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Abstract

This thesis is split into two parts, the �rst one is concerned with some
problems in stochastic homogenization and the second addresses a problem
in singular SPDEs. In the part on stochastic homogenization we are inter-
ested in developing large-scale regularity theories for random linear elliptic
operators by using estimates for the homogenization error to transfer regular-
ity from the homogenized operator to the heterogeneous one at large scales.
In the whole-space case this has been done by Gloria, Neukamm, and Otto
through means of a homogenization-inspired Campanato iteration. Here we
are speci�cally interested in boundary regularity and as a model setting we
consider random linear elliptic operators on the half-space with either ho-
mogeneous Dirichlet or Neumann boundary data. In each case we obtain
a large-scale C1,α-regularity theory and the main technical di�culty turns
out to be the construction of a sublinear homogenization corrector that is
adapted to the boundary data. The case of Dirichlet boundary data is taken
from a joint work with Julian Fischer. In an attempt to head towards a perco-
lation setting, we have also included a chapter concerned with the large-scale
behaviour of harmonic functions on a domain with random holes assuming
that these are �well-spaced".

In the second part of this thesis we would like to provide a pathwise solu-
tion theory for a singular quasilinear parabolic initial value problem with a
periodic forcing. The di�culty here is that the roughness of the data limits
the regularity the solution such that it is not possible to de�ne the nonlin-
ear terms in the equation. A well-posedness result, therefore, comes with
two steps: 1) Giving meaning to the nonlinear terms and 2) Showing that
with this meaning the equation has a solution operator with some continuity
properties. The solution theory that we develop in this contribution is a per-
turbative result in the sense that we think of the solution of the initial value
problem as a perturbation of the solution of an associated periodic problem,
which has already been handled in a work by Otto and Weber. The analysis
in this part relies entirely on estimates for the heat semigroup. The results
in the second part of this thesis will be in an upcoming joint work with Felix
Otto and Jonas Sauer.
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0.1 Stochastic Homogenization

The �rst focus of my PhD work was the stochastic homogenization of linear
elliptic PDEs. At the core of this theory is the qualitative result that if the
space of bounded coe�cient �elds with a �xed ellipticity ratio is endowed
with a stationary and ergodic (see below) probability measure, then it is
possible to �nd a constant coe�cient �eld ahom such that for almost every
heterogeneous coe�cient �eld a the constant coe�cient operator −∇·ahom∇
approximates −∇ · a∇ at large scales. The requirements of stationarity and
ergodicity on the ensemble can be motivated on the intuitive level using that
homogenization is really the averaging of the coe�cient �eld that happens
when we �zoom-out". To encourage this averaging we should avoid coe�cient
�elds that exhibit atypical large-scale geometries (e. g. radial symmetry) or
that are sampled di�erently in di�erent regions. This can be formalized as
requiring that the probability measure (with expectation 〈·〉) satis�es:

• Ergodicity : Any shift-invariant random variable must be 〈·〉-almost surely
constant, which corresponds to a qualitative assumption of decorrelation
on large scales.

• Stationarity : The expectation 〈·〉 is shift-invariant.

The qualitative theory of stochastic homogenization was developed in the
late 70s and early 80s (see [48] by Papanicolaou and Varadhan and [39] by
Kozlov) and holds under qualitative ergodicity as de�ned above. However,
more recently, quantitative results, e. g. convergence rates (in the scale) for
the heterogeneous operator to the homogeneous one, have come into vogue
and always require a quanti�cation of the ergodicity assumption. Choosing
an appropriate notion of �quanti�ed ergodicity" is in itself nontrivial and
there are various notions available. One intuitive way to quantify ergodicity
is to impose a speci�c decay rate on the correlation between random vari-
ables depending on a|U and a|V , where U, V ⊆ Rd, as the distance d(U, V )
increases. This is the version of quanti�ed ergodicity used in the initial work
on error estimates in `86 [52]. In this paper the author, Yurinskii, was able to
obtain a suboptimal, but non-trivial, convergence rate. Ten years later came
the work of Naddaf and Spencer [45] and then Naddaf and Conlon [18], in
which quantitative mixing conditions on the ensemble were encoded in terms
of a spectral gap condition. In particular, they only consider ensembles that
satisfy a Poincaré inequality with zero-average over the probability space,
where the role of the gradient in the classical Poincaré inequality is played
by a �vertical derivative" that measures the dependence of a random variable
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on the coe�cient �eld. Using the framework of a spectral gap, the authors
were able to, for small ellipticity ratio, obtain optimal bounds for the ran-
dom �uctuations of the energy density of the gradient of an object called the
�corrector."

Quantitative results in stochastic homogenization rely on the random �uc-
tuations and deterministic growth of a random �eld called the �corrector."
For a �xed coe�cient �eld a and a direction ξ ∈ Rd the whole-space corrector
in the direction ξ, denoted φξ, corrects the linear function ξ ·x, which is ahom-
harmonic, to be a-harmonic. By a function being a-harmonic we mean that
it is in the kernel of the operator −∇ · a∇. So, in particular, the corrected
function φξ + ξ · x is a distributional solution of

−∇ · a∇(φξ + ξ · x) = 0 on Rd. (1)

Notice that, since the map ξ 7→ φξ may be taken to be linear, to specify the
corrector for any ξ ∈ Rd it su�ces to construct (φb1, ..., φbd), where {b1, ..., bd}
is a basis of Rd. Of course, as stated, the equation (1) has the trivial solution
−ξ · x. This, however, is not a reasonable choice for the corrector φξ as,
by its very nature, the corrector should be sublinear. The question of the
uniqueness (up to addition of a random constant) of the sublinear corrector
φ was only recently settled in the a�rmative and follows, e. g. , from the
analysis provided in [31].

In quantitative homogenization, it is convenient to introduce a dual quan-
tity to the corrector φξ for ξ ∈ Rd; namely, a vector potential σξjk for the
�ux correction a(ξ+∇φξ)−ahomξ. Notice that this is the di�erence between
the �ux in the direction ξ in the microscopic picture and in the homoge-
nized picture. In particular, σξjk is skew-symmetric in the last two indices
(σξjk = −σξkj) and distributionally satis�es

∇k · σξjk = ej · (a(ξ +∇φξ)− ahomξ), (2)

where we use the notation ∇k · σξjk =
∑d

k=1 ∂kσξjk. Cleary the equation
(2) does not uniquely de�ne σ as it has a gauge invariance in the sense that
one may perturb a solution by any solenoidal random �eld without penalty.
The object σ is often called the ��ux corrector", which is notation taken
from periodic homogenization, where it is classical. In the stochastic setting
σ was �rst constructed by Gloria, Neukamm, and Otto in [31], where the
choice of gauge ensured that σ is sublinear. As in the case of the corrector,
for each j, k ∈ Rd the �ux corrector is determined by (σbijk, ..., σbdjk), where
{b1, ..., bd} is a basis of Rd.

To see how the corrector is a natural object in the theory of homoge-
nization, we, for a �xed coe�cient �eld a, study the operator −∇a( ·ε)∇ as
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ε → 0. Here, it is natural to do an asymptotic expansion at two scales, the
microscopic scale at which the coe�cients oscillate and the macroscopic scale
on which the right-hand side oscillates, of the solution of the equation with
rescaled coe�cients a( ·ε). This yields the 2-scale expansion:

uε ≈ uhom + ε
d∑
i=1

∂uhom
∂xi

φi

(x
ε

)
+ higher-order (in ε) terms, (3)

where d denotes the dimension, uε denotes the solution to the equation with
rescaled coe�cients, uhom denotes the solution to the homogenized equation,
and φi is the corrector introduced above. Notice that, neglecting higher-order
terms, the 2-scale expansion implies that the question of the existence of a
corrector with sublinear growth is equivalent to that of whether homogeniza-
tion occurs.

With this coarse overview of stochastic homogenization in-hand, we now
state that the main focus of Part 1 of this thesis is the construction of bound-
ary correctors; i. e. functions solving the corrector equation on a domain, but
also satisfying certain boundary data. As a motivation for the usefulness
of these objects, let us return to periodic homogenization and consider the
Dirichlet problem with periodic coe�cients. Here, the expected error esti-
mates for the convergence of uε to uhom are not obtained by naively using the
2-scale expansion with the standard periodic cell-correctors (solutions of the
corrector equations posed on the torus) since the use of the cell-correctors
in this ansatz introduces oscillations at the boundary. Of course, a natural
reaction to this is to introduce an object that not only solves the corrector
equation, but also satis�es homogeneous Dirichlet boundary data. This is
a boundary corrector, which may then be used to obtain more re�ned er-
ror estimates. In periodic homogenization the use of boundary correctors
goes back as far as the seminal work of Avellaneda and Lin [11], in which
various uniform in ε (up to the boundary) regularity theories are developed
for the solutions uε. In their work they use a local version of a Dirichlet
corrector, which solves the corrector equation on the domain and locally at
the boundary satis�es homogeneous Dirichlet boundary data. More recently,
the strategy of Avellaneda and Lin in [11] was generalized to the Neumann
setting by Kenig, Lin, and Shen [38]. The Neumann case is more di�cult
because the boundary condition of both uε and the boundary corrector are
dependent on the scale.

Even in periodic homogenization the construction of Dirichlet correctors
already motivates interesting questions. In particular, since this boundary
corrector may constructed by correcting the cell-corrector with a function
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that is a-harmonic on the domain and �cancels-out" the cell-corrector at the
boundary of the domain, the study of the boundary corrector and the study
of the oscillating Dirichlet problem go hand-in-hand. The treatment of this
homogenization problem is much more di�cult than the standard Dirich-
let problem as one must also be concerned with the homogenization of the
boundary data, which is also oscillating. Even in periodic homogenization
this is an exciting problem that has recently received much attention. The
literature on this goes back to Allaire and Amar in the 90s [1] and it has
been, more recently, treated by Gérard-Varet and Masmoudi [26, 27]. Inter-
estingly, it turns out that homogenization in this framework depends on the
resonance of the directions of periodicity with the tangent planes of the do-
main. Assuming that the period-cell is the unit-cube, the favorable situation
is that within some (small enough) neighborhood of every boundary point
there exists a tangent plane with Diophantine slope. There is, in particular,
an important recent paper of Armstrong, Kuusi, Mourrat, and Prange [5] on
the homogenization of the oscillating Dirichlet problem in uniformly convex
domains. Here, their method yields the optimal (up to the loss of εδ for ar-
bitrarily small δ > 0) convergence rate for uε → uhom in Lq for q ∈ [2,∞) in
d ≥ 4 and improves previous regularity results for the homogenized bound-
ary data. Following subsequent work of Shen and Zhuge [51], the method of
[5] yields the optimal rates in d = 2, 3. The result of [51], which adapts the
method of [5] to the Neumann setting, is helpful in lower dimensions because
the authors obtain better regularity for the homogenized boundary data.

While boundary correctors are a quite classical theme in periodic homog-
enization, in stochastic homogenization their use has only recently begun to
be phased-in. To make this point, in Chapter 1 of Part 1 of this thesis, which
was a joint work with Julian Fischer [22], we gave the, to my knowledge, �rst
construction of a (half-space) Dirichlet corrector in the stochastic setting 1.
In a subsequent work [50], given in Chapter 2 of Part 1, I then extended the
methods of [22] to also construct a (half-space) Neumann corrector. In these
contributions, the primary motivation for the construction of these boundary
correctors is actually qualitative: We wanted to obtain a large-scale almost
sure C1,α- regularity theory for the heterogeneous coe�cient operator−∇·a∇
on the (upper) half-space with homogeneous Dirichlet or Neumann boundary
data.

To motivate our meaning of �large-scale C1,α-regularity", we recall that
Hölder regularity is equivalent to a certain approximability of a function by

1Previously, a C0,1-regularity theory up to the boundary was proved in both the Dirichlet and Neu-
mann cases in the almost periodic setting by Armstrong and Shen [8]. Their method also relies on
boundary correctors and it is likely that their method extends to the stochastic setting.
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polynomials. To capture this concept, in the classical setting one introduces
the notion of tilt-excess, which compares a solution of the elliptic equation
−∇·a∇u = 0 to the space of a�ne polynomials x 7→ ξ ·x+ c in the squared
energy norm. So, for a function u, the tilt-excess on the ball Br := {|x| < r}
is de�ned as

ExcC(r) := inf
ξ∈Rd

 
Br

|∇u− ξ|2 dx, (4)

where the superscript “C” stands for �classical". Di�erentiability properties
of the function u are then encoded in decay properties of the tilt-excess in
the radius r. For solutions to the Laplace equation −∆u = 0 on Rd, the
tilt-excess displays decay in the radius r according to

ExcC(r) ≤
( r
R

)2

ExcC(R) (5)

for any pair of radii 0 < r ≤ R. When valid for balls Br(x0) := {|x−x0| < r}
around any center x0 ∈ Rd, this excess decay property entails C1,1-regularity
of solutions.

In the �rst chapter of this thesis we are inspired by a previous work of
Gloria, Neukamm, and Otto [31], in which they introduce a version of the
excess that is modi�ed to take into account the homogenization framework.
In particular, for a given heterogeneous coe�cient �eld a one replaces the
linear functions ξ ·x in (4) with the a-linear functions φξ+ξ ·x, where φξ is the
homogenization corrector in (1). For this modi�ed version of the excess, they
then �nd that, assuming the corrector and corresponding �ux corrector are
sublinear, for any Hölder exponent α ∈ (0, 1) there exists a minimal radius
r∗α(a) > 0 above which a C1,α-excess decay holds for a-harmonic functions.
Using that α > 0, this large-scale C1,α-excess decay is then upgraded to a
large-scale mean-value property and a C1,α-Liouville principle. Here, C1,α-
Liouville principle means that the space of a-harmonic functions u satisfying
the growth condition |u(x) − u(0)| . |x|1+α has the same dimension as in
the constant coe�cient setting; in fact, they �nd that this space consists the
a-linear functions .

We emphasize that the Liouville principle proved by Gloria, Neukamm,
and Otto is not proved for all uniformly elliptic, bounded coe�cient �elds,
but only for those for which one has access to a sublinear corrector and �ux
corrector. From [31] we know that this sublinear pair (φ, σ) exists almost
surely for stationary and ergodic ensembles, where these properties ensure
that almost surely one avoids the classical counterexamples to Hölder regu-
larity. To see this graphically, we take a look at a plot of the coe�cient �eld
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constructed by Meyers in his counterexample in the scalar case (see Example
3 in [49]):

Figure 1: Here, of course, we consider the situation d = 2. Picture borrowed from Julian Fischer.

Notice that this coe�cient �eld is radially symmetric. In the systems case
there is the classical counterexample of De Giorgi (see Section 9.1.1 in [30]),
which shows that a-harmonic functions may not even be locally bounded.
However, the coe�cient �eld in this counterexample is also non-generic un-
der our assumptions.

In Part 1 of this thesis we develop three di�erent large-scale regularity
theories à la Gloria, Neukamm, and Otto. While we use scalar notation
throughout, all of our results also hold for systems. In each chapter we must
introduce a di�erent version of the excess that is modi�ed to take into account
both the homogenization framework (which was already done in [31]) and
the presence of the additional boundary data. Since the Liouville principle
is obtained as a corollary of the excess decay, the excess should in each case
be comparing the a-harmonic functions to the space that we expect in the
Liouville principle. In each of the three chapters we use this principle as the
guide by which we de�ne our excess and also the boundary correctors. For
clarity, we consider the case of homogeneous Dirichlet boundary data on the
half-space as an example: Here, motivated by [31] and the Liouville principle
in the constant coe�cient case, we expect that a-harmonic functions u on
Rd

+ such that u = 0 on ∂Rd
+ and |u(x) − u(0)| . |x|1+α will be of the form

xd + φDd , where φ
D
d solves

−∇ · a∇(φDd + xd) = 0 in Rd
+,

φDd = 0 on ∂Rd
+.

This means that we should de�ne the excess of u on B+
r , the half-ball of

14



radius r > 0, as

ExcD(r) := inf
b∈R

 
B+
r

|∇(u− b(xd + φDd ))|2 dx,

where the superscript “D” stands for �Dirichlet".
The general approach for the proof of the excess decay result in [31] is to

consider the solution of the heterogeneous-coe�cient problem as a perturba-
tion of the solution of the homogenized problem via the 2-scale expansion.
Looking at the 2-scale expansion given in (3), notice that the left-hand side is
the object that one is interested in developing a large-scale regularity theory
for and the right-hand side is accessible through means of constant coe�cient
regularity theory applied to uhom and homogenization results detailing the
growth of the corrector. This perturbative method for obtaining regularity
is not new and was pioneered in the periodic setting by Avellaneda and Lin
in [11], which we have already mentioned. Due to the loss of compactness
going from the periodic to the stochastic framework, the methods of Avel-
laneda and Lin, however, fail in the stochastic setting and new methods are
required to compensate. Due to this di�cultly there was a long lull between
[11] and the corresponding theories now available in the stochastic setting.

The �rst group that was able to overcome the di�culties introduced by
the stochastic framework was Armstrong and Smart. In particular, in [10]
they are able to obtain an almost sure large-scale C0,1-regularity theory in
the scalar case under the assumptions of symmetric coe�cients and a sta-
tionary ensemble with a �nite range of dependence (if dist(U, V ) ≥ c for
some c ∈ R>0 then a|U and a|V are stochastically independent). The ar-
guments developed by Armstrong and Smart rely on a convergence rate for
the homogenization error, which is obtained by studying certain subadditive
energies associated with the heterogeneous coe�cient equation. This initial
work was followed by a contribution of Armstrong and Mourrat [7], in which
the method of [10] was extended to the case of systems and stationary ensem-
bles satisfying an α-mixing condition, which is a prescribed power-law decay
of the correlations. For a complete overview of the techniques developed by
Armstrong, Smart, Mourrat, and collaborators one can reference the recent
book [3].

While the work of Armstrong and Smart was the �rst to implement the
general philosophy of Avellaneda and Lin in the stochastic setting, as already
mentioned, the contribution that directly motivated my joint work with Ju-
lian Fischer is [31] by Gloria, Neukamm, and Otto (GNO). The method
presented in [31] is an alternative approach to that of Armstrong et al.; in
particular, instead of studying energy quantities associated with the hetero-

15



geneous coe�cient equation, one actually studies the solutions themselves.
While both approaches rely on an �excess decay," the excess of GNO is in-
trinsic in the sense that it is expressed in terms of the harmonic coordinates
and that of Armstrong and Smart is expressed in terms of a�ne functions.
Time-wise, [31] came between [10] and [7]. The theory in [31] is split into a
qualitative statement, almost surely above some scale there is a C1,α-excess
decay, and some quantitative results such as the quanti�cation of the scale
above which the excess decay occurs. Their qualitative result holds under the
assumption of qualitative ergodicity, while the quantitative aspects of their
work require the additional assumption that the ensemble satis�es a coars-
ened logarithmic Sobolev inequality (cLSI). To �nish this review, it should
also be mentioned that the two main directions (Armstrong et al. and GNO)
were predated by a work of Marahrens and Otto [43] in which they prove a
large-scale C0,α-regularity theory for α ∈ (0, 1) using bounds on derivatives
of the heterogeneous Green's function, which are derived à la Naddaf and
Spencer under an LSI assumption on the ensemble.

Both of the directions detailed above have been generalized in many ways
over the last couple of years. A sizeable extension of both settings was
obtaining an almost sure large-scale Ck,α-regularity theory (for k ≥ 1). This
was �rst done by Fischer and Otto in [21] and slightly later by Armstrong,
Kuusi, and Mourrat in [4]. Both of the theories have also been extended to
handle parabolic equations: This is work by Bella, Chiarini, and Fehrman
[13] in the GNO framework and by Armstrong, Bordas, and Mourrat [2].
In the GNO framework the case of degenerate coe�cient �elds (satisfying a
moment bound motivated by [17]) has been treated by Bella, Fehrman, and
Otto in the continuum case [14] and was considered by Deuschel, Nguyen, and
Slowik in the discrete setting [20]. The method of Armstrong and Smart was
adapted to handle fully nonlinear equations under the assumption of strict,
but not uniform, ellipticity [9]. There is also a work in which Armstrong and
Lin obtain optimal bounds on the growth of the corrector for non-divergence
form linear equations [6].

To give a bit of context for Chapter 3 we mention that another (very
related) area of much recent interest has been the large-scale behaviour of
harmonic functions on percolation clusters. Here, in order to obtain an inter-
esting result it is not even necessary to consider the case of random coe�cients
as the randomness is already encoded into the percolation environment. For
supercritical percolation clusters on Zd under only the assumption of qual-
itative ergodicity there is a zeroth-order Liouville principle available, which
was proved by Benjamini, Duminil-Copin, Kozma, and Yadin in [15]. For the
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random conductance model on supercritical clusters generated by Bernoulli
bond percolation this was recently generalized by Armstrong and Dario to
k-th order Liouville principles [19].

While in this thesis we only obtain qualitative results, the motivating
work [31] actually contains many quantitative results. In particular, they
also show that for any α ∈ (0, 1), under a cLSI assumption, the minimal
radius r∗α has stretched exponential moments. Also, they show a variety
of estimates, which then culminate in a H1-error estimate for the 2-scale
expansion with a certain stochastic integrability. While the scaling of the
error estimate depends on the particular cLSI assumed and the dimension
d and is optimal, this estimate is not optimal with respect to the stochastic
integrability. It should be noted that, on the other hand, the methods of
Armstrong, Smart, Mourrat, and collaborators yield optimal results in terms
of stochastic integrability, but with non-optimal scaling.

Returning to the contents of this thesis, we notice that the main di�culty
in adapting the argument of GNO to the three settings is, in each case, the
construction of an appropriate sublinear boundary corrector. Traditionally
(see [37]), and also in [31], the corrector on the whole-space is obtained by us-
ing the stationarity and qualitative ergodicity of the ensemble to rephrase the
corrector equation over the probability space in terms of �horizontal deriva-
tives" and solving it there using a Lax-Milgram argument, which is possible
due to the �nite mass of the space. In particular, we use that ei ∈ L2(Ω),
where Ω is the probability space. In Chapter 3, which is di�erent in character
from the other two chapters, our assumption that the holes of the domain are
well-spaced allows us to modify the classical argument to obtain the desired
sublinear corrector. However, in Chapters 1 and 2 there are two immediately
apparent issues that prevent us from modifying the classical approach: 1)
Since a spatial shift may shift a point in Rd

+ out of Rd
+, stationarity is lost in

the ed-direction and 2) In the classical probabilistic construction of the cor-
rector one �rst constructs the gradient ∇φ as a random variable, takes the
stationary extension to obtain a random �eld, and then uses the Poincaré
lemma to �nd φ. This means that if we want a boundary corrector with
Dirichlet boundary data then we must somehow encode the boundary condi-
tion into the probabilistic formulation, which is on the level of the gradient.
It is unclear how to do this. So, we instead opt for an entirely deterministic
construction in which we correct a whole-space corrector that we assume to
exist and to satisfy a quanti�ed sublinearity condition.

The construction of the boundary correctors in Chapters 1 and 2 is really
the core of Part 1. As previously stated, the construction of these boundary
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correctors proceeds by correcting a whole-space corrector, for which we as-
sume some quanti�ed sublinearity, in such a way as to enforce the boundary
data. The correction of the whole-space corrector is actually performed on
iteratively higher scales in a fashion similar to the previous construction of
higher-order correctors in [21]. In particular, we enforce the boundary data
on successively large dyadic annuli: For annuli below a certain scale their
contribution to the full correction (of the whole-space corrector) may be su�-
ciently controlled with standard energy estimates, we call these the near-�eld
contributions, and to obtain appropriate estimates for the contributions of
the larger annuli, which we call far-�eld contributions, we inductively make
use of a large-scale regularity theory that we have initially up to some scale
thanks to the near-�eld contributions. The quanti�ed sublinearity condition
on the whole-space corrector is enforced to ensure that the sum of all of the
corrections converges and is sublinear.

As the construction of the boundary correctors in Chapters 1 and 2 is heav-
ily motivated by the previous construction of Fischer and Otto for higher-
order correctors [21], it comes as no surprise that the quanti�ed sublinearity
required of the whole-space corrector (φ, σ) in our construction is very similar
to the notion required in [21]. In particular, introducing the notation

δR :=
1

R

( 
BR

|(φ, σ)|2 dx
) 1

2

, (7)

for the construction of the higher-order correctors in [21] one requires

∞∑
m=0

δ2m <∞ (8)

and in the �rst two chapters of Part 1 we require the slightly stronger

∞∑
m=0

mδ
1
3
2m <∞. (9)

Notice that, in fact, (9) is satis�ed whenever an estimate of the form

δr .
1

| log r|6+ε
for large r

for arbitrarily small ε > 0 holds.
To name a few examples, our results in Chapters 1 and 2 are applicable

to the following cases of ensembles of random coe�cient �elds:

• Ensembles for which a(x) is either equal to a positive de�nite matrix a1

or equal to another positive de�nite matrix a2, depending on whether x
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is contained in a random set of balls of a given �xed radius, the centers of
the balls being chosen according to a Poisson point process. A realization
of this ensemble is shown in the left picture in Figure 2.

• Stationary ensembles with �nite range of dependence (i. e. ensembles for
which a|U and a|V are stochastically independent for any two sets U, V ⊂
Rd with dist(U, V ) ≥ c) subject to uniform ellipticity and boundedness
conditions. Note that the previous case is a particular case of this. That
the condition (9) is satis�ed almost surely for such ensembles follows,
e. g. from the estimates in [32].

• Coe�cient �elds of the form ξ(ã(x)), where ã denotes a matrix-valued
stationary Gaussian random �eld subject to the decorrelation estimate

|Cov(ã(x), ã(y))| ≤ C

|x− y|β

for some β ∈ (0, d) and where ξ : Rd×d → Rd×d is a Lipschitz map
taking values in a bounded uniformly elliptic subset of the matrices of
dimension d× d. That the condition (9) is satis�ed is shown in [23]. A
realization of this ensemble is shown in the right picture in Figure 2.

Figure 2: Two realizations of random coe�cient �elds satisfying (9). Picture taken from [22].

For cohesiveness we take the opportunity to say a couple more words about
Chapter 3. As already mentioned, the original motivation for considering
this situation was to move towards the percolation setting. However, in our
formulation we only consider the situation of �well-spaced" holes, by which we
mean that not only are the holes disjoint, but they are separated from each
other by an additional �bu�er" area. This means that we actually avoid the
main problem, which is that in the percolation setting the holes may cut-out
islands in the domain. If we were able to drop the disjointness assumption on
the holes then the resulting work could be seen as a GNO-inspired continuum
version of the �rst-order qualitative result obtained by Armstrong and Dario
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in [19], but with constant coe�cients and for a hopefully broader class of
percolation cluster (they only consider Bernoulli percolation). However, as
previously noted, Armstrong and Dario not only provide Liouville principles
up to arbitrary order, but also obtain many quantitative results.

Before continuing on to the second part of this thesis, we mention a future
project that may be within reach given the tools developed in Chapters 1
and 2. Recently there has been much interest in homogenization when the
underlying periodic or random structure is perturbed by either a local defect
or an interface. In the periodic setting the situation of two periodic structure
meeting at an interface has been treated by Blanc, Le Bris, and Lions in [16].
It would interesting to treat the corresponding situation in the stochastic
setting: So, the situation in which the random coe�cients of the elliptic
operator on the whole-space are chosen according to di�erent stationary and
quanti�ed ergodic probability measures on the upper- and lower half-spaces.
Due to the distinction of the half-spaces this clearly generates an ensemble
that is inherently non-stationary, which makes it inaccessible to the standard
stochastic homogenization theory. If one tries to construct a homogenization
corrector the logical thing is to concatenate the two whole-space correctors
corresponding to the top and bottom ensembles and then to correct for the
mismatch of the �uxes at the boundary and at the same time correct for
the jump. If one tries to do this naively one obtains an overdetermined
problem with two equations for the corrections and four boundary conditions.
However, if instead of concatenating restricted whole-space correctors, we use
Dirichlet correctors that already match up at the boundary of the half-spaces,
then we would only have to correct the �uxes, which is probably possible
using the methods given in Chapter 2. This could be a future work.

0.2 Pathwise Treatments of Singular SPDEs

The purpose of the second part of this thesis is to construct a stable solution
operator for a quasilinear parabolic initial value problem in 1 + 1 dimensions
that is driven by a rough right-hand side. In particular, we are interested in
obtaining a solution W ∈ Cα(R2

+) of

∂2W − a(W )∂2
1W +W = f in R2

+ (10a)

W = Wint on ∂R2
+, (10b)

where a : R → [λ, 1] for λ > 0 is regular and, for some α ∈ (2
3 , 1), we have

that Wint ∈ Cα(R) and f ∈ Cα−2(R2). By “Cα(R2)” when α > 0 we are
always referring to the parabolic Hölder space, which is de�ned in terms of
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the intrinsic parabolic metric. We give the de�nition of the negative Hölder
space Cα−2(R2) in De�nition 2.3. To simplify matters we assume that f
and Wint are 1-periodic in space and f is also 1-periodic in time. For us
�periodic" always means �1-periodic" and we, therefore, drop the �1". While
in this thesis our arguments are worded in terms of one spatial dimension,
our analysis carries through to the general case of 1 + d dimensions.

As already mentioned above, in this thesis we do not �nish the analysis
of (10), which as we will see below requires a �xed point argument, but
instead conclude after having proven all of the necessary ingredients for the
argument. The actual �xed point argument and the extension of our results
to the quasilinear case will be in a future work and will require a �small
data" assumption. The determination of what should be proved to prepare
for the �xed point argument comes from [47], in which they treat the space-
time periodic version of the problem we are interested in (without a massive
term); in particular, the �xed point argument that we plan to perform with
the ingredients proved in thesis has a precursor in their Theorem 2. In
general, the contents of this thesis should be viewed as the ingredients towards
a generalization of the recent work by Otto and Weber [47] in which the
authors treat the space-time periodic version of (10) (without the massive
term). In [47], since they assume space-time periodicity, the authors choose
to use elliptic notation in the sense that they call the time direction the
�x2-direction". While we are now interested in the initial value problem, in
keeping with their convention we also choose to denote the time direction as
the x2-direction.

The issue that makes the analysis of (10) nonclassical is the rough driver
on the right-hand side and also a lack of regularity for the initial condition. In
particular, standard theory suggests that these inputs limit the regularity of
the solutionW to the extent that the nonlinear term has no classical meaning.
To illustrate this, notice that the best regularity that we can expect for a
solution of (10) is W ∈ Cα(R2

+), which translates into ∂2
1W ∈ Cα−2(R2

+)
and a(W ) ∈ Cα(R2). Since the Hölder regularities of these terms add up to
something negative, i. e. (α− 2) + α < 0, there is no classical interpretation
of the product a(W )∂2

1W . Due to this issue, giving a solution theory for
(10) �rst consists of constructing the singular product a(W )∂2

1W , thereby
making sense of the equation (10), and then making sure that the induced
solution operator, which must still be constructed, satis�es some continuity
properties. As we will discuss, it turns out that the stability of the solution
operator can be guaranteed by certain analytic conditions on the singular
product.
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In the current contribution we would like to capitalize on the results of
Otto and Weber by, loosely speaking, viewing the solution W of (10) as a
perturbation of the solution of the space-time periodic problem considered
by Otto and Weber. In order to see that this is a natural strategy we recall
the classical method for obtaining solutions to quasilinear equations of the
form (10). Classically, when the forcing and initial condition have a higher
regularity, and one is not concerned with the de�nition of the nonlinear term,
the solutionW is obtained via a �xed point argument that relies on a solution
theory for the linear problem associated to (10); i. e.

(∂2 − a∂2
1 + 1)W = f in R2

+ (11a)

W = Wint on ∂R2
+, (11b)

where a ∈ Cα(R2
+) and should be thought of as a = a(W ). In particular, to

obtain a solution for (10) one looks for a �xed point of the map:

U 7→ a(U) 7→ W, (12)

where the function U , sampled from the expected solution space of the quasi-
linear problem, is mapped to a = a(U), where the “a” on the left-hand side
refers to the coe�cients in (11) and the “a” on the right-hand side refers to
the nonlinearity in (10), and this then gets mapped to the solution of (11)
with coe�cients a = a(U). The desired �xed point of (12) is shown to exist
by using the standard Schauder estimates and a smallness assumption on the
data to show that (12) is a contraction.

Returning to our low-regularity setting we would like to emulate the ar-
gument from the previous paragraph, which means that our analysis of (10)
hinges on our treatment of the associated linear problem (11). The point is
that on the level of the linear problem it is very natural to take a perturbative
ansatz for W in the sense that the solution W of (11) will be constructed as
W = U + u, where u ∈ Cα(R2) solves

(∂2 − aext∂2
1 + 1)u = f in R2 (13)

with aext denoting some extension of a to R2, and U ∈ Cα(R2
+) solves

(∂2 − a∂2
1 + 1)U = 0 in R2

+ (14a)

U = Wint − u on ∂R2
+. (14b)

The solution theory for (11) is then obtained as the combination of our
treatments of (13) and (14).

Even with the above splitting of W in-hand, however, W is not really a
perturbation of the periodic problem treated by Otto and Weber. We see this
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already on the level of the linear problem (11) in which we would eventually
like to make the identi�cation a := a(W ext), where W ext is some extension
of W , and, therefore, lose periodicity of the coe�cients a ∈ Cα(R2) in x2-
direction. While this loss of periodicity in no way a�ects the construction of
the singular product used in (13), which we can borrow from the treatment
of the associated problem in [47], the construction of the solution operator
found in Proposition 1 of [47] has to be slightly modi�ed. In particular, in
Proposition 1 of this contribution we essentially replace their periodicity in
the x2-direction by estimates for the heat semigroup that hold thanks to the
presence of a massive term in (13). While the modi�cation of the analytic
arguments of Otto and Weber for the treatment of (13) constitutes much
of the e�ort invested here, really the main new contribution in this work is
the treatment of the the initial value problem (14). The point here is that,
while in order to de�ne the singular product aext∂2

1u in (13) it is necessary
to take a pathwise approach that relies on stochastic ingredients, thanks to
the rate of the blow-up of the heat-kernel at initial time the product a∂2

1U in
(14) can actually be de�ned using classical methods. Using bounds for the
heat semigroup it is then possible to treat the problem (14) using classical
versions of techniques used for (13).

We return now to the issue of the construction of the singular products
in (10), (11), (13), and (14). Once again, we try to piggy-back o� of the
strategy of Otto and Weber, which relies heavily on a concept that they
introduce called �modelledness". To motivate this concept, notice that in the
classical setting, i. e. f ∈ Cα(R2) and Wint ∈ Cα+2(R) for α > 0, due to
the local dependence of the solution W of (11) on the coe�cients, we expect
that W will �locally look like" the solution of (11) with frozen coe�cients.
In particular, letting V (·, a0) ∈ Cα(R2

+) solve

(∂2 − a0∂
2
1 + 1)V (·, a0) = f in R2

+ (15a)

V (·, a0) = Wint on ∂R2
+, (15b)

for a0 ∈ [λ, 1], we think that locally, say around the point x0 ∈ R2, the
�uctuations of W solving (11) will look like those of V (·, a(x0)). In order to
turn this into a global condition one can use the concept of �modelledness"
as de�ned in [47]. Roughly speaking, we say that W is modelled after the
family

{
V (·, a0)

}
parameterized by a0 ∈ [λ, 1] if at any point it behaves

locally like some member of this family in a C2α-way. Using this intuition
suggests that the correct space in which to perform the �xed point argument
for our rough analogue of (12) is up to some subtleties the function space{
U ∈ Cα(R2

+) |U is �modelled after" V (·, a0)
}
.
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To solidify our notation and also because it is interesting to comment
on the de�nition of �modelledness" within the framework of the previous
literature, we right away give a formal de�nition, which is the same as that
used in [47]. It is:

De�nition 2.1 (Modelledness). Let α ∈ (1
2 , 1) and Ω ⊆ R2. Assume

that for some I ∈ N we have functions (V 1(·, a0), ..., V I(·, a0)) such that
V i : Ω × R → R. A function W : Ω → R is said to be modelled after
(V 1(·, a0), ..., V I(·, a0)) on Ω according to functions (a1, ..., aI) and (σ1, ..., σI)
with σi, ai ∈ Cα(Ω) if there exists a function ν such that

MΩ := sup
x 6=y;x,y∈Ω

1

d2α(x, y)
(16)

|W (y)−W (x)− σi(x)(V i(y, ai(x))− V i(x, ai(x)))− ν(x)(y − x)1|

is �nite. We emphasise that here we use the Einstein summation convention
that repeated indices are summed over.
We say that a functionW is trivially modelled after (V 1(·, a0), ..., V I(·, a0))

and functions (a1, ..., aI) if each σi = 0. Since α ∈ (1
2 , 1) this is equivalent to

the condition that W ∈ C2α(Ω), but additionally speci�es a choice of model.

If one compares our De�nition 2.1 with De�nition 1 of [47] it becomes appar-
ent that we have added the extra dependence of the modelling on the domain
Ω. This is because in our arguments, due to the perturbative ansatz that
we take, we work with functions/ distributions de�ned on either all of R2 or
only on R2

+. Since the domain is always clear we end up always dropping the
subscript Ω on MΩ.

We now interpret De�nition 2.1. A quick inspection connects De�nition
2.1 with our previous informal description of modelledness. In particular, the
evaluation a0 = a(x) in De�nition 2.1 can be motivated by recalling that in
a neighborhood of x0 ∈ R2 we want to think of W as �locally looking like"
V (·, a(x0)). Furthermore, the modulating functions σi in (16) come about
since we are interested in Hölder regularity; in particular, for a �xed x ∈ R2

we would like to heuristically think of σi as being the derivative of W with
respect to Vi(·, a0). The ideological di�erence between MΩ and the standard
C2α-seminorm is that, instead of measuring closeness of increments to a basis
of degree-1 polynomials (as one does in the classical setting), we measure it to
the families of functions

({
V 1(·, a0)

}
, ...,

{
V I(·, a0)

})
with the feature that

the actual basis of functions that we compare to, i. e. the speci�c members
of the families used for x ∈ Ω in (16), varies according to the ai. Due to
the restriction that α > 1

2 we include the term ν(x)(x − y)1 to make sure
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that every C2α function is trivially modelled. A second consequence of the
restriction α > 1

2 is that if there exists a function ν making MΩ �nite, then
this ν is unique.

After this discussion on modelling and our explanation for why the solution
W of (11) should be modelled after the V (·, a0) solving (15), we will simply
state that we expect the solution u of (13) to be modelled after v(·, a0), the
unique Cα- solution of

(∂2 − a0∂
2
1 + 1)v(·, a0) = f in R2, (17)

and that U solving the initial value problem (14) will be modelled after
V (·, a0) ∈ Cα(R2

+), the solution of

(∂2 − a0∂
2
1 + 1)V (·, a0) = 0 in R2

+ (18a)

V (·, a0) = Vint on ∂R2
+, (18b)

with the identi�cation Vint = Wint − u. This postulated modelling of u
and U is not quite consistent with our previous intuition that W = u + U
should be modelled after V (·, a0). In particular, to show that W has the
correct modelling it is necessary to have Vint = Wint− v(·, a0) in (18), which
essentially means that we must swap out u for v(·, a0). Using bounds for
the heat semigroup and the modelling of u after v(·, a0), we perform this
swapping in Theorem 1. This is one of the more signi�cant new arguments
in this contribution.

While it plays no signi�cant role in the analysis, the reader familiar with
[47] will notice that, opposed to the equation (62) in [47] solved by vOW (·, a0),
our (17) has a massive term and we do not project the forcing f onto the
space of mean-free functions. Since f is assumed to be space-time periodic,
the solution v(·, a0) of (17), obtained via Fourier methods, is also periodic
and, thanks to the massive term, is the unique Cα-solution of (17) on R2.
We notice also that in some sense the two changes to (62) of [47] that we
make here compensate each other. In particular, in [47] they must include
the projection since testing their equation with the constant function 1 yields

0 =

ˆ
T2

1 · (∂2 − a0∂
2
1) vOW (·, a0) dx =

ˆ
T2

Pf dx

after two integration by parts. In contrast, in our setting thanks to the
massive term the same calculation instead yieldsˆ

T2

v(·, a0) dx =

ˆ
T2

f dx. (19)

Returning to our reason for introducing modelledness, with this formalism
in place the construction of the singular products can be broken down into
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a two step process. Using the notation ·̃ in order to denote even-re�ection
across the axis x2 = 0 and V

ext
(·, a0) = (v + ṼWint−v(·,a0))(·, a0), where the

subscript on Ṽ speci�es the initial condition, we summarize these steps as:

Step 1a: One uses stochastic ingredients and bounds for the heat semi-
group to almost surely (for certain assumptions on the random distribution

f) de�ne families of o�ine reference products
{
V
ext

(·, a0) � ∂2
1V

ext
(·, a′0)

}
and

{
V
ext

(·, a0) � ∂2
1v(·, a′0)

}
indexed by a0 and a

′
0 that satisfy some analytic

estimates.

or

Step 1b: One uses only the bounds for the heat semigroup to, for any
a ∈ Cα(R2), show that a∂2

1 Ṽ (·, a0) is classically de�ned as a distribution
and also satis�es the desired analytic estimates.

Step 2: With the reference products from Steps 1a or 1b in-hand one uses
the analytic conditions they satisfy to transfer the de�nition of the singular
product onto the functions we are actually interested in by using the appro-
priate modelling. This is done in two �reconstruction lemmas", which are
called reconstruction lemmas because in the theory of Otto and Weber they
play the role of Hairer's Reconstruction Theorem (Theorem 3.10 in [35]) in
[35].

We remark that only Step 1a depends on probabilistic arguments, while Steps
1b and 2 may be proved in entirely deterministic ways. Notice that we have
started to use “ � ” to emphasize the singular nature of products.

To give an example of the above discussed strategy we speci�cally consider
the product aext � ∂2

1u in (13). We treat the problem (13) in Proposition 1,
in which we assume that we have access to a well-behaved family of reference
products

{
aext � ∂2

1v(·, a0)
}
. These products are well-behaved in the sense

that one has C2α−2 control over commutators involving regularization and
multiplication. In particular, letting ψT be a smooth convolution kernel at
scale T (discussed in detail in Section 2.1 ) one assumes that the L∞-norm
of the commutator (and two parameter derivatives) scales as

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α‖[aext, (·)T ] � ∂2

1v(·, a0)‖2 . 1, (20)

where the subscript on the L∞-norm indicates the parameter derivatives.
Taking these reference products as input, we then use the second reconstruc-

26



tion lemma (Lemma 4) to swap v(·, a0) for u, which is possible thanks to the
modelling of u after v(·, a0) and yields the desired singular product aext�∂2

1u.
Since here we have assumed the reference products as input into Proposition
1, we have not needed to apply either Steps 1a or 1b.

To do as much work as possible towards treating the quasilinear problem
in an upcoming work here, we also construct the reference products{
V
ext

(·, a0)) � ∂2
1v(·, a′0)

}
and post-process these reference products via both

reconstruction lemmas; this is done in Sections 6 and 7. In particular, from
our analysis of the map (12) and our choice to treat (11) with the perturba-
tive ansatz, we know that in order to treat the quasilinear problem we should
think of a = a(W ext) with W ext being some extension of the solution W of
(11) with some admissible coe�cients. Since the solution W is constructed
as W = u + U , the extension that we take will be W ext = u + Ũ , which is
modelled after V

ext
(·, a0). In order to apply Proposition 1 with the coe�-

cients aext = a(W ext) we know from the previous paragraph that it is �rst

necessary to post-process the reference products
{
V
ext

(·, a0)) � ∂2
1v(·, a′0)

}
to give a family of well-behaved products

{
a(W ext) � ∂2

1v(·, a0)
}
that satisfy

(20). Since W ext is modelled after V
ext

(·, a0)) and the regularity assump-
tions for a from (10) are tailored so that a(W ext) is then also modelled after

(v + Ṽ )(·, a0)), the �rst reconstruction lemma allows us to swap V
ext

(·, a0)
for a(W ext) in the reference products. Notice that heuristically we have a
map

f(ω)
ψ7→
{
V
ext

(·, a0)) � ∂2
1v(·, a0)

}
S7→ a(W ext) � ∂2

1u in (13), (21)

which is de�ned only for almost every realization of the noise (in a path-
wise sense), where the �rst mapping requires probabilistic ingredients and
the second is entirely deterministic in the sense that it represents the appli-
cation of the reconstruction lemmas. We apply Theorem 1 in the case that
aext = a(W ext) in Theorem 2, which is proven in Section 7; this is really the
main ingredient for the �xed point argument needed to treat the quasilinear
problem.

The general framework that we use to construct the singular products and
the reconstruction lemmas are taken essentially directly from [47]. We, fur-
thermore, borrow their construction of the o�ine reference products vOW (·, a0)�
∂2

1v
OW (·, a′0) in order to obtain the singular products v(·, a0)�∂2

1v(·, a′0); here,
the point is simply that the massive term in (17) and the lack of the projection
applied to the forcing does not interfere with their arguments. We are thus
able to avoid any new probabilistic arguments in the current contribution. It
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is then, however, still necessary to perturb these reference products in order
to obtain all those needed to treat the initial value problem (10). Notice, in
particular, that this perturbation of the reference products is consistent with
the perturbative ansatz for W in the sense that we also think of V (·, a0) as
a perturbation of v(·, a0) by VWint−v(·,a0)(·, a0). As we have already alluded
to above, it is possible to perturb the o�ine products by using estimates for
the heat semigroup.

Before moving on to review some previous literature, we would like to
draw attention to the fact that, while here we choose to pursue a solution
theory for (10) by using the perturbative method described in detail above,
it would most likely also be possible to use an approach that more directly
mimics the work of Otto and Weber. In particular, the arguments of Otto
and Weber for the well-posedness of the periodic problem (10) rely on a
regularization of f via convolution with ψT in which they then pass to the
limit T → 0. One of the main di�culties in the treatment of the initial value
problem is the fact that many of the results in [47] are phrased in terms of
convolution with ψT , which presupposes that one starts with a distribution
de�ned on all of R2. In this contribution we bypass this issue by extending
functions to negative times in various ways. However, since the derivatives in
the nonlinearity in (10) are only in the x1-direction, it seems that it might be
possible to simply convolve in one direction, which would make the method
more compatible with initial value problems. This, however, would call for
a modi�cation of the arguments for the construction of the o�ine products
and the reconstruction lemmas in [47] and also complicate the treatment of
the regularized problems in Proposition 1.

While in this thesis we work within the framework introduced by Otto and
Weber, there are various other theories available for similar problems (e. g.
Hairer's theory of regularity structures and the theory of paracontrolled dis-
tributions by Gubenielli, Imkeller, and Perkowski [42]). All of the methods
have certain underlying themes that run throughout and that can be iden-
ti�ed in the above discussion. One of the most prominent themes is the
sharp separation between probabilistic and deterministic methods in the ar-
guments. To see this separation represented in the literature, one can actually
go back to the theory of rough paths developed by Lyons to treat singular
SDEs (see the original work of Lyons [41] or the overview by Friz and Hairer
[24], whose exposition we follow here).

In developing his theory of rough paths Lyons was interested in providing
a constructive solution theory for SDEs of the form

dYt = f0(Yt) + f(Yt)dXt (22)
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for two functions/ 1-forms f0 and f in the case that the path X is irregular;
an important example is the case that the equation is driven by a Brownian
path X = B. Before the theory of rough paths it was known that (22) is not
well-posed in a pathwise sense as there is no metric on the space of Brownian
paths making the Itô map associated to (22) continuous 2. To remedy the
situation, Lyons notice that instead of considering X simply as a path, he
could instead view it in conjunction with its iterated integrals X (de�ned
below) and, thereby, factor the Itô map into two pieces as

X(ω)
ψ7→ (X,X)(ω)

S7→ Y (ω). (24)

Here, the �rst map ψ is measurable and the second map, called the Itô-Lyons
map, is continuous in both the realization of the noise and the initial condition
if we endow the space of paths enriched with their iterated integrals, called
rough paths, with a certain �p-variation" rough path metric.

To tie this back to the work of Otto and Weber, notice that we should
be comparing (21) and (24). In both (21) and (24) the de�nition of the
map ψ requires probabilistic tools, while the construction of S is completely
deterministic. Also, in both cases the maps ψ are �universal" in the sense
that they do not depend on the form of the equation (13) or (22). While in
(21) the map ψ almost surely yields o�ine products, in (24) a realization of
the noise is almost surely mapped to itself coupled with its iterated integrals
X. As the name may indicate, for n ∈ N and i1, ..., in ∈ {1, .., d}, the iterated
integrals of order n are given by

Xn,i1...in
s,t =

ˆ t

s

ˆ rn

s

...

ˆ r2

s

dBi1(r) ... dBin(r). (25)

In the case of Brownian motion (X = B) and n = 2 there is a one-parameter
family of choices, two which are the Itô and Stratonvich integrals, for the in-
tegrals (25) that are obtained via the convergence of corresponding Riemann
sums in probability.

In contrast to the probabilistic nature of ψ, in both (21) and (24) the
map S is de�ned in a completely deterministic way. Since we have already

2In particular, it had been shown that there does not exist a separable Banach space B such that any
Brownian path almost surely is contained in B and the map

(f, g) 7→
ˆ ·
0

f(t)ġ(t) dt, (23)

which maps smooth paths f and g to a continuous path, extends to a continuous mapping from B×B →
C([0, 1]). Since for Y ∈ R2 the map (23) for f = B1 and g = B2 solves the equation Ẏ 1 = Ḃ1 and
Ẏ 2 = Y 1Ḃ2, this shows that the Itô map, which maps the realization of the noise to the solution of (22),
cannot in general be continuous.
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discussed the map S in (21) and the construction of the solution maps for
(11) and (10) in detail, we now only comment on S in (24). The construction
of the solution map S in (24) requires a de�nition for the stochastic integral

ˆ t

0

f(Ys) dXs, (26)

which for regular f is only classically possible for arbitrary paths X and Y if
on the Hölder scale the regularity of X and Y (call it α > 0) satis�es 2α > 1.
Lyons, however, observed that intuitively since Y solves (22), its �uctuations
should at small scales look like those of X. As he has previously determined
that the map

(X,X) 7→
ˆ t

0

f(Xs) dXs (27)

from the space of rough paths with iterated integrals up to certain order with
some (p-variation) metrics is continuous, he is then able to de�ne (26) for
a large enough class of paths Y that �locally look like" X such that he can
perform a Picard iteration to obtain the solution of (22). Depending on the
regularity of X it is necessary to have information on the iterated integrals
up to di�erent orders; in particular, the rougher X the more information one
needs. In the case of Brownian motion it is only necessary to have access to
the second order iterated integrals.

The theory of Lyons was enriched by the subsequent contribution of Gu-
binelli, who introduced the concept of a controlled rough path [33]. A key
di�erence between the work of Gubinelli and Lyons is that Gubinelli �xes
the path which Y locally looks like. In particular, for α ∈ (1

3 ,
1
2), one says

that the path Y is controlled by the path Z if the increments of Y are ap-
proximated by those of Z in a C2α way; i. e. there exists σ ∈ Cα, sometimes
called the Gubinelli derivative, such that

|Yt − Ys − σ(s)(Zt − Zs)| . |t− s|2α (28)

holds. Notice that �modelledness" à la Otto and Weber above is essentially
a higher dimensional version of Gubinelli's �controlledness" with the addi-
tional caveat that in �modelledness" one controls with a family of functions
parameterized by a0 ∈ R, which is then modulated by the function a ∈ Cα.
Ignoring the 1-form f , Gubinelli then shows that if the integral in (26) is
de�ned for Y = Z such that a �commutator estimate" of the form∣∣∣∣ˆ t

s

Zr dXr − Zs(Xt −Xs)

∣∣∣∣ . |t− s|2α (29)
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holds, then this su�ces to de�ne the integral in (26) for Y controlled by Z
such that∣∣∣∣ˆ t

s

Yr dXr − Ys(Xt −Xs)− σ(s)

ˆ t

s

(Zr − Zs) dXr

∣∣∣∣ . |t− s|3α. (30)

Gubinelli's approach is to encode the desired singular integral as the solution
of an algebraic problem with some analytic constraints. Notice that the
condition (29) corresponds to our estimates of the form (20), where we have
replaced integration over time by convolution with a smooth kernel. In fact,
(30) also has corresponding statements in the reconstruction lemmas that we
borrow from Otto and Weber.

After the work of Lyons and the results of Gubenelli [33] for SDEs, the the-
ory was extended to treat singular SPDEs, where the roughness in the noise
is contained also in spatial variables. As explained in the introduction of [42],
previously there had been various contributions in which singular SPDEs had
been considered, but in these the irregularity in the noise has always been
time-like, which essentially allowed for the reduction to the standard rough
path framework. The issues that arise when considering singular SPDEs with
noise also containing some spatial roughness are di�erent than those for sin-
gular SDEs. In particular, as we have already seen in our discussion of the
current work, the problem becomes that one cannot expect enough spatial
regularity for the solution to classically make sense of the nonlinear terms
appearing in the equation. Taking inspiration from the the work of Lyons
and Gubinelli for SDEs, the issue of well-posedness for singular SPDEs was
developed within three frameworks:

1) The theory of regularity structures by Hairer, which was �rst used to treat
the KPZ equation [34] and then extended to a much more general framework
in [35].

2) The theory of paracontrolled distributions developed by Gubinelli,
Imkeller, and Perkowski in [42], which combines the results of Gubinelli in [33]
with the paraproduct and corresponding paradi�erential calculus introduced
by Bony. Notice that the tools developed by Bony, relying on Littlewood-
Paley theory, are Fourier analytic in nature.

3) The �parametric approach" of Otto and Weber, which we are interested
in extending here.

We will not discuss [47] again, but focus instead (in much less detail) on
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the �rst of the two approaches listed above. The main idea of the theory of
regularity structures is to, for a given singular SPDE, adapt one's notion of
regularity by replacing the standard Taylor expansion by instead expanding
in terms of nonlinear combinations of the noise. The reasoning for this res-
onates with much of the intuition already discussed in this introduction; in
particular, the mindset is that there is no reason to believe that a solution
will behave at small scales like a polynomial, but instead that it will be-
have like the solution of the associated linear problem, which is represented
by convolving the noise with the appropriate Green's function. For a given
singular SPDE, this then leads to the replacement of the standard Hölder
spaces by analogous spaces de�ned in terms of a new basis of distributions,
which now may have non-integer or even negative homogeneity. These new
spaces are called spaces of modelled distributions (see De�nition 3.1 in [35]).
The singular SPDE one is trying to solve is then encoded in terms of a �xed
point problem within the space of modelled distributions in which the neces-
sary nonlinear terms have also been de�ned via a reconstruction lemma (see
Theorem 3.10 of [35]) 3. Hairer then also shows that the solutions obtained
via this �xed point argument correspond to those obtained by passing to
the limit in a sequence of classical solutions to regularized problems under
suitable renormalization (subtraction of possibly in�nite counter terms). As
we have said above, Hairer �rst treated the KPZ equation within this frame-
work and then developed it as a general strategy in [35]. There is a gentle
introduction to the basics of the theory in the latter part of the notes [24] by
Friz and Hairer.

The equations treated within the theories of Hairer and Gubinelli, Imkeller,
and Perkowski satisfy an important subcriticality condition. To set-up for
the explanation of this assumption, we write their equation as

LY = F (Y, f) on Rd, (31)

where L is a linear operator and the right-hand side F (Y, f) contains the
nonlinearity and depends on the noise f . In this notation the Green's function
corresponding to the associated linear operator GL, which we have mentioned
heuristically in the previous paragraph, is a solution to LGL = δ0. As
explained by Hairer in [35], he must assume that the nonlinearity in F is
subcritical in the sense that if he rescales the equation (31) in such a way
that LYε and the noise fε are invariant then formally the nonlinear term
will disappear at small scales. As an instructional example, he considers the
KPZ equation posed on S1 × R+ with additive space-time white noise with

3One nice thing about the theory of Otto and Weber is that their reconstruction lemmas avoid the
use of wavelets, which are heavily used in the proof of Hairer's result.
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the identi�cations L = ∂t − ∂2
x and F (Y, f) = (∂1Y )2 + f . In this example

setting Yε(x, t) = Y (εx, ε2t) and fε(x, t) = ε
3
2f(εx, ε2t) yields that Yε solves

(∂t − ∂2
x)Yε = ε

1
2 (∂xYε)

2 + fε.

Due to the prefactor ε
1
2 the nonlinear term formally scales out as ε→ 0. As

pointed out in [46], in which the theory of Otto and Weber is extended to the
case f ∈ Cα−2(R2) for α > 0, this restriction of subcriticality corresponds
to the restriction α > 0. As is explained in detail in the introduction of [46],
decreasing α forces one to work with higher-order/ nested versions of the
concept of modellness.

While both the strategy of regularity structures and also the framework
of paracontrolled distributions were originally developed for semilinear equa-
tions, following the work of Otto and Weber both methods were extended to
the quasilinear case. In particular, this extension within the framework of
regularity structures can be found in [29] by Gerencsér and Hairer and for
similar results in the setting of paracontrolled distributions the reader can
reference [25] by Furlan and Gubinelli. There is also the contribution [12]
by Bailleul, Debussche, and Hofmanová, in which they essentially treat the
same problem as Otto and Weber in [47], but as an initial value problem.
Their results are included within those obtained by Furlan and Gubinelli,
but avoid the extension of the theory contained in [25] by transforming the
speci�c equation they are working with into a semilinear equation, which
can then be treated with the already available results in [42]. As observed
in the introduction of [25], due to their use of a transformation the method
is quite rigid in the sense that it cannot, e. g. be adapted the case of 1 + d
dimensions with 4 ≥ d ≥ 2 and a matrix-valued di�usion coe�cient. For a
more detailed discussion of the methods used and how these works relate to
one another the reader can consult the introductions of [25] and [28].

To draw this overview back to the current work, we should emphasize
that in the frameworks of Hairer and Gubinelli, Imkeller, and Perkowski the
issue of initial data was incorporated from the get-go. In particular, this is
discussed in Subsection 7.2 of Hairer's original article on regularity structures
[35] and is also present in the original article on paracontrolled distributions
by Gubinelli, Imkeller, and Perkowski [42]. In each of these works and also
in [12], the authors obtain local in time solutions, where the time cut-o�
depends on the realization of the noise. In contrast, thanks to the massive
term in our parabolic operator, in the current contribution we obtain global
in time solutions. Along the lines of enforcing boundary data, we would also
like to mention that there is the recent work of Gerencsér and Hairer in which
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they consider the initial-boundary value problem. This work, in particular,
inspired the perturbative ansatz used in the current contribution.

Just as in the �rst part of the introduction, we would like to mention
some future directions. Since the problem that we consider in the second
part of the thesis is subject to many assumptions, there are many possible
generalizations. As already mentioned above, one interesting project might
be to consider the same problem as in this thesis, but convolve (regularize) in
just one direction. It would, of course, also be possible to consider the initial-
boundary value problem. Another interesting possible extension would be to
drop the periodicity assumption on the noise.

0.3 Connections and Underlying Themes

While the two parts of this thesis are disconnected enough to deserve their
own introductions, they are very similar in terms of themes and techniques
used. On a certain level it is obvious that this is the case since the equa-
tions considered in both sections are of the same class (elliptic or parabolic),
which means that in both parts we have access to the same estimates and
techniques. The connection, however, is deeper in the sense that in both
parts of the thesis the problem is one of regularity for solutions to heteroge-
nous coe�cient operators, which is overcome by transferring results from
corresponding constant coe�cient operators. While in the �rst part of the
thesis the problem is explicitly formulated in terms of regularity, in the sec-
ond part of the thesis the regularity problem is hiding in the de�nition of
the singular product “a(u) � ∂2

1u”. In both parts the issue of low-regularity
for heterogeneous solutions is overcome by �transferring regularity" from a
constant coe�cient operator; in the �rst part of thesis this is done on large
scales through the homogenized operator using an estimate for the homoge-
nization error and in the second part of the thesis this is done by transferring
the singular product via the reconstruction lemmas.

While both parts of this thesis rely on methods from classic elliptic regu-
larity theory, the two parts actually rely on di�erent classical methods. To
�esh this out, recall that, as we have talked about above, Part I of this thesis
is based on iterative De Giorgi type arguments in the form of a Campanato
iteration that is adapted to the homogenization setting. Of course, an argu-
ment of this type implicitly uses the equivalence of Hölder and Campanato
spaces, which allows us to work in Sobolev spaces and rely on energy meth-
ods. The second part of this thesis di�erentiates itself from the �rst in that
we work exclusively in Hölder spaces. In this setting we capitalize on the
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Krylov-Safanov approach to Schauder theory, which distinguishes itself in
that it does not rely on the Green's function representation of the solution.
This is important because in our argument we apply it not to solutions, but
�approximate solutions".

To conclude this introduction, there is one last common thread to mention,
which is that, while both results are probabilistic in nature, the arguments
in both parts split naturally into separate deterministic and probabilistic
steps. In both cases the application of the regularity theory as described
in the previous paragraph is part of the deterministic portion, which takes
as input the existence of a sublinear corrector in Part I or a well-behaved
family of o�ine/ reference products in Part II. These inputs are shown to
exist almost surely using probabilistic arguments for certain assumptions
on either a random ensemble of coe�cient �elds or for a random Gaussian
forcing. The arguments in this thesis are mainly deterministic in nature,
resting on probabilistic results of others; e. g. the construction of the whole-
space homogenization corrector in [31] or the construction of o�ine products
in [47].

0.4 Notation

Throughout this thesis we will consistently use the following notational con-
ventions:

We denote the number of spatial dimensions by d. The upper half-space
{x ∈ Rd : xd > 0} is indicated as Rd

+ and the lower half-space is Rd
− = −Rd

+.
By Br, we denote the ball of radius r centered at the origin. The upper
half-ball of radius r centered at the origin, i. e. Br ∩ Rd

+, is denoted by B+
r

and, correspondingly, the notation B−r is used for the set −B+
r . By Br(x)

we denote the ball of radius r with center x ∈ Rd. For two sets M and N ,
the set {m ∈M : m /∈ N} is denoted by M \N .

When it is not important to keep track of constants, we use the notation
�.� to mean �≤ up to a universal constant�. The dependence of the universal
constant should be clear from the context, when it is not we use the notation
“ ≤ C(d, λ, α)”, where “C(d, λ, α)” denotes a generic constant depending
on the quantities in the brackets. By �a� b� we mean that a ≤ C(d, λ, α)b
for some large enough constant C(d, λ, α).

For a measurable set A ⊂ Rd, we denote its d-dimensional Lebesgue mea-
sure by |A|. By

´
A f dx we denote the Lebesgue integral of the function f

over the set A. By
ffl
A f dx we denote the average integral, i. e. 1

|A|
´
A f dx.
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We always use ei ∈ Rd to denote the standard coordinate basis of Rd.
In particular, we have that ei = ∇xi.The (possibly weak) partial derivative
with respect to the ith coordinate will be denoted by ∂i.

While in the �rst part of the thesis we only ever work with the standard
Hölder spaces, in the second part we work with parabolic Hölder spaces.

Note on Labels: The numbering of the equations within the two parts is
disjoint and self-contained. So, if in Chapter 1 of Part 1 we reference “(1)”
we mean (1) in Section 0.1 of Part I titled �Notation Speci�c to Part I".
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Part I

Large-Scale Boundary Regularity for

Random Linear Elliptic Operators
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0.1 Notation Speci�c to Part I

We denote the space of uniformly elliptic (with ellipticity ratio λ > 0) and
bounded coe�cient �elds a(x) : Rd → Rd×d as

Ω = {a(x)| |a(x)ξ| ≤ |ξ| and λ|ξ|2 ≤ |ξ · a(x)ξ| for ξ ∈ Rd for a.e. x ∈ Rd
}
.

(1)

Recall that the equation satis�ed by the whole-space corrector in the direction
ξ ∈ Rd, denoted φξ, is

−∇ · a∇(φξ + ξ · x) = 0 on Rd (2)

and we use the notation φei = φi.

Recall that the whole-space �ux corrector σξjk is skew-symmetric in the last
two indices (it satis�es σξjk = −σξkj) and its de�ning equation reads

∇k · σξjk = ej · (a(ei +∇φi)− ahomei), (3)

where we use the notation ∇k ·σξjk =
∑d

k=1 ∂kσξjk. Just as for the corrector,
we use the convention σijk = σeijk.

We measure the sublinearity of the generalized corrector (φ, σ) in terms of
the quantity

δR :=
1

R

( 
BR

|(φ, σ)|2 dx
) 1

2

. (4)

We de�ne the functions space:

H1
bdd(Rd

+) =
{
u ∈ H1(Rd

+) : supp(u) ⊆ Br for some r > 0
}
.

In our arguments in Chapters 1 and 2 it is occasionally important to track
certain constants:

• CP (d): The maximum of the Poincaré constant of B1 with homoge-
neous Dirichlet boundary conditions, the Poincaré constant of B+

1 with
homogeneous Dirichlet boundary conditions on ∂Rd

+ ∩ B1, the Poincaré
constant of B+

1 with zero average, and 1.
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• CI(d): The maximum of the universal constant in the constant coe�-
cient regularity estimate (1.37) below and 1.

Also in Chapters 1 and 2 we use the convention that subscripts on a vector
or tensor coming before a comma refer to components and subscripts after
a comma refer to a scale (not to taking a partial derivative). Taking an
example from Chapter 1: the expression σDdjk,M refers to the component djk

of a modi�ed �ux corrector, which has been adapted on scales ≤ 2Mr0 for
some dyadic base scale r0 > 0.
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Chapter 1

A Large-Scale Regularity Theory for Random Linear

Elliptic Operators on Rd
+ with Homogeneous Dirichlet

Boundary Data

1.1 Set-up

In this section we are interested in the large-scale regularity of solutions
u ∈ H1

loc(Rd
+) to the problem

−∇ · a∇u = 0 in Rd
+, (1.1a)

u = 0 on ∂Rd
+, (1.1b)

where a is the restriction of a random coe�cient �eld on Rd to Rd
+. As

already mentioned in the introduction of the thesis, the main result of this
section is the construction of a sublinear Dirichlet boundary corrector for the
haf-space, which for α ∈ (0, 1) allows us to prove a large-scale C1,α- regularity
theory for solutions of (1.1) and an associated Liouville-type theorem.

Following the strategy that we have set out in the introduction, in order to
obtain a large-scale C1,α- excess decay, we must introduce a modi�ed version
of the excess used in [31] that also takes into consideration the homogeneous
Dirichlet boundary data enforced in (1.1b). As the C1,α-Liouville principle
that we want to show is a corollary of the excess decay, the space that one
compares u to in the de�nition of the excess should be the space that one
expects to recover in Liouville principle; i. e. it should be the space of a-
harmonic functions on Rd

+ satisfying homogeneous Dirichlet boundary data
and the growth condition |u(x)− u(0)| . |x|1+α. In the constant coe�cient
case when a = ahom this space consists of the linear functions cxd for c ∈ R.
Extrapolating from this, we expect that in the case of heterogeneous coe�-
cients a the functions satisfying (1.1) and the above listed growth property
will be of the form c(xd + φDd ) for c ∈ R, where φDd should satisfy

−∇ · a∇(xd + φDd ) = 0 in Rd
+, (1.2a)

φDd = 0 on ∂Rd
+. (1.2b)
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Notice that the boundary condition (1.2b) is imposed due to (1.1b). Assum-
ing that it is possible to construct a sublinear φDd , we then de�ne the Dirichlet
half-space excess of u satisfying (1.1) on the half-ball of radius r > 0 as

ExcD(r) := inf
b∈R

 
B+
r

|∇(u− b(xd + φDd ))|2 dx. (1.3)

With these conventions we summarize the main results of this chapter as:

�Theorem". Let α ∈ (0, 1) and let a be a random coe�cient �eld sampled
according to a stationary and ergodic ensemble for which almost surely there
exists a whole-space generalized corrector (φ, σ) such that (9) is satis�ed.
Then 〈·〉- almost surely, whenever the pair (φ, σ) satisfying (9) exists, the
following hold:

i) There exists a Dirichlet half-space corrector in the direction ed, denoted
φDd , which satis�es (1.2) and also the sublinear growth condition.

lim
r→∞

1

r

( 
B+
r

|φDd |2 dx
) 1

2

= 0.

Additionally letting u ∈ H1
loc(Rd

+) be a weak solution of (1.1) we have that:

ii) There exists a �nite r∗α(a) > 0 such that u satis�es the C1,α-excess decay
estimate

ExcD(r) .
( r
R

)2α

ExcD(R)

for any pair of radii R ≥ r ≥ r∗α(a).

iii) If u satis�es a growth condition of the form

lim
r→∞

1

r1+α

( 
B+
r

|u|2 dx
) 1

2

= 0

for some α ∈ (0, 1), then it is a multiple of the �perturbed coordinate
function�

x 7→ xd + φDd (x).

1.1.1 Notation Speci�c to Chapter 1

By Ḣ1
0(Rd

+), we denote the space of locally integrable functions u with square-
integrable gradient and vanishing trace on ∂Rd

+, equipped with the norm

||v||Ḣ1
0 (Rd+) := (

´
Rd+
|∇v|2 dx)

1
2 .

41



1.2 Main Results

We now give the full statements of the two theorems contained in this chapter.
The �rst theorem ensures the almost sure existence of a Dirichlet half-space
corrector with sublinear growth behavior. As already emphasized above, the
key assumption of the theorem is the existence of a whole-space generalized
corrector (φ, σ) satisfying (9). The theorem that we obtain is:

Theorem 1. Let a ∈ Ω, where Ω is de�ned in (1). Assume that correspond-
ing to a there exists a whole-space generalized corrector (φ, σ) satisfying the
growth condition

∞∑
m=0

mδ
1
3
2m <∞. (1.4)

Then there exists a generalized Dirichlet half-space corrector (φD, σD) with
the following properties:

i) For i 6= d, the correctors φDi and �ux correctors σDi coincide with the
restriction of the whole-space correctors to the half-space; i.e. we have
that φDi = φi|Rd+ and σDi = σi|Rd+.

ii) The corrector φDd is adapted to the boundary data in the sense that it is
distributional solution of

−∇ · a∇(φDd + xd) = 0 in Rd
+, (1.5a)

φDd = 0 on ∂Rd
+. (1.5b)

iii) The adapted �ux corrector σDd is the vector potential for the �ux correc-
tion corresponding to xd + φHd in the sense that it is skew-symmetric in
the third index (k) and is a distributional solution of

∇k · σDdjk = ej · (a(ed +∇φDd )− ahomed) in Rd
+. (1.6)

iv) The generalized half-space corrector grows sublinearly in the sense that

δDr :=
1

r

( 
B+
r

|(φD, σD)|2 dx+

 
B−r

d−1∑
i=1

|φi|2 dx

) 1
2

(1.7)

satis�es

lim
r→∞

δDr = 0.

In particular, for any α ∈ (0, 1) there exists a �nite radius r∗α(a) > 0
for which the condition (1.9) below is satis�ed.
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In fact, our proof shows that a quantitative estimate on the sublinear
growth of the whole-space corrector in the form

δr ≤
C

rγ

for some γ ∈ (0, 1] may be turned into an estimate for the generalized half-
space corrector of the form

δDr ≤
C̃

rγ/3
. (1.8)

This bound is a consequence of more precise estimates on the right-hand sides
of the inequalities (1.45), (1.47), and (1.49) in the proof below. However, one
should not expect the estimate (1.8) to be optimal, which is why we did not
emphasize this quantitative bound in our theorem.

In our second theorem we take advantage of the existence of a sublinear
generalized Dirichlet half-space corrector (φD, σD) when it exists by showing
a large-scale C1,α- decay of the excess de�ned in (1.3).

Theorem 2. Let a ∈ Ω, where Ω is de�ned in (1). For any Hölder exponent
α ∈ (0, 1) there exists a constant Cα(d, λ) such that the following statements
hold:
Suppose that for R > 0 there exists a generalized Dirichlet half-space

corrector (φD, σD) such that φDd satis�es (1.5) on B+
R , φ

D
i for i 6= d is the

restriction of a corrector φi on BR to B+
R , and σ

D is skew-symmetric and
solves (1.6) on B+

R . Suppose, furthermore, that the pair (φD, σD) is sublinear
on large scales in the sense that

δDr ≤
1

Cα(d, λ)
for all r ≥ r∗α (1.9)

for some radius 0 < r∗α < R. Here δDr is de�ned in (1.7).

Let u ∈ H1(B+
R) solve (1.1) on B+

R , i. e. let u be a solution to the problem

−∇ · a∇u = 0 in B+
R ,

u = 0 on BR ∩ ∂Rd
+.

Then, we �nd that:

i) For any r ∈ [r∗α, R] we have that

ExcD(r) .
( r
R

)2α

ExcD(R), (1.10)
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where the adapted excess is de�ned in (1.3) and the universal constant
depends on α, d, and λ.

ii) For r ∈ [r∗α, R] the function

b 7→
 
B+
r

|∇u− b(ed +∇φDd )|2 dx

is coercive in the sense that 
B+
r

|∇u− b(ed +∇φDd )|2 dx ≥ c(α, d, λ)|b− bmin|2 (1.11)

for some bmin ∈ R.

iii) For r ∈ [r∗1
2

, R] the mean-value property
 
B+
r

|∇u|2 dx ≤ CMean(d, λ)

 
B+
R

|∇u|2 dx (1.12)

holds for some constant CMean(d, λ).

Combining Theorem 1 with Theorem 2 and post-processing the excess de-
cay via the Caccioppoli inequality, yields the following C1,α- Liouville prin-
ciple:

Corollary 1. Let a ∈ Ω, where Ω is de�ned in (1). Suppose that for a there
exists a generalized corrector (φ, σ) satisfying (1) and (3) and also the growth
condition (1.4). Then if u ∈ H1

loc(Rd
+) is a-harmonic with homogeneous

Dirichlet boundary conditions (i. e. if u solves (1.1)) and satis�es the growth
condition

lim
r→∞

1

r1+α

(  
B+
r

|u|2 dx
) 1

2

= 0 (1.13)

for some 0 < α < 1, then u must be of the form

u = b · (xd + φDd )

for some b ∈ R. Here, φDd is the Dirichlet half-space corrector constructed
in Theorem 1.

1.3 Construction of the Generalized Dirichlet Half-Space Correc-
tor

We �rst give an outline of our strategy and then prove all of our claims.
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1.3.1 Outline of Strategy

We now give an exposition of our strategy for the construction of the gener-
alized Dirichlet half-space corrector (Theorem 1).

Step 1� (Construction of a sublinear φDd up to a certain scale)

Our approach for the construction of φDd is to adapt the whole-space corrector
φd to the Dirichlet boundary conditions on ∂Rd

+. We would like to achieve this
by subtracting from φd a sublinearly growing function ϕ̃ that is a-harmonic
on Rd

+ and equals φd on the boundary, i. e. by setting φDd := φd − ϕ̃ with ϕ̃
being a sublinearly growing solution to the problem

−∇ · a∇ϕ̃ = 0 in Rd
+, (1.14a)

ϕ̃ = φd on ∂Rd
+. (1.14b)

As (1.14) is a linear equation, we can decompose the right-hand side of
(1.14b) into contributions from dyadic annuli, solve the corresponding prob-
lems, and then add the solutions to obtain ϕ̃. We will show that this sum
converges and sums to a sublinearly growing function.

Pursuing this strategy, let r0 = 2m0 for m0 ∈ N be a generic dyadic radius.
Let {ηm|−1 ≤ m} be a radial partition of unity with supp(η−1) ⊂ {x ∈ Rd :
|x| ≤ r0} and supp(ηm) ⊂ {x ∈ Rd : r02

m−1 ≤ |x| ≤ r02
m+1} for m ≥ 0;

suppose that ηm satis�es an estimate of the form |∇ηm| ≤ 4
r02m . Also, for

Lm ∈ (0, r02
m+1] consider one-dimensional cuto� functions Sm(x) = Sm(xd)

satisfying Sm(x) = 1 for |xd| ≤ Lm and Sm(x) = 0 for |xd| ≥ 2Lm; suppose
that |∇Sm| ≤ 2

Lm
. Note that we shall later choose Lm � r02

m+1.
Introducing the cuto�s χm(x) := ηm(x)Sm(x), we then consider the Lax-

Milgram solutions ϕm ∈ Ḣ1
0(Rd

+) to the problem

−∇ · a∇ϕm = ∇ · a∇(χmφd) in Rd
+, (1.15a)

ϕm = 0 on ∂Rd
+. (1.15b)

De�ning ϕΣ
M :=

∑M
m=−1 ϕm and ϕ̃Σ

M := ϕΣ
M +

∑M
m=−1 χmφd, we see that

φDd,M := φd − ϕ̃Σ
M (1.16)

solves the corrector equation (1.5a) in Rd
+ with homogeneous Dirichlet bound-

ary conditions on ∂Rd
+ ∩Br02M .

Backpedaling a bit, notice that in order to obtain the Lax-Milgram solution
it is important to write down the correct weak formulation; in particular,
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since we only ever test (1.15) with functions v ∈ H1
bdd(Rd

+), we can neglect
boundary terms and write the weak formulation of (1.15) asˆ

Rd+
∇v · a∇ϕm = −

ˆ
Rd+
∇v · a∇(χmφd). (1.17)

For this weak formulation it is then easy to run a Lax-Milgram argument
in Ḣ1

0(Rd
+) to obtain ϕm. Here we use the homogeneous Sobolev space with

Dirichlet boundary data (which is a Hilbert space thanks to the enforced
boundary data) in order to avoid having to use the Poincaré inequality on Rd

+,
which is not on a �nite domain. This treatment is su�cient sinceH1

bdd(Rd
+) ⊂

Ḣ1(Rd
+).

To estimate the size of the modi�cation ϕ̃Σ
M on a half-ball B+

r , we split
the contributions ϕm into two groups: the �near-�eld contributions�, which
are the ϕm such that the inclusion supp(χm) ⊆ B16r holds, and the �far-�eld
contributions", which are the ϕm for which supp(χm) ∩B+

4r = ∅ holds.
Having distinguished between the two types of contributions, we then �rst

estimate the near-�eld contributions. As we shall see, this can be done with
the standard energy estimate for the equation (1.15) and an appropriate
estimate for χmφd. The energy norm of the term χmφd in turn may be made
small by an appropriate choice of Lm.

Lemma 1. Let the assumptions of Theorem 1 be satis�ed and m ≥ −1.
Then there exists Lm � r02

m+1 and a constant C1(d, λ) such that the fol-
lowing is true: For any r > 0 the estimates( 

B+
r

|∇(χmφd)|2 dx
) 1

2

≤ C1(d, λ)

(
r02

m+1

r

)d
2

δ
1
3

r02m+1 (1.18)

and ( 
B+
r

|∇ϕm|2 dx
) 1

2

≤ C1(d, λ)

(
r02

m+1

r

)d
2

δ
1
3

r02m+1 (1.19)

hold. In particular, for any r ≥ 1
16r02

m+1 the function ϕm satis�es the bound( 
B+
r

|∇ϕm|2 dx
) 1

2

≤ C2(d, λ) min

{
1,

(
r02

m+1

r

)d
2
}
δ

1
3

r02m+1 (1.20)

with C2 := CMeanC18
d.

For the construction of φDd we will need the estimate (1.20) on B+
r also for

the far-�eld contributions, which we obtain in Step 3 below.
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Step 2� (Construction of a sublinearly growing σDd up to a certain scale)

Having constructed an intermediate corrector φDd,M (see (1.16)) for which the
desired homogeneous Dirichlet boundary data have been partially enforced in
the sense that φDd,M = 0 on ∂Rd

+∩B2Mr0, we need to construct a corresponding

�ux corrector σDd,M according to (1.6). Again, our approach is to adapt the

whole-space �ux corrector σd to take into account the modi�cation φDd,M−φd
of the corrector by adding a correction ψjk,M . In particular, we construct
sublinearly growing functions ψjk,M that satisfy

−∇k · ψjk,M = ej ·
(
a(ed +∇φDd,M)− a(ed +∇φd)

)
in Rd

+ (1.21)

and de�ne

σDdjk,M := σdjk − ψjk,M .

In order to ensure the skew-symmetry of σDd,M , we need to construct the ψ,M
to be skew-symmetric.

It turns out that a suitable ansatz is

ψjk,M := ∂kvj,M − ∂jvk,M (1.22)

with the components of v,M : Rd
+ → Rd solving the equations

−∆vj,M = ej · (a(ed +∇φDd,M)− a(ed +∇φd)) in Rd
+, (1.23a)

vj,M = 0 for j 6= d on ∂Rd
+, (1.23b)

∂dvd,M = 0 on ∂Rd
+. (1.23c)

To see that (1.22) is a good ansatz we �rst notice that the skew-symmetry
condition is already built-in. Furthermore, di�erentiating the equation (1.23),
we infer

−∆(∇k · vk,M) = 0 in Rd
+, (1.24a)

∇k · vk,M = 0 on ∂Rd
+. (1.24b)

By the zeroth-order Liouville principle for harmonic functions with homoge-
neous Dirichlet boundary conditions on Rd

+, sublinear growth of ∇k · vk,M
entails that ∇k · vk,M = 0 on all of Rd

+. This leads, as desired, to the conclu-
sion

−∇k · ψjk,M =
d∑

k=1

(∂k∂jvk,M − ∂2
kvj,M)

= ∂j(∇k · vk,M)−∆vj,M

= ej · (a(ed +∇φDd,M)− a(ed +∇φd)).
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So, the moral of the story is that in order to obtain a solution to (1.21) it
su�ces to construct solutions vj,M to (1.23) for which∇k ·vk,M is a sublinearly
growing function.

To construct such a solution vj,M , notice that, as φDd,M − φd is a-harmonic

on Rd
+, we may rewrite the right-hand side in (1.23a) as

ej · (a(∇φDd,M −∇φd)) = ej · a(∇φDd,M −∇φd) + xj∇ · (a(∇φDd,M −∇φd))
= ∇ · (xja(∇φDd,M −∇φd)).

Our strategy, just like in Step 1, is now to work with a decomposition into
contributions from dyadic annuli: Reusing the partition of unity ηn from Step
1, we consider the Lax-Milgram solutions vnj,M of the problems

−∆vnj,M = ∇ · (ηnxja(∇φDd,M −∇φd)) in Rd
+, (1.25a)

vnj,M = 0 for j 6= d on ∂Rd
+, (1.25b)

∂dv
n
d,M(x) = 0 on ∂Rd

+. (1.25c)

Again, just like in Step 1, in order to apply a Lax-Milgram argument it is
important to write down the correct weak formulation, which in this case isˆ

Rd+
∇u · ∇vnj,Mdx = −

ˆ
Rd+
ηnxj∇u · a(∇φDd,M −∇φd)dx (1.26)

for test functions u ∈ H1
bdd(Rd

+). For the case j 6= d we again apply Lax-
Milgram to the space Ḣ1

0(Rd
+) just as we have done in the previous step to

the solution vnj,M .

To �nd the solution vnd,M satisfying (1.25a) on Rd
+ and (1.25c) on ∂Rd

+, we

must instead apply Lax-Milgram to the space L
2d
d−2 (Rd

+)∩Ḣ1(Rd
+) when d > 2

and BMO(Rd
+)∩ Ḣ1(Rd

+) when d = 2, in each case endowed with the inner-
product inherited from the homogeneous Sobolev space. We consider the case
d > 2 and remark that the case d = 2 is exactly the same. Notice �rst that
H1
bbd(Rd

+) ⊆ L2d/(d−2)(Rd
+) ∩ Ḣ1(Rd

+) thanks to the Sobolev embedding and
that (1.26) is the weak formulation of (1.25) for this class of test functions
when j = d since then xd = 0 on ∂Rd

+. For the actual Lax-Milgram argument
we notice that:

i) The space L2d/(d−2)(Rd
+)∩Ḣ1(Rd

+) endowed with 〈·, ·〉Ḣ1 is complete and,
therefore, a Hilbert space thanks to the Sobolev embedding.

ii) The integral on the right-hand side of (1.26) is well-de�ned due to the
compact support of ηn.

iii) The bilinear form on the left-hand side of (1.26) is clearly coercive.
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iv) The right-hand side of (1.26) de�nes a bounded operator on L
2d
d−2 (Rd

+)∩
Ḣ1(Rd

+). In particular, we notice thatˆ
Rd+
|ηnxj∇u · a(∇φDd,M −∇φd)|dx

≤C(d, λ, n)

(ˆ
Rd+
|∇u|2 dx

) 1
2
(ˆ

Br02n+1

|∇φDd,M −∇φd|2 dx

) 1
2

,

where we have used the compact support of ηn and the boundedness of
a. As ∇φDd,M − ∇φd ∈ H1

loc(Rd) it follows that the right-hand side of
(1.26) is a bounded operator.

Having checked all of the criterion, we �nd that we may apply Lax-Milgram
to obtain a solution vnd,M ∈ L2d/(d−2)(Rd

+) ∩ Ḣ1(Rd
+) to (1.26). Notice that

the reason we do not use the space Ḣ1(Rd
+) with the additional restriction

that
ffl
B+

1
u dx = 0 for our Lax-Milgram argument is that this space does not

contain H1
bdd(Rd).

In order to obtain vj,M , we intend to sum all of the contributions. However,
to ensure that on a half-ball B+

r the �far-�eld contributions� � i. e. the vnj,M
with 2n+1r0 ≥ 16r � do not destroy the smallness of the sum

∑∞
n=−1∇vnj,M ,

we subtract-o� the initial linear growth of vnj,M . For this purpose we introduce
the notation

bnj,M =:

{
0 if n = −1
∇vnj,M(0) if n 6= −1.

(1.27)

Notice that bnjk,M = 0 unless n 6= −1 and either j = d and k 6= d or j 6= d

and k = d. We then obtain the following estimate:

Lemma 2. Let the assumptions of Theorem 1 be satis�ed. Let M ≥ −1 and
n ≥ −1. Then for r ≥ r0 and j, k ∈ {1, ..., d} we have the estimate

1

r

( 
B+
r

|∂k(vnj,M − bnj,M · x)|2 dx
) 1

2

≤ C3(d, λ) min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇φDd,M −∇φd|2 dx

) 1
2

with C3(d, λ) := 4C4CI .

This estimate immediately enables us to pass to the limit N →∞ in the
sum

∑N
n=−1(v

n
j,M − bnj,M · x), which we do in the next lemma.
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Lemma 3. Let the assumptions of Theorem 1 be satis�ed and let the Lm
be chosen as in Lemma 1. Then for r ≥ r0 and j ∈ {1, ..., d} the series∑∞

n=−1(v
n
j,M − bnj,M · x) converges absolutely in H1(B+

r ) to a limit vj,M . For
this limit, the function ψjk,M = ∂kvj,M − ∂jvk,M satis�es the equation

−∇k · ψjk,M = ej · a(∇φDd,M −∇φd) in Rd
+ (1.28)

and for r ≥ r0 and j, k ∈ {1, ..., d} we have the estimate

1

r

( 
B+
r

|ψjk,M |2 dx
) 1

2

≤ 2C3(d, λ)
∞∑

n=−1

min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇φDd,M −∇φd|2 dx

) 1
2

.

(1.29)

Step 3� (Inductively building a sublinear corrector on larger scales)

In the previous two steps the base radius r0 according to which we construct
the ηm was arbitrary. We now choose r0 independently of m in such a way
that the estimate (1.20) does not only hold under the condition that r ≥
1
16r02

m+1, but more generally for any r ≥ r0.
To extend the inequality (1.20) to also to the far-�eld contributions, we

shall crucially rely on the mean-value property (1.12) for a-harmonic func-
tions. To this aim, we proceed by induction in m; to show (1.20) for ϕm+1

for all r ≥ r0, we use the intermediate generalized Dirichlet half-space cor-
rector (φDd,m, σ

D
d,m) and establish that it satis�es the estimate (1.9) for α = 1

2

for r ≥ r0, which by Theorem 2 entails the mean-value property (1.12) for
a-harmonic functions on scales r ∈ [r0, r02

m] with R = r02
m.

The point is that we have to choose r0 large enough so that for every m ≥
−1 the intermediate generalized corrector (φDd,m, σ

D
d,m) satis�es r0 ≥ r∗1

2 ,m
,

where have used the notation that the minimal radius for α = 1
2 of the mth

intermediate corrector (in the sense of (1.9)) is r∗1
2 ,m

. We show that this is

possible in the next lemma:

Lemma 4. Let the assumptions of Theorem 1 be satis�ed � in particular,
suppose that there exists a whole-space generalized corrector (φ, σ) corre-
sponding to a that satis�es (1.4) � and let the Lm be chosen as in Lemma
1. Then there exists r0 > 0 independent of M ∈ {−1, 0, 1, 2, . . .} with the

50



following property: If the ϕm satisfy the estimate( 
B+
r

|∇ϕm|2 dx
) 1

2

≤ C2 min

{
1,

(
r02

m+1

r

)d
2
}
δ

1
3

r02m+1 (1.30)

for all r ≥ r0 and allm ∈ {−1, . . . ,M} (recall the de�nition C2 := CMeanC18
d),

then (φDd,M , σ
D
d,M) satis�es the smallness condition (1.9) for α = 1

2 and all
r ≥ r0, i. e. we have

δDr ≤
1

C 1
2
(d, λ)

.

As a consequence, in this case ϕM+1 also satis�es the estimate (1.30) for all
r ≥ r0.

Note that the start of the induction, i. e. the estimate (1.30) for m = −1,
is provided by Lemma 1.

Step 4� (Passage to the limit M →∞)

In the last step, we pass to the limit M → ∞ to obtain φDd and σDd as the
limits of the sequences

{
φDd,M

}
M
and

{
σDd,M

}
M
, thereby establishing Theorem

1.

1.3.2 Proofs

Proofs for Step 1 � (Estimates for the modi�cation of the corrector φd in the
near-�eld case)

As we have already mentioned above, Lemma 1 is a consequence of appro-
priate energy estimates for the de�ning equation of ϕm and a suitable bound
for χmφd. Here comes the argument:

Proof of Lemma 1. Let us abbreviate R := r02
m+1. Testing the weak for-

mulation (1.17) with ϕm and estimating using the uniform ellipticity and
boundedness of a yields(ˆ

Rd+
|∇ϕm|2 dx

) 1
2

.

(ˆ
B+
R

|φd∇χm|2 dx

) 1
2

+

(ˆ
B+
R

|χm∇φd|2 dx

) 1
2

.

(1.31)
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We treat the two terms on the right-hand side separately. For the �rst, using
our de�nition of χm and Lm ≤ R, we �nd that(ˆ

B+
R

|φd∇χm|2 dx

) 1
2

.
R

d
2

Lm

( 
B+
R

|φd|2 dx

) 1
2

≤ R
d+2
2

Lm
δR. (1.32)

For our treatment of the second term on the right-hand side of (1.31), we
even-re�ect χm across the axis {xd = 0} such that it is de�ned on Rd. We
may then test the whole-space corrector equation (1) with χ2

m(φd+xd). After
using Young's inequality and the uniform ellipticity of a, this yieldsˆ

Rd
χ2
m|∇φd + ed|2 dx .

ˆ
Rd
|∇χm|2|φd + xd|2 dx. (1.33)

Now notice that we have supp(χm) ⊆ [−R,R]d−1 × [−2Lm, 2Lm]; in partic-
ular, on supp(χm) we have |xd| ≤ 2Lm. The triangle inequality in L2(BR),
the estimate (1.33), and the bound |∇χm| ≤ C

Lm
then yieldˆ

BR

|χm∇φd|2 dx .
ˆ
BR

χ2
m dx+

ˆ
BR

χ2
m|∇φd + ed|2 dx

. | supp(χm)|+ 1

L2
m

ˆ
supp(χm)

|φd|2 + |xd|2 dx

. | supp(χm)|+ Rd

L2
m

 
BR

|φd|2 dx

. Rd−1Lm +
Rd+2

L2
m

δ2
R.

The second term on the right-hand side of (1.31) is, therefore, estimated by(ˆ
B+
R

|χm∇φd|2 dx

) 1
2

. R
d−1
2 L

1
2
m +

R
d+2
2

Lm
δR. (1.34)

Together, (1.34), (1.32), and (1.31) give that( 
B+
r

|∇ϕm|2 dx
) 1

2

+

( 
B+
r

|∇(χmφd)|2 dx
) 1

2

.

(
R

r

)d
2 R

Lm
δR +

(
R

r

)d
2
(
Lm
R

) 1
2

.

Choosing Lm := εR = εr02
m+1, we can optimize this expression in ε. Plug-

ging in the optimal ε = δ
2
3

R yields( 
B+
r

|∇ϕm|2 dx
) 1

2

+

( 
B+
r

|∇(χmφd)|2 dx
) 1

2

≤ C1

(
r02

m+1

r

)d
2

δ
1
3

r02m+1.
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This directly gives (1.18) and (1.19). By the de�nition of C2, for r ≥ 1
16r02

m+1

this also entails the estimate (1.20).

Step 2 � (Estimates for the modi�cation of the �ux corrector σ)

The following bound forms the basis for the estimates on the size of the
modi�cation ψjk of the �ux correction σd. It is obtained by an energy esti-
mate for vnj,M and a mean-value property of harmonic functions.

Lemma 5. Using the notation from Section 1.3, let M ≥ −1, n ≥ −1, and
abbreviate R := r02

n+1. Then there exists a constant C4 = C4(d) such that
for any r ≥ 1

16R the estimate( 
B+
r

|∇vnj,M − bnj,M |2 dx
) 1

2

≤ C4R

( 
B+
R

|∇φDd,M −∇φd|2 dx

) 1
2

holds.

Proof. Testing the weak formulation (1.26) with the solution vnj,M and using
the property supp(ηn) ⊂ {|x| ≤ R} as well as the boundedness of a, we
obtain the energy estimate(ˆ

Rd+
|∇vnj,M |2 dx

) 1
2

≤ R

(ˆ
B+
R

|∇φDd,M −∇φd|2 dx

) 1
2

. (1.35)

We then notice that when n 6= −1 the functions ∂kv
n
j,M are harmonic in

{|x| < R
4 } with homogeneous Neumann boundary conditions on ∂Rd

+∩{|x| <
R
4 } whenever b

n
j,M 6= 0. In this case we have access to a classic mean-value

property. By (1.27) we then deduce that

|bnj,M | = |∇vnj,M(0)| ≤ C(d)

( 
B r

4

|∇vnj,M |2 dx

) 1
2

≤ C(d)R

( 
B+
R

|∇φDd,M −∇φd|2 dx

) 1
2

.

(1.36)

The lemma is now an easy consequence of (1.35) and (1.36).

Our next goal is to prove Lemma 2. For this we recall the following basic
fact for harmonic functions: For any harmonic function w on B+

R with either
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homogeneous Dirichlet or homogeneous Neumann boundary conditions on
∂Rd

+ ∩BR, for any r ∈ (0, r4 ] we have( 
B+
r

|w − w(0)|2 dx
) 1

2

≤ CI(d)
r

R

( 
B+
R

|w|2 dx

) 1
2

. (1.37)

This inequality follows from the regularity estimate (1.54) below and the Cac-
cioppoli estimate for harmonic function on B+

R with homogeneous Neumann
or Dirichlet boundary conditions on ∂Rd

+∩BR. These Caccioppoli estimates
are completely elementary, but are included in this thesis as Lemma 6 of
Chapters 1 and Lemma 5 of Chapter 2.

Proof of Lemma 2. For a given radius r, we separately consider the case of a
near-�eld contribution, de�ned as contributions for which n satis�es r02

n+1 ≤
16r, and the case of a far-�eld contribution, when r02

n+1 > 16r. Notice that,
since r ≥ r0, n = −1 always corresponds to a near-�eld contribution.

For the near-�eld contributions, by Lemma 5 we have the estimate

1

r

( 
B+
r

|∂k(vnj,M − bnj,M · x)|2 dx
) 1

2

≤ C4
r02

n+1

r

( 
B+

r02
n+1

|∇φDd,M −∇φd|2 dx

) 1
2

≤ 16C4 min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇φDd,M −∇φd|2 dx

) 1
2

. (1.38)

Next, we address the far-�eld contributions. Notice again that ∂kv
n
j,M −

bnjk,M is harmonic in B+
r02n−1 and satis�es either homogeneous Dirichlet or

homogeneous Neumann boundary conditions on ∂Rd
+ ∩ Br02n−1 (depending

on j and k). Furthermore, we have ∂kv
n
j,M(0) − bnjk,M = 0 and r ≤ r02

n−3.
Therefore, an application of (1.37) to w := ∂kv

n
j,M−bnjk,M followed by Lemma

5, the latter applied with r := r02
n−1 and R := r02

n+1, yields the desired
bound

1

r

( 
B+
r

|∂k(vnj,M − bnj,M · x)|2 dx
) 1

2

≤ CI
1

r02n−1

( 
B+

r02
n−1

|∂kvnj,M − bnjk,M |2 dx

) 1
2

≤ 4C4CI

( 
B+

r02
n+1

|∇φDd,M −∇φd|2 dx

) 1
2

.
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To complete this step we give the proof of Lemma 3:

Proof of Lemma 3. By Lemma 2, for any r > 0 absolute convergence in
H1(B+

r ) of the series

∞∑
n=−1

(vnj,M − bnj,M · x)

towards a limit vj,M follows once we have established an estimate of the form

∞∑
n=−1

( 
B+

r02
n+1

|∇φDd,M −∇φd|2 dx

) 1
2

<∞. (1.39)

Note that since vnj,M satis�es the weak formulation (1.26), the di�erence

vnj,M − bnj,M ·x also does for test functions u ∈ H1
bdd(Rd). Using Lemma 2 and

assuming that we have shown the estimate (1.39) we can the sum over the
contributions n and apply Fubini's theorem to obtainˆ

Rd+
∇u · ∇vj,Mdx = −

ˆ
Rd+
xj∇u · a(∇φDd,M −∇φd)dx.

Lemma 2 also gives the bound

1

r

( 
B+
r

|∂kvj,M |2 dx
) 1

2

≤ C3(d, λ)
∞∑

n=−1

min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇φDd,M −∇φd|2 dx

) 1
2

.

Thus, the estimate (1.29) is a direct consequence of Lemma 2. Again, once we
have established (1.39), this bound entails sublinear growth of the function
∇k · vk,M in the sense

lim
r→∞

1

r

( 
B+
r

|∇k · vk,M |2 dx
) 1

2

= 0;

this follows from the dominated convergence theorem. Recalling the deriva-
tion of (1.21), we then deduce that ψjk,M indeed satis�es (1.28).
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Now it only remains to show (1.39). Here we use that for any m ∈
{−1, . . . ,M} the bounds (1.18) and (1.19), applied with r := r02

n+1, en-
tail that( 

B+

r02
n+1

|∇ϕm|2 dx

) 1
2

+

( 
B+

r02
n+1

|∇(χmφd)|2 dx

) 1
2

. 2
d(m−n)

2 δ
1
3

r02m+1.

Taking the sum with respect to m and recalling that

φDd,M − φd = −
M∑

m=−1

(ϕm + χmφd),

we obtain the bound( 
B+

r02
n+1

|∇φDd,M −∇φd|2 dx

) 1
2

. 2−
dn
2

M∑
m=−1

2
dm
2 δ

1
3

r02m+1.

This directly implies (1.39).

Step 3 � (Estimates for the modi�cation of the corrector φd in the far-�eld
case)

Proof of Lemma 4. For the moment, let r0 = 2m0 > 0 be an arbitrary dyadic
radius for which the ϕm with m ∈ {−1, . . . ,M} satisfy (1.30) for all r ≥ r0.
By the triangle inequality in L2(B+

r ) and the Poincaré inequality on B+
r with

homogeneous Dirichlet boundary conditions on ∂Rd
+∩Br, writing φd− ϕ̃Σ

M =

(1−
∑M

m=−1 χm)φd − ϕΣ
M we get

1

r

( 
B+
r

∣∣φd − ϕ̃Σ
M

∣∣2 + |σd − ψ,M |2 dx
) 1

2

≤ 1

r

( 
B+
r

|(φd, σd)|2 dx
) 1

2

+
1

r

( 
B+
r

|ψ,M |2 dx
) 1

2

(1.40)

+ CP

( 
B+
r

|∇ϕΣ
M |2 dx

) 1
2

.

Notice that for r ≥ r0 Lemma 3 yields

1

r

( 
B+
r

|ψ,M |2
) 1

2
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≤ 2d2C3

∞∑
n=−1

min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇ϕ̃Σ
M |2 dx

) 1
2

. (1.41)

Using our assumption that the ϕm with m ∈ {−1, . . . ,M} satisfy (1.30) for
any r ≥ r0 � and, therefore in particular for r := r02

n+1 � gives that

∞∑
n=−1

min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇ϕΣ
M |2 dx

) 1
2

≤ C2

M∑
m=−1

∞∑
n=−1

min
{

1, 2
d(m−n)

2

}
δ

1
3

r02m+1

≤ C2

M∑
m=−1

(
m+ 1 +

1

1− 2−
d
2

)
δ

1
3

r02m+1. (1.42)

Furthermore, we may use that χm is supported inB+
r02m+1\B+

r02m−1 form 6= −1
and (1.18) (applied with r := r02

n+1) to get that

M∑
m=−1

∞∑
n=−1

min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇(χmφd)|2 dx

) 1
2

≤
M∑

m=−1

∞∑
n=m−1

( 
B+

r02
n+1

|∇(χmφd)|2 dx

) 1
2

≤ C1

M∑
m=−1

∞∑
n=m−1

2
d(m−n)

2 δ
1
3

r02m+1

≤ C1

M∑
m=−1

2
d
2

1− 2−
d
2

δ
1
3

r02m+1. (1.43)

Then, continuing (1.41) with (1.42) and (1.43) yields

1

r

( 
B+
r

|ψ,M |2 dx
) 1

2

≤ 2d2C3(C1 + C2)
M∑

m=−1

(
m+ 1 +

2
d
2

1− 2−
d
2

)
δ

1
3

r02m+1

≤ 2d2C3(C1 + C2)

M+m0+1∑
k=m0

(
k +

2
d
2

1− 2−
d
2

)
δ

1
3

2k
.
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To treat the other term of (1.40) we again use (1.30), which gives( 
B+
r

|∇ϕΣ
M |2 dx

) 1
2

≤ C2

M∑
m=−1

min

{
1,

(
r02

m+1

r

)d
2
}
δ

1
3

r02m+1

≤ C2

M+m0+1∑
k=m0

δ
1
3

2k
.

So, for r ≥ r0 we arrive at

1

r

( 
B+
r

∣∣φd − ϕ̃Σ
M

∣∣2 + |σd − ψ,M |2 dx
) 1

2

≤ δr + 2d2C3(C1 + C2)
∞∑

k=m0

(
k +

2
d
2

1− 2−
d
2

)
δ

1
3

2k

+ CPC2

∞∑
k=m0

δ
1
3

2k
. (1.44)

As a consequence of the estimate (1.44), our assumption (1.4) allows us
to choose r0 = 2m0 large enough � independently of M � such that for
(φDd,M , σ

D
d,M) the estimate (1.9) is satis�ed for α = 1

2 and r ≥ r0.

Thus, we infer the estimate (1.30) for ϕM+1: The case
r02(M+1)+1

r ≤ 16 has
already been treated in Lemma 1; it just remains to extend the estimate
to the case r02(M+1)+1

r > 16. As (φDd,M , σ
D
d,M) is a Dirichlet half-space cor-

rector on B+
R with R := r02

M which satis�es (1.9) for α = 1
2 and r ≥ r0,

Theorem 2 is applicable and yields the mean-value property (1.12) for a-
harmonic functions on B+

r02M
with homogeneous Dirichlet boundary condi-

tions on ∂Rd
+ ∩ Br02M . Since ϕM+1 is indeed a-harmonic in B+

r02M
with ho-

mogeneous Dirichlet boundary conditions on ∂Rd
+ ∩ Br02M , we deduce for

r ∈ [r0, r02
M ] using in the second step the estimate (1.19) for r := r02

M

( 
B+
r

|∇ϕM+1|2 dx
) 1

2

≤ CMean

( 
B+

r02
M

|∇ϕM+1|2 dx

) 1
2

≤ CMeanC12
dδ

1
3

r02(M+1)+1.

This shows (1.30) for ϕM+1 and r ∈ [r0, r02
M ].

Step 4 � (Passage to the limit M →∞)
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Proof of Theorem 1. Let the Lm be chosen as in Lemma 1. Let r0 = 2m0 be
chosen as in Lemma 4. By Lemma 4, the estimate (1.30) then holds for all
m ≥ −1 (the start of the induction, i. e. (1.30) for m = −1, is provided by
Lemma 1).

For i 6= d we then choose φDi := φi|Rd+ and σDijk := σijk|Rd+. By our as-
sumption (1.4), we therefore have to verify the assertion on sublinear growth
iv) in our theorem only for φDd and σDd .

Part 1: The corrector φDd .

We �rst show that the series
∑∞

m=−1 ϕm converges absolutely in H1(B+
r )

for all r ≥ r0. By the Poincaré inequality for functions in H1(B+
r ) with ho-

mogeneous Dirichlet boundary conditions on ∂Rd
+∩Br, it su�ces to calculate

(using (1.30))

∞∑
m=−1

( 
B+
r

|∇ϕm|2 dx
) 1

2

≤ C2

∞∑
m=−1

δ
1
3

r02m+1 ≤ C2

∞∑
k=m0

δ
1
3

2k

and to use the summability of the {δ
1
3

2k
}k (see (1.4)).

Again, combining (1.30) with the Poincaré inequality yields for the sum
ϕ :=

∑∞
m=−1 ϕm = limM→∞ ϕ

Σ
M

1

r

( 
B+
r

|ϕ|2 dx
) 1

2

≤ sup
M

1

r

( 
B+
r

|ϕΣ
M |2 dx

) 1
2

≤ CPC2

∞∑
k=m0

min

{
1,

(
2k

r

)d
2
}
δ

1
3

2k
(1.45)

for all r ≥ r0.
Next, we show that {

∑M
m=−1 χmφd}M forms a Cauchy sequence inH1(B+

r )
for all r ≥ r0. Using the fact that χmφd vanishes outside of Br02m+1 \Br02m−1

(except for m = −1, for which χ−1φd vanishes outside of Br0), the Poincaré
inequality for functions in H1(Br02m+1) that vanish on ∂Br02m+1 ∩ Rd

+ yields
that for any r > 0(ˆ

Br

|χmφd|2 dx
) 1

2

. r

(ˆ
Br

|∇(χmφd)|2 dx
) 1

2

. (1.46)

Using (1.18) and again supp(χm) ⊂ Br02m+1 \Br02m−1, we see that

∞∑
m=−1

( 
Br

|∇(χmφd)|2 dx
) 1

2

≤ 2dC1

∞∑
m=−1

min

{
1,

(
r02

m+1

r

)d
2
}
δ

1
3

r02m+1

59



≤ 2dC1

∞∑
k=m0

min

{
1,

(
2k

r

)d
2
}
δ

1
3

2k
. (1.47)

So,
{∑M

m=−1 χmφd

}
M

forms a Cauchy sequence in H1(B+
r ).

The function ϕ̃ := ϕ+
∑∞

m=−1 χmφd = limM→∞ ϕ̃
Σ
M is a weak solution of

the problem (1.14): (1.14) is satis�ed on Br by all ϕ̃Σ
M for which r02

M ≥ r
holds. Thus, (1.14) carries over to the limit M → ∞ for arbitrarily big
radii r. Therefore (1.14) holds globally for the limit ϕ̃, which entails that
φDd = φd − ϕ̃ solves (1.5).

By (1.45), (1.46), and (1.47), via the dominated convergence theorem our
assumption (1.4) implies that ϕ̃ and, therefore, φDd = φd − ϕ̃ are sublinear
in the sense

lim
r→∞

1

r

( 
Br

|φDd |2 dx
) 1

2

= 0.

Part 2: The vector potential σDd .

We now show that {ψjk,M}M forms a Cauchy sequence in L2(B+
r ) for all

r ≥ r0; furthermore, we show that the limit ψjk has sublinear growth. To
this aim, observe that the di�erences vnj,M+1− vnj,M are weak solutions to the
problem

−∆(vnj,M+1 − vnj,M) = −∇ · (ηnxja∇(ϕM+1 + χM+1φd)) in Rd
+, (1.48a)

vnj,M+1 − vnj,M = 0 if j 6= d on ∂Rd
+,

(1.48b)

∂d(v
n
d,M+1 − vnd,M) = 0 on ∂Rd

+. (1.48c)

To shorten the subsequent computations, let us use the convention vnj,−2 ≡ 0
and bnj,−2 = 0; then (1.48) holds also for M = −2.

Estimating analogously to the proof of Lemma 2� note that the only dif-
ference between the equation satis�ed by vnj,M and the equation satis�ed by
vnj,M+1 − vnj,M is the right-hand side, we deduce that for any r ≥ r0

1

r

( 
B+
r

|∂k
(
vnj,M+1 − vnj,M − (bnj,M+1 − bnj,M) · x

)
|2 dx

) 1
2

≤ C3 min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇(ϕM+1 + χM+1φd)|2 dx

) 1
2

.
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Taking the sum with respect to n and using Fubini's theorem, we deduce
that the limits vj,M of the series

∑∞
n=−1(v

n
j,M − bnj,M · x) satisfy

1

r

( 
B+
r

|∂k(vj,M+1 − vj,M)|2 dx
) 1

2

≤ C3

∞∑
n=−1

min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇(ϕM+1 + χM+1φd)|2 dx

) 1
2

.

Taking the sum with respect to M and estimating the right-hand side by
the inequality (1.30) and the estimate (1.18) � both inequalities applied with
r replaced by r02

n+1 and m replaced by M + 1 � (note again that χM+1φd
vanishes on B+

r02n+1 in case r02
M+1−1 ≥ r02

n+1 and M + 1 6= −1), we infer

1

r

∞∑
M=−2

( 
B+
r

|∂k(vj,M+1 − vj,M)|2 dx
) 1

2

≤ C3(C2 + 2dC1)
∞∑

n=−1

min

{
1,
r02

n+1

r

} ∞∑
M=−2

min
{

1, 2d(M+1−n)/2
}
δ

1
3

r02M+1+1.

(1.49)

Now, by this estimate and the dominated convergence theorem, it is su�cient
to show

∞∑
n=−1

∞∑
M=−2

min
{

1, 2d(M+1−n)/2
}
δ

1
3

r02M+1+1 <∞ (1.50)

in order to obtain both the Cauchy sequence property of ∇vj,M in L2(Br)
and the sublinearity property

lim
r→∞

1

r

( 
B+
r

|∂kvj|2 dx
) 1

2

≤ lim
r→∞

sup
M≥−1

1

r

( 
B+
r

|∂kvj,M |2 dx
) 1

2

= 0.

Note that by ψjk := ∂kvj − ∂jvk and σDdjk = σdjk − ψjk, this estimate then
directly implies the desired result

lim
r→∞

1

r

( 
B+
r

|σDd |2 dx
) 1

2

= 0.

Furthermore, the ψjk,M are solutions to the equation (1.21). Since we can
pass to the limit M →∞ in the weak formulation of (1.21) for any smooth
compactly supported test function, this shows that the limit σDdjk := limM→∞(σdjk−
ψjk,M) solves the equation (1.6).
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To see that (1.50) holds, we just need to estimate

∞∑
n=−1

∞∑
M=−2

min
{

1, 2d(M+1−n)/2
}
δ

1
3

r02M+1+1

≤
∞∑

M=−2

(
M + 2 +

1

1− 2−
d
2

)
δ

1
3

r02M+1+1 =
∞∑

k=m0

(
k −m0 +

1

1− 2−
d
2

)
δ

1
3

2k

and use the summability property (1.4). This �nishes the proof of our theo-
rem.

1.4 Proofs of the Large-Scale Regularity Results

1.4.1 Constant Coe�cient Regularity and Caccioppoli Estimate

Before proving Theorem 2, we �rst prove the following Caccioppoli inequality:

Lemma 6. Let a be a coe�cient �eld satisfying the ellipticity and bounded-
ness assumptions as in (1). For any a-harmonic function u on B+

R subject
to homogeneous Dirichlet boundary conditions on ∂Rd

+ ∩ ∂B+
R , the estimate( 

B+
r
2

|∇u|2 dx

) 1
2

.
1

R

( 
B+
R

|u|2 dx

) 1
2

. (1.51)

holds.

Proof. Testing the equation

−∇ · (a∇u) = 0 in B+
R

with η2u, where η is a radial cut-o� with η ≡ 1 in B r
2
, η ≡ 0 outside of BR,

0 ≤ η ≤ 1 everywhere, and |∇η| ≤ 4
R , we getˆ

B+
R

η2∇u · a∇u+ 2ηu∇η · a∇u dx = 0.

Note that the boundary terms vanish as η2u is zero on ∂B+
R . Using the

uniform ellipticity of a and Young's inequality allows us to write

λ

ˆ
B+
R

η2|∇u|2 dx ≤ 2

ˆ
B+
R

|ηu∇η · a∇u| dx ≤
ˆ
B+
R

λ

2
η2|∇u|2 +

2

λ
|∇η|2u2 dx.

The properties of η �nish the argument.

The following classical regularity properties of constant coe�cient ellip-
tic equations will play a crucial rule in the derivation of the excess decay
estimate.
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Lemma 7. Let v be a weak solution to the constant coe�cient equation
−∇ · (ahom∇v) = 0 in B+

R′ with homogeneous Dirichlet boundary conditions
on B+

R′ ∩ ∂Rd
+, where ahom is a positive de�nite matrix. Then there exists

some β = β(d, λ) > 0 such that for any positive ρ ≤ 1
2R
′ and any positive

r ≤ 1
2R
′ the following estimates hold:

r2 sup
B+
r

|∇2v|2 .
( r
R′

)2
 
B+
R′

|∇v|2 dx, (1.52a)

ˆ
B+
R′\B

+
R′−2ρ

|∇v|2 dx . R′
( ρ
R′

)β ˆ
∂B+

R′

|∇tanv|2 dS, (1.52b)

sup
B+
R′−ρ

(|∇2v|2 +
1

ρ2
|∇v|2) . 1

ρ2

(
R′

ρ

)d  
B+
R′

|∇v|2 dx. (1.52c)

Proof. For the third estimate, notice that if x′ ∈ S where S = B+
R′−ρ∩{xd ≥

ρ
2} then v is ahom-harmonic on Bρ

2
(x′). Therefore, for these x′ we have the

inner regularity estimate

sup
y∈Bρ/4(x′)

ρ2|∇2v(y)|2 + sup
y∈Bρ/4(x′)

|∇v(y)|2 . 1

ρd

ˆ
Bρ

2
(x′)

|∇v|2 dx, (1.53)

which follows by an iterated use of the Caccioppoli inequality on balls to
derive an Hk estimate for k large enough and a subsequent use of the Sobolev
embedding.

For x′ ∈ S∂, where S∂ = ∂Rd
+ ∩ B+

R′−ρ, we get an analogous estimate for

half-balls: In this case, the result can also be shown by proving Hk regularity
estimates for k large enough followed by the Sobolev embedding. The deriva-
tion of Hk-type regularity estimates is again standard: One may proceed by
repeatedly using the Caccioppoli estimate for v and its tangential (higher)
derivatives ∂i1 . . . ∂ik−1v with i1, . . . , ik−1 6= d. To obtain estimates on higher
derivatives which involve multiple derivatives in the normal direction ed �
only estimates for derivatives containing a single normal derivative are pro-
vided by the aforementioned applications of the Caccioppoli inequality � one
directly uses the equation satis�ed by v. Thus, for x′ ∈ S∂ we have

sup
y∈B+

ρ
2

(x′)

ρ2|∇2v(y)|2 + sup
y∈B+

ρ
2

(x′)

|∇v(y)|2 . 1

ρd

ˆ
B+
ρ (x′)

|∇v|2 dx. (1.54)

The estimate (1.52a) is an immediate consequence of (1.54) with ρ := R′ and
x′ = 0. To obtain (1.52c) let

s = sup
x′∈S

sup
y∈Bρ/4(x′)

(|∇2v(y)|2 +
1

ρ2
|∇v(y)|2),
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s∂ = sup
x′∈S∂

sup
y∈B+

ρ
2

(x′)

(|∇2v(y)|2 +
1

ρ2
|∇v(y)|2).

Using (1.53) and (1.54), we may then write

sup
x∈B+

R′−ρ

(|∇2v|2 +
1

ρ2
|∇v|2) ≤ max{s, s∂}

. sup
x′∈S∪S∂

1

ρd+2

ˆ
Bρ(x′)∩Rd+

|∇v|2 dx . 1

ρ2

(
R′

ρ

)d  
B+
R′

|∇v|2 dx,

�nishing the proof of (1.52c).
Finally, for the inequality (1.52b) we �rst extend v toBR′ by odd-re�ection.

The extended v satis�es the elliptic equation

−∇ · (ãhom∇v) = 0 in BR′

with

(ãhom)ij =



(ahom)ij for xd > 0,

(ahom)ij for xd < 0 and i 6= d, j 6= d,

−(ahom)ij for xd < 0 and i = d, j 6= d,

−(ahom)ij for xd < 0 and i 6= d, j = d,

(ahom)ij for xd < 0 and i = j = d.

If we then let v̄ be the harmonic extension of v|∂BR′ to BR′, we have the

estimate ||∇v̄||
L

2
1−β (BR′)

. R′
1−dβ

2 ||∇tanv||L2(∂BR′), provided that β > 0 is not

too large. This is a consequence of interpolation between

‖∇v̄‖
L

2d
d−1 (BR′)

. ‖∇tanv‖L2(∂BR′), (1.55)

which results from decomposing v in terms of the spherical harmonics on
∂BR′ and using Bochner's identity, and

‖∇v̄‖L2(BR′) . R′‖∇tanv‖L2(∂BR′), (1.56)

which follows from (1.55) via Hölder's inequality. We then use Meyers' es-
timate [44], which states that for any β > 0 small enough (depending on d
and λ), the solution v − v̄ to the equation

−∇ · (ãhom∇(v − v̄)) = ∇ · (ãhom∇v̄) in BR′,

v − v̄ = 0 on ∂BR′
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satis�es the bound ||∇(v − v̄)||
L

2
1−β (BR′)

. ||ãhom∇v̄||
L

2
1−β (BR′)

. Combining

this estimate with the bound on v̄ obtained above yields that

||∇v||
L

2
1−β (B+

R′)
. R′

1−dβ
2 ||∇tanv||L2(∂B+

R′)
.

It then follows by Hölder's inequality that(ˆ
B+
R′\B

+
R′−2ρ

|∇v|2 dx

) 1
2

≤ |B+
R′ \B

+
R′−2ρ|

β
2

(ˆ
B+
R′

|∇v|
2

1−β dx

) 1−β
2

. (R′)
1−β
2 ρ

β
2

(ˆ
∂B+

R′

|∇tanv|2 dS

) 1
2

,

concluding the proof of (1.52b).

1.4.2 Proof of Theorem 2: A Large-Scale C1,α- Excess Decay and Mean-Value

Property

We now turn to the proof of the excess decay estimate.

Proof of Theorem 2. For convenience throughout this proof we make use of
the Einstein summation convention, i. e. whenever an index appears twice in
an expression, summation with respect to the index is implied.

Step 1 � (Comparison of u to solution of homogenized problem/ Main step
of the argument)

In the �rst step of the proof, we show that for each r < R there exists
b ∈ R such that the estimate 

B+
r

|∇u− b(ed +∇φDd )|2 dx

.

(( r
R

)2 (
1 + δ2

)
+

(
R

r

)d
δ2β/(d+2+β)

)  
B+
R

|∇u|2 dx
(1.57)

is valid, with the abbreviation

δ := max
{
δD2r, δ

D
R

}
.

Note that for r ∈
[
R
4 , R

]
the estimate trivially holds for b = 0. It is,

therefore, su�cient to show (1.57) for r ≤ r
4 . To do this, we �rst choose a
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radius R′ ∈ (R2 , R) such thatˆ
∂B+

R′

|∇tanu|2 dx . 1

R

ˆ
B+
R\B

+
r
2

|∇u|2 dx . 1

R

ˆ
B+
R

|∇u|2 dx. (1.58)

We know that such a radius exists by writing the middle integral in polar
coordinates and using that ∇tanu = 0 on ∂Rd

+ ∩BR.
Let v be the ahom-harmonic function that coincides with u on ∂B+

R′. To
show the estimate (1.57) we compare ∇u to ∇v corrected as suggested by
the two-scale expansion as given in (3) of Section 0.1 of the Introduction.
Notice that, due to the boundary conditions of v, we know that ∇v(0) only
has a normal component. This observation allows us to writeˆ

B+
r

|∇u− ∂dv(0)(ed +∇φDd )|2 dx

.
ˆ
B+
r

|(∇v −∇v(0))(id +∇φD)|2 dx

+

ˆ
B+
r

|∇u− ∂iv(ei +∇φDi )|2 dx.

(1.59)

Notice that the second term on the right-hand side corresponds to one piece
of the gradient of the �homogenization error� coming from the ansatz for v
given by the two-scale expansion. To estimate this term, we �rst derive an
estimate for the gradient of

w := u− (v + ηφDi ∂iv),

where η is a cut-o� with 0 ≤ η ≤ 1, η ≡ 1 in B+
R′−2ρ, η ≡ 0 outside of

B+
R′−ρ, and |∇η| ≤

4
ρ . We will later optimize the width of the boundary-layer

introduced by ρ, but for the moment we only assume that 0 < ρ ≤ 1
4R
′.

The function w distributionally satis�es the equation

−∇ · (a∇w) = ∇ · ((1− η)(a− ahom)∇v + (φDi a− σDi )∇(η∂iv)) in B+
R′.

(1.60)

To see this, one uses that u is a-harmonic, that φDi solves the corrector
equation (1.5) on B+

R′ when i = d and the whole-space corrector equation (1)
when i 6= d, and the de�ning property (1.6) of σD, which gives

−∇ · (a∇w)

= ∇ ·
(
a∇v + η∂iva∇φDi

)
+∇ · (φDi a∇(η∂iv))

= ∇ ·
(
(1− η)a∇v + η∂iva(ei +∇φDi )

)
+∇ · (φDi a∇(η∂iv))

= ∇ · ((1− η)a∇v) +∇(η∂iv) · a(ei +∇φDi ) +∇ · (φDi a∇(η∂iv))
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= ∇ · ((1− η)(a− ahom)∇v) +∇(η∂iv) · (a(ei +∇φDi )− ahomei)
+∇ · (φDi a∇(η∂iv))

= ∇ · ((1− η)(a− ahom)∇v) +∇(η∂iv) · (∇ · σDi ) +∇ · (φDi a∇(η∂iv))

distributionally on B+
R′. To complete the calculation, we use the skew-

symmetry of the vector potential σDijk in the form ∇(η∂iv) · (∇ · σDi ) =

−∇ · (σDi ∇(η∂iv)).
Notice that, due to the cut-o� η, the boundary conditions of φDd , and

the boundary conditions of v, w satis�es homogeneous Dirichlet boundary
conditions on ∂B+

R′. Therefore, the standard energy estimate for the equation
(1.60) reads(ˆ

B+
R′

|∇w|2 dx

) 1
2

≤ 1

λ

(ˆ
B+
R′

|(1− η)(a− ahom)∇v + (φDi a− σDi )∇(η∂iv)|2 dx

) 1
2

.

The boundedness of a and ahom and the properties of η then implyˆ
B+
R′−2ρ

|∇u− ∂iv(ei +∇φDi )|2 dx

.
ˆ
B+
R′\B

+
R′−2ρ

|∇v|2 dx+

ˆ
B+
R′−ρ

|(φD, σD)|2(|∇2v|2 +
1

ρ2
|∇v|2) dx. (1.61)

Due to the conditions that we have placed on r, ρ, andR′ we have r ≤ R′−2ρ.
Therefore the second term on the right-hand side of (1.59) can be estimated
by the formula (1.61). This yieldsˆ

B+
r

|∇u− ∂dv(0)(ed +∇φDd )|2 dx

.
ˆ
B+
r

|∇v −∇v(0)|2|id +∇φD|2 dx

+

ˆ
B+
R′−B

+
R′−2ρ

|∇v|2 dx+

ˆ
B+
R′−ρ

|(φD, σD)|2(|∇2v|2 +
1

ρ2
|∇v|2) dx

≤ r2 sup
B+
r

|∇2v|2
ˆ
B+
r

|id +∇φD|2 dx

+

ˆ
B+
R′\B

+
R′−2ρ

|∇v|2 dx+ sup
B+
R′−ρ

(|∇2v|2 +
1

ρ2
|∇v|2)

ˆ
B+
R

|(φD, σD)|2 dx.

(1.62)
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To further process this estimate, we exploit that v solves the constant co-
e�cient equation −∇ · (ahom∇v) = 0 in B+

R′ with homogeneous Dirichlet
boundary conditions on ∂Rd

+ ∩ BR′; thus the estimates (1.52) are available.
Furthermore, notice that the di�erence v − u solves

−∇ · (ahom∇(v − u)) = ∇ · (ahom∇u) in B+
R′,

v − u = 0 on ∂B+
R′.

Testing this equation with v − u and using Young's inequality yieldsˆ
B+
R′

|∇v|2 dx ≤ 2

ˆ
B+
R′

|∇u|2 dx+ 2

ˆ
B+
R′

|∇(v − u)|2 dx .
ˆ
B+
R′

|∇u|2 dx.

(1.63)
Applying (1.52) and (1.63) to the equation (1.62), and using that R′ ∈ (R2 , R)
as well as (1.58) and the equality ∇tanu = ∇tanv on ∂B+

R′, gives that 
B+
r

|∇u− ∂dv(0)(ed +∇φDd )|2 dx

.

(( r
R

)2
 
B+
r

|id +∇φD|2 dx

+

(
R

r

)d(( ρ
R

)β
+

(
R

ρ

)d+2

(δDR )2

)) 
B+
R

|∇u|2 dx.

(1.64)

Now, we choose a speci�c ρ. Recall that we required 0 < ρ ≤ 1
4R
′. By

varying ρ subject to this condition, we can obtain ρ
R = s for any s ∈ (0, 1

8 ].
We select ρ to satisfy ρ

R = min{(δDR )2/(d+2+β), 1
8}. Plugging this into (1.64)

and using δDR ≤ 1 (which we may assume by choosing Cα(d, λ) large enough)
results in 

B+
r

|∇u− ∂dv(0)(ed +∇φDd )|2 dx

.

(( r
R

)2
 
B+
r

|id +∇φD|2 dx+

(
R

r

)d
(δDR )2β/(d+2+β)

) 
B+
R

|∇u|2 dx.

For the �rst integral on the right-hand side, notice that xd+φDd is a-harmonic
in B+

2r and vanishes on ∂Rd
+. So, to estimate

ffl
B+
r
|ed +∇φDd |2 dx we may use

(1.51). To handle the terms of the form ei + ∇φDi for i 6= d, we use the
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whole-space Caccioppoli estimate. We �nd that
 
B+
r

|id +∇φD|2 dx .
 
B+
r

|ed +∇φDd |2 dx+
d−1∑
i=1

 
Br

|ei +∇φDi |2 dx

.
1

r2

( 
B+

2r

|xd + φDd |2 dx+
d−1∑
i=1

 
B2r

|xi + φDi |2 dx

)
.

(1.65)

Young's inequality yields

1

r2

( 
B+

2r

|xd + φDd |2 dx+
d−1∑
i=1

 
B2r

|xi + φDi |2 dx

)
.
(
1 + (δD2r)

2
)
. (1.66)

We can then conclude that 
B+
r

|∇u− ∂dv(0)(ed +∇φDd )|2 dx

.

(( r
R

)2 (
1 + δ2

)
+

(
R

r

)d
δ2β/(d+2+β)

) 
B+
R

|∇u|2 dx, (1.67)

where δ := max{δD2r, δDR}.

Step 2� (Proof of the Dirichlet half-space excess decay.)

For any two radii r̃ and R̃ with r∗ ≤ r̃ ≤ R̃ ≤ R, we can rephrase (1.67)
in terms of ExcD: Notice that for any b ∈ R the function u − b(xd + φDd )
is a-harmonic on B+

R̃
with homogeneous Dirichlet boundary conditions on

∂Rd
+ ∩BR. Applying (1.67) to u− b(xd + φDd ) and taking the in�mum with

respect to b yields

ExcD(r̃) ≤ C(d, λ)

( r̃

R̃

)2 (
1 + δ2

)
+

(
R̃

r̃

)d

δ2β/(d+2+β)

ExcD(R̃).

Letting θ = r̃/R̃ and using δ ≤ 1 gives that

ExcD(r̃) ≤ C(d, λ)
(

2θ2 + δ2β/(d+2+β)θ−d
)
ExcD(R̃), (1.68)

where the �xed constant C(d, λ) comes from (1.67) and where we have used
δ ≤ 1

Cα(d,λ) ≤ 1 (the latter inequality holding w. l. o. g.).

We now choose θ and the constant Cα(d, λ) in the smallness condition
(1.9) in such a way that

C(d, λ)(2θ2 + δ2β/(d+2+β)θ−d) ≤ θ2α (1.69)
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is satis�ed. To do this we �rst select θ ∈ (0, 1) such that 2C(d, λ)θ2 ≤ 1
2θ

2α

holds. We then select the constant Cα(d, λ) in (1.9) to be large enough to
ensure C(d, λ)δ2β/(d+2+β)θ−d ≤ 1

2θ
2α. This entails the estimate

ExcD(θR̃) ≤ θ2αExcD(R̃) (1.70)

for all R̃ ∈ [1
θr
∗
α, R].

The half-space excess decay estimate for arbitrary r, R with r∗α ≤ r ≤ R
follows by iterating the estimate (1.70). As this procedure is both straight-
forward and a standard argument, we omit it.

Step 3 � (Proof of the coercivity of the excess expression.)

As the left-hand side of (1.11) is a second-order polynomial in b, to estab-
lish the desired result it is su�cient to show an estimate of the form 

B+
r

|b(ed +∇φDd )|2 dx ≥ 1

2d+2
|b|2. (1.71)

We take η to be a cuto� with η ≡ 1 in B+
r
2
, η ≡ 0 outside B+

r , 0 ≤ η ≤ 1

everywhere, and |∇η| ≤ 2
r . We then have 

B+
r

|b(ed +∇φDd )|2 dx ≥ |b|2
 
B+
r

η|ed +∇φDd |2 dx

≥ |b|2
 
B+
r

η dx

∣∣∣∣ed +
1ffl

B+
r
η dx

 
B+
r

η∇φDd dx
∣∣∣∣2

≥ |b|2
 
B+
r

η dx

∣∣∣∣ed − 1ffl
B+
r
η dx

 
B+
r

φDd ∇η dx
∣∣∣∣2.
(1.72)

Notice that the second of the above inequalities follows from an application
of Jensen's inequality. Also, in the third inequality the boundary term has
vanished due to the Dirichlet boundary conditions satis�ed by φDd .

Another use of Hölder's inequality yields that

1ffl
B+
r
η dx

∣∣∣∣  
B+
r

φDd ∇η dx
∣∣∣∣ ≤ 2d+1δDr .

We may assume that Cα(d, λ) in (2.10) is chosen large enough to ensure that
2d+1δDr ≤ 1

2 . Estimating
ffl
B+
r
η dx ≥ (1

2)d, we see that (1.71) now follows from
(1.72).
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Step 4� (Proof of the mean-value property.)

Let r∗1
2

≤ r ≤ R; denote by bρ the value of b for which the in�mum in the

de�nition of the tilt-excess ExcD(ρ) is attained. We then have 
B+
r

|∇u|2 dx . ExcD(r) + |br|2

. ExcD(R) + |br|2

.
 
B+
R

|∇u|2 dx+ |bR|2 + |br − bR|2. (1.73)

Here, we have used (1.65), (1.66), and δD2r ≤ 1 for the �rst inequality, the
excess decay for α = 1

2 for the second, and the de�nition of the adapted
excess and Young's inequality for the third.

To complete our argument it remains to estimate |bR|2 and |br − bR|2.
First, by (1.71) and the triangle inequality, we easily infer

|bR|2 .
 
B+
R

|bR(ed +∇φDd )|2 dx . ExcD(R) +

 
B+
R

|∇u|2 dx .
 
B+
R

|∇u|2 dx.

To estimate |br−bR|, let ρ ∈ [max{r∗1
2

, r2}, R]. Then the coercivity property

(1.71) and the triangle inequality entail

|bρ − bR|2 .
 
B+
ρ

|(bρ − bR)ed + (bρ − bR)∇φDd |2 dx

. ExcD(ρ) + ExcD(R)

.
 
B+
R

|∇u|2 dx.

Choose N ∈ N0 such that R
2N+1 ≤ r ≤ R

2N . The triangle inequality, the
coercivity (1.71), and the excess decay for α = 1

2 then allows us to write

|br − bR|2 ≤

(
|br − bR2−N |+

N∑
n=1

|bR2−n − bR2−(n−1)|

)2

.

(
N∑
n=0

(
ExcD(R2−n)

) 1
2

)2

.

(
N∑
n=0

2−n/2ExcD(R)
1
2

)2

. ExcD(R).

In total, (1.73) therefore entails the desired mean-value property.
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1.4.3 A C1,α Liouville Principle

Using the excess decay proved above we then obtain a C1,α- Liouville prin-
ciple. Here is the argument:

Proof of Corollary 1. The Caccioppoli estimate from Lemma 6 shows that
the growth condition (1.13) implies that

lim
R→∞

1

R2α

 
B+
R

|∇u|2 dx = 0.

This, in turn, gives that

lim
R→∞

1

R2α
ExcD(R) = 0.

By Theorem 1 and Theorem 2 there exists a radius r∗α > 0 such that the
excess decay (1.10) holds for R ≥ r ≥ r∗α. In particular, keeping r �xed and
passing to the limit R → ∞, we deduce ExcD(r) = 0 for any r ≥ r∗α. Since
the coercivity property (1.11) implies that the in�mum in the de�nition of
the excess is attained and since we have u = 0 on ∂Rd

+, we �nd that for all
r ≥ r∗α there exists b ∈ R such that u(x) = b(xd + φDd ) in B+

r .
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Chapter 2

A Large-Scale Regularity Theory for Random Linear

Elliptic Operators on Rd
+ with Homogeneous Neumann

Boundary Data

2.1 Set-Up

In this chapter we are interested in the large-scale regularity of solutions to
linear elliptic equations with random coe�cients and homogeneous Neumann
boundary data. This is, of course, a logical continuation of the previous
chapter in which we have considered the situation for homogeneous Dirichlet
boundary data. In the current chapter we work with the following model

case: Let u ∈ H1
loc(R

d
+), where this is the space of functions such that for

any Ω b Rd we have that u ∈ H1(Ω ∩Hd
+), be a distributional solution of

−∇ · (a∇u) = 0 in Rd
+, (2.1a)

ed · a∇u = 0 on ∂Rd
+, (2.1b)

where a is the restriction to the half-space of a coe�cient �eld a(x) : Rd →
Rd×d that is bounded and uniformly elliptic on Rd.

As in the previous chapter, the current chapter consists mainly of two the-
orems. In the �rst theorem, assuming that for a given realization of the ran-
dom coe�cients a there exists a whole-space generalized corrector satisfying
(1.4) from the previous chapter, we construct a sublinear Neumann boundary
corrector for the half-space, which we denote (φN , σN). Our construction of
the Neumann half-space corrector in this theorem is heavily motivated by
the construction of the Dirichlet half-space corrector in the previous chapter.
The main di�erence between the construction we use in the previous chap-
ter and that here is the energy estimate that we use to treat the near-�eld
contributions of the correction to the corrector (see Lemma 1 of the current
chapter). As in the Dirichlet setting, in the second theorem we use the sub-
linearity of (φN , σN) to prove a large-scale C1,α- excess decay for solutions of
(2.1) and then, in a corollary, we obtain the desired C1,α-Liouville principle.
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Just like in the previous chapter, we must modify the excess used in [31]
to take into account the boundary condition (2.1b). To see how to so this
we should formulate the Liouville principle that we expect to show. Again,
we �rst consider the constant coe�cient setting: In the constant coe�cient
setting, when a = ahom, if a function u solves (2.1) and conforms to the
growth condition |u(x)−u(0)| . |x|1+α, then u is expected to be of the form
b · x + c for b ∈ Rd such that ed · ahomb = 0 and c ∈ R. Here the condition
ed · ahomb = 0 comes from the boundary condition (2.1b). De�ning the set

B :=
{
b ∈ Rd | ed · ahomb = 0

}
, (2.2)

in analogue to when a = ahom, if (2.1) has heterogeneous coe�cients we
expect that functions u satisfying the same conditions will be of the form
u = b · x + φNb + c, where b ∈ B and c ∈ Rd. So, for b ∈ B we should
construct a sublinear Neumann half-space corrector φNb solving

−∇ · a∇(φNb + b · x) = 0 in Rd
+, (2.3a)

ed · a∇(φNb + b · x) = 0 on ∂Rd
+ (2.3b)

The Neumann half-space excess of a function u satisfying (2.1) on the half-
ball of radius r > 0 is then given by

ExcN(r) := inf
b̃∈B

 
B+
r

|∇u− (b̃+∇φN
b̃

)|2 dx. (2.4)

With these notions in-hand we can now summarize the main results of this
chapter. To avoid excessive repetition we summarize the current results by
referencing those of the previous chapter:

�Theorem". With the same assumptions as in the summary of results
in Section 1 of the previous chapter, we 〈·〉- almost surely obtain analogues
of i) − iv). It is not necessary to restate results i)- iii) as the those from
the previous chapter hold here with the replacement of the superscripts “D”
by “N”. The result iv) is altered in the sense that if u solves (2.1) and
satis�es the subquadratic growth assumption (1.13), then it will be of the
form u = b · x+ φNb + c with b ∈ B and c ∈ Rd. Here B is de�ned in (2.2).

2.1.1 Notation Speci�c to Chapter 2

Throughout this chapter will often use that since both of the maps ξ ∈ Rd 7→
φξ and ξ ∈ Rd 7→ σξ can be chosen to be linear, using the de�nition of δr(φ, σ)
given in (4) and Jensen's inequality, we have that for any orthonormal basis
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{b1, ..., bd} of Rd

1

r

 
Br

d∑
i=1

|φbi |2 +
d∑

j,k=1

|σbijk|2
 dx

 1
2

≤1

r

d+ 1

2

 
Br

d∑
i=1

 d∑
w=1

|bi · ew|2|φew |2 +
d∑

j,k,w=1

|bi · ew|2|σewjk|2
 dx

 1
2

≤
(
d(d+ 1)

2

) 1
2

δr(φ, σ).

(2.5)

We use H1
loc(R

d
+) to denote the space of functions u such that for any com-

pact set U b Rd we have that u ∈ H1(U ∩ Rd
+).

We use the notational conventions that ∂
>

B+
R = ∂B+

R \ ∂Rd
+ and ∂B+

R =
∂B+

R ∩ ∂Rd
+.

2.2 Main Results

We now give the full statement of the two theorems and the Liouville prin-
ciple that arises as a corollary. In this �rst theorem we construct a sublinear
Neumann generalized corrector:

Theorem 1. Let a ∈ Ω and let {bi} be an orthonormal basis of Rd such that
bi ∈ B for i 6= d. Here, B is given by (2.2) and Ω is de�ned in (1). Assume
that there exists a whole-space generalized corrector (φ, σ) satisfying (2) and
(3) and the quanti�ed sublinear growth condition (1.4) (see Theorem 1 of
the previous chapter). Then there exists a generalized Neumann half-space
corrector (φN , σN) satisfying the following properties:

i) The Neumann half-space corrector φNbd and �ux corrector σNbd are the
restriction of φbd and σbd respectively to the half-space, i.e. φNbd = φbd|Rd+
and σNbd = σbd|Rd+.

ii) For i 6= d the Neumann half-space corrector φNbi is a weak solution of
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−∇ · a∇(φNbi + bi · x) = 0 in Rd
+, (2.6a)

ed · a∇(φNbi + bi · x) = 0 on ∂Rd
+, (2.6b)

where the class of test functions is given by H1
bdd(Rd

+).

iii) For i 6= d and j ∈ {1, ..., d} the Neumann half-space �ux corrector σNbij
is a distributional solution of

∇k · σNbijk = ej ·
(
a(∇φNbi + bi)− ahombi

)
in Rd

+. (2.7)

Furthermore, σNbijk is skew-symmetric in j and k.

iv) The generalized Neumann half-space corrector (φN , σN) is sublinear in
the sense that

δNr (φN , σN) :=
1

r

(
d−1∑
i=1

 
B+
r

|(φNbi −
 
B+
r

φNbi dx, σ
N
bi

)|2 dx

+

 
Br

|(φNbd, σ
N
b,d)|2 dx

) 1
2

(2.8)

satis�es

lim
r→∞

δNr (φN , σN) = 0. (2.9)

Just like in Chapter 1 the estimates used to prove Theorem 1 guarantee a
growth rate for the generalized Neumann half-space corrector. In particular,
just like in the previous chapter: If the whole-space generalized corrector is
sublinear in the sense that

δr .
1

rγ

for γ > 0, then the generalized Neumann half-space corrector that we con-
struct satis�es

δNr .
1

rγ/3
.

The sublinear pair (φN , σN) constructed in Theorem 1 is then used to
prove Theorem 2.

Theorem 2. Let a ∈ Ω. Then for all Hölder exponents α ∈ (0, 1) there
exists a constant Cα(d, λ) such that if for a radius R > 0 there exists a
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generalized Neumann half-space corrector satisfying i) − iii) from Theorem
1 on B+

R and there exists a minimal radius r∗α > 0 for which

δNr (φN , σN) ≤ 1

Cα(d, λ)
if r > r∗α, (2.10)

the following properties hold:

Let u ∈ H1(B+
R) be a-harmonic with no-�ux boundary conditions on ∂B+

R,
i. e. let u be a weak solution of

−∇ · (a∇u) = 0 in B+
R ,

ed · a∇u = 0 on ∂B+
R,

where the class of test functions is given by{
u ∈ H1(Rd

+) : supp(u) ⊂ Br for some R > r > 0
}
.

Then using the de�nition (2.4) the following hold:

i) For r ∈ [r∗α, R] the excess decay estimate given by

ExcN(r) .
( r
R

)2α

ExcN(R) (2.11)

holds.

ii) For r ∈ [r∗α, R] the tilt-excess functional

b̃ ∈ Rd 7→
 
B+
r

|∇u− (b̃+∇φb̃)|
2 dx

is coercive.

iii) There exists CMean(d, λ) ≥ 1 such that for r ∈ [r∗1
2

, R] the mean-value
property  

B+
r

|∇u|2 dx ≤ CMean

 
B+
R

|∇u|2 dx (2.12)

holds.

Post-processing the excess decay, just as we have done in the previous
chapter, we obtain the following C1,α-Liouville principle as a corollary:

Corollary 1. For a ∈ Ω assume that there exists a whole-space generalized
corrector (φ, σ) satisfying the growth condition (1.4) and let B be given by

(2.2). Under these conditions we have that if u ∈ H1
loc(R

d
+) solves (2.1) and

satis�es the subquadratic growth condition (1.13) for some α ∈ (0, 1), then
u = b̃ · x+ φN

b̃
+ c for some b̃ ∈ B and c ∈ R.
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2.3 Construction of the Generalized Neumann Half-Space Cor-
rector

Recall that for i ∈ {1, ..., d− 1} we would like to construct the half-space-
adapted corrector φNbi satisfying (2.6) and the corresponding skew-symmetric
�ux correctors. We proceed in a manner similar to the previous chapter and
try to correct the available whole-space generalized corrector that is assumed
to exist. We follow the same basic strategy as laid out in detail in Section
1.2 of Chapter 1 and even reuse the same cut-o� functions. In particular, for
an arbitrary initial radius r0 ≥ 1 we let:

i) {ηn}n≥−1 be a smooth radial partition of unity subordinate to the cov-
ering of Rd by {Br02n+1 \Br02n−1}n≥0 ∪Br0 such that |∇ηn| ≤ 4

r02n .

ii) For each set in the cover we de�ne a smooth one-dimensional cut-o�
function Ln(x) = Ln(xd) satisfying |Ln(xd)| = 1 for |xd| ≤ ln and
Ln(xd) = 0 for |xd| ≥ 2ln such that |∇Ln| ≤ 2

ln
.

Following the previous chapter, speci�c values for the heights ln are chosen
in the proof of Lemma 1. For any radius r > 0, to measure the size of the
corrections to φbi and σbi on B

+
r , we again split the dyadic annuli into two

groups: near-�eld contributions, when 16r > r02
n+1, and far-�eld contribu-

tions, when 16r ≤ r02
n+1.

Step 1� (Estimate for the near-�eld contributions.)

The correction to φbi, which we will call ϕbi, that will enforce the desired
boundary condition is a weak solution of

−∇ · (a∇ϕbi) = 0 in Rd
+, (2.13a)

ed · a∇ϕbi = −ed · a∇(φbi + bi · x) on ∂Rd
+ (2.13b)

where the class of test functions is given by H1
bdd(Rd

+). For the boundary
condition (2.13b) recall from the de�nition of the whole-space corrector that
a∇(φbi + bi ·x) is a solenoidal �eld, which means that ed ·a∇(φbi + bi ·x) has
a trace in H−

1
2 (∂Rd

+). To solve (2.13) we again split Rd
+ into dyadic annuli

(indexed by n) and for each n ∈ {−1, 0, 1, ..} seek a solution ϕnbi to

−∇ · (a∇ϕnbi) = 0 in Rd
+, (2.14a)

ed · a∇ϕnbi = −ηned · a∇(φbi + bi · x) on ∂Rd
+. (2.14b)

The ansatz for the correction is then ϕbi =
∑∞

n=−1 ϕ
n
bi
, which makes the

ansatz for the Neumann half-space corrector φNbi = φbi +
∑∞

n=−1 ϕ
n
bi
. Of
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course, just as in the Dirichlet case, we must check that summing over the
corrections is possible and that the sum is sublinear.

For �xed n ≥ −1 we �nd solutions to (2.14) using Lax-Milgram argu-
ments similar to those from the previous chapter. In particular, running
a Lax-Milgram argument in L2d/(d−2)(Rd

+) ∩ Ḣ1(Rd
+) when d > 2 and in

BMO(Rd
+) ∩ Ḣ1(Rd

+) when d = 2 (in both cases with the inner-product
inherited from the homogeneous Sobolev space), we obtain solutions ϕ̃nbi of
the following weak formulationˆ

Rd+
∇u · a∇ϕ̃nbi dx = −

ˆ
∂Rd+

uηned · a∇(φbi + bi · x) dS. (2.15)

Right away we remark that the desired space of test function for (2.14),
H1
bdd(Rd

+), is contained in the Lax-Milgram spaces and for these functions
(2.15) is the weak formulation of (2.14). With the Lax-Milgram solution ϕ̃nbi
in-hand we let ϕnbi = ϕ̃nbi −

ffl
B+

1
ϕ̃nbi dx.

The actual Lax-Milgram argument is essentially the same as that in Step
2 of Section 1.3 of the previous chapter. The only missing ingredient is
checking that the right-hand side of (2.15) de�nes a bounded operator on
the Lax-Milgram space. For this we assume that d > 2 and remark that the
case d = 2 is the same; we then write∣∣∣∣∣

ˆ
∂Rd+

uηned · a∇(φbi + bi · x) dS

∣∣∣∣∣
≤
ˆ
Rd+
|∇(uηn) · a∇(φbi + bi · x)| dx

≤C(d, λ, n)

(ˆ
Rd+
|∇u|2 dx

) 1
2
(ˆ

Br02n+1

|∇(φbi + bi · x)|2 dx

) 1
2

,

where we have used the compact support of ηn, the boundedness of a, the
critical Sobolev embedding, and that φbi+bi ·x is a-harmonic. As φbi+bi ·x ∈
H1
loc(Rd) it follows that the right-hand side of (2.15) is a bounded operator.
It then remains to show that the ansatz

∑∞
n=−1 ϕ

n
bi
converges and is sub-

linear. For this purpose we introduce the notation φNbi,N = φbi +
∑N

n=−1 ϕ
n
bi

and notice that the solution ϕnbi of (2.14) also solves

−∇ · (a(∇ϕnbi + ηnLn∇(φbi + bi · x)) = −∇ · (ηnLna∇(φbi + bi · x)) inRd
+.

(2.16a)

ed · a(∇ϕnbi + ηnLn∇(φbi + bi · x)) = 0 on∂Rd
+,

(2.16b)
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where we slipped the vertical cut-o� Ln into the forcing on the right-hand
side.

In Lemma 1 we then show that we may choose the heights ln > 0 so
that the standard energy estimate for (2.16) provides a su�cient bound for
the size of the near-�eld contributions. This lemma should be seen as the
replacement of Lemma 1 from the previous chapter.

Lemma 1. Assume that the conditions of Theorem 1 are satis�ed. Then
there exists a constant C1(d, λ) so that for every n ≥ −1 there is a height
ln > 0 such that for any r > 0 and i ∈ {1, .., d− 1} the bound( 

B+
r

|∇ϕnbi|
2 dx

) 1
2

≤ C1(d, λ)

(
r02

n+1

r

)d
2

δ
1
3

r02n+1 (2.17)

holds. In particular, when 16r > r02
n+1 we have that( 

B+
r

|∇ϕnbi|
2 dx

) 1
2

≤ C2(d, λ) min

{
1,

(
r02

n+1

r

)d
2
}
δ

1
3

r02n+1 (2.18)

with C2 := CMeanC18
d.

Proof. We set R = r02
n+1 and notice that we may assume

ffl
B+
R
ϕnbi dx = 0.

Testing (2.16) with ϕnbi and only integrating by parts on the left-hand side
yieldsˆ

Rd+
∇ϕnbi · a∇ϕ

n
bi
dx =−

ˆ
Rd+
ηnLn∇ϕnbi · a∇(φbi + bi · x) dx

−
ˆ
Rd+
ϕnbiLn∇ηn · a∇(φbi + bi · x) dx

−
ˆ
Rd+
ϕnbiηn∇Ln · a∇(φbi + bi · x) dx.

(2.19)

To begin we process the third term. As i ∈ {1, ..., d− 1} by the de�nition
of B we know that ed ·ahombi = 0, which by the equation for the whole-space
�ux corrector implies that

∇k · σbidk = ed · a∇(φbi + bi · x) in Rd (2.20)

is satis�ed in the distributional sense. We use this in the following computa-
tion, in which k indexes the entries of the vector σbid and we use Einstein's
summation convention. Making use of the identity ∇Ln = ∂dLned, which
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holds since we have assumed that Ln(x) = Ln(xd), we write:ˆ
Rd+
ϕnbiηn∇Ln · a∇(φbi + bi · x) dx =

ˆ
Rd+
ϕnbiηn∂dLned · a∇(φbi + bi · x) dx

=−
ˆ
Rd+
∂dLn∂k(ϕ

n
bi
ηn)σbidk dx

−
ˆ
Rd+
ϕnbiηn∂

2
dLnσbidd dx

=−
ˆ
Rd+
∂dLn∂k(ϕ

n
bi
ηn)σbidk dx.

(2.21)

Notice that the boundary terms in the �rst integration by parts vanish by the
de�nitions of Ln and ηn and the last equality follows from the skew-symmetry
of σbi. Making use of (2.21), the uniform ellipticity and boundedness of a,
and the Poincaré inequality with zero-average on B+

R , we �nd that (2.19)
impliesˆ

Rd+
|∇ϕnbi|

2 dx

.
ˆ
supp(ηnLn)

|∇(φbi + bi · x)|2 dx+

ˆ
B+
R

|∂dLnηnσbid|2 dx

+R2

(ˆ
supp(ηnLn)

|∇ηn|2|∇(φbi + bi · x)|2 dx+

ˆ
B+
R

|∂dLn∂kηnσbidk|2 dx

)
.

(2.22)

We can simplify this expression by recalling that |∇ηn| ≤ 8
R and |∂dLn| ≤ 2

ln
,

which allows us to writeˆ
Rd+
|∇ϕnbi|

2 dx .
ˆ
supp(ηnLn)

|∇(φbi + bi · x)|2 dx+
1

l2n

ˆ
B+
R

|σbid|2 dx. (2.23)

To �nish our argument we treat the �rst term on the right-hand side of
(2.23). The key ingredient here is the standard Caccioppoli estimate, which
we apply in a box-wise sense in supp(ηnLn) by covering the domain with
cubes of side length 4ln. If we denote the (d-dimensional) cube with center
z ∈ Rd and side length l ∈ R by Cl(z), we may �nd a set of points

S =
{
z ∈ Rd

∣∣ |supp(ηnLn) \ ∪z∈SC4ln(z)| = 0∑
z∈S

χC6ln(z)(x) ≤ 2d for all x ∈ Rd

}
.

(2.24)
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Then, for each box C4ln(z) we let C̃4ln,6ln,z denote the smooth cut-o� of C4ln(z)
in the box of side length 6ln centered around it. In particular, we require
that

C̃4ln,6ln,z(x) =

{
1 if x ∈ C4ln(z)
0 if x /∈ C6ln(z)

(2.25)

and that |∇C̃4ln,6ln,z| ≤ 2
ln
. For each z ∈ S we test the whole-space corrector

equation (2) with (C̃4ln,6ln,z)
2η2
n(φbi + bi · (x − z)). After using the uniform

ellipticity and boundedness of a and Young's inequality we obtain thatˆ
C4ln(z)∩BR

|∇(φbi + bi · x)|2 dx . 1

l2n

ˆ
C6ln(z)∩BR

|φbi + bi · (x− z)|2 dx,

(2.26)

where we have also used that we may choose ln to satisfy ln � R. Breaking
up supp(ηnLn) into the cubes C4ln(z) with centers z ∈ S and applying (2.26)
on each cube, we �nd thatˆ
supp(ηnLn)

|∇(φbi + bi · x)|2 dx ≤
∑
z∈S

ˆ
C4ln(z)∩BR

|∇(φbi + bi · x)|2 dx

.
1

l2n

∑
z∈S

ˆ
C6ln(z)∩BR

|φbi + bi · (x− z)|2 dx

.
1

l2n

(ˆ
BR

|φbi|2 dx+
∑
z∈S

ˆ
C6ln(z)∩BR

|x− z|2 dx

)

. Rd

(
R

ln

)2

δ2
R +Rd−1ln.

(2.27)

Here we have used that the longest diagonal in a d-dimensional box of side
length 6ln has length 6lnd

1
2 and also (2.5).

Combining (2.27) with (2.23) we �nd that for all r > 0 it holds that

 
B+
r

|∇ϕnbi|
2 dx .

(
R

r

)d((
R

ln

)2

δ2
R +

ln
R

)
. (2.28)

Letting ln = αR and plugging in the optimal α = δ
2
3

R yields (2.17). Lastly,
we note that (2.18) is a trivial consequence of (2.17) and that CMean ≥ 1.
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Step 2� (Estimates for σNbi )

In this step we construct intermediate Neumann half-space �ux correctors
σNbi,N that correspond to the φNbi,N from the last step. The reader may notice
that the superscript “N” is being used to indicate �Neumann" and the sub-
script “N” indicates the scale to which the corrector has been adapted. We
construct σNbij,N as a distributional solution of

∇k · σNbijk,N = ej · (a(bi +∇φNbi,N)− ahombi) in Rd
+. (2.29)

Just as in the construction in the Dirichlet case (see Section 1.3), our strategy
here is to correct σbijk with a modi�cation ψbijk,N that satis�es

∇k · ψbijk,N = ej · (a(bi +∇φNbi,N)− a(bi +∇φbi)) in Rd
+. (2.30)

Taking the ansatz σNbijk,N = σbijk + ψbijk,N , we must then ensure that ψbijk,N
is sublinear and skew-symmetric in j and k.

As the reader will notice, the construction of the correction ψbijk,N is essen-
tially the same as the construction of the analogous correction in the previous
chapter. In particular, decomposing Rd into the dyadic annuli from the last
step, we �nd Lax-Milgram solutions vnbij,N : Rd

+ → R of

−∆vnbij,N = ∇ · (ηnxja(∇φNbi,N −∇φbi)) in Rd
+, (2.31a)

vnbij,N = 0 for j 6= d on ∂Rd
+, (2.31b)

∂dv
n
bid,N

= 0 on ∂Rd
+. (2.31c)

When j 6= d we �nd a solution vnbij,N ∈ Ḣ
1(Rd

+) and when j = d we run our

Lax-Milgram argument in L
2d
d−2 (Rd

+) ∩ Ḣ1(Rd
+) if d > 2 or in BMO(Rd

+) ∩
Ḣ1(Rd

+) if d = 2. For details on the Lax-Milgram arguments see Section 1.3.
We then take the ansatz

ψbijk,N := ∂kvbij,N − ∂jvbik,N , (2.32)

where we have summed over the dyadic annuli indexed by n in the sense that
vbij,N“ = ”

∑
n v

n
bij,N

; the “ = ” is included since the sum on the right-hand
side does not converge unless we subtract-o� the linear factor. In particular,
we set

cnbij,N =:

{
0 if n = −1
∇vnbij,N(0) if n 6= −1

(2.33)

and

dnbij,N =:

{
0 if j 6= dffl
B+

1
(vnbid,N − c

n
bid,N
· x) dx if j = d

(2.34)
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and de�ne

vbij,N :=
∞∑

n=−1

(vnbij,N − c
n
bij,N
· x− dnbij,N). (2.35)

In Lemma 2 below we estimate the growth of each contribution vnbij,N−c
n
bij,N
·

x − dnbij,N in the half-ball B+
r and then post-process this result in Lemma 3

to establish that the sum on the right-hand side of (2.35) converges. Since
seeing that (2.32) is an appropriate ansatz is exactly the same argument as
in the Dirichlet case we do not repeat the argument here, but instead ask
that the reader consults Section 1.3. To summarize the result: The ansatz
(2.32) for ψbi holds if ∇k · vbik,N is sublinear.

As indicated above, we start with Lemma 2:

Lemma 2. Assume that the conditions of Theorem 1 hold and the heights
ln are chosen according to Lemma 1. Then for N ≥ −1, n ≥ −1, j, k ∈
{1, ..., d}, and i ∈ {1, ..., d− 1} it holds that

1

r

( 
B+
r

|∂k(vnbij,N − c
n
bij,N
· x)|2 dx

) 1
2

≤ C3(d) min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇φNbi,N −∇φbi|
2 dx

) 1
2

(2.36)

for all r > 0 and C3(d) := 16C4(d)CI(d), where the constant C4(d) is speci-
�ed in the proof.

Proof. Throughout this proof we use the notation R := r02
n+1. The argu-

ment given here is a combination of Lemma 5 and Lemma 2 of the previous
chapter. First recall that the weak formulation of (2.31) for any j ∈ {1, ..., d}
that we use in the Lax-Milgram argument to obtain vnbij,N does not include
boundary terms (since the class of test functions we are interested in is
H1
bdd(Rd

+)). Testing this weak formulation with vnbij,N and combining the
resulting energy estimate with the observation

|cnbij,N | ≤ C(d)

( 
B+
r
4

|∇vnbij,N |
2 dx

) 1
2

, (2.37)
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gives that for any radius r ≥ 1
16R the relation( 

B+
r

|∇vnbij,N − c
n
bij,N
|2 dx

) 1
2

≤ C4(d)R

( 
B+
R

|∇φNbi,N −∇φbi|
2 dx

) 1
2

(2.38)

holds for some C4(d) ≥ 1. Notice that (2.37) relies on the classical mean-
value property for harmonic functions with homogeneous Dirichlet or Neu-
mann boundary data.

To obtain (2.36) for a radius r > 0 we then split the contributions (indexed
by n) into near-�eld and far-�eld contributions. The desired estimate (2.36)
follows immediately from (2.38) for the near-�eld contributions, i.e. when
r ≥ 1

16R. To treat the far-�eld contributions we notice that ∂kv
n
bij,N
−ek ·cnbij,N

is harmonic onB+
r02n−1 with homogeneous Dirichlet or homogeneous Neumann

boundary conditions on ∂B+
r02n−1 (depending on j and k). As r < 1

16R we
may �rst apply (1.37) and then (2.38) in the following way:

1

r

( 
B+
r

|∂k(vnbij,N − c
n
bij,N
· x)|2 dx

) 1
2

≤ CI
1

r02n−1

( 
B+

r02
n−1

|∂k(vnbij,N − c
n
bij,N
· x)|2 dx

) 1
2

≤ 4C4CI

( 
B+

r02
n+1

|∇φNbi,N −∇φbi|
2 dx

) 1
2

.

(2.39)

We then formally check the ansatz (2.32). Here is the argument:

Lemma 3. Assume that the conditions in Theorem 1 hold and the heights
ln are chosen according to Lemma 2. Let i ∈ {1, ..., d − 1}, j ∈ {1, ..., d},
and N ≥ −1. Then we have that the sum on the right-hand side of (2.35)

∞∑
n=−1

(vnbij,N − c
n
bij,N
· x− dnbij,N) (2.40)

converges absolutely in H1(B+
r ) for any r > 0. The expression ∇k · vbik,N is

sublinear in the sense that

lim
r→∞

1

r

( 
B+
r

|∇k · vbik,N |2 dx
) 1

2

= 0.
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And, lastly, for r > 0 and k ∈ {1, ..., d} the ansatz ψbijk,N satis�es the
estimate

1

r

( 
B+
r

|ψbijk,N |2 dx
) 1

2

≤ 2C3(d, λ)
∞∑

n=−1

min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇φNbi,N −∇φbi|
2 dx

) 1
2

.

(2.41)

Proof. This lemma is the counterpart of Lemma 4 in the previous chapter;
due to the similarities we skip some details. By Lemma 2 it is clear that if

∞∑
n=−1

( 
Br02n+1

|∇φNbi,N −∇φ
N
bi
|2 dx

) 1
2

<∞ (2.42)

then
∑∞

n=−1∇(vnbij,N − cnbij,N · x) converges absolutely in L2(B+
r ) for any

j ∈ {1, ..., d} and any r > 0. Conveniently, (2.42) follows easily from the
identity φNbi,N − φbi =

∑N
n=−1 ϕ

n
bi
and (2.17) from Lemma 1.

When j 6= d the homogeneous Dirichlet boundary data of vnbij,N − c
n
bij,N
·

x − dnbij,N on ∂Rd
+ allows us to upgrade this to the absolute convergence of∑∞

n=−1(v
n
bij,N
− cnbij,N · x− d

n
bij,N

) in H1(B+
r ). To treat the case j = d we use

that  
B+

1

vnbid,N − c
n
bid,N
· x− dnbid,N dx = 0 (2.43)

for all n ≥ −1. For any u ∈ H1(B+
r ) such that

ffl
B+

1
u dx = 0 notice that

a combination of Young's inequality, Jensen's inequality, and the Poincaré
inequality with zero average on B+

r yields
ˆ
B+
r

|u|2 dx =

ˆ
B+
r

∣∣∣∣u−  
B+

1

u dx

∣∣∣∣2 dx
.
ˆ
B+
r

∣∣∣∣u−  
B+
r

u dx

∣∣∣∣2 dx+ rd
ˆ
B+

1

∣∣∣∣u−  
B+
r

u dx

∣∣∣∣2 dx
. rd+2

ˆ
B+
r

|∇u|2 dx.

(2.44)

This, in particular, implies that we also obtain absolute convergence in
H1(B+

r ) in the case j = d.
To �nish, notice that the sublinearity of ∇k · vbik,N follows from Lemma

2 and the bound (2.42) using the dominated convergence theorem. The
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estimate (2.41) for ψbij,N also follows from Lemma 2.

Step 3� (Construction of the generalized Neumann half-space corrector)

Just as in Step 3 of Section 1.3 in the previous chapter, we now choose a
speci�c r0, which is large enough so that for all N ≥ −1 the generalized in-
termediate Neumann half-space corrector (φN,N , σ

N
,N) satis�es condition (2.10)

from Theorem 2 for α = 1
2 and r ≥ r0. Furthermore, for this choice of r0 and

for i 6= d we �nd that ϕnbi satis�es (2.18) for any r ≥ r0 and n ≥ −1.

Lemma 4. Assume that the conditions of Theorem 1 hold and the heights ln
are chosen according to Lemma 2. Then there exists a dyadic radius r0 = 2n0

that does not depend on N such that the following statements hold:

If for all n ∈ {−1, ..., N} and i ∈ {1, ..., d− 1} it holds that( 
B+
r

|∇ϕnbi|
2 dx

) 1
2

≤ C2(d, λ) min

{
1,

(
r02

n+1

r

)d
2

}
δ

1
3

r02n+1 (2.45)

for r ≥ r0 then (φN,N , σ
N
,N)� where we let φNbd,N = φbd|Rd+ and σNbd,N = σbd|Rd+

for all N ≥ −1� satis�es condition (2.10) from Theorem 2 for r ≥ r0 and
α = 1

2, i.e.

δNr (φNN , σ
N
N ) ≤ 1

C 1
2
(d, λ)

for r ≥ r0. (2.46)

Furthermore, then (2.45) holds for ϕN+1
bi

for all i ∈ {1, ..., d−1} and r ≥ r0.

Proof. Let r > 0. Young's inequality, the Poincaré inequality with zero
average on B+

r , and the calculation (2.5) give that

1

r

 
B+
r

∣∣∣∣∣φbi +
N∑

n=−1

ϕnbi −
 
B+
r

(φbi +
N∑

n=−1

ϕnbi) dx

∣∣∣∣∣
2

dx (2.47)

+

 
B+
r

|σbi + ψbi,N |2 dx+

 
Br

|φbd|2 + |σbd|2 dx

) 1
2

≤δr +
d−1∑
i=1

(
2

r

( 
B+
r

|ψbi,N |2 dx
) 1

2

+ CP

N∑
n=−1

( 
B+
r

|∇ϕnbi|
2 dx

) 1
2

)
. (2.48)

We estimate the second and third terms on the right-hand side of (2.48)
separately. We start with the second term, for any i ∈ {1, ..., d− 1} an
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application of Lemma 3 and assumption (2.45) yield that

1

r

( 
B+
r

|ψbi,N |2 dx
) 1

2

≤ 2d2C3

∞∑
m=−1

N∑
n=−1

min

{
1,
r02

m+1

r

}

×

( 
B+

r02
m+1

|∇ϕnbi|
2 dx

) 1
2

≤ 2d2C3C2

N∑
n=−1

∞∑
m=−1

min
{

1, 2d(n−m)/2
}
δ

1
3

r02n+1

≤ 2d2C3C2

N+n0+1∑
n=n0

(
n− n0 +

1

1− 2−
d
2

)
δ

1
3
2n.

(2.49)

To treat the third term, for any i ∈ {1, ..., d− 1} assumption (2.45) gives
that

N∑
n=−1

( 
B+
r

|∇ϕnbi|
2 dx

) 1
2

≤ C2

N∑
n=−1

min

{
1,

(
r02

n+1

r

)d
2

}
δ

1
3

r02n+1

≤ C2

N+n0+1∑
n=n0

δ
1
3
2n.

(2.50)

Combining these three estimates with (2.48) gives that

δNr (φN,N , σ
N
,N) ≤ 4

(
d(d+ 1)

2

) 1
2

δr

+ 4d2C3C2CP

∞∑
n=n0

(
n− n0 + 1 +

1

1− 2−
d
2

)
δ

1
3
2n.

(2.51)

By our assumption (1.4) on the whole-space generalized corrector we �nd
that we can choose the initial radius r0 = 2n0 large enough, in a manner
independent of N , such that (2.46) holds.

We then show that ϕN+1
bi

satis�es (2.45) for all r ≥ r0. Notice that (2.45)

for r ≥ r0 such that ϕN+1
bi

is a near-�eld contribution, i.e. when r02N+2

r ≤ 16,
has already been shown in Lemma 1. We, therefore, restrict ourselves to
the case when r ≤ r02

N−2. By the argument above, (φN,N , σ
N
,N) satis�es the

conditions of Theorem 2 with α = 1
2 , R = r02

N , and r∗1
2

≤ r0. Therefore, we

may apply the mean-value property (2.12) to ϕN+1
bi

, which is a-harmonic on
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B+
r02N

with no-�ux boundary data on ∂Rd
+∩Br02N . Following our application

of (2.12) by a use of (2.17) from Lemma 1 allows us to write( 
B+
r

|∇ϕN+1
bi
|2 dx

) 1
2

≤ CMean

( 
B+

r02
N

|∇ϕN+1
bi
|2 dx

) 1
2

≤ CMeanC12
dδ

1
3

r02N+2.

(2.52)

Step 4�( Passing to the limit N →∞)

Proof of Theorem 1. We split this proof into two parts.

Part 1: The corrector φNbi .

Since the �rst couple of contributions, i.e. ϕnbi for n ∈ {−1, 0, 1, 2, 3}, are
near-�eld contributions for any r > r0, by an induction argument Lemma 4
implies that for any r ≥ r0 the inequality

∞∑
n=−1

( 
B+
r

|∇ϕnbi|
2 dx

) 1
2

≤ C2

∞∑
n=n0

δ
1
3
2n (2.53)

holds. Furthermore, the Poincaré inequality with zero average applied in the
form (2.44) with u = ϕnbi gives that

∞∑
n=−1

( 
B+
r

|ϕnbi|
2 dx

) 1
2

. r
d+2
2

∞∑
n=−1

( 
B+
r

|∇ϕnbi|
2 dx

) 1
2

. (2.54)

Therefore, thanks to the assumption (1.4), the sum
∑∞

n=−1 ϕ
n
bi
converges

absolutely in H1(B+
r ). We must still show that this limit ϕbi is sublinear.

For this we use Lemma 4 combined with the Poincaré inequality with zero
average to obtain

1

r

( 
B+
r

∣∣∣∣ϕbi −  
B+
r

ϕbi dx

∣∣∣∣2 dx
) 1

2

≤ CP

( 
B+
r

|∇ϕbi|2 dx
) 1

2

≤ CP sup
N

N∑
n=−1

( 
B+
r

|∇ϕnbi|
2 dx

) 1
2

≤ CPC2

∞∑
n=n0

min

{
1,

(
2n

r

)d
2

}
δ

1
3
2n,

(2.55)
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which is su�cient due to (1.4) and the dominated convergence theorem for
sums.

We then take φNbi = φbi + ϕbi for i 6= d and φHbd = φbd|Hd+. The relation
(2.55) and (1.4) yield the desired sublinearity property

lim
r→∞

1

r

(
d−1∑
i=1

 
B+
r

∣∣∣∣φNbi −  
B+
r

φNbi dx

∣∣∣∣2 dx+

 
Br

|φNbd|
2 dx

) 1
2

= 0.

Part 2: The �ux corrector σNbi .

We now pass to the limit N →∞ in the sequence {ψbijk,N}N by showing
that it is a Cauchy sequence in L2(B+

r ) for all r > r0. First, we notice that
vnbij,N+1 − vnbij,N satis�es the equation

−∆(vnbij,N+1 − vnbij,N) = ∇ · (ηnxja∇ϕN+1
bi

) in Rd
+, (2.56a)

vnbij,N+1 − vnbij,N = 0 for j 6= d on ∂Rd
+, (2.56b)

∂d(v
n
bid,N+1 − vnbid,N) = 0 on ∂Rd

+. (2.56c)

We consider this equation for N ≥ −2 and adopt the notation vnbij,−2 = 0
and cnbij,−2 = 0. Repeating the argument from the proof of Lemma 2, gives
that

1

r

( 
B+
r

|∂k(vnbij,N+1 − vnbij,N)− ek · (cnbij,N+1 − cnbij,N)|2 dx
) 1

2

≤ C3 min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇(φNbi,N+1 − φNbi,N)|2 dx

) 1
2

= C3 min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇ϕN+1
bi
|2 dx

) 1
2

.

(2.57)

Summing in n, we �nd that the vbij,N satisfy

1

r

( 
B+
r

|∂k(vbij,N+1 − vbij,N)|2 dx
) 1

2

≤ C3

∞∑
n=−1

min

{
1,
r02

n+1

r

}( 
B+

r02
n+1

|∇ϕN+1
bi
|2 dx

) 1
2

.

(2.58)
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We then sum (2.58) over N , which as we assume that r ≥ r0, by (2.45) yields

1

r

∞∑
N=−2

( 
B+
r

|∂k(vbij,N+1 − vbij,N)|2 dx
) 1

2

≤ C3C2

∞∑
N=−2

∞∑
n=−1

min

{
1,
r02

n+1

r

}
min

{
1, 2d(N+1−n)/2

}
δ

1
3

r02N+2.

(2.59)

To complete our argument we notice that

∞∑
N=−2

∞∑
n=−1

min{1, 2d(N+1−n)/2}δ
1
3

r02N+2

≤
∞∑

N=n0

(N +
1

1− 2−
d
2

)δ
1
3

2N

<∞,

(2.60)

by the assumption (1.4). By (2.59), (2.60), and the de�nition ψbijk,N =
∂kvbij,N − ∂jvbik,N we �nd that {ψbijk,N}N is a Cauchy sequence in L2(B+

r )
for all r > 0. We may, therefore, on every half-ballB+

r pass to the limit, which
we denote as ψbijk. Also following from (2.59) and (2.60), this time using the
dominated convergence theorem for sums, is the sublinearity property:

lim
r→∞

1

r

( 
B+
r

|ψbijk|2 dx
) 1

2

= 0. (2.61)

We then take σNbijk = σbijk + ψbijk for i 6= d and σNbdjk = σbdjk|Rd+. The
relation (2.61) and (1.4) give the desired sublinearity property

lim
r→∞

1

r

(
d−1∑
i=1

 
B+
r

∣∣σNbi ∣∣2 dx+

 
Br

|σNbd |
2 dx

) 1
2

= 0.

�

2.4 Proofs of the Large-Scale Regularity Results

2.4.1 Constant Coe�cient Regularity and Caccioppoli Estimate

We �rst recall two basic lemmas, which correspond to Lemmas 6 and 7 in the
previous chapter. The �rst is a Caccioppoli estimate for a-harmonic functions
with no-�ux boundary data on the half-space; it is completely elementary and
only included for completeness:
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Lemma 5. Let a ∈ Ω, where Ω is de�ned by (1), and r > 0. Then for any
function u that is a-harmonic on B+

2r and has no-�ux boundary conditions
on ∂B+

2r the estimate ˆ
B+
r

|∇u|2 dx . 1

r2

ˆ
B+

2r

|u|2 dx (2.62)

holds.

Proof. Let η denote a radial cut-o� such that η(x) ≡ 1 when |x| ≤ r, η(x) ≡
0 when |x| ≥ 2r, and |∇η(x)| ≤ 2

r . We test the equation

−∇ · (a∇u) = 0 in B+
2r, (2.63a)

ed · a(∇u) = 0 on ∂B+
2r (2.63b)

with η2u. The boundary term vanishes on ∂B+
2r due to the no-�ux boundary

condition (2.63b) and also on ∂
>

B+
2r due to the cut-o� η. Using the uniform

ellipticity and boundedness of a and Young's inequality gives

λ

ˆ
B+

2r

η2|∇u|2 dx ≤
ˆ
B+

2r

λ

2
η2|∇u|2 +

2

λ
|∇η|2u2 dx. (2.64)

To �nish the argument one absorbs the �rst term on the right-hand side of
(2.64) into the left-hand side and uses the properties of η.

We will also use the following facts from constant coe�cient regularity theory:

Lemma 6. Let ahom ∈ Ω be constant, where Ω is de�ned by (1), and �x
R > 0. Let v be ahom-harmonic on B+

R with no-�ux boundary conditions on
∂B+

R; i.e., v solves

−∇ · (ahom∇v) = 0 in B+
R , (2.65a)

v = u on ∂
>

B+
R, (2.65b)

ed · ahom∇v = 0 on ∂B+
R (2.65c)

for some function u ∈ H 1
2 (∂B+

r ). Then for any positive ρ ≤ R
2 and r ≤ R

2

there exists a β(d, λ) > 0 such that the following estimates hold:

sup
x∈B+

r

|∇nv(x)|2 .
(

1

R

)2(n−1)  
B+
R

|∇v|2 dx for any n ≥ 1,

(2.66a)ˆ
A′
|∇v|2 dx . (R)1−βρβ

ˆ
∂
>

B+
R

|∇tanu|2 dS, (2.66b)
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and sup
x∈A′′
|∇nv(x)|2 .

(
1

ρ

)2(n−1)(
R

ρ

)d  
B+
R

|∇v|2 dx for any n ≥ 1,

(2.66c)

where we have used the notation

A′ = (B+
R \B

+
R−2ρ) ∪ (B+

R ∩ { x | xd ≤ 2ρ}) and
A′′ = B+

R−ρ \ { x | xd ≤ ρ}.
(2.67)

Figure 2.1: In this �gure the domain A′′ is colored blue and the domain A′ is colored violet.

Proof. The third estimate (2.66c) follows from the observation that for all
x ∈ A′′ we have the inner regularity estimate

sup
y∈Bρ

2
(x)

|∇nv(y)|2 . 1

ρd+2(n−1)

ˆ
Bρ(x)

|∇v|2 dx. (2.68)

Just as already observed in Lemma 7 of the previous chapter, this follows
from an application of the Sobolev embedding and noting that all of the
components of ∇nv are ahom-harmonic in Bρ(x), which allows for an iterative
application of the Caccioppoli estimate. We obtain (2.66c) by writing:

sup
x∈A′′
|∇nv(x)|2 ≤ sup

x∈A′′
sup

y∈Bρ
2

(x)

|∇nv(y)|2

. sup
x∈A′′

1

ρd+2(n−1)

ˆ
Bρ(x)

|∇v|2 dx

.
1

ρ2(n−1)

(
R

ρ

)d  
B+
R

|∇v|2 dx.

(2.69)

The �rst estimate (2.66a) is shown in a similar manner. In particular,
we again use the Sobolev embedding and iterate the Caccioppoli inequality
(2.62) by di�erentiating (2.65). However, this procedure only yields the in-
equality (2.62) for higher derivatives involving at most one derivative in the
ed direction (as ∂dv does not satisfy (2.65c)). Using a standard argument,
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one obtains the required estimates for higher derivatives involving multiple
normal derivatives. In particular, one expresses ∂nd v in terms of ∂βv where
|β| = n and βd = n−1 by using the equation (2.65) and proceeds inductively.

The second estimate is shown in exactly the same way as the second esti-
mate of Lemma 7 in the previous chapter. To avoid too much repetition, we
do not repeat the argument here.

2.4.2 Proof of Theorem 2: A Large-Scale C1,α- Excess Decay and Mean-Value

Property

We are now ready to prove Theorem 2. Here comes the argument:

Proof of Theorem 2. We use the Einstein summation convention. Thanks to
the linearity of the map ξ 7→ φNξ , we may re-write the expression in (2.4) as

ExcN(r) = inf
ξ∈Rd

 
B+
r

∣∣∣∣∣∇u−
d−1∑
i=1

〈bi, ξ〉(bi +∇φNbi )

∣∣∣∣∣
2

dx. (2.70)

We proceed in our proof by following the same steps as in Theorem 2 of
Chapter 1.

Step 1 � ( Comparison of u to solution of homogenized problem/ Main step
of the argument)

In this step we show that there exists β > 0 and a radius r′ > 0 such that
for any radius r such that r′ ≤ r ≤ R there exists a ξ ∈ Rd such that

 
B+
r

∣∣∣∣∣∇u−
d−1∑
i=1

〈bi, ξ〉(bi +∇φNbi )

∣∣∣∣∣
2

dx

.

((
R

r

)2(d+1)

δβ/(d+3) +
( r
R

)2
) 

B+
R

|∇u|2 dx,

(2.71)

where δ = max(δN2r, δ
N
R ). This should be see as the analogue of (1.57) from

the previous chapter.

To set-up our argument, we �rst notice that (2.71) is clear for r ∈
[
r
4 , R

]
with the choice ξ = 0 and we, therefore, assume that r < r

4 . Also, we let
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R′ ∈
[
r
2 , R

]
be a radius such that

ˆ
∂
>

B+
R′

|∇tanu|2 dS ≤ 1

R

ˆ
B+
R\B

+
r
2

|∇tanu|2 dx, (2.72)

which can be seen to exist by writing the second integral in polar coordinates.
In this argument we use two smooth cut-o�s: First, a one-dimensional cut-o�
L(x) = L(xd) that satis�es L(xd) = 1 if |xd| ≤ ρ and L(xd) = 0 if |xd| ≥ 2ρ.
Second, a function η that satis�es η(x) = 1 if |x| ≤ R′ − 2ρ and η(x) = 0 if
|x| ≥ R′− ρ. We assume that 0 < ρ ≤ r

2 and both |∇Ld| ≤ 2
ρ and |∇η| ≤

2
ρ .

The core of the argument is to consider u as a perturbation of v satisfying
(2.65) from Lemma 6 with the coe�cients ahom ∈ Rd×d being the homoge-
nized coe�cients. In particular, v is taken to satisfy

−∇ · (ahom∇v) = 0 in B+
R′, (2.73a)

v = u on ∂
>

B+
R′, (2.73b)

ed · ahom∇v = 0 on ∂B+
R′. (2.73c)

Interpreting the boundary condition (2.73c) in the distributional sense, one
may �nd a solution v ∈ H1(B+

R′) to this equation using a Lax-Milgram
argument. Thanks to Sobolev embedding we may actually interpret (2.73c)
in a pointwise sense. Decomposing ∇v = 〈bi,∇v〉bi and using that bi ∈ B
when i 6= d gives that

0 = ed · ahom∇v(0) = ed · ahombd〈bd,∇v(0)〉. (2.74)

As ed · ahombd 6= 0 this implies that 〈bd,∇v(0)〉 = 0.Having made this obser-
vation, we use Young's inequality to write

ˆ
B+
r

∣∣∣∣∣∇u−
d−1∑
i=1

〈bi,∇v(0)〉(bi +∇φNbi )

∣∣∣∣∣
2

dx

.
ˆ
B+
r

|∇(u− v)− (1− L)〈bi,∇v〉∇φNbi )|
2 dx

+

ˆ
B+
r

|〈bi,∇v −∇v(0)〉(bi +∇φNbi )|
2 dx

+

ˆ
B+
r

|L〈bi,∇v〉∇φNbi |
2 dx

(2.75)

and then treat the three terms on the right-hand side separately.
We begin with the �rst term. Let w = u− v− η(1−L)〈bi,∇v〉φNbi denote

the ansatz for the homogenization error given by two-scale expansion. Since
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r ≤ R′ − 2ρ we have thatˆ
B+
r

|∇(u− v)− (1− L)〈bi,∇v〉∇φNbi )|
2 dx

.
ˆ
B+
r

|∇w|2 dx+

ˆ
B+
r

|∇((1− L)〈bi,∇v〉)φNbi |
2 dx.

(2.76)

Using the equations for the Neumann half-space corrector and �ux corrector,
and the properties of u and v we derive an equation for the homogenization
error analogous to (1.60) from the Theorem 2 of the previous chapter. In
particular, we �nd that w is a weak solution to

−∇ · (a∇w) = ∇ ·
(
(1− η(1− L))(a− ahom)∇v − σNbi∇(η(1− L)〈bi,∇v〉)

+a∇(η(1− L)〈bi,∇v〉)φNbi
)

in B+
R′.

(2.77)

in the sense that we can can test the equation with functions from H1
bdd(Rd

+).
Testing (2.77) with w and using Hölder's inequality and the uniform elliptic-
ity and boundedness of a and ahom, we obtainˆ

B+
R′

|∇w|2 dx .
ˆ
A′
|∇v|2 dx+ sup

x∈A′′

(
|∇2v|2 +

1

ρ2
|∇v|2

)

×
d−1∑
i=1

ˆ
A′′

(∣∣(φNbi , σNbi )∣∣2 +
∣∣φNbd, σNbd ∣∣2) dx. (2.78)

Conveniently, we may also bound the second term of (2.76) in terms of the
second term of (2.78). Applying (2.66b) and (2.66c) and using that we have
chosen R′ according to (2.72), then gives thatˆ

B+
r

|∇(u− v)− (1− L)〈bi,∇v〉∇φNbi |
2 dx

.
( ρ
R

)β ˆ
B+
R

|∇u|2 dx+

(
R

ρ

)d+2

(δNR )2

ˆ
B+
R′

|∇v|2 dx.
(2.79)

We continue and bound the second term on the right-hand side of (2.75).
Here, an application of (2.66a) for n = 2 yieldsˆ

B+
r

|〈bi,∇v −∇v(0)〉(bi +∇φNbi )|
2 dx

. r2 sup
x∈B+

r

|∇2v|2
ˆ
B+
r

|bi +∇φNbi |
2 dx

.
( r
R

)2
 
B+
R′

|∇v|2 dx
ˆ
B+
r

|bi +∇φNbi |
2 dx.

(2.80)
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Notice that for i = d the whole-space Caccioppoli estimate and for i 6= d the
estimate (2.62) together imply that 

B+
r

|bi +∇φNbi |
2 dx . 1 + (δN2r)

2. (2.81)

The combination of (2.80) and (2.81) then givesˆ
B+
r

|〈bi,∇v −∇v(0)〉(bi +∇φNbi )|
2 dx

. rd(1 + (δN2r)
2)
( r
R

)2
 
B+
R′

|∇v|2 dx.
(2.82)

Lastly, we treat the third term on the right-hand side of (2.75). An appli-
cation of (2.66a) for n = 1 gives

ˆ
B+
r

|L〈bi,∇v〉∇φNbi |
2 dx .

 
B+
R′

|∇v|2 dx
ˆ
B+
r ∩{xd≤2ρ}

|∇φNbi |
2 dx. (2.83)

To treat the right-hand side of (2.83) we modify the box-wise Caccioppoli
argument used in Lemma 1. Using the same notation (the d-dimensional
box with center z ∈ Rd and length l ∈ R is denoted as Cl(z)), we cover
B+
r ∩ {xd ≤ 2ρ} with boxes of width 4ρ with centers taken from a set

S =

{
z ∈ Rd

∣∣∣∣∣ |B+
r ∩ {xd ≤ 2ρ} \ ∪z∈SC4ρ(z)| = 0, ∪z∈SC6ρ(z) ⊆ B2r,

and
∑
z∈S

χC6ρ(z)(x) ≤ 2d for all x ∈ Rd

}
(2.84)

Then we let C̃4ρ,6ρ,z be the cut-o� of C4ρ(z) in the box of side length 6ρ
centered around it (see (2.25) for the de�nition). When i 6= d, for each z ∈ S,
we test the Neumann half-space corrector equation (2.6) with (C̃4ρ,6ρ,z)

2(φNbi +
bi · (x− z)−

ffl
B+

2r
φNbi dx). This gives

ˆ
C4ρ(z)∩Rd+

|∇φNbi + bi|2 dx

.
1

ρ2

ˆ
C6ρ(z)∩Rd+

|φNbi + bi · (x− z)−
 
B+

2r

φNbi dx|
2 dx,

(2.85)

where the boundary term has vanished due to the boundary condition (2.6b).
When i = d testing the whole-space corrector equation (2) with (C̃4ρ,6ρ,z)

2(φbd+
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bd · (x− z)) gives thatˆ
C4ρ(z)∩Rd+

|∇φNbd + bd|2 dx .
1

ρ2

ˆ
C6ρ(z)

|φbd + bd · (x− z)|2 dx. (2.86)

Summing over the z ∈ S as in (2.27) gives that

ˆ
B+
r ∩{xd≤2ρ}

|∇φNbi |
2 dx . rd−1ρ+

(
r

ρ

)2

rd(δN2r)
2. (2.87)

Combining (2.87) with (2.83) then allows us to conclude:

ˆ
B+
r

|L〈bi,∇v〉∇φNbi |
2 dx .

(
rd−1ρ+

(
r

ρ

)2

rd(δN2r)
2

) 
B+
R′

|∇v|2 dx. (2.88)

Having treated all three terms on the right-hand side of (2.75), with the
estimates (2.79), (2.82), and (2.88), we may now write

 
B+
r

∣∣∣∣∣∇u−
d−1∑
i=1

〈bi,∇v(0)〉(bi +∇φNbi )

∣∣∣∣∣
2

dx

.

((
R

r

)d(
R

ρ

)d+2

(δNR )2 +
( r
R

)2 (
1 + (δN2r)

2
)

+
ρ

r
+

(
r

ρ

)2

(δN3r)
2

)

×
 
B+
R′

|∇v|2 dx+

(
R

r

)d ( ρ
R

)β  
B+
R

|∇u|2 dx

.

((
R

r

)2(d+1)(
r

ρ

)d+2

δ2 +
( r
R

)2 (
1 + δ2

)
+
ρ

r

) 
B+
R′

|∇v|2 dx

+

(
R

r

)d (ρ
r

)β  
B+
R

|∇u|2 dx.

(2.89)

Here, we have used the notation δ = max
{
δNR , δ

N
2r

}
and that r ≤ r

4 and
ρ ≤ r

2 . To post-process this estimate we do two things: derive an apriori
estimate for ‖∇v‖L2(B+

R′)
and choose a speci�c width ρ for the boundary

layer introduced by the cut-o�s η and L. The apriori estimate for ∇v follows
from the equation satis�ed by the di�erence v − u:

−∇ · (ahom∇(v − u)) = ∇ · ahom∇u in B+
R′, (2.90a)

v − u = 0 on ∂
>

B+
R′, (2.90b)

ed · ahom∇(v − u) = −ed · ahom∇u on ∂B+
R′. (2.90c)
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Testing (2.90) with v − u and using Hölder's inequality then yields thatˆ
B+
R′

|∇(v − u)|2 dx .
ˆ
B+
R′

|∇u|2, (2.91)

which by Young's inequality givesˆ
B+
R′

|∇v|2 dx .
ˆ
B+
R′

|∇u|2. (2.92)

We then turn to choosing the width ρ. Recall that the only assumption on
ρ was that ρ ∈ (0, r2 ]. By varying ρ within this interval we may obtain ρ

r = s
for any s ∈ (0, 1

4 ]. We set ρ to satisfy ρ
r = min

{
1
4 , δ

2/(d+3)
}
.

These observations allow us to, for su�ciently large r and R, re-write
(2.89) as

 
B+
r

∣∣∣∣∣∇u−
d−1∑
i=1

〈bi,∇v(0)〉(bi +∇φNbi )

∣∣∣∣∣
2

dx

.

((
R

r

)2(d+1)

δ2/(d+3) +
( r
R

)2

+

(
R

r

)d
δ2β/(d+3)

) 
B+
R

|∇u|2 dx.

(2.93)

Notice that here �su�ciently large r and R� means R ≥ r ≥ r′ for the mini-
mal radius r′ > 0 guaranteeing that δ ≤ 1. Using that 0 < β < 1 and R

r ≥ 1
then yields (2.71).

Step 2� (Proof of the Neumann half-space excess decay)

We apply the result of the �rst step to any two radii r̃ and R̃ such that
r′ ≤ r̃ ≤ R̃ ≤ R. Notice that thanks to (2.6) the function ũc = u −∑d−1

i=1 〈bi, c〉(bi+φNbi ) is a-harmonic with no-�ux boundary conditions on ∂B+
R

for any c ∈ Rd. Applying (2.71) to these functions and taking the in�mum
over c ∈ Rd allows us to write:

ExcN(r̃) .
(
θ−2(d+1)δβ/(d+3) + θ2

)
ExcN(R̃), (2.94)

where we have used the notation θ = r̃
R̃
. Thanks to condition (2.10) and

α < 1 we may choose θ and Cα(d, λ) such that

θ−2(d+1)δβ/(d+3) + θ2 ≤ θ2α. (2.95)

is satis�ed above some minimal radius r′′ ≥ r′ > 0. Making these choices,
we obtain that

ExcN(θR̃) . θ2αExcN(R̃), (2.96)

99



whenever r′′ ≤ θR̃. Iterating this estimate �nishes the argument for the
excess decay.

Step 3� (Proof of the coercivity of the excess expression)

This argument is exactly the same as in the previous chapter. In particular,
we must show that 

B+
r

|∇u− (b̃+∇φb̃)|
2 dx→∞ as |b̃| → ∞ (2.97)

and, by the triangle inequality in L2(B+
r ), it su�ces to prove that

 
B+
r

|b̃+∇φN
b̃
|2 dx ≥

(
1

16

)d+1

|b̃|2. (2.98)

To show this we insert a smooth cut-o� function η into the left-hand side of
(2.98), where η = 1 on B+

r
2
∩
{
xd ≥ r

4

}
, η = 0 outside of B+

r , 0 ≤ η ≤ 1, and

|∇η| ≤ 12
r . It is clear that 

B+
r

|b̃+∇φN
b̃
|2 dx ≥

 
B+
r

η2|b̃+∇φN
b̃
|2 dx. (2.99)

Jensen's inequality and an integration by parts, in which the boundary term
cancels due to the cut-o� η, then yield 

B+
r

η2|b̃+∇φN
b̃
|2 dx

≥
( 

B+
r

η dx

)2
∣∣∣∣∣
 
B+
r

ηffl
B+
r
η dx

(b̃+∇φN
b̃

) dx

∣∣∣∣∣
2

≥
( 

B+
r

η dx

)2
∣∣∣∣∣b̃+

1ffl
B+
r
η dx

 
B+
r

η∇φN
b̃
dx

∣∣∣∣∣
2

=

( 
B+
r

η dx

)2
∣∣∣∣∣b̃− 1ffl

B+
r
η dx

 
B+
r

∇η
(
φN
b̃
−
 
B+
r

φN
b̃
dx

)
dx

∣∣∣∣∣
2

.

(2.100)

Notice that (
1

4

)d
≤
 
B+
r

η dx, (2.101)

which, along with an application of Hölder's inequality, implies

1ffl
B+
r
η dx

∣∣∣∣ 
B+
r

∇η
(
φN
b̃
−
 
B+
r

φN
b̃
dx

)
dx

∣∣∣∣ ≤ 4d+2|b̃|δNr . (2.102)
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By (2.10) we can choose Cα(d, λ) large enough such that 4d+1|b̃|δNr ≤ |b̃|/2
for all r ≥ r′′′. Combining this with (2.102) and (2.100), we conclude (2.98).

Remark : The minimal radius r∗α > 0 from the statement of the theorem is
then chosen to be r∗α = max(r′, r′′, r′′′).

Step 4� (Proof of the mean-value property)

For any radius r ∈ [r∗1
2

, R] we let b̃r ∈ B satisfy

ExcN(r) =

 
B+
r

|∇u− (b̃r +∇φN
b̃r

)|2 dx. (2.103)

It then holds that 
B+
r

|∇u|2 dx .ExcN(r) + |b̃r|2

.ExcN(R) + |b̃r|2

.
 
B+
R

|∇u|2 dx+ |b̃R|2 + |b̃r − b̃R|2.

(2.104)

Here, the �rst inequality follows from Young's inequality and (2.81), the
second uses the excess decay from Step 2, and the third is obtained like the
�rst.

We must bound |b̃R|2 and |b̃r − b̃R|2. The �rst bound is a simple con-
sequence of (2.98), the de�nition of the Neumann half-space excess, and
Young's inequality:

|b̃R|2 .
 
B+
R

|b̃R +∇φN
b̃R
|2 dx . ExcN(R) +

 
B+
R

|∇u|2 dx .
 
B+
R

|∇u|2 dx.

(2.105)

To obtain an estimate for the di�erence |b̃r− b̃R|2 we �rst notice if R− r ≤ r
2

then the coercivity property (2.98), the excess decay, and Young's inequality
give

|b̃r − b̃R|2 .
 
B+
r

|b̃r − b̃R + (∇φN
b̃r
−∇φN

b̃R
)|2 dx

.ExcN(r) + ExcN(R)

.ExcN(R).

(2.106)

Notice that the condition that r ∈ [r2 , R] is used for the second inequality.
To �nish, we iterate (2.106). Dropping the assumption that r ∈ [r2 , R], let
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n = blog 1
2
(Rr )c. The excess decay for α = 1

2 then gives that

|b̃r − b̃R|2 ≤

(
|b̃r − b̃R2−n|+

n∑
m=1

|b̃R2−m − b̃R2−(m−1)|

)2

.

(
n∑

m=0

(ExcN(R2−m))
1
2

)2

.

(
n∑

m=0

2−
m
2 (ExcN(R))

1
2

)2

. ExcN(R) .
 
B+
R

|∇u|2 dx.

(2.107)

The mean-value property then follows from (2.104), (2.105), and (2.107).

2.4.3 A C1,α - Liouville Principle

With the excess decay in-hand it is now easy to prove the C1,α- Liouville
principle; in particular, the proof is exactly the same as in the previous chap-
ter. We include it for completeness:

Proof of Corollary 1. With Lemma 5 the assumption (1.13) of subquadratic
growth can be processed to yield

lim
r→∞

1

r2α

 
B+
r

|∇u|2 dx = 0. (2.108)

By the de�nition of “ExcN” this implies that

lim
r→∞

1

r2α
ExcN(r) = 0. (2.109)

Our condition on the whole-space generalized corrector guarantees that the
excess decay (2.11) holds above the minimal radius r∗α > 0. So, for all
r̃ > r∗α > 0 we have that

ExcN(r̃) ≤
(
r̃

r

)2α

ExcN(r) (2.110)

for any r > r̃. Due to (2.109) this implies that ExcN(r̃) = 0 for all r̃ ≥ r∗α.
Since the in�mum in the de�nition of the half-space-adapted tilt-excess is
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attained, this implies that

u = b̃r̃ · x+ φN
b̃r̃

+ cr̃ on B
+
r̃ (2.111)

for some constants b̃r̃ ∈ Rd and cr̃ ∈ R.
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Chapter 3

A Large-Scale Regularity Theory for Harmonic

Functions with No-Flux Boundary-Data On Randomly

Perforated Domains with �Well-Separated" Holes

3.1 Set-up

As a continuation of the previous two chapters, in this chapter we are inter-
ested in the large-scale regularity properties of harmonic functions on per-
forated domains, where we assume that the perforations do not intersect
and are separated by a certain bu�er. The motivation for considering such
a domain is to start heading towards the percolation setting, but, due to
our simplifying assumptions, the current chapter is a far cry from this in-
tended goal. This chapter is included in this thesis because the construction
of the sublinear corrector is closer to the classical technique given in [31] and,
therefore, uses di�erent tools than the previous two chapters.

The exact situation that we consider is as follows: let X ⊂ Rd be a set of
discrete points that are indexed by an index set H ⊆ N such that for distinct
i, j ∈ H we have that B2(xi) ∩ B2(xj) = ∅; we call such a set of points
well-separated. In this chapter we consider domains of the form

P = Rd \ ∪i∈HB1(xi), (3.1)

where H is the index set of some well-separated set of discrete points X. We
are interested in the large-scale regularity of u ∈ H1

loc(P ), where this space
consists of functions such that u ∈ H1(P ∩ V ) for any V b Rd, solving

−∆u = 0 in P, (3.2a)

ν · ∇u = 0 on ∂P. (3.2b)

Unlike in the previous two chapters, we assume that the dimension d ≥ 3 so
that the set P is always simply connected. We again use scalar notation, but
the arguments we use extend to the case of systems.

In contrast to Chapters 1 and 2, the randomness in this chapter is encoded
into the choice of domain. In particular, if for any subset P ⊂ Rd we let χP
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denote the indicator function of the set P , in all that follows we will consider
µ to be a stationary and ergodic probability measure on the space

Ω = {IP | IP = IdχP with P as in (3.1)} (3.3)

that is supported on the set

Ω̃ = {IP | IP = IdχP with P as in (3.1) with well-separated holes} . (3.4)

We construct an example of such a stationary and ergodic measure µ on
Ω: Let Ω0 be the set of all sets of discrete points in Rd, on which the Poisson
point-process induces a stationary and ergodic measure. Fixing a set X ∈ Ω0

we de�ne a self-map of Ω0 such that any point x ∈ X such that there exists
another point y ∈ X satisfying B2(x) ∩ B2(y) 6= ∅ is removed from the set.
Clearly, the set of points in the image of this map, say X̃, induce coe�cient
�elds IP (X̃) that have well-separated holes. Calling this map f we then
consider the pushforward measure f∗µ on Ω. We then check that f∗µ is still
stationary and ergodic:

• (Stationarity) If I ∈ Ω then for any x ∈ Rd we have that f−1(I) + x =
f−1(I(·+ x)). By the stationarity of µ we �nd that f∗µ(I) = f∗µ(I(·+
x)).

• (Ergodicity) Let g ∈ L2(Ω) satisfy g(I(·+x)) = g(I(·)) for L-a.e. x ∈ Rd

and f∗µ-a.e. I ∈ Ω. This then implies that g ◦ f ∈ L2(Ω0) is also shift
invariant. By the ergodicity of µ the function g ◦ f is µ-a.s. equal to´

Ω g ◦ f dµ(I) on Ω0. Using the de�nition of the pushforward measure,
we �nd that for f∗µ- a.e. I ∈ Ω we can write g(I) =

´
Ω g ◦ f dµ(IP ) =´

Ω̃ g df∗µ(IP ).

As we have done in the previous two chapters, in order to obtain our results
we adapt the notion of excess used in [31] to the perforated domain. As the
�nal goal of the analysis given this chapter would be a C1,α- Liouville principle
for functions satisfying (3.2), we can motivate the form of the excess with the
expected form of this Liouville principle. Towards this we recall that in the
non-random situation, which is in this case simply the Laplace equation on
Rd, the subquadratic harmonic functions are simply linear functions. Going
from this, one would expect that the subquadratic functions satisfying (3.2)
are of the form ξ · x + φξ + c for ξ ∈ Rd and c ∈ R, where the adapted
corrector φξ ∈ H1

loc(P̄ ) is a weak solution of

−∇ · IP∇(φξ + ξ · x) = 0 in P, (3.5a)

ν · ∇(φξ + ξ · x) = 0 on ∂P. (3.5b)
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We arrive at the following de�nition: The perforated domain excess of a
solution u ∈ H1

loc(P ) of (3.2) on Br ∩ P is given by

ExcH(r) = inf
ξ∈Rd

 
Br∩P

|∇u−∇(ξ · x+ φξ(IP , x))|2 dx, (3.6)

where the superscript “H” stands for “holes”.
The �rst theorem that we prove in this chapter µ-almost surely provides

us with a sublinear pair (φ, σ) that is adapted to the perforated domain. Our
construction of the adapted corrector in this chapter is not like in the previous
chapters; in particular, the adapted corrector we use in this chapter arises
naturally as the limit of whole-space correctors obtained via the argument
presented in Gloria, Neukamm, and Otto in [31]. The adapted corrector
is taken as input into the second theorem in which we prove a large-scale
C1,α-excess decay, but, unlike our previous chapters, we do not go as far
as deriving a mean-value property or obtaining a Liouville principle. These
results would be immediate given our Theorems 1 and 2 and the arguments
already given in the previous chapters, but this would further increase the
length of this thesis without providing any new ideas.

Before going into detail, we mention that the main technical di�erence
between the situation we consider in this chapter and previously is that here
our homogenized equation,

−∇ · Ihom · ∇uhom = 0 in Rd (3.7)

with solution uhom ∈ H1
loc(Rd), is posed on a di�erent domain than the

original equation (3.2). Notice that here the homogenized coe�cients Ihom
are de�ned analogously to the standard case; in particular, for ξ ∈ Rd the
homogenized coe�cients are determined by the relation

Ihomξ =

ˆ
Ω

IP (0)(ξ +∇φξ(IP , 0)) dµ(IP ).

The fact that uhom and u are de�ned on di�erent domains makes it not so
clear how to de�ne the homogenization error �w", which we have used as a
technical tool in the proofs of Theorem 2 in the previous chapters.

3.2 Main Results

As indicated above, in our �rst theorem we assume that we have a stationary
and ergodic measure µ on Ω and show the almost sure existence of a sublin-
ear generalized adapted corrector.
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Theorem 1. Let µ be a stationary and ergodic measure on Ω de�ned in
(3.3) that is supported on Ω̃ de�ned in (3.4). There exist two random �elds
φ(IP , x) and σ(IP , x) that ful�l the following conditions:

i) For every i ∈ {1, ..., d} the adapted corrector in the direction ei, φi(IP , ·),
is a weak solution of (3.5) µ-almost surely.

ii) For every i, j, k ∈ {1, ..., d} the adapted �ux corrector σijk(IP , ·) is a
distributional solution of

∇k · σijk(IP , ·) = ej · qi(IP , ·) in Rd (3.8)

µ-almost surely, where the current correction on the right-hand side is

qi(IP , x) ={
∇φi(IP , x) + ei −

´
Ω IP (0)(∇φi(IP , 0) + ei) dµ(IP ) if x ∈ P

−
´

Ω IP (0)(∇φi(IP , 0) + ei) dµ(IP ) if x /∈ P.
(3.9)

The σijk, furthermore, satisfy the skew-symmetry condition σijk = −σikj.
iii) The random �elds φ and σ are µ-almost surely sublinear in the sense

that

lim
r→∞

δr(IP ) = 0 (3.10)

where we use the notation

δr(IP ) =
1

r2

 
Br∩P

d∑
i=1

∣∣∣∣φi(IP , x)−
 
Br∩P

φi(IP , x) dx

∣∣∣∣2

+
d∑

j,k=1

∣∣∣∣σijk(IP , x)−
 
Br∩P

σijk(IP , x) dx

∣∣∣∣2
 dx.

We use the generalized adapted corrector constructed in Theorem 1 to
prove the following excess decay:

Theorem 2. Let µ be a stationary and ergodic measure on Ω de�ned in (3.3)
that is supported on Ω̃ de�ned in (3.4). For every Hölder exponent α ∈ (0, 1)
there exists a constant Cα(d) > 0 such that if

δr(IP ) ≤ 1

Cα(d)
for r ≥ r∗α(IP ) (3.11)

for a minimal radius r∗α(IP ) > 0, then for u ∈ H1
loc(P ) a weak solution of

(3.2) the excess decay

ExcH(r) .
( r
R

)2α

ExcH(R) (3.12)
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is satis�ed for R ≥ r ≥ r∗α(IP ). We �nd that the minimal radius µ-almost
surely satis�es r∗α(IP ) <∞.

All of the proofs in this chapter hinge on the following elementary lemma
concerning the harmonic extension of a function u ∈ H1

loc(P ) into the holes
of P . This lemma is, in particular, the reason we assume that the holes of P
are well-separated. As this lemma is the foundation of this chapter, we state
and immediately prove it:

Lemma 1. Let P = Rd \ ∪i∈HB1(xi) as in (3.1) such that the holes are
well-separated and let u ∈ H1

loc(P ). De�ne the harmonic extension of u into
the holes, which we denote uext, as

uext(x) =

{
u(x) if x ∈ P
uEi (x) if x ∈ B1(xi) for some i ∈ H

(3.13)

where for every i ∈ H we have that uEi : B1(xi)→ Rd solves

−∆uEi = 0 in B1(xi),

uEi = u on ∂B1(xi).
(3.14)

Then we obtain the following two results:

i) The bound  
Br

|∇uext|2 dx .
 
B2r∩P

|∇u|2 dx (3.15)

holds for r ≥ 3.

ii) Using the notation

Ωgood = {IP ∈ Ω | 0 ∈ P} , (3.16)

if we have the additional information that ∇uext(IP , x) is a stationary
random �eld in L2(Ω) then (3.15) implies thatˆ

Ω

|∇uext(IP , 0)|2dµ(IP ) .
ˆ

Ωgood

|∇u(IP , 0)|2dµ(IP ). (3.17)

Proof of Lemma 1. We start by proving i). Fix r ≥ 3 and index the holes
of P that intersect Br nontrivially by H ′ ⊆ H. For any i ∈ H denote Ai =
B2(xi) \B1(xi) and notice that thanks to the well-separatedness of the holes
of P , these annuli are disjoint. Also, as the inequality (3.15) only involves
gradients we may assume that for a �xed i ∈ H we have that

ffl
Ai
u dx = 0.
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The trace theorem applied to u ∈ H1(Ai) followed by the Poincaré inequality
gives that

‖u‖
H

1
2 (∂Ai)

. ‖∇u‖L2(Ai) + ‖u‖L2(Ai) . ‖∇u‖L2(Ai). (3.18)

Furthermore, since the trace operator γ : H1(B1(xi))→ H
1
2 (∂B1(xi)) has a

continuous right inverse there exists v de�ned on B1(xi) such that v = u on
∂B1(xi) and the bound

‖∇v‖L2(B1(xi)) . ‖u‖H 1
2 (∂Ai)

(3.19)

holds. Of course, the harmonic extension uE satis�es

‖∇uEi ‖L2(B1(xi)) ≤ ‖∇v‖L2(B1(xi)), (3.20)

which, when hooked-up with (3.18), implies that

‖∇uEi ‖L2(B1(xi)) . ‖∇u‖L2(Ai). (3.21)

To �nish the argument for (3.15) notice thatˆ
Br

|∇uext|2 dx =

ˆ
P∩Br

|∇u|2 dx+
∑
i∈H ′

ˆ
B1(xi)

|∇uEi |2 dx

. 2

ˆ
P∩B2r

|∇u|2 dx,

where we have use dthat uext = u on P , the bound (3.21), and that the Ai

are disjoint.

For the pat ii) of this lemma we �rst re-write (3.15) as 
Br

|∇uext|2 dx .
 
B2r

|IP (x)∇u|2 dx

and then take the expectation of both sides. To �nish we apply Fubini's
theorem and the stationarity of the ensemble to obtain 

Br

ˆ
Ω

|∇uext(IP , x)|2 dµ(IP ) dx .
 
B2r

ˆ
Ω

|IP (x)∇u(IP , x)|2 dµ(IP ) dx

=

 
B2r

ˆ
Ω

|IP (0)∇u(IP , 0)|2 dµ(IP ) dx

which after also using the stationarity of µ on the left-hand side gives (3.17)
as desired.

109



3.3 Construction of the Generalized Adapted Corrector

With Lemma 1 in-hand we proceed to prove Theorem 1. Here comes the
argument:

Proof of Theorem 1. The proof is broken into two parts: In the �rst part we
prove i) and ii) by constructing (φ, σ) and in the second part we prove the
sublinearity property iii). Throughout this proof we will make recurring use
of the convention

Ωgood = {IP ∈ Ω | 0 ∈ P} ,

which we have already introduced in Lemma 1, and the corresponding notion

Ωbad = Ω \ Ωgood = {IP ∈ Ω | 0 /∈ P} .

Part 1: Construction of (φ, σ)

We construct (φ, σ) in a manner very similar to Lemma 1 in [31].

Step 1� (Construction of φ)

For a �xed i ∈ {1, ..., d} we construct the random �eld φi(IP , x), the adapted
corrector in the direction ei. For any IP ∈ Ω and 0 < ε we de�ne

IεP = IP + εIdχRd\P

and let

X =

{
g ∈ L2(Ω,Rd)

∣∣∣∣ Djgk = Dkgj and

ˆ
Ω

g dµ(IP ) = 0

}
, (3.22)

where Dj denotes the �horizontal derivative" given by

(Djg)(IP ) = lim
h→0

g(IP (·+ hej))− g(IP (·))
h

(3.23)

and the curl-free condition is meant in the distributional sense.
We �rst notice that X is a closed subspace of L2(Ω,Rd). To see this we

take a L2(Ω,Rd)- convergent sequence
{
gl ∈ X

}
l
with limit g∞ ∈ X . For

ϕ ∈ H1(Ω), where this space is de�ned in terms of the horizontal derivatives
(3.23), we use Hölder's inequality to write∣∣∣∣ˆ

Ω

Djϕg
∞
k −Dkϕg

∞
j dµ(IP )

∣∣∣∣
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.
ˆ

Ω

|(Djϕg
∞
k −Dkϕg

∞
j )− (Djϕg

l
k −Dkϕg

l
j)| dµ(IP )

.‖Djϕ‖L2(Ω)‖g∞k − glk‖L2(Ω) + ‖Dkϕ‖L2(Ω)‖g∞j − glj‖L2(Ω),

which yields the curl-free condition for g∞ after passing to the limit l ↑ ∞.
Showing the vanishing average condition is essentially the same; in particular,
notice that for every l we may write∣∣∣∣ˆ

Ω

g∞dµ(IP )

∣∣∣∣ . ‖1‖L2(Ω)‖g∞ − gl‖L2(Ω), (3.24)

which gives the vanishing average condition for g∞ after take the limit l ↑ ∞.
Aside from the closedness of X we also notice that the coe�cient �eld IεP

is, for �xed ε > 0, uniformly elliptic. Using these two observations we notice
that an application of Lax-Milgram provides us with a g̃ε ∈ X such that for
every g ∈ X it holds thatˆ

Ω

g · IεP (0)(g̃ε + ei) dµ(IP ) = 0. (3.25)

Notice that in this application of Lax-Milgram we have crucially used the
�nite mass of the probability space. In order to �x notation for the second
part of this proof, we remark that it is shown in [31] that the stationary
extension of g̃ε, which we will denote g̃ε(IP (· + x)) = ¯̃gε(IP , x), satis�es
¯̃gε(IP , x) = ∇φε(IP , x), where φε(IP , x) is a whole-space corrector for the
coe�cient �eld IεP and is µ-almost surely sublinear.

Testing (3.25) with g̃ε yields(ˆ
Ω

|(IεP (0))
1
2 g̃ε|2 dµ(IP )

) 1
2

≤ 1. (3.26)

When IP ∈ Ωgood, as 0 ∈ P , we know that |g̃ε · IεP (0)g̃ε|2 = |g̃ε|2 and (3.26)
gives that (ˆ

Ωgood

|g̃ε|2 dµ(IP )

) 1
2

≤ 1, (3.27)

which implies that there exists a g̃0 ∈ L2(Ωgood,Rd) such that g̃ε
ε↓0−⇀ g̃0. We

extend the de�nition of g̃0 to all of Ω in the following way:

g̃0(IP ) =

{
g̃0(IP ) for IP ∈ Ωgood

0 if IP ∈ Ωbad.
(3.28)
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Notice that since for ϕ ∈ H1(Ω) it holds that Dϕ ∈ X , the relation (3.25)
implies that ˆ

Ω

Dϕ · IεP (0)(g̃ε + ei) dµ(IP ) = 0. (3.29)

We would like to pass to the limit ε ↓ 0 in this equation. To do this we writeˆ
Ω

Dϕ · (IεP (0)(g̃ε + ei)− IP (0)(g̃0 + ei)) dµ(IP )

=

ˆ
Ω

Dϕ ·
(
(IεP (0)− IP (0))ei + (IεP (0)− IP (0)) g̃ε − IP (0)(g̃0 − g̃ε)

)
dµ(IP ).

(3.30)

The �rst term is immediately bounded as
ˆ

Ω

|Dϕ · (IεP (0)− IP (0))ei| dµ(IP ) ≤ ε

(ˆ
Ω

|Dϕ|2 dµ(IP )

) 1
2

. (3.31)

For the second term we use that (3.26) implies(ˆ
Ω

|g̃ε|2dµ(IP )

) 1
2

≤ ε−
1
2 ,

which allows us to use Hölder's inequality to write
ˆ

Ω

|Dϕ · (IεP (0)− IP (0))g̃ε| dµ(IP ) ≤ ε
1
2

(ˆ
Ω

|Dϕ|2 dµ(IP )

) 1
2

. (3.32)

Combining (3.30), (3.31), and (3.32) we �nd that∣∣∣∣ˆ
Ω

Dϕ · (IεP (0)(g̃ε + ei)− IP (0)(g̃0 + ei)) dµ(IP )

∣∣∣∣
.ε

1
2‖Dϕ‖L2(Ω) +

∣∣∣∣ˆ
Ω

Dϕ · IP (0)(g̃0 − g̃ε) dµ(IP )

∣∣∣∣ ,
which when combined with (3.29), after passing to the limit ε ↓ 0 and using
the weak convergence of g̃ε to g̃0 in L2(Ωgood,Rd), yields thatˆ

Ω

Dϕ · IP (0)(g̃0 + ei) dµ(IP ) = 0. (3.33)

We now use the notation ϕ(IP (· + x)) = ϕ̄(IP , x) and g̃0(IP (· + x)) =
¯̃g0(IP , x). Using the relation Djϕ(IP (·+ x)) = ∂jϕ̄(IP , x), where �∂j" refers
to the standard partial derivative in the spatial variable, we use the station-
arity and ergodicity of µ to convert (3.33) toˆ

Rd
∇(ϕ̄(IP , x)) · IP (x)(¯̃g0(IP , x) + ei) dx = 0, (3.34)
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which holds µ-almost surely for any ϕ ∈ H1(Ω) such that ϕ(IP , ·) has uni-
formly bounded support for all IP ∈ Ω. In particular, notice that if f̄(IP , ·)
is a stationary random �eld such that supp(f̄(IP , ·)) ⊂ Br for all IP ∈ Ω and
the corresponding random variable f̄(IP , 0) = f ∈ L1(Ω) thenˆ

Rd
f̄(IP , x) dx

µ−a.s.
=

ˆ
Ω

ˆ
Rd
f̄(IP , x) dx dµ(IP )

=

ˆ
Ω

ˆ
Br

f̄(IP , x) dx dµ(IP )

=

ˆ
Br

ˆ
Ω

f̄(IP , x) dµ(IP ) dx

= |Br|
ˆ

Ω

f̄(IP , 0) dµ(IP ).

(3.35)

Here, the �rst equality holds µ-almost surely thanks to the erogodicity of the
ensemble since the left-hand side is a shift-invariant random variable and we
have used the Fubini-Tonelli theorem to swap the integrals in the third step.
In order to obtain (3.34) we must take f to be the integrand in (3.33).

We, furthermore, notice that for ϕ ∈ H1(Ω) such that supp(ϕ) ⊆ Ωgood by
the de�nition (3.28) the distributional curl-free condition passes to the limit;
i. e. we have that ˆ

Ω

(Djϕ)g̃0
k − (Dkϕ)g̃0

j dµ(IP ) = 0. (3.36)

Once again assuming that ϕ̄(IP , ·) has uniformly bounded support for all
IP ∈ Ω and now additionally supp(ϕ) ⊆ Ωgood, using (3.35) we obtain thatˆ

Rd
∂jϕ(IP , x)¯̃g0

k(IP , x)− ∂kϕ(IP , x)¯̃g0
j (IP , x) dx = 0 (3.37)

µ-almost surely. So, µ-almost surely ¯̃g0(IP , ·) is distributionally curl-free on
P , which is simply connected since d ≥ 3. Using the Poincaré lemma this
implies that µ-almost surely there exists a scalar potential φi(IP , ·) ∈ H1

loc(P )
such that ¯̃g0(IP , x) = ∇φi(IP , x) on P . Of course, we may, furthermore,
impose that

ffl
B1
φi(IP , x)dx = 0 for each realization IP ∈ Ω for which this

potential exists.
To �nish our argument we, for a �xed realization IP ∗ ∈ Ω such that (3.34)

and (3.37) hold, make the substitution ¯̃g0(IP ∗, x) = ∇φi(IP ∗, x) in (3.34).
Then for any test function ϕ ∈ H1

bbd(Rd) we de�ne the random variable

ϕ(IP ) =

{
ϕ(x) for IP = IP ∗(·+ x)
0 otherwise,

(3.38)
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the stationary extension of which satis�es ϕ(IP ∗, x) = ϕ(x) and also ϕ(IP , x)
has uniformly bounded support for all IP ∈ Ω. These identi�cations allow
us to conclude that φi(IP ∗, x) satis�es the weak formulation of the corrector
equation (3.5) on P ∗.

Step 2� (Construction of σ)

For a �xed i ∈ {1, ..., d} we now construct the random �eld σi(IP , x), which
is matrix valued since we have dropped two indices, using the strategy given
in [31]. In particular, we let

Y =

{
b̃ ∈ L2(Ω,Rd×d

sym)

∣∣∣∣ Dkb̃lm = Dmb̃lk and

ˆ
Ω

b̃kl dµ(IP ) = 0

}
(3.39)

and introduce the three-tensor bjkl ∈ Y , which is the orthogonal projection of
qjI ∈ L2(Ω,Rd×d

sym) onto Y with q = IP (0)(g̃0 +ei)−
´

Ω IP (0)(g̃0 +ei) dµ(IP ).
We then obtain two relations for bj:

i) Notice that if ϕ ∈ H2(Ω) then D2ϕ ∈ Y . So, we may, in particular, write

0 =

ˆ
Ω

D2ϕ : (bj − qjI) dµ(IP ) =

ˆ
Ω

(trace D2ϕ)(trace bj − qj) dµ(IP ),

(3.40)

where we have used orthogonality and the curl-free condition in Y . In par-
ticular, we use that the relationˆ

Ω

DlDlϕbjkk dµ(IP ) = −
ˆ

Ω

DlϕDlbjkk dµ(IP )

= −
ˆ

Ω

DlϕDkbjkl dµ(IP )

=

ˆ
Ω

DlDkϕbjkl dµ(IP )

holds for all l, k ∈ {1, ..., d}. Due to ergodicity the space{
trace D2ϕ |ϕ ∈ H2(Ω)

}
is dense in

{
ϕ ∈ L2(Ω) |

´
Ω ϕ dµ(IP ) = 0

}
. To see

this choose some ψ in the orthogonal complement of the L2-closure of the
�rst space; we show that ψ is µ-almost surely equal to some constant. This
is almost immediate since for all ϕ̃ ∈ H2(Ω) we have thatˆ

Ω

ψ trace(D2ϕ̃) dµ(IP ) = −
ˆ

Ω

Dψ ·Dϕ̃ dµ(IP ) = 0,

which implies that Dψ = 0 µ-almost surely and by ergodicity this implies
that ψ is µ-almost surely a constant. Combining this density observation
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with
´

Ω qj dµ(IP ) =
´

Ω trace bj dµ(IP ) = 0, the equality (3.40) implies that

trace bj = bjkk = qj (3.41)

µ-almost surely.

ii) We �nd that

DlDlbkkj = DjDkbkll (3.42)

distributionally, where we have used the curl-free assumption in Y . There-
fore, if ϕ ∈ H2(Ω) such that Dϕ(IP , ·) has uniformly bounded support for
all IP ∈ Ω we may use (3.33) to writeˆ

Ω

trace(D2ϕ)bkkj dµ(IP ) =

ˆ
Ω

DlDlϕbkkj dµ(IP )

=

ˆ
Ω

DkDjϕbkll dµ(IP )

(3.41)
=

ˆ
Ω

DkDjϕqk dµ(IP )

= 0.

(3.43)

By density this implies that

d∑
k=1

bkkj = 0 (3.44)

µ-almost surely.

To complete the argument we pass to the stationary extensions of the
bjkl, which are denoted b̄jkl(IP , x). The curl-free assumption in Y implies
that Dlbjkm = Dmbjkl distributionally in the probability space, which then
translates into the condition

∂lb̄jkm(IP , x) = ∂mb̄jkl(IP , x) (3.45)

which µ-almost surely holds in a distributional sense in Rd. Combining this
curl-free condition with d ≥ 3 allows one to apply the Poincaré lemma, which
then for every IP ∈ Ω such that (3.45) holds gives σjk(IP , ·) such that

bjkl(IP , x)− bkjl(IP , x) = ∂lσjk(IP , x) (3.46)

holds distributionally on Rd. The vanishing average assumption in Y implies
that

´
Ω∇σjk dµ(IP ) = 0 and we may, furthermore, impose that for every
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IP ∈ Ω for which σ is de�ned it holds that
ffl
B1
σjk(IP , x) dx = 0, which

implies that σjk(IP , x) retains the skew-symmetry of bjkl(IP , x)− bkjl(IP , x)
in j and k. After using stationarity and ergodicity to move to physical space
(just like in our argument for the construction of φ), the equalities (3.41) and
(3.44) yield that µ-almost surely

∂lσjl(IP , x) = bjll(IP , x)− bjjl(IP , x) = qj(IP , x) (3.47)

distributionally in R2.

Part 2: Almost sure sublinearity of (φ, σ)

Since σ is constructed so that
´

Ω∇σijk dµ(IP ) = 0 and ∇σijk is stationary
for all i, j, k ∈ {1, ..., d}, the standard sublinearity argument from [31, Proof
of Corollary 1: Step 1] applies and shows that

lim
r→∞

1

r

 
Br

∣∣∣∣σijk(IP , ·)−  
Br

σijk(IP , ·) dx
∣∣∣∣2 dx = 0 (3.48)

µ-almost surely. Due to the disjointness assumption on the holes of P we
have that rd . |Br ∩ P | uniformly in r and, therefore, we may write

1

r

 
Br∩P

∣∣∣∣σijk(IP , ·)−  
Br∩P

σijk(IP , ·) dx
∣∣∣∣2 dx

.
1

r

 
Br

∣∣∣∣σijk(IP , ·)−  
Br

σijk(IP , ·) dx
∣∣∣∣2 dx,

which by (3.48) then implies the desired sublinearity property for σ.
It then only remains to show the sublinearity of φ, which we do in the

steps below. To avoid the notation becoming too bulky we drop the index i
from φi and instead always write φ. Also, in this argument we make use of
the φε, which we have introduced in our construction of φ.

Step 1� (The harmonic extension of the corrector into the holes)

We consider φext(IP , x), the harmonic extension as de�ned in Lemma 1 of
the corrector φ(IP , x) into the holes of P . We �rst observe that ∇φext is
stationary on Rd. To see this we recall from the previous step that∇φε ⇀ ∇φ
in L2(Ωgood). Using the ergodicity of the ensemble we �nd that this implies
µ-almost surely that ∇φε ⇀ ∇φ in L2

loc(P ). As the ∇φε are stationary, by
the uniqueness of weak limits we have that for �xed z ∈ Rd it holds that
∇φ(IP (·+ z), x) = ∇φ(IP , x+ z) on P − z. This, of course, means that on
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P −z we have that φ(IP (·+z), x) = φ(IP , x+z)+C. The uniqueness of the
harmonic extension then implies that φext(IP , x+z) = φext(IP (· +z), x)+C
for x ∈ Rd, which implies that ∇φext is stationary.

We would then like to show that, in fact, ∇φε(IP , ·) ⇀ ∇φext(IP , ·) in
L2
loc(Rd) µ-almost surely. We already know that µ-almost surely∇φε(IP , ·) ⇀
∇φext(IP , ·) in L2

loc(P ), which means that, �xing a realization IP for which
this convergence holds, we only need to concentrate on the holes, of which we
�x B1(xi). Since our claim is on the level of the gradients, we may assume
that the φε and φ have average 0 on an annulus of radius 1 around B1(xi),
which we denote A. Using the Poincaré inequality on this annulus we then
�nd that φε ⇀ φext in H

1
loc(A), which implies that φε ⇀ φext in H

1
2 (∂B1(xi))

because the trace operator is continuous. To �nish our argument we notice
that φε−φext is the unique harmonic function in H1(B1(xi)) with the bound-
ary data φε − φ. This implies our claim since the solution operator of the
Laplacian with Dirichlet boundary data is again linear and bounded, which
implies that it preserves weak convergence.

We then process the above observation to obtain that

lim
ε→0

ˆ
Ω

∇φε −∇φext dµ(IP ) = 0, (3.49)

which follows via Birkho�'s ergodic theorem after recalling the stationarity of
∇φε−∇φext ∈ L2(Ω). Since for every ε > 0 we have that

´
Ω∇φ

ε dµ(IP ) = 0
this implies that

´
Ω∇φext dµ(IP ) = 0.

Step 2� (Non-degeneracy of the homogenized coe�cients)

Let ξ ∈ Rd. Since
´

Ω∇φ
ε
ξ dµ(IP ) = 0 and ∇φεξ is, furthermore, curl-free we

have that ∇φεξ ∈ X . This, in particular, implies that the relationˆ
Ω

∇φεξ · IP (0)(∇φξ + ξ)dµ(IP ) = 0 (3.50)

holds, which allows us to write:

ξ · Ihomξ =

ˆ
Ω

ξ · IP (0)(ξ +∇φξ) dµ(IP )

=

ˆ
Ω

(ξ +∇φεξ) · IP (0)(ξ +∇φξ) dµ(IP )

=

ˆ
Ω

(ξ +∇φεξ) · IP (0)(ξ +∇φεξ) dµ(IP ) (3.51)

+

ˆ
Ω

(ξ +∇φεξ) · IP (0)(∇φξ −∇φεξ) dµ(IP )
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≥
ˆ

Ωgood

|ξ +∇φεξ|2 dµ(IP ) +

ˆ
Ω

ξ · IP (0)(∇φξ −∇φεξ) dµ(IP )

+

ˆ
Ω

∇φεξ · IP (0)(∇φξ −∇φεξ) dµ(IP ).

To treat the third term on the right-hand side we use both (3.50) and (3.25)
to notice that ˆ

Ω

∇φεξ · IP (0)(∇φξ −∇φεξ) dµ(IP )

=

ˆ
Ω

∇φεξ · IP (0)(∇φξ + ξ − (∇φεξ + ξ)) dµ(IP )

=−
ˆ

Ω

∇φεξ · IP (0)(∇φεξ + ξ) dµ(IP ) (3.52)

=

ˆ
Ωbad

∇φεξIεP (0)(∇φεξ + ξ) dµ(IP )

=ε

ˆ
Ωbad

|∇φεξ|2 dµ(IP ) +

ˆ
Ωbad

∇φεξ · IεP (0)ξ dµ(IP ).

Combining (3.51) and (3.52) yields

ξ · Ihomξ ≥
ˆ

Ωgood

|ξ +∇φεξ|2 dµ(IP )

+

ˆ
Ω

ξ · IP (0)(∇φξ −∇φεξ) dµ(IP ) +

ˆ
Ωbad

∇φεξ · IεP (0)ξ dµ(IP ),

(3.53)

where we, furthermore, have that

lim
ε→0

∣∣∣∣ˆ
Ω

ξ · IP (0)(∇φξ −∇φεξ) dµ(IP ) +

ˆ
Ωbad

∇φεξ · IεP (0)ξ dµ(IP )

∣∣∣∣ = 0.

(3.54)

To see (3.54) one uses the weak convergence of ∇φεξ ⇀ ∇φξ on Ωgood and,

furthermore, processes (3.26) to give ‖ε 1
2∇φεξ‖L2(Ωbad) ≤ |ξ|, which after an

application of Hölder's inequality gives∣∣∣∣ˆ
Ωbad

∇φεξ · IεP (0)ξ dµ(IP )

∣∣∣∣ ≤ ‖ε 1
2∇φεξ‖L2(Ωbad)ε

1
2 |ξ| ≤ ε

1
2 |ξ|2. (3.55)

To �nish our argument we notice that by the de�nition of the coe�cient
�eld IεP we have that φεξ(IP , ·)+ξ ·x = ((φεξ(IP , ·)+ξ ·x)|P )ext; Recall, further-
more, that ∇φεξ(IP , x) is a stationary random �eld. Therefore, we may apply
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(3.17) along with Jensen's inequality and the condition
´

Ω∇φ
ε
ξ dµ(IP ) = 0

to obtain thatˆ
Ωgood

|ξ +∇φεξ|2 dµ(IP ) &
ˆ

Ω

|ξ +∇φεξ|2 dµ(IP )

&

∣∣∣∣ˆ
Ω

ξ +∇φεξ dµ(IP )

∣∣∣∣2
=|ξ|2.

(3.56)

This is then combined with (3.53) and (3.54) to give

ξ · Ihomξ & |ξ|2. (3.57)

Step 3� (The µ-almost sure sublinearity of φ)

For this argument we let {ηr}r>0 be a family of Gaussian convolution kernels,
where the subscript “r” denotes the rescaling of the kernel η1 on the scale
r. We use a superscript “r” to denote convolution with ηr; e. g. we let
φext(IP , ·) ∗ ηr(x) = φrext(IP , x) and φε(IP , ·) ∗ ηr(x) = φε,r(IP , x). Also,
sometimes we will use the notation (·)r = · ∗ ηr. The stationarity of the
random �elds ∇φrext and ∇φε,r follows immediately from the stationarity of
∇φext and ∇φε.

We begin our sublinearity argument with an application of the triangle
inequality in L2(Rd) and by passing to the harmonic extension

1

R
inf
c∈R

( 
BR∩P

|φ− c|2dx
) 1

2

.
1

R
inf
c∈R

( 
BR

|φext − c|2dx
) 1

2

.
1

R

(
inf
c∈R

( 
BR

|φrext − c|2dx
) 1

2

+

( 
BR

|φrext − φext|2dx
) 1

2

)

.

( 
BR

|∇φrext|2dx
) 1

2

+
r

R

( 
BR

|∇φext|2dx
) 1

2

.

(3.58)

Notice that the �rst inequality of (3.58) holds due to the observation that
rd . |Br ∩P | uniformly in r. Also, the last inequality is due to the Poincaré
inequality with zero average and a standard convolution estimate.

To treat the �rst term on the right-hand side of (3.58), we use that∇φrext is
stationary and apply the maximal ergodic theorem [40, Chapter 1: Corollary
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2.2 ]. This gives that

lim
R→∞

( 
BR

|∇φrext|2dx
) 1

2

≤
(ˆ

Ω

|∇φrext|2 dµ(IP )

) 1
2

(3.59)

µ-almost surely. We then seek to control
(´

Ω |∇φ
r
ext|2 dµ(IP )

) 1
2 for which

we use that Ihom is nondegenerate: For every ei there is ξi ∈ Rd such that
ei = Ihomξi. Therefore, we may writeˆ

Ω

∂iφ
r
ext dµ(IP ) =

ˆ
Ω

∇φrext · Ihomξi dµ(IP )

= −
ˆ

Ω

∇φrext · (IP (0)(∇φξi + ξi)− Ihomξi) dµ(IP )

+

ˆ
Ω

∇φrext · IP (0)(∇φξi + ξi) dµ(IP )

= −
ˆ

Ω

∇φrext · (IP (0)(∇φξi + ξi)− Ihomξi) dµ(IP ),

(3.60)

where for the last equality we use that ∇φrext is distributionally curl-free and
that

´
Ω∇φ

r
ext dµ(IP ) = 0 by Step 1. To continue (3.60) we write∣∣∣∣ˆ

Ω

∂iφ
r
ext dµ(IP )

∣∣∣∣ ≤ (ˆ
Ω

|∇φext|2 dµ(IP )

) 1
2

×
(ˆ

Ω

|(IP (0)(∇φξi + ξi)− Ihomξi)r|2 dµ(IP )

) 1
2

.

(ˆ
Ω

|(IP (0)∇φξi + ξi)r − Ihomξi|2 dµ(IP )

) 1
2

.

(3.61)

By Von Neumann's ergodic theorem, since IP (0)(∇φξi + ξi) is stationary,´
Ω IP (0)(∇φξi + ξi) dµ(IP ) = Ihomξi, and IP (0)(∇φξi + ξi) ∈ L2(Ω), we have
that

lim
r→∞

(ˆ
Ω

|(IP (0)(∇φξi + ξi))r − Ihomξi|2 dµ(IP )

) 1
2

= 0. (3.62)

Since (3.62) holds for all i ∈ {1, ..., d}, (3.61) gives that

lim
r→∞

∣∣∣∣ˆ
Ω

∇φrext dµ(IP )

∣∣∣∣ = 0 (3.63)

and for any ε > 0 we can choose r0 > 0 such that∣∣∣∣ˆ
Ω

∇φr0ext dµ(IP )

∣∣∣∣2 ≤ ε

2
. (3.64)
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Another application of Von Neumann's ergodic theorem implies that we may
choose ρ0 > 0 such that for ρ ≥ ρ0 we have that

ˆ
Ω

∣∣∣∣(∇φr0ext)ρ − ˆ
Ω

∇φr0ext dµ(IP )

∣∣∣∣2 dµ(IP ) ≤ ε

2
. (3.65)

We then �nd thatˆ
Ω

∣∣∣(∇φr0ext)ρ0∣∣∣2 dµ(IP )

≤
ˆ

Ω

∣∣∣∣(∇φr0ext)ρ − ˆ
Ω

∇φr0ext dµ(IP )

∣∣∣∣2 dµ(IP ) +

∣∣∣∣ˆ
Ω

∇φr0ext dµ(IP )

∣∣∣∣2
≤ε.

(3.66)

By the semigroup property of the Gaussian convolution kernel, we obtain
that for r ≥

√
r2

0 + ρ2
0 it holds that(ˆ

Ω

|∇φrext|2 dµ(IP )

) 1
2

≤ ε
1
2 . (3.67)

We then �x any r ≥
√
r2

0 + ρ2
0 and combine (3.58), (3.59), (3.17), and

(3.67) to write

lim
R→∞

1

R
inf
c∈R

( 
BR∩P

|φ− c|2dx
) 1

2

≤ ε
1
2 + lim

R→∞

r

R

( 
BR

|∇φext|2dx
) 1

2

≤ ε
1
2 ,

(3.68)

which, in particular, proves that

lim
R→∞

1

R

 
BR∩P

|φ−
 
BR∩P

φ dx|2 dx = 0 (3.69)

as desired.

3.4 Proof of the Large-Scale C1,α- Excess Decay

3.4.1 Constant Coe�cient Regularity and Caccioppoli Estimate

Just as in the previous two chapters, for our proof of Theorem 2 we require
access to a particular Caccioppoli estimate and to some constant coe�cient
regularity estimates. We start with the Caccioppoli estimate:
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Lemma 2. Let r > 0 and u ∈ H1(Br ∩ P ) solve (3.2) on Br ∩ P ; i.e. u
solves

−∆u = 0 in Br ∩ P,
ν · ∇u = 0 on Br ∩ ∂P.

(3.70)

Then for any 0 < ρ < r
2 we �nd thatˆ

Bρ∩P
|∇u|2 dx . 1

ρ2

ˆ
B2ρ∩P

|u|2 dx. (3.71)

Proof of Lemma 2. Letting η be a smooth radial cut-o� for Bρ in B2ρ such
that |∇η| ≤ 2

ρ , we test the equation (3.70) with η2u and obtain
ˆ
Br∩P

2uη∇η · ∇u+ η2|∇u|2 dx = 0. (3.72)

Of course, the boundary terms have vanished due to the no-�ux boundary
data of u and the cut-o� η. The claim then follows from Young's inequality
and the properties of the cut-o� η.

Here are the constant coe�cient regularity estimates that we use:

Lemma 3. Let v ∈ H1(Br) be a solution to

−∇ · Ihom∇v = 0 in Br,

v = uext on ∂Br

(3.73)

for some uext ∈ H
1
2 (∂Br) and some constant uniformly elliptic coe�cient

Ihom ∈Md×d(R). Then for any x ∈ Br and ρ > 0 such that B2ρ(x) ⊆ Br we
have that

sup
y∈Bρ(x)

|∇nv| .
(

1

ρ

)n−1
( 

B2ρ(x)

|∇v|2 dx

) 1
2

for all n ∈ N (3.74)

and for 0 < δ < r
2 it holds thatˆ
Br\Br−δ

|∇v|2 dx . r
d−1
d δ

1
d

ˆ
∂Br

|∇tanuext|2 dS. (3.75)

Proof. While the proof of (3.74) is exactly the same as in Lemma 6 of Chap-
ter 1 and Lemma 7 of Chapter 2, the proof of (3.75) actually sees some
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simpli�cation because now v solves a constant coe�cient equation on Br.
In particular, we have access to the Calderón-Zygmund estimate for (3.73),
which gives that(ˆ

Br

|∇v|p dx
)1/p

≤ C(p, d)

(ˆ
Br

|∇v̄|p dx
)1/p

for all 1 < p < ∞, where v̄ is the harmonic extension of v|∂Br . We upgrade
this to (ˆ

Br

|∇v|p dx
)1/p

.

(ˆ
∂Br

|∇tanuext|2 dx
)1/2

, (3.76)

where p = d−2
2d using (1.55). The desired relation then follows from an appli-

cation of Hölder's inequality as
ˆ
Br\Br−δ

|∇v|2 dx ≤ |Br \Br−δ|
1
d

(ˆ
Br

|∇v|p dx
)2/p

. (3.77)

3.4.2 Proof of Theorem 2: A Large-Scale C1,α- Excess Decay

With these results in-hand we now prove Theorem 2. A substantial di�erence
between the case treated here and the cases of Dirichlet or Neumann bound-
ary data treated earlier is that the homogenized and heterogeneous problems
are posed on di�erent domains. As already mentioned in the introduction,
we overcome this by insisting that the holes of P are well-separated and using
our Lemma 1. Here comes the argument:

Proof of Theorem 2.

The main idea of this argument is the same way as the corresponding results
in the previous chapters. In particular, the excess decay follows from the
following observation: There exists a minimal radius r′ > 0 such that for any
two radii R ≥ r ≥ r′ there is a ξ ∈ Rd such that 

Br∩P
|∇u− ξ · (∇φ(IP , x) + x)|2 dx

.

(( r
R

)2

+

(
R

r

)d
(δ

1
(d+4)(d+1)

R + δ
d
d+1

R )

) 
BR

|∇uext|2 dx.
(3.78)

We now prove this claim. Just as in the previous chapters, we may assume
that r ∈ (0, R/8] since the relation (3.78) holds trivially for r ∈ (R/8, R]

123



with the choice ξ = 0. As was shown in Lemma 1 we may extend u (de�ned
on P ) to uext (de�ned on Rd) such that for r ≥ 3 the estimate (3.15) holds.
With uext in-hand, we know that there exists a radius R′ ∈

[
R
2 , R

]
such that

the estimate ˆ
∂BR′

∣∣∇tanuext
∣∣2 dS .

1

R

ˆ
BR

|∇uext|2 dx (3.79)

holds. For our argument, we introduce a smooth radial cut-o� function η
that satis�es η = 1 on BR′−3ρ, η = 0 on Rd \ BR′−2ρ, and |∇η| . 4

ρ . We

choose ρ subject to the constraint ρ ∈ [1, R8 ].
The main idea of the proof of (3.78) is to compare u to v solving

−∇ · Ihom∇v = 0 in BR′,

v = uext on ∂BR′.
(3.80)

Making this comparison in the squared energy norm we (as in the previous
two chapters) writeˆ

Br∩P
|∇u− ∂iv(0) · (ei +∇φi(IP , x))|2 dx

.
ˆ
Br∩P

|(Id +∇φ(IP , x))(∇v −∇v(0))|2 dx

+

ˆ
Br∩P

|∇u− ∂iv(ei +∇φi(IP , x))|2 dx.

(3.81)

We then introduce the homogenization error w, de�ned on P ∩BR′, which is
given by

w = u− v − η∂ivφi(IP , x). (3.82)

Notice that thanks to the cut-o� η the homogenization error w vanishes on
∂BR′ ∩ P . Using that r ≤ R′ − 3ρ we then re-write (3.81) asˆ

Br∩P
|∇u− ∂iv(0) · (ei +∇φi(IP , x))|2 dx

.
ˆ
Br∩P

|(∇v −∇v(0))(Id +∇φ(IP , x))|2 dx

+

ˆ
BR′∩P

|∇w|2 dx+

ˆ
BR′∩P

|∇(η∂iv)φi(IP , x))|2 dx

(3.83)

Again, to continue the estimate (3.83) we would like to obtain an energy
estimate for w. To do this we notice that w is a distributional solution of

−∆w = ∇ · ((1− η)(Id− Ihom)∇v + (φi − σi)∇(η∂iv)) on P ∩BR′

(3.84)
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where test functions are taken from C∞0 (BR′ ∩ P ). Since w /∈ C∞0 (BR′ ∩ P ),
when we test (3.84) with w we pick-up boundary terms; in particular, after
an application of Hölder's inequality, we can writeˆ

BR′∩P
|∇w|2 dx

.

(ˆ
BR′∩P

|(1− η)(Id− Ihom)∇v + (φi − σi)∇(η∂iv)|2 dx
) 1

2

×
(ˆ

BR′∩P
|∇w|2 dx

) 1
2

+

∣∣∣∣ˆ
BR′∩∂P

wν · (∇w + (1− η)(Id− Ihom)∇v + (φi − σi)∇(η∂iv)) dS

∣∣∣∣ .
(3.85)

The non-boundary terms are simple to treat using the constant coe�cient
regularity results from Lemma 3, that v = uext on ∂BR′, and that R′ was
chosen such that (3.79) holds. In particular, in the same manner as in the
previous two chapters we may apply Lemma 3 as(ˆ

BR′∩P
|(1− η)(Id− Ihom)∇v + (φi − σi)∇(η∂iv)|2 dx

) 1
2

.

(ˆ
BR′\BR′−3ρ

|∇v|2 dx

) 1
2

+R
d+2
2 sup

y∈BR′−2ρ
|∇(η∂iv)(y)|δR

. (R
d−1
d ρ

1
d )

1
2

(ˆ
∂BR′

|∇tanv|2 dS
) 1

2

+R
d
2

(
R

ρ

)d+2
2

δR

( 
BR′

|∇v|2 dx
) 1

2

(3.79)

.
( ρ
R

) 1
2d

R
d
2

( 
BR′

|∇uext|2 dx
) 1

2

+R
d
2

(
R

ρ

)d+2
2

δR

( 
BR′

|∇v|2 dx
) 1

2

.

(3.87)

We then treat the boundary term in (3.85). Using the no-�ux boundary
data of u and xi + φi(IP , x) we rewrite the boundary term asˆ

BR′∩∂P
wν · (∇w + (1− η)(Id− Ihom)∇v + (φi − σi)∇(η∂iv)) dS

(3.88)

=−
ˆ
BR′∩∂P

(
(wη∂iv)ν · (ei +∇φi(IP , x))

+ w(1− η)ν · Ihom∇v + wν · σi∇(η∂iv)

)
dS
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=−
ˆ
BR′∩∂P

w(1− η)ν · Ihom∇v dS −
ˆ
BR′∩∂P

wν · σi∇(η∂iv) dS.

For the �rst term on the right-hand side we �nd that the relation∣∣∣∣ˆ
BR′∩∂P

w(1− η)ν · Ihom∇v dS
∣∣∣∣

=

∣∣∣∣ˆ
BR′∩P

∇ · (w(1− η)Ihom∇v) dx

∣∣∣∣ (3.89)

.
ˆ
BR′∩P

|(1− η)∇w · Ihom∇v|+ |w∇η · Ihom∇v| dx

.‖∇w‖L2(BR′∩P )‖∇v‖L2(BR′\BR′−3ρ)

+
1

ρ
‖w‖L2((BR′−2ρ\BR′−3ρ)∩P )‖∇v‖L2(BR′\BR′−3ρ)

holds. Notice that in the �rst step we have used the homogeneous Dirichlet
boundary data of w on ∂BR′ ∩P and in the second step that v solves (3.80).
Also, we have used that |Ihom| ≤ 1, which follows immediately from the
de�nition. We would then like to apply the inequality

1

ρ
‖w‖L2((BR′−2ρ\BR′−3ρ)∩P ) . ‖∇w‖L2(BR′∩P ), (3.90)

which, when combined with (3.89), gives∣∣∣∣ˆ
BR′∩∂P

w(1− η)ν · Ihom∇v dS
∣∣∣∣

.‖∇w‖L2(BR′∩P )‖∇v‖L2(BR′\BR′−3ρ)

.
( ρ
R

) 1
2d

R
d
2

( 
BR′

|∇uext|2 dx
) 1

2
(ˆ

BR′∩P
|∇w|2 dx

) 1
2

.

(3.91)

Here we have treated ‖∇v‖L2(BR′\BR′−3ρ) just like in (3.87).

In order to use (3.90) we notice that the trivial extension w0 of w onto P ,
de�ned as

w0(x) =

{
w(x) if x ∈ BR′ ∩ P
0 if x ∈ P \BR′,

is in H1(P ) and the harmonic extension w0
ext ∈ H1(Rd) satis�es the standard

Poincaré inequality

1

ρ
‖w0

ext‖L2(BR′\BR′−3ρ) . ‖∇w
0
ext‖L2(BR′). (3.92)
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To obtain (3.90) we index the holes of P that nontrivially intersect BR′ by
J ⊂ N; i.e. the holes are B1(xj) for j ∈ J . The right-hand side of (3.92) can
then be treated as

‖∇w0
ext‖2

L2(BR′)
≤ ‖∇w‖2

L2(BR′∩P ) +
∑
j∈J

‖∇w0
ext‖2

L2(B1(xj))
(3.93)

By Lemma 1 and the de�nition of the extension w0
ext we know that for each

hole B1(xj) the boundˆ
B1(xj)

|∇w0
ext|2 dx .

ˆ
B2(xj)\B1(xj)

|∇w0
ext|2 dx =

ˆ
(B2(xj)\B1(xj))∩P

|∇w|2 dx

holds, which thanks to the disjointness assumption on the holes of P allows
us to post-process (3.92) and (3.93) to give the desired (3.90).

We then treat the second boundary term on the right-hand side of (3.88).
For this we index the holes of P that intersect BR′−2ρ nontrivially by J ⊂ N.
Again employing the extension w0

ext from the previous paragraph, we then
use the divergence theorem and the de�nition of η to write:∣∣∣∣ˆ

∂P∩BR′
wν · σi∇(η∂iv) dS

∣∣∣∣
≤
∑
j∈J

∣∣∣∣∣
ˆ
∂B1(xj)∩BR′

w0
extν · σi∇(η∂iv) dS

∣∣∣∣∣
=
∑
j∈J

∣∣∣∣∣
ˆ
B1(xj)

∇ · (w0
extσi∇(η∂iv)) dS

∣∣∣∣∣ (3.94)

≤ sup
y∈BR′−ρ

|∇(η∂iv)(y)|
(ˆ

BR′

|∇w0
ext|2 dx

) 1
2
(ˆ

BR′∩P
|σ|2 dx

) 1
2

+ sup
y∈BR′−ρ

|∇ · ∇(η∂iv)(y)|
(ˆ

BR′

|w0
ext|2 dx

) 1
2
(ˆ

BR′∩P
|σ|2 dx

) 1
2

+
∑
j∈J

∣∣∣∣∣
ˆ
B1(xj)

w0
ext(∇ · σi) · ∇(η∂iv) dx

∣∣∣∣∣ .
The constant coe�cient regularity from Lemma 3 and the Poincaré inequal-
ity for functions with homogeneous Dirichlet boundary data applied to w0

ext
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allows us to treat the �rst and second terms on the right-hand as

sup
y∈BR′−ρ

|∇(η∂iv)(y)|
(ˆ

BR′

|∇w0
ext|2 dx

) 1
2
(ˆ

BR′∩P
|σ|2 dx

) 1
2

+ sup
y∈BR′−ρ

|∇2(η∂iv)(y)|
(ˆ

BR′

|w0
ext|2 dx

) 1
2
(ˆ

BR′∩P
|σ|2 dx

) 1
2

.R
d
2

(
R

ρ
+ 1 +

R2

ρ2

)(
R

ρ

)d
2
( 

BR′

|∇v|2 dx
) 1

2
(ˆ

BR′

|∇w0
ext|2 dx

) 1
2

δR.

(3.95)

We can complete this estimate by noticing again that, in fact, by Lemma 1
and the de�nition of w0

ext we have that(ˆ
BR′

|∇w0
ext|2 dx

) 1
2

.

(ˆ
BR′

|∇wext|2 dx
) 1

2

. (3.96)

To treat the third term on the right-hand side of (3.94) we work a bit
harder and use the equation (3.8). In particular, we can rewrite the term as∑

j∈J

∣∣∣∣∣
ˆ
B1(xj)

w0
ext(∇ · σi) · ∇(η∂iv) dx

∣∣∣∣∣
=
∑
j∈J

∣∣∣∣∣
ˆ
B1(xj)

w0
ext(Ihomei) · (∂iv∇η + η∇∂iv) dx

∣∣∣∣∣
=
∑
j∈J

∣∣∣∣∣
ˆ
B1(xj)

w0
ext(Ihomei) · ∂iv∇η dx

∣∣∣∣∣ ,
where in the last line we have used the equation for v. We then use Hölder's
inequality, the Poincaré inequality for functions with homogeneous Dirichlet
boundary data applied to w0

ext, (3.75) along with (3.79) applied to v, and
Lemma 1 to bound∑

j∈J

∣∣∣∣∣
ˆ
B1(xj)

w0
ext(Ihomei) · ∂iv∇η dx

∣∣∣∣∣
≤1

ρ

(ˆ
BR′\BR′−3ρ

|w0
ext|2 dx

) 1
2
(ˆ

BR′\BR′−3ρ

|∇v|2 dx

) 1
2

.
( ρ
R

) 1
2d

R
d
2

(ˆ
BR′

|∇w0
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) 1
2
( 

BR

|∇uext|2 dx
) 1

2
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.
( ρ
R

) 1
2d

R
d
2

(ˆ
BR′∩P

|∇w|2 dx
) 1

2
( 

BR

|∇uext|2 dx
) 1

2

Combining these calculations with (3.94) and (3.95) and the apriori esti-
mate ‖∇v‖L2(BR′) . ‖∇uext‖L2(BR′), which we obtain as a consequence of the
energy estimate for the equation

−∇ · Ihom∇(v − uext) = ∇ · Ihom∇uext in BR′,

v − uext = 0 on ∂BR′,

we �nd that∣∣∣∣−ˆ
∂P∩BR′

wν · σi∇(η∂iv) dS

∣∣∣∣
.R

d
2

((
R

ρ

)d
2+2

δR +
( ρ
R

) 1
2d

)( 
BR′

|∇uext|2 dx
) 1

2
(ˆ

BR′∩P

|∇w|2 dx
) 1

2

.

(3.97)

This �nishes our treatment of the boundary terms in the energy estimate of
w. We now combine (3.85), (3.91), and (3.97) to obtain

 
BR′∩P

|∇w|2 dx .
(
R

r

)d(( ρ
R

) 1
d

+

(
R

ρ

)d+4

δ2
R

) 
BR′

|∇uext|2 dx. (3.98)

Returning to the inequality (3.83) and further using the above apriori
estimate, we notice that the sum of the �rst and third terms can also be
bounded using Lemma 3 as 

Br

|(∇v −∇v(0))(Id +∇φ(IP , x))|2 dx+

 
BR′

|∇(η∂iv)φi(IP , x))|2 dx

.

(( r
R

)2

(δ2
R + 1) +

(
R

ρ

)d+2

δ2
R

) 
BR′

|∇uext|2 dx.

(3.99)

This observation in combination with (3.83), (3.98), δR ≤ 1 , and the relations
of all the various radii then yields that 

Br

|∇u−∇v(0) · (ei +∇φi(IP , x))|2 dx

.

(( r
R

)2

+

(
R

r

)d ( ρ
R

) 1
d

+
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)d(
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δR
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BR

|∇uext|2 dx.
(3.100)
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We post-process this estimate by choosing the width of the boundary layer
ρ such that

ρ

R
= min

(
1

8
, δ

d
(d+4)(d+1)

R

)
.

Plugging in this choice of ρ yields 
Br

|∇u−∇v(0) · (ei +∇φi(IP , x))|2 dx

.

(( r
R

)2

+

(
R

r

)d
(δ

1
(d+4)(d+1)

R + δ
d
d+1

R )

) 
BR

|∇uext|2 dx.

With (3.78) in-hand, one rephrases it in terms of the excess and �nds a
ratio of radii θ = R

r and minimal radius r∗ > 0 such that if R ≥ r ≥ r∗

the excess decay holds. To obtain the excess decay for any R ≥ r ≥ r∗α(IP )
one then iterates this estimate. As there are no fundamental di�erences
between the argument used here and that in the previous two chapters, we
omit this.
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Part II

A Pathwise Approach to a Quasilinear

Initial Value Problem
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Chapter 1

A Pathwise Approach to a Quasilinear Initial Value

Problem

1.1 Set-up and Overview of our Strategy

In this part of the thesis we are interested in developing a pathwise solution
theory for a quasilinear initial value problem, which is singular in the sense
that the data limits the regularity of the solution such that the nonlinear
terms of the equation have no classical meaning. In particular, assuming that
α ∈ (2

3 , 1) we are interested in constructing a continuous solution operator
for

∂2W − a(W )∂2
1W +W = f in R2

+ (1.1a)

W = Wint on ∂R2
+, (1.1b)

where a : R→ [λ, 1] for λ > 0 is regular, Wint ∈ Cα(R), and f ∈ Cα−2(R2).
Throughout this part all functions and distributions are assumed to be 1-
periodic in the x1-direction and f is, furthermore, 1-periodic in the x2-
direction. For an overview of the di�culties and the strategy we use in
this contribution the reader is asked to reference the introduction. In the
current section our main goal is to solidify our notation and formally state
our results.

1.1.1 De�nitions and Tools

We have already introduced the concept of modelledness in the introduction,
but, for the convenience of the reader, we repeat the de�nition here:

De�nition 1 (Modelledness). Let α ∈ (1
2 , 1) and Ω ⊆ R2. Assume that for

some I ∈ N we have functions (V 1(·, a0), ..., V I(·, a0)) such that V i : Ω ×
R→ R. A functionW : Ω→ R is said to be modelled after (V 1(·, a0), ..., V I(·, a0))
on Ω according to functions (a1, ..., aI) and (σ1, ..., σI) with σi, ai ∈ Cα(Ω)
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if there exists a function ν such that

MΩ := sup
x 6=y;x,y∈Ω

1

d2α(x, y)
(1.2)

|W (y)−W (x)− σi(x)(V i(y, ai(x))− V i(x, ai(x)))− ν(x)(y − x)1|

is �nite. We emphasise that here we use the Einstein summation convention
that repeated indices are summed over.
We say that a functionW is trivially modelled after (V 1(·, a0), ..., V I(·, a0))

according to (a1, ..., aI) if each σi = 0. Since α ∈ (1
2 , 1) this is equivalent to

the condition that W ∈ C2α(Ω), but additionally speci�es a choice for the
functions (a1, ..., aI).

For a discussion of this de�nition see the paragraphs following De�nition 2.1
in the introduction.

We have explained in the introduction that we expect the solution W of
(1.1) to be modelled after V (·, a0) solving

(∂2 − a0∂
2
1 + 1)V (·, a0) = f in R2

+, (1.3a)

V (·, a0) = Wint on ∂R2
+, (1.3b)

where this function decomposes as V (·, a0) = v(·, a0) + V (·, a0) for v(·, a0)
solving

(∂2 − a0∂
2
1 + 1)v(·, a0) = f in R2 (1.4)

and V (·, a0) solving

(∂2 − a0∂
2
1 + 1)V (·, a0) = 0 in R2

+, (1.5a)

V (·, a0) = Vint on ∂R2
+ (1.5b)

with the initial condition (1.5b) chosen as Vint = Wint − v(·, a0). Also ex-
plained in the introduction is that the solution W of (1.1) is obtained via
a �xed point argument that takes as input a solution theory for the linear
problem

(∂2 − a∂2
1 + 1)W = f in R2

+, (1.6a)

W = Wint on ∂R2
+. (1.6b)

The problem (1.6) is, in turn, treated via a perturbative ansatz in which we
�rst handle the forcing à la Otto and Weber and then show that the initial
condition can be enforced classically. In this thesis we treat the linear problem
(1.6) and develop all of the ingredients we need for the �xed point argument,
but leave the actual argument to an upcoming contribution. Really, given the
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results in this thesis, the �xed point argument can now be directly adapted
from the corresponding argument in [47].

When we treat (1.6) with the perturbative ansatz explained in the intro-
duction, in order to enforce the initial condition, we must handle the initial
value problem

(∂2 − aext∂2
1 + 1)U = 0 in R2

+, (1.7a)

U = Wint − u on ∂R2
+, (1.7b)

where u ∈ Cα(R2) is the solution of

(∂2 − aext∂2
1 + 1)u = f in R2 (1.8)

and aext is an extension of a to R2. Even though it is counterintuitive,
the initial value problems we treat in this contribution are sensitive to the
de�nition of the coe�cients also for negative times. This is a result of the
whole-space nature of the singular product, which is de�ned in terms of
convolutions on the whole-space.

Our treatment of (1.7) is again perturbative. In particular, we would like
to construct U by correcting the ansatz

q := V (·, ā(·)), (1.9)

where V (·, a0) solves (1.5) with initial condition Vint = Wint−u and ā solves

(∂2 − ∂2
1)ā = 0 in R2

+, (1.10a)

ā = a on ∂R2
+. (1.10b)

Notice that the choice of q as an ansatz is quite intuitive: The most straight-
forward choice of ansatz would be V (·, a(·)), but we would like to vary the
parameter a0 in a smooth way for which purpose we introduce ā. We choose
to de�ne ā without a massive term in order to ensure that ā ≥ λ.

As we have mentioned in the introduction, whenever we write Cα(R2) for
α > 0 we are referring to the parabolic Hölder space that is de�ned in terms
of the distance function

d(x, y) = |x1 − y1|+ |x2 − y2|
1
2 (1.11)

for any two x, y ∈ R2. We must still de�ne what we mean by “Cα” when
α ∈ (1, 2) and �Cα−2" when α ∈ (0, 1) ∪ (1, 2); here are the de�nitions:

De�nition 2 (Negative Hölder seminorm). Let α ∈ (0, 1)∪(1, 2). We de�ne
the Cα−2-seminorm of a function u as

[u]α−2 := inf
(u1,u2)

(
[u1]α + [u2]α

)
, (1.12)
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where the in�mum is taken over pairs of functions (u1, u2) such that u =
∂2

1u
1 + ∂2u

2. We may always assume that a near optimal pair (u1, u2) in the
above sense satis�es u1(0) = u2(0) = 0. When α ∈ (1, 2) we de�ne

[u]α := [∂1u]α−1. (1.13)

We notice below that for our purposes in this contribution it is (most likely)
possible to use a weaker version of (1.12), but for convenience in this thesis
we choose to use the de�nition given above.

As a side e�ect of losing periodicity in the x2-direction, we sometimes must
work with a local version of the standard Hölder seminorm.

De�nition 3 (Local Hölder seminorm). Let α ∈ (0, 1) ∪ (1, 2). We de�ne
local versions of the Cα and Cα−2-seminorms. In particular, for α ∈ (0, 1)
we let

[u]locα := sup
x,y∈R2 s.t. d(x,y)≤1

|u(x)− u(y)|
dα(x, y)

(1.14)

and if α ∈ (1, 2) then [u]locα is de�ned like (1.13), but with the local version
of the seminorm on the right-hand side. The de�nition (1.12) is adapted in
the same way.

Whenever we are only interested in the local properties of the Cα-seminorm
in the sense of wanting to bound the modulus of continuity, then having an
estimate for the local Cα-seminorm is su�cient. To avoid confusion, notice
that if we let

Cα
loc(R2) =

{
u |u ∈ Cα(Ω) for all Ω b R2

}
be the classical local Hölder space and

Cα
equicts =

{
u | [u]locα <∞

}
,

then clearly the inclusion Cα
equicts(R2) ⊂ Cα

loc(R2) holds.
Before moving on, we introduce some notation that we use throughout this

contribution. First, for a function u we use the convention

‖u‖ := ‖u‖L∞,

where the domain should always be clear from the context. Furthermore,
we will often consider families of functions that are parameterized by either
a0 ∈ [λ, 1] or a0, a

′
0 ∈ [λ, 1]; we use the notation

‖u(·, a0, a
′
0)‖j,k := ‖∂ja0∂

k
a′0
u(·, a0, a

′
0)‖

and ‖u(·, a0)‖j := ‖∂ja0u(·, a0)‖.
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We use the same convention for the Hölder norms and seminorms; i.e. we
write

‖u(·, a0, a
′
0)‖α,j,k := ‖∂ja0∂

k
a′0
u(·, a0, a

′
0)‖α,

‖u(·, a0)‖α,j := ‖∂ja0u(·, a0)‖α,
[u(·, a0, a

′
0)]α,j,k := [∂ja0∂

k
a′0
u(·, a0, a

′
0)]α,

and [u(·, a0)]α,j := [∂ja0u(·, a0)]α.

Of course, the analogous de�nitions can be written down for the local version
of the Hölder seminorm.

While De�nition 2 above is the standard de�nition that we use for the
negative Hölder seminorms appearing here, we will often also work with
an equivalent formulation, which is developed in Lemma 1 and relies on
convolution with a speci�c kernel (ψ1 already mentioned in the introduction)
at scales T ≤ 1. The convolution kernel that we choose to use is the same
as that used by Otto and Weber in [47] and is most easily de�ned in terms
of its Fourier transform in the sense that

ψ̂T (k) = exp(−T (k4
1 + k2

2)). (1.15)

This de�nition immediately implies that ψT is a Schwarz function. The
reason for choosing the kernel ψT is that it is the semigroup associated with
the elliptic operator ∂4

1 − ∂2
2 , which is positive and has the same relative

scaling between x1 and x2 as the parabolic operator ∂2 − ∂2
1 (+1). Usually,

throughout this exposition, we use the convention

(·)T = · ∗ ψT ;

occasionally, we even drop the parentheses and simply use the subscript T .
We now go down a laundry list of useful properties for ψT . To prove some

of these properties we rely on the change of coordinates

x̂ = (x̂1, x̂2) =

(
x1

T
1
4

,
x2

T
1
2

)
, (1.16)

which we use many times throughout this part of the thesis. Here is the list
of properties:

• Using (1.15) and the notation (1.16) we �nd that

ψT (x1, x2) = (T
1
4 )−3ψ1 (x̂1, x̂2) (1.17)

for any T > 0. This means that ‖ψT‖L1 = ‖ψ1‖L1.
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• (Bound on the moments of ψT ) For any i, j ≥ 0, α > 0, and y ∈ R2 we
have that ˆ

R2

|dα(x, y)||∂i1∂
j
2ψT (x− y)| dx . (T

1
4 )α−i−2j. (1.18)

To see this we may assume that y = 0. We then rescale using (1.16) and
writeˆ

R2

|dα(x, 0)||∂i1∂
j
2ψT (x)| dx =

ˆ
R2

(T
1
4 )α−i−2j|dα(x̂, 0)||∂i1∂

j
2ψ1(x̂)| dx̂,

which yields (1.18) after using that ψ1 is a Schwarz function.

• (Semigroup property of ψT ) For any distribution u and any two scales
t, T > 0 we have that (u ∗ ψt) ∗ ψT = u ∗ (ψt ∗ ψT ) and by (1.15),
furthermore, ψt ∗ ψT = ψt+T . This yields that

(ut)T = ut+T . (1.19)

• For any i, j ≥ 0 such that i+ j ≥ 1 and u ∈ Cα(R2) we have thatˆ
R2

∂i1∂
j
2u(y)ψT (x− y) dy =

ˆ
R2

(u(y)− u(x))∂i1∂
j
2ψT (x− y) dy

≤ [u]α

ˆ
R2

dα(x, y)∂i1∂
j
2ψT (x− y) dy

. [u]α(T
1
4 )α−i−2j,

(1.20)

where for the �rst equality we have used an integration by parts in which
the boundary terms vanish because ψT is a Schwarz function. The second
inequality follows from (1.18).

• (Monotonicity of the L∞-norm in terms of the convolution scale) For
any distribution u we �nd that for T ≥ t > 0 it holds that

‖u ∗ ψT‖ . ‖u ∗ ψt‖‖ψT−t‖L1 = ‖u ∗ ψt‖‖ψ1‖L1 . ‖u ∗ ψt‖, (1.21)

where we have used (1.19) and Young's inequality in the �rst inequality
and then (1.17).

We can now formulate an alternative version of the Cα−2-seminorm for
α ∈ (0, 1). An analogue of the following lemma is a necessary component for
linking the probabilistic and deterministic components of the solution theory
in [47] and, therefore, also here.

Lemma 1. Let α ∈ (0, 1) and Ω ⊆ R2 be convex. Then a distribution f on
R2 that is periodic in the x1-direction satis�es

[f ]locα−2 . sup
T≤1

(T
1
4 )2−α‖fT‖Ω (1.22)
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and

[f ]α−2;Ω & sup
T≤1

(T
1
4 )2−α‖fT‖Ω. (1.23)

If, in addition to the convexity of Ω, we have that ‖f ∗ ψε‖Ω < ∞ for all
ε > 0, then

[f ]α;Ω . sup
T≤1

(T
1
4 )−α‖fT‖Ω. (1.24)

As already alluded to above, this lemma is an analogue of Lemma 9 in [47].
As we will see in our proof of this result in Section 5, things are complicated
by the loss of periodicity in the x2-direction. In particular, this makes it
impossible to use the method of proof in [47] and we instead adapt an argu-
ment from a work by Ignat and Otto [36] in which they analyze a singular
version of a nonlinear elliptic equation, which they derive as a model for the
magnetization ripple. In fact, compared to the work of Ignat and Otto we
are in some sense in a slightly favorable situation because their convolution
kernel is not a Schwarz function.

To reiterate, this alternative formulation of the Cα−2-seminorm is useful
when working with the singular products. In particular, the family of o�ine
reference products

{
v(·, a0) � ∂2

1v(·, a′0)
}
indexed by a0, a

′
0 ∈ [λ, 1] that we

borrow from [47] comes with a commutator estimate of the form

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥∂ia0∂ja′0[v(·, a0), (·)T ] � ∂2
1v(·, a′0)

∥∥∥ . 1. (1.25)

As we will see below, this family of o�ine products only exist almost surely for
a random forcing f satisfying certain criterion (see Section 1.2). By the above
lemma we intuitively think of (1.25) as C2α−2-control for the commutator.
Inputting these reference products into the reconstruction lemmas, in order
to de�ne a new singular product we then pass to the limit in a sequence of
distributions that are uniformly controlled in the sense of the right-hand side
of (1.22). Being able to pass to the limit then relies on the equicontinuity
that is obtained from the left-hand side of (1.22)1.

In the current contribution we treat (1.6) with the goal of using a �xed
point argument to treat (1.1). As mentioned in the introduction this means

1Here it becomes clear that there is some ambiguity in our de�nition of the Cα−2-seminorm. In
particular, the expression that we use should do two things: 1) It should satisfy an analogue of Lemma
1 and 2) For a sequence of distributions uniform control of the Cα−2-seminorm should allow for the
application of the Arzelà-Ascoli theorem to pass to a limit. Another choice that would work and which
would simplify the proof of Lemma 1 would be the weaker seminorm

[f ]locα−2 = inf
(u1,u2,u3)

(
[u1]locα + [u2]locα + [u3]locα + ‖u3‖

)
,

where the in�mum is taken over triplets (u1, u2, u3) such that u = ∂21u
1 + ∂2u

2 + u3.
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that we would like to think of a = a(W ), where the a on the left-hand side is
the coe�cient �eld in (1.6), the a on the right-hand side is that in (1.1), and
W is sampled from the solution space of (1.6). For the purpose of de�ning
the requisite singular products we should choose the assumptions on the non-
linearity a in (1.1) such that if W is modelled after some family of functions{
V (·, a0)

}
then a(W ) is as well. To motivate the correct assumptions on a

we paraphrase the corresponding lemma from [47]:

�Lemma 1 of [47]." i) Supposed thatW is modelled after V (·, a0) according
to a and σ both of class Cα(R2) with modelling constantM and, furthermore,
that the function b is twice di�erentiable. Then b(W ) is also modelled after
V (·, a0) on R2, but according to a and µ := b′(W )σ with modelling constant
M̃ bounded as

M̃ . ‖b′‖M + ‖b′′‖[W ]2α. (1.26)

ii) Suppose for i = 0, 1 that the function Wi is modelled after V i(·, a0) ac-
cording to ai and σi with modelling constant Mi. Furthermore, assume that
W1 − W0 is modelled after (V 1(·, a0), V 0(·, a0)) according to (a1, a0) and
(σ1,−σ0) with modelling constant δM and that b is three times di�eren-
tiable. Under these assumptions we �nd that b(W1) − b(W0) is modelled
after (V 1(·, a0), V 0(·, a0)) according to (a1, a0) and (µ1 := b′(W1)σ1,−µ0 :=
−b′(W0)σ0) with modelling constant δM̃ and ‖b(W1)− b(W0)‖α bounded as

δM̃ . ‖b′‖δM + ‖b′′‖max
i

[Wi]α[W1 −W0]α

+
1

2
‖b′′′‖‖W1 −W0‖max

i
[Wi]

2

+ ‖b′′‖‖W1 −W0‖max
i
Mi

and ‖b(W1)− b(W0)‖α . ‖b′‖‖W1 −W0‖α + ‖b′′‖‖W1 −W0‖max
i

[Wi]α

For the proof of this result we ask that the reader consults the paper of Otto
and Weber. As we will see in Section 7, the second part of this lemma is
used for the treatment of the quasilinear problem (1.1). For now we use this
lemma to motivate the following assumptions on the nonlinearity a in (1.1):

a ∈ [λ, 1] and ‖a′‖, ‖a′′‖, ‖a′′′‖ ≤ 1, (1.27)

where the �rst assumption is the standard non-degeneracy condition.
As we have already mentioned, throughout this contribution we will extend

various functions de�ned only for positive times to negative times. We will
do this in two ways:
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De�nition 4 (Extensions to negative times). For a function f de�ned on
R2

+ we use f̃ to denote the even-re�ection across the axis {x |x2 = 0} and
fE to denote the trivial extension by 0. So, in particular, we have that

f̃(x) :=

{
f(x) if x ∈ R2

+

f(x̃) if x ∈ R2
−,

where we use the convention x̃ = (x1, |x2|) for x = (x1, x2), and

fE(x) :=

{
f(x) if x ∈ R2

+

0 if x ∈ R2
−.

1.1.2 O�ine Products Borrowed from Otto and Weber

We now essentially summarize Section 3 of [47] and, in doing so, �nd that
their arguments can be used to de�ne the o�ine products v (·, a0)�∂2

1v (·, a′0)
for v(·, a0) solving (1.4) almost surely assuming a random forcing f satisfying
conditions to be speci�ed below. As noted in the introduction, there are two
di�erences between their setting (in which vOW (·, a0) solves

(∂2 − a0∂
2
1)vOW (·, a0) = P (f) on R2, (1.28)

where P denotes the projection onto periodic mean-free functions) and ours:
1) The forcing in (1.4) is not assumed to have vanishing average and 2) We
have a massive term. Since the arguments in [47] are lengthy and compli-
cated, we do not repeat their entire exposition here and instead speci�cally
indicate which steps in their proofs are a�ected by the di�erences in the cur-
rent setting. For more details on their results the reader can consult Section
3 of [47] and for proofs Section 5.

Just as in [47], throughout this section we assume that f is a stationary
centered space-time periodic Gaussian distribution that can be expressed in
terms of its Fourier series as

f(x) =
∑

k∈(2πZ)2

√
Ĉ(k)eik·xZk, (1.29)

where the coe�cients
√
Ĉ are real-valued, non-negative, and even in k and

the Zk are complex-valued centered Gaussians that, aside from the conditions
that Zk = Z−k and 〈ZkZ−l〉 = δk,l, are independent. In their exposition, Otto
and Weber encode the standard regularity assumption on f , i.e. that

sup
T≤1

(T
1
4 )2−α‖fT‖ . 1, (1.30)
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in terms of the Fourier coe�cients; in particular, they assume that there exist
constants λ1, λ2 ∈ R and α ∈ (0, 1) such that

λ1 + λ2 = −1 + 2α and λ1,
λ2

2
< 1 (1.31)

and for which

Ĉ(k) ≤ 1

(1 + |k1|)λ1(
√

1 + |k2|)λ2
(1.32)

for any k = (k1, k2) ∈ (2πZ)2. The di�erence in our setting introduced due
to the lack of a projection on the right-hand side of (1.4), is summarized as
the lack of the condition that Ĉ(0) = 0. As discussed in the introduction,
the massive term in (1.4) instead provides a bound on Ĉ(0) in terms of the
universal constant in (1.30), which is su�cient for all of Otto and Weber's
arguments in this section to still work.

Of course, the conditions listed above for the C(k) are not always equiva-
lent to (1.30) and the assumptions on the random distribution f are already
used to show the relation between the two conditions. In particular, we sum-
marize Lemma 6 of [47] as:

�Lemma 6 of [47]." Let f be a stationary centered space-time periodic
Gaussian distribution represented as (1.29) with coe�cients satisfying (1.32)
for some constants λ1, λ2 ∈ R and α ∈ (0, 1). We use the notation fT =
f ∗ ψ′T , where ψ′ is any Schwarz function satisfying

´
R2 ψ

′ dx = 1. Then for
any p <∞ and α′ < α the bound〈(

sup
T≤1

(T
1
4 )2−α′‖fT‖

)p〉 1
p

. 1 (1.33)

holds. Furthermore, for κ ∈ [0, 4] there is the bound〈(
sup
ε∈(0,1]

sup
T≤1

(T
1
4 )2−α′+κ(ε

1
4 )−κ‖(fε)T − fT‖

)p〉 1
p

. 1. (1.34)

Notice that in both (1.33) and (1.34) the universal constants depends on α′

and p.

The combination of (1.33) and (1.34) shows that in fact the bound (1.33)
holds for f replaced by fε = f ∗ ψ′ε uniformly in ε > 0. Notice also that
the convolution kernel ψ′ used here must not necessarily be the ψ1 used in
the deterministic arguments. In particular, the speci�c choice of ψ1 becomes
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important when we start needing the semigroup property (e. g. in the recon-
struction lemmas) or in the proof of Lemma 1.

Throughout the construction of the o�ine products in [47], one writes
vOW (·, a0) in terms of the space-time periodic zero-average Green's function
corresponding to the operator ∂2 − a0∂

2
1 . Of course, in our setting this is

replaced by expressing v(·, a0) in terms of the space-time periodic Green's
function of ∂2 − a0∂

2
1 + 1. This can easily be determined in terms of the

coe�cients of its Fourier series, which are given by

Ĝ(k, a0) =
1

a0k2
1 − ik2 + 1

=
a0k

2
1 + ik2 + 1

a2
0k

4
1 + 2a0k2

1 + k2
2 + 1

. (1.35)

This is slightly di�erent than (132) in [47] due to the massive term. We can
then write

v̂(k, a0) =
1

a0k2
1 − ik2 + 1

f̂(k)

and ∂̂2
1v(k, a0) =

k2
1

a0k2
1 − ik2 + 1

f̂(k).

(1.36)

Just as in [47] we can observe that de�ning the o�ine products ∂ia0∂
j
a′0
v(·, a0)�

∂2
1v(·, a′0) for i, j > 0 is essentially the same as for i = j = 0 since for any

number of parameter derivatives the symbol of the Fourier multipliers are
bounded (see (133) of [47]).

The general procedure of Otto and Weber for de�ning their o�ine products
is to regularize the terms via convolution with ψ′ε (already introduced in
Lemma 6 of [47]), multiply the regularized terms, and then to show that,
under the assumptions on f listed above, the regularized products can almost
surely be renormalized so that they converge as ε → 0. In particular, using
the notation

c(2)(ε, a0, a
′
0) := 〈vε(·, a0)∂

2
1vε(·, a′0)〉, (1.37)

where 〈·〉 denotes the expectation, they show that for f satisfying the as-
sumptions almost surely the renormalized products

vε(·, a0) � ∂2
1vε(·, a′0) := vε(·, a0) � ∂2

1vε(·, a′0)− c(2)(ε, a0, a
′
0) (1.38)

and the corresponding commutators

[vε(·, a0), (·)T ] � ∂2
1vε(·, a′0) = vε(·, a0)(∂

2
1vε(·, a′0))T − (vε(·, a0)∂

2
1vε(·, a′0))T

(1.39)

converge and satisfy the appropriate estimates. Of course, then they de�ne

v(·, a0) � ∂2
1v(·, a′0) := lim

ε→0
vε(·, a0) � ∂2

1vε(·, a′0). (1.40)
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In [47] the authors also give a speci�c expression for c2
ε based on (1.35) in

the sense of (1.36) and discuss the convergence of these constants as ε→ 0.
Since the Green's function has changed due to the presence of a massive term,
this result will change as well. In particular, their Lemma 7 is replaced by:

�Almost Lemma 7 of [47]." For any ε > 0 we have that

c(2)(ε, a0, a
′
0) := 〈vε(·, a0)∂

2
1vε(·, a′0)〉

=
∑

k∈(2πZ)2\{0}

(−a0a
′
0k

4
1 + k2

2 − (a0 + a′0)k
2
1)k2

1 Ĉ(k)|(ψ′ε)2(k)|
(a2

0k
4
1 + 2a0k2

1 + k2
2 + 1)((a′0)

2k4
2 + 2a′0k

2
1 + k2

2 + 1)
.

(1.41)

The proof of (1.41) follows from the proof of Lemma 7 in [47] by simply
replacing their (132) by our (1.35).

The main result of Otto and Weber in which they pass to the limit in (1.38)
and (1.39) is the following lemma, in which we have replaced vOW (·, a0) by
v(·, a0).

�Almost Proposition 2 / Part i) of Theorem 1 of [47] " Let f
be a centered, one-periodic, stationary Gaussian random distribution for
which there exist λ1, λ2 > 0 and α ∈ (0, 1) such that (1.32) holds. Un-
der these assumptions we �nd that for i, j ≥ 0 the renormalized products
∂ia0∂

j
a′0
vε(·, a0) � ∂2

1vε(·, a′0) de�ned in terms of (1.38) converge almost surely

as ε → 0 uniformly in the parameters a0 and a′0 in every Cα′−2 space for
α′ < α. For every p > 0 we then have that〈(

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′

∥∥∥∂ia0∂ja′0[v(·, a0), (·)T ] � ∂2
1v(·, a′0)

∥∥∥)p〉 1
p

. 1,

(1.42)

where the universal constant depends on i, j, α′, and p.

The modi�cation of the argument found in [47] is so minor that there is no
new content here as opposed to Proposition 2 of [47] (which is then used in
part i) of Theorem 1 in [47]). We only even mention the modi�cation for
completeness since this is a thesis.

The main tool that Otto and Weber use to obtain the convergence men-
tioned above and (1.42) is their Lemma 8, which they then use in the form of
their Corollary 4. Replacing their vOW (·, a0) by v(·, a0) we essentially quote
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their result as:

�Almost Lemma 8/ Corollary 4 of [47]" Assume that we have f satis-
fying the same assumptions as in the previous statement and let ε > 0 and
a0, a

′
0 ∈ [λ, 1]. Using the notation (1.38) and (1.39) we then �nd that for

i, j ≥ 0 the bound〈(
[∂ia0vε(·, a0), (·)T ] � ∂ja′0∂

2
1vε(·, a′0)

)2
〉 1

2

. (T
1
4 )2α−2 (1.43)

holds and additionally for 0 ≤ κ � 1 (where “ � ” may depend on λ1 and
λ2) we have that〈(

∂ε

([
∂ia0vε(·, a0), (·)T

]
� ∂ja′0∂

2
1vε(·, a′0)

))2
〉 1

2

.
(T

1
4 )2α−2−κ

ε1−
κ
4

. (1.44)

The proof of this result relies on the boundedness of the symbol of the Fourier
multiplier corresponding to convolution with the Green's function (possibly
with parameter derivatives). Since we have already observed above that
this boundedness still holds, their argument does not undergo any relevant
changes when being adapted to our current setting. We remark that in the
work of Otto and Weber the renormalization of the classical products is
necessary in the proof of Lemma 8.

In the �rst two steps of their proof of Proposition 2 they use the assumed
stationarity on f , the equivalence of moments of random variables in the sec-
ond Wiener chaos (over the Gaussian �eld f), the Sobolev inequality in terms
of parameter derivatives, and Fubini's theorem (to switch e. g. an integration
over a0 and the expectation) to upgrade (1.43) and (1.44) to〈(

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′

∥∥∥∂ia0∂ja′0[vε(·, a0), (·)T ] � ∂2
1vε(·, a′0)

∥∥∥)p〉 1
p

. 1

(1.45)

and〈
sup

a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′

(
∂ε

([
∂ia0vε(·, a0), (·)T

]
� ∂ja′0∂

2
1vε(·, a′0)

))p〉 1
p

. ε
κ
4−1.

(1.46)

The results (1.45) and (1.46) are then post-processed in Step 3 using Jensen's
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inequality and the triangle inequality in Lp to give〈(
sup
ε∈(0,1]

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′

∥∥∥∂ia0∂ja′0[vε(·, a0), (·)T ] � ∂2
1vε(·, a′0)

∥∥∥)p〉 1
p

. 1,

(1.47)

where we emphasize that now the supremum over ε ∈ (0, 1] is included. From
there, in Step 5 the authors show that for all p < ∞, α′ < α, κ � 1, and
with the notation

A(T, a0, a
′
0, ε) = ∂ia0∂

j
a′0

[vε(·, a0), (·)T ] � ∂2
1vε(·, a′0),

there exists a Hölder estimate of the form〈(
sup

ε1 6=ε2∈(0,1]

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α′+κ|ε2 − ε1|−

κ
4

× ‖A(T, a0, a
′
0, ε1)− A(T, a0, a

′
0, ε2)‖

)p〉 1
p

. 1.

(1.48)

To conclude, in their Step 6 they then write

(vε � ∂2
1vε)T = vε(∂

2
1vε)T − [vε, (·)T ] � ∂2

1vε

and notice that using their analogue of Lemma 1 along with the bounds
(1.33), (1.34), (1.47), and (1.48) they can pass to the limit ε→ 0 in Cα−2(R2).

1.1.3 Summary of the Construction of the New Singular Products

To construct a solution operator for the quasilinear problem (1.1) we require
two new families of reference products:

1) The reference products
{
F � ∂2

1 Ṽ (·, a0)
}

indexed by a0 ∈ [λ, 1], where

F ∈ Cα(R2) and V (·, a0) solves (1.5) with Vint ∈ Cα(R).

2) The reference products
{
Ṽ (·, a0) � ∂2

1v(·, a′0)
}
indexed by a0, a

′
0 ∈ [λ, 1].

From these building blocks we can de�ne all of the reference products men-
tioned in the introduction. As we have already discussed, in order to treat
the linear problem (1.6), it is only necessary to construct the �rst family of
reference products. However, since our �nal goal is to treat the quasilinear
problem, we also construct the second new family of reference products. In
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order to keep things streamlined, we move all of our work on the singular
product used for the quasilinear problem to an appendix in Section 6. This
appendix contains the construction of the second family of reference prod-
ucts, the reconstruction lemma that allows us to swap out the �rst factor
of the reference products, and a corollary in which we put the �rst recon-
struction lemma into the form that we plan to use in our treatment of the
quasilinear problem. We apply this corollary in Theorem 2 (see Section 1.4)
in order to provide the main step necessary for the upcoming �xed point
argument.

As we having already tried to emphasize in the introduction, the main
take-away message from our construction of the new reference products is
that these products are actually classical. In particular, it seems that in
order to address the well-posedness of (1.1) à la Otto and Weber, we do not
require any new stochastic bounds. In particular, using the notation

V
ext

(·, a0) = (v + ṼWint−v(·,a0))(·, a0), (1.49)

where the subscript “Wint − v(·, a0)” speci�es the initial condition in (1.5),

we should think of the reference products V
ext

(·, a0) � ∂2
1V

ext
(·, a′0) indexed

by a0, a
′
0 ∈ [λ, 1] (already mentioned in the introduction) as classical per-

turbations of the o�ine products that we borrow from Otto and Weber. In
particular, we simply de�ne the reference products in a linear way:

V
ext

(·, a0) � ∂2
1V

ext
(·, a′0)

:= V
ext

(·, a0) � ∂2
1 ṼWint−v(·,a′0)(·, a′0) + ṼWint−v(·,a0)(·, a0) � ∂2

1v(·, a′0)
+ v(·, a0) � ∂2

1v(·, a′0),

where the �rst term on the right-hand side is de�ned via �1)" above, the
second term is de�ned via �2)", and the third term is borrowed from Otto
and Weber as detailed in the previous subsection.

We construct the �rst family of new reference products as an application
of the following general lemma:

Lemma 2. Let α ∈ (0, 1). Assume that F ∈ Cα(R2) and for G, a function
de�ned on R2, there exists a constant C(G) ∈ R satisfying

|∂2
1G(x)| . C(G)(|x2|

α−2
2 + |x2|

2α−2
2 ) (1.50)

for every x ∈ R2. Under these assumptions the product F∂2
1G is well-de�ned

as a distribution on R2 and

sup
T≤1

(T
1
4 )2−2α‖ [F, (·)T ] � ∂2

1G‖ . C(G)[F ]locα . (1.51)
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In order to obtain the �rst family of new reference products we would like
to make the choice G = Ṽ (·, a0) for �xed a0 ∈ [λ, 1]. As we will see below,
this choice of G actually only requires the factor with growth |x2|

α−2
2 on the

right-hand side. The factor of growth |x2|
2α−2

2 is included in (1.50) because
we will in one step of Proposition 2 consider the case G = q̃ with q as in
(1.9).

The admissibility of the choice G = Ṽ (·, a0) depends on the �rst of the
bounds derived in the next lemma. The next lemma, while only containing
elementary estimates, can be viewed as the key ingredient that allows us to
extend the analysis of Otto and Weber to the initial value problem setting.

Lemma 3 (Semigroup bounds). Let α ∈ (0, 1) and V (·, a0) solve (1.5) with
initial condition Vint ∈ Cα(R). Then the following observations hold:

i) For 2 ≥ k ≥ 0 and j ≥ 0 such that k + j ≥ 1 the ∂ja0∂
k
1V (·, a0) are

well-de�ned distributions. Furthermore, for x ∈ R2
+ they satisfy

sup
a0∈[λ,1]

|∂ja0∂
k
1V (x, a0)| . [Vint]α x

α−k
2

2 . (1.52)

ii) For j ≥ 0 and a �xed time x2 ∈ R+ we have the L∞-estimate

sup
a0∈[λ,1]

‖∂ja0V (·, x2, a0)‖ . e−x2‖Vint‖. (1.53)

iii) For 0 ≤ j ≤ 3 the relation

[∂ja0V (·, a0)]α . ‖Vint‖α (1.54)

holds.

iv) For 0 ≤ j ≤ 1 and x, y ∈ R2
+ we have that

sup
a0∈[λ,1]

|∂ja0V (x, a0)− ∂ja0V (y, a0)|

. ‖Vint‖α(|x2|−
α
2 + |y2|−

α
2 )d2α(x, y).

(1.55)

v) If V (·, a0) solves (1.5) without the massive term, then the estimates
(1.52) and (1.55) still hold. The estimate (1.53) still holds in a modi�ed
form; in particular, there is no factor of e−x2 on the right-hand side.
Also, (1.54) holds in a modi�ed form in the sense that the right-hand
side is the seminorm [Vint]α.

With Lemma 3 in-hand, we are then in the position to post-process Lemma
2 and construct the �rst of the families of new reference products:
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Corollary 1 (New reference products for the linear problem ). Let α ∈ (0, 1),
F ∈ Cα(R2), and V (·, a0) solve (1.5) with initial condition Vint ∈ Cα(R).
We then �nd that the product F∂2

1 Ṽ (·, a0) is well-de�ned as a distribution
on R2 for any a0 ∈ [λ, 1] and the bound

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α‖ [F, (·)T ] � ∂2

1 Ṽ (·, a0)‖ . [Vint]α[F ]locα (1.56)

holds.

Right away, since it is an important tool throughout this entire contribu-
tion, we mention that Lemma 3 is proved mainly by expressing V (·, a0) in
terms of the heat-kernel; i. e., using the notation

G(a0, x1, x2) =
1

(4πa0x2)
1
2

e
−x21
4x2a0

−x2, (1.57)

for any x ∈ R2
+ we write

V (x, a0) =

ˆ
R
Vint(y)G(a0, x1 − y, x2)dy. (1.58)

Often, we will use the convenient change of variables z = x1−y
(4x2a0)

1
2
and the

relations

∂z

∂y
=

−1

(4x2a0)
1
2

and
∂z

∂a0
= −1

2
za−1

0 . (1.59)

With the �rst new family of reference products constructed, on the level of
the linear problem (1.6) we can then move to the reconstruction lemmas. Re-
call that for the quasilinear problem (1.1) we will require two reconstruction
lemmas, but for the linear problem (1.6) given our assumptions we only need
the second reconstruction lemma. As already stated, we put the �rst recon-
struction lemma and the construction of the second family of new reference
products into the appendix. For now, we state the second reconstruction
lemma:

Lemma 4 (Modi�ed Lemma 4 of [47]). Let α ∈ (2
3 , 1) and I ∈ N. We have

F ∈ Cα(R2), I families of functions {w1(·, a0), ..., wI(·, a0)}, I families of
distributions

{
F � ∂2

1w1(·, a0), ...., F � ∂2
1wI(·, a0)

}
, and I constants Ni ∈ R

such that the bounds

sup
a0∈[λ,1]

[wi(·, a0)]α,1 ≤ Ni (1.60)

and sup
T≤1

(T
1
4 )2−2α sup

a0∈[λ,1]

∥∥[F, (·)T ] � ∂2
1wi(·, a0)

∥∥
1
≤ NNi (1.61)
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hold. Then for a function u ∈ Cα(R2) that is modelled after (w1, ..., wI)
according to a ∈ [λ, 1] such that [a]α ≤ 1 and (σ1, ..., σI) all of class Cα,
there exists a unique distribution F � ∂2

1u such that

lim
T→0
‖ [F, (·)T ] � ∂2

1u− σiE [F, (·)T ] � ∂2
1wi‖ = 0, (1.62)

where E denotes the evaluation of a function of (x, a0) at (x, a(x)). The
distribution F � ∂2

1u has �nite local Cα−2- seminorm and satis�es the bound

sup
T≤1

(T
1
4 )2−2α‖ [F, (·)T ] � ∂2

1u‖ . [F ]αM + ‖σi‖αNNi. (1.63)

In this lemma we assume that all functions and distributions are periodic in
the x1-direction.

The proof of this lemma, while essentially the same as in [47], is included
for completeness. There are small di�erences due to the loss periodicity in
the x2-direction, but they are negligible and do not fundamentally alter the
argument. Therefore, occasionally, when the arguments of [47] remain un-
changed and their omission does not detract from an understanding of the
bigger picture, we refer to [47] for details.

1.1.4 Discussion and Statement of our Results

Carrying out our analysis of (1.6) via the perturbative ansatz that we have
discussed in detail in the introduction and above, we obtain the following:

Theorem 1 (Analysis of the Linear Problem). Let α ∈
(

2
3 , 1
)
.

i) (Construction of Solution Operator) Assume that we are given:

• A space-time periodic distribution f and a constant N0 ∈ R such that

sup
T≤1

(T
1
4 )2−α‖fT‖ ≤ N0. (1.64)

• A function aext ∈ Cα(R2) that is periodic in the x1-direction and satis�es
aext ∈ [λ, 1] and [aext]α � 1. Furthermore, aext|R2

+
= a on R2

+.

• A periodic function Wint ∈ Cα(R) and a constant N int
0 ∈ R such that

‖Wint‖α ≤ N int
0 . (1.65)
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• A family of distributions
{
aext � ∂2

1v(·, a0)
}
indexed by a0 ∈ [λ, 1] and a

constant N ∈ R such that [aext]α ≤ N ≤ 1 and

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[aext, (·)T ] � ∂2
1v(·, a0)

∥∥
2
. NN0; (1.66)

furthermore, for every a0 ∈ [λ, 1] it holds that

sup
T≤1

(T
1
4 )2−α ∥∥aext � ∂2

1v(·, a0)
∥∥ <∞. (1.67)

Under these assumptions there exists a solution W ∈ Cα(R2
+) of

(∂2 − a � ∂2
1 + 1)W = f in R2

+, (1.68a)

W = Wint on ∂R2
+ (1.68b)

that may be decomposed as W = u+ U , where u ∈ Cα(R2) solves

(∂2 − aext � ∂2
1 + 1)u = f in R2 (1.69)

and is modelled after v(·, a0) solving (1.4) according to aext on R2 and U ∈
Cα(R2

+) solves

(∂2 − a � ∂2
1 + 1)U = 0 in R2

+, (1.70a)

U = Wint − u on ∂R2
+ (1.70b)

and is modelled after V (·, a0) solving (1.5) with Vint = Wint−v(·, a0) accord-
ing to a on R2

+. The solution U is, furthermore, decomposed as U = q + w

for q as in (1.9) and w ∈ C2α(R2
+) such that w = 0 on ∂R2

+. The solution
W is unique within the class of functions admitting such as splitting.
We, furthermore, �nd that

‖W‖α . N0(N + 1) +N int
0 (1.71)

and W ext = u+ q̃ +wE is modelled after (v + Ṽ )(·, a0) according to aext on
R2 such that

M . (N + 1)(N0 +N int
0 ). (1.72)

ii) (Stability) Let i, j = 0, 1. Assume that we are given:

• Space-time periodic distributions fi satisfying (1.64) and a constant δN0 ∈
R such that

sup
T≤1

(T
1
4 )2−α‖(f1 − f0)T‖ ≤ δN0. (1.73)
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• Two functions aexti ∈ Cα(R2) satisfying the assumptions of part i) and
a constant δN ∈ R such that

‖aext1 − aext0 ‖α ≤ δN. (1.74)

• Families of products
{
aexti � ∂2

1vj(·, a0)
}
indexed by a0 ∈ [λ, 1] satisfying

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[aexti , (·)T ] � ∂2
1v0(·, a0)− [aexti , (·)T ] � ∂2

1v1(·, a0)
∥∥

1

≤ NδN0,

(1.75)

and

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[aext0 , (·)T ] � ∂2
1vi(·, a0)− [aext1 , (·)T ] � ∂2

1vi(·, a0)
∥∥

1

≤ δNN0.

(1.76)

• Periodic functions Wint,i ∈ Cα(R) satisfying (1.65) and δN int
0 ∈ R sat-

isfying

‖Wint,1 −Wint,0‖α ≤ δN int
0 . (1.77)

Under these assumptions, denoting Wi as the solution of (1.68) provided
by i) that corresponds to fi, Wint,i, and aexti , we �nd that

‖W1 −W0‖α . (N0 +N int
0 )δN + δN0(N + 1) + δN int

0 (1.78)

and u1+ q̃1+(w1)
E−(u0+ q̃0+(w0)

E) is modelled after ((v1+Ṽ1)(·, a0), (v0+
Ṽ0)(·, a0)) according to (aext1 , aext0 ) and (1,−1) on R2 such that the modelling
constant δM satis�es

δM . δN(N0 +N int
0 + 1) + δN0(N + 1) + δN int

0 . (1.79)

While it may already be clear, we again specify the singular products used
in the initial value problem (1.68), the equation (1.69), and the initial value
problem (1.70). We go backwards and start with (1.70). Here, we know that
q̃+wE is modelled after Ṽ (·, a0), which allows us to de�ne aext � ∂2

1(q̃+wE)
using Lemma 4 and the reference products from Corollary 1. The product
a � ∂2

1U in (1.70) is then de�ned as

a � ∂2
1U := aext � ∂2

1

(
q̃ + wE

)
|R2

+
. (1.80)

The singular product used in (1.69) is rather obvious; in particular, since u
is modelled after v(·, a0), we can obtain aext � ∂2

1u via Lemma 4 taking the
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reference products aext � ∂2
1v(·, a0) as input. Lastly, the product a � ∂2

1W is
obtained as

a � ∂2
1W := aext � ∂2

1(u+ q̃ + wE)|R2
+
, (1.81)

where the product on the right-hand side is obtained via Lemma 4 with the
reference products aext �∂2

1(v+ Ṽ )(·, a0) := aext �∂2
1v(·, a0)+aext �∂2

1V (·, a0)
as input.

As we have discussed previously, the proof of Theorem 1 mainly comes
down to combining Proposition 1, in which we take care of the forcing, and
Proposition 2, in which we enforce the initial condition. The proof of our
Proposition 1 can be seen as a variation on the proof of Proposition 1 in [47]
in the sense that we substitute for the periodicity of the coe�cients in the
x2-direction with a massive term in (1.82). The full statement of Proposition
1 is:

Proposition 1 (Modi�ed Proposition 1 of [47]). Let α ∈
(

2
3 , 1
)
. For both

parts of this proposition we adopt the assumptions and notations from The-
orem 1.

i) (Construction of Solution Operator) There exists a unique u ∈ Cα(R2)
that is modelled after v(·, a0) according to aext such that

(∂2 − aext � ∂2
1 + 1)u = f in R2. (1.82)

We may, furthermore, bound the modelling constant M and Cα-norm of u
as

M + ‖u‖α . N0(N + 1). (1.83)

ii) (Stability) Let i = 0, 1. Denoting the solutions given by the part i)
corresponding to aexti and fi as ui, we �nd that u1 − u0 is modelled after
(v1(·, a0), v0(·, a0)) according to (aext1 , aext0 ) and (1,−1). The modelling con-
stant δM and the Cα-norm of u1 − u0 satisfy

δM + ‖u0 − u1‖α . δN(N0 + 1) + (N + 1)δN0. (1.84)

Below comes the complete statement of Proposition 2. Indeed, this propo-
sition turns out to follow in an entirely classical manner from the bounds
proved in Lemma 3. Here is the statement:
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Proposition 2. Let α ∈
(

2
3 , 1
)
.

i) (Construction of Solution Operator) Assume that we are given a periodic
initial condition Vint ∈ Cα(R) and aext ∈ Cα(R2) satisfying the criterion of
part i) of Theorem 1.
Under these assumptions there exists a unique function U ∈ Cα(R2

+) such
that

(∂2 − a � ∂2
1 + 1)U = 0 in R2

+, (1.85a)

U = Vint on ∂R2
+ (1.85b)

and U may be decomposed as U = q + w for q de�ned in (1.9) and w ∈
C2α(R2

+) such that w = 0 on ∂R2
+. We �nd that q̃ + wE is modelled after

Ṽ (·, a0) according to aext on R2 and this modelling satis�es

M . ‖aext‖α‖Vint‖α. (1.86)

Also, the Cα-norm of the solution may be bounded as

‖U‖α . ‖Vint‖α. (1.87)

ii) (Stability) Let i = 0, 1. Assume that we are given two periodic initial
conditions Vint,i ∈ Cα(R) and two functions aexti ∈ Cα(R2) all satisfying the
assumptions of part i).
Denoting the solutions of (1.85) given by part i) as Ui, we �nd that

q̃1 + (w1)
E − (q̃0 + (w0)

E) is modelled after (Ṽ1(·, a0), Ṽ0(·, a0)) according
to (aext1 , aext0 ) and (1,−1) such that the modelling constant δM satis�es

δM . ‖Vint,0 − Vint,1‖α + ‖aext0 − aext1 ‖α max
i
‖Vint,i‖α. (1.88)

Also, the Cα-norm of U1 − U0 satis�es

‖U1 − U0‖α . ‖Vint,0 − Vint,1‖α + ‖aext0 − aext1 ‖α max
i
‖Vint,i‖α. (1.89)

Aside from the bounds of Lemma 3, which we exploit heavily in the proof
of Proposition 2, the workhorse for both Proposition 1 and Proposition 2 is
the following PDE lemma that is adapted from Lemma 5 of [47].

Lemma 5 (Modi�ed Lemma 5 of [47]). Let α ∈
(

1
2 , 1
)
and I ∈ N. Assume

we have I families of distributions {f1(·, a0), ..., fI(·, a0)} indexed by a0 ∈
[λ, 1] and I constants Ni ∈ R such that

sup
T≤1

(T
1
4 )2−α sup

a0∈[λ,1]

‖fiT (·, a0)‖1 ≤ Ni (1.90)
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and also a function a ∈ [λ, 1] satisfying [a]α � 1. Let the function u on R2
+

be modelled after (v1(·, a0), ..., vI(·, a0)) according to a and (σ1, ..., σI) and
satisfy

sup
T≤1

(T
1
4 )2−2α‖(∂2 − a∂2

1 + 1)uT − σiEfiT (·, a0)‖ ≤ K (1.91)

for some K ∈ R, where E denotes evaluation of a function of (x, a0) at
(x, a(x)). We, furthermore, assume that u has a �nite local Cα-seminorm.
Under these assumptions, the modelling constant of u and the Cα-norm are
bounded as

M + ‖u‖α . K + ‖σi‖αNi (1.92)

In the setting of Proposition 1, the purpose of this lemma is to quantify
the regularity of an �approximate solution" u of (∂2−aext∂2

1 + 1)· = f on R2

using that additionally it is modelled after v(·, a0) according to aext. In our
proof of Proposition 1 this is helpful because to solve (1.82) we regularize
the right-hand side, which gives a family of regularized solutions that are
�approximate solutions" in the sense of (1.91). The estimates obtained from
(1.92) allow us to pass to the limit in the regularization. In Proposition 2
we use Lemma 5 in order to obtain the correction w ∈ C2α, but because of
the higher regularity available we can set σi = 0 and our application of the
lemma is much simpli�ed compared to its use in Proposition 1. For part ii)
of the propositions, Lemma 5 is also formulated for right-hand sides that are
the linear combination of some σifi.

Much of the argument for Lemma 5 relies on the analysis of a parabolic
equation with massive term and frozen coe�cient a(x0) for x0 ∈ R2 that is
satis�ed by uT − σ(x0)vT (·, a(x0)). The analysis of this equation is reminis-
cent of the Krylov-Safanov approach to Schauder theory in the sense that
uT−σ(x0)vT (·, a(x0)) is decomposed into two components uT−σ(x0)vT (·, a(x0)) =
w< + w>, where one is a �near-�eld" contribution and one is a �far-�eld"
contribution. The near �eld-contribution w< is chosen to solve the equa-
tion satis�ed by uT − σ(x0)vT (·, a(x0)) (without the massive term which is
moved to the right-hand side and viewed as part of the forcing) with the
forcing restricted to a ball BL(x0) for some L > 0. Thanks to the close-
ness of points in this ball to x0 the classical regularity estimates that we
obtain for w< are su�cient for our lemma. The far-�eld contribution is
then de�ned as w> = uT − σ(x0)vT (·, a(x0)) − w<, which solves a con-
stant coe�cient parabolic equation (without a massive term) on the ball
BL(x0) with zero right-hand side. Thanks to the zero right-hand side, the
classical regularity estimates for w> are also su�cient. The modelling as-
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sumption on u is mainly used to then move from statements about the con-
volved object uT − σ(x0)vT (·, a(x0)) back to the actual object of interest
u− σ(x0)v(·, a(x0)).

Combining the result of Theorem 1 with the families of reference products
constructed/ borrowed as described in the previous two subsections, the ref-
erence products constructed in Section 6, and the reconstruction lemmas, we
obtain the below Theorem 2. This will be the main ingredient in the �xed
point argument that is used to treat the quasilinear problem.

Theorem 2. Let α ∈
(

2
3 , 1
)
.

i) Assume that f satis�es (1.64); let a, the nonlinearity in (1.1), satisfy
(1.27); and Wint ∈ Cα(R) be periodic and satisfy (1.65). Let W ∈ Cα(R2)
such that [W ]α � 1 be modelled after (v+Ṽ )(·, a0), where V (·, a0) has initial
condition Vint = Wint− v(·, a0), according to ā ∈ Cα(R2). We, furthermore,
assume that we have access to a family of Cα−2 o�ine reference products{
v(·, a0) � ∂2

1v(·, a′0)
}
indexed by a0, a

′
0 ∈ [λ, 1] satisfying

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[v(·, a0), (·)T ] � ∂2
1v(·, a′0)

∥∥
2,2
. N 2

0 . (1.93)

Using the notation

aext := a(W ) and a := aext|R2
+
, (1.94)

we then �nd that there exists a unique solution W ∈ Cα(R2) of

(∂2 − a � ∂2
1 + 1)W = f in R2

+, (1.95a)

W = Wint on ∂R2
+ (1.95b)

that may be decomposed as W = u+U = u+ q+w as indicated in Theorem
1, where u is modelled after v(·, a0) according to aext and q̃+wE is modelled
after Ṽ (·, a0) with initial condition Vint = Wint − v(·, a0) according to aext.
This solution satis�es

‖W‖α . N0(M̃ + 1) +N int
0 (1.96)

with the notation

M̃ := Maext +N0 +N int
0 , (1.97)

where Maext denotes the modelling of aext after (Ṽ + v)(·, a0) (see (1.26)),
and the extension u + q̃ + wE is modelled after (v + Ṽ )(·, a0) according to
aext such that

M . (N0 +N int
0 )(M̃ + 1). (1.98)
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ii) (Stability) Let i, j = 0, 1. Assume that each fi satis�es (1.64) and to-
gether they satisfy (1.73); the initial conditions Wint,i ∈ Cα(R) are periodic,
independently satisfy (1.65), and together (1.77). We consider W i ∈ Cα(R2)
satisfying [W i]α � 1 that are modelled after (vi + Ṽi)(·, a0) according to āi,
where Vi(·, a0) has initial condition Vint,i = Wint,i − vi(·, a0). We, further-
more, assume that we have access to four families of Cα−2 distributions{
vi(·, a0) � ∂2

1vj(·, a′0)
}
indexed by a0, a

′
0 ∈ [λ, 1] satisfying (1.93) and

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[vi(·, a0), (·)T ] � ∂2
1v0(·, a′0)

−[vi(·, a0), (·)T ] � ∂2
1v1(·, a′0)

∥∥
1,1

≤ N0δN0,

(1.99)

and

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[v0(·, a0), (·)T ] � ∂2
1vi(·, a′0)

−[v1(·, a0), (·)T ] � ∂2
1vi(·, a′0)

∥∥
1,1

≤ δN0N0.

(1.100)

Using the notation

ai,ext := a(W i) and ai := ai,ext|R2
+

(1.101)

and letting Wi = ui + qi +wi indicate the solution to (1.95) with coe�cients
ai, forcing fi, and initial condition Wint,i. We then �nd that

‖W1 −W0‖α . δM̃(N0 +N int
0 ) + δN0(M̃ + 1) + δN int

0 (1.102)

and u1+ q̃1+(w1)
E−(u0+ q̃0+(w0)

E) is modelled after ((v1+Ṽ1)(·, a0), (v0+
Ṽ0)(·, a0)) according to (a1, a0) and (1,−1) on R2 such that the modelling
constant δM satis�es

δM . δM̃(N0 +N int
0 + 1) + δN0(M̃ + 1) + δN int

0 . (1.103)

Here we have used the notation

δM̃

:= δMaext + (N0 +N int
0 + 1)(‖ā1 − ā0‖α + ‖W 1 −W 0‖α) + δN0 + δN int

0 ,

where δMaext corresponds to the modelling of aext,1 − aext,0 after ((v1 +
Ṽ1)(·, a0), (v0 + Ṽ0)(·, a0)) according to (a1, a0) and (1,−1).
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To see how we use Theorem 2, which we prove in Section 7, we sketch
the �xed point argument that we plan to use for the quasilinear problem. In
analogue to (12) and (21) of the introduction and using the notation from
Theorem 2, we consider the map: (

W,a
)yψ(

a := a(W ),
{
a � ∂2

1v(·, a0)
}
a0

)
yS(

W ext = u+ q̃ + wE, a(W )
)
.

(1.104)

Here ψ consists of the construction/ borrowing of reference products and
S indicates the application of Theorem 1. Of course, the main task is to
show that this map is in fact a contraction on a certain space of modelled
functions, which follows from the bounds obtained in Theorem 2. Notice
that the condition [W ]α � 1 in Theorem 2 will require us to consider only
small data; this comment will be �eshed out in the up-coming contribution.

Also, a last comment, notice that in Theorem 2 we have again postulated
the existence of the o�ine products of Otto and Weber. In order to apply
the results we have quoted in Section 1.2 of this chapter, we notice that they
imply that:

�Theorem 1 of [47], ii)" Let f be a stationary, centered, Gaussian random
distribution satisfying (1.32), then there is a positive random constant η such
that η−1 is in every stochastic Lp space for p < ∞, ηf satis�es (1.64), and
the o�ine products η2[v(·, a0), (·)T ]�∂2

1v(·, a′0) satisfy the assumption (1.93).

This will be made formal in the upcoming contribution in which we actually
handle the quasilinear problem.

1.2 Main PDE Ingredient: Proof of the Krylov-Safanov Lemma

We prove this lemma in a series of steps that follow the proof of Lemma
5 in [47]. The di�erence between their setting and ours is that in place of
space-time periodicity we instead have a massive term in our parabolic op-
erator; in essence, we replace compactness by an L∞-estimate. Here comes
the argument:
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Proof of Lemma 5.

Step 1� (u is Lipschitz on large scales and bound for [u]locα )

We �rst show that for x, y ∈ R2 such that d(x, y) ≥ 1 we have that

|u(x)− u(y)| ≤ 2[u]locα d(x, y). (1.105)

This follows easily from the triangle inequality: Fix x, y ∈ R2 and de�ne the
functions

{
ηxk : R2 → R2

}
k∈Z≥0

such that if k = 0 then ηx0 ≡ x, if k < d(x, y)

then ηxk(y) is the point of intersection between the line connecting x and y
and ∂Bk(x), if k = dd(x, y)e then ηxk(y) = y, and �nally if k > dd(x, y)e
then ηxk(y) = 0. This notation allows us to write

|u(x)− u(y)| ≤
∑

1≤k≤dd(x,y)e

|u(ηxk−1(y))− u(ηxk(y)))|

≤ [u]locα (bd(x, y)c+ (d(x, y)− bd(x, y)c)α)

≤2 [u]locα d(x, y).

(1.106)

We would also like to obtain a bound for [u]locα in terms of M . For this,
let x, y ∈ R2 such that d(x, y) ≤ 1 and notice that

|u(x)− u(y)|
dα(x, y)

≤Mdα(x, y) + ‖σi‖
|vi(x, a(y))− vi(y, a(y))|

dα(x, y)
+
|ν(y)(x− y)1|

dα(x, y)

.M + ‖σi‖Ni,

(1.107)

where in addition to the modelling we have used (1.370) and (1.322).

Step 2 � (Equations satis�ed by uT )

We now show that for every x0 ∈ R2 and T ∈ (0, 1] the function uT solves

(∂2 − a(x0)∂
2
1 + 1)(uT − σi(x0)viT (·, a(x0))) = gTx0 on R2, (1.108)

where gTx0(x) satis�es the estimate

|gTx0(x)| . Ñ((T
1
4 )2α−2 + dα(x, x0)(T

1
4 )α−2) (1.109)

with Ñ = K + [a]α[u]locα + ‖σi‖αNi for any x ∈ R2.

We also �nd that uT solves

(∂2 − a∂2
1 + 1)uT = hT in R2, (1.110)
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where

‖hT‖ . K(T
1
4 )2α−2 + ‖σi‖Ni(T

1
4 )α−2. (1.111)

We begin by showing that (1.108) is satis�ed for gTx0 to be determined and
proving the bound (1.109). We notice that simple manipulations show that
uT solves

(∂2 − a(x0)∂
2
1 + 1)uT = σi(x0)fiT (·, a(x0)) + gTx0 in R2, (1.112)

where

gTx0 =(∂2 − a∂2
1 + 1)uT − σiEfiT (·, a(x0))

+ (a− a(x0))∂
2
1uT + (σi − σi(x0))EfiT (·, a(x0))

+ σi(x0)(EfiT (·, a(x0))− fiT (·, a(x0))).

(1.113)

For a �xed x ∈ R2 we then bound

|gTx0(x)|
.‖(∂2 − a∂2

1 + 1)uT − σiEfiT (·, a(x0))‖+ |a(x)− a(x0)||∂2
1uT (x)|

+ |(σi(x)− σi(x0))EfiT (·, a(x0))|
+ ‖σi(x0)(EfiT (·, a(x0))− fiT (·, a(x0)))‖
≤K(T

1
4 )2α−2 + [a]αd

α(x, x0)|∂2
1uT (x)|

+ [σi]αd
α(x, x0) sup

a0∈[λ,1]

‖fiT (·, a0)‖

+ ‖σi‖[a]αd
α(x, x0) sup

a0∈[λ,1]

‖fiT (·, a0)‖1

≤K(T
1
4 )2α−2 + [a]αd

α(x, x0)|∂2
1uT (x)|+ ‖σi‖αdα(x, x0)Ni(T

1
4 )α−2,

(1.114)

where we have used assumptions (1.90), (1.91), and [a]α ≤ 1.
In order to obtain (1.109) it remains to show the bound

|∂2
1uT (x)| . [u]locα (T

1
4 )α−2 (1.115)

for every x ∈ R2. We do this using our result of Step 1 and (1.18), which
allow us to write

|∂2
1uT (x)|

=

∣∣∣∣ˆ
R2

(u(y)− u(x))∂2
1ψT (x− y) dy

∣∣∣∣
. [u]locα

(ˆ
B1(x)

|∂2
1ψT (x− y)|dα(x, y) dy

+

ˆ
Bc1(x)

|∂2
1ψT (x− y)|d(x, y) dy

)
. [u]locα

(
(T

1
4 )α−2 + (T

1
4 )−1

)
.

(1.116)
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This is su�cient since we only consider T ≤ 1. Plugging (1.115) into (1.114)
yields the desired (1.109).

Using di�erent manipulations we �nd that uT solves

(∂2 − a∂2
1 + 1)uT = hT in R2, (1.117)

where

hT (x) = (∂2 − a∂2
1 + 1)uT − σifiT (·, a(x)) + σifiT (·, a(x)).

Using the assumptions (1.90) and (1.91) we obtain (1.111).

Step 3� (L∞-estimates)

We �rst notice that for T ∈ (0, 1] the estimate

‖uT‖ . K(T
1
4 )2α−2 + ‖σi‖Ni(T

1
4 )α−2 (1.118)

holds. This follows easily from the previous step by applying Theorem 8.1.7
of [39] to (1.117) and using (1.111). Here, we rely on the massive term.

We also notice that for T ∈ (0, 1] the estimate

‖uT − σi(x0)viT (·, a(x0))‖BL(x0)

. Ñ((T
1
4 )2α−2 + Lα)(T

1
4 )α−2

(1.119)

holds for L > 0. For this estimate we use the equation (1.110) and, let-
ting G(a(x0), x1, x2) denote the heat-kernel as in (1.57), we write uT −
σi(x0)viT (·, a(x0)) as

uT (x)− σi(x0)viT (x, a(x0))

=

ˆ ∞
0

ˆ
R
gTx0(x1 − y, x2 − s)G(a(x0), y, s) dy ds.

(1.120)

Combining (1.120) with the bound (1.109) and using the notation x0 =
(x01, x02), for x ∈ BL(x0) we obtain

|uT (x)− σi(x0)viT (x, a(x0))|

.Ñ
ˆ ∞

0

ˆ
R
((T

1
4 )2α−2 + (T

1
4 )α−2(|x1 − y − x01|α + |x2 − s− x02|

α
2 ))

× |G(a(x0), y, s)| dy ds.

.Ñ

(
(T

1
4 )2α−2 + Lα(T

1
4 )α−2

+

ˆ ∞
0

ˆ
R
(T

1
4 )α−2(|y|α + s

α
2 )|G(a(x0), y, s)| dy ds

)
.

(1.121)
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Here we have used that BL(x0) refers to the �parabolic ball" and the expo-
nential factor “e−x2” appearing in the Green's function due to the massive
term. Using the rescaling (1.16) we then treat the integral on the bottom
line of (1.121) asˆ ∞

0

ˆ
R
(T

1
4 )α−2(|y|α + s

α
2 )|G(a(x0), y, s)| dy ds

.(T
1
4 )2α−2

ˆ ∞
0

ˆ
R
(|ŷ|α + ŝ

α
2 )|G(a(x0), ŷ, ŝ)| dŷ dŝ

.(T
1
4 )2α−2,

where we have again used the presence of the massive term. The previous
estimate in combination with (1.121) gives the desired (1.119).

Step 4� (An excess decay)

In this step we show that for any two radii R and L such that 0 < R � L,
T ∈ (0, 1], and x0 ∈ R2 it holds that

1

R2α
inf

l∈Span{1,x1}
‖uT − σi(x0)viT (·, a(x0))− l‖BR(x0)

.

(
R

L

)2(1−α)
1

L2α
inf

l∈Span{1,x1}
‖uT − σi(x0)viT (·, a(x0))− l‖BL(x0)

+ Ñ

(
L2

R2α(T
1
4 )2−2α

+
L2+α

R2α(T
1
4 )2−α

)
.

(1.122)

Alternatively, we have that

inf
l∈Span{1,x1}

‖uT − σi(x0)viT (·, a(x0))− l‖

. K(T
1
4 )2α−2 + ‖σi‖Ni(T

1
4 )α−2.

(1.123)

We �rst show (1.123). Here, we plug l = 0 into the left-hand side of
(1.123) and use the triangle inequality along with (1.118), (1.21), and (1.322)
to obtain

inf
l∈Span{1,x1}

‖uT − σi(x0)viT (·, a(x0))− l‖

. ‖uT‖+ ‖σi‖ sup
a0∈[λ,1]

‖viT (·, a0)‖

. K(T
1
4 )2α−2 + ‖σi‖Ni(T

1
4 )α−2.

Showing (1.122) is the main technical step of this proof: In particular, on
the ball BL(x0) we decompose the function uT − σi(x0)viT (·, a(x0)) into a
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�near-�eld" and �far-�eld" contribution. Letting w< be the solution of

(∂2 − a(x0)∂
2
1)w< =χBL(gT0 − (uT − σi(x0)viT (·, a(x0)))) in R2

(1.124)

and de�ning w> = uT − σi(x0)viT (·, a(x0))− w<, we �nd that w> satis�es

(∂2 − a(x0)∂
2
1)w> = 0 in BL(x0). (1.125)

We may then use standard regularity theory to obtain the estimates

‖w<‖ . L2(‖gTx0‖BL(x0) + ‖uT − σi(x0)viT (·, a(x0))‖BL(x0)) (1.126)

and

‖{∂2
1 , ∂2}w>‖BL/2(x0) . L−2‖w> − l‖BL(x0) (1.127)

for any l ∈ Span{1, x1}. The estimate (1.126) follows immediately from
the heat-kernel representation of w< and the triangle inequality in L∞ and
(1.127) is proven via Bernstein's argument in Theorem 8.4.4 of [39] for l = 0.
As is already mentioned in [47], one can easily reduce to the case that l = 0
since w> − l still solves (1.125) when l ∈ Span {1, x1}.

We maneuver ourselves into a position to apply the estimates (1.126) and
(1.127) by decomposing

uT − σi(x0)viT (·, a(x0)) = w< + w>

and using the triangle inequality to write

‖uT − σi(x0)viT (·, a(x0))− lR‖BR(x0) . R2‖{∂2
1 , ∂2}w>‖BR(x0) + ‖w<‖BR(x0)

for lR = w>(x0) + ∂w>
∂x1

(x0)x1. Using (1.126) and (1.127) along with (1.109)
and (1.119) we may then continue this as

R2‖{∂2
1 , ∂2}w>‖BR(x0) + ‖w<‖BR(x0)

.

(
R

L

)2

‖w> − l‖BL(x0) + L2Ñ((T
1
4 )2α−2 + Lα(T

1
4 )α−2),

which then yields the desired (1.122).

Step 4� (An equivalent de�nition of the modelling constant)

In this step we show that M ∼M ′, where M ′ is de�ned as

M ′ := sup
x0∈R2

sup
R>0

R−2α inf
l∈Span{1,x1}

‖u− σi(x0)vi(·, a(x0))− l‖BR(x0). (1.128)
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To show this we start with M .M ′. For this we begin by observing that

sup
x0∈R2

inf
l∈Span{1,x1}

sup
R>0

R−2α‖u− σi(x0)vi(·, a(x0))− l‖BR(x0) .M ′ (1.129)

for which we wlog assume that x0 = 0. Let lR denote the optimal l for a given
radiusR. We then notice that for anyR > 0 we have thatR−2α‖l2R−lR‖BR .
M ′:

R−2α‖l2R − lR‖BR
≤R−2α‖u− σi(0)vi(·, a(0))− lR − u+ σi(0)vi(·, a(0)) + l2R‖BR
≤R−2α (‖u− σi(0)vi(·, a(0))− lR‖BR + ‖u− σi(0)vi(·, a(0))− l2R‖B2R

)

.M ′.

Writing lR = νRx1 + cR the above observation gives that R1−2α|νR − ν2R|+
R−2α|cR − c2R| .M ′, which yields that R1−2α|νR − νR′|+R−2α|cR − cR′| .
M ′ for any 0 < R′ ≤ R because α ∈

(
1
2 , 1
)
. We �nd that the sequences{

ν1/n

}
n
and

{
c1/n

}
n
are Cauchy and there exists l = νx1 + c such that

R−2α‖lR − l‖BR(x0) . M ′ for all R > 0. This observation yields (1.129).
To complete the argument we notice that there is at most one l making the
expression

sup
R>0

R−2α‖u− σi(0)vi(·, a(0))− l‖BR

�nite since 2α > 1. Therefore, thanks to the modelling of u, the optimal l
on the left-hand side of (1.129) is given by u(0)− σi(0)wi(0, a(0)) + ν(0)x1.
Repeating this argument for all x0 ∈ R2 then gives thatM .M ′, as desired.

To �nish this step we show that M ′ .M . This direction follows from the
observation that

M ′ . sup
x0∈R2

inf
l∈Span{1,x1}

sup
R>0

R−2α‖u− σi(x0)vi(·, a(x0))− l‖BR(x0). (1.130)

and the uniqueness observation that we have made in the previous paragraph.

Step 5� (Use of the modelling)

In this step we show that for T ∈ (0, 1], L > 0, and x0 ∈ R2 the estimate

1

(T
1
4 )2α
‖uT − u− σi(x0)(viT − vi)(·, a(x0))‖BL(x0)

.M + Ñ

(
L

T
1
4

)α
,

(1.131)
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holds. The argument here is taken essentially verbatim from Step 5 of Lemma
5 of [47]. For brevity we assume wlog that x0 = 0 and use the notation
vi(y, a(x)) = vi(y, x). We �x x ∈ BL(0) and then use the triangle inequality
to write

|uT (x)− u(x)− σi(0)(viT − vi)(x, 0)|

≤
∣∣∣∣ˆ

R2

(u(y)− u(x)− σi(x)(vi(y, x)− vi(x, x))

−ν(x)(y1 − x1))ψT (x− y) dy

∣∣∣∣
+

∣∣∣∣ˆ
R2

(σi(x)− σi(0))(vi(y, 0)− vi(x, 0))ψT (x− y) dy

∣∣∣∣
+

∣∣∣∣ˆ
R2

σi(x)(vi(y, x)− vi(y, 0)− (vi(x, x)− vi(x, 0)))ψT (x− y) dy

∣∣∣∣ .
Notice that we have used that ψT (x) is even in x1 to smuggle in the term
ν(x)(y1−x1)ψT (x−y) in the �rst line. We bound the �rst term on the right-
hand side of the above expression using the modelledness of u and (1.18) by
M(T

1
4 )2α. For the second term we use that supa0∈[λ,1][vi(·, a0)]α . Ni thanks

to (1.90) and (1.18) to obtain the bound Ni[σi]αL
α(T

1
4 )α. The third term is

treated as∣∣∣∣ˆ
R2

σi(x)(vi(y, x)− vi(x, x)− (vi(y, 0)− vi(x, 0)))ψT (x− y) dy

∣∣∣∣
.[a]αL

α‖σi‖
ˆ
R2

ˆ 1

0

|∂a0(vi(y, (1− t)a(0) + ta(x))

− vi(x, (1− t)a(0) + ta(x)))| dt ψT (x− y) dy

.[a]αL
α‖σi‖Ni(T

1
4 )α,

where we have used (1.322) to bound [vi(·, a0)]α and (1.18). Using our de�-
nition of Ñ from Step 2 we then obtain (1.131).

Step 6 � (Conclusion)

We now show that M . Ñ . To begin, for T ∈ (0, 1] and x0 ∈ R2, we
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combine (1.123) and (1.131) to write

1

R2α
inf

l∈Span{1,x1}
‖u− σi(x0)vi(·, a(x0))− l‖BR(x0)

.
1

R2α

(
(K + ‖σi‖Ni)(T

1
4 )α−2 + ‖uT − u− σi(x0)(viT − vi)(·, a(x0))‖BL(x0)

)
.

(T
1
4 )α−2

R2α
(K + ‖σi‖Ni) +

(
T

1
4

R

)2α(
M + Ñ

(
L

T
1
4

)α)
.

(1.132)

Alternatively, combining (1.122) with (1.131) we �nd that

1

R2α
inf

l∈Span{1,x1}
‖u− σi(x0)vi(·, a(x0))− l‖BR(x0)

.

(
R

L

)2(1−α)
1

L2α
inf

l∈Span{1,x1}
‖u− σi(x0)vi(·, a(x0))− l‖BL(x0)

+ Ñ

(
L2

R2α(T
1
4 )2−2α

+
L2+α

R2α(T
1
4 )2−α

)
+

(
T

1
4

R

)2α(
M + Ñ

(
L

T
1
4

)α)
.

(1.133)

For the case that R ≤ 1 we make use of (1.133) and let L = ε−1R and
T

1
4 = εR for some ε � 1; the restriction R ≤ 1 guarantees that T ≤ 1.

Making these identi�cations we obtain

sup
R≤1

1

R2α
inf

l∈Span{1,x1}
‖u− σi(x0)vi(·, a(x0))− l‖BR(x0)

.(ε2−2α + ε2α)M + (ε−(4−2α) + ε−4 + 1)Ñ ,

(1.134)

where we have also used the equivalenceM ∼M ′. ForR ≥ 1 we alternatively
use (1.132) and let T

1
4 = ε and L = ε−1R, which gives

sup
R≥1

1

R2α
inf

l∈Span{1,x1}
‖u− σi(x0)vi(·, a(x0))− l‖BR(x0)

.εα−2(K + ‖σi‖Ni) + ε2αM + Ñ .

(1.135)

Combining (1.134) and (1.135) we �nd that

sup
R>0

1

R2α
inf

l∈Span{1,x1}
‖u− σi(x0)vi(·, a(x0))− l‖BR(x0)

≤(ε2−2α + ε2α)M + (εα−2 + ε−(4−2α) + ε−4 + 1)Ñ .

(1.136)

Using M ∼M ′ and choosing ε small enough yields M . Ñ .
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After plugging in Ñ from Step 1 this gives

M . K + [a]α[u]locα + ‖σi‖αNi.

Using (1.107) and [a]α � 1 we then �nd that

M + [u]locα . K + ‖σi‖αNi.

Step 7 : (L∞-bound on u)

To �nish we show that

‖u‖ . K + ‖σi‖Ni +M. (1.137)

To see this we �rst notice that by (1.118) with T = 1 we have that

‖u ∗ ψ1‖ . K + ‖σi‖Ni,

which we then use to bound

|u(x)| =
∣∣∣∣ˆ

R2

u(x)ψ1(y)dy

∣∣∣∣
≤
∣∣∣∣ˆ

R2

u(x− y)ψ1(y)dy

∣∣∣∣+

∣∣∣∣ˆ
R2

(u(x− y)− u(x))ψ1(y)dy

∣∣∣∣
. K + ‖σi‖Ni + [u]locα

ˆ
R2

(|y|+ |y|α)|ψ1(y)|dy

. K + ‖σi‖Ni + [u]locα

for x ∈ R2. Notice that in this calculation we have also used Step 1.

1.3 Treatment of the Linear Problem

1.3.1 Proof of Proposition 1

As we have already mentioned in the introduction and also in Section 1.4
above, in the proof of this proposition we emulate the strategy of Otto and
Weber in their proof of Proposition 1 in [47]. Aside from minor details, the
main di�erence between the proof we present below and that in [47] is our
use of the modi�ed version of their Lemma 5 proved in the previous section.

Proof of Proposition 1. i) We start by showing existence and uniqueness for
solutions of (1.82).
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Step 1�(Regularization)

Assume that the conditions of Lemma 4 hold; throughout this step we adopt
the notation of Lemma 4. Denote wiτ(·, a0) = wi(·, a0) ∗ ψτ for any τ > 0
and de�ne

F � ∂2
1wiτ(·, a0) := (F � ∂2

1wi(·, a0))τ . (1.138)

We would like to take the new reference products de�ned in (1.138) as input
into Lemma 4 in order to obtain, for u ∈ Cα(R2) modelled after wiτ(·, a0), a
meaning for the singular product F �∂2

1u. To do this we must check that the
family of distributions de�ned by (1.138) satis�es the conditions of Lemma 4.
Once we have done this, we would like to further characterize the distribution
F � ∂2

1u. In particular, we show that if ∂2
1u ∈ Cα(R2), then we have that

F � ∂2
1u = F∂2

1u− σiE [F, (·)τ ] � ∂2
1wi. (1.139)

First we check that the family of reference products given by (1.138) sat-
is�es the assumptions of Lemma 4. We start with (1.60) for which we �x
x, z ∈ R2 and a0 ∈ [λ, 1] and write

sup
a0∈[λ,1]

|wiτ(x, a0)− wiτ(z, a0)|

. sup
a0∈[λ,1]

∣∣∣∣ˆ
R2

(wi(x− y, a0)− wi(z − y, a0))ψτ(y) dy

∣∣∣∣
. sup

a0∈[λ,1]

[wi(·, a0)]αd
α(x, z)‖ψτ‖L1(R2).

We obtain the same estimate for ∂a0wiτ(·, a0) using exactly the same argu-
ment. Since we have assumed that the conditions of Lemma 4 hold, we �nd
that

[wiτ(·, a0)]α,1 . Ni.

It is also necessary to check that (1.61) holds. To do this, we �rst write

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[F, (·)T ] � ∂2
1wiτ(·, a0)

∥∥
1

= sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[F, (·)T+τ ] � ∂2
1wi(·, a0)

∥∥
1

. sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

(∥∥([F, (·)T ] � ∂2
1wi(·, a0)

)
τ

∥∥
1

+
∥∥F∂2

1wiT+τ(·, a0)− (F∂2
1wiT )τ(·, a0)

∥∥
1

)
.
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To bound the �rst term on the right-hand side by NNi we can use (1.21)
and the assumption (1.61). For the second term we may wlog assume that
τ ≤ T (the second line of the above calculation is symmetric in T and τ ) in
which case we can use (1.20) to write

‖F∂2
1wiT+τ(·, a0)− (F∂2

1wiT (·, a0))τ‖1

. [F ]α ‖∂
2
1wiT (·, a0)‖1

∥∥∥∥ˆ
R2

|ψτ(· − y)|dα(·, y) dy

∥∥∥∥
. [F ]α [wi]α,1 (T

1
4 )α−2(τ

1
4 )α

. [F ]αNi(T
1
4 )2α−2.

(1.140)

Combining these estimates we �nd that

sup
T≤1

(T
1
4 )2−2α sup

a0∈[λ,1]

∥∥[F, (·)T ] � ∂2
1wiτ

∥∥
1
. ([F ]α +N)Ni. (1.141)

Having veri�ed the assumptions of Lemma 4, we then characterize the
distribution F � ∂2

1u under the assumption that ∂2
1u ∈ Cα(R2). To obtain

(1.139) we argue identically to [47] and notice that since

[F, (·)T ] � ∂2
1wiτ(·, a0) = [F, (·)T+τ ] � ∂2

1wi(·, a0),

which we have already used above, we have that [F, (·)T ] � ∂2
1wiτ(·, a0) →

[F, (·)τ ] � ∂2
1wi(·, a0) uniformly for all a0 ∈ [λ, 1] as T ↓ 0. By (1.61) we �nd

that this convergence is uniform in (x, a0), which gives

lim
T→0
‖F∂2

1uT − (F � ∂2
1u)T − σiE [F, (·)τ ] � ∂2

1wi‖ = 0

by using (1.62) for each wiτ . Since ∂
2
1u ∈ Cα(R2) this yields

lim
T→0
‖F∂2

1u− (F � ∂2
1u)T − σiE [F, (·)τ ] � ∂2

1wi‖ = 0,

which by the uniqueness in Lemma 4 gives (1.139).

Step 2� (Analysis of the regularized problem)

In this step we show that for every τ ∈ (0, 1) there exists a distributional
solution uτ ∈ Cα+2(R2), modelled after vτ(·, a0) according to a

ext and σ = 1,
of the equation

(∂2 − aext � ∂2
1 + 1)uτ = fτ in R2 (1.142)

and that uτ also classically solves

(∂2 − aext∂2
1 + 1)uτ = fτ − E

[
aext, (·)τ

]
� ∂2

1v in R2. (1.143)
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Notice that the statements (1.142) and (1.143) are, in fact, equivalent thanks
to the previous step applied with the identi�cations F = aext, I = 1,
w1(·, a0) = v(·, a0), and σ1 = 1.

For now assume that fτ−E [aext, (·)τ ]�∂2
1v ∈ Cα(R2). In this case the ex-

istence of uτ ∈ Cα+2(R2) solving (1.143) is a simple consequence of standard
Schauder theory. The argument for the existence of uτ in this setting can
be found in Theorem 8.7.3 of [39]. In particular, uτ can be obtained using
the standard heat-kernel formulation of solutions to the inhomogeneous heat
equation with a massive term with an �initial" condition uτ(x1,−∞) = 0.
We have actually already used this result once; in particular, see (1.120) in
our proof of Lemma 5.

We must still show that fτ + E[aext, (·)τ ] � ∂2
1v ∈ Cα(R2). For this

we notice that fτ ∈ Cα(R2) since it is periodic and smooth. To see that
E [aext, (·)τ ] � ∂2

1v ∈ Cα(R2) we �rst remark that the L∞-norm is bounded
via the assumption (1.66). To �nish we show that [E [aext, (·)τ ]�∂2

1v]locα <∞.
To begin we notice that by the de�nition of E we have[

E
[
aext, (·)τ

]
� ∂2

1v
]loc
α

. [aext]α
∥∥[aext, (·)τ] � ∂2

1v
∥∥

1
+ sup

a0∈[λ,1]

[ [
aext, (·)τ

]
� ∂2

1v
]loc
α
.

(1.144)

The �rst term on the right-hand side of (1.144) may be treated with our
assumption (1.66). For the second term we write out[

aext, (·)τ
]
� ∂2

1v(·, a0) = (aext � ∂2
1v)τ(·, a0)− aext∂2

1vτ(·, a0)

and check that the terms on the right-hand side have a �nite local Cα-
seminorm. For the �rst term we use the assumption (1.67) and Lemma 1 to
decompose aext�∂2

1v = ∂2
1h

1 +∂2h
2 for some (h1, h2) that are near optimal in

the sense of De�nition 2. Fixing x, z ∈ R2 such that d(x, z) ≤ 1 we integrate
by parts, use that [hi]locα <∞, and apply (1.18) to write

|(aext � ∂2
1v)τ(x, a0)− (aext � ∂2

1v)τ(z, a0)|

=

∣∣∣∣ˆ
R2

(h1(x− y)− h1(z − y))∂2
1ψτ(y) dy

−
ˆ
R2

(h2(x− y)− h2(z − y))∂2ψτ(y) dy

∣∣∣∣
.[aext � ∂2

1v]locα−2(τ
1
4 )−2dα(x, z).

The second term may be treated as:

|aext(x)∂2
1vτ(x, a0)− aext(z)∂2

1vτ(z, a0)|
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.|aext(x)− aext(z)|‖∂2
1vτ(·, a0)‖

+ ‖aext‖
ˆ
R2

|v(x− y, a0)− v(z − y, a0)| |∂2
1ψτ(y)| dy

.‖aext‖α[v(·, a0)]α(τ
1
4 )−2dα(x, z).

.‖aext‖αN0(τ
1
4 )−2dα(x, z),

where we have used (1.20), (1.18), and (1.67).
Thanks to the high regularity of the uτ ∈ Cα+2(R2), we know that they

are modelled after vτ(·, a0) according to a and σ = 1.

Step 3� (Passing to the limit in the regularization)

In order to pass to the limit τ → 0 we apply Lemma 5 to the uτ with
I = 1, f1 = fτ , a = aext, and σ1 = 1. In our current setting N1 from
Lemma 5 is equal to N0 from assumption (1.64). We must check that the uτ

are approximate solutions in the appropriate sense. To do this we start by
convolving the equation (1.143) with ψT . This gives that

(∂2 − aext∂2
1 + 1)uτT − fτ+T

= (aext∂2
1u

τ)T − aext∂2
1u

τ
T − (E[aext, ( · )τ ] � ∂2

1v)T on R2,

where the right-hand side can be rewritten as

(aext∂2
1u

τ)T − aext∂2
1u

τ
T − (E[aext, ( · )τ ] � ∂2

1v)T = [aext, (·)T ] � ∂2
1u

τ

by Step 1 and the regularity of the uτ . By assumption (1.66), (1.141), (1.63)
we then �nd that

sup
T≤1
‖[aext, (·)T ] � ∂2

1u
τ‖ . [aext]αMτ +N0([a

ext]α +N),

whereMτ refers to modelling of uτ after vτ(·, a0). So, for large enough c ∈ R
we can set K = c([aext]αMτ +N0([a

ext]α +N).
After applying Lemma 5 to each uτ and using that [aext]α � 1, we �nd

that

Mτ + ‖uτ‖α . N0(N + 1). (1.145)

This implies that the uτ are uniformly bounded and equicontinuous, which
means that up to a subsequence uτ → u uniformly as τ → 0. In order to
see that the limiting u ∈ Cα(R2) solves (1.82) we must pass to the limit in
(1.142). For this, we �rst notice that fτ ⇀ f and ∂2u

τ ⇀ ∂2u distributionally.
This only leaves us to check that aext � ∂2

1u
τ ⇀ aext � ∂2

1u, where a
ext � ∂2

1u is
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de�ned via Lemma 4 using the modelling of u after v(·, a0) according to aext

and σ = 1. This limiting modelling is the result of De�nition 1 in tandem
with the uniform in (x, a0) convergence vτ(·, a0) → v(·, a0) and uτ → u.
Using (1.63) of Lemma 4 and (1.145) with (1.20), ‖aext‖ ≤ 1, and (1.22), we
�nd that the aext � ∂2

1u
τ have uniformly bounded local Cα−2 seminorm. This

implies that aext � ∂2
1u

τ ⇀ h for some limiting distribution h.
Towards identifying the limit h, we remark that since

[aext, (·)T ] � ∂2
1vτ = [aext, (·)T+τ ] � ∂2

1v,

and

aext � ∂2
1vτ(·, a0) ⇀ aext � ∂2

1v(·, a0),

by the de�nition of aext � ∂2
1vτ(·, a0), we have that [aext, (·)T ] � ∂2

1vτ →
[aext, (·)T ] � ∂2

1v as τ → 0 in a pointwise sense. After noticing that
‖[aext, (·)T+τ ]�∂2

1v‖1 is uniformly bounded this becomes E[aext, (·)T ]�∂2
1vτ →

E[aext, (·)T ] � ∂2
1v. Combining our previous observations with the uniform

bound

‖(aext � ∂2
1u

τ)T − aext∂2
1uT − E[aext, (·)T ] � ∂2

1vτ‖ ≤ (T
1
4 )2α−2N0(N + 1),

which is a result of the triangle inequality along with (1.63), the uniform
bounds on supa0∈[λ,1] ‖vτ(·, a0)‖α,1 and supa0∈[λ,1] ‖[aext, (·)T ]∂2

1vτ(·, a0)‖α,1,
and (1.145), we see that for T ∈ (0, 1] the convergence

(aext � ∂2
1u

τ)T − aext∂2
1uT − E[aext, (·)T ] � ∂2

1vτ
∗
⇀ (h)T − aext∂2

1uT − E[aext, (·)T ] � ∂2
1v.

holds weak-∗ in L∞(R2). By the lower-semicontinuity of the L∞-norm with
respect to weak-∗ convergence, we then know that

lim
T→0

lim sup
τ→0

‖(aext � ∂2
1u

τ)T − aext∂2
1uT − E[aext, (·)T ] � ∂2

1vτ‖ = 0, (1.146)

which by Step 10 of Proposition 1 in [47] gives that aext � ∂2
1u

τ = h.

Step 4� (Uniqueness)

We argue by contradiction and assume that there are two solutions u and
u′ satisfying (1.82) with the desired modelling. Subtracting the two we �nd
that the di�erence u − u′ is now trivially modelled. We would then like to
show that

aext � ∂2
1u− aext � ∂2

1u
′ = aext � ∂2

1(u− u′), (1.147)
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where the products on the left-hand side are obtained via Lemma 4 using the
modelling after v(·, a0) according to aext and σ = 1 and the product on the
right-hand side is obtained via the trivial modelling. Using the de�nitions
of aext � ∂2

1u and aext � ∂2
1u
′ from Lemma 4 (i. e. that (1.62) holds) and that

they have the same modelling, the triangle inequality gives that

lim
T→0
‖(aext � ∂2

1u)T − (aext � ∂2
1u
′)T − (aext � ∂2

1(u− u′))T‖ = 0, (1.148)

which then yields (1.147).
Having shown (1.147) we know that the di�erence u− u′ solves

(∂2 − a � ∂2
1 + 1)(u− u′) = 0 in R2 (1.149)

to which we may then apply Lemma 5. In particular, we let I = 1, f1(·, a0) =
0, σ1 = 0, and a = aext. Convolving the equation (1.149) with ψT we
�nd that u − u′ is an approximate solution in the sense of Lemma 5 with
K = [aext]α[u− u′]2α. Applying the lemma then gives that

[u− u′]2α + ‖u− u′‖α . [aext]α[u− u′]2α, (1.150)

which implies that [u− u′]2α + ‖u− u′‖α = 0 since [aext]α � 1.

ii) For this part we again follow the strategy of Otto and Weber in [47], but
use our modi�ed version of Lemma 5.

Step 5� (Interpolation of the data)

We linearly interpolate the coe�cients and right-hand sides; in particular,
we de�ne aexts and fs as

aexts := aext0 (1− s) + aext1 s and fs := f0(1− s) + f1s.

Correspondingly, we interpolate the solutions of (1.4) and set

vs = v0(1− s) + v1s.

Notice that in order keep notation lean, in this section we occasionally sup-
press the dependence of vs, v1, and v0 on the parameter a0. Of course,
vs(·, a0) solves (1.4) with right-hand side fs. To make sure that Leibniz' rule
is satis�ed in s, i. e. that

∂s(a
ext
s � ∂2

1vs) = ∂sa
ext
s � ∂2

1vs + aexts � ∂2
1∂svs, (1.151)
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we bi-linearly interpolate the o�ine products and de�ne

aexts � ∂2
1vs

:= (s− 1)2aext0 � ∂2
1v0 + s(1− s)(aext0 � ∂2

1v1 + aext1 � ∂2
1v0) + s2aext1 � ∂2

1v1.

Using the triangle inequality and the uniqueness in Lemma 4 we �nd that

aexts � ∂2
1∂svs = aexts � ∂2

1v0 − aexts � ∂2
1v1,

∂sa
ext
s � ∂2

1vs = aext0 � ∂2
1vs − aext1 � ∂2

1vs,

and aexts � ∂2
1∂a0vs = ∂a0a

ext
s � ∂2

1vs,

(1.152)

which along with the assumptions (1.66), (1.75), and (1.76) give that

sup
T≤1

(T
1
4 )2−2α‖[aexts , (·)T ] � ∂2

1∂svs‖1 . NδN0, (1.153)

sup
T≤1

(T
1
4 )2−2α‖[aexts , (·)T ] � ∂2

1∂a0vs‖1 . NN0, (1.154)

and sup
T≤1

(T
1
4 )2−2α‖[∂saexts , (·)T ] � ∂2

1vs‖1 . δNN0. (1.155)

As a last remark concerning new reference products, for τ > 0 we can regu-
larize all of the new reference products as in part i) and de�ne, e. g. ,

aexts � ∂2
1vsτ := (aexts � ∂2

1vs)τ . (1.156)

Step 6� (A continuous curve of solutions uτs and an equation for ∂suτs)

Using the same method as in part i) we �nd that for every τ > 0 there exists
a curve of Cα+2 solutions uτs for s ∈ [0, 1] of

(∂2 − aexts ∂2
1 + 1)uτs = fsτ − Es[a

ext
s , (·)τ ] � ∂2

1vs on R2, (1.157)

where Es denotes evaluation of a function of (x, a0) at (x, aexts (x)) and fsτ =
fs∗ψτ . Using the modelling of the uτs after vsτ , where vsτ = vs∗ψτ , according
to aexts and σ = 1 we �nd that by Step 1 of part i) the relation

aexts � ∂2
1u

τ
s = aexts ∂2

1u
τ
s − Es[a

ext
s , (·)τ ] � ∂2

1vs (1.158)

holds. This allows us to rewrite (1.157) as

(∂2 − aexts � ∂2
1 + 1)uτs = fsτ on R2. (1.159)

We would then like to di�erentiate (1.157) in terms of s in order to obtain
an equation for ∂su

τ
s . For this we notice that by (1.151) we have

∂sEs[a
ext
s , (·)τ ] � ∂2

1vs

=Es[∂sa
ext
s , (·)τ ] � ∂2

1vs + Es[a
ext
s , (·)τ ] � ∂2

1∂svs

+ ∂sa
ext
s Es[a

ext
s , (·)τ ] � ∂2

1∂a0vs,

(1.160)
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which means that ∂su
τ
s solves

(∂2 − aexts ∂2
1 + 1)∂su

τ
s −

(
∂sfsτ + ∂sa

ext
s ∂2

1u
τ
s − Es[∂sa

ext
s , (·)τ ] � ∂2

1vs

−Es[a
ext
s , (·)τ ] � ∂2

1∂svs − ∂saexts Es[a
ext
s , (·)τ ] � ∂2

1∂a0vs

)
= 0 on R2.

By standard Schauder theory this implies that ∂su
τ
s ∈ Cα+2(R2) since the

term in parentheses is in Cα(R2), which can be checked using the same tools
as in Step 2. Due to the high regularity of ∂su

τ
s we know that it is modelled

after (∂svsτ , ∂a0vsτ) according to aexts and (1, ∂sa
ext
s ). Using the identities

∂sa
ext
s ∂2

1u
τ
s − Es[∂sa

ext
s , (·)τ ] � ∂2

1vs = ∂sa
ext
s � ∂2

1u
τ
s (1.161)

and

aexts ∂2
1∂su

τ
s − Es[a

ext
s , (·)τ ] � ∂2

1∂svs − ∂saexts Es[a
ext
s , (·)τ ] � ∂2

1∂a0vs

= aexts � ∂2
1∂su

τ
s ,

(1.162)

which both follow from Step 1 given the high regularity of ∂su
τ
s and uτs , we

can rewrite the equation solved by ∂su
τ
s as

(∂2 − aexts � ∂2
1 + 1)∂su

τ
s = ∂sfsτ + ∂sa

ext
s � ∂2

1u
τ
s on R2. (1.163)

Step 7� (Estimates for ∂suτs)

We now apply Lemma 5 to ∂su
τ
s with I = 2 and f1(·, a0) = ∂sfsτ , σ1 = 1,

f2(·, a0) = a0∂
2
1vsτ(·, a0), σ2 = ∂sa

ext
s , and a = aexts . Notice that there is now

a slight ambiguity in our notation since we use f1 to denote the second forcing
(f1 in the assumptions of the proposition) and also for its identi�cation in
Lemma 5 ( i. e. ∂sfsτ ). It is always clear which f1 is meant.

To apply the lemma we �rst identify the constants N1 and N2 in (1.90).
For N1 we notice that since ∂sfsτ = f0τ − f1τ the relation

sup
T≤1

(T
1
4 )2−α‖(∂sfsτ)T‖ . sup

T≤1
(T

1
4 )2−α‖(f0 − f1)T‖ . δN0 (1.164)

holds by (1.21). For N2 we use (1.322), that vsτ(·, a0) solves (1.4) with right-
hand side fsτ , and (1.21) along with (1.20) to write

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−α‖(a0∂

2
1vsτ(·, a0))T‖ . [fs]α−2‖ψτ‖L1(R2) . N0. (1.165)
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So, for our application of Lemma 5 for a large enough constant c ∈ R we can
set N1 = cδN0 and N2 = cN0.

We then check that ∂su
τ
s is an approximate solution in the sense (1.91).

For this we convolve (1.163) with ψT and notice that the calculation

sup
T≤1

(T
1
4 )2−2α‖[aexts , (·)T ] � ∂2

1∂su
τ
s + [∂sa

ext
s , (·)T ] � ∂2

1u
τ
s‖

≤ sup
T≤1

(T
1
4 )2−2α‖[aexts , (·)T ] � ∂2

1∂su
τ
s‖

+ sup
T≤1

(T
1
4 )2−2α‖[∂saexts , (·)T ] � ∂2

1u
τ
s‖

. [aexts ]αδM
τ
s + δNN0 +NδN0 + [aext0 − aext1 ]αM

τ
s ,

(1.166)

which follows from (1.63) of Lemma 4 and (1.153) and (1.154), is su�cient.
Notice that for this we have also used that N ≤ 1 and ‖aext1 − aext0 ‖α ≤ δN .
Here δM τ

s belongs to the modelling of ∂su
τ
s after (∂svsτ , ∂a0vsτ) according to

aexts and (1, ∂sa
ext
s ) andM τ

s belongs to the modelling of uτs after vsτ according
to aexts and σ = 1. Since an application of the bounds obtained in part i)
yields that M τ

s . N0(N + 1), for large enough c ∈ R we can set

K = c([aexts ]αδM
τ
s + δN(N0 + 1) +NδN0) (1.167)

We can now apply Lemma 5 to the ∂su
τ
s , which after using that [aexts ]α � 1,

gives

δM τ
s + ‖∂suτs‖α . δN(N0 + 1) + (N + 1)δN0. (1.168)

Step 8�(Integration and passing to the limit)

Since we have (1.168) for all s ∈ [0, 1] we may integrate it up to obtain

‖uτ1 − uτ0‖α .
∥∥∥∥ˆ 1

0

∂su
τ
s ds

∥∥∥∥
α

. δN(N0 + 1) + (N + 1)δN0. (1.169)

To obtain a bound for δM τ we notice that

∂s(u
τ
s(y)− vsτ(y, aexts (x)))

= ∂su
τ
s(y)− ∂svsτ(y, aexts (x))− ∂saexts (x)∂a0vs(y, a

ext
s (x)),

(1.170)

which allows us to integrate up our bound on δM τ
s to give that uτ1 − uτ0

is modelled after (v1τ , v0τ) according to (aext1 , aext0 ) and (1,−1) with ν =´ 1

0 νsds. Here νs comes from the modelling of ∂su
τ
s . We �nd that

δM τ . δN(N0 + 1) + (N + 1)δN0. (1.171)
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We have already show in part i) that uτi → ui uniformly, which allows us to
pass to the limit in (1.169). In order to pass to the limit in the modelling
we, furthermore, use that viτ(·, ai(·))→ vi(·, ai(·)) uniformly.

1.3.2 A Technical Lemma: Post-Processing of the Modelling

In order to obtain the correct modelling in Proposition 2 and in Theorem 1
we need the following technical lemma.

Lemma 6. Let α ∈ (0, 1).

i) Assume the a, a′ ∈ Cα(R2) so that a = a′ on the axis {x2 = 0}. Then for
Ṽ (·, a0), the even-re�ection of V (·, a0) solving (1.3), and any distinct points
x, y ∈ R2 we have that∣∣∣Ṽ (x, a(y))− Ṽ (y, a(y))− (Ṽ (x, a′(y))− Ṽ (y, a′(y)))

∣∣∣
. ‖Vint‖α([a]α + [a′]α)d2α(x, y).

(1.172)

ii) Assume that a, a′ ∈ Cα(R2) with ‖a‖ and ‖a′‖ ≤ 1 and Vint ∈ Cα(R).
Let U ∈ Cα(R2) be modelled after Ṽ (·, a0) according to a with modelling
constant M . Under these assumptions we �nd that if a′ = a on the axis
{x2 = 0}, then U is modelled after Ṽ (·, a0) according to a′ with modelling
constant M ′ bounded as

M ′ .M + ‖Vint‖α. (1.173)

iii) For i = 0, 1 we have ai, a′i ∈ Cα(R2) with ‖ai‖ and ‖a′i‖ ≤ 1 and
Vint,i ∈ Cα(R). We, furthermore, assume that U ∈ Cα(R2) is modelled after
(Ṽ1(·, a0), Ṽ0(·, a0)) according to (a1, a0) and (1,−1) with modelling constant
δM . We then �nd that if a′i = ai on the axis {x2 = 0}, then U is modelled
after (Ṽ1(·, a0), Ṽ0(·, a0)) according to (a′1, a

′
0) and (1,−1) with modelling con-

stant δM ′ bounded as

δM ′ . δM + ‖Vint,1 − Vint,0‖α + max
i
‖Vint,i‖α(‖a1 − a0‖α + ‖a′1 − a′0‖α).

(1.174)

Proof. i) Notice that

|Ṽ (x, a(y))− Ṽ (y, a(y))− (Ṽ (x, a′(y))− Ṽ (y, a′(y)))|
. sup

a0∈[λ,1]

|∂a0(Ṽ (x, a0)− Ṽ (y, a0))||a(y)− a′(y)| (1.175)
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and bound the right-hand side in two ways as

sup
a0∈[λ,1]

|∂a0(Ṽ (x, a0)− Ṽ (y, a0))||a(y)− a′(y)|

.

{
‖Vint‖α([a]α + [a′]α)|y2|

α
2 (|x2|−

α
2 + |y2|−

α
2 )d2α(x, y)

‖Vint‖α([a]α + [a′]α)|y2|
α
2 dα(x, y).

(1.176)

Here, the �rst bound follows from (1.55) applied with j = 1 to V (·, a0) and
the observation that |a(y) − a′(y)| . ([a]α + [a′]α)|y2|

α
2 . The second bound

in (1.176) follows from the same bound applied to |a(y)− a′(y)|, but (1.54)
with j = 1 applied to V (·, a0). We now consider two cases: |y2| ≤ 2|x2| and
2|x2| ≤ |y2|.

Case 1� Assume that |y2| ≤ 2|x2|. Then the �rst bound of (1.176) immedi-
ately gives

sup
a0∈[λ,1]

|∂a0(Ṽ (x, a0)− Ṽ (y, a0))||a(y)− a′(y)|

. ‖Vint‖α([a]α + [a′]α)d2α(x, y).

Case 2� Assume that |y2| ≥ 2|x2|. Then it is clear that y2
2 ≤ |x2− y2|, which

when combined with the second bound in (1.176) gives

sup
a0∈[λ,1]

|∂a0(Ṽ (x, a0)− Ṽ (y, a0))||a(y)− a′(y)|

. ‖Vint‖α([a]α + [a′]α)d2α(x, y).

Together the two cases yield (1.172).

ii) This part is an easy corollary of part i). In particular, using (1.2) and
the triangle inequality we write

|U(x)− U(y)− (Ṽ (x, a′(y))− Ṽ (y, a′(y)))|
.Md2α + |Ṽ (x, a(y))− Ṽ (y, a(y))− (Ṽ (x, a′(y))− Ṽ (y, a′(y)))|
. (M + ‖Vint‖α)d2α(x, y).

iii) Now we use the Einstein summation convention. We apply the triangle
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inequality and for x, y ∈ R2 write∣∣∣U(x)− U(y)− (−1)i+1(Ṽi(x, a
′
i(y))− Ṽ (y, a′i(y)))

∣∣∣
. δMd2α(x, y)

+ |Ṽ0(x, a0(y))− Ṽ0(y, a0(y))− (Ṽ0(x, a
′
0(y))− Ṽ0(y, a

′
0(y)))

− (Ṽ1(x, a1(y))− Ṽ1(y, a1(y))− (Ṽ1(x, a
′
1(y))− Ṽ1(y, a

′
1(y))))|.

(1.177)

We now require some new notation. In particular, we let

ati = tai + (1− t)a′i for i = 0, 1 and ats = sat1 + (1− s)at0
and notice that

∂sa
t
s = at1 − at0,

∂ta
t
s = s(a1 − a′1) + (1− s)(a0 − a′0),

and ∂t∂sa
t
s = a1 − a0 − (a′1 − a′0).

(1.178)

We then calculate∣∣∣∣Ṽ1(x, a1(y))− Ṽ1(x, a
′
1(y))− (Ṽ0(x, a0(y))− Ṽ0(x, a

′
0(y)))

−
(
Ṽ1(y, a1(y))− Ṽ1(y, a

′
1(y))− (Ṽ0(y, a0(y))− Ṽ0(y, a

′
0(y)))

)∣∣∣∣
=

∣∣∣∣ˆ 1

0

ˆ 1

0

∂s∂t(Ṽs(x, a
t
s(y))− Ṽs(y, ats(y))) ds dt

∣∣∣∣
=

∣∣∣∣ˆ 1

0

ˆ 1

0

∂s((∂a0Ṽs(x, a
t
s(y))− ∂a0Ṽs(y, ats(y)))∂ta

t
s(y))ds dt

∣∣∣∣
≤
ˆ 1

0

ˆ 1

0

(
|∂a0(Ṽ1 − Ṽ0)(x, a

t
s(y))− ∂a0(Ṽ1 − Ṽ0)(y, a

t
s(y))| |∂tats(y)|

+ |∂2
a0
Ṽs(x, a

t
s(y))− ∂2

a0
Ṽs(y, a

t
s(y))| |∂tats(y)| |∂sats(y)|

+|∂t∂sats(y)| |∂a0Ṽs(x, ats(y))− ∂a0Ṽs(y, ats(y))|
)
ds dt.

(1.179)

To �nish we bound the three terms on the right-hand side. Using the relations
(1.178), the three terms are treated in a manner very similar to part i) above.
In particular, for the �rst term using the exact same argument as in part i)
yields that

|∂a0(Ṽ1 − Ṽ0)(x, a
t
s(y))− ∂a0(Ṽ1 − Ṽ0)(y, a

t
s(y))| |∂tats(y)|

.‖Vint,1 − Vint,0‖αd2α(x, y),
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where we have used (1.54) and (1.55) with j = 1 applied to (V1 − V0)(·, a0)
and that |as(y)−a′s(y)| . |y2|

α
2 . For the second term of (1.179) we again use

the same strategy as in part i) with (1.54) and (1.55) with j = 2 applied to
Vs(·, a0) and the observation that |∂tats(y)| . |y2|

α
2 . Additionally using that

‖∂sats(y)‖ . ‖a1 − a0‖+ ‖a′1 − a′0‖, we obtain

|∂2
a0
Ṽs(x, a

t
s(y))− ∂2

a0
Ṽs(y, a

t
s(y))| |∂tats(y)| |∂sats(y)|

. ‖Vint,s‖α(‖a1 − a0‖+ ‖a′1 − a′0‖)d2α(x, y).

Getting to the last term of (1.179) we again use the same strategy, but this
time to set-up we use

|(a1 − a0)(y)− (a′1 − a′0)(y)| . ([a1 − a0]α + [a′1 − a′0]α)|y2|
α
2

and either (1.55) with j = 1 and k = 0 applied to Vs(·, a0) or (1.54) with
j = 1. We then get that

|∂t∂sats(y)| |∂a0Vs(x, ats(y))− ∂a0Vs(y, ats(y))|
. ‖Vint,s‖α([a1 − a0]α + [a′1 − a′0]α)d2α(x, y),

Combining these estimates �nishes our argument.

1.3.3 Proof of Proposition 2

Proof of Proposition 2. The main idea of this proof is to postulate an ansatz
for U , i. e. the function q as de�ned in (1.9), and then show that, by correct-
ing q with some w ∈ C2α(R2

+) such that w = 0 on ∂R2
+, we can set U = q+w.

i) As in Proposition 1 we start with existence and uniqueness, where now
�uniqueness" means that the correction w is uniquely determined.

Step 1� (Modelling of q)

We �rst show that q̃ is modelled after Ṽ (·, a0) according to aext on R2. For
our argument we �x x, y ∈ R2 and use the notation x̃ = (x1, |x2|). The
triangle inequality gives

|V (x̃, ā(x̃))− V (ỹ, ā(ỹ))− (V (x̃, aext(y))− V (ỹ, aext(y)))|
≤|V (x̃, ā(x̃))− V (x̃, ā(ỹ))|

+ |V (x̃, ā(ỹ))− V (ỹ, ā(ỹ))− (V (x̃, aext(y))− V (ỹ, aext(y)))|.
(1.180)

To obtain the modelledness result we now use Lemma 3 and Lemma 6. The
bounds from Lemma 3 in the versions mentioned in v) are applicable to ā
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with the identi�cations a0 = 1 and Vint = a thanks to (1.10). Also, part i)
of Lemma 6 is applicable with the identi�cations a = ˜̄a and a′ = aext. This
immediately allows us to bound the second term of (1.180) as

|V (x̃, ā(ỹ))− V (ỹ, ā(ỹ))− (V (x̃, aext(y))− V (ỹ, aext(y)))|
. ‖Vint‖α([aext]α + [ā]α)d2α(x, y)

. ‖Vint‖α[aext]αd
2α(x, y).

(1.181)

For the �rst term on the right-hand side of (1.180) we write

|V (x̃, ā(x̃))− V (x̃, ā(ỹ))|
. sup

a0∈[λ,1]

|∂a0V (x̃, a0)| |ā(ỹ)− ā(x̃)|

.

{
[Vint]α[a]α|x2|

α
2 (|x2|−

α
2 + |y2|−

α
2 )d2α(x̃, ỹ)

[Vint]α[a]α|x2|
α
2 dα(x̃, ỹ).

(1.182)

Here, the �rst bound follows from (1.55) applied with j = 0 to ā and (1.52)
applied with j = 1 to V (·, a0); the second comes from (1.54) applied to ā and
the same bound applied to V (·, a0). Arguing exactly as in part i) of Lemma
6 with the additional ingredient that d(x̃, ỹ) . d(x, y) we obtain that

|V (x̃, ā(x̃))− V (x̃, ā(ỹ))| . ‖Vint‖α[a]αd
2α(x, y). (1.183)

Combining (1.180), (1.181), and (1.183) we then �nd that q̃ is modelled after
Ṽ (·, a0) according to aext with modelling constant bounded as

M . ‖Vint‖α[aext]α. (1.184)

Step 2 � (Regularity for the forcing of the equation solved by w)

We now show that for every x ∈ R2 the bound

|(∂2q − a∂2
1q + q)E(x)| . ‖a‖α‖Vint‖α|x2|

2α−2
2 (1.185)

holds. Notice that on R2
+ the expression ∂2q − a∂2

1q + q is well-de�ned in a
classical sense since q is smooth for positive times. To begin our argument for
(1.185) we �rst apply Leibniz' rule to rewrite the expression ∂2q − a∂2

1q + q
for x ∈ R2

+ as:

(∂2q − a∂2
1q + q)(x)

=∂2V (x, ā(x)) + ∂a0V (x, ā(x))∂2ā(x)− a∂2
1V (x, ā(x))

− 2a∂1∂a0V (x, ā(x))∂1ā(x)− a∂a0V (x, ā(x))∂2
1 ā(x)

− a∂2
a0
V (x, ā(x))(∂1ā(x))2 + V (x, ā(x)).

(1.186)
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Thanks to (1.5) we have the relation ∂2V (·, a0) = (a0∂
2
1 − 1)V (·, a0) on R2

+,
which allows us to re-write the �rst term on the right-hand side of (1.186)
as ∂2V (x, ā(x)) = ā(x)∂2

1V (x, ā(x)) − V (x, ā(x)). In the same way, we can
make the substitution ∂2ā = ∂2

1 ā using (1.10). We obtain the formal identity

(∂2q − a∂2
1q + q)(x)

=(ā− a)(x)∂2
1V (x, ā(x)) + ∂a0V (x, ā(x))(1− a(x))∂2

1 ā(x)

− 2a(x)∂1∂a0V (x, ā(x))∂1ā(x)− a(x)∂2
a0
V (x, ā(x))(∂1ā(x))2.

(1.187)

We treat each term on the right-hand side of (1.187) separately by applying
the bounds from Lemma 3.

Applying (1.53) and (1.54) both with j = 0 to ā, we �nd that

‖ā‖ . ‖a‖ ≤ 1 and [ā]α . [a]α � 1. (1.188)

For the �rst term on the right-hand side of (1.187) we use that |a(x)−ā(x)| .
[a]α|x2|

α
2 , which we have already used in the previous step, combined with

an application of (1.52) with k = 2 and j = 0 to V (·, a0) to obtain∣∣(a− ā)(x)∂2
1V (x, ā(x))

∣∣ . [a]α[Vint]α|x2|
2α−2

2 . (1.189)

For the second term we apply (1.52) with j = 1 and k = 0 to V (·, a0), (1.52)
with k = 2 and j = 0 to ā, and use (1.188) to �nd that∣∣∂a0V (x, ā(x))(1− a(x))∂2

1 ā(x)
∣∣ .[Vint]α[a]α|x2|

2α−2
2 . (1.190)

The third term is treated by (1.52) with k = 1 and j = 1 applied to V (·, a0)
and with k = 1 and j = 0 applied to ā, which gives

|a(x)∂a0∂1V (x, ā(x))∂1ā(x)| . [a]α[Vint]α|x2|
2α−2

2 . (1.191)

The last term on the right-hand side of (1.187) is handled by (1.52) with
k = 1 and j = 0 applied to ā and (1.53) with j = 2 applied to V (·, a0):∣∣a(x)∂2

a0
V (x, ā(x))(∂1ā(x))2

∣∣ . [a]α‖Vint‖|x2|
2α−2

2 . (1.192)

Together (1.189), (1.190), (1.191), and (1.192) give (1.185).

Step 3� (Construction of the correction w)

We now show that there exists w ∈ C2α(R2
+) solving

(∂2 − a � ∂2
1 + 1)w = −(∂2q − a∂2

1q + q) in R2
+, (1.193a)

w = 0 on ∂R2
+. (1.193b)
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In fact, we construct the solution w of (1.193) as a C2α-solution of

(∂2 − aext � ∂2
1 + 1)w = −(∂2q − a∂2

1q + q)E in R2 (1.194)

and then show that w|R2
−

= 0. The construction of the correction w follows
essentially the same procedure as our argument for the existence of a solution
u of (1.82) in Proposition 1. In the current context, however, the argument
from the previous proposition sees some simpli�cation due to the higher reg-
ularity available here.

Step 3.1� (A speci�c form of the singular product) Let u ∈ C2α(R2) and
satisfy ∂2

1u ∈ Cα(Ω) for Ω ⊆ R2. Using the same argument as in Step 1 of
Proposition 1, we �nd that the singular product a � ∂2

1u obtained using the
trivial modelling of u via Lemma 4 coincides with the classical product on
Ω.

Step 3.2� (Hölder bounds for gτ) We now use the notation g = −(∂2q −
a∂2

1q + q)E and R2
L = R × (−∞,−L] for L > 0. In the current step we

let τ ∈ (0, 1) and estimate ‖gτ‖α;R2
L
for each L ∈ (0, 1) and ‖gτ‖α;R2. In

particular, for τ and L ∈ (0, 1) we show that

‖gτ‖α;R2
L
. ‖Vint‖α‖a‖αL−

α+2
2 (τ

1
4 )2α (1.195)

and

‖gτ‖α;R2 . ‖Vint‖α‖a‖α(τ
1
4 )−2.

We start by bounding the necessary seminorms and then the L∞-norms.
To estimate [gτ ]α;R2

L
we use (1.310) of Corollary 2 and (1.185) to obtain

[gτ ]α;R2
L
. ‖Vint‖α‖a‖α(τ

1
4 )2αL−

α+2
2 .

To bound [gτ ]α;R2 we again use (1.185), but now in combination with (1.309);
we �nd that

[gτ ]
loc
α;R2 . ‖Vint‖α‖a‖α(τ

1
4 )−2.

This is, of course, only a bound on the local Hölder seminorm, which upgrades
to a bound on the full seminorm with the addition of an L∞-bound.

We bound the L∞-norm ‖gτ‖R2
L
in the calculation (1.313) in Corollary

2. In particular, denoting the τ from (1.313) as τ ′ we apply (1.313) for
τ ′ = T = τ

2 , which gives

‖gτ‖R2
L
. ‖Vint‖α‖a‖αL−

α+2
2 (τ

1
4 )3α.
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For the full L∞-norm ‖gτ‖ we can use (1.311), which for T = τ implies that

‖gτ‖R2 . ‖Vint‖α‖a‖α(τ
1
4 )2α−2.

Step 3.3� (Analysis of the regularized problem) In the last step we showed
that gτ ∈ Cα(R2) for τ ∈ (0, 1). This means that that we may �nd a solution
wτ ∈ Cα+2(R2) of

(∂2 − aext∂2
1 + 1)wτ = gτ in R2. (1.196)

To obtain the desired correction w, we would like to pass to the limit τ ↓ 0
in the sequence of approximate solutions wτ . As in Proposition 1, we do
this with an application of Lemma 5 with I = 1, f1(·, a0) = 0, σ1 = 0, and
a = aext to the wτ .

To apply Lemma 5 with the identi�cations made above, we check that the
wτ are approximate solutions of (∂2− aext∂2

1 + 1) · = 0 in the sense of (1.91)
and determine an appropriate choice of K. Convolving (1.196) with ψT we
obtain that wτ solves

(∂2 − aext∂2
1 + 1)(wτ)T

= (gτ)T + (aext∂2
1w

τ)T − aext∂2
1(wτ)T in R2,

(1.197)

where by (1.21), (1.185), and (1.311) we have that

sup
T≤1

(T
1
4 )2−2α‖gτ+T‖ . ‖Vint‖α‖a‖α. (1.198)

Furthermore, since wτ ∈ Cα+2(R2), Step 3.1 gives that

(aext∂2
1w

τ)T − aext∂2
1(wτ)T = [aext, (·)T ] � ∂2

1w
τ ,

which, e. g. by (1.63) of Lemma 4, implies

sup
T≤1

(T
1
4 )2−2α‖(aext∂2

1w
τ)T − aext∂2

1(wτ)T‖ . [wτ ]2α[aext]α. (1.199)

Combining (1.197), (1.198), and (1.199) we obtain that wτ is indeed an ap-
proximate solution in the desired sense withK = [aext]α[wτ ]2α+‖Vint‖α‖a‖α.

Applying Lemma 5 we �nd that

M = [wτ ]2α . [aext]α[wτ ]2α + ‖a‖α‖Vint‖α,

which, after we use that [aext]α � 1, gives that

[wτ ]2α . ‖a‖α‖Vint‖α. (1.200)
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We also obtain the corresponding Cα-bound

‖wτ‖α . [aext]α[wτ ]2α + ‖a‖α‖Vint‖α . ‖a‖α‖Vint‖α, (1.201)

where we have used (1.200) and [aext]α ≤ 1.

Step 3.4� (Passing to the limit) We now pass to the limit τ → 0 in the
sequence of approximate solutions wτ . By (1.201) we can apply the Arzelà-
Ascoli theorem, which implies that up to a subsequence wτ → w uniformly.
In order to pass to the limit in (1.196), we �rst notice that gτ ⇀ g distri-
butionally. We then show that the aext∂2

1w
τ have uniformly bounded local

Cα−2-seminorms. This follows from the identity aext∂2
1w

τ = aext � ∂2
1w

τ ,
where the product on the right-hand side is obtained from Lemma 4 using
the trivial modelling of wτ . In particular, by (1.63), (1.201), and (1.20) we
then have that

sup
T≤1

(T
1
4 )2−α‖(aext∂2

1w
τ)T‖

. ‖aext‖α([wτ ]2α + ‖Vint‖α) + sup
T≤1

(T
1
4 )2−α‖aext∂2

1(wτ)T‖

. ‖aext‖α‖Vint‖α,
which by (1.22) implies our claim. As previously observed in the proof of
Proposition 1, the uniform bound on the local Cα−2-seminorms implies that,
up to a subsequence, aext∂2

1w
τ ⇀ h for some limiting distribution h as τ → 0.

To see that h = aext � ∂2
1w, where the product on the right-hand side is

obtained via the trivial modelling from Lemma 4, we notice that

lim
T→0
‖(aext∂2

1w
τ)T − aext∂2

1(wτ)T‖ = 0 (1.202)

for every τ > 0 and that, furthermore, we have the convergence
(aext∂2

1w
τ)T −aext∂2

1(wτ)T → hT −aext∂2
1wT in a pointwise sense. In order to

see that this convergence holds weak-∗ in L∞(R2), we remark that by (1.63)
and (1.200) the bound

‖(aext∂2
1w

τ)T − aext∂2
1(wτ)T‖ . ‖aext‖α‖Vint‖α (1.203)

holds uniformly in τ . Continuing as in Step 3 of Proposition 1 and using Step
10 of Proposition 1 of [47], we then �nd that h = a � ∂2

1w and, in particular,
that w solves

(∂2 − aext � ∂2
1 + 1)w = g in R2.

Since the bounds (1.200) and (1.201) are preserved under taking the limit
τ → 0, we have that

‖w‖α + [w]2α . ‖a‖α‖Vint‖α. (1.204)
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In order to see that w satis�es the initial condition (1.193b) we use (1.195).
In particular, the classical Hölder estimate for (1.194) implies that

‖wτ‖α+2;R2
L
. ‖gτ‖α;R2

L

(1.195)

. ‖Vint‖α‖a‖αL−
α+2
2 (τ

1
4 )2α

and passing to the limit τ → 0 yields that w = 0 on R2
L for every L > 0.

This means that the boundary condition (1.193b) is satis�ed.

Step 3.5� (Uniqueness of the correction) In this step we show that the cor-
rection w solving (1.193) is unique. To see this we assume that we have two
solutions w and w′ of class C2α on R2

+. We subtract them and use the same
argument as in Step 4 of the proof of Proposition 1 to obtain that

(∂2 − a � ∂2
1 + 1)(w − w′) = 0 in R2

+

w − w′ = 0 on ∂R2
+,

where the singular product a � ∂2
1(w − w′) is obtained as the restriction of

aext � ∂2
1(w − w′)E to R2

+ and this is obtained via Lemma 4 using the trivial
modelling. We also notice that by Step 3.1 we have that aext �∂2

1(w−w′)E =
aext∂2

1(w − w′)E = 0 on R2
−. In particular, we �nd that w − w′ solves

(∂2 − aext � ∂2
1 + 1)(w − w′) = 0 in R2,

which we can then take as input into Lemma 5. The proof of our claim then
proceeds exactly as in Step 4 of Proposition 1 by showing that ‖w−w′‖α = 0.

Step 4� (Conclusion)

To conclude we check the ansatz U = q + w. For this we �rst remark that
because q = Vint on ∂R2

+ and w satis�es (1.193b), the boundary condition
(1.85b) holds. Furthermore, by (1.194) we have

∂2
1(q̃ + w)− aext � ∂2

1 q̃ − aext � ∂2
1w + (q̃ + w)

=(∂2
1 q̃ − aext � ∂2

1 q̃ + q̃)− (∂2
1q − a∂2

1q + q)E in R2.
(1.205)

To �nish we show that

aext � ∂2
1 q̃ + aext � ∂2

1w = aext � ∂2
1(q̃ + w) (1.206)

and (
(∂2

1 q̃ − aext � ∂2
1 q̃ + q̃)− (∂2

1q − a∂2
1q + q)E

)
|R2

+
= 0. (1.207)

For (1.206) we �rst notice that since w ∈ C2α(R2), by Step 1 we have that
q̃ + w is modelled after Ṽ (·, a0) according to aext and σ = 1 on R2. This
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allows us to de�ne the product on the right-hand side of (1.206) via Lemma
4 with this modelling. The �rst product on the left-hand side is de�ned
using the same modelling and the second product on the left-hand side is
de�ned via the trivial modelling. Just like we have done previously in Step 4
of Proposition 1, we �nd that the triangle inequality and Lemma 4 may be
combined to give

lim
T→0
‖(aext � ∂2

1(q̃ + w))T − (aext � ∂2
1 q̃)T − (aext � ∂2

1w)T‖ = 0, (1.208)

which gives (1.206).
To �nish checking the ansatz U = q + w, we notice that aext � ∂2

1 q̃|R2
+
is

the classical product, which shows (1.207). To see this we �rst show that q̃
satis�es (1.50), which implies that the product aext∂2

1 q̃ is well-de�ned in a
distributional sense. We then use (1.63) and (1.56) to write

lim
T→0
‖(aext � ∂2

1 q̃)T − (aext∂2
1 q̃)T‖

. lim
T→0
‖[aext, (·)T ] � ∂2

1 q̃ − E[aext, (·)T ]∂2
1 Ṽ (·, a0)‖

+ lim
T→0
‖[aext, (·)T ]∂2

1 q̃ − E[aext, (·)T ]∂2
1 Ṽ (·, a0)‖,

(1.209)

where we know by Lemma 4 that the �rst term goes to 0. We then treat
the second term by performing a calculation that foreshadows our proof of
Lemma 2. In particular, noting that here E denotes evaluation of a function
of (x, a0) at (x, aext(x)) we �nd that for x ∈ R2 the relation

|[aext, (·)T ]∂2
1 q̃ − E[aext, (·)T ]∂2

1 Ṽ (·, a0)|

=

∣∣∣∣ˆ
R2

(aext(x)− aext(x− y))

×∂2
1(Ṽ (x− y, ˜̄a(x− y))− Ṽ (x− y, aext(x)))ψT (y) dy

∣∣∣
. [aext]α

ˆ
R2

sup
a0∈[λ,1]

|∂2
1∂a0Ṽ (x− y, a0)|

× |y|α([aext]α|y|
α
2 + |˜̄a(x− y)− aext(x− y)|)|ψT (y)| dy

. [aext]2α[Vint]α

ˆ
R2

|x2 − y2|
α−2
2 |y|α(|y|α + |x2 − y2|

α
2 )ψT (y) dy

. [aext]2α[Vint]α(T
1
4 )3α−2

holds. Here we have used (1.52) and the bound |˜̄a(x)−aext(x)| ≤ [aext]α|x2|
α
2

for x ∈ R2. For the treatment of the integral in the last line refer to the
proof of Lemma 2; the integral converges because ψ1 is a Schwarz function.
The above calculation shows that the second term on the right-hand side of
(1.209) also vanishes, which implies that aext � ∂2

1 q̃ = aext∂2
1 q̃ as desired.
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Quickly, before moving on, we prove (1.50) for G = q̃. Fix x ∈ R2
+ and

recall from Step 2 that

∂2
1q(x) =∂2

1V (x, ā(x))− 2∂1∂a0V (x, ā(x))∂1ā(x)

− ∂a0V (x, ā(x))∂2
1 ā(x)− ∂2

a0
V (x, ā(x))(∂1ā(x))2.

(1.210)

As already discussed, the �rst term may be bounded as

|∂2
1V (x, ā(x))| . [Vint]α|x2|

α−2
2 (1.211)

and the other terms as

|2∂1∂a0V (x, ā(x))∂1ā(x)|+ |∂a0V (x, ā(x))∂2
1 ā(x)|

+ |∂2
a0
V (x, ā(x))(∂1ā(x))2|

.‖Vint‖α[a]α|x2|
2α−2

2 .

(1.212)

To �nish we prove the bounds (1.87) and (1.86). We start with (1.87) and
use the triangle inequality, the estimate (1.204), (1.53) with j = 0 and j = 1
applied to V (·, a0), (1.54) with j = 0, and (1.188) to write

[U ]α ≤ sup
a0∈[λ,1]

[V (·, a0)]α + sup
a0∈[λ,1]

‖∂a0V (·, a0)‖[ā]α + [w]α . ‖Vint‖α

and

‖U‖α . ‖q‖α + ‖w‖α . ‖Vint‖α.

Likewise, for (1.86) we use (1.184) and (1.200) to write

M . [w]2α + [aext]α‖Vint‖α . ‖aext‖α‖Vint‖α.

ii) In this part we consider two pairs (ai, Vint,i) for i = 0, 1. Accordingly, we
use the notation qi = Vi(·, āi(·)), where Vi(·, a0) solves (1.5) with initial con-
dition Vint,i and āi solves (1.10) with initial condition ai. In order to address
the stability of the solution operator here, we use a strategy similar to the
second part of Proposition 1 in combination with some classical estimates
coming from Lemma 3.

Step 5� (Interpolation of the data)

We linearly interpolate the boundary data and coe�cients and for s ∈ [0, 1]
de�ne the objects as, a

ext
s , and Vint,s as

as := a1s+ a0(1− s), (1.213)
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aexts := aext1 s+ aext0 (1− s), (1.214)

and Vint,s := Vint,1s+ Vint,0(1− s). (1.215)

This induces the de�nition

qs := Vs(·, ās(·)), (1.216)

where Vs(·, a0) solves (1.5) with initial condition Vint,s and ās solves (1.10)
with initial condition as. That q̃s is modelled after Ṽs(·, a0) according to ã

ext
s

follows from the same argument as in Step 1 with the modelling constant
Ms . [aexts ]α‖Vint,s‖α. Notice that unlike the situation in Proposition 1, here
we not need to interpolate any reference products.

Step 6� (A continuous curve of solutions and an equation for ∂swτ
s )

Using the same methods as in part i) we �nd that, in analogue to (1.185),
the relation

|(∂2qs − as∂2
1qs + qs)

E(x)| . ‖as‖α‖Vint,s‖α|x2|
2α−2

2 (1.217)

for x ∈ R2 holds. Feeding (1.217) into the machinery that we have developed
in part i), we �nd that there exists a correction ws ∈ C2α(R2) solving (1.193)
with right-hand side ∂2qs − as∂

2
1qs + qs and coe�cients as and that this

correction actually solves

(∂2 − aexts � ∂2
1 + 1)ws = gs in R2, (1.218)

where gs = (∂2qs− as∂2
1qs + qs)

E. This solution ws is obtained by taking the
limit in C2α(R2) of the sequence of regularized solutions wτ

s of

(∂2 − aexts � ∂2
1 + 1)wτ

s = (gs)τ in R2. (1.219)

Using the same arguments as in Step 4 we �nd that Us = qs + ws solves
(1.85) with coe�cients as and initial condition Vint,s.

Noticing that by Step 3.1 when τ > 0 the singular product in (1.219) is
the classical product, we may di�erentiate the equation (1.219) with respect
to s and �nd that ∂sw

τ
s solves

(∂2 − aexts ∂2
1 + 1)∂sw

τ
s = (∂sgs)τ + ∂sa

ext
s ∂2

1w
τ
s in R2. (1.220)

Since the right-hand side of (1.220) is still of class Cα, we know by the stan-
dard Hölder estimate for (1.220) that ∂sw

τ
s ∈ Cα+2(R2). In particular, ∂sw

τ
s

is trivially modelled.
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Step 7� (Estimates for ∂swτ
s )

We now apply Lemma 5 to the ∂sw
τ
s with inputs I = 2, f1(·, a0) = ∂sgs,

f2(·, a0) = ∂sa
ext
s ∂2

1w
τ
s (·, a0), and σ1 = σ2 = 0. First, we must check that

∂sw
τ
s is an approximate solution in the sense of (1.91). To begin we convolve

(1.220) with ψT , which gives

(∂2 − aexts ∂2
1 + 1)(∂sw

τ
s )T

= (∂sgs)τ+T + (∂sa
ext
s ∂2

1w
τ
s )T − [aexts , (·)T ]∂2

1∂sw
τ
s in R2

and we then show that

sup
T≤1

(T
1
4 )2−2α‖(∂sgs)τ+T + (∂sa

ext
s ∂2

1w
τ
s )T − [aexts , (·)T ]∂2

1∂sw
τ
s‖

.[aexts ]α[∂sw
τ
s ]2α + ‖aext0 − aext1 ‖α max

i
‖Vint,i‖α + ‖Vint,0 − Vint,1‖α.

(1.221)

Showing (1.221) turns out to be the bulk of the work in part ii).

To maintain oversight in our argument for (1.221) we split it into three steps.
The eventual application of Lemma 5 is included in Step 7.3.

Step 7.1� The main di�cultly in showing (1.221) is obtaining the inequality

sup
T≤1

(T
1
4 )2−2α‖(∂sgs)τ+T‖ . ‖a0 − a1‖α max

i
‖Vint,i‖α + ‖Vint,0 − Vint,1‖α.

(1.222)

To obtain (1.222) we �rst notice that for x ∈ R2 we have that

∂sgs(x) =− ((∂2 − as∂2
1 + 1)(V1(x, ās(x))− V0(x, ās(x))))E

− ((∂2 − as∂2
1 + 1)(a1 − a0)∂a0Vs(x, ās(x)))E

+ ((a1 − a0)∂
2
1Vs(x, ās(x)))E

(1.223)

and then treat the terms on the right-hand side separately. The �rst term
may be treated in the same way as in Step 2 using that (V1−V0)(·, a0) solves
(1.5) with initial condition Vint,1 − Vint,0 and ās solves (1.10) with initial
condition as. In particular, using the exact same argument and additionally
(1.21), we obtain

sup
T≤1

(T
1
4 )2−2α‖((∂2 − as∂2

1 + 1)(V1(·, ās(·))− V0(·, ās(·)))E)τ+T‖

. ‖as‖α‖Vint,1 − Vint,0‖α.
(1.224)

We treat the second and third terms of (1.223) together. Using Leibniz'
rule for x ∈ R2

+ we obtain (this calculation continues on the next page)

(∂2 − as∂2
1 + 1)(a1 − a0)∂a0Vs(x, ās(x))− (a1 − a0)∂

2
1Vs(x, ās(x))
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=∂a0Vs(x, ās(x))∂2(a1 − a0) + (a1 − a0)∂2∂a0Vs(x, ās(x))

+ (a1 − a0)∂
2
a0
Vs(x, ās(x))∂2ās − as∂a0Vs(x, ās(x))∂2

1(a1 − a0)

− 2as∂1(a1 − a0)(∂1∂a0Vs(x, ās(x)) + ∂2
a0
Vs(x, ās(x))∂1ās)

− as(a1 − a0)

(
∂2

1∂a0Vs(x, ās(x)) + 2∂1∂
2
a0
Vs(x, as(x))∂1ās(x)

+ ∂3
a0
Vs(x, as(x))(∂1ās)

2 + ∂2
a0
Vs(x, as(x))∂2

1 ās

)
+ (a1 − a0)∂a0Vs(x, ās(x))

− (a1 − a0)

(
∂2

1Vs(x, ās(x)) + 2∂1∂a0Vs(x, ās(x))∂1ās

+∂2
a0
Vs((x, ās(x))(∂1ās)

2 + ∂a0Vs((x, ās(x))∂2
1 ās

)
.

Following the techniques used in Step 1 we make use of the identities

∂2(a1 − a0) = ∂2
1(a1 − a0)− (a1 − a0),

∂2ās = ∂2
1 ās − ās,

and ∂2∂a0Vs(x, ās(x)) = ās(x)∂2
1∂a0Vs(x, ās(x))

− ∂a0Vs(x, ās(x)) + ∂2
1Vs(x, ās(x)),

where the last one comes from (1.253). In particular, plugging them in and
rearranging terms we obtain

(∂2 − as∂2
1 + 1)(a1 − a0)∂a0Vs(x, ās(x))− (a1 − a0)∂

2
1Vs(x, ās(x))

=(1− as)∂a0Vs(x, ās(x))∂2
1(a1 − a0)

+ (a1 − a0)(ās(x)− as(x))∂2
1∂a0Vs(x, ās(x))

+ (a1 − a0 − (a1 − a0))∂
2
1Vs(x, ās(x)))

+ (a1 − a0)∂
2
a0
Vs(x, ās(x))(∂2

1 ās − ās)
− 2as∂1(a1 − a0)(∂1∂a0Vs(x, ās(x)) + ∂2

a0
Vs(x, ās(x))∂1ās)

− as(a1 − a0)

(
2∂1∂

2
a0
Vs(x, as(x))∂1ās(x)

+ ∂3
a0
Vs(x, as(x))(∂1ās)

2 + ∂2
a0
Vs(x, as(x))∂2

1 ās

)
− (a1 − a0)

(
2∂1∂a0Vs(x, ās(x))∂1ās + ∂2

a0
Vs((x, ās(x))(∂1ās)

2

+ ∂a0Vs((x, ās(x))∂2
1 ās

)
We treat each term on the right-hand side separately: Starting with the �rst
term, we use that ‖as‖ ≤ 1, an application of (1.52) with k = 2 and j = 0
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to a1 − a0, and with k = 0 and j = 1 applied to Vs(·, a0) to obtain

|(1− as(x))∂a0Vs(x, ās(x))∂2
1(a1 − a0)(x)| . [a1 − a0]α[Vint,s]αx

2α−2
2

2 .

For the next term we use that |(ās − as)(x)| . [as]αx
α
2
2 , apply (1.52) with

k = 2 and j = 1 to Vs(·, a0), and (1.53) to a1 − a0 in the form without the
massive term to write

|(a1 − a0)(x)(ās − as)(x)∂2
1∂a0Vs(x, ās(x))|

. ‖a1 − a0‖[as]α[Vint,s]αx
2α−2

2
2 .

The third term is treated in a similar fashion, using that

|(a1 − a0 − (a1 − a0))(x)| . [a1 − a0]αx
α
2
2

and (1.52) applied with k = 2 and j = 0 to Vs(·, a0). In particular, we obtain
that

|(a1 − a0 − (a1 − a0))(x)∂2
1Vs(x, ās(x))| . [a1 − a0]α[Vint,s]αx

2α−2
2

2 .

For the fourth term we use (1.53) in its version without the massive term
applied to a1 − a0, the relation ‖as‖ ≤ 1, (1.52) applied with j = 2 and
k = 0 to Vs(·, a0), and again with k = 2 and j = 0 to ās. We �nd that

|a1 − a0(x)∂2
a0
Vs(x, ās(x))(∂2

1 ās − ās)(x)|

. ‖as‖α‖a1 − a0‖[Vint,s]α(x
2α−2

2
2 + x

α
2
2 ).

Continuing on, for the next term we apply (1.52) with k = 1 and j = 0 to
a1 − a0 and ās and with k = 1 and j = 1 to Vs(·, a0). Furthermore, we use
(1.53) applied to Vs(·, a0) with j = 2; combining these estimates and using
that ‖as‖ ≤ 1 we obtain

|as(x)∂1a1 − a0(x)(∂1∂a0Vs(x, ās(x)) + ∂2
a0
Vs(x, ās(x))∂1ās(x))|

.[a1 − a0]α‖Vint,s‖α(1 + [as]α)x
2α−2

2
2 .

Again using the bound ‖as‖ ≤ 1, (1.52) applied to Vs(·, a0) with k = 1 or
k = 0 and j = 2 and to ās with k = 1 or k = 2 and j = 0, and (1.53) applied
to Vs(·, a0) with j = 3 and to a1 − a0 with j = 0 we �nd that∣∣as(x)a1 − a0(x)

(
2∂1∂

2
a0
Vs(x, as(x))∂1ās(x)

+∂3
a0
Vs(x, as(x))(∂1ās(x))2 + ∂2

a0
Vs(x, as(x))∂2

1 ās(x)
)∣∣

.‖a1 − a0‖([Vint,s]α[as]α + ‖Vint,s‖[as]2α)|x2|
2α−2

2
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Finally, we come to the last term for which we use (1.52) applied to Vs(·, a0)
with k = 1 or k = 0 and j = 1 and to ās with k = 1 and j = 0 and (1.53)
applied to Vs(·, a0) with j = 2. We obtain

|(a1 − a0)(x) (2∂1∂a0Vs(x, ās(x))∂1ās(x)

+∂2
a0
Vs(x, ās(x))(∂1ās(x))2 + ∂a0Vs(x, ās(x))∂2

1 ās(x)
)∣∣

.‖a1 − a0‖
(

([Vint,s]α[as]α + ‖Vint,s‖α[as]
2
α)x

2α−2
2

2 + ‖Vint,s‖e−x2[as]αx
α−2
2

2

)
.‖a1 − a0‖[as]α‖Vint,a‖αx

2α−2
2

2 .

Using that ‖as‖α ≤ 1 we then, in particular, �nd that for any x ∈ R2 it
holds that∣∣((∂2 − as∂2

1 + 1)(a1 − a0)∂a0Vs(·, ās(·))− (a1 − a0)∂
2
1Vs(·, ās(·)))E(x)

∣∣
.‖a1 − a0‖α max

i
‖Vint,i‖α|x2|

2α−2
2 ,

which using Corollary 2 then gives that

sup
T≤1

(T
1
4 )2−2α

∥∥∥( ((∂2 − as∂2
1 + 1)(a1 − a0)∂a0Vs(·, ās(·))

−(a1 − a0)∂
2
1Vs(·, ās(·))

)E)
T

∥∥∥
.‖a1 − a0‖α max

i
‖Vint,i‖α.

Combining this with (1.223) and (1.224) gives (1.222).

Step 7.2� To continue checking (1.221) we use the triangle inequality to write

sup
T≤1

(T
1
4 )2−2α‖(∂saexts ∂2

1w
τ
s )T‖

≤ sup
T≤1

(T
1
4 )2−2α‖[∂saexts , (·)T ]∂2

1w
τ
s‖+ sup

T≤1
(T

1
4 )2−2α‖∂saexts ∂2

1(wτ
s )T‖.

(1.225)

For the �rst term on the right-hand side we notice that by (1.63) of Lemma
4 and the analogue of (1.200) for wτ

s , we have that

sup
T≤1

(T
1
4 )2−2α‖[∂saexts , (·)T ]∂2

1w
τ
s‖ . ‖aext0 − aext1 ‖α[wτ

s ]2α

. ‖aext0 − aext1 ‖α‖as‖α‖Vint,s‖α.
(1.226)

The second term on the right-hand side of (1.225) is again handled using
(1.200). In particular, for x ∈ R2 we may then use (1.18) and that ψT is an
even Schwarz function to write

|∂saexts (∂2
1w

τ
s )T (x)|
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.‖aext0 − aext1 ‖
∣∣∣∣ˆ

R2

(wτ
s (y)− wτ

s (x)− ∂1w
τ
s (x)(y − x)1)∂

2
1ψT (y − x) dy

∣∣∣∣
.‖aext0 − aext1 ‖[wτ

s ]2α(T
1
4 )2α−2

.‖aext0 − aext1 ‖‖as‖α‖Vint,s‖α(T
1
4 )2α−2.

We then combine the last three relations and use ‖as‖α ≤ 1 to �nd that

sup
T≤1

(T
1
4 )2−2α‖(∂saexts ∂2

1ws,τ)T‖ . ‖aext0 − aext1 ‖α‖Vint,s‖α. (1.227)

Step 7.3� To �nish checking (1.221), we again use (1.63) of Lemma 4 to �nd
that

sup
T≤1

(T
1
4 )2−2α‖[aexts , (·)T ]∂2

1∂sw
τ
s‖ . [aexts ]α[∂sw

τ
s ]2α. (1.228)

We then combine (1.228) with the estimates already obtained in the previous
(sub)steps and the triangle inequality to obtain (1.221).

Having shown (1.221) and using [aexts ]α � 1, we may apply Lemma 5 to
obtain that

‖∂swτ
s‖α + [∂sw

τ
s ]2α

. ‖aext0 − aext1 ‖α max
i
‖Vint,i‖α + ‖Vint,0 − Vint,1‖α.

(1.229)

Step 8 � (Conclusion)

We would now like to �nish by showing (1.88) and (1.89). Recall from part
i) that the solutions of (1.85) are constructed as Ui = qi + wi for i = 0, 1.
Notice that, just like in Step 8 of Proposition 1, the bound (1.229) may be
integrated over s ∈ [0, 1] to give

‖wτ
0 − wτ

1‖α + [wτ
0 − wτ

1 ]2α

.‖aext0 − aext1 ‖α max
i
‖Vint,i‖α + ‖Vint,0 − Vint,1‖α.

(1.230)

Passing to the limit τ → 0, we �nd that the bound (1.230) holds also for
w0 − w1. It still remains to bound the Cα-norm of q1 − q0 and to quantify
the modelling of q̃1 − q̃0 after (Ṽ1(·, a0), Ṽ0(·, a0)) according to (1,−1) and
(aext1 , aext0 ).
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We start by bounding the Cα-norm of q1−q0. First, let x ∈ R2
+ and notice

that

|q1(x)− q0(x)|
. sup

a0∈[λ,1]

‖(V1 − V0)(·, a0)‖+ sup
a0∈[λ,1]

‖∂a0V0(·, a0)‖‖a1 − a0‖

. ‖Vint,1 − Vint,0‖+ ‖Vint,0‖α‖a1 − a0‖,

(1.231)

where we have used (1.53). Moving on to the seminorm, we �x two distinct
points x, y ∈ R2

+ and write

|(q1 − q0)(x)− (q1 − q0)(y)|
≤|V1(x, ā1(x))− V0(x, ā0(x))− (V1(x, ā1(y))− V0(x, ā0(y)))|

+ |V1(x, ā1(y))− V0(x, ā0(y))− (V1(y, ā1(y))− V0(y, ā0(y)))|.
(1.232)

For the �rst term notice that

V1(x, ā1(x))− V0(x, ā0(x))− (V1(x, ā1(y))− V0(x, ā0(y)))

=

ˆ 1

0

∂s(Vs(x, ās(x))− Vs(x, ās(y))) ds

=

ˆ 1

0

(
V1(x, ās(x))− V0(x, ās(x))− (V1(x, ās(y))− V0(x, ās(y)))

+ (∂a0Vs(x, ās(x))− ∂a0Vs(x, ās(y)))a1 − a0(x)

+∂a0Vs(x, ās(y))(a1 − a0(x)− a1 − a0(y))
)
ds.

(1.233)

We then apply (1.53) with j = 1 to (V1 − V0)(·, a0) and (1.54) to ās as

|V1(x, ās(x))− V0(x, ās(x))− (V1(x, ās(y))− V0(x, ās(y)))|
. sup

a0∈[λ,1]

‖∂a0(V1 − V0)(·, a0)‖|ās(x)− ās(y)|

.‖Vint,1 − Vint,0‖[as]αdα(x, y).

(1.234)

For the second term of (1.233) we use (1.53) with j = 2 applied to Vs(·, a0)
and with j = 0 applied to a1 − a0 to obtain

|(∂a0Vs(x, ās(x))− ∂a0Vs(x, ās(y)))a1 − a0(x)|
. sup

a0∈[λ,1]

‖∂2
a0
Vs(·, a0)‖ |ās(x)− ās(y)| ‖a1 − a0‖

.‖Vint,s‖α[as]α‖a1 − a0‖dα(x, y).

The last term of (1.233) is bounded with (1.53) for j = 1 applied to Vs(·, a0)
and (1.54) for j = 0 applied to a1 − a0:

|∂a0Vs(x, ās(y))(a1 − a0(x)− a1 − a0(y))| . ‖Vint,s‖α[a1 − a0]αd
α(x, y).
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Combining these estimates and using that [as]α ≤ 1 gives

|V1(x, ā1(x))− V0(x, ā0(x))− (V1(x, ā1(y))− V0(x, ā0(y)))|
.(‖Vint,0 − Vint,1‖α + ‖a1 − a0‖α max

i
‖Vint,i‖α)dα(x, y).

(1.235)

A similar strategy can be used to bound the second term on the right-hand
side of (1.232). In particular, we write

|V1(x, ā1(y))− V0(x, ā0(y))− (V1(y, ā1(y))− V0(y, ā0(y)))|

=

∣∣∣∣ˆ 1

0

∂s(Vs(x, ās(y))− Vs(y, ās(y))) ds

∣∣∣∣
=

ˆ 1

0

(
|(V1 − V0)(x, ās(y))− (V1 − V0)(y, ās(y))|

+|∂a0Vs(x, ās(y))− ∂a0Vs(y, ās(y))| |a1 − a0(y)|
)
ds

.(‖Vint,1 − Vint,0‖α + ‖a1 − a0‖max
i

[Vint,i]α)dα(x, y),

(1.236)

where we have again used (1.54) and (1.53). Together (1.232), (1.235), and
(1.236) show that

[q1 − q0]α . ‖a1 − a0‖α max
i
‖Vint,i‖α + ‖Vint,1 − Vint,0‖α. (1.237)

We then also consider the modelling of q̃1 − q̃0 after (Ṽ1(·, a0), Ṽ0(·, a0))
according to (aext1 , aext0 ) and (1,−1) on R2. For distinct points x, y ∈ R2

+ we
use the triangle inequality to write∣∣∣Ṽ1(x, ˜̄a1(x))− Ṽ0(x, ˜̄a0(x))− (Ṽ1(y, ˜̄a1(y))− Ṽ0(y, ˜̄a0(y)))

−(Ṽ1(x, a
ext
1 (y))− Ṽ1(y, a

ext
1 (y))) + (Ṽ0(x, a

ext
0 (y))− Ṽ0(y, a

ext
0 (y)))

∣∣∣
.
∣∣∣Ṽ1(x, ˜̄a1(x))− Ṽ0(x, ˜̄a0(x))− (Ṽ1(x, ˜̄a1(y))− Ṽ0(x, ˜̄a0(y)))

∣∣∣
+

∣∣∣∣Ṽ1(x, ˜̄a1(y))− Ṽ1(x, a
ext
1 (y))− (Ṽ0(x, ˜̄a0(y))− Ṽ0(x, a

ext
0 (y)))

−
(
Ṽ1(y, ˜̄a1(y))− Ṽ1(y, a

ext
1 (y))− (Ṽ0(y, ˜̄a0(y))− Ṽ0(y, a

ext
0 (y)))

)∣∣∣∣ .
(1.238)

Notice that the �rst term on the right-hand side is the same as in (1.232);
however, we treat it slightly di�erently now. In particular, we treat this term
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in the same way as (1.182) in Step 1, which gives that

|(V1(x, ās(x))− V0(x, ās(x)))− (V1(x, ās(y))− V0(x, ās(y)))|
. sup

a0∈[λ,1]

|∂a0(V1 − V0)(x, a0))||ās(x)− ās(y)|

.‖Vint,1 − Vint,0‖α[as]αd
2α(x, y).

Notice that here we have applied (1.53) with j = 1 to (V1 − V0)(·, a0) and
have either applied (1.54) to ās or (1.55) both with j = 0. The second
term of (1.238) is more involved, but has already been treated in part iii)
of Lemma 6. In particular, making the identi�cations ai = ˜̄ai and a

′
i = aexti ,

where the left-hand side is notation taken from Lemma 6, and using the
result from the lemma, we �nd that the second term can be bounded by
‖Vint,1 − Vint,0‖α + maxi ‖Vint,i‖α‖aext1 − aext0 ‖α. We conclude that q̃1 − q̃0 is
modelled after (Ṽ1(·, a0), Ṽ0(·, a0)) according to (aext1 , aext0 ) and (1,−1) on R2

with modelling constant given by

M . ‖Vint,1 − Vint,0‖α + max
i
‖Vint,i‖α‖aext1 − aext0 ‖α. (1.239)

1.3.4 Proof of Theorem 1.

We proceed to our proof of Theorem 1, which now consists mainly of com-
bining the two propositions and post-processing the modelling. Most of the
work goes towards post-processing the modelling, which is done for part i)
in Step 2 and for part ii) in Step 3. This post-processing relies on Lemma 6.

Proof of Theorem 1.

i) In this �rst part of our proof we combine the two propositions and give an
appropriate solution of (1.68) with the correct modelling.

Step 1� (Checking the ansatz)

By Proposition 1 we know that there is a unique solution u ∈ Cα(R2)
of (1.82) that is modelled after v(·, a0) according to the extension aext.
Proposition 2 gives a solution U ∈ Cα(R2

+) of (1.85) with initial condition
Vint = Wint − u|x2=0 that decomposes as U = q + w such that q̃ + wE is
modelled after Ṽ (·, a0) according to aext. The ansatz for the solution W of
(1.68) is then taken to be W = u+ U .
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To see thatW = u+U satis�es (1.68), we notice that the initial condition
(1.68b) is clearly satis�ed. In order to check that (1.68a) holds on R2

+ we
show that the singular products from Proposition 1 and Proposition 2 are
compatible in the sense that

a � ∂2
1W = a � ∂2

1u+ a � ∂2
1U. (1.240)

Aside from a�∂2
1u, which is obtained via Lemma 4 from the reference products

assumed to exist in (1.66), the other two singular products in (1.240) are
de�ned in (1.80) and (1.81). The argument for (1.240) is essentially the
same as for (1.147) in Step 4 of Proposition 1; in particular, by using Lemma
4 and the triangle inequality we �nd that

lim
T→0
‖(aext � ∂2

1W )T − (aext � ∂2
1u)T + (aext � ∂2

1U)T‖ = 0,

which yields (1.240). The relation (1.71) is a consequence of (1.83) and (1.87).

Step 2� (Post-processing the modelling)

We would like to show that q̃ + wE is modelled after Ṽ (·, a0) with Vint =
Wint − v(·, a0) according to aext. Our �rst step towards showing this is
introducing atr : R2 → R de�ned as

atr(x) = a(x1, 0) (1.241)

and using part ii) of Lemma 6 with the identi�cations a = aext and a′ = atr to
obtain that q̃+wE is modelled after Ṽ (·, a0) with Vint = Wint−u according to
atr. In order to swap out the initial condition Vint = Wint−u for the desired
Vint = Wint−v(·, a0) in this modelling, we let ν be associated to the modelling
of u after v(·, a0) and, for V (·, a0) solving (1.5) with Vint = u−v(·, a0), show
that ∣∣∣Ṽ (x, atr(y))− Ṽ (y, atr(y))− ν̃

´
(y)(x− y)1

∣∣∣
. N0(N + 1)d2α(x, y)

(1.242)

for x, y ∈ R2 and

ν
´
(y) = e−y2

ˆ
R

1

(4πatr(y)y2)
1
2

ν(s, 0)e
−|y1−s|

2

4y2atr(y) ds. (1.243)

Once we have shown (1.242) we can use the triangle inequality to see that
q̃+wE is modelled after Ṽ (·, a0) with Vint = Wint− v(·, a0) according to atr,
now with modelling constant bounded by (N int

0 +N0)(N + 1); by Lemma 6
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this means that q̃+wE has the same modelling according to aext. By (1.173)
and the results from Propositions 1 and 2 we �nd that (1.72) is satis�ed.

The argument for (1.242) comes down to using the heat-kernel representa-
tion for V (·, a0), that u is modelled after the v(·, a0) according to a

ext on R2,
and that aext(x) = atr(x) when x2 = 0. In particular, using the de�nition
(1.243) we �nd that∣∣∣Ṽ (x, atr(y))− Ṽ (y, atr(y))− ν̃

´
(y)(x− y)1

∣∣∣
.e−|y2|

∣∣∣∣ˆ
R

(
u(x1 − z(4|x2|atr(y))

1
2 , 0)− u(y1 − z(4|y2|atr(y))

1
2 , 0)

−
(
v((x1 − z(4|x2|atr(y))

1
2 , 0), a(y1 − z(4|y2|atr(y))

1
2 , 0))

−v((y1 − z(4|y2|atr(y))
1
2 , 0), a(y1 − z(4|y2|atr(y))

1
2 , 0))

)
−ν(y1 − z(4|y2|atr(y))

1
2 , 0)(x− y)1

)
e−z

2

dz

∣∣∣∣
+ |e−|x2| − e−|y2||(‖u‖+ sup

a0∈[λ,1]

‖v(·, a0)‖).

(1.244)

We �rst treat the second term on the right-hand side, which can be easily
bounded by |x2 − y2|N0(N + 1) due to the relation |e−|x2| − e−|y2|| . ||x2| −
|y2|| ≤ |x2 − y2| and the bounds (1.83) and (1.322). This is su�cient when
d(x, y) ≤ 1; when d(x, y) ≥ 1 we use the trivial bound |e−|x2|−e−|y2|| . 1 and
d2α(x, y) ≥ 1. For the �rst term we notice that in the case that d(x, y) ≥ 1
the standard Hölder estimates (1.83) and (1.322) along with (1.370) and
(1.83) yield the desired (1.242). Therefore, we must only still handle the case
d(x, y) ≤ 1, but this requires a bit more work. In particular We begin by
using the modelling of u and the estimate (1.83) to bound this term as∣∣∣∣ˆ

R

(
u(x1 − z(4|x2|atr(y))

1
2 , 0)− u(y1 − z(4|y2|atr(y))

1
2 , 0)

−
(
v((x1 − z(4|x2|atr(y))

1
2 , 0), a(y1 − z(4|y2|atr(y))

1
2 , 0))

−v((y1 − z(4|y2|atr(y))
1
2 , 0), a(y1 − z(4|y2|atr(y))

1
2 , 0))

)
−ν(y1 − z(4|y2|atr(y))

1
2 , 0)(x− y)1

)
e−z

2

dz

∣∣∣∣
.N0(N + 1)d2α(x, y)+∣∣∣∣ˆ

R
ν(y1 − z(4|y2|atr(y))

1
2 , 0)z((4|x2|atr(y))

1
2 − (4|y2|atr(y))

1
2 )e−z

2

dz

∣∣∣∣ .
(1.245)
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Continuing, we now split our treatment of the remaining term on the right-
hand side into four cases:

Case 1�We assume that |y2|
1
2 ≥ d(x, y), |x2|

1
2 ≥ d(x, y), and |y2| ≤ |x2|. No-

tice that the square-root function is Lipschitz on R× [|y2|,∞) with Lipschitz
constant 1

2 |y2|−
1
2 . In particular, we have that

|(4|x2|atr(y))
1
2 − (4|y2|atr(y))

1
2 | . |x2 − y2||y2|−

1
2 , (1.246)

which, after using (1.365) in conjunction with (1.83), yields∣∣∣∣ˆ
R
ν(y1 − z(4y2atr(y))

1
2 , 0)z((4x2atr(y))

1
2 − (4y2atr(y))

1
2 )e−z

2

dz

∣∣∣∣
=

∣∣∣∣ˆ
R
(ν(y1 − z(4y2atr(y))

1
2 , 0)− ν(y1, 0))

×z((4x2atr(y))
1
2 − (4y2atr(y))

1
2 )e−z

2

dz
∣∣∣

.N0(N + 1)

ˆ
R2

|z|2α|y2|
2α−2

2 |x2 − y2|e−z
2

dz

.N0(N + 1)d2α(x, y).

Case 2� We assume that |y2|
1
2 ≥ d(x, y), |x2|

1
2 ≥ d(x, y), and x2 ≤ y2. The

only di�erence now is that we must use a di�erent Lipschitz constant for the
square-root function; namely, now we use 1

2 |x2|−
1
2 as the Lipschitz constant

on R× [x2,∞). Following the same recipe as in the previous case and adding
in a couple of uses of the triangle inequality we obtain∣∣∣∣ˆ

R
ν(y1 − z(4|y2|atr(y))

1
2 , 0)z((4|x2|atr(y))

1
2 − (4|y2|atr(y))

1
2 )e−z

2

dz

∣∣∣∣
.N0(N + 1)

ˆ
R
|z|2α|y2|

2α−1
2 |x2|−

1
2 |x2 − y2|e−z

2

dz

.N0(N + 1)

ˆ
R
|z|2α(|y2 − x2|

2α−1
2 + |x2|

2α−1
2 )|x2|−

1
2 |x2 − y2|e−z

2

dz

.N0(N + 1)d2α(x, y).

Case 3� We assume that |x2|
1
2 ≤ d(x, y). Now we use the bound

|(4|x2|atr(y))
1
2 − (4|y2|atr(y))

1
2 | . |x2 − y2|

1
2 , (1.247)

which, after using the triangle inequality and the same tools as in the previous
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case, yields∣∣∣∣ˆ
R
ν(y1 − z(4|y2|atr(y))

1
2 , 0)z((4|x2|atr(y))

1
2 − (4|y2|atr(y))

1
2 )e−z

2

dz

∣∣∣∣
.N0(N + 1)

ˆ
R2

|z|2α(|y2 − x2|
2α−1

2 + |x2|
2α−1

2 )|x2 − y2|
1
2e−z

2

dz

.N0(N + 1)d2α(x, y).

Case 4� We assume that |y2|
1
2 ≤ d(x, y). Reusing (1.247) and again (1.365)

along with (1.83), we obtain∣∣∣∣ˆ
R
ν(y1 − z(4|y2|atr(y))

1
2 , 0)z((4|x2|atr(y))

1
2 − (4|y2|atr(y))

1
2 )e−z

2

dz

∣∣∣∣
.N0(N + 1)

ˆ
R2

|z|2α|y2|
2α−1

2 |x2 − y2|
1
2e−z

2

dz

.N0(N + 1)

ˆ
R2

|z|2αd2α−1(x, y)|x2 − y2|
1
2e−z

2

dz

.N0(N + 1)d2α(x, y).

Combining these cases with (1.245) yields (1.242), which, when combined
with (1.86), gives that q̃ + wE is modelled after Ṽ (·, a0) with Vint = Wint −
v(·, a0) according to atr with a modelling constant bounded by

Mtr . N0(N + 1) + ‖a‖α‖Wint − u‖α
(1.83)

. (N0 +N int
0 )(N + 1). (1.248)

By part ii) of Lemma 6 we know that this modelling is also according to
aext and thanks to (1.173) that the new modelling constant still satis�es
(1.248). We, in particular, obtain that W ext = u+ q̃ + wE is modelled after
(v + Ṽ )(·, a0), where V (·, a0) has initial condition Vint = Wint − v(·, a0) ac-
cording to aext with modelling constant satisfying (1.72) .

ii) We now use the results of part ii) of Propositions 1 and 2 in combination
with part iii) of Lemma 6 to obtain the stability result for Theorem 1.

Step 3� (Stability)

It is immediate that (1.84) and (1.89) yield (1.78). We now consider the
modelling of u1−u0+q̃1+wE

1 −(q̃0+wE
0 ). By part ii) of Proposition 1 we have

that u1−u0 is modelled after (v1(·, a0), v0(·, a0)) according to (aext1 , aext0 ) and
(1,−1) and by part ii) of Proposition 2 that q̃1 +wE

1 − (q̃0 +wE
0 ) is modelled
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after (Ṽ1(·, a0), Ṽ0(·, a0)) with Vint,i = Wint,i − ui according to (1,−1) and
(aext1 , aext0 ). Using part iii) of Lemma 6 the modelling of q̃1 +wE

1 − (q̃0 +wE
0 )

can be post-processed to give the same modelling according to (a1,tr, a0,tr).
Just like above, we now aim to show that q̃1 + wE

1 − (q̃0 + wE
0 ) is modelled

after (Ṽ1(·, a0), Ṽ0(·, a0)) with Vint,i = Wint,i − vi(·, a0) according to (1,−1)
and (a1,tr, a0,tr). After we have done this, we again apply part iii) of Lemma
6 to switch out (a1,tr, a0,tr) for (aext1 , aext0 ) in the modelling.

Just like in part i), showing that q̃1 + wE
1 − (q̃0 + wE

0 ) is modelled after
(Ṽ1(·, a0), Ṽ0(·, a0)) with Vint,i = Wint,i − vi(·, a0) according to (a1,tr, a0,tr)
and (1,−1) comes down to showing that∣∣∣(Ṽ0(x, a0,tr(y))− Ṽ0(y, a0,tr(y)))

−(Ṽ1(x, a1,tr(y))− Ṽ1(y, a1,tr(y))− ν̃
´
(y)(x− y)1

∣∣∣
.((N0 + 1)δN + δN0(N + 1))d2α(x, y),

(1.249)

where each Vi(·, a0) has the initial condition Vint,i(·, a0) = ui−vi(·, a0). Here
the ν is de�ned in the same way as (1.243), but with the ν in the de�nition
representing the modelling of u1 − u0 after (v1, v0) according to (a1,tr, a0,tr)
and (1,−1); call the modelling constant here δM . To show (1.249) one
uses the exact same argument as to show (1.242) in the previous part, but
using the relation (1.84) instead of (1.83) and the bound [ν]2α−1 . δN0 +
δM . We do not repeat the actual calculation here. In the end we �nd
that q̃1 + wE

1 − (q̃0 + wE
0 ) is modelled after (Ṽ1(·, a0), Ṽ0(·, a0)) with Vint,i =

Wint,i − vi(·, a0) according to (a1,tr, a0,tr) and (1,−1), where the modelling
constant is bounded as

δMtr . (N0 + 1)δN + (δN0 + δN int
0 )(N + 1).

Notice that here we have used (1.86). By part iii) of Lemma 6 this upgrades
to the same modelling, but according to (aext1 , aext0 ). The new modelling
constant M satis�es (1.79).

1.4 Construction of Singular Products for Theorem 1

In this section we prove Lemma 2, Lemma 3, Corollary 1, and Lemma 4,
which are all stated in Section 1.3.

1.4.1 Construction of the Reference Products for Theorem 1

We begin by proving Lemma 2, Lemma 3, and Corollary 1 in the order in
which they are presented in Section 1.3.
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Proof of Lemma 2. Notice that ∂2
1G is clearly well-de�ned as a distribution

on R2 thanks to the bound (1.50) and the assumption that α ∈ (0, 1). This
means that for any F ∈ L∞(R2) the product given by

F � ∂2
1G := F∂2

1G (1.250)

is classically de�ned. In order to obtain (1.51) we �x x ∈ R2 and, using
(1.105) and (1.50), write∣∣[F, (·)T ] � ∂2

1G(x)
∣∣

=

∣∣∣∣ˆ
R2

(F (x)− F (y))ψT (x− y)∂2
1G(y) dy

∣∣∣∣
.C(G) [F ]locα

(ˆ
B1(x)

|ψT (x− y)| dα(x, y) (|y2|
α−2
2 + |y2|

2α−2
2 ) dy

+

ˆ
Bc1(x)

|ψT (x− y)| d(x, y) (|y2|
α−2
2 + |y2|

2α−2
2 ) dy

)
.C(G) [F ]locα (T

1
4 )2α−2×(ˆ 1

−1

ˆ
R
|ψ1(x̂− ŷ)| (dα(x̂, ŷ) + d(x̂, ŷ)) (|ŷ2|

α−2
2 + |ŷ2|

2α−2
2 ) dŷ1 dŷ2

+

ˆ
R2

|ψ1(x̂− ŷ)| (dα(x̂, ŷ) + d(x̂, ŷ)) dŷ

)
,

(1.251)

where we have rescaled the variables as indicated in (1.16) and used that
T ≤ 1. To handle the �rst term on the right-hand side of (1.251) we use that

p(·) =

ˆ
R
|ψ1(x1, ·)|

(
|x1|α + | · |

α
2 + |x1|+ | · |

1
2

)
dx1 ∈ L∞(R),

which follows from ψ1 being a Schwarz function. In particular, this is a
simple application of Morrey's inequality and the basic properties of Schwarz
functions. Using this we then have thatˆ 1

−1

ˆ
R
|ψ1(x− y)| (dα(x, y) + d(x, y)) (|y2|

α−2
2 + |y2|

2α−2
2 ) dy1 dy2

.‖p‖
ˆ 1

−1

(|y2|
α−2
2 + |y2|

2α−2
2 ) dy2 <∞.

After another application of the Schwarz-ness of ψ1 ,now to the second term
on the right-hand side of (1.251), we obtain the desired (1.51).

Towards our proof of Corollary 1 we then prove Lemma 3, which we have
actually already gotten big milage out of in the proof of Proposition 2. As
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we have already mentioned in Section 1.3, this proof relies mainly on the
heat-kernel representation (1.58) of V (·, a0). Here comes the argument:

Proof of Lemma 3. i) Fix 0 ≤ k ≤ 2 and j ≥ 0 such that k+ j ≥ 1. We use
the convention that Pk and Pk,j represent generic polynomials dependent on
k or k and j respectively; even within the same line two appearances of these
expressions may denote di�erent polynomials. Changing variables, using the
relations (1.59), and letting C be a generic constant that changes from line
to line we then write

∂ja0∂
k
1G(a0, x1 − y, x2)

=∂ja0∂
k
1

(
e−x2

(4πa0x2)
1
2

e−z
2

)
=Ce−x2∂ja0

(
(a0x2)

− 1+k
2 Pk(z)e−z

2
)

=Ce−x2
(
Pj(a

− 1
2

0 )Pk(z) + Pk,j(z, a
− 1

2
0 )
)
e−z

2

x
− 1+k

2
2 .

(1.252)

Fixing a point x ∈ R2
+ and a0 ∈ [λ, 1], we then notice thatˆ

R
Vint(y)∂ja0∂

k
1G(a0, x1 − y, x2) dy

=

ˆ
R
(Vint(y)− Vint(x1))∂

j
a0
∂k1G(a0, x1 − y, x2) dy,

which follows easily from an integration by parts when k > 0 and from the
observation that ∂ja0

´
RG(a0, x2, x1 − y) dy = 0 when k = 0 and j > 0. To

�nish we use (1.252) to calculate∣∣∣∣ˆ
R
(Vint(y)− Vint(x1))∂

j
a0
∂k1G(a0, x1 − y, x2) dy

∣∣∣∣
.[Vint]α

ˆ
R
|z|αx

α
2
2 |∂ja0∂

k
1G(a0, x1 − y, x2)| dy

.[Vint]αe
−x2x

α−k
2

2

ˆ
R
|z|α

(
Pk,j(z, a

− 1
2

0 ) + Pj(a
− 1

2
0 )Pk,j(z)

)
e−z

2

dz

.C(λ, α)[Vint]αe
−x2x

α−k
2

2 .

As a last remark, notice that because α ∈ (0, 1) the estimate (1.52) implies
that ∂ja0∂

k
1V (·, a0) ∈ L1

loc(R2
+) and hence is well-de�ned as a distribution.

ii) For our proof of (1.53) we again �x j ≥ 0, x ∈ R2
+, and a0 ∈ [λ, 1]. The

203



relation (1.53) then also easily follows from (1.58) and (1.252) for k = 0:∣∣∂ja0V (x1, x2, a0)
∣∣

.

∣∣∣∣ˆ
R
Vint(y)e−x2

(
Pj(a

− 1
2

0 ) + Pj(a
− 1

2
0 , z)

)
e−z

2

x
− 1

2
2 dy

∣∣∣∣
.e−x2‖Vint‖.

iii) Notice that (1.54) for j = 0 is the classical Hölder estimate for (1.5),
which follows from the heat-kernel formulation of V (·, a0). To get the es-
timate for 1 ≤ j ≤ 3 we derive the equations satis�ed by ∂a0V (·, a0),
∂2
a0
V (·, a0), and ∂

3
a0
V (·, a0). The equation for ∂a0V (·, a0) is derived by dif-

ferentiating (1.5) in terms of a0, which yields that

(∂2 − a0∂
2
1 + 1)∂a0V (·, a0) = ∂2

1V (·, a0) in R2
+, (1.253)

∂a0V (·, a0) = 0 on ∂R2
+.

Taking one more a0-derivative we �nd that ∂2
a0
V (·, a0) solves

(∂2 − a0∂
2
1 + 1)∂2

a0
V (·, a0) = 2∂2

1∂a0V (·, a0) in R2
+, (1.254)

∂2
a0
V (·, a0) = 0 on ∂R2

+

and di�erentiating a third time gives that ∂3
a0
V (·, a0) solves

(∂2 − a0∂
2
1 + 1)∂3

a0
V (·, a0) = 3∂2

1∂
2
a0
V (·, a0) in R2

+, (1.255)

∂3
a0
V (·, a0) = 0 on ∂R2

+.

From these equations we can read-o� (1.54); of course, this presupposes the
standard Schauder estimate [g]α . [f ]α−2 for our de�nition of the negative
Hölder seminorm and g solving

(∂2 − a0∂
2
1 + 1)g = f in R2

+,

g = 0 on ∂R2
+.

This estimate follows from decomposing f = ∂2f
2+∂2

1f
1 for two Cα-functions

that are near optimal in the sense of De�nition 2, using the standard Schauder
estimates for the solutions of the initial value problems with right-hand sides
f i, the linearity of the equation, and the uniqueness of the solution g. Using
the Hölder estimate that we obtain in this way, we �nd that

[∂a0V (·, a0)]α . [∂2
1V (·, a0)]α−2 . ‖Vint‖α,

[∂2
a0
V (·, a0)]α . [∂2

1∂a0V (·, a0)]α−2 . [∂a0V (·, a0)]α . ‖Vint‖α,
and [∂3

a0
V (·, a0)]α . [∂2

1∂
2
a0
V (·, a0)]α−2 . [∂2

a0
V (·, a0)]α . ‖Vint‖α.
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iv) For our proof of (1.55) we �x x, y ∈ R2
+ and 0 ≤ j ≤ 1. We then use the

triangle inequality to write

|∂ja0V (x1, x2, a0)− ∂ja0V (y1, y2, a0)|
≤|∂ja0V (x1, x2, a0)− ∂ja0V (x1, y2, a0)|

+ |∂ja0V (x1, y2, a0)− ∂ja0V (y1, y2, a0)|
(1.256)

and treat the two terms on the right-hand side separately. For the second
term we notice that

|∂ja0V (x1, y2, a0)− ∂ja0V (y1, y2, a0)|
≤|∂ja0V (x1, y2, a0)− ∂ja0V (y1, y2, a0)|

2−2α
2−α

× |∂ja0V (x1, y2, a0)− ∂ja0V (y1, y2, a0)|
α

2−α

.(‖∂ja0V (·, y2, a0)‖α |x1 − y1|α)
2−2α
2−α
(
|x1 − y1|2 ‖∂2

1∂
j
a0
V (·, y2, a0)‖

) α
2−α

.‖Vint‖αy
−α2
2 d2α(x, y),

(1.257)

where we have used (1.52), the Hölder bound (1.54), and that α ∈ (0, 1).
We may use essentially the same argument to treat the �rst term on the

right-hand side of (1.256). The only additional ingredient that we use is that,
thanks to the equations (1.5) and (1.253), after applying (1.52) and (1.53)
we have that

‖∂2V (·, x2, a0)‖ ≤‖∂2
1V (·, x2, a0)‖+ ‖V (·, x2, a0)‖

.‖Vint‖α(x
α−2
2

2 + e−x2)

.‖Vint‖αx
α−2
2

2

(1.258)

and, similarly,

‖∂2∂a0V (·, x2, a0)‖
≤‖∂2

1V (·, x2, a0)‖+ ‖∂2
1∂a0V (·, x2, a0)‖+ ‖∂a0V (·, x2, a0)‖

.‖Vint‖αx
α−2
2

2 .

(1.259)

Combining (1.258) (in the case that j = 0) or (1.259) (in the case that j = 1)
with the technique of (1.257) then gives

|∂ja0V (x1, x2, a0)− ∂ja0V (x1, y2, a0)|
≤|∂ja0V (x1, x2, a0)− ∂ja0V (x1, y2, a0)|

2−2α
2−α

× |∂ja0V (x1, x2, a0)− ∂ja0V (x1, y2, a0)|
α

2−α

≤(|x2 − y2|
α
2 [∂ja0V ]α)

2−2α
2−α (|x2 − y2|‖∂2∂

j
a0
V (·, x2, a0)‖)

α
2−α

.‖Vint‖αx
−α2
2 d2α(x, y)

(1.260)
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Together (1.256), (1.257), (1.260) then yield (1.55).

v) Notice that when (1.5) has no massive term then (1.58) still holds, but the
Green's function in (1.57) is replaced by the same without the exponential
factor e−x2. Our claim then immediately follows from the above arguments.

Using this lemma we can then process Lemma 2 to obtain Corollary 1:

Proof of Corollary 1. This corollary follows immediately from Lemma 2 with
the identi�cation G = Ṽ (·, a0) since (1.50) holds for C(Ṽ (·, a0)) = [Vint]α by
part i) of Lemma 3.

1.4.2 Proof of the Second Reconstruction Lemma

We move on to the proof of the second reconstruction lemma, which we use
in our treatment of the linear problem in Theorem 1. As already mentioned,
the proof presented here is essentially the same as in [47] and is only included
in an abbreviated version in order for this thesis to be self-contained. There
are small technical di�erences due to the loss of periodicity in the x2-direction.

Proof of Lemma 4. In [47] it is �rst shown that for all dyadic multiples T of
τ , i. e. T = 2nτ for some n ∈ N, the relation

(F∂2
1uT − σiE [F, (·)T ] � ∂2

1wi)− (F∂2
1uτ − σiE [F, (·)τ ] � ∂

2
1wi)T−τ =∑

t=τ2i for 0≤i≤n

(
[F, (·)t] ∂

2
1ut − σiE [F, (·)t] ∂

2
1wit

−σi [E, (·)t] [F, (·)t] � ∂
2
1wi − [σi, (·)t]E[F, (·)t] � ∂2

1wi

)
T−2t

holds. As the argument for this identity only relies on the semigroup prop-
erty of the convolution kernel and we use the same kernel here, we use this
decomposition without proof here. We then �nd that∥∥F∂2

1uT − σiE [F, (·)T ] � ∂2
1wi − (F∂2

1uτ − σiE [F, (·)τ ] � ∂
2
1wi)T−τ)

∥∥
. ([F ]αM +NNi‖σi‖α) (T

1
4 )3α−2

(1.261)

206



for any τ > 0. In particular, using (1.21) and the triangle inequality one �rst
writes∥∥F∂2

1uT − σiE [F, (·)T ] � ∂2
1wi − (F∂2

1uτ − σiE [F, (·)t] � ∂
2
1wi)T−τ

∥∥
.

∑
t=τ2i for 0≤i≤n

(∥∥[F, (·)t] ∂
2
1ut − σiE [F, (·)t] ∂

2
1wit

∥∥
+
∥∥σi [E, (·)t] [F, (·)t] � ∂

2
1wi
∥∥+

∥∥[σi, (·)t]E[F, (·)t] � ∂2
1wi
∥∥) .

The relation (1.261) then follows from the three relations∥∥[F, (·)t] ∂2
1ut − σiE [F, (·)t] ∂2

1wit
∥∥ . [F ]αM(t

1
4 )3α−2, (1.262)

‖σi [E, (·)t] [F, (·)t] � ∂2
1wi‖ . ‖σi‖ [a]αNNi(t

1
4 )3α−2, (1.263)

and ‖[σi, (·)t]E[F, (·)t] � ∂2
1wi‖ . [σi]αNNi(t

1
4 )3α−2, (1.264)

which hold for any t > 0, and that [a]α ≤ 1 and α ∈ (2
3 , 1).

The estimates (1.262), (1.263), and (1.264) are proven in the same way as
in [47], but to maintain oversight we give their proofs here. We start with
(1.262) and �rst write

([F, (·)t] ∂2
1ut − σiE [F, (·)t] ∂2

1wit)(x)

=

ˆ
R2

ψt(x− y)(F (x)− F (y))(∂2
1ut(y)− σi(x)∂2

1wit(y, a(x))) dy
(1.265)

for x ∈ R2 and then, furthermore, observe the identity

∂2
1ut(y)− σi(x)∂2

1wit(y, a(x))

=

ˆ
R2

∂2
1ψt(y − z)(u(z)− σi(x)wi(z, a(x))) dz.

(1.266)

Using that ψt is a Schwarz function on R2 that is even in the �rst variable,
we further process the right-hand side of (1.266) by smuggling in terms and
then using the modelling of u along with (1.18):∣∣∣∣ˆ

R2

∂2
1ψt(y − z)(u(z)− σi(x)wi(z, a(x))) dz

∣∣∣∣
≤
ˆ
R2

|∂2
1ψt(y − z)|

× |u(z)− u(x)− σi(x)(wi(z, a(x))− wi(x, a(x)))− ν(x)(z − x)1| dz

.M
ˆ
R2

∂2
1ψt(y − z)(d2α(y, z) + d2α(x, y)) dz

.M((t
1
4 )2α−2 + (t

1
4 )−2d2α(x, y)).
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Plugging this result into (1.265) and again using (1.18) we obtain (1.262).
Obtaining (1.263) and (1.264) is mainly an issue of processing notation.

For (1.263) we set w̃ = [F, (·)t] � ∂2
1wi and use (1.18) to write∣∣σi(x) [E, (·)t] [F, (·)t] � ∂2

1wi(x)
∣∣

=

∣∣∣∣σi(x)

ˆ
R2

ψt(x− y)(w̃(y, a(x))− w̃(y, a(y))) dy

∣∣∣∣
.‖σi‖ [a]α sup

a0∈[λ,1]

∥∥∥∥ ∂

∂a0
w̃(·, a0)

∥∥∥∥ (t
1
4 )α,

which holds for all x ∈ R2. The desired estimate (1.263) then follows from the
assumption (1.61). Moving on, we �nd that (1.264) follows from the previous
argument for (1.263). In particular, now letting w̃ = E[F, (·)t] � ∂2

1wi and
using (1.18) we write∣∣([σi, (·)t]E[F, (·)t] � ∂2

1wi)(x)
∣∣ =

∣∣∣∣ˆ
R2

(σi(x)− σi(y))ψt(x− y)w̃(y) dy

∣∣∣∣
.[σi]α‖w̃‖(t

1
4 )α,

which gives (1.264).
We now conclude the argument. Using the notation

F τ = F∂2
1uτ − σiE [F, ( · )τ ] � ∂2

1wi,

we de�ne F �∂2
1u as the distributional limit of the sequence {F τ}τ as τ → 0.

To see that this limit exists we �rst prove

‖FT‖ . (‖F‖(M +Ni) + ‖σi‖NNi)(T
1
4 )α−2, (1.267)

which we then combine with the rewritten (1.261)

‖FT − (F τ)T−τ‖ . ([F ]αM +NNi‖σi‖α)(T
1
4 )3α−2 (1.268)

to obtain

‖(F τ)T‖ . (‖F‖α(M +Ni) +NNi‖σi‖α)(T
1
4 )α−2; (1.269)

of course, all of these relations hold for T ≤ 1. With (1.269) in-hand we can
then use the Arzelà- Ascoli Theorem in order to pass to the limit. We will
go over this in detail below, but �rst we give the argument for (1.267). Here,
we �rst use the triangle inequality to write

‖FT‖ ≤‖F∂2
1uT‖+ ‖σi‖ sup

a0∈[λ,1]

‖ [F, ( · )τ ] � ∂2
1wi(·, a0)‖
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and then apply (1.20) in the style of (1.116) to obtain

‖∂2
1uT‖ . [u]locα (T

1
4 )α−2

Combining these two estimates with the assumptions (1.60) and (1.61) and
the bound (1.107) we obtain (1.267).

Notice that the equivalence (1.22) then implies that for every τ > 0 there
exists a decomposition

F τ = ∂2
1F τ,1 + ∂2F τ,2 (1.270)

such that the local seminorms [F τ,i]locα are bounded uniformly in τ and we may
assume that F τ,i(0) = 0. By the Arzelà- Ascoli theorem the distributional
limit F �∂2

1u is then well-de�ned and has a �nite local C
α−2 seminorm. By the

lower semicontinuity of the L∞-norm with respect to weak-∗ convergence we
may then pass to the limit in (1.268), which gives (1.62), and also using (1.61)
gives (1.63). For the uniqueness of the distribution F � ∂2

1u satisfying (1.62)
we argue by contradiction and assume that there is another such distribution
h. By the triangle inequality we then �nd that

lim
T→0
‖(F � ∂2

1u)T − hT‖ = 0, (1.271)

which con�rms that F � ∂2
1u = h.

1.5 Equivalent Local Cα−2-seminorm

In this section we give a proof of Lemma 1 that is motivated by the proof
of a similar result (Lemma 5) in [36]. As a technical tool, we make use the
convolution kernel e−TψT that is associated to the semigroup of the operator
A := ∂4

1 − ∂2
2 + 1. We use the notational convention that f ∗ e−TψT = fmT

and, as always, f ∗ ψT = fT .

Proof of Lemma 1. For brevity, throughout this proof we �x a convex set
Ω ⊆ R2 and use the notation ‖ · ‖ to denote ‖ · ‖Ω and [ · ]α to denote [ · ]α;Ω.

Step 1� (Replacing ψT by e−TψT )

In this step we make the simple observation that if we show the equiva-
lences (1.22), (1.23), and (1.24) for ψT replaced by e−TψT , then this yields
our claim. The reason for this is that thanks to the restriction T ≤ 1 in the
supremums we are able to swallow the terms e−T into the universal constants
of the statements.
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Step 2� (Bound for the Cα- seminorm)

We �rst show that

[f ]α . sup
T≤1

(T
1
4 )−α‖TAfmT ‖ (1.272)

for α ∈ (0, 1). Once we have shown (1.272), (1.24) follows immediately by
using Young's inequality for convolutions to notice that

‖TAfmT ‖ = ‖TAψmT
2
∗ fmT

2
‖

(1.18),(1.19)

. (1 + T )‖fmT
2
‖

(1.21)

. ‖fmT ‖.

We now give our argument for (1.272). As the left- and right-hand sides of
(1.272) scale the same if we replace f by cf for some c ∈ R, we may assume
that

sup
T≤1

(T
1
4 )−α‖TAfmT ‖ = 1. (1.273)

Notice that due to the semigroup property and (1.21), the relation (1.273)
implies that

‖TAfmT ‖ = Te−T‖(Af1)T−1‖ . Te−T‖Af1‖ . 1

when T > 1 and combining this with (1.273) we obtain

sup
T>0

(T
1
4 )−α‖TAfmT ‖ . 1. (1.274)

For j, l ≥ 0 and T > 0 we may then use (1.274), the semigroup property of
e−TψT , and (1.18) to write

‖∂j1∂l2AfmT ‖ = e−
T
2 ‖∂j1∂l2ψT

2
∗ AfmT

2
‖

. e−
T
2 (T

1
4 )−j−2l‖AfmT

2
‖

. e−
T
2 (T

1
4 )−j−2l+α−4.

(1.275)

Continuing, we notice that by the de�nition of ψT , e
−TψT is a smooth

solution of (∂T +A)e−TψT = 0 and that, since e−TψT has integrable deriva-
tives, ∂T (e−TψT ) is integrable, and we have that ‖fε‖ <∞ for all ε > 0, fmT
is a smooth solution of (∂T + A)fmT = 0. Fixing j, l ≥ 0 and using (1.275)
allows us to for all 0 < t < T write

‖∂j1∂l2(fmt − fmT )‖ =

∥∥∥∥ˆ T

t

∂j1∂
l
2Afms ds

∥∥∥∥
.
ˆ T

t

e−
s
2 (s

1
4 )−j−2l+α−4 ds

. ((T
1
4 )−j−2l+α + (t

1
4 )−j−2l+α).

(1.276)
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In the case that j = l = 0 this yields that

‖fmt − fmT ‖ . (T
1
4 )α, (1.277)

which implies that (1.277) holds also for t = 0. Since in this step we have,
in particular, that ‖f ∗ ψ1‖ <∞, we can also write

lim
T→∞

‖∂j1∂l2fmT ‖ . e−(T−1)((T − 1)
1
4 )−j−2l‖f1‖ → 0 as T →∞. (1.278)

Fixing 0 < t < T and j, l ≥ 0 such that j + l ≥ 1, we then use the triangle
inequality to write

‖∂j1∂l2fmt ‖ ≤ ‖∂
j
1∂

l
2(f

m
t − fmT )‖+ ‖∂j1∂l2fmT ‖

. ((t
1
4 )−j−2l+α + (T

1
4 )−j−2l+α) + ‖∂j1∂l2fmT ‖,

(1.279)

which after using (1.278) and (1.277) and letting T →∞ gives

‖∂j1∂l2fmt ‖ . (t
1
4 )−j−2l+α. (1.280)

We have now already shown the key point of this argument: the function f is
�close-to" the convolved function fT by (1.277) with t = 0 and the convolved
function has nicely behaved derivatives in the sense of (1.280).

To �nish the argument for (1.272) we �x T > 0 and two distinct points
x, y ∈ Ω. We then �nd that

|fmT (y)− fmT (x)| ≤ (‖∂1f
m
T ‖d(y, x) + ‖∂2f

m
T ‖d2(y, x)),

which we combine with (1.277) for t = 0 and (1.280) to obtain

|f(y)− f(x)| . ‖f − fmT ‖+ ‖∂1f
m
T ‖d(y, x) + ‖∂2f

m
T ‖d2(y, x)

. (T
1
4 )α + (T

1
4 )α−1d(y, x) + (T

1
4 )α−2d2(y, x),

(1.281)

which we may further process by setting T
1
4 = d(y, x). This yields that

|f(y)− f(x)| . dα(y, x).

Step 3� (Using the Cα−2 seminorm as an upper-bound)

In this step we take Ω = R2 and we show that

sup
T>0

(T
1
4 )2−α‖fT‖ . [f ]α−2 (1.282)

for α ∈ (0, 1). We decompose f = ∂2
1f

1 + ∂2f
2 in a way that is near optimal

in the sense of De�nition 2. For such a tuple (f 1, f 2) the use of (1.20) then
yields

sup
T>0

(T
1
4 )2−α‖fT‖ = sup

T>0
(T

1
4 )2−α‖(∂2

1f
1 + ∂2f

2)T‖ . [f ]α−2 (1.283)
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as desired.

Step 4 � A speci�c decomposition of f)

Towards our proof of (1.22) we assume that

sup
T≤1

(T
1
4 )2−α‖fmT ‖ = 1, (1.284)

which we may again do by scaling. We then notice that using (1.284) we
have that for T > 1 the relation

‖fmT ‖
(1.19)
= e−T‖f1 ∗ ψT−1‖

(1.21)

. e−T‖f1‖ . e−T (1.285)

holds. In this step we show that these observations are enough to show that

u =

ˆ ∞
0

fmT dT (1.286)

is a distributional solution of

A(u) = f on R2. (1.287)

To obtain our claim we �rst show that for any t ∈ (0, 1) the function

ut =

ˆ ∞
0

fmt+T dT (1.288)

satis�es Aut = fmt . To see this we recall from Step 2 that fmt+T solves
(∂T +A)fmt+T = 0 on R2, which allows us to write

ˆ ∞
0

∂Tf
m
t+T dT = −

ˆ ∞
0

Afmt+T dT. (1.289)

Using that t > 0 we process the left-hand side asˆ ∞
0

∂Tf
m
t+TdT = fm∞ − fmt = −fmt , (1.290)

where we have used that ‖fm∞‖ = 0 by (1.285). For the term on the right-hand
side of (1.289) we use (1.284) and (1.285) to obtain the relation

ˆ ∞
0

|∂i1∂
j
2f

m
t+T | dT . (t

1
4 )−(i+2j)

ˆ 1

0

‖fmT ‖dT (1.291)

. (t
1
4 )−(i+2j)

ˆ 1

0

(T
1
4 )α−2 dT +

ˆ ∞
1

e−T dT <∞, (1.292)
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which means that ˆ ∞
0

Afmt+T dT = A
(ˆ ∞

0

fmt+T dT

)
. (1.293)

In particular, combining (1.289) and (1.293) we end up with

A
(ˆ ∞

0

fmt+T dT

)
= fmt .

To show that ut → u uniformly as t → 0, we can directly estimate the
di�erence as

‖ut − u‖ =

∥∥∥∥ˆ t

0

fmT dT

∥∥∥∥ . t
α+2
4 . (1.294)

Step 5� (Bounds for ∂−1
1 and ∂−1

2 )

In this step we show that if f : R2 → R2 is such that for every �xed x2 ∈ R
the function f(·, x2) is periodic and mean-free, then

‖∂−1
1 f‖α . ‖f‖α. (1.295)

If f is constant in the x1-direction, then

[∂−1
2 f ]locα . ‖f‖. (1.296)

We start with our proof of (1.295). We �rst notice that because f(·, x2) is
mean-free, ∂−1

1 f(·, x2) is again periodic. This means that to obtain (1.295) we
may �x two distinct points x, y ∈ R2 such that x1, y1 ≤ 2 and d(x1, y1) ≤ 2
and assume that y1 ≥ x1. We then notice that

|∂−1
1 f(x1, x2)− ∂−1

1 f(x1, y2)| ≤
ˆ x1

0

|f(s, x2)− f(s, y2)| ds . [f ]αd
α(x, y)

and

|∂−1
1 f(x1, y2)− ∂−1

1 f(y1, y2)|

≤
ˆ y1

x1

|f(s, y2)| ds ≤ |x1 − y1|‖f‖ . ‖f‖dα(x, y).

We may also bound the L∞-norm as

|∂−1
1 f(x)| ≤

ˆ x1

0

|f(s, x2)| ds ≤ ‖f‖.

Combining the last three estimates we obtain (1.295).
The relation (1.296) is obtained in essentially the same way; since we are

interested in the local Hölder seminorm we �x x, y ∈ R2 such that d(x, y) ≤ 1
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and again assume that y2 ≥ x2 . We then use the triangle inequality and the
trait that u is constant in the x1-direction to write

|∂−1
2 f(x1, x2)− ∂−1

2 f(y1, y2)| .
ˆ y2

x2

|f(y1, s) ds . ‖f‖dα(x, y). (1.297)

Step 6 � (Proof of (1.22))

Under the same assumptions as in Step 4 we then prove (1.22). The main
idea of our argument is to take advantage of the decomposition given in Step
5, i. e.

f = A(u) = ∂2
1(∂2

1u) + ∂2(−∂2u) + u

with u given as (1.286), in the sense that we use the triangle inequality to
write

[f ]locα−2 ≤
[
∂2

1u
]
α

+ [∂2u]α + [u]locα−2 , (1.298)

The �rst two terms on the right-hand side can be treated in the same way
as in [36]. We notice that by (1.284) it holds that

sup
T≤1

(T
1
4 )2−α‖fmT ‖ = sup

T≤1
(T

1
4 )2−α‖(Au)mT ‖

(1.21),(1.284)

. 1, (1.299)

which we process with the semigroup property and (1.18) to obtain

sup
T≤1

(T
1
4 )j+2l+(2−α)−4‖T (A∂j1∂l2ut)mT ‖ . 1 (1.300)

for j, l ≥ 0. The bound ‖u‖ . 1, which we have obtained in the previous
step, can then be combined with Young's inequality and (1.18) to yield

‖∂2
1u ∗ ψε‖, ‖∂1u ∗ ψε‖, ‖∂2u ∗ ψε‖, ‖u ∗ ψε‖ . 1 (1.301)

for any ε > 0. We estimate the �rst two terms on the right-hand side of
(1.298) by �rst applying (1.272) from Step 2 (which we may do thanks to
(1.301)) and then using (1.300). We �nd that[

∂2
1u
]
α
. sup

T≤1
(T

1
4 )−α‖T (A∂2

1u)mT ‖ . 1. (1.302)

The second term on the right-hand side of (1.298) is treated in the same way.
In order to treat the third term on the right-hand side of (1.298) we use

Step 5. In particular, for a �xed x2 coordinate letting P denote the projection
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onto the space of mean-free periodic functions in one variable, we write

u(x1, x2) = ∂2
1

(
∂−1

1 P (∂−1
1 P (u))

)
+ ∂2

(
∂−1

2

ˆ 1

0

u(s, x2) ds

)
. (1.303)

Applying Step 5 yields∥∥∂−1
1 P (∂−1

1 P (u))
∥∥
α
.
∥∥∂−1

1 P (u)
∥∥
α

+

∥∥∥∥ˆ 1

0

∂−1
1 P (u) ds

∥∥∥∥
.
∥∥∂−1

1 P (u)
∥∥
α

.‖Pu‖α

.‖u‖α

(1.304)

and [
∂−1

2

ˆ 1

0

u(s, x2) ds

]loc
α

.

∥∥∥∥ˆ 1

0

u(s, x2) ds

∥∥∥∥ ≤ ‖u‖. (1.305)

To �nish we notice that by Step 2 we have that

[u]α

(1.272)

. sup
T≤1

(T
1
4 )−α‖TA(ut)mT ‖

(1.300)

. sup
T≤1

(T
1
4 )2 ≤ 1. (1.306)

Combining the de�nition (1.12) with (1.303), (1.304), (1.305), (1.306), and
the bound ‖u‖ . 1, we are able to bound the third term on the right-hand
side of (1.298) as [u]locα−2 . 1.

Corollary 2. Let α ∈ (2
3 , 1) and L ∈ (0, 1). If the distribution f on R2

satis�es the relation

|f(x)| ≤ C|x2|
2α−2

2 (1.307)

for any x ∈ R2 and some C ∈ R, then we have that

sup
T≤1

(T
1
4 )

2−2α
2 ‖fT‖ . C. (1.308)

Furthermore, we �nd that

[fτ ]
loc
α . C(τ

1
4 )−2 (1.309)

for any τ ∈ (0, 1) If, additionally, we know that f = 0 on R2
−, then for τ > 0

we have that

[fτ ]α;R×(−∞,−L] . CL−
α+2
2 (τ

1
4 )2α. (1.310)
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Proof. We start by showing (1.308). For this we �x x ∈ R2 and use the
growth condition (1.307) and the standard rescaling (1.16) to write

|fT (x)|

≤C(T
1
4 )2α−2

ˆ
R2

|x̂2 − ŷ2|
2α−2

2 ψ1(ŷ) dŷ

.C(T
1
4 )2α−2

(∥∥∥∥ˆ
R
ψ1(ŷ1, ·) dŷ1

∥∥∥∥ ˆ x̂2+1

x̂2−1

|ŷ2 − x̂2|
2α−2

2 dŷ2 +

ˆ
R2

|ψ1(ŷ)| dŷ
)

.C(T
1
4 )2α−2.

(1.311)

Notice that here we have relied on ψ1 being a Schwarz function and that
|2α−2

2 | < 1.
The relation (1.308), in particular, implies that [f ]locα−2 . C by (1.22) of

Lemma 6, which we then use to prove (1.309). For this we let f = ∂2
1f

1+∂2f
2

be a near-optimal representation of f in the sense of De�nition 2. We then
�x x, z ∈ R2 such that d(x, z) ≤ 1 and use an integration by parts and (1.18)
to write

|fτ(x)− fτ(z)|

=

∣∣∣∣ˆ
R2

(f 1(x− y)− f 1(z − y))∂2
1ψτ(y) dy

+

ˆ
R2

(f 2(x− y)− f 2(z − y))∂2ψτ(y) dy

∣∣∣∣
. ([f 1]locα + [f 2]locα )(τ

1
4 )−2dα(x, z)

. C(τ
1
4 )−2dα(x, z),

which is (1.309).
In order to show (1.310) we use (1.24). Notice that due to the estimate

(1.307) we know that ‖fτ ∗ ψε‖ < ∞ for any ε > 0, which means that we
may apply (1.24) with Ω = R× (−∞,−L] to obtain

[fτ ]α;R×(−∞,−L] . sup
T≤1

(T
1
4 )−α‖fτ ∗ ψT‖R×(−∞,−L]. (1.312)

To �nish, we �x x ∈ R× (−∞,−L], T ≤ 1 and τ > 0 and �rst assume that
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τ ≤ T . We then use the growth condition (1.307) to write

(T
1
4 )−α|fτ ∗ ψT (x)|

(1.19),(1.21)

. (τ
1
4 )−α|f ∗ ψ2τ(x)|

≤ CL−
α+2
2 (τ

1
4 )−α

ˆ
R2

|x2 − y2|
2α−2

2 |y2|
α+2
2 ψ2τ(y)dy

. CL−
α+2
2 (τ

1
4 )2α

(∥∥∥∥ˆ
R
ψ1(ŷ1, ·) dŷ1

∥∥∥∥ˆ x̂2+1

x̂2−1

|ŷ2 − x̂2|2α−2 dŷ2

+

ˆ
R2

(1 + |ŷ2|α+2)|ψ1(ŷ)| dŷ
)

. CL−
α+2
2 (τ

1
4 )2α,

(1.313)

where we have used that f is only supported for positive times (so that
we could smuggle | y2x2 |

α+2
2 into the integral on the third line) and also that

|x2| ≥ L. Of course, we have also used that ψ1 is a Schwarz function and
that α ∈ (2

3 , 1). When T ≤ τ we simply switch the roles of τ and T in the
above calculation.

1.6 Appendix A: Construction of the Singular Products for the
Quasilinear Problem

We now construct the second new family of reference products mentioned in
Section 1.3 and also prove the �rst reconstruction lemma.

1.6.1 Summary

We begin our construction of the new reference products by proving the
following general lemma:

Lemma 7. Let α ∈ (0, 1).

i) Let G ∈ Cα(R2) be such that for any x ∈ R2

|∂k1G(x)| . C(G)|x2|
α−k
2 (1.314)

holds for k = 1, 2 for some constant C(G) ∈ R; we assume that C(G) ≥
[G]α. Also, assume that we have a family of functions F (·, a0) ∈ Cα(R2)
indexed by a0 ∈ [λ, 1] such that

sup
a0∈[λ,1]

‖F (·, a0)‖α,2 ≤ N0 (1.315)
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for some N0 ∈ R. Under these assumptions there exists a family of Cα−2-
distributions G � ∂2

1F (·, a0) such that

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α‖[G, (·)T ] � ∂2

1F (·, a0)‖2 . C(G)N0. (1.316)

ii) Let i = 0, 1 and Gi and F (·, a0) satisfy the assumptions of the previous
part individually. Furthermore, assume that there is a constant C(G0, G1) ∈
R satisfying [G0 −G1]α ≤ C(G0, G1) such that for any x ∈ R2

|∂k1 (G0 −G1)(x)| . C(G0, G1)|x2|
α−k
2 (1.317)

for k = 1, 2. Under these assumptions we �nd that the distributions de�ned
in i) satisfy

sup
a0∈[λ,1]

sup
T≤1

(
T

1
4

)2−2α ∥∥[G0, ( · )T ] � ∂2
1F (·, a0)− [G1, ( · )T ] � ∂2

1F (·, a0)
∥∥

1

. C(G0, G1)N0.

(1.318)

iii) Let i = 0, 1 and G and Fi(·, a0) individually satisfy the assumptions of
part i). Furthermore, assume that

sup
a0∈[λ,1]

‖F0(·, a0)− F1(·, a0)‖α,2 ≤ δN0 (1.319)

for δN0 ∈ R. Under these assumptions we �nd that the distributions de�ned
in i) satisfy

sup
a0∈[λ,1]

sup
T≤1

(
T

1
4

)2−2α ∥∥[G, ( · )T ] � ∂2
1F0(·, a0)− [G, ( · )T ] � ∂2

1F1(·, a0)
∥∥

1

. C(G)δN0.

(1.320)

Notice that the �rst part of this lemma is meant to be applied with G =
Ṽ (·, a0) and F (·, a′0) = v(·, a′0), which yields the second family of new ref-
erence products mentioned in Section 1.3; i.e. the family of distributions{
Ṽ (·, a0) � ∂2

1v(·, a′0)
}
indexed by a0, a

′
0 ∈ [λ, 1]. In the last two parts of this

lemma we address the stability of the singular products that we have con-
structed in part i) in the sense that in ii) we intend to set Gi = Ṽi(·, a0) and
F (·, a′0) = v(·, a′0) and in iii) we take G = Ṽ (·, a0) and Fi(·, a′0) = vi(·, a′0).
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In order to show that the identi�cations made in the previous paragraph
satisfy the necessary assumptions, we use Lemma 3 and the next lemma in
which we derive a Hölder estimate for v(·, a0). While the estimates for v(·, a0)
that we derive in the next lemma are, aside from our addition of the massive
term, already contained in [47], we include them here for completeness:

Lemma 8. Let v(·, a0) solve (1.4), where the periodic right-hand side f
satis�es

sup
T≤1

(T
1
4 )2−α‖fT‖ ≤ N0 (1.321)

for some N0 ∈ R. Then the bound

‖v(·, a0)‖α,2 . N0 (1.322)

holds.

Notice that (1.321) is exactly (1.64), which is the standing assumption
we have for f throughout this entire contribution. With Lemmas 3 and 8
in-hand we can then apply Lemma 7 as described above. We obtain the
following:

Corollary 3 (New reference products for quasilinear problem). Let α ∈
(0, 1) and i, j = 0, 1. Assume that we have two periodic distributions fi on
R2 such that independently each satis�es (1.321) for N0 ∈ R and there exists
δN0 ∈ R such that

sup
T≤1

(T
1
4 )2−α‖(f1 − f0)T‖ . δN0. (1.323)

Assume, furthermore, that for each pair (fi, fj) there exists a family of o�ine
products

{
vi(·, a0) �OW ∂2

1vj(·, a′0)
}
indexed by a0, a

′
0 ∈ [λ, 1] satisfying

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[vi(·, a0), (·)T ] �OW ∂2
1vj(·, a′0)

∥∥
2,2
. N 2

0 ,

(1.324)

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[v1(·, a0), (·)T ] �OW ∂2
1vj(·, a′0) (1.325)

−[v0(·, a0), (·)T ] �OW ∂2
1vj(·, a′0)

∥∥
1,1

. N0δN0,

and sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[vi(·, a0), (·)T ] �OW ∂2
1v1(·, a′0) (1.326)

−[vi(·, a0), (·)T ] �OW ∂2
1v0(·, a′0)

∥∥
1,1

. N0δN0.
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We lastly assume that we have two periodic functions Vint,i ∈ Cα(R) such
that

[Vint,i]α ≤ N int
0 (1.327)

and [Vint,1 − Vint,0]α ≤ δN int
0 (1.328)

for N int
0 , δN int

0 ∈ R. Under these assumptions, for i, j = 0, 1 we then �nd
that:

i) There exists a family of distributions
{
Ṽi(·, a0) � ∂2

1vj(·, a′0)
}
such that

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[Ṽi(·, a0), (·)T
]
� ∂2

1vj(·, a′0)
∥∥∥

2,2
. N0N

int
0 . (1.329)

ii) De�ning the family of distributions

(Ṽi + vi)(·, a0) � ∂2
1vj(·, a′0)

:=Ṽi(·, a0) � ∂2
1vj(·, a′0) + vi(·, a0) �OW ∂2

1vj(·, a′0),
(1.330)

we then obtain the relation

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(Ṽi + vi)(·, a0), (·)T
]
� ∂2

1vj(·, a′0)
∥∥∥

2,2

.(N int
0 +N0)N0.

(1.331)

iii) The distributions constructed in part ii) satisfy

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(Ṽ0 + v0)(·, a0), ( · )T
]
� ∂2

1vj(·, a′0)

−
[
(Ṽ1 + v1)(·, a0), ( · )T

]
� ∂2

1vj(·, a′0)
∥∥∥

1,1

.(δN int
0 + δN0)N0

(1.332)

and

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(Ṽi + vi)(·, a0), ( · )T
]
� ∂2

1v1(·, a′0)

−
[
(Ṽi + vi)(·, a0), ( · )T

]
� ∂2

1v0(·, a′0)
∥∥∥

1,1

.(N int
0 +N0)δN0.

(1.333)

iv) De�ning the further family of distributions

(Ṽi + vi)(·, a0) � ∂2
1(Ṽj + vj)(·, a′0)

:=(Ṽi + vi)(·, a0) � ∂2
1 Ṽj(·, a′0) + (Ṽi + vi)(·, a0) � ∂2

1vj(·, a′0),
(1.334)
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where the �rst term on the right-hand side is de�ned via Corollary 1 and the
second term is de�ned in part ii), we �nd that

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(Ṽi + vi)(·, a0), (·)T
]
� ∂2

1(Ṽj + vj)(·, a′0)
∥∥∥

2,2

. (N int
0 +N0)

2.

(1.335)

As we will see below when we discuss Theorem 2, the reference products that
we construct in ii) and in iv) are used for the treatment of the quasilinear
problem. As we have explained in Section 1.4, the main step of the �xed
point argument with which we obtain a solution of the quasilinear problem
is the application of Theorem 1 in the case that

aext = a(W ), (1.336)

where W is modelled after (Ṽ + v)(·, a0) on R2 for some ā ∈ Cα(R2). The
combination of the reference products from Corollary 3 and the reconstruc-
tion lemma proved below provides us with the necessary reference products
assumed in the statement of Theorem 1; in particular, we obtain the family
of reference products aext � ∂2

1v(·, a0) such that (1.66) is satis�ed. In part iv)
of the above corollary we construct the reference products used to de�ne the
singular product a(W ) � ∂2

1W in the quasilinear problem (1.1).
We now give the �rst reconstruction lemma, which allows us to post-

process the family of reference products provided in ii) above to obtain the
aext � ∂2

1v(·, a0) assumed in the statement of Theorem 1, where aext is given
in (1.336). We state the reconstruction lemma in a very general form and
then put it into a version we actually use in Corollary 4. Up to the loss
of periodicity in the x2-direction, both the reconstruction lemma and the
resulting corollary are essentially the same as the corresponding statements
in [47]. Here is the reconstruction lemma:

Lemma 9 (Modi�ed Lemma 2 of [47]). Let α ∈
(

2
3 , 1
)
. Assume that we are

given a distribution h and families {w(·, x)}x of functions and {w(·, x) � h}x
of distributions both indexed by points x ∈ R2 such that the estimates

[w(·, x)]α ≤ N, (1.337)

[w(·, x)− w(·, x′)]α ≤ Ndα(x, x′), (1.338)

sup
T≤1

(T
1
4 )2−α‖hT‖ ≤ N0, (1.339)

sup
T≤1

(T
1
4 )2−2α‖ [w(·, x), (·)T ] � h]‖ ≤ NN0, and (1.340)
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sup
T≤1

(T
1
4 )2−2α‖ [w(·, x), (·)T ] � h− [w(·, x′), (·)T ] � h‖ ≤ NN0d

α(x, x′)

(1.341)

hold for all x, x′ ∈ R2 and for some constants N,N0 ∈ R.
For u ∈ L∞(R2) such that there exists a function ν and constant M ∈ R

ensuring that

|u(y)− u(x)− (w(y, x)− w(x, x))− ν(x)(y − x)1| ≤Md2α(x, y) (1.342)

for any x, y ∈ R2, there exists a unique distribution u � h satisfying

lim
T→0
‖ [u, (·)T ] � h− Etr [w, (·)T ] � h− ν [x1, (·)T ]h‖ = 0, (1.343)

where Etr denotes evaluation of a function of (x, y) at (x, x). Furthermore,
this distribution has �nite local Cα−2 seminorm and satis�es

sup
T≤1

(T
1
4 )2−2α‖ [u, (·)T ] � h‖ ≤ (M +N)N0. (1.344)

In this lemma we assume that all functions and distributions are periodic in
the x1-direction.

Just as for the other reconstruction lemma, Lemma 4, the proof of Lemma
9 follows from Otto and Weber's arguments without any substantial changes.
In order to use this lemma we make various choices of h and {w(·, x)}x. In
particular, as indicated above, we plan to use this lemma in two places:
1) To obtain a family of distributions aext � ∂2

1v(·, a0) from the reference
products (v + Ṽ )(·, a0) � ∂2

1v(·, a′0) when aext ∈ Cα(R2) is modelled after
(v + Ṽ )(·, a0) and 2) To de�ne the product a(W ) � ∂2

1W in (10) assuming
that W is modelled after (v + Ṽ )(·, a0). These applications are summarized
in the following corollary.

Corollary 4 (Modi�ed Lemma 3 and Corollary 1 of [47]). Let α ∈ (2
3 , 1).

All functions and distributions are assumed to be periodic in the x1-direction.
Under the same assumptions as in Corollary 2, we obtain that for any
i, j = 0, 1 the following points hold:

i) If u ∈ Cα(R2) is modelled after (vi + Ṽi)(·, a0) according to ai, σi, and νi
such that ‖ai‖α ≤ 1 and ‖σi‖α ≤ 1 with modelling constant M ∈ R, then for
every a′0 ∈ [λ, 1] it is possible to construct a unique distribution u�∂2

1vj(·, a′0)
such that

lim
T→0

∥∥∥[u, (·)T ] � ∂2
1vj(·, a′0)− σiEi

[
(vi + Ṽi)(·, a0), (·)T

]
� ∂2

1vj(·, a′0)

−νi [x1, (·)T ] ∂2
1vj(·, a′0)

∥∥ = 0,

(1.345)
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where Ei denotes the evaluation of a function depending on (x, a0) at (x, ai(x)).
The distributions u�∂2

1vj(·, a′0) are constructed to have �nite local Cα−2 semi-
norm and, furthermore, satisfy

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[u, (·)T ] � ∂2
1vj(·, a0)

∥∥
2
≤ (N int

0 +N0 +M)N0. (1.346)

and

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[u, (·)T ] � ∂2
1v1(·, a0)− [u, (·)T ] � ∂2

1v0(·, a0)
∥∥

1

.(N int
0 +N0 +M)δN0.

(1.347)

ii) Let i = 0, 1. Assume that we have two functions ui ∈ Cα(R2) each
modelled after (vi + Ṽi)(·, a0) according to ai and σi, which again satisfy
‖ai‖ ≤ 1 and ‖σi‖ ≤ 1, such that also the di�erence u1 − u0 is modelled
after ((v1+Ṽ1)(·, a0), (v0+Ṽ0)(·, a0)) according to (a1, a0) and (σ1,−σ0) with
modelling constant δM ∈ R. For the singular products uj � ∂2

1(vi + Ṽi)(·, a0)
constructed in part i) we then have that

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α sup

a0∈[λ,1]

∥∥[u1, (·)T ] � ∂2
1vi(·, a0)− [u0, (·)T ] � ∂2

1vi(·, a0)
∥∥

1

.N0(δM + (N0 +N int
0 )(‖a1 − a0‖α + ‖σ1 − σ0‖α) + δN0 + δN int

0 ).

(1.348)

1.6.2 Proofs

We start with the proof of Lemma 7. Here is the argument:

Proof of Lemma 7. i) Notice that, in comparison to the situation in Lemma
2, we do not have an analogue of (1.50) for F (·, a0). To remedy the situation,
we symbolically apply Leibniz' rule with the goal of moving the derivatives
“∂1” o� of F and onto G:

G∂2
1F (·, a0)

“ = ”∂2
1(F (·, a0)G)− 2∂1F (·, a0)∂1G− F (·, a0)∂

2
1G

“ = ”− 2(∂1(F (·, a0)∂1G)− F (·, a0)∂
2
1G) + ∂2

1(F (·, a0)G)− F (·, a0)∂
2
1G

“ = ”∂2
1(F (·, a0)G)− 2∂1(F (·, a0)∂1G) + F (·, a0)∂

2
1G.

(1.349)

This heuristic calculation motivates the de�nition

G � ∂2
1F (·, a0) := ∂2

1(F (·, a0)G)− 2∂1(F (·, a0)∂1G) + F (·, a0)∂
2
1G. (1.350)
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We must check that the terms on the right-hand side of (1.350) are well-
de�ned. To begin, we notice that thanks to the assumption (1.314) the third
term on the right-hand side was shown to make sense as a distribution in
Lemma 2. For the �rst term we remark that the product F (·, a0)G is clearly
classical and of class Cα. Moving to the second term, we �nd that, thanks
to (1.314) for i = 1 and the bound ‖F (·, a0)‖ ≤ N0, the classical product
F (·, a0)∂1G ∈ L1

loc(R2).
For (1.316) we �rst use our de�nition (1.350) to write (over two pages):∣∣[G, ( · )T ] � ∂2

1F (·, a0)(x)
∣∣

=

∣∣∣∣ˆ
R2

(G(x)∂2
1F (y, a0)−G(y) � ∂2

1F (y, a0))ψT (x− y) dy

∣∣∣∣
=

∣∣∣∣ˆ
R2

(G(x)−G(y))F (y, a0)∂
2
1ψT (x− y) dy

− 2

ˆ
R2

F (y, a0)∂1G(y)∂1ψT (x− y) dy (1.351)

−
ˆ
R2

F (y, a0)∂
2
1G(y)ψT (x− y) dy

∣∣∣∣
=

∣∣∣∣ˆ
R2

(G(x)−G(y))(F (y, a0)− F (x, a0))∂
2
1ψT (x− y)dy

− 2

ˆ
R2

(F (y, a0)− F (x, a0))∂1G(y)∂1ψT (x− y) dy

−
ˆ
R2

(F (y, a0)− F (x, a0))∂
2
1G(y)ψT (x1 − y) dy

+

ˆ
R2

(G(x)−G(y))F (x, a0)∂
2
1ψT (x− y) dy

− 2

ˆ
R2

F (x, a0)∂1G(y)∂1ψT (x− y) dy

−
ˆ
R2

F (x, a0)∂
2
1G(y)ψT (x− y) dy

∣∣∣∣
for a0 ∈ [λ, 1] and x ∈ R2. Here we have used multiple applications of inte-
gration by parts in which the boundary terms vanish because ψT is Schwarz
function.

We then treat the terms on the right-hand side of (1.351) separately. The
�rst term is easily handled using (1.18):∣∣∣∣ˆ

R2

(G(x)−G(y))(F (y, a0)− F (x, a0))∂
2
1ψT (x− y) dy

∣∣∣∣
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≤ [G]α [F (·, a0)]α

ˆ
R2

|∂2
1ψT (x− y)| d2α(x, y) dy

.[G]αN0(T
1
4 )2α−2.

For the second term we use (1.314) for i = 1 and (1.18) to obtain∣∣∣∣ˆ
R2

(F (y, a0)− F (x, a0))∂1G(y)∂1ψT (x− y) dy

∣∣∣∣
.C(G) [F (·, a0)]α

ˆ
R2

|x2|
α−1
2 dα(x, y)|∂1ψT (x− y)| dy

.C(G)N0(T
1
4 )2α−2.

(1.352)

Finally, the last term is treated in essentially the same way as the second,
but using (1.314) for i = 2. In particular, we may write∣∣∣∣ˆ

R2

(F (y, a0)− F (x, a0))∂
2
1G(y)ψT (x− y) dy

∣∣∣∣
.C(G)[F (·, a0)]α

ˆ
R2

|x2|
α−2
2 dα(x, y)|ψT (x− y)| dy

.C(G)N0(T
1
4 )2α−2.

(1.353)

Notice that the integrals in the second lines of (1.352) and (1.353) are treated
in basically the same way as in (1.311). To �nish our analysis of the right-
hand side of (1.351), we lastly notice that a couple of integration by parts,
where once again the boundary terms vanish due to the Schwarz-ness of the
convolution kernel, show that the last three terms on the right-hand side
actually cancel each other. Combining all of these observations and using
that by assumption [G]α ≤ C(G) we �nd that

sup
a0∈[λ,1]

sup
T≤1

∥∥[G, ( · )T ] � ∂2
1F (·, a0)

∥∥ . N0C(G)(T
1
4 )2α−2. (1.354)

To obtain a similar result for higher parameter derivatives as claimed in
(1.316) for ∂ja0 with j = 1, 2, we notice that due to our de�nition of G �
∂2

1F (·, a0) we have that

∂ja0G � ∂
2
1F (·, a0)

= ∂2
1(G∂ja0F (·, a0))− 2∂1(∂

j
a0
F (·, a0)G) + ∂ja0F (·, a0)∂

2
1G.

(1.355)

Thanks to our assumption (1.315), which includes two parameter derivatives,
we then �nd that the exact same argument as above gives (1.354) with the
desired parameter derivatives included.
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ii) The proof of this part is a simple matter of noticing that the de�nition
(1.350) for G � ∂2

1F is linear in G. In particular, we notice that

G0 � ∂2
1F −G1 � ∂2

1F = (G0 −G1) � ∂2
1F, (1.356)

which by the linearity of the convolution then implies that

[G0, ( · )T ] � ∂2
1F (·, a0)− [G1, ( · )T ] � ∂2

1F (·, a0)

= [G0 −G1, ( · )T ] � ∂2
1F (·, a0).

(1.357)

By assumption (1.317) on top of the assumptions that we carry over from part
i), we may then apply the result of i) to obtain the desired bound (1.318).
In fact, we get the bound for one more parameter derivative than we claim.

iii) For this part we use the linearity of the de�nition of the product G�∂2
1F

in F . In particular, we have that

G � ∂2
1F0 −G � ∂2

1F1 = G � ∂2
1(F0 − F1), (1.358)

which again, when combined with the linearity of the convolution, implies
that

[G, ( · )T ] � ∂2
1F0(·, a0)− [G, ( · )T ] � ∂2

1F1(·, a0)

= [G, ( · )T ] � ∂2
1(F0 − F1)(·, a0).

(1.359)

Since we have carried over the assumptions of i) and have added the as-
sumption (1.319), we may apply part i) to obtain the desired (1.320). Once
again, we actually get the bound for one more parameter derivative than we
need.

In order to apply this lemma with the proper identi�cations in proof of
Corollary 4 we use Lemma 3 and Lemma 8, the latter of which we prove
below. As already mentioned, this argument is standard and essentially
already contained in [47], but we give it here for completeness.

Proof of Lemma 8. Since f is periodic, we may interpret the assumption
(1.321) in terms of Lemma 9 of [47]. In particular, we �nd that there exists
a decomposition of f ,

f = ∂2
1f

1 + ∂2f
2 + c, (1.360)

such that for i = 1, 2 the f i are periodic of vanishing average,

c =

ˆ
T2

f dx, (1.361)
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and [f 1]α + [f 2]α + |c| . N0. In particular, notice that, as we have already
pointed out in the introduction, (1.361) is guaranteed by (1.360) with the
choice of test function 1. The exact same argument applied to (1.4) yields
that ˆ

T2

v(·, a0) dx =

ˆ
T2

f dx. (1.362)

To �nish obtaining (1.322) we let vi(·, a0) be the C
α- solution of

(∂2 − a0∂
2
1 + 1)vi(·, a0) = f i on R2

for i = 1, 2. The classical Hölder estimate for these equations then gives that
[vi(·, a0)]α+2 . [f i]α. Using this we obtain that

[∂2
1v

1(·, a0)]α + [∂2v
2(·, a0)]α . N0.

By the uniqueness of Cα-solutions to (1.4) we know that v(·, a0) = ∂2
1v

1(·, a0)+
∂2v

2(·, a0) + c, which yields that [v(·, a0)]α . N0.
For the higher parameter derivatives we emulate the argument from part

iii) of Lemma 3. In particular, di�erentiating (1.4) in terms of a0 gives that

(∂2 − a0∂
2
1 + 1)∂a0v(·, a0) = ∂2

1v(·, a0) on R2, (1.363)

which by the same arguments as above yields

[∂a0v(·, a0)]α . [∂2
1v(·, a0)]α−2 ≤ [v(·, a0)]α . N0.

Di�erentiating in terms of a0 again we �nd that ∂2
a0
v(·, a0) solves

(∂2 − a0∂
2
1 + 1)∂2

a0
v(·, a0) = 2∂2

1∂a0v(·, a0) on R2, (1.364)

which again yields that

[∂2
a0
v(·, a0)]α . [∂2

1∂a0v(·, a0)]α−2 . [∂a0v(·, a0)]α . N0.

Like before, testing the equations (1.363) and (1.364) with the constant func-
tion 1 yields that ∂a0v(·, a0) and ∂

2
a0
v(·, a0) have vanishing average. Combin-

ing all of these observations we obtain the desired (1.322).

We are now ready to post-process Lemma 7 to get Corollary 3.

Proof of Corollary 4. i) This part follows from i) of Lemma 7 with the iden-
ti�cations G = ∂la0Ṽi(·, a0) and F (·, a′0) = ∂ja′0

vj(·, a′0) for l, j = 0, 1, 2. The

assumption (1.315) holds thanks to Lemma 8 and the assumption (1.314)
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with C(∂la0Ṽi(·, a0)) . N int
0 is veri�ed by part i) of Lemma 3. The claim

then follows from the observation that by the de�nition (1.350), we have
that ∂la0∂

j
a′0
G(·, a0), (·)T ] � F (·, a′0) = [∂la0G(·, a0), (·)T ] � ∂ja′0F (·, a′0).

ii), iv) These parts are immediate consequences of the triangle inequality
and the assumption (1.324) on the o�ine products borrowed from [47]. For
part iv) we also apply Corollary 1 with F = (Ṽi + vi)(·, a0).

iii) We start by showing (1.332). For this we notice that by the de�nition
(1.330) we have that[

(Ṽ0 + v0)(·, a0), ( · )T
]
� ∂2

1vj(·, a′0)−
[
(Ṽ1 + v1)(·, a0), ( · )T

]
� ∂2

1vj(·, a′0)

=
[
(Ṽ0 − Ṽ1)(·, a0), ( · )T

]
� ∂2

1vj(·, a′0)

+ [v0(·, a0), ( · )T ] � ∂2
1vj(·, a′0)− [v1(·, a0), ( · )T ] � ∂2

1vj(·, a′0).

The relation (1.332) then follows from the triangle inequality, the assump-
tion (1.325), and part ii) of Lemma 7 with Gi = Ṽi(·, a0) for i = 0, 1,
C(Ṽ0(·, a0), Ṽ1(·, a0)) = [Vint,0 − Vint,1]α, and F (·, a0) = vj(·, a0).

Obtaining (1.333) is essentially the same argument. Again by the de�nition
(1.330) we can write[

(Ṽi + vi)(·, a0), ( · )T
]
� ∂2

1v1(·, a′0)−
[
(Ṽi + vi)(·, a0), ( · )T

]
� ∂2

1v0(·, a′0)

=
[
Ṽi(·, a0), ( · )T

]
� ∂2

1(v1 − v0)(·, a′0)

+ [vi(·, a0), ( · )T ] � ∂2
1v1(·, a′0)− [vi(·, a0), ( · )T ] � ∂2

1v0(·, a′0).

The relation (1.333) is then obtained via the triangle inequality using (1.326)
for the second term on the right-hand side and part iii) of Lemma 7 with G =
Ṽi(·, a0), F1(·, a0) = v1(·, a0), and F0(·, a0) = v0(·, a0). For the assumption
(1.319) we notice that v1 − v0 solves (1.4) with right-hand side f1 − f0.

Having �nished our construction of the reference products we then move
on to the proof of the reconstruction lemma. As already mentioned a couple
of times, it is not di�cult to adapt the proof of Otto and Weber to our setting
and the majority of the below argument is taken straight from [47]

Proof of Lemma 9. To begin, one notices that as a result of the modelling
the bound

[ν]2α−1 .M +N (1.365)
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holds. To see this we �x x, y ∈ R2 and, using the notation lx(y) = ν(x)y1,
rewrite (1.342) as

|(u− w(·, x)− lx)(y)− (u− w(·, x)− lx)(x)| ≤Md2α(x, y).

Using the triangle inequality we see that for a third point y′ ∈ R2 this gives

|(u− w(·, x)− lx)(y)− (u− w(·, x)− lx)(y′))|
≤M(d2α(x, y) + d2α(x, y′)).

(1.366)

Introducing a fourth point x′ ∈ R2, we then use (1.338) and another appli-
cation of the triangle inequality to write

|(u− w(·, x′)− lx)(y)− (u− w(·, x′)− lx)(y′))|
≤M(d2α(x, y) + d2α(x, y′)) +Ndα(y, y′)dα(x, x′).

(1.367)

Replacing x by x′ in (1.366) and the taking the di�erence between this and
(1.367) gives that

|(lx − lx′)(y)− (lx − lx′)(y′)|
≤M

(
d2α(x′, y) + d2α(x′, y′) + d2α(x, y) + d2α(x, y′)

)
+Ndα(y, y′)dα(x′, x)

(1.368)

We then take y = x and y′ = x+ (R, 0) for some R > 0 to obtain

|ν(x)− ν(x′)|R .M(R2α + d2α(x′, x)) +NRαdα(x′, x). (1.369)

To �nish the argument for (1.365), we let R = d(x′, x). Using the modelling
assumption we also obtain an L∞-bound for ν. In particular, the triangle
inequality gives that

|ν(x)(x− y)1| ≤Md2α(x, y) + |u(x)− u(y)− (w(x, x)− w(y, x))|,
which, after exploiting the periodicity of u and w(·, x) in the x1-direction,
gives that

‖ν‖ ≤M. (1.370)

Having obtained the bounds for ν, the proof in [47] then continues in much
the same fashion as the proof of Lemma 4. In particular, for any τ, T > 0
such that T = 2nτ for some n ∈ N, it is shown that

(uhT − Etr [w, (·)T ] � h− ν [x1, (·)T ]h)

− (uhτ − Etr [w, (·)τ ] � h− ν [x1, (·)τ ]h)T−τ

=
∑

t=τ2i for 0≤i≤n

(
([u, (·)t]− Etr [w, (·)t]− ν [x1, (·)τ ])ht

− [ν, (·)t] [x1, (·)t]h− [Etr, (·)t] [w, (·)t] � h
)
T−2t

.

(1.371)
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As in the proof of Lemma 4, for this decomposition we reference Step 3 of the
proof of Lemma 2 in [47] and do not give the argument here. The relation
(1.371) is then used to show that

‖uhT − Etr [w, (·)T ] � h− ν [x1, (·)T ]h

− (uhτ − Etr [w, (·)τ ] � h− ν [x1, (·)τ ]h)T−τ‖
.(M +N)N0(T

1
4 )3α−2

(1.372)

for τ < T ≤ 1. In particular, (1.372) is obtained from (1.371) after using
(1.21) and the three estimates

‖([u, (·)t]− Etr [w, (·)t]− ν [x1, (·)τ ])ht‖ .MN0(t
1
4 )3α−2, (1.373)

‖ [ν, (·)t] [x1, (·)t]h‖ . (M +N)N0(t
1
4 )3α−2, (1.374)

and ‖ [Etr, (·)t] [w, (·)t] � h‖ . NN0(t
1
4 )3α−2, (1.375)

which hold for all t > 0. Notice that in this step, just as in the corresponding
step of the proof of Lemma 4, one critically uses that α ∈ (2

3 , 1)
The estimates (1.373), (1.374), and (1.375) are proven as in [47] without

any changes necessary. The �rst estimate relies on the modelledness assump-
tion (1.341) in the sense that for all x ∈ R2 the left-hand side can be rewritten
and bounded as

|([u, (·)t]− Etr [w, (·)t]− ν [x1, (·)t])ht(x)|

=

∣∣∣∣ˆ
R2

(u(x)− u(y)− (w(x, x)− w(y, x))− ν(x)(x− y)1)

× ψt(x− y)ht(x) dy

∣∣∣∣
≤M‖ht‖

ˆ
R2

|ψt(x− y)|d2α(x, y)

(1.339),(1.18)

.MN0(t
1
4 )3α−2.

For the relation (1.374) one uses Lemma 10 of [47], which gives us that

‖[x1, (·)t]h‖ . t
1
4‖ht‖

(1.339)

≤ N0(t
1
4 )α−1.

For x ∈ R2 we then combine this with Young's inequality to give

| [ν, (·)t] [x1, (·)t]h(x)| . ‖[x1, (·)t]h‖
ˆ
R2

|ν(x)− ν(y)| |ψt(x− y)| dy

.[ν]2α−1 ‖ [x1, (·)t]h‖
ˆ
R2

d2α−1(x, y)|ψt(x− y)| dy

(1.18)

.(M +N)N0(t
1
4 )3α−2,
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where we have applied (1.365). Lastly, (1.375) is obtained using (1.340) by
writing

|[Etr, (·)t] [w, (·)t] � h(x)|

≤
ˆ
R2

|ψt(x− y)| |[w(·, x), (·)t] � h(y)− [w(·, y), (·)t] � h(y)| dy

.NN0(t
1
4 )2α−2

ˆ
R2

|ψt(x− y)|dα(x, y) dy

(1.18)

.NN0(t
1
4 )3α−2

for every x ∈ R2.
The proof of this lemma is then �nished in a manner very similar to Lemma

4. In particular, we introduce the notation

F τ = uhτ − Etr [w, (·)τ ] � h− ν [x1, (·)τ ]h

with which (1.372) becomes

sup
T≤1

(T
1
4 )2−3α‖FT − (F τ)T−τ‖ . (M +N)N0. (1.376)

Using the restriction T ≤ 1, the assumptions (1.339) and (1.340), the bound
(1.370), and Lemma 10 of [47] we notice that

sup
T≤1

(T
1
4 )2−α‖FT‖ = sup

T≤1
(T

1
4 )2−α‖uhT − Etr [w, (·)T ] � h− ν [x1, (·)T ]h‖

.(‖u‖+ ‖ν‖) sup
T≤1

(T
1
4 )2−α‖hT‖+NN0

.(‖u‖+M +N)N0.

(1.377)

Combining this with (1.21) and (1.376) we �nd that

sup
T≤1

(T
1
4 )2−α‖(F τ)T‖ . (‖u‖+M +N)N0. (1.378)

By Lemma 1 the bound (1.378) yields that the F τ have uniformly bounded
local Cα−2 seminorms and the argument then �nishes exactly as in Lemma
4.

Moving on to the proof of Corollary 4 we note again that every part of
the statement is an application of the previous lemma with di�erent choices
for the family {w(·, x)}x and the distribution h. For each part we must
specify these identi�cations and then check that the assumptions (1.337)-
(1.342) hold for some constants N,N0 ∈ R. In the same fashion as the
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reconstruction lemma, the proof of this corollary is also essentially the same
as in [47]. Since this corollary is quite long and we do not actually handle
the quasilinear problem in this thesis, in some places we only give an outline
of the proof without giving the detailed calculations.

Proof of Corollary 4. For use throughout this proof, we �x points x, x′, y, y′ ∈
R2 and reintroduce the notation

ati = tai(x) + (1− t)ai(x′). (1.379)

i) We set

w(·, x) = σi(x)(vi + Ṽi)(·, ai(x)),

h = ∂2
1vj(·, a′0),

and w(·, x) � h = σi(x)(vi + Ṽi)(·, ai(x)) � ∂2
1vj(·, a′0)

and check that the assumptions (1.337)-(1.341) hold. We go down the laun-
dry list:

• For the assumption (1.337) we may simply write

sup
x∈R2

[
σi(x)(vi + Ṽi)(·, ai(x))

]
α
.‖σ‖(N0 +N int

0 ) ≤ N0 +N int
0

by (1.54) applied to Vi(·, a0), (1.322) of Lemma 8, and the assumption that
‖σi‖ ≤ 1.

• For (1.338) we obtain
|w(y, x)− w(y, x′)− (w(y′, x)− w(y′, x′))|

dα(y, y′)

.‖σ‖|ai(x)− ai(x′)|
dα(y, y′)

∣∣∣∣ˆ 1

0

(∂a0vi(y, a
t
i)− ∂a0vi(y′, ati)) dt

∣∣∣∣
+
|σ(x)− σ(x′)|
dα(y, y′)

|vi(y, a(x′))− vi(y′, a(x′))|

+ same expression in Ṽi
.(N0 +N int

0 )dα(x, x′),

where we have used Lemmas 3 and 8 and the assumptions on σi and ai.

• For (1.339) we notice that

sup
T≤1

(T
1
4 )2−α‖(∂2

1vj(·, a′0))T‖
(1.20)

. [vj(·, a′0)]α
(1.322)

. N0.
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• The assumption (1.340) is veri�ed in ii) of Corollary 3 with right-hand side
(N int

0 +N0)N0.

• We lastly verify the assumption (1.341) for which we write

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥σi(x)
[
(vi + Ṽi)(·, ai(x)), (·)T

]
� ∂2

1vj(·, a′0)

−σi(x′)
[
(vi + Ṽi)(·, ai(x′)), (·)T

]
� ∂2

1vj(·, a′0)
∥∥∥

.

(
[ai]α sup

a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(vi + Ṽi)(·, a0), (·)T
]
� ∂2

1vj(·, a′0)
∥∥∥

1,0

+[σi]α sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(vi + Ṽi)(·, a0), (·)T
]
� ∂2

1vj(·, a′0)
∥∥∥) dα(x, x′)

. (N int
0 +N0)N0d

α(x, x′).

(1.380)

Here we have used the results of Corollary 3 and our assumptions on ai and σi.

Combining all of these calculations we �nd that we may set the constants
in Lemma 9 as N = c(N int

0 + N0) and N0 = cN0 for some large enough
c ∈ R, where the N0 on the left-hand side is the constant in Lemma 9 and
the N0 on the right-hand side come from (1.321). The application of Lemma
9 then yields (1.346) without the two parameter derivatives. It still remains
to show (1.346) for the indicated parameter derivatives. We start with the
case of one parameter derivative and, setting up for another application of
Lemma 9, let

w(·, x) = σi(x)(vi + Ṽi)(·, ai(x)),

h = ∂2
1vj(·, a+

0 )− ∂2
1vj(·, a−0 ),

and w(·, x) � h = σi(x)
(

(vi + Ṽi)(·, ai(x)) � ∂2
1vj(·, a+

0 )

−(vi + Ṽi)(·, ai(x)) � ∂2
1vj(·, a−0 )

)
for any a−0 , a

+
0 ∈ R. We must again check the assumptions of Lemma 9,

which is made easier by the fact that our choice of w(·, x) has not changed.
Here is the list of assumptions that have not been proved above:

•We start by checking the assumption (1.339). In particular, we use Lemma
8, the equivalence in Lemma 1, and the assumption (1.321) to write

sup
T≤1

(T
1
4 )2−α‖(∂2

1vj(·, a+
0 )− ∂2

1vj(·, a−0 ))T‖ . N0|a+
0 − a−0 |.
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• The relation (1.340) follows from part ii) of Corollary 3 and our assumption
‖σi‖ ≤ 1 as

sup
T≤1

(T
1
4 )2−2α‖[w(·, x), (·)T ] � h‖

≤|a+
0 − a−0 | sup

a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(vi + Ṽi)(·, a0), (·)T
]
� ∂2

1vj(·, a′0)
∥∥∥

0,1

.|a+
0 − a−0 |(N int

0 +N0)N0.

• For the assumption (1.341) we write

sup
T≤1

(T
1
4 )2−2α‖[w(·, x), (·)T ] � h− [w(·, x′), (·)T ] � h‖

. ‖σ‖|a+
0 − a−0 ||a(x)− a′(x)|×

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(vi + Ṽi)(·, a0), (·)T
]
� ∂2

1vj(·, a′0)
∥∥∥

1,1

+ [σ]αd
α(x, x′)|a+

0 − a−0 |×

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(vi + Ṽi)(·, a′0), (·)T
]
� ∂2

1vj(·, a0)
∥∥∥

0,1

. |a+
0 − a−0 |dα(x, x′)(N int

0 +N0)N0.

After these calculations we can set N = c(N int
0 +N0) and N0 = cN0|a+

0 −
a−0 | for c ∈ R large enough and apply Lemma 9. In this way, we obtain a
distribution u � (∂2

1vj(·, a+
0 )− ∂2

1vj(·, a−0 )) such that

sup
T≤1

(T
1
4 )2−2α

∥∥[u, (·)T ] � (∂2
1vj(·, a+

0 )− ∂2
1vj(·, a−0 ))

∥∥
.|a+

0 − a−0 |(N int
0 +N0 +M)N0.

(1.381)

To �nish showing that (1.346) holds for one parameter derivative, we notice
that due to the built-in linearity of our de�nition of the product w(·, x)�h(·),
the property x(∂2

1vj(·, a+
0 ) − ∂2

1vj(·, a−0 )) = x∂2
1vj(·, a+

0 ) − x∂2
1vj(·, a−0 ), and

the uniqueness in Lemma 4 it holds that

u � (∂2
1vj(·, a+

0 )− ∂2
1vj(·, a−0 )) = u � ∂2

1vj(·, a+
0 )− u � ∂2

1vj(·, a−0 ).

Plugging this into (1.381) we obtain (1.346) for one parameter derivative.
Obtaining (1.346) for two parameter derivative is a similar argument. In

particular, it follows from applying Lemma 9 with

w(·, x) = σi(x)(vi + Ṽi)(·, ai(x)),
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h = (∂2
1vj(·, a++

0 )− ∂2
1vj(·, a+−

0 ))− (∂2
1vj(·, a−+

0 )− ∂2
1vj(·, a−−0 )), and

w(·, x) � h = σi(x)
(

(vi + Ṽi)(·, ai(x)) � ∂2
1vj(·, a++

0 )

− (vi + Ṽi)(·, ai(x)) � ∂2
1vj(·, a+−

0 )

−
(

(vi + Ṽi)(·, ai(x)) � ∂2
1vj(·, a−+

0 )

−(vi + Ṽi)(·, ai(x)) � ∂2
1vj(·, a−−0 )

))
for any a++

0 , a+−
0 , a−+

0 , a−−0 ∈ R such a++
0 −a+−

0 = a−+
0 −a−−0 . Again, w(·, x)

has not changed, which reduces the number of assumptions of Lemma 9 that
we must check. In this part we often make use of the following estimate∣∣(vj(x, a++

0 )− vj(y, a++
0 ))− (vj(x, a

+−
0 )− vj(y, a+−

0 ))

−(vj(x, a
−+
0 )− vj(y, a−+

0 )− (vj(x, a
−−
0 )− vj(y, a−−0 )))

∣∣
≤ sup

a0

[vj(·, a0)]α,2|a++
0 − a+−

0 ||a−+
0 − a−−0 |

+ sup
a0

[vj(·, a0)]α,1|a++
0 − a+−

0 − (a−+
0 − a−−0 )|

≤ sup
a0

[vj(·, a0)]α,2|a++
0 − a+−

0 ||a−+
0 − a−−0 |

(1.382)

which follows from the fundamental theorem of calculus and the condition
that a++

0 − a+−
0 = a−+

0 − a−−0 . Here is the list of assumptions:

• We start by checking (1.339):

sup
T≤1

(T
1
4 )2−α‖

(
(∂2

1vj(·, a++
0 )− ∂2

1vj(·, a+−
0 ))

−(∂2
1vj(·, a−+

0 )− ∂2
1vj(·, a−−0 ))

)
T
‖

. [vj(·, a0)]α,2|a++
0 − a+−

0 | |a−+
0 − a−−0 |

(1.322)

. N0 |a++
0 − a+−

0 | |a−+
0 − a−−0 |,

where we have used (1.382) and (1.18).

• The assumption (1.340) follows from the calculation

sup
T≤1

(T
1
4 )2−2α‖σi(x)[w(·, x), (·)T ] � h‖

.|a++
0 − a+−

0 | |a−+
0 − a−−0 |‖σ‖×

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(vi + Ṽi)(·, a0), (·)T
]
� ∂2

1vj(·, a′0)
∥∥∥

0,2

.|a++
0 − a+−

0 | |a−+
0 − a−−0 |N0(N

int
0 +N0).
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Here we have again used (1.382), but now in combination with ii) of Corol-
lary 3.

• Lastly, we check (1.341) by writing

sup
T≤1

(T
1
4 )2−2α‖[w(·, x), (·)T ] � h− [w(·, x′), (·)T ] � h‖

.|a++
0 − a+−

0 | |a−+
0 − a−−0 |[a]αd

α(x, x′)×

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(vi + Ṽi)(·, a0), (·)T ] � ∂2
1vj(·, a′0)

∥∥∥
1,2

+ |a++
0 − a+−

0 | |a−+
0 − a−−0 |[σ]αd

α(x, x′)×

sup
a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(vi + Ṽi)(·, a0), (·)T ] � ∂2
1vj(·, a′0)

∥∥∥
0,2

.|a++
0 − a+−

0 | |a−+
0 − a−−0 |dα(x, x′)(N int

0 +N0)N0.

With these bounds in-hand we again apply Lemma 9, now with N =
c(N0 +N int

0 ) and N1 = cN0|a++
0 − a+−

0 | |a−+
0 − a−−0 | for large enough c ∈ R.

To obtain (1.346) for two parameter derivatives one then follows the same
steps as in the case of only one parameter derivative above.

To obtain (1.347) without parameter derivative we use Lemma 9, now with
the identi�cations

w(·, x) = σi(x)(vi + Ṽi)(·, ai(x)),

h = (∂2
1v1 − ∂2

1v0)(·, a0),

and w(·, x) � h = σi(x)((vi + Ṽi)(·, ai(x)) � ∂2
1v1(·, a0) (1.383)

− (vi + Ṽi)(·, ai(x)) � ∂2
1v0(·, a0)).

Since our choice of w(·, x) is the same as in the previous part, this reduces
the list of assumptions that must be checked. For the last time, here is the
list of remaining assumptions:

• We start with (1.339) and notice that (v1 − v0)(·, a0) solves (1.4) with
right-hand side f1 − f0. By Lemma 8 this implies that

sup
T≤1

(T
1
4 )2−α‖((∂2

1v1 − ∂2
1v0)(·, a0))T‖ . δN0.

• The assumption (1.340) is veri�ed in part iii) of Corollary 3 with right-
hand side given by (N int

0 +N0)δN0.
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• To �nish, we check (1.341) similarly to (1.380), again using part iii) of
Corollary 3. The right-hand side that one obtains in this calculation is
(N int

0 +N0)δN0d
α(x, x′).

All combined, we �nd that we may take N = c(N int
0 +N0) and N1 = cδN0

for large enough c ∈ R in our application of Lemma 9. The relation (1.347)
for one parameter derivatives follows in the same way as in part i), but now
taking advantage of the version of (1.333) involving one parameter derivative
in a′0.

ii) For this part we would like to apply Lemma 9 with

w(·, x) = σ1(x)(v1 + Ṽ1)(·, a1(x))− σ0(x)(v0 + Ṽ0)(·, a0(x)),

h = ∂2
1vi(·, a0),

and w(·, x) � h = σ1(x)(v1 + Ṽ1)(·, a0(x)) � ∂2
1vi(·, a0)

− σ0(x)(v0 + Ṽ0)(·, a0(x)) � ∂2
1vi(·, a0).

Here is our list of assumptions:

• We start by checking (1.337):

[w(·, x)]α .‖σ0‖ sup
a0∈[λ,1]

(
[(v0 − v1)(·, a0)]α +

[
(Ṽ0 − Ṽ1)(·, a0)

]
α

+|a0(x)− a1(x)|
(

[v0(·, a0)]α,1 +
[
Ṽ0(·, a0)

]
α,1

))
+ ‖σ0 − σ1‖ sup

a0∈[λ,1]

[
(v1 + Ṽ1)(·, a0)

]
α

.δN0 + δN int
0 + (‖a1 − a0‖α + ‖σ1 − σ0‖α)(N0 +N int

0 ).

• For the assumption (1.338) we calculate

|w(y, x)− w(y, x′)− (w(y′, x)− w(y′, x′))|
dα(y, y′)

. ‖σ1‖
|a1(x)− a1(x

′)|
dα(y, y′)

∣∣∣∣ˆ 1

0

∂a0(v1 − v0)(y, a
t
1)− ∂a0(v1 − v0)(y

′, at1) dt

∣∣∣∣
+
‖σ1‖

dα(y, y′)

∣∣∣∣v0(y, a0(x))− v0(y, a0(x
′))− (v0(y

′, a0(x))− v0(y
′, a0(x

′)))

− (v0(y, a1(x))− v0(y, a1(x
′))− (v0(y

′, a1(x))− v0(y
′, a1(x

′))))

∣∣∣∣
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+ (σ1 − σ0)(x)v0(y, a0(x))− (σ1 − σ0)(x
′)v0(y, a0(x

′))

− ((σ1 − σ0)(x)v0(y
′, a0(x))− (σ1 − σ0)(x

′)v0(y
′, a0(x

′)))

+ analogous expression in Ṽ1 and Ṽ0.

Ultimately, we will be able to bound the right-hand side of this by

(δN0 + δN int
0 + (‖a1 − a0‖α + ‖σ1 − σ0‖α)(N0 +N int

0 ))dα(x, x′).

To bound the second term on the right-hand side of the above expression we
use (1.382), which gives

|(v0(y, a0(x))− v0(y, a0(x
′)))− (v0(y

′, a0(x))− v0(y
′, a0(x

′)))

−((v0(y, a1(x))− v0(y, a1(x
′)))− (v0(y

′, a1(x))− v0(y
′, a1(x

′))))|
. sup

a0∈[λ,1]

[∂2
a0
v0(·, a0)]α|as1(x)− as0(x′)||a1(x)− a1(x

′)|dα(y, y′)

+ sup
a0∈[λ,1]

[∂a0v0(·, a0)]α|as0(x)− as0(x′)− (as1(x)− as1(x′))|dα(y, y′)

.N0‖a1 − a0‖αdα(x, x′)dα(y, y′).

We perform the analogous calculation for the term involving Ṽ1 and Ṽ0.

• Continuing, we notice that the assumption (1.339) of Lemma 9 is veri�ed
with right-hand side N0 in part i).

• For (1.340) we use the triangle inequality to write

sup
a0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥σ0(x)[(v0 + Ṽ0)(·, a0(x)), (·)T ] � ∂2
1vi(·, a0)

−σ1(x)[(v1 + Ṽ1)(·, a1(x)), (·)T ] � ∂2
1vi(·, a0)

∥∥∥
≤ ‖σ0‖ sup

a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α×(

‖[v0(·, a0), (·)T ] � ∂2
1vi(·, a′0)‖1,0‖a1 − a0‖

+ ‖[(v0 − v1)(·, a0), (·)T ] � ∂2
1vi(·, a′0)‖

+analogous expression in Ṽ0 and Ṽ1

)
+ ‖σ0 − σ1‖ sup

a0,a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥∥[(v1 + Ṽ1)(·, a0), (·)T ] � ∂2
1vi(·, a′0)

∥∥∥
. N0((N0 +N int

0 )(‖a1 − a0‖+ ‖σ1 − σ0‖) + δN0 + δN int
0 ).
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• We �nish by showing the assumption (1.341). Here, we calculate

sup
a′0∈[λ,1]

sup
T≤1

(T
1
4 )2−2α

∥∥[w(·, x), (·)T ] � ∂2
1vi(·, a′0)

− [w(·, x′), (·)T ] � ∂2
1vi(·, a′0)

∥∥
.‖σ0‖|a0(x)− a0(x

′)| sup
T≤1

(T
1
4 )2−2α×

sup
a0,a′0∈[λ,1]

‖[v0(·, a0), (·)T ] � ∂2
1vi(·, a′0)− [v1(·, a0), (·)T ] � ∂2

1vi(·, a′0)‖1,0

+ sup
a′0∈[λ,1]

‖[v1(·, a1(x)), (·)T ] � ∂2
1vi(·, a′0)− [v1(·, a0(x)), (·)T ] � ∂2

1vi(·, a′0)

+ [v1(·, a0(x
′)), (·)T ] � ∂2

1vi(·, a′0))− [v1(·, a1(x
′)), (·)T ] � ∂2

1vi(·, a′0)‖
+ ‖σ1 − σ0‖[a1]αd

α(x, x′) sup
a0,a′0∈[λ,1]

‖[v1(·, a0), (·)T ] � ∂2
1vi(·, a′0)‖1,0

+ [σ1 − σ0]αd
α(x, x′) sup

a0,a′0∈[λ,1]

‖[v1(·, a0), (·)T ] � ∂2
1vi(·, a′0)‖

+ analogous expression in Ṽ1 and Ṽ0

.N0((‖a1 − a0‖α + |σ1 − σ0‖α)(N0 +N int
0 ) + δN0 + δN int

0 )dα(x, x′).

Combining the above �nd that we may apply Lemma 9 with N1 = cN0

and N = c(δN0 +δN int
0 +(‖a1−a0‖α+‖σ1−σ0‖α)(N0 +N int

0 )). Just like in
part i) it remains to verify (1.348) for one parameter derivative. However, as
the technique is the same as in i) we do not include the argument here.

1.7 Appendix B: Proof of Theorem 2

Proof of Theorem 2. i) We apply part i) Theorem 1 with aext = a(W ). In
order to check the assumptions, we start by noticing that

[a(W )]α ≤ ‖a′‖[W ]α � 1

and a(W ) is periodic in the x1-direction since W is. For the assumptions
(1.66) and (1.67) we must apply part i) of Corollary 4 with u = a(W ). Using
Lemma 1 of [47] as stated in Section 1.1, we have that a(W ) is modelled
after (v+ Ṽ )(·, a0) according to ā and µ = a′(W ) with a modelling constant
bounded as

Maext . ‖a′‖M + ‖a′′‖[W ]2α, (1.384)

239



where M corresponds to the modelling of W , and such that

‖µ‖α ≤ max(‖a′‖, ‖a′′‖[W ]α) ≤ 1.

By Corollary 4 part i) we then obtain a Cα−2(R2) family of distributions{
a(W ) � ∂2

1v(·, a0)
}
satisfying (1.66) with right-hand side given by (N int

0 +
N0 +Maext)N0. Applying part i) of Theorem 1 then yields the result.

ii) We apply part ii) Theorem 1 with aext0 = a(W 0) and aext1 = a(W 1). In
order to check the assumptions, we again use Lemma 1 of [47], but now also
part ii). In particular, we �nd that

‖a(W 0)− a(W 1)‖α . ‖a′‖‖W 1 −W 0‖α + ‖a′′‖‖W 1 −W 0‖max
i

[W i]α.

Using the bounds from the previous part, we �nd that part i) of Corollary
4 also yields (1.75) with right-hand side (N int

0 + N0 + Maext)δN0. For the
assumption (1.76), we must use part ii) of Corollary 4. For this we notice that
a(W 1)− a(W 0) is modelled after ((v1 + Ṽ1)(·, a0), (v0 + Ṽ0)(·, a0) according
to (ā1, ā0) and (a′(W 1),−a′(W 0)) with modelling constant δMaext bounded
as

δMaext .‖a′‖δM + ‖a′′‖max
i

[W i]α[W 1 −W 0]α

+
1

2
‖a′′′‖‖W 1 −W 0‖max

i
[W i]

2
α + ‖a′′‖‖W 1 −W 0‖max

i
Mi,

where δM denotes the modelling constant associated to W 1 −W 0 and Mi

corresponds to the modelling of W i. Applying part ii) of Corollary 4 along
with the observation

‖a′(W 1)− a′(W 0)‖α . ‖a′′‖‖W 1 −W 0‖α + ‖a′′′‖‖W 1 −W 0‖max
i

[W i]α,

we �nd that (1.76) holds with right-hand side

N0(δMaext +N0(‖ā1 − ā0‖α + ‖a′(W 1)− a′(W 0)‖α) + δN0 + δN int
0 ).

Applying part ii) of Theorem 1 then yields the result.
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