease in receptor entry into the early 
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Figure 4.12 Possible mechanisms for decreased PDGFR degradation 
rates in p85R274A-expressing cells. p85 has GAP activity against Rab4, 
Rab5 and Rab7.  Loss of this GAP activity could have several effects on 
receptor degradation.  1) The amount of Rab5 available for endocytosis
could be reduced due to improper inactivation of Rab5-GTP.  2) The 
receptor could spend less time in the early endosome due to increased 
Rab4-GTP dependent recycling of the receptor with or without a change in 
Rab5-GTP dependent endocytosis.  This could cause the receptor not to be 
mono-ubiquitylated by Cbl, or block the mono-ubiquitylated receptor from 
interacting with the Hrs-STAM complex to enter the MVB.  3) There could 
be malformation of the MVB or late endosome due to effects of p85R274A 
on Rab7.
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endosome, increase the rate of receptor recycling or block the targeting of the receptor 

for degradation.  The change in the rate of the receptors entering the early endosome, via 

a decrease in the rate of endocytosis due to a decrease in available Rab5-GDP, would 

result in a decrease in the number of receptors in the early endosome targeted for 

degradation.  Conversely, if there was an increase in the rate of endocytosis due to more 

Rab5-GTP, then there would be an increased number of receptors in the early endosome.  

The increased level of receptors in the early endosome could cause an increase in 

receptor degradation or recycling.  If there was an increase in receptor recycling due to 

more Rab4-GTP, then there would be less receptors in the early endosome to be targeted 

for degradation.  If there was a decrease in receptor recycling due to a decreased 

availability in Rab4-GDP, there would be more receptors in the early endosome to be 

targeted for degradation.  If p85R274A blocked receptor targeting for degradation, there 

would be a build up of receptor in the early endosome, which could cause the receptor to 

be recycled. 

To determine which of the possible perturbments of the endosomal pathway is 

caused by p85R274A, a biotin-labelling endocytosis assay was used to measure the 

change in internalized biotin-labelled proteins when cells were stimulated by PDGF.  

Cell surface proteins were biotinylated and the cells were stimulated with PDGF to 

cause receptor endocytosis.  Endocytosis was stopped by cooling the cells and the 

surface biotin was removed, allowing the amount of internalized biotinylated proteins to 

be measured.  An initial experiment was performed to determine that the removal of 

surface biotin was successful (Fig. 4.13A).  There also was an internal control in every 

experiment to determine if the removal of surface biotin was successful.  This internal 

control was that the mean fluorescent intensity of the control sample that was not labeled 
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Figure 4.13 Internalization of biotin-tagged proteins in response to PDGF.
The efficiency of stripping off the biotin tag is shown in panel A.  The number 
of cells was plotted against the log scale of the fluorescent intensity of the 
cells.  The dashed line are p85R274A-expressing cells that have not been 
biotinylated.  The black line is p85R274A cells where the surface was 
biotinylated and then stripped off and the red line is the internalized biotin 
from p85R274A expressing cells at the 10 min time point of panel B.  For 
panels B and C the NIH 3T3 cells (squares) or p85R274A-expressing cells 
(triangles) were surface-biotinylated and stimulated with 50 ng/ml PDGF for 
the indicated times.  The surface biotin was stripped off and the amount of 
internalized biotinylated proteins was measured by flow cytometry.  Panel D is 
the linear portion of panel C with a line drawn through the points and the 
equation of the line shown.  The  mean fluorescent intensity (MFI) results 
shown are from three determinations and the error is the SEM.
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with biotin had similar mean fluorescent intensity of the zero time point sample.  The 

biotin-labelling assay was used to measure the rate of internalized biotinylated proteins 

including the PDGFR, in response to PDGF stimulation.  There was little difference in 

the rate of protein endocytosis between the FLAG-p85R274A-expressing and the 

parental NIH 3T3 cell lines during the initial 10 min of PDGF stimulation (Fig. 4.13B).  

This suggested that there was no change in the rate of receptor uptake during this initial 

10 min of PDGF treatment but there was an increase in the bulk uptake of surface 

proteins over longer time points (Fig. 4.13C).  This suggests that p85 may act as a Rab5 

GAP on the plasma membrane which increases the amount of surface protein uptake 

when the GAP activity of p85 is compromised via the Arg274 to Ala point mutation. 

The other two points in receptor trafficking that could be altered by the p85R274A 

mutant are the exit from the early endosome via either receptor recycling or targeting to 

the late endosome/ lysosome for degradation.  To measure the rate of recycling, the 

amount of internalized protein was measured over 60 min of stimulation (Fig. 4.13C).  

Over that time frame, the NIH 3T3 cells had maximal protein uptake by 10 min that 

reached steady state equilibrium for 10 min compared to the p85R274A-expressing cell 

lines, which had maximal protein uptake by 20 min.  After 20 min both cell lines 

showed a decrease in internalized protein.  This decrease in internalized protein could be 

due to receptor recycling to the plasma membrane or receptor degradation in the 

lysosome.   

The linear portion of Fig. 4.13C between the time points of 20 to 60 min was 

plotted and the equations of these lines were determined.  The decrease in internalized 

protein from the cells over time was the rate of change or the slope of the line from Fig. 

4.13D.  The slopes for the NIH 3T3 and FLAG-p85R274A cell lines are -0.365 MFI/min 
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and -0.607 MFI/min, respectively (Fig. 4.13D).  This suggested that the expression of 

p85R274A almost doubles the rate of loss of the internalized protein, which could be the 

receptor recycling rate.  In the NIH 3T3 cells, the receptor half-life is approximately 60 

min (Fig. 4.10C) so the decrease in internalized protein levels are probably due to both 

receptor recycling and degradation.  In the p85R274A-expressing cells the receptor half-

life is at least 2 hr (Fig. 4.10C) so the decrease in internalized protein levels over one 

hour (Fig. 4.13C-D) is most likely due to receptor recycling.  This correlative 

experiment suggested that p85R274A expression increases the rate of receptor recycling, 

which causes a decrease in the rate of receptor degradation. 

 

4.4 The Oncogenic properties of the arginine finger mutant p85R274A 

Morphological differences were observed between the parental NIH 3T3 cells and the 

cells expressing wild type p85 and the cells with p85 mutants, p85∆BH and p85R274A 

(Fig. 4.14).  In contrast, the wild type p85-expressing cells had a similar morphology to 

the parental NIH 3T3 cells, suggesting that the altered morphologies were due to the BH 

domain mutations and not just due to the overexpression of the p85 protein.  The 

different p85 and p85 mutant cells expressed similar levels of p85 protein, with the 

exception of p85∆BH being expressed at levels less than 50% of p85 wild type and 

p85R274A clone 1 (Fig. 4.15).  The p85∆BH-expressing cells had a flattened and 

enlarged appearance compared to the NIH 3T3 cells due to cell spreading caused by cell 

adherence, whereas the p85R274A-expressing cells had a rounded appearance and seem 

smaller in size likely due to a loss of cell adherence (Fig. 4.14).  The apparent decrease 

in cell size and the rounding of the cells due to loss of adherence are characteristic 

morphologic changes that frequently occur in transformed cells.  Also, the p85R274A-
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Figure 4.14 The differences in cell morphology of the stable FLAG-
p85-expressing cell lines. The images are phase contrast, taken at 100x 
magnification.
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Figure 4.15 Levels of FLAG-p85 wild type and FLAG-p85 mutant 
protein expression in several clonal cell lines. Each lane contains 20 
µg of a whole cell lysate that has been Western blots were probed with an 
anti-FLAG antibody followed by the appropriate secondary antibody.
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expressing cells spontaneously formed foci on subconfluent plates under normal 

growing conditions, suggesting that they may have lost the ability to arrest cell growth 

via contact inhibition (data not shown).  The subsequent experiments were carried out to 

determine if the p85R274A-expressing cells had transformed properties. 

 

4.4.1 Changes in cell proliferation 

In contrast to normal cells, transformed cells can proliferate in media containing 

reduced levels of growth and/or survival factors (Hanahan and Weinberg, 2000).  To 

determine if there was a difference in the growth properties of the p85- and p85 mutant-

transfected cell lines we generated, cells were grown in low serum media or serum-free 

media supplemented with PDGF.  All of the p85-expressing cell lines continued to 

proliferate in media containing 2% serum over the course of 5 days, whereas the parental 

NIH 3T3 cells started to die after 24 hr under the same conditions (Fig. 4.16).   

The proliferation of cells in serum-free media supplemented with PDGF showed a 

different result.  The p85- and p85R274A-expressing cell lines continued to proliferate 

with just PDGF as a mitogenic signal.  After 24 hr in the same media conditions, the 

parental NIH 3T3 and p85∆BH-expressing cells appeared to arrest proliferation and 

enter a state of senescence (Fig. 4.17).  The p85- and p85R274A-expressing cell lines 

exhibited a greater rate of proliferation with both above media conditions than the other 

cell lines, indicating that they have the ability to grow and survive in the presence of 

limited mitogenic stimuli.   

Previous experimental results indicated that p85R274A-expressing cells have 

increased signalling via both the PI3K-Akt and the Ras-MAPK pathways when 

stimulated with PDGF (Section 3.2.5.1).  Since these pathways drive cell cycle 
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Figure 4.16 Cells expressing p85 and p85 mutants proliferate in low 
serum better than parental NIH 3T3 cells. Cell proliferation was measured 
for cells grown in media containing 2% fetal bovine serum over 5 days.  The 
cells are either the parental NIH 3T3 (circles) or cells stably transfected with 
p85 (squares), p85∆BH (diamonds) or p85R274A (triangles).  Each day the 
amount of cell proliferation was measured with the addition of tetrazolium dye 
for 4 hrs.  The formazan produced was measured at an absorbance of 570 nm.  
In panel A the absorbances for each cell line are plotted.  In panel B the 
absorbance from day 1 was subtracted from the other days for each cell line to 
normalize the data.  This made it possible to compare the rates of cell growth. 
The mean is plotted and error is expressed as the SEM for at least three 
independent experiments each with triplicate determinations.
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Figure 4.17 Cells expressing p85R274A and wild type p85 proliferate in 
response to PDGF better than cells expressing p85∆BH and parental NIH 
3T3 cells. Cell proliferation was measured for cells grown in serum-free media 
containing 50 ng/ml PDGF over 5 days.  The cells are either the parental NIH 3T3
(circles) or cells stably transfected with p85 (squares), p85∆BH (diamonds) or 
p85R274A (triangles).  Each day the amount of cell proliferation was measured 
with the addition of tetrazolium dye for 4 hrs.  The formazan produced was 
measured at an absorbance of 570 nm.  In panel A the absorbances for each cell 
line are plotted.  In panel B the absorbance from day 1 was subtracted from the 
other days for each cell line to normalize the data.  This made it possible to 
compare the rates of cell growth. The mean is plotted and error is expressed as the 
SEM for at least three independent experiments each with triplicate 
determinations.
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progression and promote cell survival, this provides a possible explanation for the 

enhanced cellular growth observed under these limiting conditions.  The p85-expressing 

cells have not been shown to have increased activation of PI3K-Akt and the Ras-MAPK 

pathways when stimulated with PDGF (Section 3.2.5.1), but we have not tested other 

signalling pathways, which could be activated due to p85 overexpression that could 

increase the proliferation of these cells.  The p85∆BH-expressing cells have increased 

proliferation in low serum but not in the PDGF containing media.  This is probably due 

to the loss of the entire BH domain and the two proline-rich flanking regions in this 

mutant.  This is a large mutation that could have other affects on the normal function of 

p85 besides the loss of GAP activity. 

 

4.4.2 Increased resistance to apoptosis 

Another factor that contributes to the ability of a cell to proliferate is its 

susceptibility to apoptosis.  Cells generally develop an increased resistance to apoptosis 

as part of tumour development (Hanahan and Weinberg, 2000).  To determine if the 

p85- and p85 mutant-transfected cell lines showed changes in susceptibility to apoptosis 

compared to the parental NIH 3T3 cells as a result of oxidative stress, proliferating cells 

were treated for 4 hrs with 1 mM H2O2 to induce apoptosis (Fig. 4.18).  All of the cell 

lines had approximately 75% viable cells without the hydrogen peroxide treatment.  The 

wild type p85- and p85∆BH-expressing cell lines were significantly more sensitive to 

hydrogen peroxide treatment than the control NIH 3T3 cells, demonstrating a decrease 

in cell viability to only 22% and 14%, respectively.  The p85R274A-expressing and NIH 

3T3 cells were more resistant to apoptosis than the other two cell lines and each had 

53% viable cells after treatment with hydrogen peroxide.  This confirms that although 
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Figure 4.18 Apoptosis of the cell lines under conditions of oxidative 
stress. The parental NIH 3T3 cells and cells expressing different p85 
proteins were treated with 1 mM H2O2 for 4 hrs (+) or left untreated (-) 
and the percent of viable cells was determined by FACS analysis after 
staining the cells with AnnexinV-Alexa488 and propidium iodide.  The 
means of at least three independent experiments are shown and the error 
bars are the SEM.  An ANOVA was done to determine the significance 
of the differences between wild type p85 and the p85 mutants. ** p < 
0.01; *** p< 0.001.
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the p85R274A-expressing cells proliferate under restrictive growth conditions, they are 

not highly apoptotic.   

 

4.4.3 Loss of contact inhibition 

An important characteristic of transformation frequently observed in cell monolayers 

is the loss of contact inhibition (Hanahan and Weinberg, 2000).  The p85- and p85 

mutant-transfected cell lines were tested for contact inhibition by growing the cells past 

100% confluency and observing the presence of foci formed by the continued 

proliferation of cells after the cells reached confluency.  The cells were plated to a 

density of 100 000 cells on a 10 cm plate and grown for 12 days, changing the media 

every 2 to 3 days.  The formation of foci was then detected by two methods.  The first 

was by counting the visible microscopic foci by light microscopy and the second 

involved staining of the monolayer with Giemsa stain and determining the number of 

macroscopic foci.  The microscopic foci are foci that could be seen under 4x 

magnification and the macroscopic foci are foci that could be seen by the naked eye after 

Giemsa staining.  Interestingly, several of the macroscopic foci could only be seen after 

the Giemsa staining.  Also, different p85R274A clones formed different ratios of 

microscopic vs. macroscopic foci (Fig. 4.19).  After 12 days, the parental NIH 3T3 and 

the p85∆BH-expressing cells started to die and lift off the plate in small areas although 

the monolayer was still largely intact (Fig. 4.19).  The p85-expressing cells reached 

100% confluency, stopped growing and seemed to enter a state of senescence (Fig. 

4.19).  The p85R274A-expressing cells continued to proliferate after they reached 100% 

confluency and developed numerous foci (Fig. 4.19).  To determine if the development 

of foci was a clone specific phenomenon, we tested four other p85R274A clones that 
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Figure 4.19 p85R274A-expressing cells form foci in a contact inhibition 
assay. The indicated cell lines were plated (100 000 cells per 10 cm plate) 
and after 12 days of growth the cells were stained with Giemsa stain and 
viewed for foci formation.  The left panel is an image of the entire 10 cm 
plate and the right panel is a microscopic image of a typical field of view.  
Below  the images is a table of mean number of macroscopic and 
microscopic foci counted per plate and the error is the standard deviation.  
Similar results were observed in three independent experiments.
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expressed various levels of p85R274A (Fig. 4.15).  Each p85R274A-expressing cell line 

developed foci to some degree (Fig. 4.19) although there did not appear to be a direct 

correlation between the level of p85R274A expression and the number of foci observed. 

 

4.4.4 Loss of anchorage dependent growth 

Another important factor in tumour formation is the ability of cells to grow 

without attachment to the extracellular matrix.  To measure anchorage independent 

growth, the cells were seeded into soft agar.  After 15 days the cells were visualized 

microscopically and counted.  Only the p85R274A-expressing cells developed colonies 

(Fig. 4.20).  Again, a total of five p85R274A clones were tested to ensure that colony 

formation was due to p85R274A expression and was not an aberrant effect in a single 

clonal cell line.  After 15 days, all of the p85R274A-expressing clones developed 

colonies in soft agar (Fig. 4.20B).  Initially, the p85∆BH-expressing cell line looked as if 

it had also formed small colonies but these were in fact small clumps of cells that did not 

greatly increase in size over the duration of the experiment (Fig. 4.20A).  These results 

indicated that p85R274A expression can cause cells to lose contact inhibition and 

anchorage dependence for growth and suggested that p85R274A has oncogenic 

potential. 

 

4.4.5 Formation of tumours in nude mice 

To assess the tumourigenicity of the p85R274A-expressing cells, their ability to form 

tumours in nude mice was examined.  Several nude mice were subcutaneously injected 

with either 2.5 million NIH 3T3 or p85R274A-expressing cells and observed for tumour 

development (Fig. 4.21B).  After 16 days the nude mice injected with p85R274A 
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Figure 4.20 The p85R274A-expressing cell lines form colonies in soft 
agar. Cells were plated in soft agar and grown for 15 days.  A) Colonies 
are shown by arrows.  The figure is a typical result of three independent 
experiments.  B)  The mean number of colonies formed per 10 000 cells 
plated with the error shown as standard deviation.
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Figure 4.21 The p85R274A-expressing cells form tumours in nude 
mice. NIH 3T3 or p85R274A-expressing cells (2.5 x 106) were injected 
subcutaneously into the right flank of each of four nude mice.  A)  The 
average tumour volume with error being the SEM was plotted over time for 
mice injected with p85R274A-expressing cells (squares) or NIH 3T3 cells 
(triangles).  B)  A mouse injected with p85R274A-expressing cells with the
tumour indicated by the arrow.  C) Hematoxylin-eosin staining showing the 
architecture of a typical tumour.  The top panel shows the tumor infiltrating 
the muscle (1x magnification).  The middle panel shows the fascicles and 
spindle architecture of the tumour (10x).  The bottom panel shows a typical 
high power (40x) field of view.  
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cells started to form tumours that rapidly grew in volume (Fig. 4.21A).  Of the four mice 

injected with p85R274A cells, all of them formed tumours, whereas no tumours were 

observed in the four nude mice injected with NIH 3T3 cells.  The tumours were excised 

and half of each tumour was paraffin-embedded, sectioned and stained with 

hematoxylin-eosin (Fig. 4.21C).  The staining showed that the tumours exhibit a spindle 

cell pattern common to a fibrosarcoma, which is consistent for a tumour that is of 

fibroblast origin (Fig. 4.21C).  The tumours were highly proliferative and well 

vascularized, with 50-60 mitotic events per 10 high-powered fields.  The other half of 

the tumour was used to re-isolate the tumour cells in tissue culture.  Of the four tumours 

formed, we successfully isolated and grew cells from two of them.  The new cell lines 

continued to express FLAG-p85R274A (data not shown).  These results clearly 

demonstrated the oncogenicity of cells expressing the p85R274A mutant. 
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5.0 DISCUSION 

5.1 The interaction of p85 and Rab proteins 

The first objective of this project was to determine if p85 interacts with Rab 

proteins, specifically Rab5.  We determined that p85 and Rab5 interact directly by two 

different methods.  Using an ELISA method, p85 was shown to interact similarly with 

Rab5 bound to GTP, GDP or with no nucleotide.  A second method used to assess the 

interaction was a pull-down assay.  The results showed that p85 bound best to Rab5 

alone, then to Rab5-GTPγS, Rab5-GDP-AlF4 and Rab5-GDP.  Many GAP proteins bind 

preferentially to the GTP-bound form of their respective G protein, since GAP proteins 

act on the GTP-bound forms.  However, there are GAP proteins that bind well to GDP-

bound, GTP-bound, or G protein in the absence of nucleotide.  Some examples of these 

latter GAP proteins include BNIP-2 binding to Cdc42 and the RhoGAP protein binding 

to GTP-bound and GDP-bound forms of Cdc42, Rac1 and RhoA (Low et al., 1999; Self 

and Hall, 1995).  Thus, while some GAP proteins bind preferentially to the GTP-bound 

form of a G protein, this is not always the case.  The p85 binding to Rab5 seems to 

follow the pattern of preferentially binding to Rab5-GTP then Rab5-GDP-AlF4 and with 

somewhat less binding to Rab5-GDP and Rab5 alone. 

The next objective was to determine if p85 has GAP activity towards Rab5.  Again 

we used two different methods to measure GAP activity.  Both the steady state and 

single turnover GAP assays showed that p85 has GAP activity towards Rab5.  By testing 
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the various domains of p85 it was shown that the GAP activity was contained within the 

BH domain of p85.  Furthermore, when the BH domain was removed from the protein, it 

no longer had GAP activity but it still bound to Rab5-GTP.  This suggests that p85 is a 

GAP protein. 

There was, however, an unusual quality with regard to the GAP activity of p85; 

p85 was shown to work in the µM concentration range whereas most GAP proteins work 

in the nM range.  One possible explanation for this result is that p85 may only provide 

one of the functions that a GAP performs.  GAP proteins perform two functions for 

stimulation of GTP hydrolysis.  The first is the stabilization of the switch regions of the 

Rab protein and the second is the insertion of an arginine finger into the active site to 

stabilize the transition state of the reaction (Fig. 5.1)(Scheffzek et al., 1998).  A previous 

study of the interaction of p85 with Cdc42 by another laboratory showed that although 

p85 had an arginine finger, p85 did not interact with the switch regions of Cdc42 (Fidyk 

and Cerione, 2002).  This suggested that p85 might need a third protein to interact with 

the switch regions of the monomeric G protein to be fully active, with this trimeric 

complex increasing the binding affinity of p85 and Cdc42. 

There are published examples of other GAP proteins that require a third protein in 

the complex to function optimally.  RanGAP has a coactivator, Ran Binding Protein 1 

(RanBP1), that interacts with the Ran G protein.  The binding of RanBP1 causes a 

conformational change in Ran that removes the inhibition of RanGAP (Seewald et al., 

2002; Seewald et al., 2003).  Although RanBP1 increases GAP activity of RanGAP, 

they do not interact directly with each other but instead bind to different faces of Ran.   

The formation of a trimeric protein complex for GAP activation also occurs with 

ADP-ribosylation factor 1 (Arf1) and ArfGAP.  Arf1 GTPases regulate coatomer 
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Figure 5.1  Requirements for Activation of Rab Hydrolysis of GTP.  
A) The GAP protein inserts the arginine finger (lighting bolt) and the Rab
protein contains a critical glutamine, both of which are important for 
hydrolysis.  A GAP effector protein interacts with the Rab protein switch 
regions (SW1 and SW2) to stabilize the active site for hydrolysis.  B) The 
GAP protein supplies the arginine finger and interacts with the switch 
regions for the hydrolysis of GTP.  Modified from Scheffzek, et al., 1998.
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(nonclathrin) recruitment during vesicle transport and so functionally are similar to the 

Rab GTPases (Chavrier and Goud, 1999; Goldberg, 1999; Szafer et al., 2000; Szafer et 

al., 2001).  Arf1-GTP forms a stoichiometric complex with the coatomer protein and this 

interaction is required to maintain the stability of the vesicle coat (Chavrier and Goud, 

1999; Goldberg, 1999; Szafer et al., 2000; Szafer et al., 2001).  ArfGAP and Arf1 bind 

with low affinity and ArfGAP exhibits modest GAP activity in the absence of 

phospholipid vesicles or coatomer proteins.  The relatively weak GAP activity of 

ArfGAP towards Arf1-GTP is enhanced 10-1000 fold by the presence of coatomer 

protein or phospholipids vesicles (Chavrier and Goud, 1999; Goldberg, 1999; Szafer et 

al., 2000; Szafer et al., 2001).  The vesicle lipids and/or coatomer protein act as a bridge 

between the ArfGAP and Arf1.  It has been suggested that a proximity effect increases 

the GAP activity since the tripartate ArfGAP:Arf1-GTP:coatomer complex, or 

colocalization of ArfGAP and Arf1-GTP to the same phospholipid vesicles, effectively 

creates a high local concentration of both proteins.  The requirement for high local 

concentrations of both ArfGAP and Arf1-GTP ensures that the required levels of Arf1-

GTP are sustained during the assembly of vesicle coats (Chavrier and Goud, 1999; 

Goldberg, 1999; Szafer et al., 2000; Szafer et al., 2001).  The bridging of Arf1 and 

ArfGAP by either vesicles or coatomer changes the concentration needed for GAP 

activity from the µM range to the nM range.  This suggests a model where the low 

affinity interactions between some G proteins and their respective GAP proteins are 

subject to additional regulation that increases their interactions.  This regulation could be 

an increase in the local concentration at a subcellular location by endocytosis, or the 

interaction of the G protein and GAP with additional cellular factors, such as a third 

protein to form a trimeric complex.   
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A similar situation could exist for p85 where a third protein is needed to increase 

the interaction between p85 and the Rab5 protein.  One possible candidate for a bridge 

protein is the p110β catalytic subunit of PI3K, since it interacts with both Rab5-GTP and 

p85 (Christoforidis et al., 1999b; Kurosu and Katada, 2001).  We were unable to test 

p110β in a GAP assay because it is a highly unstable protein and we were unable to 

produce high quality, purified p110β.  Another alternative that could increase the GAP 

activity of p85 is a high local concentration of p85 in the early endosome when the 

active receptor-p85 complex is endocytosed.  This would allow p85 to have GAP 

activity towards Rab proteins in the early endosome.  These two models are not mutually 

exclusive and either model could potentially explain how p85 functions as a Rab5 GAP 

in cells.  Experiments designed to address these possible models for the regulation of 

p85 Rab GAP activity will be discussed in greater detail in the section describing future 

directions.  It has previously been shown that p110β has a small effect on in vitro 

endosomal fusion assays (Christoforidis et al., 1999b).  There was a small decrease in 

the percent of endosome fusion when an antibody for p110β was added to the assay, 

suggesting that class I PI3K may have some involvement in endosomal fusion reactions.  

In this assay transferrin was used as a cargo in the vesicle.  Our model suggests that the 

GAP activity of p85 needs a high local concentration of p85 that could be supplied by 

receptor binding of p85 and the transferrin receptor does not bind p85 therefore this 

assay may not have shown the GAP activity of p85. 

To determine whether p85 could act as a GAP for other G proteins, we tested its 

GAP activity towards several different Rab proteins.  Our results showed that p85 has 

the ability to stimulate the GTPase activity of several, but not all of the Rab-family 

members tested, suggesting that the GAP activity of p85 is specific for a subset of Rab 
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proteins.  Of the Rab GTPases tested, p85 displays the highest GAP activity towards 

Rab7 > Rab5 > Rab4 >> Rab6, with little or no activity towards Rab11.  Rab7 is 

involved in the fusion of the late endosome with the lysosome (Bucci et al., 2000).  

Rab5 has been shown to function in membrane fusion events between endocytosing 

vesicles and early endosomes, as well as in homotypic fusions between early endosomes 

(Barbieri et al., 1996; Li, 1996).  Rab4 is suggested to play a role in fast recycling (2-5 

min) from early endosomes back to the plasma membrane, while Rab11 is believed to be 

important for slow recycling (15-30 min) of receptors, via intermediate recycling 

endosomes (Sheff et al., 1999).  In contrast, Rab6 is associated with transport events in 

Golgi and trans-Golgi network membranes (Martinez et al., 1994). 

We also found that p85 has GAP activity towards Cdc42 and Rac1, important 

regulators of actin structures.  Previous reports showed that the BH domain of p85 could 

bind to both Cdc42 and Rac1 but had no GAP activity towards them using 

concentrations of p85 up to 1 µM, however, we used concentration of p85 up to 35 µM 

(Tolias et al., 1995; Wittmann and Waterman-Storer, 2001).  It has been suggested that 

Cdc42 in particular plays a role in regulating the movement of vesicles by stimulating 

actin comet-tail formation (Ridley, 2001).  It has been hypothesized previously that there 

may be multifunctional scaffolding proteins which can link structures involved in 

endocytosis to the actin cytoskeleton (Qualmann et al., 2000).  We suggest that p85 may 

be an example of this since its GAP activity towards these Rho-family GTPases could 

allow the coordination of cell signalling by activated receptors with vesicle movement 

during receptor-mediated endocytosis. 

To ensure p85 is a GAP protein and to determine the effects of its GAP activity, 

we mutated the BH domain of p85 to knockout its GAP activity.  To do this there are 
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two parts of the p85 BH domain that could have been mutated; the region that interacts 

with the switch regions of the Rab protein or the arginine finger.  The crystal structure of 

the BH domain was suggested to have a G protein binding cleft (Musacchio et al., 1996; 

Scheffzek et al., 1998).  This binding cleft contains two arginines that could be the 

arginine finger and several other amino acids that could be involved in the interaction 

with the Rab5 switch regions (Fig. 5.2)(Musacchio et al., 1996; Scheffzek et al., 1998). 

We decided to mutate the arginine finger because it would not involve mutating 

large, less well-defined surfaces of the p85 protein.  There were two arginines that could 

be the arginine finger.  Two separate mutants were generated, changing either arginine 

151 or 274 to an alanine and the resulting protein products were tested for GAP activity.  

The p85R151A protein had approximately 65% of the GAP activity of wild type p85, 

while the p85R274A mutant had less than 5% GAP activity remaining.  This suggested 

that arginine 274 is the arginine finger and supports the hypothesis that p85 is an actual 

GAP protein.  Both p85 point mutants still bound to Rab5 although they bound 

preferentially to different nucleotide bound forms of Rab5.  Similar to wild type p85, the 

p85R151A mutant bound to both Rab5-GDP and Rab5-GTP.  In contrast, the p85R274A 

mutant bound only to the GDP bound form of Rab5.  The inability of the p85R274A 

mutant to bind to Rab5-GTP may have contributed to the decreased GAP activity of this 

mutant.  It is more plausible that the loss of GAP activity is due to the loss of the 

arginine finger required for stabilizing the hydrolysis reaction and that p85R274A does 

not bind stably to Rab5-GTP as a consequence of the lost arginine finger.   

The three p85 mutants, p85∆BH, p85R151A and p85R274A behaved normally 

with respect to several other p85 functions tested.  They bound to p110 and formed 

functional complexes that had lipid kinase activity.  Two mutants, p85∆BH and 
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Figure 5.2  The Crystal Structure of the BH domain from Human p85.
The coloured side chains within the possible Rab protein binding cleft are 
shown.  The six amino acids shown in yellow are believed to interact with 
the Rab protein based on sequence homology to other GAP proteins.  The 
red and orange amino acids are the possible arginine fingers.  The red 
amino acid is Arg151 and the orange amino acid is Arg274.  Modified 
from Musacchio, et al., 1996.
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p85R274A, were also tested for their ability to interact with the activated PDGFR and 

contribute to established signalling pathways.  Coimmunoprecipitated PDGFR bound to 

each of these p85 mutants and receptor-associated PI3K activity was retained.  Of 

significance, the p85R274A protein showed prolonged association with the receptor over 

the entire 4 hour time course of PDGF stimulation.  In contrast, the wild type p85 and 

p85∆BH proteins dissociated from the receptor by two hours of growth factor 

stimulation.  This suggested that downregulation of the PDGFR may be impaired 

because the receptor was staying in an active p85-p110 associated state longer than 

normal.   

To determine if there were changes in the downregulation of the PDGFR, we 

examined both total and activated receptor levels in cells stimulated with PDGF over the 

course of four hours.  Cells expressing p85R274A and p85∆BH both had a prolonged 

amount of receptor levels over the time course when compared to NIH 3T3 cells or cells 

expressing wild type p85.  The PDGFR was also in an activated phosphorylated state.  

The expression of p85R274A had a more pronounced effect in delaying PDGFR 

degradation as well as sustaining receptor activation (i.e. tyrosine phosphorylation) and 

downstream signaling when compared to expression of p85∆BH.  While both of these 

mutated proteins retained approximately 5-8 % GAP activity, they displayed different 

preferences for binding to Rab5 nucleotide states and these binding preferences were 

distinct from the wild type p85 protein.  As previously mentioned, while wild type p85 

bound to both the inactive, GDP-bound and the active, GTP-bound Rab5, p85R274A 

bound only Rab5-GDP and p85∆BH bound only Rab5-GTP.  Differential binding 

preferences of the p85 mutants for the two nucleotide bound forms of Rab5 may explain 
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the difference in receptor degradation patterns seen between p85∆BH- and p85R274A-

expressing cells.  It seems particularly evident that within the p85R274A-expressing 

cells, the receptor was not downregulated and degraded properly.  This abnormal 

regulation affects the downstream receptor signalling pathways as well.  The 

p85R274A- and p85∆BH-expressing cells had prolonged and increased levels of 

phosphorylated Akt and greatly prolonged and increased levels of phosphorylated 

MAPK.  These proteins are good indicators of activated PDGFR and are involved in 

several cellular functions such as cell survival and proliferation (Claesson-Welsh, 1994). 

Cells expressing p85 mutants with defective GAP activity showed a corresponding 

decreased PDGFR downregulation and degradation.  This suggested that the GAP 

activity of p85 regulates receptor degradation.  Normally the p85 Rab GAP activity 

could decrease the levels of Rab5-GTP and Rab4-GTP in the cell, which decreases the 

rates of receptor endocytosis and recycling, respectively.  There are two possible ways 

wild type p85 could regulate receptor trafficking into and out of the early endosome.  

The first is to delay receptor entry into the early endosome by decreasing the amount of 

Rab5-GTP on vesicles, which would decrease the rate of fusion of these vesicles with 

the early endosome.  This could be important to slow receptor endocytosis to allow 

signalling by the activated receptor.  The second is to delay receptor exit from the early 

endosome by decreasing the amount of Rab4-GTP on the early endosome, which would 

decrease the rate of receptor recycling.   

Expression of p85 mutants defective for Rab GAP activity would be expected to 

have the opposite effects.  To determine if the observed changes in receptor degradation 

were due to changes in the rate of endocytosis and/or recycling the rate of biotin-tagged 

surface protein internalization and the rate of internalized biotin-tagged protein loss from 
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the interior of the cell were measured.  The rates of biotin-tagged protein endocytosis 

and recycling should correlate to the endocytosis and recycling of the PDGFR because 

upon PDGF stimulation of the cells the receptor is endocytosed.  Both parental and 

p85R274A- expressing NIH 3T3 cells exhibited similar rates of internalization over 10 

min of PDGF stimulation.  This suggested that if p85 GAP activity had a role in the 

endocytosis of the receptor, it did not affect the rate of receptor internalization.   

This does not preclude the possibility that p85 functions in the intermediate steps 

between receptor internalization and entry into the early endosome.  It is thought that 

after Rab5-mediated endosomal fusion, Rab5 is released from the early endosome into 

the cytosol and moves back to the plasma membrane to carry out further fusion events 

and that this release of Rab5 from the early endosome could be rate limiting in 

endocytosis (Clague and Urbe, 2001).  If the role of p85 GAP activity is to allow the 

release and re-utilization of Rab5, then knocking out this GAP activity may have little 

effect on the internalization of the receptor initially because the pool of cytosolic Rab5 

would have to be depleted before internalization is affected. 

The Rab GAP activity of p85 could regulate Rab function via the Rab4-mediated 

exit from the early endosome.  To measure this, the rate of biotin-tagged internalized 

protein decrease from the interior of the cell was measured.  Over the time period 

studied the majority of the internalized protein loss from the cell interior should be due 

to recycling and not degradation.  Although in the NIH 3T3 cell line it is expected that 

some degradation of the receptor can occur.  If p85 plays an important role in receptor 

recycling, knocking out its GAP activity should increase the amount of activated Rab4, 

which would increase the rate of receptor recycling.  When protein recycling was 

measured, the rate was almost twice as fast in the p85R274A-expressing cells as 
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compared to the parental NIH 3T3 cells.  This indicated that the GAP activity of p85 

may regulate the rate of receptor recycling but not the rate of endocytosis.  This is 

consistent with a report that the removal of the p85 binding sites from the PDGFR 

decreased receptor degradation (Hiles et al., 1992; Kapeller et al., 1993; Schu et al., 

1993).  Such manipulation would produce the end results similar to those caused by 

knocking out the GAP activity of p85, that being an increase in the rate of receptor 

recycling.  The mechanism that the receptor uses for degradation is to target the receptor 

from the early endosome into the MVB (Raiborg and Stenmark, 2002).  The data 

supports the hypothesis that loss of p85 GAP activity decreases the rate of receptor 

degradation by decreasing the amount of time the receptor spends in the early endosome.  

This would limit the amount of time the receptor could interact with the targeting 

mechanism for receptor degradation.  Targeting to the MVB is dependent on two events: 

ubiquitylation of the receptor and interaction of the ubiquitylated receptor with the Hrs-

STAM and ESCRT complexes (Haglund et al., 2003; Holler and Dikic, 2004; Komada 

and Soriano, 1999; Levkowitz et al., 1998; Raiborg and Stenmark, 2002). 

  

5.2 Model for the Role of p85 in Receptor Endocytosis 

When the PDGFR is activated, it recruits several adaptor proteins including p85 

(Claesson-Welsh, 1994; Heldin et al., 1998).  Shortly thereafter, the activated receptor 

complex is endocytosed and travels from the plasma membrane to the early endosome 

(Fig. 5.3)(Clague and Urbe, 2001; Miaczynska et al., 2004b; Sorkin and Von Zastrow, 

2002).  The early endosome contains at least 4 functional domains, each of which plays 

a different role in receptor function (Raiborg and Stenmark, 2002; Sonnichsen et al., 

2000).  The major domains are involved in regulating the entrance and exit of receptors 
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Figure 5.3  Model for the Involvement of p85 in Receptor Endocytosis.
When there is a low level of PDGFR endocytosis (upper panel), there is a 
low level of p85 in the early endosome.  This allows a greater amount of 
receptor recycling vs receptor degradation.  When there is a high level of 
PDGFR endocytosis (lower panel), there is a high level of p85 in the early
endosome.  This decreases the size of the Rab4 and possibly the Rab5 
domains on the early endosome.  As a result, the Hrs-STAM containing 
domain would increase in size relative to the recycling domains, causing 
more receptors to be degraded.
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from the early endosome.  The Rab5 domain is involved in the entry of the receptor into 

the early endosome (Li, 1996; Somsel Rodman and Wandinger-Ness, 2000).  There are 

two domains, Rab4 and Rab11, which are involved in the return of the receptor to the 

plasma membrane via recycling pathways (Maxfield and McGraw, 2004; Somsel 

Rodman and Wandinger-Ness, 2000).  A Rab protein does not govern the fourth major 

domain but instead it may be regulated via the Hrs-STAM and ESCRT complexes.  This 

domain targets receptors for degradation and forms the MVB (Raiborg and Stenmark, 

2002).   

The mechanism by which the receptor is delivered into and out of these different 

early endosomal domains is not well characterized.  After the receptor enters the Rab5 

domain, it most likely dissociates from the Rab5 domain and migrates to one of the other 

domains.  This process could be directed, but it is more likely that the receptor migrates 

randomly to the adjacent domains through diffusion events influenced by the size of 

adjacent domains.  A larger domain provides a greater surface area and therefore would 

have a higher chance to receive the diffusing receptor.  The size of the domain could be 

regulated by the active state of the Rab protein that forms it.  The GAP activity of p85 

could regulate the size of domains on the early endosome, thus providing a possible 

mechanism for regulating the amount of receptor recycling vs degradation.  As activated 

receptors enter the early endosome, the associated p85 levels would also increase, 

causing an increase in GAP activity towards Rab4 and possibly Rab5.  This would then 

theoretically cause the Rab4 and Rab5 domains on the early endosome to decrease in 

size, allowing for an increase in receptor degradation because the majority of the 

endosomal surface area would be composed of the Hrs-STAM domain.  This process 

would provide an ideal system to regulate the rate of receptor degradation.  High levels 
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of receptor activation would result in more degradation, whereas low levels of receptor 

activation would instead favor the recycling system due to a relatively small Hrs-STAM 

domain.  As the amount of p85 bound to the receptors entering the early endosome 

increases, the Rab4 recycling domain would decrease in size relative to Hrs-STAM 

degradation domain shifting receptor transport in favor of entry into the Hrs-STAM 

degradation domain.  This would cause more receptors to be degraded.  This proposed 

model of receptor endocytosis is consistent with the previous knowledge of endocytosis 

and assimilates the data provided in this thesis into the model of endocytosis.  In the 

future directions several experiments have been outlined to further investigate this 

model. 

   

5.3 The role of endocytosis in cancer 

Many types of tumours have increased levels of growth factor receptors (Blume-

Jensen and Hunter, 2001), which is known to drive aberrant cell proliferation and cell 

survival.  The most common causes of the increased receptor levels are gene 

amplification and deregulation of receptor transcription (Blume-Jensen and Hunter, 

2001).  It has also been suggested that defects in receptor-mediated endocytosis and 

degradation pathways could contribute to elevated levels of activated growth factor 

receptors (Bache et al., 2004).  The p85R274A-expressing cell line was shown to have 

increased levels of activated PDGFR and enhanced cell signalling.  It was possible that 

these properties were indicative of a transformed phenotype for the p85R274A-

expressing cell line.  Preliminary evidence suggesting that the p85R274A-expressing 

cell line was transformed came from observations of spontaneous foci formation on 

subconfluent plates under normal growing conditions.  In addition, the cells exhibited a 
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rounded morphology common to a loosely adherent transformed cell.  Therefore we 

tested the p85R274A-expressing cell line for several of the hallmarks of tumourigenic 

cells.  These hallmarks are the ability to proliferate with low concentration of growth 

signals, resistance to apoptosis, anchorage independent growth, loss of contact inhibition 

and formation of tumours in nude mice. 

The changes in signalling in the p85R274A-expressing cells have direct effects on 

cell proliferation and cell survival.  Our results showed that in contrast to parental NIH 

3T3 cells, cells overexpressing wild type p85 and the p85 mutants (p85R274A and 

p85∆BH) proliferated in low levels of mitogenic growth signals (i.e. 2% serum).  When 

PDGF was used as the only mitogenic factor, the overexpression of wild type p85 and 

p85R274A allowed the cells to proliferate whereas the cells overexpressing p85∆BH 

and the parental NIH 3T3 cells proliferated poorly.  This suggests the overexpression of 

p85 or p85 mutants allows cells to proliferate in low mitogenic signals.  One possible 

reason that the p85∆BH expressing cells grew poorly in PDGF may be that the deletion 

of the large BH domain (amino acids 84-313) had additional effects that are important in 

PDGFR signalling, besides GAP activity.   

The p85R274A-expressing cells showed more resistance to apoptosis than wild 

type p85- and p85∆BH-expressing cells under conditions of oxidative stress.  In fact, the 

p85R274A-expressing cells had the same resistance to oxidative stress as the normal 

parental NIH 3T3 cells.  In contrast, the cells expressing wild type p85 and p85∆BH 

underwent significant apoptosis in response to oxidative stress.  The reason p85R274A-

expressing cells do not have the same sensitivity to apoptosis as the cells overexpressing 

p85 could be due to the increased Akt signalling observed in the p85R274A-expressing 

cells, since it is well known that Akt signalling has anti-apoptotic effects (Song et al., 
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2005).  This data showed that p85R274A-expressing cells can proliferate in low levels 

of growth factors and are resistant to apoptosis when compared to cells expressing wild 

type p85 and p85∆BH. 

Other hallmarks of cell transformation mentioned above are the loss of contact 

inhibition and anchorage independent growth.  We observed both of these traits in cells 

expressing p85R274A protein but not in cells expressing either p85 wild type or 

p85∆BH.  This suggested that the p85R274A-expressing cells are indeed transformed.  

An experiment used to determine the tumourigenicity of the p85R274A cells was to test 

their ability to form tumours in nude mice.  The p85R274A-expressing cells did form 

tumours in nude mice and these tumours were highly proliferative and well vascularized.  

Together these results strongly suggest that the loss of GAP activity by the mutation of 

Arg 274 in p85 transforms the cells by increasing the levels of activated PDGFR in the 

cells. 

 

5.4 Future directions 

The mechanistic data presented here has led to a model for the involvement of p85 

in the endocytosis of the PDGFR.  Future experiments are required to test and further 

refine this model.   

First, it would be valuable to determine the contribution of p110β to the GAP 

function of p85.  Several different approaches have been examined to purify p110β from 

bacteria.  Thus far, all of them have been unsuccessful due to the low-level expression of 

the protein and instability of the bacterially-expressed p110β.  We know that p110β can 

be expressed successfully in mammalian cells.  Therefore, it should be possible to 

express p85 with or without p110β in COS-1 cells and purify it by immunoprecipitation 
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of p85.  It may then be possible to develop a GAP assay using the immunoprecipitates 

containing p85 with or without p110β.  These could be used to help determine the effect 

of p110β on the GAP activity of p85.   

There are also several immunofluorescence experiments that need to be 

performed.  The above experiments have provided an approximate timeline of 

endocytosis, which can be used to help design efficient immunofluorescence 

experiments to determine the involvement of p85 in endocytosis.  At early time points, 

under 10 min, it is important to determine if the PDGFR is entering the early endosome 

or is getting trapped somewhere between the plasma membrane and early endosome.  

This will help determine if p85 has GAP activity towards Rab5 in cells.  At later time 

points, between 20 min and 2 hr, the location of the PDGFR also needs to be 

determined.  If the proposed model is correct, then in parental NIH 3T3 cells the 

receptor should be distributed between the recycling and degradation pathways.  At the 

20 min mark, more receptor should be recycled and associated with Rab4 and at the 2 hr 

mark, more receptor should be degraded and associated with Rab7 or other late 

endosomal/lysosomal markers.  In the p85R274A-expressing cells, less receptor should 

be associated with Rab7 at each time point and more should associate with Rab4 or 

localize to the plasma membrane.  This will support the hypothesis that the expression of 

p85R274A is causing receptor recycling rather than the receptors building up in some 

endosomal compartment because of a blockage of receptor degradation.  

Immunofluorescence could also be used to determine if p85 colocalizes with both Rab5 

and Rab4.  This would help confirm that p85 is a GAP protein towards those Rab 

proteins. 
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The concept that the size of different early endosomal domains determines the 

targeting of receptors for recycling or degradation could be tested by looking at the 

domain size of Rab5, Rab4 and Hrs-STAM on early endosomes in both p85R274A-

expressing cells and the parental NIH 3T3 cells over a PDGF stimulation time course of 

up to 60 min.  In NIH 3T3 cells, the ratio of Rab5 and/or Rab4 to Hrs-STAM domain 

size should decrease the longer the cells are stimulated because of the increasing levels 

of p85 entering the early endosome.  In contrast, in the p85R274A-expressing cells the 

ratio of Rab4 and/or Rab5 to Hrs-STAM domain size should stay the same or grow in 

size if the model is correct because the p85 would have no GAP activity. 

Another experiment that would provide us with valuable information would be to 

determine the ubiquitylation state of the PDGFR in the NIH 3T3 cells vs the p85R274A-

expressing cells over a time course of PDGF stimulation.  This could indicate how the 

ubiquitylation of the receptor controls receptor degradation.  If the p85R274A-

expressing cells have increased levels of ubiquitylated receptor over the time course 

compared to NIH 3T3 cells that would mean that the receptor is being ubiquitylated but 

cannot enter the MVB.  If the p85R274A-expressing cells have decreased levels of 

ubiquitylated receptor over the time course compared to NIH 3T3 cells, it would indicate 

that the receptor is not being ubiquitylated because the receptor may not be interacting 

with Cbl, which ubiquitylates the receptor.  If the p85R274A-expressing cells have the 

same levels of ubiquitylated receptor as the NIH 3T3 cells at each time point, this would 

suggest that the receptor is being ubiquitylated and then deubiquitylated and recycled. 

These experiments should help prove or disprove the model put forth and allow for 

the development of future models.  These future models can then be used to develop 
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further experiments to increase our knowledge of how receptor-mediated endocytosis 

functions. 

 

5.5 Conclusions 

This research suggests a new model for how growth factor receptor endocytosis 

and degradation could be regulated.  Although there has been much research into 

endocytosis over the past decade, there is still little known about how receptors are 

targeted from the early endosome to the lysosome for degradation.  The p85 subunit of 

PI3K has a role in the regulation of the activity of Rab proteins of the early endosome, 

specifically Rab5 and Rab4.  This regulation works by stimulation of the Rab protein to 

hydrolyze its GTP into GDP, deactivating Rab function.  The inactivation of the Rab 

proteins then cause changes in the rates of endocytosis and recycling of the PDGFR.  

The inactivation of Rab5 causes a slowing of vesicle fusion with the early endosome.  

We believe this may be important in allowing the receptor time to activate downstream 

signalling proteins.  The inactivation of Rab4 by p85 may also play an important role in 

receptor downregulation.  Currently it is known that only a small percentage of receptors 

in the early endosome are targeted to the lysosome for degradation, while the rest are 

recycled back to the plasma membrane.  The inactivation of Rab4 by the GAP activity of 

p85 would slow recycling of the receptor, allowing receptors to interact with proteins in 

the early endosome that could target the receptor to the lysosome for degradation.  This 

temporal control of receptor recycling vs. receptor degradation by p85 could be an 

important point of regulation of the level of receptors.  This could be a future target site 

for drugs to control receptors involved in cancer. 
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