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Abstract

This thesis is split into two parts, the first one is concerned with some
problems in stochastic homogenization and the second addresses a problem
in singular SPDEs. In the part on stochastic homogenization we are inter-
ested in developing large-scale regularity theories for random linear elliptic
operators by using estimates for the homogenization error to transfer regular-
ity from the homogenized operator to the heterogeneous one at large scales.
In the whole-space case this has been done by Gloria, Neukamm, and Otto
through means of a homogenization-inspired Campanato iteration. Here we
are specifically interested in boundary regularity and as a model setting we
consider random linear elliptic operators on the half-space with either ho-
mogeneous Dirichlet or Neumann boundary data. In each case we obtain
a large-scale O'®-regularity theory and the main technical difficulty turns
out to be the construction of a sublinear homogenization corrector that is
adapted to the boundary data. The case of Dirichlet boundary data is taken
from a joint work with Julian Fischer. In an attempt to head towards a perco-
lation setting, we have also included a chapter concerned with the large-scale
behaviour of harmonic functions on a domain with random holes assuming
that these are “well-spaced".

In the second part of this thesis we would like to provide a pathwise solu-
tion theory for a singular quasilinear parabolic initial value problem with a
periodic forcing. The difficulty here is that the roughness of the data limits
the regularity the solution such that it is not possible to define the nonlin-
ear terms in the equation. A well-posedness result, therefore, comes with
two steps: 1) Giving meaning to the nonlinear terms and 2) Showing that
with this meaning the equation has a solution operator with some continuity
properties. The solution theory that we develop in this contribution is a per-
turbative result in the sense that we think of the solution of the initial value
problem as a perturbation of the solution of an associated periodic problem,
which has already been handled in a work by Otto and Weber. The analysis
in this part relies entirely on estimates for the heat semigroup. The results
in the second part of this thesis will be in an upcoming joint work with Felix
Otto and Jonas Sauer.
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0.1 Stochastic Homogenization

The first focus of my PhD work was the stochastic homogenization of linear
elliptic PDEs. At the core of this theory is the qualitative result that if the
space of bounded coefficient fields with a fixed ellipticity ratio is endowed
with a stationary and ergodic (see below) probability measure, then it is
possible to find a constant coefficient field aj,,, such that for almost every
heterogeneous coefficient field a the constant coefficient operator —V - ape,V
approximates —V - aV at large scales. The requirements of stationarity and
ergodicity on the ensemble can be motivated on the intuitive level using that
homogenization is really the averaging of the coefficient field that happens
when we “zoom-out". To encourage this averaging we should avoid coefficient
fields that exhibit atypical large-scale geometries (e.g. radial symmetry) or
that are sampled differently in different regions. This can be formalized as
requiring that the probability measure (with expectation (-)) satisfies:

e Ergodicity: Any shift-invariant random variable must be (-)-almost surely
constant, which corresponds to a qualitative assumption of decorrelation
on large scales.

o Stationarity: The expectation (-) is shift-invariant.

The qualitative theory of stochastic homogenization was developed in the
late 70s and early 80s (see [48] by Papanicolaou and Varadhan and [39] by
Kozlov) and holds under qualitative ergodicity as defined above. However,
more recently, quantitative results, e.g. convergence rates (in the scale) for
the heterogeneous operator to the homogeneous one, have come into vogue
and always require a quantification of the ergodicity assumption. Choosing
an appropriate notion of “quantified ergodicity" is in itself nontrivial and
there are various notions available. One intuitive way to quantify ergodicity
is to impose a specific decay rate on the correlation between random vari-
ables depending on a|y and aly, where U,V C RY, as the distance d(U, V)
increases. This is the version of quantified ergodicity used in the initial work
on error estimates in ‘86 [52]. In this paper the author, Yurinskii, was able to
obtain a suboptimal, but non-trivial, convergence rate. Ten years later came
the work of Naddaf and Spencer [45] and then Naddaf and Conlon [18], in
which quantitative mixing conditions on the ensemble were encoded in terms
of a spectral gap condition. In particular, they only consider ensembles that
satisfy a Poincaré inequality with zero-average over the probability space,
where the role of the gradient in the classical Poincaré inequality is played
by a “vertical derivative" that measures the dependence of a random variable



on the coefficient field. Using the framework of a spectral gap, the authors
were able to, for small ellipticity ratio, obtain optimal bounds for the ran-
dom fluctuations of the energy density of the gradient of an object called the
“corrector."

Quantitative results in stochastic homogenization rely on the random fluc-
tuations and deterministic growth of a random field called the “corrector."
For a fixed coefficient field @ and a direction & € R? the whole-space corrector
in the direction &, denoted ¢¢, corrects the linear function & -z, which is ajom-
harmonic, to be a-harmonic. By a function being a-harmonic we mean that
it is in the kernel of the operator —V - aV. So, in particular, the corrected
function ¢¢ + & - x is a distributional solution of

~V-aV(¢e+€&-2)=0 on R (1)

Notice that, since the map & — ¢¢ may be taken to be linear, to specify the
corrector for any € € R? it suffices to construct (¢y,, ..., ¢y, ), where {by, ..., bs}
is a basis of R%. Of course, as stated, the equation has the trivial solution
—¢ - x. This, however, is not a reasonable choice for the corrector ¢¢ as,
by its very nature, the corrector should be sublinear. The question of the
uniqueness (up to addition of a random constant) of the sublinear corrector
¢ was only recently settled in the affirmative and follows, e.g., from the
analysis provided in [31].

In quantitative homogenization, it is convenient to introduce a dual quan-
tity to the corrector ¢¢ for £ € R?: namely, a vector potential o¢;r for the
flux correction a(§+ Ve¢) — apomé. Notice that this is the difference between
the flux in the direction £ in the microscopic picture and in the homoge-
nized picture. In particular, og¢j; is skew-symmetric in the last two indices
(0¢jr = —0oer;) and distributionally satisfies

Vi - O¢jk = €j (CL(f + qug) - ahom€)7 (2)

where we use the notation Vy, - o¢j = ZZ:1 Oyoeji. Cleary the equation
does not uniquely define ¢ as it has a gauge invariance in the sense that
one may perturb a solution by any solenoidal random field without penalty.
The object o is often called the “flux corrector", which is notation taken
from periodic homogenization, where it is classical. In the stochastic setting
o was first constructed by Gloria, Neukamm, and Otto in [31], where the
choice of gauge ensured that o is sublinear. As in the case of the corrector,
for each j, k € R? the flux corrector is determined by (o, i, .., Op,jk), Where
{by,...,bg} is a basis of RY.

To see how the corrector is a natural object in the theory of homoge-
nization, we, for a fixed coeflicient field a, study the operator —Va(:)V as

10



¢ — 0. Here, it is natural to do an asymptotic expansion at two scales, the
microscopic scale at which the coefficients oscillate and the macroscopic scale
on which the right-hand side oscillates, of the solution of the equation with
rescaled coefficients a(<). This yields the 2-scale expansion:

€

d
6uhom T . .
Bz, 0% (E) + higher-order (in €) terms, (3)

Ue X Upom T+ €

i=

where d denotes the dimension, u,. denotes the solution to the equation with

rescaled coefficients, ., denotes the solution to the homogenized equation,

and ¢; is the corrector introduced above. Notice that, neglecting higher-order

terms, the 2-scale expansion implies that the question of the existence of a

corrector with sublinear growth is equivalent to that of whether homogeniza-
tion occurs.

With this coarse overview of stochastic homogenization in-hand, we now
state that the main focus of Part 1 of this thesis is the construction of bound-
ary correctors; i. e. functions solving the corrector equation on a domain, but
also satisfying certain boundary data. As a motivation for the usefulness
of these objects, let us return to periodic homogenization and consider the
Dirichlet problem with periodic coefficients. Here, the expected error esti-
mates for the convergence of u, to up.,, are not obtained by naively using the
2-scale expansion with the standard periodic cell-correctors (solutions of the
corrector equations posed on the torus) since the use of the cell-correctors
in this ansatz introduces oscillations at the boundary. Of course, a natural
reaction to this is to introduce an object that not only solves the corrector
equation, but also satisfies homogeneous Dirichlet boundary data. This is
a boundary corrector, which may then be used to obtain more refined er-
ror estimates. In periodic homogenization the use of boundary correctors
goes back as far as the seminal work of Avellaneda and Lin [I1], in which
various uniform in € (up to the boundary) regularity theories are developed
for the solutions u.. In their work they use a local version of a Dirichlet
corrector, which solves the corrector equation on the domain and locally at
the boundary satisfies homogeneous Dirichlet boundary data. More recently,
the strategy of Avellaneda and Lin in [11] was generalized to the Neumann
setting by Kenig, Lin, and Shen [38]. The Neumann case is more difficult
because the boundary condition of both u. and the boundary corrector are
dependent on the scale.

Even in periodic homogenization the construction of Dirichlet correctors
already motivates interesting questions. In particular, since this boundary
corrector may constructed by correcting the cell-corrector with a function

11



that is a-harmonic on the domain and “cancels-out" the cell-corrector at the
boundary of the domain, the study of the boundary corrector and the study
of the oscillating Dirichlet problem go hand-in-hand. The treatment of this
homogenization problem is much more difficult than the standard Dirich-
let problem as one must also be concerned with the homogenization of the
boundary data, which is also oscillating. FEven in periodic homogenization
this is an exciting problem that has recently received much attention. The
literature on this goes back to Allaire and Amar in the 90s [I] and it has
been, more recently, treated by Gérard-Varet and Masmoudi |26, 27]. Inter-
estingly, it turns out that homogenization in this framework depends on the
resonance of the directions of periodicity with the tangent planes of the do-
main. Assuming that the period-cell is the unit-cube, the favorable situation
is that within some (small enough) neighborhood of every boundary point
there exists a tangent plane with Diophantine slope. There is, in particular,
an important recent paper of Armstrong, Kuusi, Mourrat, and Prange [5] on
the homogenization of the oscillating Dirichlet problem in uniformly convex
domains. Here, their method yields the optimal (up to the loss of € for ar-
bitrarily small 6 > 0) convergence rate for u, — upom in L? for g € [2,00) in
d > 4 and improves previous regularity results for the homogenized bound-
ary data. Following subsequent work of Shen and Zhuge [51], the method of
[5] yields the optimal rates in d = 2,3. The result of [51], which adapts the
method of [5] to the Neumann setting, is helpful in lower dimensions because
the authors obtain better regularity for the homogenized boundary data.

While boundary correctors are a quite classical theme in periodic homog-
enization, in stochastic homogenization their use has only recently begun to
be phased-in. To make this point, in Chapter 1 of Part 1 of this thesis, which
was a joint work with Julian Fischer [22], we gave the, to my knowledge, first
construction of a (half-space) Dirichlet corrector in the stochastic setting [
In a subsequent work [50], given in Chapter 2 of Part 1, I then extended the
methods of [22] to also construct a (half-space) Neumann corrector. In these
contributions, the primary motivation for the construction of these boundary
correctors is actually qualitative: We wanted to obtain a large-scale almost
sure C1 regularity theory for the heterogeneous coefficient operator —V-aV
on the (upper) half-space with homogeneous Dirichlet or Neumann boundary
data.

To motivate our meaning of “large-scale C'h®-regularity", we recall that
Holder regularity is equivalent to a certain approximability of a function by

'Previously, a C%!-regularity theory up to the boundary was proved in both the Dirichlet and Neu-
mann cases in the almost periodic setting by Armstrong and Shen [§]. Their method also relies on
boundary correctors and it is likely that their method extends to the stochastic setting.
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polynomials. To capture this concept, in the classical setting one introduces
the notion of #ilt-excess, which compares a solution of the elliptic equation
—V -aVu = 0 to the space of affine polynomials z — & - x + ¢ in the squared
energy norm. So, for a function u, the tilt-excess on the ball B, := {|z| < r}
is defined as

ExcY(r) := inf ][ |Vu — & de, (4)
(eR? /B,

where the superscript “C” stands for “classical". Differentiability properties
of the function u are then encoded in decay properties of the tilt-excess in
the radius 7. For solutions to the Laplace equation —Au = 0 on RY the
tilt-excess displays decay in the radius r according to

ExcC(r) < (%)2 ExcC(R) (5)

for any pair of radii 0 < r < R. When valid for balls B, (x) := {|z—x¢| < r}
around any center zo € R?, this excess decay property entails C'*'-regularity
of solutions.

In the first chapter of this thesis we are inspired by a previous work of
Gloria, Neukamm, and Otto [31], in which they introduce a version of the
excess that is modified to take into account the homogenization framework.
In particular, for a given heterogeneous coefficient field a one replaces the
linear functions &-x in (4)) with the a-linear functions ¢¢+¢-x, where ¢y is the
homogenization corrector in (|1)). For this modified version of the excess, they
then find that, assuming the corrector and corresponding flux corrector are
sublinear, for any Holder exponent a € (0, 1) there exists a minimal radius
r*(a) > 0 above which a C%excess decay holds for a-harmonic functions.
Using that o > 0, this large-scale C1%-excess decay is then upgraded to a
large-scale mean-value property and a Ch®-Liouville principle. Here, C'1-
Liouville principle means that the space of a-harmonic functions u satisfying
the growth condition |u(x) — u(0)| < |z|'™ has the same dimension as in
the constant coefficient setting; in fact, they find that this space consists the
a-linear functions .

We emphasize that the Liouville principle proved by Gloria, Neukamm,
and Otto is not proved for all uniformly elliptic, bounded coefficient fields,
but only for those for which one has access to a sublinear corrector and flux
corrector. From [31] we know that this sublinear pair (¢, o) exists almost
surely for stationary and ergodic ensembles, where these properties ensure
that almost surely one avoids the classical counterexamples to Holder regu-
larity. To see this graphically, we take a look at a plot of the coefficient field
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constructed by Meyers in his counterexample in the scalar case (see Example
3 in [49]):

Figure 1: Here, of course, we consider the situation d = 2. Picture borrowed from Julian Fischer.

Notice that this coefficient field is radially symmetric. In the systems case
there is the classical counterexample of De Giorgi (see Section 9.1.1 in [30]),
which shows that a-harmonic functions may not even be locally bounded.
However, the coefficient field in this counterexample is also non-generic un-
der our assumptions.

In Part 1 of this thesis we develop three different large-scale regularity
theories a [a Gloria, Neukamm, and Otto. While we use scalar notation
throughout, all of our results also hold for systems. In each chapter we must
introduce a different version of the excess that is modified to take into account
both the homogenization framework (which was already done in [3I]) and
the presence of the additional boundary data. Since the Liouville principle
is obtained as a corollary of the excess decay, the excess should in each case
be comparing the a-harmonic functions to the space that we expect in the
Liouville principle. In each of the three chapters we use this principle as the
guide by which we define our excess and also the boundary correctors. For
clarity, we consider the case of homogeneous Dirichlet boundary data on the
half-space as an example: Here, motivated by [31] and the Liouville principle
in the constant coefficient case, we expect that a-harmonic functions u on
RY such that u = 0 on ORZ and |u(x) — u(0)] < |z|"** will be of the form
xq+ gbdD , where quD solves

—V - aV(¢? +24) =0 in  R?,
¢F =0 on OR?.

This means that we should define the excess of u on B | the half-ball of
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radius r» > 0, as

Exc?(r) := inf][ IV (u — b(xq + ¢7))| dz,
B

beR

where the superscript “D” stands for “Dirichlet".

The general approach for the proof of the excess decay result in [31] is to
consider the solution of the heterogeneous-coefficient problem as a perturba-
tion of the solution of the homogenized problem via the 2-scale expansion.
Looking at the 2-scale expansion given in (3], notice that the left-hand side is
the object that one is interested in developing a large-scale regularity theory
for and the right-hand side is accessible through means of constant coefficient
regularity theory applied to up., and homogenization results detailing the
growth of the corrector. This perturbative method for obtaining regularity
is not new and was pioneered in the periodic setting by Avellaneda and Lin
in [1I], which we have already mentioned. Due to the loss of compactness
going from the periodic to the stochastic framework, the methods of Avel-
laneda and Lin, however, fail in the stochastic setting and new methods are
required to compensate. Due to this difficultly there was a long lull between
[11] and the corresponding theories now available in the stochastic setting.

The first group that was able to overcome the difficulties introduced by
the stochastic framework was Armstrong and Smart. In particular, in [10]
they are able to obtain an almost sure large-scale C”!-regularity theory in
the scalar case under the assumptions of symmetric coefficients and a sta-
tionary ensemble with a finite range of dependence (if dist(U,V) > ¢ for
some ¢ € R.g then a|y and a|y are stochastically independent). The ar-
guments developed by Armstrong and Smart rely on a convergence rate for
the homogenization error, which is obtained by studying certain subadditive
energies associated with the heterogeneous coefficient equation. This initial
work was followed by a contribution of Armstrong and Mourrat [7], in which
the method of [10] was extended to the case of systems and stationary ensem-
bles satistying an a-mizing condition, which is a prescribed power-law decay
of the correlations. For a complete overview of the techniques developed by
Armstrong, Smart, Mourrat, and collaborators one can reference the recent
book [3].

While the work of Armstrong and Smart was the first to implement the
general philosophy of Avellaneda and Lin in the stochastic setting, as already
mentioned, the contribution that directly motivated my joint work with Ju-
lian Fischer is [31] by Gloria, Neukamm, and Otto (GNO). The method
presented in [31] is an alternative approach to that of Armstrong et al.; in
particular, instead of studying energy quantities associated with the hetero-
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geneous coefficient equation, one actually studies the solutions themselves.
While both approaches rely on an “excess decay," the excess of GNO is in-
trinsic in the sense that it is expressed in terms of the harmonic coordinates
and that of Armstrong and Smart is expressed in terms of affine functions.
Time-wise, [31] came between [10] and [7]. The theory in [31] is split into a
qualitative statement, almost surely above some scale there is a C1“-excess
decay, and some quantitative results such as the quantification of the scale
above which the excess decay occurs. Their qualitative result holds under the
assumption of qualitative ergodicity, while the quantitative aspects of their
work require the additional assumption that the ensemble satisfies a coars-
ened logarithmic Sobolev inequality (c¢LSI). To finish this review, it should
also be mentioned that the two main directions (Armstrong et al. and GNO)
were predated by a work of Marahrens and Otto [43] in which they prove a
large-scale C¥%regularity theory for o € (0,1) using bounds on derivatives
of the heterogeneous Green’s function, which are derived @ la Naddaf and
Spencer under an LSI assumption on the ensemble.

Both of the directions detailed above have been generalized in many ways
over the last couple of years. A sizeable extension of both settings was
obtaining an almost sure large-scale C*“-regularity theory (for k > 1). This
was first done by Fischer and Otto in [2I] and slightly later by Armstrong,
Kuusi, and Mourrat in [4]. Both of the theories have also been extended to
handle parabolic equations: This is work by Bella, Chiarini, and Fehrman
[13] in the GNO framework and by Armstrong, Bordas, and Mourrat [2].
In the GNO framework the case of degenerate coefficient fields (satisfying a
moment bound motivated by [I7]) has been treated by Bella, Fehrman, and
Otto in the continuum case [14] and was considered by Deuschel, Nguyen, and
Slowik in the discrete setting [20]. The method of Armstrong and Smart was
adapted to handle fully nonlinear equations under the assumption of strict,
but not uniform, ellipticity [9]. There is also a work in which Armstrong and
Lin obtain optimal bounds on the growth of the corrector for non-divergence
form linear equations [6].

To give a bit of context for Chapter 3 we mention that another (very
related) area of much recent interest has been the large-scale behaviour of
harmonic functions on percolation clusters. Here, in order to obtain an inter-
esting result it is not even necessary to consider the case of random coefficients
as the randomness is already encoded into the percolation environment. For
supercritical percolation clusters on Z¢ under only the assumption of qual-
itative ergodicity there is a zeroth-order Liouville principle available, which
was proved by Benjamini, Duminil-Copin, Kozma, and Yadin in [15]. For the
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random conductance model on supercritical clusters generated by Bernoulli
bond percolation this was recently generalized by Armstrong and Dario to
k-th order Liouville principles [19].

While in this thesis we only obtain qualitative results, the motivating
work [31] actually contains many quantitative results. In particular, they
also show that for any o € (0, 1), under a cLSI assumption, the minimal
radius 7} has stretched exponential moments. Also, they show a variety
of estimates, which then culminate in a H!'-error estimate for the 2-scale
expansion with a certain stochastic integrability. While the scaling of the
error estimate depends on the particular cLSI assumed and the dimension
d and is optimal, this estimate is not optimal with respect to the stochastic
integrability. It should be noted that, on the other hand, the methods of
Armstrong, Smart, Mourrat, and collaborators yield optimal results in terms
of stochastic integrability, but with non-optimal scaling.

Returning to the contents of this thesis, we notice that the main difficulty
in adapting the argument of GNO to the three settings is, in each case, the
construction of an appropriate sublinear boundary corrector. Traditionally
(see [37]), and also in [31]], the corrector on the whole-space is obtained by us-
ing the stationarity and qualitative ergodicity of the ensemble to rephrase the
corrector equation over the probability space in terms of “horizontal deriva-
tives" and solving it there using a Lax-Milgram argument, which is possible
due to the finite mass of the space. In particular, we use that ¢; € L?(Q),
where €2 is the probability space. In Chapter 3, which is different in character
from the other two chapters, our assumption that the holes of the domain are
well-spaced allows us to modify the classical argument to obtain the desired
sublinear corrector. However, in Chapters 1 and 2 there are two immediately
apparent issues that prevent us from modifying the classical approach: 1)
Since a spatial shift may shift a point in R‘i out of Ri, stationarity is lost in
the eg-direction and 2) In the classical probabilistic construction of the cor-
rector one first constructs the gradient V¢ as a random variable, takes the
stationary extension to obtain a random field, and then uses the Poincaré
lemma to find ¢. This means that if we want a boundary corrector with
Dirichlet boundary data then we must somehow encode the boundary condi-
tion into the probabilistic formulation, which is on the level of the gradient.
It is unclear how to do this. So, we instead opt for an entirely deterministic
construction in which we correct a whole-space corrector that we assume to
exist and to satisfy a quantified sublinearity condition.

The construction of the boundary correctors in Chapters 1 and 2 is really
the core of Part 1. As previously stated, the construction of these boundary
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correctors proceeds by correcting a whole-space corrector, for which we as-
sume some quantified sublinearity, in such a way as to enforce the boundary
data. The correction of the whole-space corrector is actually performed on
iteratively higher scales in a fashion similar to the previous construction of
higher-order correctors in [21]. In particular, we enforce the boundary data
on successively large dyadic annuli: For annuli below a certain scale their
contribution to the full correction (of the whole-space corrector) may be suffi-
ciently controlled with standard energy estimates, we call these the near-field
contributions, and to obtain appropriate estimates for the contributions of
the larger annuli, which we call far-field contributions, we inductively make
use of a large-scale regularity theory that we have initially up to some scale
thanks to the near-field contributions. The quantified sublinearity condition
on the whole-space corrector is enforced to ensure that the sum of all of the
corrections converges and is sublinear.

As the construction of the boundary correctors in Chapters 1 and 2 is heav-
ily motivated by the previous construction of Fischer and Otto for higher-
order correctors [21]], it comes as no surprise that the quantified sublinearity
required of the whole-space corrector (¢, o) in our construction is very similar
to the notion required in [2I]. In particular, introducing the notation

b= (]iRw,a)de)%, (7)

for the construction of the higher-order correctors in [21] one requires

i (Szm < 00 (8)
m=0

and in the first two chapters of Part 1 we require the slightly stronger

Notice that, in fact, @D is satisfied whenever an estimate of the form

1
< -
or S Tog 1o for large r
for arbitrarily small € > 0 holds.
To name a few examples, our results in Chapters 1 and 2 are applicable

to the following cases of ensembles of random coefficient fields:

e Ensembles for which a(x) is either equal to a positive definite matrix a;
or equal to another positive definite matrix as, depending on whether x
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is contained in a random set of balls of a given fixed radius, the centers of
the balls being chosen according to a Poisson point process. A realization
of this ensemble is shown in the left picture in Figure 2]

Stationary ensembles with finite range of dependence (i.e. ensembles for
which a|y and aly are stochastically independent for any two sets U, V' C
R? with dist(U, V) > ¢) subject to uniform ellipticity and boundedness
conditions. Note that the previous case is a particular case of this. That
the condition @D is satisfied almost surely for such ensembles follows,
e.g. from the estimates in [32].

Coefficient fields of the form &(a(x)), where a denotes a matrix-valued
stationary Gaussian random field subject to the decorrelation estimate

i 3 C
| Cov(a(z),a(y))| < |z —y|?

for some 8 € (0,d) and where & : R™*? — R4 is a Lipschitz map
taking values in a bounded uniformly elliptic subset of the matrices of
dimension d x d. That the condition (9) is satisfied is shown in [23]. A
realization of this ensemble is shown in the right picture in Figure [2|

Figure 2: Two realizations of random coefficient fields satisfying (9). Picture taken from [22].

For cohesiveness we take the opportunity to say a couple more words about

Chapter 3. As already mentioned, the original motivation for considering

this situation was to move towards the percolation setting. However, in our

formulation we only consider the situation of “well-spaced" holes, by which we
mean that not only are the holes disjoint, but they are separated from each
other by an additional “buffer" area. This means that we actually avoid the
main problem, which is that in the percolation setting the holes may cut-out
islands in the domain. If we were able to drop the disjointness assumption on
the holes then the resulting work could be seen as a GNO-inspired continuum
version of the first-order qualitative result obtained by Armstrong and Dario
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in [19], but with constant coefficients and for a hopefully broader class of
percolation cluster (they only consider Bernoulli percolation). However, as
previously noted, Armstrong and Dario not only provide Liouville principles
up to arbitrary order, but also obtain many quantitative results.

Before continuing on to the second part of this thesis, we mention a future
project that may be within reach given the tools developed in Chapters 1
and 2. Recently there has been much interest in homogenization when the
underlying periodic or random structure is perturbed by either a local defect
or an interface. In the periodic setting the situation of two periodic structure
meeting at an interface has been treated by Blanc, Le Bris, and Lions in [16].
It would interesting to treat the corresponding situation in the stochastic
setting: So, the situation in which the random coefficients of the elliptic
operator on the whole-space are chosen according to different stationary and
quantified ergodic probability measures on the upper- and lower half-spaces.
Due to the distinction of the half-spaces this clearly generates an ensemble
that is inherently non-stationary, which makes it inaccessible to the standard
stochastic homogenization theory. If one tries to construct a homogenization
corrector the logical thing is to concatenate the two whole-space correctors
corresponding to the top and bottom ensembles and then to correct for the
mismatch of the fluxes at the boundary and at the same time correct for
the jump. If one tries to do this naively one obtains an overdetermined
problem with two equations for the corrections and four boundary conditions.
However, if instead of concatenating restricted whole-space correctors, we use
Dirichlet correctors that already match up at the boundary of the half-spaces,
then we would only have to correct the fluxes, which is probably possible
using the methods given in Chapter 2. This could be a future work.

0.2 Pathwise Treatments of Singular SPDEs

The purpose of the second part of this thesis is to construct a stable solution
operator for a quasilinear parabolic initial value problem in 1+ 1 dimensions
that is driven by a rough right-hand side. In particular, we are interested in
obtaining a solution W € C*(R2) of

W — a(W)OIW + W = f in R% (10a)
W = Wi on (71[%1, (10Db)

where a : R — [\, 1] for A > 0 is regular and, for some o € (%, 1), we have
that Wiy € C*(R) and f € C*2(R?). By “C%(R?)” when o > 0 we are
always referring to the parabolic Holder space, which is defined in terms of
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the intrinsic parabolic metric. We give the definition of the negative Holder
space C®"2(R?) in Definition 2.3. To simplify matters we assume that f
and W,,; are l-periodic in space and f is also 1-periodic in time. For us
“periodic" always means “l-periodic" and we, therefore, drop the “1". While
in this thesis our arguments are worded in terms of one spatial dimension,
our analysis carries through to the general case of 1 4 d dimensions.

As already mentioned above, in this thesis we do not finish the analysis
of , which as we will see below requires a fixed point argument, but
instead conclude after having proven all of the necessary ingredients for the
argument. The actual fixed point argument and the extension of our results
to the quasilinear case will be in a future work and will require a “small
data" assumption. The determination of what should be proved to prepare
for the fixed point argument comes from [47], in which they treat the space-
time periodic version of the problem we are interested in (without a massive
term); in particular, the fixed point argument that we plan to perform with
the ingredients proved in thesis has a precursor in their Theorem 2. In
general, the contents of this thesis should be viewed as the ingredients towards
a generalization of the recent work by Otto and Weber [47] in which the
authors treat the space-time periodic version of (without the massive
term). In [47], since they assume space-time periodicity, the authors choose
to use elliptic notation in the sense that they call the time direction the
“xo-direction". While we are now interested in the initial value problem, in
keeping with their convention we also choose to denote the time direction as
the xo-direction.

The issue that makes the analysis of ([10]) nonclassical is the rough driver
on the right-hand side and also a lack of regularity for the initial condition. In
particular, standard theory suggests that these inputs limit the regularity of
the solution W to the extent that the nonlinear term has no classical meaning.
To illustrate this, notice that the best regularity that we can expect for a
solution of is W € C*(R%), which translates into W € C*%(R%)
and a(W) € C*(R?). Since the Holder regularities of these terms add up to
something negative, i.e. (a — 2) + a < 0, there is no classical interpretation
of the product a(W)d?W. Due to this issue, giving a solution theory for
first consists of constructing the singular product a(W)9?W, thereby
making sense of the equation ([L0]), and then making sure that the induced
solution operator, which must still be constructed, satisfies some continuity
properties. As we will discuss, it turns out that the stability of the solution
operator can be guaranteed by certain analytic conditions on the singular
product.
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In the current contribution we would like to capitalize on the results of
Otto and Weber by, loosely speaking, viewing the solution W of as a
perturbation of the solution of the space-time periodic problem considered
by Otto and Weber. In order to see that this is a natural strategy we recall
the classical method for obtaining solutions to quasilinear equations of the
form . Classically, when the forcing and initial condition have a higher
regularity, and one is not concerned with the definition of the nonlinear term,
the solution W is obtained via a fixed point argument that relies on a solution
theory for the linear problem associated to ; i.e.

(O —ad? + D)W = f in R? (11a)
W = Wit on ORZ, (11b)

where a € C*(R2) and should be thought of as @ = a(W). In particular, to
obtain a solution for one looks for a fixed point of the map:

U aU) =W, (12)

where the function U, sampled from the expected solution space of the quasi-
linear problem, is mapped to a = a(U), where the “a” on the left-hand side
refers to the coefficients in and the “a” on the right-hand side refers to
the nonlinearity in , and this then gets mapped to the solution of
with coefficients a = a(U). The desired fixed point of is shown to exist
by using the standard Schauder estimates and a smallness assumption on the
data to show that is a contraction.

Returning to our low-regularity setting we would like to emulate the ar-
gument from the previous paragraph, which means that our analysis of
hinges on our treatment of the associated linear problem . The point is
that on the level of the linear problem it is very natural to take a perturbative
ansatz for W in the sense that the solution W of will be constructed as

W = U + u, where u € C%(R?) solves

(O — a0 + Nu = f in R? (13)

with a®" denoting some extension of a to R?, and U € C*(R2) solves
(Oy —adi + 1)U =0 in R?2 (14a)
U= Wi —u on OR%. (14b)

The solution theory for (|11 is then obtained as the combination of our

treatments of and .

Even with the above splitting of W in-hand, however, W is not really a
perturbation of the periodic problem treated by Otto and Weber. We see this
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already on the level of the linear problem in which we would eventually
like to make the identification a := a(W*"), where W' is some extension
of W, and, therefore, lose periodicity of the coefficients a € C*(R?) in -
direction. While this loss of periodicity in no way affects the construction of
the singular product used in ({13]), which we can borrow from the treatment
of the associated problem in [47], the construction of the solution operator
found in Proposition 1 of [47] has to be slightly modified. In particular, in
Proposition 1 of this contribution we essentially replace their periodicity in
the xo-direction by estimates for the heat semigroup that hold thanks to the
presence of a massive term in (13). While the modification of the analytic
arguments of Otto and Weber for the treatment of constitutes much
of the effort invested here, really the main new contribution in this work is
the treatment of the the initial value problem . The point here is that,
while in order to define the singular product a®**d?u in (13)) it is necessary
to take a pathwise approach that relies on stochastic ingredients, thanks to
the rate of the blow-up of the heat-kernel at initial time the product ad?U in
(14) can actually be defined using classical methods. Using bounds for the
heat semigroup it is then possible to treat the problem ([14]) using classical
versions of techniques used for .

We return now to the issue of the construction of the singular products
in , , , and . Once again, we try to piggy-back off of the
strategy of Otto and Weber, which relies heavily on a concept that they
introduce called “modelledness”. To motivate this concept, notice that in the
classical setting, i.e. f € C%(R?) and W,y € C“T%(R) for o > 0, due to
the local dependence of the solution W of on the coefficients, we expect
that W will “locally look like" the solution of with frozen coefficients.
In particular, letting V (-, ag) € C%(R?) solve

((92 — aoﬁf + 1)7(, a()) =f n Ri (15&)
V(- a0) = Win on ORZ, (15b)

for ap € [\, 1], we think that locally, say around the point xy € R?, the
fluctuations of W solving will look like those of V (-, a(xg)). In order to
turn this into a global condition one can use the concept of “modelledness"
as defined in [47]. Roughly speaking, we say that W is modelled after the
family {V'(-,ap)} parameterized by ay € [X,1] if at any point it behaves
locally like some member of this family in a C**way. Using this intuition
suggests that the correct space in which to perform the fixed point argument
for our rough analogue of is up to some subtleties the function space
{U € C*(R%) | U is “modelled after" V (-, ao)}.
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To solidify our notation and also because it is interesting to comment
on the definition of “modelledness” within the framework of the previous
literature, we right away give a formal definition, which is the same as that
used in [47]. It is:

Definition 2.1 (Modelledness). Let a € (3,1) and Q@ C R%  Assume
that for some I € N we have functions (V1(-,aq), ...,V (-, ap)) such that
Vi: QxR = R. A function W : Q — R is said to be modelled after
(Vi(-,a9), ..., Vi(-,a0)) on Q according to functions (ay, ...,ar) and (o4, ..., 07)

with o;,a; € C*(Q) if there exists a function v such that

1
Mgy := sup ——— 16
x#£y;x,y€el) d?e (ZL’, y) < )

(W(y) = W(z) = 0i(2)(Vily, ai(z)) = Vi(x, ai(z))) — v(z)(y — )1

18 finite. We emphasise that here we use the Einstein summation convention
that repeated indices are summed over.

We say that a function W is trivially modelled after (V1(-, ag), ..., V1(-, ag))
and functions (ay, ..., ay) if each o; = 0. Since a € (%, 1) this is equivalent to
the condition that W € C**(Q), but additionally specifies a choice of model.

If one compares our Definition 2.1 with Definition 1 of [47] it becomes appar-
ent that we have added the extra dependence of the modelling on the domain
(). This is because in our arguments, due to the perturbative ansatz that
we take, we work with functions/ distributions defined on either all of R? or
only on Ri. Since the domain is always clear we end up always dropping the
subscript 2 on M.

We now interpret Definition 2.1. A quick inspection connects Definition
2.1 with our previous informal description of modelledness. In particular, the
evaluation ay = a(x) in Definition 2.1 can be motivated by recalling that in
a neighborhood of xy € R? we want to think of W as “locally looking like"
V(-,a(xp)). Furthermore, the modulating functions o; in ((16)) come about
since we are interested in Holder regularity; in particular, for a fixed x € R?
we would like to heuristically think of o; as being the derivative of W with
respect to V;(+,ap). The ideological difference between Mg and the standard
C?“-seminorm is that, instead of measuring closeness of increments to a basis
of degree-1 polynomials (as one does in the classical setting), we measure it to
the families of functions ({V1(-,a0)}, ..., {V1(-,a0)}) with the feature that
the actual basis of functions that we compare to, i.e. the specific members
of the families used for x € Q in (16]), varies according to the a;. Due to
the restriction that o > 1 we include the term v(z)(z — y)1 to make sure
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that every C?® function is trivially modelled. A second consequence of the
restriction o > % is that if there exists a function v making Mg finite, then
this v is unique.

After this discussion on modelling and our explanation for why the solution
W of should be modelled after the V (-, ag) solving ((15]), we will simply
state that we expect the solution u of to be modelled after v(-, ap), the
unique C“- solution of

(92 — agd? + V)o(-,ap) = f in R (17)

and that U solving the initial value problem ((14) will be modelled after
V(-,ap) € C*(R%), the solution of

(s — apd? + 1)V (-,a0) =0 in R% (18a)
V(- a0) = Vi on ORZ, (18b)

with the identification V;,; = W;,; — u. This postulated modelling of u
and U is not quite consistent with our previous intuition that W = u + U
should be modelled after V(-,ag). In particular, to show that W has the
correct modelling it is necessary to have Vi,; = Wi — (-, ap) in , which
essentially means that we must swap out u for v(-,ag). Using bounds for
the heat semigroup and the modelling of u after v(-,ay), we perform this
swapping in Theorem 1. This is one of the more significant new arguments
in this contribution.

While it plays no significant role in the analysis, the reader familiar with
[47] will notice that, opposed to the equation (62) in [47] solved by v (-, ay),
our has a massive term and we do not project the forcing f onto the
space of mean-free functions. Since f is assumed to be space-time periodic,
the solution v(-,ag) of (17), obtained via Fourier methods, is also periodic
and, thanks to the massive term, is the unique C'*-solution of on R?.
We notice also that in some sense the two changes to (62) of [47] that we
make here compensate each other. In particular, in [47] they must include
the projection since testing their equation with the constant function 1 yields

0:/ 1-(5’2—a06%)v0W(-,a0)da::/ Pfdx
T2 T2

after two integration by parts. In contrast, in our setting thanks to the
massive term the same calculation instead yields

/ v(-,a0)dr = [ fdx. (19)
e T?

Returning to our reason for introducing modelledness, with this formalism
in place the construction of the singular products can be broken down into
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a two step process. Using the notation ~ in order to denote even-reflection
: —eut ~
across the axis 5 = 0 and V' (-, a9) = (v + Viimi—v(-a)) (- @), where the

subscript on V' specifies the initial condition, we summarize these steps as:

Step 1a: One uses stochastic ingredients and bounds for the heat semi-
group to almost surely (for certain assumptions on the random distribution

f) define families of offfine reference products {Vext(-, ap) 08%76‘“(-, a{))}
and {Vm(-, ag) © O (-, ag)} indexed by ag and a(, that satisfy some analytic
estimates.

or

Step 1b: One uses only the bounds for the heat semigroup to, for any
a € C%R?), show that ad?V (-, ag) is classically defined as a distribution
and also satisfies the desired analytic estimates.

Step 2: With the reference products from Steps la or 16 in-hand one uses
the analytic conditions they satisfy to transfer the definition of the singular
product onto the functions we are actually interested in by using the appro-
priate modelling. This is done in two “reconstruction lemmas", which are
called reconstruction lemmas because in the theory of Otto and Weber they
play the role of Hairer’s Reconstruction Theorem (Theorem 3.10 in [35]) in
[35].

We remark that only Step 1a depends on probabilistic arguments, while Steps
1b and 2 may be proved in entirely deterministic ways. Notice that we have
started to use “¢” to emphasize the singular nature of products.

To give an example of the above discussed strategy we specifically consider
the product a®! o ?u in . We treat the problem in Proposition 1,
in which we assume that we have access to a well-behaved family of reference
products {a”t o &v(-, ao)}. These products are well-behaved in the sense
that one has €22 control over commutators involving regularization and
multiplication. In particular, letting ¥r be a smooth convolution kernel at
scale T' (discussed in detail in Section 2.1 ) one assumes that the L*-norm
of the commutator (and two parameter derivatives) scales as

sup sup(T'1)272|[a*, (-)7] o Bv(-, ao)l2 < 1, (20)
aoe[)\,l] <1

where the subscript on the L*-norm indicates the parameter derivatives.
Taking these reference products as input, we then use the second reconstruc-
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tion lemma (Lemma 4) to swap v(+, ag) for u, which is possible thanks to the
modelling of u after v(-, ag) and yields the desired singular product a®*'od?u.
Since here we have assumed the reference products as input into Proposition
1, we have not needed to apply either Steps la or 1b.

To do as much work as possible towards treating the quasilinear problem
in an upcoming work here, we also construct the reference products

{Ve‘”t(., ap)) © O2v(-, a{))} and post-process these reference products via both

reconstruction lemmas; this is done in Sections 6 and 7. In particular, from
our analysis of the map ( and our choice to treat with the perturba-
tive ansatz, we know that in order to treat the quasilinear problem we should
think of a = a(W*) with W being some extension of the solution W of
(11)) with some admissible coefficients. Since the solution W is constructed
as W = u + U, the extension that we take will be Wt = o + ﬁ, which is
modelled after Vezt(-, ag). In order to apply Proposition 1 with the coeffi-
cients a®! = a(W") we know from the previous paragraph that it is first

necessary to post-process the reference products {Vext(-, ap)) © O3v(-, a{))}

to give a family of well-behaved products {a(W*) o 9fv(-,a0) } that satisfy

[20). Since We* is modelled after Vext(-,ao)) and the regularity assump-
tions for a from ([10]) are tailored so that (W) is then also modelled after
(v + V)(-,ap)), the first reconstruction lemma allows us to swap Vext(-, ap)
for a(W") in the reference products. Notice that heuristically we have a
map

F@) 5V (a0)) 0 Bl a0) | ¥ a(W) o B in (1), (21)

which is defined only for almost every realization of the noise (in a path-
wise sense), where the first mapping requires probabilistic ingredients and
the second is entirely deterministic in the sense that it represents the appli-
cation of the reconstruction lemmas. We apply Theorem 1 in the case that
a® = a(W*") in Theorem 2, which is proven in Section 7; this is really the
main ingredient for the fixed point argument needed to treat the quasilinear
problem.

The general framework that we use to construct the singular products and
the reconstruction lemmas are taken essentially directly from [47]. We, fur-
thermore, borrow their construction of the offline reference products v (-, ag)o
209" (-, a}) in order to obtain the singular products v(-, ag)©d?v(-, aj); here,
the point is simply that the massive term in and the lack of the projection
applied to the forcing does not interfere with their arguments. We are thus
able to avoid any new probabilistic arguments in the current contribution. It
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is then, however, still necessary to perturb these reference products in order
to obtain all those needed to treat the initial value problem . Notice, in
particular, that this perturbation of the reference products is consistent with
the perturbative ansatz for W in the sense that we also think of V (-, ag) as
a perturbation of v(-,ag) by Viy, ,—u(..a0)(*, @0). As we have already alluded
to above, it is possible to perturb the offline products by using estimates for
the heat semigroup.

Before moving on to review some previous literature, we would like to
draw attention to the fact that, while here we choose to pursue a solution
theory for by using the perturbative method described in detail above,
it would most likely also be possible to use an approach that more directly
mimics the work of Otto and Weber. In particular, the arguments of Otto
and Weber for the well-posedness of the periodic problem ([10) rely on a
regularization of f via convolution with ¢p in which they then pass to the
limit 7" — 0. One of the main difficulties in the treatment of the initial value
problem is the fact that many of the results in [47] are phrased in terms of
convolution with 7, which presupposes that one starts with a distribution
defined on all of R%. In this contribution we bypass this issue by extending
functions to negative times in various ways. However, since the derivatives in
the nonlinearity in (10]) are only in the x;-direction, it seems that it might be
possible to simply convolve in one direction, which would make the method
more compatible with initial value problems. This, however, would call for
a modification of the arguments for the construction of the offline products
and the reconstruction lemmas in [47] and also complicate the treatment of
the regularized problems in Proposition 1.

While in this thesis we work within the framework introduced by Otto and
Weber, there are various other theories available for similar problems (e.g.
Hairer’s theory of regularity structures and the theory of paracontrolled dis-
tributions by Gubenielli, Imkeller, and Perkowski [42]). All of the methods
have certain underlying themes that run throughout and that can be iden-
tified in the above discussion. One of the most prominent themes is the
sharp separation between probabilistic and deterministic methods in the ar-
guments. To see this separation represented in the literature, one can actually
go back to the theory of rough paths developed by Lyons to treat singular
SDEs (see the original work of Lyons [41] or the overview by Friz and Hairer
[24], whose exposition we follow here).

In developing his theory of rough paths Lyons was interested in providing
a constructive solution theory for SDEs of the form

dY;, = fo(Y;) + f(Y)dX, (22)

28



for two functions/ 1-forms fy and f in the case that the path X is irregular;
an important example is the case that the equation is driven by a Brownian
path X = B. Before the theory of rough paths it was known that is not
well-posed in a pathwise sense as there is no metric on the space of Brownian
paths making the It6 map associated to (22) continuous ﬂ To remedy the
situation, Lyons notice that instead of considering X simply as a path, he
could instead view it in conjunction with its iterated integrals X (defined
below) and, thereby, factor the Itd6 map into two pieces as

X (w) 5 (X, X)(w) > V(). (24)

Here, the first map v is measurable and the second map, called the Ité-Lyons
map, is continuous in both the realization of the noise and the initial condition
if we endow the space of paths enriched with their iterated integrals, called
rough paths, with a certain “p-variation" rough path metric.

To tie this back to the work of Otto and Weber, notice that we should
be comparing ) and . In both and the definition of the
map 1) requires probablhstlc tools, while the construction of S is completely
deterministic. Also, in both cases the maps 1 are “universal" in the sense
that they do not depend on the form of the equation or . While in
the map 1 almost surely yields offline products, in (24) a realization of
the noise is almost surely mapped to itself coupled with its iterated integrals
X. As the name may indicate, for n € N and 41, ..., 1, € {1, ..,d}, the iterated
integrals of order n are given by

Xitin / / / B (r) .. dB (). (25)

In the case of Brownian motion (X = B) and n = 2 there is a one-parameter
family of choices, two which are the [t6 and Stratonvich integrals, for the in-
tegrals that are obtained via the convergence of corresponding Riemann
sums in probability.

In contrast to the probabilistic nature of ?, in both and the
map S is defined in a completely deterministic way. Since we have already

2In particular, it had been shown that there does not exist a separable Banach space B such that any
Brownian path almost surely is contained in B and the map

(f.9) > / Fg) dt, (23)

which maps smooth paths f and g to a continuous path, extends to a continuous mapping from B x B —
C([0,1]). Since for Y € R? the map (3) for f = B! and g = B? solves the equation Y' = B! and
Y2 = Y1 B2, this shows that the It6 map, which maps the realization of the noise to the solution of .
cannot in general be continuous.
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discussed the map S in (21)) and the construction of the solution maps for

(11)) and in detail, we now only comment on S in (24]). The construction
of the solution map S in requires a definition for the stochastic integral

/O f(v) dx,, (26)

which for regular f is only classically possible for arbitrary paths X and Y if
on the Holder scale the regularity of X and Y (call it o > 0) satisfies 2a > 1.
Lyons, however, observed that intuitively since Y solves , its fluctuations
should at small scales look like those of X. As he has previously determined
that the map

x| FX,) X, (o)

from the space of rough paths with iterated integrals up to certain order with
some (p-variation) metrics is continuous, he is then able to define for
a large enough class of paths Y that “locally look like" X such that he can
perform a Picard iteration to obtain the solution of . Depending on the
regularity of X it is necessary to have information on the iterated integrals
up to different orders; in particular, the rougher X the more information one
needs. In the case of Brownian motion it is only necessary to have access to
the second order iterated integrals.

The theory of Lyons was enriched by the subsequent contribution of Gu-
binelli, who introduced the concept of a controlled rough path [33]. A key
difference between the work of Gubinelli and Lyons is that Gubinelli fixes
the path which Y locally looks like. In particular, for o € (%, %), one says
that the path Y is controlled by the path Z if the increments of Y are ap-
proximated by those of Z in a C?® ways; i. e. there exists 0 € C', sometimes
called the Gubinelli derivative, such that

Y =Yy —a(s)(Ze — Z)| S |t — s|* (28)

holds. Notice that “modelledness" a la Otto and Weber above is essentially
a higher dimensional version of Gubinelli’s “controlledness" with the addi-
tional caveat that in “modelledness" one controls with a family of functions
parameterized by ag € R, which is then modulated by the function a € C*.
Ignoring the 1-form f, Gubinelli then shows that if the integral in is
defined for Y = Z such that a “commutator estimate" of the form

~Y

t
/ Z,dX, — Z(X; — X,)| S|t — s* (29)
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holds, then this suffices to define the integral in for Y controlled by Z
such that

t t
/ Y, dX, — YVi(X; — X,) — J(s)/ (Z, — Z)dX,| S|t — s> (30)

Gubinelli’s approach is to encode the desired singular integral as the solution
of an algebraic problem with some analytic constraints. Notice that the
condition (29)) corresponds to our estimates of the form ([20]), where we have
replaced integration over time by convolution with a smooth kernel. In fact,
(30 also has corresponding statements in the reconstruction lemmas that we
borrow from Otto and Weber.

After the work of Lyons and the results of Gubenelli [33] for SDEs, the the-
ory was extended to treat singular SPDEs, where the roughness in the noise
is contained also in spatial variables. As explained in the introduction of [42],
previously there had been various contributions in which singular SPDEs had
been considered, but in these the irregularity in the noise has always been
time-like, which essentially allowed for the reduction to the standard rough
path framework. The issues that arise when considering singular SPDEs with
noise also containing some spatial roughness are different than those for sin-
gular SDEs. In particular, as we have already seen in our discussion of the
current work, the problem becomes that one cannot expect enough spatial
regularity for the solution to classically make sense of the nonlinear terms
appearing in the equation. Taking inspiration from the the work of Lyons
and Gubinelli for SDEs, the issue of well-posedness for singular SPDEs was
developed within three frameworks:

1) The theory of regularity structures by Hairer, which was first used to treat
the KPZ equation [34] and then extended to a much more general framework
in [35].

2) The theory of paracontrolled distributions developed by Gubinelli,
Imkeller, and Perkowski in [42], which combines the results of Gubinelli in [33]
with the paraproduct and corresponding paradifferential calculus introduced
by Bony. Notice that the tools developed by Bony, relying on Littlewood-
Paley theory, are Fourier analytic in nature.

3) The “parametric approach" of Otto and Weber, which we are interested
in extending here.

We will not discuss [47] again, but focus instead (in much less detail) on
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the first of the two approaches listed above. The main idea of the theory of
regularity structures is to, for a given singular SPDE, adapt one’s notion of
regularity by replacing the standard Taylor expansion by instead expanding
in terms of nonlinear combinations of the noise. The reasoning for this res-
onates with much of the intuition already discussed in this introduction; in
particular, the mindset is that there is no reason to believe that a solution
will behave at small scales like a polynomial, but instead that it will be-
have like the solution of the associated linear problem, which is represented
by convolving the noise with the appropriate Green’s function. For a given
singular SPDE, this then leads to the replacement of the standard Holder
spaces by analogous spaces defined in terms of a new basis of distributions,
which now may have non-integer or even negative homogeneity. These new
spaces are called spaces of modelled distributions (see Definition 3.1 in [35]).
The singular SPDE one is trying to solve is then encoded in terms of a fixed
point problem within the space of modelled distributions in which the neces-
sary nonlinear terms have also been defined via a reconstruction lemma (see
Theorem 3.10 of [35]) ] Hairer then also shows that the solutions obtained
via this fixed point argument correspond to those obtained by passing to
the limit in a sequence of classical solutions to regularized problems under
suitable renormalization (subtraction of possibly infinite counter terms). As
we have said above, Hairer first treated the KPZ equation within this frame-
work and then developed it as a general strategy in [35]. There is a gentle
introduction to the basics of the theory in the latter part of the notes [24] by
Friz and Hairer.

The equations treated within the theories of Hairer and Gubinelli, Imkeller,
and Perkowski satisfy an important subcriticality condition. To set-up for
the explanation of this assumption, we write their equation as

LY = F(Y, f) on RY (31)

where L is a linear operator and the right-hand side F'(Y, f) contains the
nonlinearity and depends on the noise f. In this notation the Green’s function
corresponding to the associated linear operator GG, which we have mentioned
heuristically in the previous paragraph, is a solution to LG, = dy. As
explained by Hairer in [35], he must assume that the nonlinearity in F is
subcritical in the sense that if he rescales the equation in such a way
that LY, and the noise f. are invariant then formally the nonlinear term
will disappear at small scales. As an instructional example, he considers the
KPZ equation posed on S' x R, with additive space-time white noise with

30ne nice thing about the theory of Otto and Weber is that their reconstruction lemmas avoid the
use of wavelets, which are heavily used in the proof of Hairer’s result.
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the identifications £ = 9; — 9% and F(Y, f) = (01Y)? + f. In this example
setting Y, (xz,t) = Y (ex, €t) and f.(z,t) = € f(ex, €2t) yields that Y, solves
1

(0 — 03)Ye = €2(0:YO)" + fe.

Due to the prefactor e2 the nonlinear term formally scales out as € — 0. As
pointed out in [46], in which the theory of Otto and Weber is extended to the
case f € C*"%(R?) for o > 0, this restriction of subcriticality corresponds
to the restriction a > 0. As is explained in detail in the introduction of [46],
decreasing « forces one to work with higher-order/ nested versions of the
concept of modellness.

While both the strategy of regularity structures and also the framework
of paracontrolled distributions were originally developed for semilinear equa-
tions, following the work of Otto and Weber both methods were extended to
the quasilinear case. In particular, this extension within the framework of
regularity structures can be found in [29] by Gerencsér and Hairer and for
similar results in the setting of paracontrolled distributions the reader can
reference [25] by Furlan and Gubinelli. There is also the contribution [12]
by Bailleul, Debussche, and Hofmanova, in which they essentially treat the
same problem as Otto and Weber in [47|, but as an initial value problem.
Their results are included within those obtained by Furlan and Gubinelli,
but avoid the extension of the theory contained in [25] by transforming the
specific equation they are working with into a semilinear equation, which
can then be treated with the already available results in [42]. As observed
in the introduction of [25], due to their use of a transformation the method
is quite rigid in the sense that it cannot, e.g. be adapted the case of 1 + d
dimensions with 4 > d > 2 and a matrix-valued diffusion coefficient. For a
more detailed discussion of the methods used and how these works relate to
one another the reader can consult the introductions of [25] and [28].

To draw this overview back to the current work, we should emphasize
that in the frameworks of Hairer and Gubinelli, Imkeller, and Perkowski the
issue of initial data was incorporated from the get-go. In particular, this is
discussed in Subsection 7.2 of Hairer’s original article on regularity structures
[35] and is also present in the original article on paracontrolled distributions
by Gubinelli, Imkeller, and Perkowski [42]. In each of these works and also
in [12], the authors obtain local in time solutions, where the time cut-off
depends on the realization of the noise. In contrast, thanks to the massive
term in our parabolic operator, in the current contribution we obtain global
in time solutions. Along the lines of enforcing boundary data, we would also
like to mention that there is the recent work of Gerencsér and Hairer in which

33



they consider the initial-boundary value problem. This work, in particular,
inspired the perturbative ansatz used in the current contribution.

Just as in the first part of the introduction, we would like to mention
some future directions. Since the problem that we consider in the second
part of the thesis is subject to many assumptions, there are many possible
generalizations. As already mentioned above, one interesting project might
be to consider the same problem as in this thesis, but convolve (regularize) in
just one direction. It would, of course, also be possible to consider the initial-
boundary value problem. Another interesting possible extension would be to
drop the periodicity assumption on the noise.

0.3 Connections and Underlying Themes

While the two parts of this thesis are disconnected enough to deserve their
own introductions, they are very similar in terms of themes and techniques
used. On a certain level it is obvious that this is the case since the equa-
tions considered in both sections are of the same class (elliptic or parabolic),
which means that in both parts we have access to the same estimates and
techniques. The connection, however, is deeper in the sense that in both
parts of the thesis the problem is one of regularity for solutions to heteroge-
nous coefficient operators, which is overcome by transferring results from
corresponding constant coefficient operators. While in the first part of the
thesis the problem is explicitly formulated in terms of regularity, in the sec-
ond part of the thesis the regularity problem is hiding in the definition of
the singular product “a(u) o O7u”. In both parts the issue of low-regularity
for heterogeneous solutions is overcome by “transferring regularity” from a
constant coefficient operator; in the first part of thesis this is done on large
scales through the homogenized operator using an estimate for the homoge-
nization error and in the second part of the thesis this is done by transferring
the singular product via the reconstruction lemmas.

While both parts of this thesis rely on methods from classic elliptic regu-
larity theory, the two parts actually rely on different classical methods. To
flesh this out, recall that, as we have talked about above, Part I of this thesis
is based on iterative De Giorgi type arguments in the form of a Campanato
iteration that is adapted to the homogenization setting. Of course, an argu-
ment of this type implicitly uses the equivalence of Holder and Campanato
spaces, which allows us to work in Sobolev spaces and rely on energy meth-
ods. The second part of this thesis differentiates itself from the first in that
we work exclusively in Holder spaces. In this setting we capitalize on the
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Krylov-Safanov approach to Schauder theory, which distinguishes itself in
that it does not rely on the Green’s function representation of the solution.
This is important because in our argument we apply it not to solutions, but
“approximate solutions".

To conclude this introduction, there is one last common thread to mention,
which is that, while both results are probabilistic in nature, the arguments
in both parts split naturally into separate deterministic and probabilistic
steps. In both cases the application of the regularity theory as described
in the previous paragraph is part of the deterministic portion, which takes
as input the existence of a sublinear corrector in Part I or a well-behaved
family of offline/ reference products in Part II. These inputs are shown to
exist almost surely using probabilistic arguments for certain assumptions
on either a random ensemble of coefficient fields or for a random Gaussian
forcing. The arguments in this thesis are mainly deterministic in nature,
resting on probabilistic results of others; e. g. the construction of the whole-

space homogenization corrector in [31] or the construction of offline products
in [47).

0.4 Notation

Throughout this thesis we will consistently use the following notational con-
ventions:

We denote the number of spatial dimensions by d. The upper half-space
{z € R?: 2, > 0} is indicated as R? and the lower half-space is R? = —RZ.
By B,, we denote the ball of radius r centered at the origin. The upper
half-ball of radius r centered at the origin, i.e. B, N Ri, is denoted by B;"
and, correspondingly, the notation B, is used for the set —B'. By B,(z)
we denote the ball of radius » with center € R%. For two sets M and N,
the set {m € M : m ¢ N} is denoted by M \ N.

When it is not important to keep track of constants, we use the notation
“<” to mean “< up to a universal constant”. The dependence of the universal
constant should be clear from the context, when it is not we use the notation
“ < C(d, N a)”, where “C(d, A\, «)” denotes a generic constant depending
on the quantities in the brackets. By “a < 0” we mean that a < C(d, A\, a)b
for some large enough constant C(d, A, ).

For a measurable set A C R, we denote its d-dimensional Lebesgue mea-
sure by |A|. By fA f dx we denote the Lebesgue integral of the function f
over the set A. By §, f dx we denote the average integral, i.e. ﬁ [, fdz.
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We always use ¢; € R? to denote the standard coordinate basis of RY.
In particular, we have that e; = Vz;. The (possibly weak) partial derivative
with respect to the ith coordinate will be denoted by 0;.

While in the first part of the thesis we only ever work with the standard
Holder spaces, in the second part we work with parabolic Hélder spaces.

Note on Labels: The numbering of the equations within the two parts is
disjoint and self-contained. So, if in Chapter 1 of Part 1 we reference “(1)”
we mean (1) in Section 0.1 of Part I titled “Notation Specific to Part I".
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Part 1

Large-Scale Boundary Regularity for
Random Linear Elliptic Operators
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0.1 Notation Specific to Part I

We denote the space of uniformly elliptic (with ellipticity ratio A > 0) and
bounded coefficient fields a(z) : R? — R™? as

Q = {a(z)||a(x)&] < |&] and A|E]* < |€ - a(z)] for € € R? for a.e. x € R} .
(1)

Recall that the equation satisfied by the whole-space corrector in the direction
¢ € R, denoted ¢, is

~V-aV(¢e+€&-2)=0 on R (2)

and we use the notation ¢, = ¢;.

Recall that the whole-space flux corrector o¢j;, is skew-symmetric in the last
two indices (it satisfies o, = —o¢r;) and its defining equation reads

Vi - O¢jk = €5+ (CL(@Z' + v¢z) - ahomei)a (3)
where we use the notation Vy-ogj; = 22:1 Oxo¢jk. Just as for the corrector,

we use the convention o5, = o, ji-

We measure the sublinearity of the generalized corrector (¢, o) in terms of

the quantity
1 3
w5 (1, 10.0Pas) o
Br

We define the functions space:

Hpy(RY) = {ue HY(R%) : supp(u) C B, for some r > 0}.

In our arguments in Chapters 1 and 2 it is occasionally important to track
certain constants:

e Cp(d): The maximum of the Poincaré constant of B; with homoge-
neous Dirichlet boundary conditions, the Poincaré constant of By with
homogeneous Dirichlet boundary conditions on 6Ri N By, the Poincaré
constant of B with zero average, and 1.
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e C;(d): The maximum of the universal constant in the constant coeffi-
cient regularity estimate ((1.37) below and 1.

Also in Chapters 1 and 2 we use the convention that subscripts on a vector
or tensor coming before a comma refer to components and subscripts after
a comma refer to a scale (not to taking a partial derivative). Taking an
example from Chapter 1: the expression UZk, s refers to the component djk
of a modified flux corrector, which has been adapted on scales < 2™y, for
some dyadic base scale ry > 0.
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Chapter 1

A Large-Scale Regularity Theory for Random Linear
Elliptic Operators on ]Rﬁir with Homogeneous Dirichlet
Boundary Data

1.1 Set-up

In this section we are interested in the large-scale regularity of solutions
u € H..(RZ) to the problem

—V-aVu =0 in  RZ, (1.1a)
u=70 on ORY, (1.1b)

where a is the restriction of a random coefficient field on R? to Ri. As
already mentioned in the introduction of the thesis, the main result of this
section is the construction of a sublinear Dirichlet boundary corrector for the
haf-space, which for a € (0, 1) allows us to prove a large-scale C- regularity
theory for solutions of and an associated Liouville-type theorem.

Following the strategy that we have set out in the introduction, in order to
obtain a large-scale C1%- excess decay, we must introduce a modified version
of the excess used in [31] that also takes into consideration the homogeneous
Dirichlet boundary data enforced in (L.1D). As the Cl_Liouville principle
that we want to show is a corollary of the excess decay, the space that one
compares 1 to in the definition of the excess should be the space that one
expects to recover in Liouville principle; i.e. it should be the space of a-
harmonic functions on Ri satisfying homogeneous Dirichlet boundary data
and the growth condition |u(x) — u(0)] < |z|'™®. In the constant coefficient
case when a = aj,,, this space consists of the linear functions cx, for ¢ € R.
Extrapolating from this, we expect that in the case of heterogeneous coeffi-
cients a the functions satistying and the above listed growth property
will be of the form c(z4 + ¢7) for ¢ € R, where ¢ should satisfy

~V-aV(zg+¢F) =0 in  RY, (1.2a)
o7 =0 on OR?. (1.2b)
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Notice that the boundary condition ([1.2b)) is imposed due to ({1.1b]). Assum-
ing that it is possible to construct a sublinear ¢, we then define the Dirichlet
half-space excess of u satisfying (|1.1)) on the half-ball of radius r > 0 as

Exc?(r) = ggﬂg ]ij IV (u — b(xq + o)) da. (1.3)

With these conventions we summarize the main results of this chapter as:

“Theorem". Let o € (0,1) and let a be a random coefficient field sampled
according to a stationary and ergodic ensemble for which almost surely there
exists a whole-space generalized corrector (¢p,o) such that (9) is satisfied.

Then (-)- almost surely, whenever the pair (¢,0) satisfying ([9) exists, the
following hold:

i) There exists a Dirichlet half-space corrector in the direction eq, denoted
ngdD, which satisfies (1.2)) and also the sublinear growth condition.

1

1 3
lim —<][ \gbdD\de) = 0.
r—o0 T B

Additionally letting u € H} (RL) be a weak solution of (L.1) we have that:

loc
ii) There exists a finite r(a) > 0 such that u satisfies the CY“-excess decay
estimate

ExcP(r) < <%> " ExcP(R)

for any pair of radii R > r > r’(a).
iii) If u satisfies a growth condition of the form

1
1 2
r—oco plta B

for some a € (0,1), then it is a multiple of the “perturbed coordinate
function”

T g + 07 ().
1.1.1 Notation Specific to Chapter 1

By H& (R‘i), we denote the space of locally integrable functions v with square-
integrable gradient and vanishing trace on aRi, equipped with the norm

101l 3 ey = (Jpa [V d)z.
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1.2 Main Results

We now give the full statements of the two theorems contained in this chapter.
The first theorem ensures the almost sure existence of a Dirichlet half-space
corrector with sublinear growth behavior. As already emphasized above, the
key assumption of the theorem is the existence of a whole-space generalized
corrector (¢, o) satisfying (9). The theorem that we obtain is:

Theorem 1. Let a € €, where ) is defined in ( Assume that correspond-
ing to a there exists a whole-space generalized corrector (¢, o) satisfying the
growth condition

Zmdgm < 0. (1.4)

m=0
Then there exists a generalized Dirichlet half-space corrector (¢P, o) with
the following properties:

D

i) For i # d, the correctors ¢P and flux correctors o coincide with the

restriction of the whole-space correctors to the half-space; i.e. we have
that 7 = ¢i|ga and 0’ = oiga.

i) The corrector qbdD 15 adapted to the boundary data in the sense that it s
distributional solution of

~V -aV(¢h +x4) =0 in  RY, (1.5a)
oF =0 on ORL. (1.5Db)
iii) The adapted fluz corrector O'dD is the vector potential for the flux correc-

tion corresponding to xq + gbgﬂ in the sense that it 1s skew-symmetric in
the third index (k) and is a distributional solution of

V. - Oc]i?k: =e; - (aleq + V¢dD) — Qhom€d) n Ri. (1.6)

iv) The generalized half-space corrector grows sublinearly in the sense that

D._1 D _Dy|2 - 12 :
o7 = (éﬁ((ﬁ o)) da:+]i > il d:z:> (1.7)

roi=1
satisfies

lim 67 = 0.
r—00

In particular, for any a € (0,1) there exists a finite radius v} (a) > 0
for which the condition below s satisfied.
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In fact, our proof shows that a quantitative estimate on the sublinear
growth of the whole-space corrector in the form

C
57“ S 7”_7
for some v € (0, 1] may be turned into an estimate for the generalized half-
space corrector of the form

C
6P < 7 (1.8)

This bound is a consequence of more precise estimates on the right-hand sides

of the inequalities ((1.45)), (1.47)), and ((1.49) in the proof below. However, one
should not expect the estimate (1.8)) to be optimal, which is why we did not

emphasize this quantitative bound in our theorem.

In our second theorem we take advantage of the existence of a sublinear
generalized Dirichlet half-space corrector (¢, o) when it exists by showing
a large-scale C1?- decay of the excess defined in ([1.3)).

Theorem 2. Let a € ), where S is defined in (1). For any Hoélder exponent
a € (0,1) there exists a constant Cy(d, X) such that the following statements
hold:

Suppose that for R > 0 there exists a generalized Dirichlet half-space
corrector (¢¥, oP) such that ¢ satisfies (L5) on Bf, ¢P fori # d is the
restriction of a corrector ¢; on Br to B}, and oP is skew-symmetric and
solves on Bf:. Suppose, furthermore, that the pair (6P, oP) is sublinear
on large scales in the sense that

1
5TD S m fO’f' all r 2 T'Z (19)

for some radius 0 < r* < R. Here 6P is defined in (1.7).

Let w € H(B}) solve (1)) on B, i.e. let u be a solution to the problem

—~V-aVu=0 in  Bf,
u=10 on BgrnN (9]1%1.
Then, we find that:

i) For any r € [r}, R] we have that
200
BxP(r) < (-) ExcP(R), (1.10)
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where the adapted excess is defined in (1.3) and the universal constant
depends on o, d, and .

i) Forr € [rf, R] the function

b+ |Vu—bleqg+ VoD > dw
B/

18 coercive in the sense that
][ (Vu — b(eqg + Vo) |2 dz > c(a, d, N)|b — binl? (1.11)
B

for some by, € R.

i) For r € [ri, R] the mean-value property
][ IVul? dz < Chrean(d, A)][ |Vul? da (1.12)
B Bj;
holds for some constant Chrean(d, N).

Combining Theorem [T] with Theorem [2] and post-processing the excess de-
cay via the Caccioppoli inequality, yields the following C''®- Liouville prin-
ciple:

Corollary 1. Let a € ), where € is defined in . Suppose that for a there
ezists a generalized corrector (¢, o) satisfying and and also the growth
condition ([L4). Then if u € H. (RZ) is a-harmonic with homogeneous
Dirichlet boundary conditions (i. e. if u solves ) and satisfies the growth

condition
1 ! 2d : =0 1.13
Jim . lu|“dx ) = (1.13)

for some 0 < o < 1, then u must be of the form
w="-(xq+ ¢7)

for some b € R. Here, ¢ is the Dirichlet half-space corrector constructed
in Theorem 1.

1.3 Construction of the Generalized Dirichlet Half-Space Correc-
tor

We first give an outline of our strategy and then prove all of our claims.

44



1.3.1 Outline of Strategy

We now give an exposition of our strategy for the construction of the gener-
alized Dirichlet half-space corrector (Theorem [1)).

Step 1- (Construction of a sublinear ¢T up to a certain scale)

Our approach for the construction of ¢§) is to adapt the whole-space corrector
¢4 to the Dirichlet boundary conditions on 8Ri. We would like to achieve this
by subtracting from ¢, a sublinearly growing function ¢ that is a-harmonic
on Ri and equals ¢4 on the boundary, i.e. by setting ¢¥ := ¢4 — @ with ¢
being a sublinearly growing solution to the problem

~V-aVg =0 in RY, (1.14a)
¢ = ¢a on ORZ. (1.14D)

As is a linear equation, we can decompose the right-hand side of
into contributions from dyadic annuli, solve the corresponding prob-
lems, and then add the solutions to obtain ¢. We will show that this sum
converges and sums to a sublinearly growing function.

Pursuing this strategy, let ro = 2" for my € N be a generic dyadic radius.
Let {n,,] —1 < m} be a radial partition of unity with supp(n_;) C {z € R?:
lz] < 1o} and supp(n,) C {x € R : 2™ ! < |z| < rg2™ L} for m > 0;
suppose that 7, satisfies an estimate of the form |Vn,,| < ﬁ. Also, for
Ly, € (0,792™ ] consider one-dimensional cutoff functions S,,(x) = S, (z4)
satistying Sy, (x) = 1 for |x4| < L, and S,,(x) = 0 for |xy4| > 2L,,; suppose
that |V.S,,| < % Note that we shall later choose L,, < rg2™ "1,

Introducing the cutoffs x,,,(x) := 1 (x) S (x), we then consider the Lax-
Milgram solutions ¢,, € H}(R?) to the problem

—V -aV, =V -aV(xmdaq) in ]Ri, (1.15a)
om =0 on ORI (1.15b)

Defining %, := Z%:_l om and @Y, := o3 + Z%:_l Xm®d, we see that

GLar = ba— Py (1.16)

solves the corrector equation (1.5a)) in RZ with homogeneous Dirichlet bound-
ary conditions on (‘3]1%:{ N B om.

Backpedaling a bit, notice that in order to obtain the Lax-Milgram solution
it is important to write down the correct weak formulation; in particular,
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since we only ever test (1.15) with functions v € HJ,(R%), we can neglect
boundary terms and write the weak formulation of (1.15)) as

Vv-aVe, =— [ Yv-aV(xm¢a) (1.17)
R? R?

For this weak formulation it is then easy to run a Lax-Milgram argument
in H}(R?) to obtain ¢,,. Here we use the homogeneous Sobolev space with
Dirichlet boundary data (which is a Hilbert space thanks to the enforced
boundary data) in order to avoid having to use the Poincaré inequality on R‘fr,
which is not on a finite domain. This treatment is sufficient since H;;(R%) C
I(RY)

To estimate the size of the modification @JEW on a half-ball B, we split
the contributions ,, into two groups: the “near-field contributions”, which
are the (,, such that the inclusion supp(x.,) C Big, holds, and the “far-field
contributions", which are the (,, for which supp(x,,) N By, = 0 holds.

Having distinguished between the two types of contributions, we then first
estimate the near-field contributions. As we shall see, this can be done with
the standard energy estimate for the equation (1.15) and an appropriate
estimate for y,,¢4. The energy norm of the term y,,¢q4 in turn may be made
small by an appropriate choice of L,,.

Lemma 1. Let the assumptions of Theorem 1 be satisfied and m > —1.
Then there exists Ly, < ro2™ and a constant Cy(d, \) such that the fol-
lowing 1s true: For any r > 0 the estimates

% 2m+1 % 1
(][ |V(Xm¢d)\2dx> < Cy(d, N (TO ) 0% s (1.18)
B 0

r

and

Voultdr) < cydn (2 (1.19)
. Pm| AT > G4, , ro2m+1 .

hold. In particular, for any r > %TOQmH the function p,, satisfies the bound

1 d
Von2dr ) < Co(d \ymind 1, (120 gt 1.20
- Pm xr >~ 2( 3 ) min ) r ro2m+1 ( . )

with Cy := ChfeanC18%.

For the construction of ¢ we will need the estimate (1.20]) on B, also for
the far-field contributions, which we obtain in Step 3 below.
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Step 2— (Construction of a sublinearly growing 05 up to a certain scale)

Having constructed an intermediate corrector ¢, (see ([L.16))) for which the
desired homogeneous Dirichlet boundary data have been partially enforced in
the sense that ¢£M = (0 on 8RiﬂB2MTO, we need to construct a corresponding
flux corrector afi? 1 according to . Again, our approach is to adapt the
whole-space flux corrector o, to take into account the modification gbg v — @
of the corrector by adding a correction vj; . In particular, we construct
sublinearly growing functions v, 3 that satisty

-V - @bjk,M =e€;- (a(ed + V¢£M) — a(ed + qud)) n ch_ (1.21)
and define
Ucll;k,M = 04t — Vjk,M-

In order to ensure the skew-symmetry of o2, ., we need to construct the 1 5
to be skew-symmetric.
It turns out that a suitable ansatz is

Vi = Opvjm — OjUk (1.22)

with the components of v )/ : Rﬁlr — RY solving the equations
—Avjy =ej - (aleq + quiM) —a(eq+ Vg)) in Ri, (1.23a)
viv =0 for j # d on OR?, (1.23b)
Oqvans = 0 on ORZ. (1.23c)

To see that ((1.22)) is a good ansatz we first notice that the skew-symmetry
condition is already built-in. Furthermore, differentiating the equation (|1.23)),
we infer

~A(Vy-vp) =0 in RY, (1.24a)

Vi vpm =0 on IR?. (1.24b)

By the zeroth-order Liouville principle for harmonic functions with homoge-
neous Dirichlet boundary conditions on Ri, sublinear growth of Vy - vy s

entails that Vj, - v,y = 0 on all of Ri. This leads, as desired, to the conclu-
sion

d
—Vi Yjpm = Z(akaj’vk,M — O{vju)
=1
= aj(Vk . U]{;7M) — A’Uj7M

=e; - (a(eq + V¢£M) —a(eqg+ Vq)).
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So, the moral of the story is that in order to obtain a solution to (|1.21)) it
suffices to construct solutions v; 5s to ((1.23) for which Vj,-vy s is a sublinearly
growing function.

To construct such a solution v; 57, notice that, as ¢£M — ¢4 is a-harmonic
on R?, we may rewrite the right-hand side in (1.23a)) as

€j - (a(v¢£M —Vq)) =¢;- (V%M Vi) +x;V - (a (V¢dM Vo))
=V - (2;a(Voiy — Va))-
Our strategy, just like in Step 1, is now to work with a decomposition into

contributions from dyadic annuli: Reusing the partition of unity 7, from Step
1, we consider the Lax-Milgram solutions v7,, of the problems

— AV =V - (maz;a(Végy — Veg))  in RY, (1.25a)
vl =0 for j # d on OR%,  (1.25b)
Oqvg p(x) =0 on ORZ. (1.25¢)

Again, just like in Step 1, in order to apply a Lax-Milgram argument it is
important to write down the correct weak formulation, which in this case is

o Vu - Vol de = -/Rd NV - a(quﬁM — Voq)dz (1.26)
+

for test functions u € H},,(R%). For the case j # d we again apply Lax-
Milgram to the space H}(R?) just as we have done in the previous step to
the solution v} .

To find the solution vy ), satistying on Rﬂir and on 8Ri, we
must instead apply Lax-Milgram to the space L%(Ri)ﬂHl(Ri) when d > 2
and BMO(R?) N H'(R?) when d = 2, in each case endowed with the inner-
product inherited from the homogeneous Sobolev space. We consider the case
d > 2 and remark that the case d = 2 is exactly the same. Notice first that
ol ,RL) € L2YE=2(RY) 0 HY(R?) thanks to the Sobolev embedding and
that (1.26) is the weak formulation of for this class of test functions
when j = d since then x5 = 0 on 8Ri. For the actual Lax-Milgram argument
we notice that:

i) The space L*¥/(@=2(RZ)N H'(R?) endowed with (-, -) ;1 is complete and,
therefore, a Hilbert space thanks to the Sobolev embedding.

ii) The integral on the right-hand side of ((1.26)) is well-defined due to the
compact support of n,.

iii) The bilinear form on the left-hand side of ([1.26)) is clearly coercive.
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iv) The right-hand side of (1.26) defines a bounded operator on L%(Ri) N
H'(R4). In particular, we notice that

[ V- a(VoRs — Vosds
;

<C(d, \,n) (/ |Vu|2d:c> (/ |V¢§M—v¢d2dx> ,
Ri Br02”+1

where we have used the compact support of 1, and the boundedness of
a. As V¢£M — V¢q € HL (RY) it follows that the right-hand side of

(1.26)) is a bounded operator.

Having checked all of the criterion, we find that we may apply Lax-Milgram
to obtain a solution vy, € L2/@=2(RYy 0 HY(R?) to (T.26). Notice that
the reason we do not use the space H I(R?) with the additional restriction
that fBT wdx = 0 for our Lax-Milgram argument is that this space does not
contain H,,(R?).

In order to obtain v; 57, we intend to sum all of the contributions. However,
to ensure that on a half-ball B," the “far-field contributions” — i.e. the o7,
with 2"lrg > 167 — do not destroy the smallness of the sum S Vol
we subtract-off the initial linear growth of v3 - For this purpose we introduce
the notation

N|—

n ] 0 itn=-1

v = { Vo (0) if £ —1. (1.27)
Notice that b7\, = 0 unless n # —1 and either j = d and k # d or j # d
and k = d. We then obtain the following estimate:

Lemma 2. Let the assumptions of Theorem 1 be satisfied. Let M > —1 and
n > —1. Then forr > 1y and j, k € {1,...,d} we have the estimate

1 n n %
ot - oo o)

' 7a02n—|-1 D )
< C5(d, A\) min < 1, Vg — Val|” dv
B%2n+1

2

r

with C3(d, \) := 4C4C.

This estimate immediately enables us to pass to the limit N — oo in the
sum ZHN:A(U;-‘M — 0%y - ), which we do in the next lemma.
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Lemma 3. Let the assumptions of Theorem 1 be satisfied and let the L,
be chosen as in Lemma 1. Then for v > 1o and j € {1,...,d} the series

Doy (Vi = by - ) converges absolutely in H'(B)Y) to a limit vjar. For

this limit, the function VY, = Opvjnm — Ojvg v satisfies the equation
—Vi g = ¢j-a(Voiy — Vo) inRE (1.28)

and forr > rg and j, k € {1,...,d} we have the estimate

1 %
- (][ |k, ]? dx)
T B

o 2n+1
<2C3(d,\) ) min {17 i } <][ Vi — V¢d|2dfﬁ>
r BY i1 ’

n=-—1

N[

(1.29)

Step 3— (Inductively building a sublinear corrector on larger scales)

In the previous two steps the base radius ry according to which we construct
the n,, was arbitrary. We now choose ry independently of m in such a way
that the estimate does not only hold under the condition that » >
1=792™ 1 but more generally for any r > r.

To extend the inequality to also to the far-field contributions, we
shall crucially rely on the mean-value property for a-harmonic func-
tions. To this aim, we proceed by induction in m; to show for v,11
for all » > ry, we use the intermediate generalized Dirichlet half-space cor-
rector (@7, 0oy,) and establish that it satisfies the estimate for o = 3
for r > rg, which by Theorem 2 entails the mean-value property ( for
a-harmonic functions on scales r € [rg, 792™] with R = ry2™.

The point is that we have to choose ry large enough so that for every m >
—1 the intermediate generalized corrector (gbgm,agm) satisfies ro > T;m’

where have used the notation that the minimal radius for « = % of the mth
intermediate corrector (in the sense of (1.9)) is 77 . We show that this is
2

possible in the next lemma:

Lemma 4. Let the assumptions of Theorem 1 be satisfied — in particular,

suppose that there exists a whole-space generalized corrector (¢,0) corre-
sponding to a that satisfies (1.4) — and let the L,, be chosen as in Lemma
1. Then there exists ro > 0 independent of M € {—1,0,1,2,...} with the
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following property: If the @, satisfy the estimate

: gm+l 1
(][B+ |V(pm‘2d$> < (U5 min {1, (TO ; ) }(5302m+1 (130)

forallr > 1o and allm € {—1,..., M} (recall the definition Co := ChreanC18%),
then (¢£M,0£M) satisfies the smallness condition (1.9) for a = % and all
r >y, i. €. we have

(V]IS

1
o< —
"t C%(d,)\)

As a consequence, in this case @pr1 also satisfies the estimate for all
T >T).

Note that the start of the induction, i.e. the estimate ((1.30) for m = —1,
is provided by Lemma 1.

Step 4— (Passage to the limit M — co)

In the last step, we pass to the limit M — oo to obtain gbdD and 06? as the
limits of the sequences {(bg M} v and {O'dD’ M} e thereby establishing Theorem
1.

1.3.2 Proofs

Proofs for Step 1 — (Estimates for the modification of the corrector ¢q4 in the
near-field case)

As we have already mentioned above, Lemma 1 is a consequence of appro-
priate energy estimates for the defining equation of ¢,, and a suitable bound
for x;m@q. Here comes the argument:

Proof of Lemma 1. Let us abbreviate R := ry2™*!. Testing the weak for-
mulation ((1.17) with ¢, and estimating using the uniform ellipticity and
boundedness of a yields

(/ wmwx) s(/ |¢mm|2dx) +</ xmwd?dx) -
Rd B} By

(1.31)
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We treat the two terms on the right-hand side separately. For the first, using
our definition of x,, and L,, < R, we find that

1
d

2 e > i
(/ ngdVszdx) S — <][ |¢d|2dx) < —0p. (1.32)
BE Lm Bt Lm

R

For our treatment of the second term on the right-hand side of (1.31), we
even-reflect y,, across the axis {z4 = 0} such that it is defined on R?. We
may then test the whole-space corrector equation (1)) with x2, (¢g+z4). After
using Young’s inequality and the uniform ellipticity of a, this yields

/dxfn|v¢d+ed|2d:1:§ /d|VXm|2|gz5d+xd|2das. (1.33)
R R

Now notice that we have supp(xm) C [~ R, R]*! x [~2L,,,2L,,]; in partic-
ular, on supp(x.,) we have |z4| < 2L,,. The triangle inequality in L*(Bg),
the estimate (1.33)), and the bound |Vx,,,| < &= then yield

/ Ime¢d|2dx,§/ x?nd:r+/ X2 | Voa + eq* du
BR BR

Br

1
S lsupp(un + 75 [ Jol? + foa ds
m J supp(Xm)

R? )
S Isupp(xm)| + -5 1 [¢al” dx
Br

L3,
Rd+2
d—1 2
The second term on the right-hand side of ([1.31]) is, therefore, estimated by
: 1 R%
(/ XV Bl dw) S R% LY+ ——0p. (1.34)
B;g Lm

Together, (I:34), (I:32). and (L3I) give that
1

(][ |wm|2dx)2+ (f rv<xm¢d>\2dx)2
B B

R\® R R\? (L, \?
5(?) m‘”%%) (;)

Choosing L,, := eR = erg2™*!, we can optimize this expression in €. Plug-

2
ging in the optimal € = 0y, yields

% 2 T2m+1 % 1
<][B+|Vsom\2dx) +(]i+\wxm¢d>|2d:c> scl(or ) 5 s

52

[




This directly gives (L.18) and (L1.19). By the definition of Cs, for r > f£rg2™"!
this also entails the estimate ([1.20]).
O

Step 2 — (Estimates for the modification of the flux corrector o)

The following bound forms the basis for the estimates on the size of the
modification v, of the flux correction o4. It is obtained by an energy esti-
mate for v} and a mean-value property of harmonic functions.

Lemma 5. Using the notation from Section 1.3, let M > —1, n > —1, and
abbreviate R := ro2"*. Then there exists a constant Cy = Cy(d) such that
for any r > 1—16R the estimate

(][ VUi — b;{MFda;) < C4R <][ |V¢£M — v¢d|2dg;>
By B},

holds.

Proof. Testing the weak formulation ([1.26) with the solution v, and using
the property supp(n,) C {|z|] < R} as well as the boundedness of a, we
obtain the energy estimate

1
2

1
2

(/Rd |W’3M|2da:> <R (/B+ VoD — V¢d2dx) : (1.35)
+ R

We then notice that when n # —1 the functions Jv},, are harmonic in
{|z| < £} with homogeneous Neumann boundary conditions on OR? N{|z| <
%} whenever b7, 7# 0. In this case we have access to a classic mean-value

property. By ([1.27) we then deduce that

B3] = [V (0)] < C(d) (f thFda:)

) (1.36)
2
< C()R (7[ Vo — V¢d|2d:c>
By
The lemma is now an easy consequence of ([1.35)) and ((1.36]). O

Our next goal is to prove Lemma 2. For this we recall the following basic
fact for harmonic functions: For any harmonic function w on B} with either
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homogeneous Dirichlet or homogeneous Neumann boundary conditions on

OR?L N Bp, for any r € (0, %] we have

(]{3; |w — w(0)2d;7[;>é . Cl(d)% <]{9;{; it da:) | (1.37)

This inequality follows from the regularity estimate below and the Cac-
cioppoli estimate for harmonic function on B}, with homogeneous Neumann
or Dirichlet boundary conditions on GR‘JZF N Br. These Caccioppoli estimates
are completely elementary, but are included in this thesis as Lemma 6 of
Chapters 1 and Lemma 5 of Chapter 2.

N|—

Proof of Lemma 2. For a given radius r, we separately consider the case of a
near-field contribution, defined as contributions for which n satisfies rp2" ! <
167, and the case of a far-field contribution, when ro2"*! > 16r. Notice that,
since 7 > 1y, n = —1 always corresponds to a near-field contribution.

For the near-field contributions, by Lemma [5| we have the estimate

1 n n %

(f ot = b0 o)
n+1

jg Ch7b2 (j[
r B+

0 on-+1

2n+1
< 1604min{1,ror } <][ |V¢£Mv¢d2dx> : (1.38)
BY i

Next, we address the far-field contributions. Notice again that dyv?,, —

1
2

Vo y — V| dm)

=

b;‘k, a7 18 harmonic in B:an_l and satisfies either homogeneous Dirichlet or
homogeneous Neumann boundary conditions on 8Ri N B,on—1 (depending
on j and k). Furthermore, we have 9yv},,(0) — 0%, = 0 and 7 < 72" 2.

Therefore, an application of (1.37) to w := yv} ,, — bl 5, followed by Lemma

, the latter applied with 7 := 792" ! and R := 7¢2""!, yields the desired
bound
1 n n 2 %

1 n n 2 ’

,,0271—1

N

< 4040] ( ‘ngg,M - V¢d|2 dl‘)

BT027L+1
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To complete this step we give the proof of Lemma 3:

Proof of Lemma 3. By Lemma 2, for any » > 0 absolute convergence in
HY(B;) of the series

e.¢]

Z (U]T‘LM - b;'iM - )

n=-—1
towards a limit v; s follows once we have established an estimate of the form

1
o0 2

Z (]ijowﬂ |V¢£M — Va|? d$> < 00. (1.39)

n=-—1

Note that since v}, satisfies the weak formulation (1.26]), the difference

vl vy — by - @ also does for test functions u € Hy,,(R?). Using Lemma 2 and
assuming that we have shown the estimate ((1.39) we can the sum over the
contributions n and apply Fubini’s theorem to obtain

Vu - Vo, yde = —/ 2;Vu-a(Vely — Véa)dz.

RY RY

Lemma 2 also gives the bound

1 3
- (][ |8kvj7M\2dx>
T B;j—

= ro2nt ?
< 03(d7 >\) Z min {17 ° r } (][B+2n+1 |V¢C€M - V¢d|2dl'> :

n=-—1

Thus, the estimate (1.29) is a direct consequence of Lemma 2. Again, once we
have established ([1.39)), this bound entails sublinear growth of the function
Vi - vgr in the sense

1 ;
lim — (7[ |Vk-vk,M]2da:) = 0;
r—oo T Bj

this follows from the dominated convergence theorem. Recalling the deriva-

tion of (1.21]), we then deduce that 1, yr indeed satisfies (1.28)).
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Now it only remains to show (1.39). Here we use that for any m €
{—1,..., M} the bounds (1.18) and (1.19), applied with r := ry2""! en-
tail that

: :
(m—mn) _1
][ Vo [*du |+ ][ V(mba)Pdr | < 275762 0
B+ on+1 B+ on-+1 ’
0 )
Taking the sum with respect to m and recalling that
M
ch?,M - de = - Z (me + Xm¢d)a
m=—1
we obtain the bound
% d M dm 1
r02n+1 m=—1

This directly implies ([1.39)).
[]

Step 3 — (Estimates for the modification of the corrector ¢4 in the far-field
case)

Proof of Lemma [4. For the moment, let ry = 2™ > 0 be an arbitrary dyadic
radius for which the ¢, with m € {—1,..., M} satisfy for all r» > .
By the triangle inequality in L?(B;") and the Poincaré inequality on B;" with
homogeneous Dirichlet boundary conditions on 8Ri N B,, writing ¢4 — @3, =

(1— Z%:_l Xm)Pa — 03 We get
1 52 ) 3
” B+’¢d_90M‘ + |oq — Y p|” dx
1 5 2 1 ) 3
<= (¢a,00)["dx | + - W ar|? d (1.40)
r B;’_ T B;J_

+ Cp (][ |Vg0%4|2 d:z:)
B

Notice that for r > ¢ Lemma [3] yields

% <]{9+ w’MQ)é
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~ o1 3
<2d’°Cs Y min {1, 1o - } <][+ V¢M|2d:c> . (1.41)
Br02n+1

n=—1

Using our assumption that the ¢, with m € {—1,..., M} satisfy (1.30)) for
any r > ro — and, therefore in particular for r := ry2"*! — gives that

o 2n+1 2
. mm{1, & } (7[ IVsDJ%Qde)
T B+
7‘02”""1

n=-—1

M 00
<G Y Y min{1,2757)60

m=—1n=—1

M
1 1
<y (m +1+ ﬁ> 53 . (1.42)
m=—1
Furthermore, we may use that x,, is supported in B;;QWH\B;;T,L_l form # —1
and (1.18) (applied with r := rg2""1) to get that
M 00 %
2n—|—1
> (i (£ Wit
T B+
m=—1n=-1 ro2ntl
M o0 %
< > ( IV (Xm®a)|* dﬂf)
m=—1n=m—1 ro2n+1
M 00 o) 1
co Yy L
m=—1n=m-—1
M 9! )
Then, continuing ((1.41]) with ((1.42)) and (|1.43) yields
1 3
(f warta)
T B;"
M 9! )
< 2d°C3(Cr+ o) ) <m 14— 2_5)6:02m+1
m=—1
M+mo+1 2% )
<2d°Cy(Cr+Cy) Y (k + ﬁ) 55,
k:mo o 2
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To treat the other term of ((1.40) we again use ((1.30)), which gives

1 M d
2 , ro2" 1\ 2] 1
(éjwﬁfﬁdx) <Cy Y mm{L( - ) }5502m+1

m=—1

M+m0+1

SCQ Z 5§k

k:mo

So, for r > rg we arrive at

1 v (2 2
— <][+ 60 — P3| + loa — Y’ dI)
B;

r

[e%e) 2% 1
< 6 +2d°C3(Ch + Co) > (k + —_) 55,
P 1 —272
+CpCy Y 05, (1.44)
k‘:mo
As a consequence of the estimate (1.44]), our assumption ([1.4) allows us
to choose rg = 2™0 large enough — independently of M — such that for

(@D s 0Fyr) the estimate (1.9) is satisfied for a = § and r > ry.
(MA+1)+1

Thus, we infer the estimate for wpr1: The case 7“027 < 16 has
already been treated in Lemma [I} it just remains to extend the estimate
to the case 2" 5 16, As (¢£M,JC€M) is a Dirichlet half-space cor-
rector on BE with R := 792™ which satisfies for a = % and r > 1o,
Theorem [2| is applicable and yields the mean-value property for a-

harmonic functions on B;;2M with homogeneous Dirichlet boundary condi-

. d B . . B . + .
tions on ORY N B, om. Since @pr4q is indeed a-harmonic in Br02M with ho-

mogeneous Dirichlet boundary conditions on 6]1%1 N B, om, we deduce for
r € [rg, 792M] using in the second step the estimate (1.19)) for r := ry2¥

2

(][ |V¢M+1|2dx) S CMean (][
B;f Bt

T02M

V<PM+1|20L77>

1
det
< CMeanclz 57?02(M+1)+1‘

This shows ([1.30) for w41 and r € [ro, 792M].

Step 4 — (Passage to the limit M — o0)
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Proof of Theorem 1. Let the L, be chosen as in Lemma [l Let ry = 2™ be
chosen as in Lemma . By Lemma , the estimate then holds for all
m > —1 (the start of the induction, i.e. for m = —1, is provided by
Lemma .

For i # d we then choose ¢ = ¢ilre and O = Oijk|lre. By our as-
sumption (|1.4)), we therefore have to verify the assertion on sublinear growth
iv) in our theorem only for gbdD and adD.

Part 1: The corrector ¢dD.

We first show that the series > .>°_ | ¢, converges absolutely in H'(B;")
for all r > ry. By the Poincaré inequality for functions in H'(B) with ho-
mogeneous Dirichlet boundary conditions on 8]RﬂlrﬂBT, it suffices to calculate

(using ((1.30)))

Z (][B+ |V90m|2dx>2 < Oy Z 5§02m+1 < Z 5§k

m:_l m:—l k/’:mo

1
and to use the summability of the {45, }1 (see (1.4)).
Again, combining ([1.30)) with the Poincaré inequality yields for the sum

P = Z;?:fl O = limpy o0 9012\4

1 2 % 1 312 %
= " dr | < sup - | d
" \JB} M T \JBf

0 kN5
< CpCy Y  min {1, (27) }521 (1.45)

k‘zmo

for all r > ry.

Next, we show that {Z%:_l Xm®a }ar forms a Cauchy sequence in H(B;")
for all r > ry. Using the fact that x,,¢q vanishes outside of B, gm+1 \ B om-1
(except for m = —1, for which x_1¢4 vanishes outside of B,,), the Poincaré
inequality for functions in H'(B, ym+1) that vanish on 9B, gm+1 N Ri yields
that for any r > 0

(-/BT Xm¢d2dx); ST </B |V(Xm¢d)2d;[;)é _ (1.46)

Using (1.18) and again supp(xm) C Byyom+t \ Byjam-1, we see that

e’} [e’e) 2m—|—1 % .\
2. (7@ \V(xm¢d)|2dx) <2'Cy ) min{l, (TOT ) }5:02m+1

N
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[V]ISH

o0 k
<2'C; ) min {1, (27)

k‘:mo

}55@. (1.47)

So, {Z%:_l Xmgbd}M forms a Cauchy sequence in H*(B;").

The function @ := @ + > | \pmda = limyro @3y is a weak solution of
the problem (1.14)): (1.14) is satisfied on B, by all ¢, for which rg2M > r
holds. Thus, carries over to the limit M — oo for arbitrarily big
radii r. Therefore holds globally for the limit ¢, which entails that
gbdD = ¢4 — ¢ solves .

By , 1.46)), and , via the dominated convergence theorem our
assumption (|1.4]) implies that ¢ and, therefore, ¢dD = ¢4 — © are sublinear

in the sense
1 D2 :
lim — o |7dx | =0.
r—0o0 T Br

Part 2: The vector potential 06?.

We now show that {t;x 1/} forms a Cauchy sequence in L*(B;) for all
r > ro; furthermore, we show that the limit ¢;; has sublinear growth. To
this aim, observe that the differences v7,, ., — v}, are weak solutions to the
problem

AWy = Vi) = =V - (0a2aV (9arin + Xarn¢a)) inRE, (1.48a)

U argy — Vi =0 if j # d on ORY,
(1.48Db)
Oa(vy a1 — V) =0 on ORL.  (1.48¢)
To shorten the subsequent computations, let us use the convention vi_, =0

and b} 5 = 0; then ([1.48) holds also for M = —2.

Estimating analogously to the proof of Lemma 2—- note that the only dif-
ference between the equation satisfied by v} ), and the equation satistied by
U7 a1 — Uiy 18 the right-hand side, we deduce that for any r > rg

1
2

1 n n n n
- (]i+ |0 (Uj,MJrl —Uim ( iM41 T j,M) ' 93)|2d5'3>

r

. T02n+1 9
< (C3miny 1, . N |V(<,0M+1 + XM+1¢d)’ dx
B

T02n+1

D=
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Taking the sum with respect to n and using Fubini’s theorem, we deduce
that the limits vj 3/ of the series Y 77 | (v],, — b7,/ - @) satisty

1 3
" (]i , |0 (vj.0041 — vj00)|? dw)

r 2n+1 %
< Ch Z mm{ 0 } (][+ IV (or1 + XM+1¢d)2dx> .
B on+1

n=-—1

Taking the sum with respect to M and estimating the right-hand side by
the inequality and the estimate — both inequalities applied with
r replaced by r¢2" ™! and m replaced by M + 1 — (note again that Y4104
vanishes on B:;QHH in case r1g2M 171 > r27tl and M + 1 # —1), we infer

, Z (][ 1Ok (vj.ar+1 — V)| do

< C5(Cy +2dC'1) Z min{l, o } Z mm{l 9d(M+1- ”/2}5TOQM+1+1

r
M=-2

1
2

n=-—1

(1.49)

Now, by this estimate and the dominated convergence theorem, it is sufficient
to show

Z Z min {1, 270+ "/2}@ i < 00 (1.50)
n=—1 M=

in order to obtain both the Cauchy sequence property of Vuv;y in L*(B,)
and the sublinearity property

1 : 1 :
lim — (][ |8kvj\2d$> < lim sup — (][ |8kvj7M\2dx> = 0.
r—00 T B =00 \f>_1 T B

Note that by ;i := Opv; — 0jv;, and Jfl?k = 0gjr — Yk, this estimate then
directly implies the desired result

1 >
lim — <][ \0dD|2d9:) = 0.
r—o0o 1 B

Furthermore, the 1, 1y are solutions to the equation . Since we can
pass to the limit M — oo in the weak formulation of for any smooth
compactly supported test function, this shows that the limit O'(ll?k = limpr—yo0 (0gjn—
Y;k.ar) solves the equation (|1.6]).
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To see that ((1.50)) holds, we just need to estimate

Z Z min {1, 2d(M+1—n)/2}5§02M+1+1
2

n=—1M=—
> 1 1 - 1 5
< Z (M—l—2+ _d)6r02M+1+1 = Z (k_m0+ _d>52’€
M=-2 1—27 k=my I=2

and use the summability property ([1.4]). This finishes the proof of our theo-
rem. [l

1.4 Proofs of the Large-Scale Regularity Results

1.4.1 Constant Coeflicient Regularity and Caccioppoli Estimate

Before proving Theorem 2] we first prove the following Caccioppoli inequality:

Lemma 6. Let a be a coefficient field satisfying the ellipticity and bounded-
ness assumptions as in . For any a-harmonic function u on BE subject
to homogeneous Dirichlet boundary conditions on 8R‘_{ N GBE, the estimate

2 ] 2
<][ Vu%ix) < = <][ |u2da:) : (1.51)
B} R sy

Proof. Testing the equation
—V-(aVu) =0 in By

holds.

with n?u, where 7 is a radial cut-off with n =1 in Bz, n = 0 outside of Bg,
0 <7 <1 everywhere, and |Vn| < &, we get

/ *Vu - aVu + 2nuVn - aVudr = 0.
By

Note that the boundary terms vanish as n?u is zero on 0Bj. Using the
uniform ellipticity of @ and Young’s inequality allows us to write

A 2
)\/ n?|Vul|? de < 2/ InuVn - aVu|dx < / " Vul? + |Vt do.
BTt BE BTt 2 )\

R R

The properties of n finish the argument. ]

The following classical regularity properties of constant coefficient ellip-
tic equations will play a crucial rule in the derivation of the excess decay
estimate.
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Lemma 7. Let v be a weak solution to the constant coefficient equation
=V - (apemVv) =0 in BE, with homogeneous Dirichlet boundary conditions
on BE, N 8R‘i, where apom 15 a positive definite matriz. Then there exists
some 5 = B(d,\) > 0 such that for any positive p < %R’ and any positive
r < %R’ the following estimates hold:

2
r?sup |VZo]* < (L/) ][ |Vv|? da, (1.52a)
B} i By
T R
B
/ Vol*de < R (ﬁ,> / V|2 dS, (1.52b)
BB, R Jon,
1 1 (R’
sup (|[V20* + = |Vo)?) < = [ — (Vo|* da. (1.52¢)
2 2
By, P P P Y

Proof. For the third estimate, notice that if 2’ € S where S = BE,_pﬂ {z4 >
5} then v is apem-harmonic on Bs(z'). Therefore, for these 2’ we have the
inner regularity estimate

swp PV + s [Vo@P S [ Vel (159
y€B,4(2’) YEB,/4(2') P~ J By ()

which follows by an iterated use of the Caccioppoli inequality on balls to

derive an H* estimate for k large enough and a subsequent use of the Sobolev

embedding.

For 2’ € Sy, where Sy = ORL N B}, ,» we get an analogous estimate for
half-balls: In this case, the result can also be shown by proving H* regularity
estimates for k large enough followed by the Sobolev embedding. The deriva-
tion of H*-type regularity estimates is again standard: One may proceed by
repeatedly using the Caccioppoli estimate for v and its tangential (higher)
derivatives 0;, ... 0;,_,v with 41,... 7,1 # d. To obtain estimates on higher
derivatives which involve multiple derivatives in the normal direction e; —
only estimates for derivatives containing a single normal derivative are pro-
vided by the aforementioned applications of the Caccioppoli inequality — one

directly uses the equation satisfied by v. Thus, for 2’ € Sy we have
1
ww PV s (VS [ vt (5
By (z

yEB%(x’) yeBé(m’)

The estimate (1.52a)) is an immediate consequence of ([1.54)) with p := R’ and
' = 0. To obtain ([1.52]) let

1
s=sup sup (|[VZo(y)]* + 5|Vu(y)),
€S yeB, 4(z') P
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1
sp=sup sup (|VZu(y)]®+ ?!W(y)ﬁ-

T'€Sy yeBéﬁ(m’)

Using ([1.53)) and ([1.54)), we may then write

1
sup (|V*0]? + <[ Vo]*) < max{s, sa}
p

xeB;,_p
1 1 (R’
S osup —— |Vfu|2dx§—2(—> ][ |Vv|? da,
2/€SUSy P B,(z")NR% P=\ P B,

finishing the proof of ((1.52d)).
Finally, for the inequality ({1.52b|) we first extend v to B by odd-reflection.
The extended v satisfies the elliptic equation

-V (dhOva) =0 in BR/
with
( (ah0m>ij for Tq > 0,
(@hom)ij for xty < Oand i #d,j #d,
(Ahom)ij = § —(@nom)ij for xzg < 0and i =d,j #d,
—(@nom)ij forxg<Oandi#d,j=d,
L (@hom)ij forxty <Oandi=j=d.

If we then let ¥ be the harmonic extension of v|gp, to Br, we have the

estimate HV@HLﬁ(BR,) <

too large. This is a consequence of interpolation between

"]\ r2(98,y), provided that § > 0 is not

HVUHLdzdl Byy) <HvtanUHL2(3BR,), (155)

which results from decomposing v in terms of the spherical harmonics on
0Bp and using Bochner’s identity, and
IVl 28) S BRIV 0l r208,): (1.56)

which follows from (|1.55) via Holder’s inequality. We then use Meyers’ es-
timate [44], which states that for any 8 > 0 small enough (depending on d
and M), the solution v — v to the equation

-V - (&hom (1} — U)) (&homV’U) in Bpr,
0 on 8BR/

vV — U
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satisfies the bound ||V (v — )HL1 55, < la ’meU”Ll (B, Combining

this estimate with the bound on v obtamed above yields that

1900 25 ) S B2 IV 0l

It then follows by Holder’s inequality that

1-8

/ (Vo|*dr | < |Bj\ Bjh_ 2 \* / V|7 dz
B\, B
n=2 8 tan, |2 ’
< (R)F (/ Ttany| ds> ,
0B,

concluding the proof of ((1.52h)). O

1.4.2 Proof of Theorem 2: A Large-Scale C''*- Excess Decay and Mean-Value
Property

We now turn to the proof of the excess decay estimate.

Proof of Theorem 2. For convenience throughout this proof we make use of
the Einstein summation convention, i.e. whenever an index appears twice in
an expression, summation with respect to the index is implied.

Step 1 — (Comparison of u to solution of homogenized problem/ Main step
of the argument)

In the first step of the proof, we show that for each » < R there exists
b € R such that the estimate

][ Vu — b(eg + Vb )|* do
N

A% 2 R\* 28/(d+2+5) 2
’S((E) (1+5)+<?> ) ]iE\Vu\ dx

is valid, with the abbreviation

0 = max {(522, (5}[{}.

(1.57)

Note that for r € [%,R] the estimate trivially holds for b = 0. It is,

therefore, sufficient to show ((1.57) for » < 7. To do this, we first choose a
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radius R’ € (£, R) such that

[ovemipars g [ waPars g [ vepdn 0
OB, R Bi\B} R /B

We know that such a radius exists by writing the middle integral in polar
coordinates and using that V"u = 0 on ORZ N Bp.

Let v be the aj,,-harmonic function that coincides with u on GBE,. To
show the estimate ((1.57) we compare Vu to Vv corrected as suggested by
the two-scale expansion as given in (3)) of Section 0.1 of the Introduction.
Notice that, due to the boundary conditions of v, we know that Vv(0) only
has a normal component. This observation allows us to write

/B+ IV — 8y0(0)(eq + VoD da
< /+ (Vo — Vo(0))(id + VéP) |2 da (1.59)

- / |Vu — Ov(e; + V)| du.
B/

Notice that the second term on the right-hand side corresponds to one piece
of the gradient of the “homogenization error” coming from the ansatz for v
given by the two-scale expansion. To estimate this term, we first derive an
estimate for the gradient of

w = u— (v+nep o),
where 7 is a cut-off with 0 < n < 1, n = 1in B, ,, n = 0 outside of

B, and |V < %. We will later optimize the width of the boundary-layer

introduced by p, but for the moment we only assume that 0 < p < iR’.
The function w distributionally satisfies the equation

~V - (aVw) = V- (1 = n)(a — apom) Vv + (¢ a — 0P )V(ndw)) in B},
(1.60)
To see this, one uses that u is a-harmonic, that ¢P solves the corrector

equation (1.5) on B}, when i = d and the whole-space corrector equation (1)
when i # d, and the defining property ([1.6)) of o, which gives

— V- (aVw)
(aVv +ndwaVey) + V - (¢ aV (ndw))
V- (1 =n)aVo +ndwale; + VoP)) + V - (¢ aV (ndw))
V(1= )CLVU) +V(ndw) - ale; + V) + V- (¢7aV (ndw))

66



= V- (1 = n)(a = anom) V) + V(090) - (ale; + V7)) = anomes)
+ V- (¢7aV (n0v))
=V - (1 = n)(a = apom)V0) + V(0d0) - (V - o) + V - (67 aV (190))
distributionally on Bj,. To complete the calculation, we use the skew-
symmetry of the vector potential Jg-k in the form V(now) - (V - oP) =
=V - (07 V(nd)).
Notice that, due to the cut-off 1, the boundary conditions of qﬁdD, and

the boundary conditions of v, w satisfies homogeneous Dirichlet boundary
conditions on 0Bj,. Therefore, the standard energy estimate for the equation

(1.60]) reads

(/

<3 ( / 100~ 1)@ = aan) V0 + (P - a?>v<naw>|2dx>

1
2

|Vw|? dm)
+
R/

2

The boundedness of a and ay,,, and the properties of 1 then imply

/ IVu — 0pw(e; + VoP)|? do
B;,_

1
,S/ \VUIQd:UJr/ (67, )P (IV?0* + | V]?) da. (1.61)
B \B, B}, P

R'—p

Due to the conditions that we have placed on r, p, and R’ we have r < R'—2p.
Therefore the second term on the right-hand side of ((1.59)) can be estimated

by the formula ((1.61)). This yields
/ IV — 8y0(0)(eq + VoD da
B

< / Vo — Vo(0)2lid + VP2 da
B

1
+/ |Vv\2da:+/ \(¢D,0D)|2(]V20|2+—Q\VUP) dx
B},—B}, B}y, P

< r?sup \V211|2/ lid + V¢ |* dw
B

B

1
+/ |Vo|? dz + Sup(\V20]2+—2|VU\2)/ [(¢", oP)|* da.
BEAB _,, By, P B}

(1.62)
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To further process this estimate, we exploit that v solves the constant co-
efficient equation —V - (apemVv) = 0 in B, with homogeneous Dirichlet
boundary conditions on ORY N Bg/; thus the estimates (1.52)) are available.
Furthermore, notice that the difference v — u solves

—V - (apom V(v —u)) =V - (@pom V) in B,
v—u=0 on 835,.

Testing this equation with v — u and using Young’s inequality yields
/ Vo|? do < 2/ |Vu|2dx+2/ |V(U—u)\2d:ﬁ§/ |Vul? dz.
B, B B, B?,

R R/ R R

(1.63)
Applying (1.52)) and ([1.63]) to the equation ([1.62)), and using that R’ € (%,R)
as well as ([1.58) and the equality V**u = Vv on 0B}, gives that

F 190 = dw0)(ea+ VoD da
By
2
< ((%) ]; id + Vo |* da (1.64)

(B ((g)ﬁ (1 <ag>2) ) f roas

Now, we choose a specific p. Recall that we required 0 < p < %LR’ . By
varying p subject to this condition, we can obtain & = s for any s € (0, %]
We select p to satisfy £ = min{(65)* (">t 1} Plugging this into (1.64
and using 6% < 1 (which we may assume by choosing C,,(d, \) large enough)
results in

][+ |\Vu — 9,0(0)(eq + V¢§)|2 dx
By

P R\
< (1) ][ id + VPP dw + [ 2] (88)28/(@+2+8) ][ Vu|? dz.
R B:r T BE

For the first integral on the right-hand side, notice that x4+ @¢% is a-harmonic
in By, and vanishes on OR%. So, to estimate JEBﬁ leq + VoP|? dz we may use
(1.51). To handle the terms of the form e; + VP for i # d, we use the
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whole-space Caccioppoli estimate. We find that

d—1
][ \id+V¢Dl2daz,§][ Ied+V¢dD2dx+Z][ le; + V¢! |* dx

d—1
(]i+ \xd+¢§]2dx+z]i xi+¢lp|2d:c>.
i=1 v Bar

’ (1.65)

1
)

S

Young’s inequality yields
1

d—1
5 (7[ \xd+¢f5\2daz+27[ xi+¢?|2d:c> < (1+(52)?) . (1.66)
By, i=1 / Bar

We can then conclude that

][ IVu — 0q0(0)(eq + Vo) |? da
B

7\ 2 R\
< o 2 Lt 26/(d+2+5) 2
< ((R) (1+6%) + <T> 5 )72 Vul? d, (1.67)

where 0 := max{d 6F}.

Step 2— (Proof of the Dirichlet half-space excess decay.)

For any two radii 7 and R with r* <r< R < R, we can rephrase (|1.67
in terms of Exc”: Notice that for any b € R the function u — b(zg + ¢7)
is a-harmonic on BE with homogeneous Dirichlet boundary conditions on
OR? N Bg. Applying (1.67) to u — b(z4 + ¢%) and taking the infimum with
respect to b yields

) ~\ d
Bxe?(7) < Cd ) | [ Z) (1402) + (2] a2/ | ExeP().
é T

Letting 6 = f/R and using 6 < 1 gives that
ExcP(F) < O(d, \) (292 + 52B/<d+2+5>9—d) Exc?(R),  (1.68)

where the fixed constant C'(d, ) comes from ([1.67) and where we have used
0 < m < 1 (the latter inequality holding w.l.0.g.).
We now choose 6 and the constant C,(d, \) in the smallness condition

(1.9) in such a way that
C(d, \)(20% + 522/ d+28)g=d) < g2« (1.69)
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is satisfied. To do this we first select 6 € (0, 1) such that 2C(d, X)§* < 16
holds. We then select the constant C,(d, \) in (1.9)) to be large enough to
ensure C(d, A)02%/(4+2+5)g=d < 1g2 This entails the estimate

Exc?(0R) < 6 ExcP(R) (1.70)

for all R € 372, R).

The half-space excess decay estimate for arbitrary v, R with 7} <r < R
follows by iterating the estimate . As this procedure is both straight-
forward and a standard argument, we omit it.

Step 3 — (Proof of the coercivity of the excess expression.)

As the left-hand side of ((1.11)) is a second-order polynomial in b, to estab-
lish the desired result it is sufficient to show an estimate of the form

1
7{9+ b(eq + Voi)|? do > WW. (1.71)
We take n to be a cutoff with n = 1 in B;, n = 0 outside Bf, 0 < n <1
everywhere, and |Vn| < % We then have

]; b(ea + VoP) P dz > |b\2][

. nleq + V¢5|2 dx

1
>b2][ d:ce+—][ Vol dx
1 2
>b2][ dr |ej — ——— D\7p dx| .
(1.72)

Notice that the second of the above inequalities follows from an application
of Jensen’s inequality. Also, in the third inequality the boundary term has
vanished due to the Dirichlet boundary conditions satisfied by (bdD :

Another use of Holder’s inequality yields that

1
JEB;* ndx

We may assume that C,(d, A) in (2.10)) is chosen large enough to ensure that
24150 < 1. Estimating fprndr > (3)7, we see that (1.71) now follows from
(1.72)).

o5V dz
B

S 2d+167p.
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Step 4— (Proof of the mean-value property.)

Let 1 <r < R; denote by b, the value of b for which the infimum in the
2
definition of the tilt-excess Exc”(p) is attained. We then have

][ Vu|? de < ExcP(r) + |b,?
B
< Bxc?(R) + b,

< ][ |Vu|2 dx + |bR‘2 + |br — bR’2. (1.73)
By

Here, we have used ((1.65)), (1.66]), and 52 < 1 for the first inequality, the
excess decay for @ = % for the second, and the definition of the adapted
excess and Young’s inequality for the third.

To complete our argument it remains to estimate |bg|? and |b, — bg|?.
First, by (1.71)) and the triangle inequality, we easily infer

bg|? < ][ lbr(eq + Vo) |? dz < Exc?(R) +][ |Vul|? do < ][ |Vul? d.
B B} B}

R
To estimate |b, —bg|, let p € [max{r; 5}, R]. Then the coercivity property
(1.71)) and the triangle inequality entail

‘bp - bR‘2 S ][+ |(bp — br)eq + (bp - bR)V¢g|2 dx

By

< Exc?(p) + Exc?(R)

< ][ |Vul? dz.
Bt

R

Choose N € Ny such that QN—RH <r< QﬂN. The triangle inequality, the
coercivity (L.71), and the excess decay for a = 3 then allows us to write

N 2
b, — br|* < <br — bpa-x| + ) |bran — bRQ(n1)|)

N - 2 N 2
< (Z (EXCD(RQH))é) < (Z 2”/2EXCD(R)%>
< E;;D(R). -

In total, ((1.73)) therefore entails the desired mean-value property.
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1.4.3 A C'“ Liouville Principle

Using the excess decay proved above we then obtain a C1% Liouville prin-
ciple. Here is the argument:

Proof of Corollary[1. The Caccioppoli estimate from Lemma [ shows that
the growth condition ([1.13]) implies that

This, in turn, gives that

Jim %EXCD(R) = 0.
By Theorem [I] and Theorem [2] there exists a radius % > 0 such that the
excess decay holds for R > r > r}. In particular, keeping r fixed and
passing to the limit R — oo, we deduce Exc”(r) = 0 for any r > r*. Since
the coercivity property implies that the infimum in the definition of
the excess is attained and since we have u = 0 on 8Ri, we find that for all
r > r¥ there exists b € R such that u(z) = b(xq + ¢F) in B, N

72



Chapter 2

A Large-Scale Regularity Theory for Random Linear
Elliptic Operators on ]Rﬁir with Homogeneous Neumann
Boundary Data

2.1 Set-Up

In this chapter we are interested in the large-scale regularity of solutions to
linear elliptic equations with random coefficients and homogeneous Neumann
boundary data. This is, of course, a logical continuation of the previous
chapter in which we have considered the situation for homogeneous Dirichlet
boundary data. In the current chapter we work with the following model
case: Let u € Hlloc(@i), where this is the space of functions such that for

any 0 € R? we have that u € H'(QNHY), be a distributional solution of

-V - (aVu) =0 in  R%, (2.1a)
eq-aVu =0 on OR?, (2.1b)

where a is the restriction to the half-space of a coefficient field a(z) : R? —
R%? that is bounded and uniformly elliptic on R%

As in the previous chapter, the current chapter consists mainly of two the-
orems. In the first theorem, assuming that for a given realization of the ran-
dom coefficients a there exists a whole-space generalized corrector satisfying
from the previous chapter, we construct a sublinear Neumann boundary
corrector for the half-space, which we denote (¢V, ™). Our construction of
the Neumann half-space corrector in this theorem is heavily motivated by
the construction of the Dirichlet half-space corrector in the previous chapter.
The main difference between the construction we use in the previous chap-
ter and that here is the energy estimate that we use to treat the near-field
contributions of the correction to the corrector (see Lemma 1 of the current
chapter). As in the Dirichlet setting, in the second theorem we use the sub-
linearity of (¢, o™V) to prove a large-scale C1?- excess decay for solutions of
([2.1) and then, in a corollary, we obtain the desired C''**-Liouville principle.
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Just like in the previous chapter, we must modify the excess used in [31]
to take into account the boundary condition (2.1bf). To see how to so this
we should formulate the Liouville principle that we expect to show. Again,
we first consider the constant coefficient setting: In the constant coefficient
setting, when a = apom, if a function u solves ( and conforms to the
growth condition |u(x) —u(0)| < |27, then u is expected to be of the form
b-x+cfor b € R? such that ey - apomb = 0 and ¢ € R. Here the condition
€q * apomb = 0 comes from the boundary condition (2.1b]). Defining the set

B:={beR"| €4 anmb=0}, (2.2)

in analogue to when a = apm, if has heterogeneous coefficients we
expect that functions u satisfying the same conditions will be of the form
u="b-z+ ¢ + c, where b € B and ¢ € R?. So, for b € B we should
construct a sublinear Neumann half-space corrector ¢;' solving

~V-aV(¢y +b-2) =0 in  R?, (2.3a)
eq-aV () +b-x)=0 on ORY (2.3b)

The Neumann half-space excess of a function wu satisfying (2.1)) on the half-
ball of radius > 0 is then given by

Exc™ (r) := jnf][ [Vu— (b+ V)| dr. (2.4)
beB J B
With these notions in-hand we can now summarize the main results of this
chapter. To avoid excessive repetition we summarize the current results by
referencing those of the previous chapter:

“Theorem". With the same assumptions as in the summary of results
in Section 1 of the previous chapter, we (-)- almost surely obtain analogues
of i) —iv). It is not necessary to restate results i)- iii) as the those from
the previous chapter hold here with the replacement of the superscripts “D”
by “N”. The result iv) is altered in the sense that if u solves and
satisfies the subquadratic growth assumption , then it will be of the
form u = b-x—|—¢{)\7—|—c with b € B and ¢ € RY. Here B is defined in (2.2).

2.1.1 Notation Specific to Chapter 2

Throughout this chapter will often use that since both of the maps € € R? —
¢ and € € R? — o¢ can be chosen to be linear, using the definition of 6, (¢, o)
given in (4)) and Jensen’s inequality, we have that for any orthonormal basis
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{b1, ..., ba} of RY

[y

Br i1 7,k=1

[ I

IS

z]k| L

N

d
<51 S oo B+ 3 (b enlonnl | da

1=1 w=1 7,kw=1

< (%) or(¢, 7).
(2.5)

—d .
we(R) to denote the space of functions w such that for any com-
pact set U €@ R? we have that w € H'(U NR%).

We use H}

We use the notational conventions that 8@; = 0B}, \ ORY and 0B}, =
OB} N ORY.

2.2 Main Results

We now give the full statement of the two theorems and the Liouville prin-
ciple that arises as a corollary. In this first theorem we construct a sublinear
Neumann generalized corrector:

Theorem 1. Let a € Q and let {b;} be an orthonormal basis of R? such that
bi € B fori # d. Here, B is given by and ) is defined in . Assume
that there exists a whole-space generalized corrector (¢, o) satisfying and
(3) and the quantified sublinear growth condition (see Theorem 1 of
the previous chapter). Then there ezists a generalized Neumann half-space
corrector (¢, oV) satisfying the following properties:

i) The Neumann half-space corrector ¢{)Z and flux corrector O'ég are the
restriction of ¢y, and oy, respectively to the half-space, i.e. qﬁ{)\i = ¢bd‘R‘i
and o} = by |re -

i) For i # d the Neumann half-space corrector gbé\j 15 a weak solution of
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—V - aV(¢y +bi-x) =0 in  RY, (2.6a)
eq- aV(dy +bi-x) =0 on  OR?, (2.6b)
where the class of test functions is given by Hp,,(RZ).

iii) Fori # d and j € {1,...,d} the Neumann half-space flux corrector o},
15 a distributional solution of

Vi - aé:[jk =e;- (a(qué:] +b;) — ahombi) n R‘i. (2.7)
Furthermore, Jé\fjk is skew-symmetric in j and k.

i) The generalized Neumann half-space corrector (¢, o™) is sublinear in
the sense that

d—1
1
57{V(¢N70N) = . (Z . |(¢é\f — ]{W gbéjdm,aéj)‘?dx
e T L (2.8)
][ It ¢bd70bd |2d93>

lim 6~ (", o) = 0. (2.9)

r—00

satisfies

Just like in Chapter 1 the estimates used to prove Theorem 1 guarantee a
growth rate for the generalized Neumann half-space corrector. In particular,
just like in the previous chapter: If the whole-space generalized corrector is

sublinear in the sense that
1
5"4 5 _")/

for v > 0, then the generalized Neumann half-space corrector that we con-
struct satisfies

1
N < -
57‘ ~ /r.ry/3'

The sublinear pair (¢, o) constructed in Theorem 1 is then used to
prove Theorem 2.

Theorem 2. Let a € Q. Then for all Holder exponents o € (0,1) there
exists a constant Cy(d, \) such that if for a radius R > 0 there exists a
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generalized Neumann half-space corrector satisfying i) — iii) from Theorem
1 on B} and there exists a minimal radius v > 0 for which

1 , .
5;],\/‘(¢N,O'N) S m Zf r > Tos (210)

the following properties hold:

Let w € HY(B},) be a-harmonic with no-flux boundary conditions on 0B},
i.e. let u be a weak solution of

—V - (aVu) =0 in  Bp,
eq-aVu =10 on 8§E,
where the class of test functions is given by

{ue H'(RY) : supp(u) C B, for some R>1 > 0}.

Then using the definition the following hold:

i) Forr € [rf, R] the excess decay estimate given by
Exc™(r) < (%)20‘ Exc™ (R) (2.11)
holds.
i) For r € [r}, R] the tilt-excess functional
beRY— ][+ Vu — (b+ V)| da
s coercive. B
iii) There exists Chpean(d, \) > 1 such that for r € [TE,R] the mean-value

property

][ V| de < C’Mean][ |Vu|? dr (2.12)
B B
holds.
Post-processing the excess decay, just as we have done in the previous
chapter, we obtain the following C'**-Liouville principle as a corollary:

Corollary 1. For a € Q) assume that there exists a whole-space generalized
corrector (¢, ) satisfying the growth condition ( and let B be given by

(2.2)). Under these conditions we have that if u € Hlloc(@i) solves (2.1)) and

satisfies the subquadratic growth condition (1.13) for some a € (0,1), then
u:b-x+¢£f—|—cf0rsomeb€B and c € R.
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2.3 Construction of the Generalized Neumann Half-Space Cor-
rector

Recall that for i € {1,...,d — 1} we would like to construct the half-space-
adapted corrector gbé\f satisfying (2.6 and the corresponding skew-symmetric
flux correctors. We proceed in a manner similar to the previous chapter and

try to correct the available whole-space generalized corrector that is assumed
to exist. We follow the same basic strategy as laid out in detail in Section
1.2 of Chapter 1 and even reuse the same cut-off functions. In particular, for
an arbitrary initial radius ro > 1 we let;:

1) {Mn}n>-1 be a smooth radial partition of unity subordinate to the cov-
ering of R? by { B, gn+1 \ Byyan-1 fns0 U By, such that [Vn,| < -

2™
ii) For each set in the cover we define a smooth one-dimensional cut-off
function L,(z) = L,(xq) satisfying |L,(xq)] = 1 for |x4| < [, and
Ly (z4) = 0 for |zq| > 21, such that |VL,| < 2.

Following the previous chapter, specific values for the heights [,, are chosen
in the proof of Lemma 1. For any radius r > 0, to measure the size of the
corrections to ¢y, and oy, on B we again split the dyadic annuli into two
groups: near-field contributions, when 16r > r¢2"*!, and far-field contribu-

tions, when 16r < ro2"+.
Step 1- (Estimate for the near-field contributions.)

The correction to ¢p,, which we will call ¢, that will enforce the desired
boundary condition is a weak solution of

~V - (aVy,) =0 in  R?, (2.13a)
eq-aVoy, = —eq-aV(gy, + b; - x) on 8Rﬁir (2.13b)
where the class of test functions is given by Hj,,(R%). For the boundary
condition ([2.13b)) recall from the definition of the whole-space corrector that
aV (¢p, + b; - x) is a solenoidal field, which means that e;-aV (¢, + b; - ) has
a trace in H_%((‘?Ri). To solve (2.13) we again split R? into dyadic annuli
(indexed by n) and for each n € {—1,0,1,..} seek a solution ¢} to
—V - (aVegy) =0 in  RY, (2.14a)
eq-aVy = —npeq - aV(¢p, + b - ) on OR?. (2.14Db)

The ansatz for the correction is then ¢y, = > 7 | ¢}, which makes the
ansatz for the Neumann half-space corrector gbév = On, + D0 @y, Of
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course, just as in the Dirichlet case, we must check that summing over the
corrections is possible and that the sum is sublinear.

For fixed n > —1 we find solutions to (2.14) using Lax-Milgram argu-
ments similar to those from the previous chapter. In particular, running
a Lax-Milgram argument in L*¥@=2(R%) N H'(R%) when d > 2 and in
BMO(R?Y) N HY(RZ) when d = 2 (in both cases with the inner-product
inherited from the homogeneous Sobolev space), we obtain solutions ¢ of
the following weak formulation

Vu-aVy dv = —/ unpeq - aV (dp, + b; - ) dS. (2.15)

R ORY

Right away we remark that the desired space of test function for (2.14)),
Hl,,(RY), is contained in the Lax-Milgram spaces and for these functions
(2.15) is the weak formulation of (2.14)). With the Lax-Milgram solution ¢j
in-hand we let ¢y = @y — fo o, dz.

The actual Lax-Milgram argument is essentially the same as that in Step
2 of Section 1.3 of the previous chapter. The only missing ingredient is
checking that the right-hand side of ([2.15]) defines a bounded operator on
the Lax-Milgram space. For this we assume that d > 2 and remark that the
case d = 2 is the same; we then write

/ unpeq - aV (pp, + b; - x) dS
oRY

S/ \V(uny,) - aV(dp, + b; - )| dx
RY

1
2

<C(d,\,n) (/ Vu|2dx> </ 'V (ép, + bi - x)%lx) :
]R(—ii- BT02"+1

where we have used the compact support of 7,, the boundedness of a, the
critical Sobolev embedding, and that ¢y, +b;-x is a-harmonic. As ¢y, +b;-x €
H]} (R?) it follows that the right-hand side of is a bounded operator.

It then remains to show that the ansatz >~ ¢y, converges and is sub-
linear. For this purpose we introduce the notation ¢£\;N = ¢p, + Zg:_l @,
and notice that the solution ¢y of also solves

—V - (a(Ve} + 1Ly V (gp, + b - x)) = =V - (0, L,aV (s, + b; - x)) inRE.

(2.16a)
ea - a(Voh + 1 LaV (¢y, + b; - 2)) = 0 ondRY,
(2.16b)
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where we slipped the vertical cut-off L,, into the forcing on the right-hand
side.

In Lemma 1 we then show that we may choose the heights [,, > 0 so
that the standard energy estimate for provides a sufficient bound for
the size of the near-field contributions. This lemma should be seen as the
replacement of Lemma 1 from the previous chapter.

Lemma 1. Assume that the conditions of Theorem 1 are satisfied. Then
there exists a constant C1(d,\) so that for every n > —1 there is a height
l, > 0 such that for any r >0 and i € {1,..,d — 1} the bound

1 d
nar) < onan () 5 2.17
[ [VepPar) < e Lo

r

holds. In particular, when 16r > ry2" ™! we have that

% 2n+1
<][ \vgpg|2dx> gCQ(d,A)mm{L (TO )
B r

with Cy := CifeanC18%.

ol

}5}02n“ (2.18)

Proof. We set R = ry2""! and notice that we may assume fBE pp, dz = 0.

Testing (2.16) with ¢j and only integrating by parts on the left-hand side
yields

Voy -aVy do = — /

) M LnViy, - aV (p, + bi - ) do
R-‘r

R{
- / @b LV - aV (G, + b; - x) da (2.19)
R{
- / Oy V Ly - aV (gy, + b; - x) de.
R¢
To begin we process the third term. As i € {1,...,d — 1} by the definition

of B we know that ey - apomb; = 0, which by the equation for the whole-space
flux corrector implies that

Vi - Op;dk = €d * CLV(@% + b; - $) in R? (2.20)

is satisfied in the distributional sense. We use this in the following computa-
tion, in which k indexes the entries of the vector o34 and we use Einstein’s
summation convention. Making use of the identity VL, = 0yL,eq4, which
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holds since we have assumed that L,(z) = L,(x4), we write:
/ ©p MV Ly - aV (¢, + b - ) dx :/ ©pMmOaLneq - aV (¢p, + b - ) dx
RY RY

=— | 0aLnOk(©} 1) Ob,ak d
R

- / P10 03 Ly0,qq d
Rd
d
= — 5dLnak(<P2ﬂ7n)0bldk dz.
74
(2.21)

Notice that the boundary terms in the first integration by parts vanish by the
definitions of L,, and n,, and the last equality follows from the skew-symmetry
of 0p,. Making use of , the uniform ellipticity and boundedness of a,
and the Poincaré inequality with zero-average on B}, we find that
implies

/ |Vg0§fi\2d3:
RY

< / |V (s, + b; - 9c)|2 dx + / \8dLnnnabid|2 dx
supp(nnLn) BE

+ R2 / \Vnn|2]V(¢bi + bi . :L‘)’2 dx + / |8dLnak77nO'bidk|2 dx | .
supp (M Ln) B,

R

(2.22)

We can simplify this expression by recalling that |Vn,| < % and |0y L, | < lz,
which allows us to write

/ Vel Pdr < / V(o + b 2) Pt o [ |opalPdr. (2.23)
RY 1 supp(1n Ln) [ J B},

To finish our argument we treat the first term on the right-hand side of
(2.23]). The key ingredient here is the standard Caccioppoli estimate, which
we apply in a box-wise sense in supp(n,L,) by covering the domain with
cubes of side length 41,. If we denote the (d-dimensional) cube with center
z € R? and side length [ € R by Cj(z), we may find a set of points

S={zeR"| |supp(nLn) \ U:esCu, ()| = 0
2.24
Z XCo, (o) () < 2% for all z € Rd} , (2.24)
z€S
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Then, for each box Cy; (z) we let 6’4%61”,2 denote the smooth cut-off of Cy; (2)
in the box of side length 6/, centered around it. In particular, we require
that

1 ifzxe C4ln(z)

Cy, 61,.-(T) = { 0 ifzé Cy (2 (2.25)

and that \Vagmﬁlmz\ < lz For each 2z € S we test the whole-space corrector
equation (2) with (Cy, 61,..)>n2(¢n, + bi - (x — 2)). After using the uniform

ellipticity and boundedness of a and Young’s inequality we obtain that
1
LR Ty 6y, + b (o = 2) P do,
C4ln( )QBR l Cﬁln( )ﬂBR
(2.26)

where we have also used that we may choose [,, to satisty [,, < R. Breaking
up supp(n,L,) into the cubes Cy; (z) with centers z € S and applying ([2.26))
on each cube, we find that

/ |V (¢, + b; - 3:]2da:<2/ V(dy, +b; - 2)|* do
supp (1 Ln )

z€S Cuiy (2 mBR

oy, +bi - (x — 2)]*dx
172124/0(31” ﬂBR| ’ ( )‘

— gbb |z — 2 2 dx
Z?L (-/ ‘ CGln QBR ‘

<R’ (l]j) 6% + R,

Here we have used that the longest diagonal in a d-dimensional box of side
length 61, has length 61,dz and also (2.5)).
Combining (2.27)) with (2.23) we find that for all » > 0 it holds that

d 2
][ Vep [P de < (g) ((zﬁ) 6% + %) . (2.28)
B n

2
Letting l,, = al® and plugging in the optimal o = ¢y, yields ([2.17). Lastly,
we note that (2.18)) is a trivial consequence of (2.17)) and that Chean > 1.

z€S

(2.27)
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Step 2- (Estimates for o))

In this step we construct intermediate Neumann half-space flux correctors
U{)ZN that correspond to the qﬁ{)VN from the last step. The reader may notice
that the superscript “N” is being used to indicate “Neumann" and the sub-
script “N7” indicates the scale to which the corrector has been adapted. We
construct 0%7 ~ as a distributional solution of

Vi op ey =€ - (a(bi + Vo n) — anombi) in RY. (2.29)

Just as in the construction in the Dirichlet case (see Section 1.3), our strategy
here is to correct oy, with a modification vy, n that satisfies

Vi - wbijk,N =€ (a(bi + qué\iN) — a(bi + qubz)) n Ri. (2.30)

Taking the ansatz Jé\jjk,N = 0,k + b, jk,N, We must then ensure that ¢y, . v
is sublinear and skew-symmetric in 5 and k.

As the reader will notice, the construction of the correction vy, ;1. v is essen-
tially the same as the construction of the analogous correction in the previous
chapter. In particular, decomposing R? into the dyadic annuli from the last
step, we find Lax-Milgram solutions VyiN RSZF — R of

—Av sy =V - (ma;a(Vey x — V) in RY, (2.31a)
vpin =0 for j # d on ORY,  (2.31b)
Oqvpan =0 on ORZ. (2.31c)

When j # d we find a solution vy ; v € Hl(Ri) and when j = d we run our
Lax-Milgram argument in L%(Ri) NH'(RY) if d > 2 or in BMO(RY) N
H'(R?) if d = 2. For details on the Lax-Milgram arguments see Section 1.3.
We then take the ansatz

Ubijk.N = Ok N — OjUnk N, (2.32)
where we have summed over the dyadic annuli indexed by n in the sense that
UhiN =" vy ;s the “ =7 1s included since the sum on the right-hand

side does not converge unless we subtract-off the linear factor. In particular,
we set

Coj,N = { Vo, y(0) if £ -1 (2.33)
and
n 0 if j #d
By = { o Whan — Ghan-2)de ifj=d (2:34)
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and define

oo

Ubj,N = Z (Ug;-jJV - CZ-j,N "L ZJN) (2-35)
n=—1

In Lemma 2 below we estimate the growth of each contribution vy, y —cj; v
xr — dgij,N in the half-ball B and then post-process this result in Lemma 3
to establish that the sum on the right-hand side of converges. Since
seeing that is an appropriate ansatz is exactly the same argument as
in the Dirichlet case we do not repeat the argument here, but instead ask
that the reader consults Section 1.3. To summarize the result: The ansatz

([2.32) for 1)y, holds if V, - vy, v is sublinear.

As indicated above, we start with Lemma 2:

Lemma 2. Assume that the conditions of Theorem 1 hold and the heights

[, are chosen according to Lemma 1. Then for N > —1, n > —1, j,k €
{1,...,d}, and i € {1,...,d — 1} it holds that

1 n n %
- (é* ‘ak(vbij,N — G N x)|2 dﬂ?)
' 1 (2.36)

. ro2" N 2 i
< C3(d) min 4 1, . Vo, v — Vu,|” d
B::)Qn-‘,-l

for all v > 0 and Cs(d) := 16Cy(d)Cy(d), where the constant Cy(d) is speci-
fied in the proof.

Proof. Throughout this proof we use the notation R := 792"*!. The argu-
ment given here is a combination of Lemma 5 and Lemma 2 of the previous
chapter. First recall that the weak formulation of for any j € {1, ...,d}
that we use in the Lax-Milgram argument to obtain vy ; ;v does not include
boundary terms (since the class of test functions we are interested in is
Hyyq(RY)). Testing this weak formulation with vj'; y and combining the
resulting energy estimate with the observation

b n| < C(d) (]f_ﬁ vaj7N2d$> ; (2.37)

T

1
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gives that for any radius r > 1—16R the relation

B B
(2.38)

holds for some Cy(d) > 1. Notice that (2.37)) relies on the classical mean-
value property for harmonic functions with homogeneous Dirichlet or Neu-
mann boundary data.

To obtain for a radius r > 0 we then split the contributions (indexed
by n) into near-field and far-field contributions. The desired estimate ([2.36))
follows immediately from for the near-field contributions, i.e. when
r > 2 R. To treat the far-field contributions we notice that Uy N —Ck"ChiN
1s harmonic on B;;Q,H with homogeneous Dirichlet or homogeneous Neumann
boundary conditions on 0B ,. 1 (depending on j and k). As r < =R we
may first apply and then (2.38)) in the following way:

1
1 2
(F ontt = - 0P o)

1
<(C
- IT02n_1 (]i-&-

1"02'”'_1

1
2

N|—

O (058 — Chjn - z)|? dl’) (2.39)

< 4C,Cq <][ ‘V@])\ZN—V@% de) .
B i ’

We then formally check the ansatz (2.32). Here is the argument:

Lemma 3. Assume that the conditions in Theorem 1 hold and the heights
l, are chosen according to Lemma 2. Leti € {1,....d — 1}, j € {1,...,d},
and N > —1. Then we have that the sum on the right-hand side of ([2.35))

0]

Z (/Ug;‘j,N - C’lr)Lij,N Y ZZ],N) (240)

n=—1

converges absolutely in H'(B) for any r > 0. The expression Vi - vy i
sublinear in the sense that

1 2
lim — (][ \Vk : Ubik,N‘Q d:l?) = 0.
r—o0 T B}
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And, lastly, for r > 0 and k € {1,...,d} the ansatz 1y rn satisfies the
estimate

1 3
- ( ][ b, | dl")
T B;j—

= ro2"tl
<205(d, ) > mm{1, - } (7{9 Véh n — Ve, 2dw>

n=-—1

N

(2.41)

Proof. This lemma is the counterpart of Lemma 4 in the previous chapter;
due to the similarities we skip some details. By Lemma [2|it is clear that if

1
o0 2

) (][ Vénn — Vo, | daz) < 00 (2.42)
Br02”+1

n=-—1
then 32 | V(vj'; v — ¢ - @) converges absolutely in L*(B}}) for any
j € {1,...,d} and any r > 0. Conveniently, (2.42) follows easily from the
identity gbév N — Db, = ZnN:_l iy, and (2.17) from Lemma .

When j # d the homogeneous Dirichlet boundary data of vy, iN T ChiN
T — dy;  on 8Ri allows us to upgrade this to the absolute convergence of

Do 1y =iy —dy ) in HY(B). To treat the case j = d we use

that
]i+ VpaN = Chan - T — dygndr =0 (2.43)
1

for all n > —1. For any v € H'(B;) such that fo udz = 0 notice that
a combination of Young’s inequality, Jensen’s inequality, and the Poincaré
inequality with zero average on B yields

/ |u\2da:=/ u—][ udx
Bf Bf B
2
,S/ u—][ udz da:—l—rd/
B B, Bf

u—][ udx
B
§rd+2/ |Vul? dz.

B

This, in particular, implies that we also obtain absolute convergence in
HY(B) in the case j = d.

To finish, notice that the sublinearity of Vj, - vy, v follows from Lemma
and the bound using the dominated convergence theorem. The

2
dx

2
de  (2.44)
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estimate (2.41)) for y,; n also follows from Lemma [2]

Step 3— (Construction of the generalized Neumann half-space corrector)

Just as in Step 3 of Section 1.3 in the previous chapter, we now choose a

specific ry, which is large enough so that for all N > —1 the generalized in-

termediate Neumann half-space corrector ( f}[\,, Jf}f\,) satisfies condition ([2.10

from Theorem 2 for a = % and r > ry. Furthermore, for this choice of ry and

for i # d we find that ¢y satisfies (2.18) for any r > ro and n > —1.

Lemma 4. Assume that the conditions of Theorem 1 hold and the heights [,
are chosen according to Lemma 2. Then there exists a dyadic radius ro = 2™
that does not depend on N such that the following statements hold:

If for alln € {—1,...., N} and i € {1,...,d — 1} it holds that

% 2n+1 % 1
(]i+ |V¢Z‘2dx) < Cy(d, A) min {1’ <T0 - > }57§02n+1 (2.45)

for r > 1y then ( f}fv,af]\fv)f where we let ¢£,N = ¢bd|Ri and aéiN = O-bd‘Ri
for all N > —1- satisfies condition from Theorem @ forr > rg and

1
04—572.6.

1
57{\[( %,O’JJ\\;) S m fOT' r Z To. (246)

N[

Furthermore, then (2.45) holds for gpé\ifﬂ forallie{1,....,d—1} andr > r.

Proof. Let » > 0. Young’s inequality, the Poincaré inequality with zero
average on BT and the calculation (2.5 give that

2

N N
7
- Op, + oy —][ Op, + oy )dr| dz 2.47
VALY SCRD I (2.47)
+][ |0bi+¢bi7N|2dx+][ |¢bd2+|0bd2dx>
B B,
d—1 9 % N %
<6, + - ][ 4 2da:) +C <][ \V4 “_de> . (248
Z(( o P> (f, 1ven (2.45)

We estimate the second and third terms on the right-hand side of ([2.48))
separately. We start with the second term, for any ¢ € {1,...,d — 1} an
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application of Lemma [3| and assumption (2.45) m yield that

! ][ |y, | da <2d20 Z me T02m+
r f bi, N 3

m=—1n=-1

1
2
X (f Vgo}},|2da:>
B* '
T027n+1

< 2d%C5CY Z Z mm{l od(n=m)/2 } E’znﬂ

n=—1m=-—1

N+n0+1 1 1
< 2d203C2 Z <n —ng + 1 d) 523n

n=no

(2.49)

To treat the third term, for any ¢ € {1,...,d — 1} assumption (2.45)) gives
that

Z (][B+ \VSOZLJ d:lj‘) < Z min | 1, ( , ) 7?02n+1
n=-—1 r n=-—1
250
¢ Y
n=no
Combining these three estimates with (2.48)) gives that
1
d(d+1)\2
5N( N o ) < 4 (g) 5,
2
+ 4d2C3CQCP Z <n — Ny + 1 + m) 57,
n=no
(2.51)

By our assumption ((1.4) on the whole-space generalized corrector we find
that we can choose the initial radius rg = 2" large enough, in a manner
independent of IV, such that holds.

We then show that gpN+1 satisfies for all » > ry. Notice that -

for r > rg such that %i !is a near-field contribution, i.e. when T°2 < 16,
has already been shown in Lemma [II We, therefore, restrict ourselves to
the case when r < 192" ~?. By the argument above, (¢'y,o’y) satisfies the

conditions of Theorem I with a = %, R =1y2", and ri < rg. Therefore, we

2
may apply the mean-value property ([2.12) - to gpN 1 which is a-harmonic on
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B:{rﬂ ~ with no-flux boundary data on 8Rﬁlr N B, ov. Following our application

of (2.12)) by a use of (2.17) from Lemma 1| allows us to write

<][B+ |Vgpé\lf+1|2daj) < CMean (]iJr |Vgpé\j+l|2 d33>

* o (2.52)
L
S CMean012d6;02N+2 .
[]

Step 4—( Passing to the limit N — o0)
Proof of Theorem 1. We split this proof into two parts.
Part 1: The corrector gbé\f

Since the first couple of contributions, i.e. y; for n € {-1,0,1,2,3}, are
near-field contributions for any r» > ry, by an induction argument Lemma
implies that for any r > ry the inequality

00 3 ©
> (f |wg\2dx> <Cy) 6 (2.53)
n=-—1 B n=ng
holds. Furthermore, the Poincaré inequality with zero average applied in the
form (2.44) with u = ¢} gives that

n |2 §< d—"f - n |2 2
> (];mi dw) Srv ) (];\Vsobil dfc) - (2.54)

n=-—1 n=-—1

Therefore, thanks to the assumption (L1.4), the sum ) ° | ¢} converges
absolutely in H(B,"). We must still show that this limit ¢, is sublinear.
For this we use Lemma, [4] combined with the Poincaré inequality with zero

average to obtain
2 3 1
d:l:) < Cp <][ \chbi|2da:>
B}

1
T \JBf B
N 3
< CPSRTP Z (éi V| x)

n=-—1

00 on d A
< CpCYy Z min {1, (7> }55’%

(2.55)
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which is sufficient due to ((1.4)) and the dominated convergence theorem for
sums.

We then take ¢év = ¢, + ¢, for i # d and ﬁg = ¢bd\Hd+. The relation
(2.55)) and ((1.4]) yield the desired sublinearity property

d—1
: 1 N N
Jm (; ]{9; P ]{3; %

Part 2: The flux corrector Jéj.

2 2
dx+][ apgﬁdx) = 0.
B,

We now pass to the limit N — oo in the sequence {s,jx v}~ by showing
that it is a Cauchy sequence in L?(B;") for all r > rq. First, we notice that
Uy i N1 — Up; v satisfies the equation

—A(vpnp1 — Vhjn) =V (nnxjanpé\j“) in Ria (2.56a)
VN1 — Upjn =0 for j # d on 8Ri, (2.56Db)
ad<'U£id’N+1 — /Ug)lid,N) =0 on 8Ri (256C)

We consider this equation for N > —2 and adopt the notation Vyjo =0
and ¢ ; o = 0. Repeating the argument from the proof of Lemma , gives
that

[N

1
- (]{B+ 10k (V5,31 = V) — €k (Chyvn — Coyn)l dﬂf)

r

2

' T02n+1
< C3min {1, } <][ ’V(ﬁbé\iNH — ¢£Z,N)|2 dx) (2.57)
r B:)Qn+1

2n+1
— C’3min{1, i } <][ vgogv+1|2dx>
T B+2n+1 v
70

Summing in n, we find that the v, ; n satisty

1 3
— ( ][ |01 (Vb5 N +1 — Vo) | dw‘)
T Bi

— . ro2" N+1)2
< Ch Z min < 1, Ve, 7| dx
r Bjoznﬂ '

n=-—1

N|—=

(SIS
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We then sum ([2.58)) over IV, which as we assume that r > 7, by (2.45]) yields

- Z (][ | Ok (Vb N4+1 — Vb N )Igdl)

= (2.59)

2n—|—1
< C3C% Z Z mm{ o }min {1 9d(N+1- ”)/2} 67?02N+2

N=—2n=-1

To complete our argument we notice that

Z Z min{1, 24N +1-n /2}5r N 42

N=-2n=-1
1 (2.60)
< Z N+ d)(5§’N
N= no 2
< 00,

by the assumption . By ([2.59 - -, and the definition ¥y, 1 n =
Okp,;N — Ojup, v we find that {¢s,x v }n is a Cauchy sequence in LQ(B;F)
for all » > 0. We may, therefore, on every half-ball B pass to the limit, which
we denote as ¥y, ;. Also following from and , this time using the
dominated convergence theorem for sums, is the sublinearity property:

1 3
lim — (][ |¢bijk\2dx> = 0. (2.61)
r—-o00 T B{J_

We then take ab = op,jk + Ui for ¢ # d and O'b ik = abdjk|Rd. The
relation (2.61)) and ( . give the desired sublinearity property

Tlggﬂ(Z][ o[’ d::r;—i—][ o} |2d:p) — 0.

2.4 Proofs of the Large-Scale Regularity Results
2.4.1 Constant Coefficient Regularity and Caccioppoli Estimate

We first recall two basic lemmas, which correspond to Lemmas 6 and 7 in the
previous chapter. The first is a Caccioppoli estimate for a-harmonic functions
with no-flux boundary data on the half-space; it is completely elementary and
only included for completeness:
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Lemma 5. Let a € €0, where ) is defined by , and r > 0. Then for any
function u that is a-harmonic on By and has no-flux boundary conditions
on OBj, the estimate

1
/ Vul?dz < = lu|? da (2.62)
B

7"2 B;r
holds.

Proof. Let n denote a radial cut-off such that n(x) =1 when |z| < r, n(x) =
0 when |z| > 2r, and [Vn(z)| < 2. We test the equation

—V - (aVu) =0 in By, (2.63a)
eq-a(Vu) =0 on 0Bj. (2.63b)

with n%u. The boundary term vanishes on 9Bj,. due to the no-flux boundary

condition ([2.63b)) and also on 82\3;; due to the cut-oftf . Using the uniform
ellipticity and boundedness of a and Young’s inequality gives

A 2
)\/ nZ\Vu\deS/ 0| Vul? + |Vt do. (2.64)
B B+ 2 A

2r

To finish the argument one absorbs the first term on the right-hand side of
(2.64)) into the left-hand side and uses the properties of 7. O

We will also use the following facts from constant coefficient regularity theory:

Lemma 6. Let apoy € 2 be constant, where Q is defined by (1), and fiz
R > 0. Let v be apyp-harmonic on BE with no-flux boundary conditions on
OBFL; i.e., v solves

—V - (apomVv) =0 in B, (2.65a)
v=u on OB, (2.65b)
ed* hom VU =0 on 0B} (2.65¢)

. 1 ., - R R
for some function w € H2(0B;"). Then for any positive p < 5 and r < 5
there exists a S(d,\) > 0 such that the following estimates hold:

1 2(n—1)
sup |V"u(z)* < <E> ][ |Vv|? da for anyn > 1,
reB; By,
(2.66a)
i IVo|?dz < (R)VP)p° /8 -, |Viary|? ds, (2.66b)
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1 2(n—1) R d
and sup |V (2)|* < (—) (—) ][ \Vol*dx  for anyn > 1,
By,

xeA” 1Y P
(2.66¢)
where we have used the notation
A" = (BL\ B} U(BtNn{z|x; <2 and
(B \ R—2p) (Bg {z]zq4 < 2p}) (2.67)

A" =B\ {w| 2 < p}.

2p

A//
Al

Figure 2.1: In this figure the domain A" is colored blue and the domain A’ is colored violet.

Proof. The third estimate (2.66¢|) follows from the observation that for all
x € A” we have the inner regularity estimate

1

yEBg (x) Bp(
Just as already observed in Lemma 7 of the previous chapter, this follows
from an application of the Sobolev embedding and noting that all of the
components of V"v are apom-harmonic in B,(x), which allows for an iterative
application of the Caccioppoli estimate. We obtain (2.66¢|) by writing:

sup [V"o(z)]> < sup sup |[V"u(y)[”
xeA” ze A" yEBg(x)

xeA" P

1 (R\’
< = O ][ Vo|* da.
P P B},

The first estimate is shown in a similar manner. In particular,
we again use the Sobolev embedding and iterate the Caccioppoli inequality
by differentiating (2.65). However, this procedure only yields the in-
equality for higher derivatives involving at most one derivative in the
eq direction (as dqv does not satisfy (2.65d)). Using a standard argument,

1 2
S sup m/B o Vol dx (2.69)
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one obtains the required estimates for higher derivatives involving multiple
normal derivatives. In particular, one expresses djv in terms of 0%v where
|B| = n and 55 = n—1 by using the equation ([2.65) and proceeds inductively.

The second estimate is shown in exactly the same way as the second esti-
mate of Lemma 7 in the previous chapter. To avoid too much repetition, we
do not repeat the argument here.

[]

2.4.2 Proof of Theorem 2: A Large-Scale C''®- Excess Decay and Mean-Value
Property

We are now ready to prove Theorem 2. Here comes the argument:

Proof of Theorem 2. We use the Einstein summation convention. Thanks to
the linearity of the map & — ¢év , we may re-write the expression in ({2.4)) as

Exc™(r) = inf ][
§eR? J Bt

We proceed in our proof by following the same steps as in Theorem 2 of
Chapter 1.

d—1 2

Vu =Y (b, &) (bi+ V)| de. (2.70)

1=1

Step 1 — ( Comparison of u to solution of homogenized problem/ Main step
of the argument)

In this step we show that there exists 5 > 0 and a radius ’ > 0 such that
for any radius r such that 7 < r < R there exists a £ € R? such that
Vu =Y (bi, &) (bi+ Vp)

2
2(d+1)
< (E) 5ﬁ/<d+3>+<1>2 ][ Vul? dr.
T R B];

where 6 = max (53, 6% ). This should be see as the analogue of (1.57) from
the previous chapter.

d—1
dx

(2.71)

To set-up our argument, we first notice that (2.71)) is clear for r € [%, R]
with the choice § = 0 and we, therefore, assume that r < 7. Also, we let
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R € [%, R] be a radius such that

1
/,\ (Vi y|? dS < 7 |V y|? da, (2.72)
OB, B\

which can be seen to exist by writing the second integral in polar coordinates.
In this argument we use two smooth cut-offs: First, a one-dimensional cut-off
L(x) = L(xg) that satisfies L(xg) = 1if |xy4] < p and L(xy) = 0 if |z4] > 2p.
Second, a function 7 that satisfies n(x) = 1 if |z| < R’ — 2p and n(x) = 0 if
|z| > R’ — p. We assume that 0 < p < 5 and both [VLg| < % and |Vn| < %.

The core of the argument is to consider u as a perturbation of v satistying

(2.65) from Lemma @ with the coefficients ajem € R?*? being the homoge-
nized coefficients. In particular, v is taken to satisfy

—V - (apomVv) =0 in B, (2.73a)
v=1u on (92\3}, (2.73b)
ed - hom VU =0 on OB} (2.73¢)

Interpreting the boundary condition in the distributional sense, one
may find a solution v € H'(B},) to this equation using a Lax-Milgram
argument. Thanks to Sobolev embedding we may actually interpret
in a pointwise sense. Decomposing Vv = (b;, Vu)b; and using that b; € B
when ¢ #£ d gives that

0= €d - ahova(O) = €q- ahombd<bd, VU(0)> (2.74)
As eg - apomby # 0 this implies that (by, Vv(0)) = 0.Having made this obser-

vation, we use Young’s inequality to write
Vu — Z<bi’ Vou(0))(b; + V(ﬁév) dx

/ ;
By i=1

< [ 19— 0= (0= )0 Vo) Ve P

d—1 2

(2.75)
+ /B+ |(b;, Vv — Vv(0))(b; + v¢g)|2 do

+ / |L{b;, V)V |* d
B} '
and then treat the three terms on the right-hand side separately.

We begin with the first term. Let w = u—v —n(1 — L){b;, Vv)¢},’ denote
the ansatz for the homogenization error given by two-scale expansion. Since
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r < R’ — 2p we have that
/B+ V(u—v)—(1—L){b;, VU>V¢{)Y)\2 dx

,S/ |Vw\2dx+/ V(1= L){b;, Vo) ¢y | da.
Bf By

Using the equations for the Neumann half-space corrector and flux corrector,

and the properties of u and v we derive an equation for the homogenization

error analogous to ([1.60)) from the Theorem 2 of the previous chapter. In

particular, we find that w is a weak solution to

—V - (aVw) = V- (1 = n(1 = L))(a — anem) Vo — 05 V(n(1 — L){b;, Vv))
+aV(n(1 — L){b;, Vo))¢;' ) in Bf.

(2.76)

(2.77)

in the sense that we can can test the equation with functions from Hy,,(R%).
Testing (2.77) with w and using Holder’s inequality and the uniform elliptic-
ity and boundedness of a and ay,,,, we obtain

1
/ Vw|*dr < / |Vv|? dz + sup (|V21)|2 + —2\V1)|2>
B, A vedr P
(2.79)

(1685 o) + 103 o[ i

Conveniently, we may also bound the second term of (2.76)) in terms of the

second term of (2.78]). Applying (2.66b|) and (2.66¢|) and using that we have
chosen R according to (2.72)), then gives that

/ V(u—v)—(1—L){b;, Vv)ngé\ﬂz dx
B;f

d
<(ﬁ)ﬁ/ Vul2de+ (8 +2(5”‘)2/ Vol da.
TR B P . BT,

+
R R/

We continue and bound the second term on the right-hand side of (2.75]).
Here, an application of (2.66a)) for n = 2 yields

/ [(bi, Vo — Vo(0))(b; + Vo )|* da
B+

T

<% sup \VQU\Q/B+ b + Vo, |* da (2.80)

xeBT
2
<(5) f 1ok [ vt
R/ r
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Notice that for ¢ = d the whole-space Caccioppoli estimate and for ¢ ## d the
estimate (2.62)) together imply that

F b+ Vol Pds S 1 @) 281
B
The combination of (2.80)) and (2.81)) then gives
/ [(bi, Vo = Vu(0)) (bi + Ve, ) * da
B
2
< pd N2y (T 2
<1+ 030 (5) ]{3 Vol de.

Lastly, we treat the third term on the right-hand side of (2.75)). An appli-
cation of (2.66a)) for n = 1 gives

(2.82)

/B+ |L{b;, Vo)V, | da 57[

B

. \vadg;/B Vi | dx.  (2.83)

= F{za<2p}

To treat the right-hand side of we modify the box-wise Caccioppoli
argument used in Lemma . Using the same notation (the d-dimensional
box with center z € R? and length | € R is denoted as Cy(z)), we cover
B n{zy < 2p} with boxes of width 4p with centers taken from a set

S = {z eRY | |BFn{xg <2p}\ U.esCup(2)] =0, U,esCsp(2) C By,

and Z XCo,(2)(T) < 27 for all = € Rd}

z€S

(2.84)

Then we let 6'4,0’6[,72 be the cut-off of Cy4,(z) in the box of side length 6p
centered around it (see ((2.23)) for the definition). When i # d, for each 2 € S,
we test the Neumann half-space corrector equation ([2.6|) with (C’4p,6p7z)2(¢£\; +

bi- (r —z) — fB; ¢y, dx). This gives

/ Vop + b;|* d
C4P(Z)ﬂRi

1
S |¢éj+bi-(x—z)—][ ¢é\;dx\2dx,
P J o, (2)nRE B;.

(2.85)

where the boundary term has vanished due to the boundary condition ([2.6b)).
When i = d testing the whole-space corrector equation (2)) with (Cy, 6,..)* (¢p,+
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by - (x — 2)) gives that
1
/ \ngég + bg|? dz < —2/ oy, + bg - (x — 2)|* dz. (2.86)
Cap(2)NRYE P~ JCep(2)
Summing over the z € S as in (2.27)) gives that
2
/ VoiPde s () PR s
B n{zy4<2p} ' P
Combining ([2.87)) with (2.83)) then allows us to conclude:
2
/ |L{(b;, VO)V & > da < (lep—l— <5> rd(égi)?) ][ IVo|? dz. (2.88)
B ' P T

R/
Having treated all three terms on the right-hand side of (2.75)), with the
estimates (2.79)), (2.82), and (2.88)), we may now write
Vu =Y (bi, Vo(0)) (b + V)

]; > dz

< ((5) (Y e () e o)+ 2+ (1) <6§i>2)
« ]{% Vol dz + (?)d (%)ﬂ]ig Vul d

S <<§)2<d+1) (g)m 5 + (%)2 (1+6%) + g) ]{BB Vo|? do
+ <§>d (5)5]{3 Vul? d.

+
R

d—1

(2.89)

Here, we have used the notation § = max{(Sg,(SQ{ and that r < 7 and

p < 5. To post-process this estimate we do two things: derive an apriori
estimate for ||Vul[;2p+) and choose a specific width p for the boundary
layer introduced by the cut-offs n and L. The apriori estimate for Vv follows
from the equation satisfied by the difference v — w:

—V - (ahom V(v — 1)) = V - apomVu in B, (2.90a)
v—u=0 on 3@}%, (2.90b)
€d - GhomV (U —u) = —eq - Apom Vu on OB}, (2.90c)
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Testing (2.90) with v — u and using Holder’s inequality then yields that

L V(o — ) dr < /B Vul, (2.91)

R

which by Young’s inequality gives

/\VUPd.QJS/ IVul?. (2.92)
B, By

R
We then turn to choosing the width p. Recall that the only assumption on
p was that p € (0, 5]. By varying p within this interval we may obtain £ = s
for any s € (0, i] We set p to satisfy £ = min {}1, 52/(d+3)}.
These observations allow us to, for sufficiently large » and R, re-write

(2.89) as
Vu =Y (b, Vo(0)) (b + V)

2(d+1) d
5 ((E) 52/((1—1—3) 4 (L)Q n (E) 525/(d+3)> ][ ’VU|2 dr.
r R r B

+
R

d—1 2

dx

(2.93)

Notice that here “sufficiently large r and R” means R > r > r' for the mini-
mal radius ' > 0 guaranteeing that 06 < 1. Using that 0 < 8 < 1 and % >1

then yields (2.71)).

Step 2— (Proof of the Neumann half-space excess decay)

We apply the result of the first step to any two radii 7 and R such that
P < 7 < R < R. Notice that thanks to (2.6) the function %, = u —
S, ) (b + ¢y, ) is a-harmonic with no-flux boundary conditions on dB7,
for any ¢ € R%. Applying to these functions and taking the infimum
over ¢ € R? allows us to write:

ExcV () < (9—2(d+1)55/(d+3) n 92) Exc™ (R), (2.94)

where we have used the notation 6 = %. Thanks to condition (2.10) and
a < 1 we may choose 6 and C,(d, \) such that

9—2(d+1)5ﬂ/(d+3) + 02 < 0204. (295)

is satisfied above some minimal radius r” > 7/ > 0. Making these choices,
we obtain that

ExcV(AR) < 6**Exc™ (R), (2.96)
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whenever " < OR. Iterating this estimate finishes the argument for the
excess decay.

Step 3— (Proof of the coercivity of the excess expression)

This argument is exactly the same as in the previous chapter. In particular,
we must show that

][ Vu— (b+ V) de — oo as  |b] — oo (2.97)
B+
and, by the triangle inequality in L?(B;"), it suffices to prove that

1 d+1 ~
][ b+ Vo |* do > 10> (2.98)
B 16

To show this we insert a smooth cut-off function 7 into the left-hand side of
2.98), where n = 1 on B+ﬂ {xd 4} n = 0 outside of B, 0 <7 <1, and

V| < 2. Tt is clear that

][ b+ VoV Pda > ][ 2lb + VN2 d. (2.99)
B

Jensen’s inequality and an integration by parts, in which the boundary term
cancels due to the cut-off n, then yield

][ n’lb+ Vo |* du
B

2
> dz — b+ V
_<]iin ) B+fB+77dx( ¢ )de
2. 1
> dx b+—][ Vol drx
_(];77 > fpy ndx B i

2
_ ~_; N N
— (]ijndx> b fB;ndfc ]ii Vn (gbb ]{ngbb dx) dx

Notice that
1\ ¢
-] < ][ ndz, (2.101)
4 B;j—

which, along with an application of Holder’s inequality, implies

! ]{givn (gbgv—]; ¢§de) dx

JCBT* ndx
100

2 (2.100)

< 4%2)p|6N (2.102)




By (2.10) we can choose C,(d, \) large enough such that 4%1[b|6N < [b]/2
for all » > 7. Combining this with (2.102)) and (2.100]), we conclude ([2.98)).

Remark: The minimal radius 7}, > 0 from the statement of the theorem is
then chosen to be 7 = max(r’, 7", r").

Step 4— (Proof of the mean-value property)

For any radius r € [r%, R] we let b, € B satisfy

ExcY (r) = ][ IVu — (b, + qué\’)‘z dx. (2.103)
B;f "
It then holds that
][ (V| de <Exc™(r) + |b,|?
B}
<Exc™(R) + |b,)? (2.104)
5][ \Vul? dz + |bg|? + |b, — brl*.
Bj;
Here, the first inequality follows from Young’s inequality and ([2.81]), the
second uses the excess decay from Step 2, and the third is obtained like the
first. 3 3 )
We must bound |bg|* and |b, — bg|?>. The first bound is a simple con-

sequence of (2.98]), the definition of the Neumann half-space excess, and
Young’s inequality:
bp|? < ][ bp + V¢BN|2dx < Exc™(R) +][ Vul?dz < ][ |Vul? d.
B f B B,

(2.105)

+
R

To obtain an estimate for the difference |b, — bg|? we first notice if R —r < 5
then the coercivity property (2.98)), the excess decay, and Young’s inequality
give
B, — bl 5][+ b — b+ (VY — VX )2 da
By

SExc (1) 4+ ExcV (R)

<Exc"(R).
Notice that the condition that r € [Z, R] is used for the second inequality.

bR
To finish, we iterate (2.106). Dropping the assumption that r € [, R], let

(2.106)
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n = Llog%(%j. The excess decay for a = 1 then gives that

2
n
+ Z ‘bRQ—m - bR2—(m—1) >

m=1

< (Z(EXCN(Rzm))%>

m=0

(f:Z 2 (BxcV )é)

Exc" (R) §][ |Vul? dz.
Bt

R

‘ET’ - BR|2 S (lgr - ER2—7L

(2.107)

N

A

The mean-value property then follows from ([2.104])), (2.105)), and ([2.107)).

2.4.3 A C'* - Liouville Principle

With the excess decay in-hand it is now easy to prove the C1% Liouville
principle; in particular, the proof is exactly the same as in the previous chap-
ter. We include it for completeness:

Proof of Corollary[]. With Lemma |5| the assumption (|1.13]) of subquadratic

growth can be processed to yield

1
lim —][ |Vul?dz = 0. (2.108)
+

r—00 T2

By the definition of “Exc™” this implies that

1
lim — Exc™ (r) = 0. (2.109)

7—00 7"2

Our condition on the whole-space generalized corrector guarantees that the
excess decay (2.11) holds above the minimal radius ¥ > 0. So, for all
7 > r> > 0 we have that

r

Exc™ (7) < (f)m Exc™ (1) (2.110)

for any r > 7. Due to (2.109) this implies that Exc™ (7) = 0 for all 7 > r*
Since the infimum in the definition of the half-space-adapted tilt-excess is
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attained, this implies that
7 N
u:b,:mz:—i—%ﬁ#—cf on BY (2.111)

for some constants l;f € R? and ¢; € R. O
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Chapter 3

A Large-Scale Regularity Theory for Harmonic
Functions with No-Flux Boundary-Data On Randomly
Perforated Domains with “Well-Separated" Holes

3.1 Set-up

As a continuation of the previous two chapters, in this chapter we are inter-
ested in the large-scale regularity properties of harmonic functions on per-
forated domains, where we assume that the perforations do not intersect
and are separated by a certain buffer. The motivation for considering such
a domain is to start heading towards the percolation setting, but, due to
our simplifying assumptions, the current chapter is a far cry from this in-
tended goal. This chapter is included in this thesis because the construction
of the sublinear corrector is closer to the classical technique given in [31] and,
therefore, uses different tools than the previous two chapters.

The exact situation that we consider is as follows: let X C R? be a set of
discrete points that are indexed by an index set H C N such that for distinct
i,j € H we have that By(x;) N Ba(x;) = 0; we call such a set of points
well-separated. In this chapter we consider domains of the form

P = Rd \ UiEHBl (ZI?Z), (31)

where H is the index set of some well-separated set of discrete points X. We
are interested in the large-scale regularity of u € H lloc(P), where this space
consists of functions such that w € HY(P NV) for any V € R?, solving

—Au=0 in P, (3.2a)

v-Vu=0 on OP. (3.2b)

Unlike in the previous two chapters, we assume that the dimension d > 3 so

that the set P is always simply connected. We again use scalar notation, but
the arguments we use extend to the case of systems.

In contrast to Chapters 1 and 2, the randomness in this chapter is encoded
into the choice of domain. In particular, if for any subset P C R? we let xp
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denote the indicator function of the set P, in all that follows we will consider
1 to be a stationary and ergodic probability measure on the space

Q:{Ip|]p:Ipr with P as in } (33)

that is supported on the set
Q= {Ip|Ip =Idyp with P as in (3.1)) with well-separated holes}. (3.4)

We construct an example of such a stationary and ergodic measure p on
Q2: Let Qp be the set of all sets of discrete points in R?, on which the Poisson
point-process induces a stationary and ergodic measure. Fixing a set X € ()
we define a self-map of €2y such that any point x € X such that there exists
another point y € X satisfying By(x) N By(y) # 0 is removed from the set.
Clearly, the set of points in the image of this map, say X, induce coefficient
fields ]P(X) that have well-separated holes. Calling this map f we then
consider the pushforward measure f.u on 2. We then check that f,pu is still
stationary and ergodic:

e (Stationarity) If I € Q then for any x € R? we have that f~1(I) + 2 =
f7YI(- + z)). By the stationarity of u we find that fou(l) = fuu(I(- +

e (Ergodicity) Let g € L*(Q) satisfy g(I(-+x)) = g(I(-)) for L-a.e. x € RY
and f.p-a.e. I € . This then implies that g o f € L?(£) is also shift
invariant. By the ergodicity of u the function g o f is p-a.s. equal to
Jogo fdu(I) on Q. Using the definition of the pushforward measure,
we find that for fiu- a.e. I € Q we can write g(1) = [,g0 fdu(lp) =

ffl g df*:u(IP)'

As we have done in the previous two chapters, in order to obtain our results
we adapt the notion of excess used in [31] to the perforated domain. As the
final goal of the analysis given this chapter would be a C1%- Liouville principle
for functions satisfying (3.2]), we can motivate the form of the excess with the
expected form of this Liouville principle. Towards this we recall that in the
non-random situation, which is in this case simply the Laplace equation on
R?, the subquadratic harmonic functions are simply linear functions. Going
from this, one would expect that the subquadratic functions satisfying
are of the form - o + ¢¢ + ¢ for § € R? and ¢ € R, where the adapted

corrector ¢¢ € H. (P) is a weak solution of

—V - IpV(pe+&-2) =0 in P, (3.ba)
v-V(pe+E-2)=0 on OP. (3.5b)

105



We arrive at the following definition: The perforated domain excess of a
solution u € H. (P) of (3.2) on B, N P is given by

Exc?(r) = gieand ]imP Vu— V(€ z+ ¢e(Ip, )| da, (3.6)

where the superscript “H” stands for “holes”.

The first theorem that we prove in this chapter p-almost surely provides
us with a sublinear pair (¢, o) that is adapted to the perforated domain. Our
construction of the adapted corrector in this chapter is not like in the previous
chapters; in particular, the adapted corrector we use in this chapter arises
naturally as the limit of whole-space correctors obtained via the argument
presented in Gloria, Neukamm, and Otto in [3I]. The adapted corrector
is taken as input into the second theorem in which we prove a large-scale
Ol excess decay, but, unlike our previous chapters, we do not go as far
as deriving a mean-value property or obtaining a Liouville principle. These
results would be immediate given our Theorems 1 and 2 and the arguments
already given in the previous chapters, but this would further increase the
length of this thesis without providing any new ideas.

Before going into detail, we mention that the main technical difference
between the situation we consider in this chapter and previously is that here
our homogenized equation,

~V - Tnom * Vo = 0 in R? (3.7)

with solution up,, € Hlloc(Rd), is posed on a different domain than the
original equation (3.2)). Notice that here the homogenized coefficients Iy,
are defined analogously to the standard case; in particular, for ¢ € R? the

homogenized coefficients are determined by the relation

T = [ 10(0)€ + Voe(Tr.0) du L)

The fact that up,, and u are defined on different domains makes it not so
clear how to define the homogenization error “w", which we have used as a
technical tool in the proofs of Theorem 2 in the previous chapters.

3.2 Main Results

As indicated above, in our first theorem we assume that we have a stationary
and ergodic measure y on €2 and show the almost sure existence of a sublin-
ear generalized adapted corrector.
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Theorem 1. Let p be a stationary and ergodic measure on 1 defined in
(3.3) that is supported on Q defined in (3.4). There exist two random fields
o(Ip,x) and o(Ip,x) that fulfil the following conditions:

i) For everyi € {1, ...,d} the adapted corrector in the direction e;, ¢;(Ip,-),
is a weak solution of (3.5)) p-almost surely.

i) For every i,7,k € {1,...,d} the adapted flux corrector oijr(Ip,-) is a
distributional solution of

Vk; . Uijk<IP7 ) = ej . Qi(IP7 ) m Rd (38)

p-almost surely, where the current correction on the right-hand side is

Qi(lpa x) -
{ Voi(Ip, ) + e — [ Ip(0)(Voi(Ip,0) +e;) du(Ip) if z € P
fQIP ng,(lp, )—i—ez) d,u(fp) Zf T ¢ P.
(3.9)
The oji, furthermore, satisfy the skew-symmetry condition oy, = —0ip;j.

iii) The random fields ¢ and o are p-almost surely sublinear in the sense
that

gi)rgo 0,(Ip) =0 (3.10)
where we use the notation
1 d 2
6y (Ip =—][ oilp,x) — ¢i(Ip, ) dx
() r B,NP Z:ZI ( ) B,NP ( )

2
dx.

D>

jk=1

O'Z‘jk(lp,x) — ][B PO'ijk(]p,x) d[C
M

We use the generalized adapted corrector constructed in Theorem 1 to
prove the following excess decay:

Theorem 2. Let u be a stationary and ergodic measure on S defined in (3.3))
that is supported on S defined in (3.4]). For every Héolder exponent o € (0,1)
there exists a constant C,(d) > 0 such that if

57”([P) S

1
Cold) for r>ri(Ip) (3.11)

for a minimal radius r’(Ip) > 0, then for u € H}

ZOC(F) a weak solution of
(3.2)) the excess decay

Exc (r) < (%) " Exc (R) (3.12)
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is satisfied for R > r > ri(Ip). We find that the minimal radius p-almost
surely satisfies r’(Ip) < 00.

All of the proofs in this chapter hinge on the following elementary lemma
concerning the harmonic extension of a function u € H} (P) into the holes
of P. This lemma is, in particular, the reason we assume that the holes of P
are well-separated. As this lemma is the foundation of this chapter, we state
and immediately prove it:

Lemma 1. Let P = R\ UjcgBi(x;) as in (3.1) such that the holes are

well-separated and let uw € H} (P). Define the harmonic extension of u into

the holes, which we denote ey, as

_Juzr) if xzeP
teat (%) = { uF(z) if x € By(x;) for somei € H (3.13)

7

where for every i € H we have that u¥ : By(x;) — R? solves

—Auf =0 in  Bi(xi),
g 1(@:) (3.14)
u;p =u on  0Bi(x;).
Then we obtain the following two results:
i) The bound
][ |Vuext|2dx§][ Vul? dr (3.15)
B, By, NP
holds for r > 3.
i) Using the notation
Qgood = {Ip € 2|0 € P}, (3.16)

if we have the additional information that Vue.:(Ip,x) is a stationary

random field in L*(Q) then (3.15) implies that

| Vet Pt S [ Vulln OPdu(tn). @17
good

Proof of Lemma 1. We start by proving 7). Fix r > 3 and index the holes

of P that intersect B, nontrivially by H' C H. For any i € H denote A; =

Bs(x;) \ By(z;) and notice that thanks to the well-separatedness of the holes

of P, these annuli are disjoint. Also, as the inequality only involves

gradients we may assume that for a fixed ¢ € H we have that fAi udr = 0.
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The trace theorem applied to u € H'(A;) followed by the Poincaré inequality
gives that

] ) S IVallzzea) + llullzza) S [Vullz . (3.18)

H? (04

Furthermore, since the trace operator v : H'(By(z;)) — H2(0B(x;)) has a
continuous right inverse there exists v defined on Bj(x;) such that v = u on
0B (z;) and the bound

HVUHLQ(B1(171')) 5 HUHH%(GAZ) (319)

holds. Of course, the harmonic extension u” satisfies

VU Nl 2wy < IVl 20, (3-20)
which, when hooked-up with (3.18]), implies that
VU llz2s, @) S Vullz2a)- (3.21)

To finish the argument for (3.15)) notice that

/\wm\?dx:/ \vqudx+Z/ VP )? da
B, PNB, By ()

1eH’

< 2/ |Vul?da,
PNBy,

where we have use dthat ., = u on P, the bound (3.21]), and that the A;
are disjoint.

For the pat i) of this lemma we first re-write (3.15]) as

][ |Vuezt|2d:n§][ |Ip(z)Vul* dx
Br

BQT

and then take the expectation of both sides. To finish we apply Fubini’s
theorem and the stationarity of the ensemble to obtain

][BT/Q‘VUe:Et([P,ZE)‘QdM(IP) dSU,S ]{BQT'/Q|IP($)VU(Ip,m)|2du(1p) de
~f [ 1O Valin. 0P dutip) as

which after also using the stationarity of y on the left-hand side gives ({3.17))
as desired. O
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3.3 Construction of the Generalized Adapted Corrector
With Lemma 1 in-hand we proceed to prove Theorem 1. Here comes the
argument:

Proof of Theorem 1. The proof is broken into two parts: In the first part we
prove i) and i) by constructing (¢, o) and in the second part we prove the
sublinearity property éii). Throughout this proof we will make recurring use
of the convention

ngodZ{IPEQ‘OEP},
which we have already introduced in Lemma 1, and the corresponding notion

Qbad:Q\ngod:{IPEQ“)@éP}.

Part 1: Construction of (¢,0)
We construct (¢, o) in a manner very similar to Lemma 1 in [31].
Step 1- (Construction of ¢)

For a fixed ¢ € {1, ..., d} we construct the random field ¢;(Ip, x), the adapted
corrector in the direction e;. For any Ip € 2 and 0 < € we define
Ij:) = IP —l‘ GIdXRd\p

and let

X = {g c L*(Q,RY) ‘ Djgr. = Dyg; and /gdu(]p) = o} . (3.22)

9)
where D; denotes the “horizontal derivative" given by
In(- 4+ hes)) — alIn(-
h—0 h

and the curl-free condition is meant in the distributional sense.

We first notice that X is a closed subspace of L?(2,R?). To see this we
take a L*(Q, RY)- convergent sequence {g' € X}Z with limit ¢* € &X. For
¢ € H'(Q), where this space is defined in terms of the horizontal derivatives
, we use Holder’s inequality to write

(3.23)

/QDJ'SOQEO—DkSOQdeM(IP)
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S/Q (Djeg> — Dregs®) — (Djegy, — Drpgh)| du(Ip)
<IDjellzollgr = gillz@ + 1 Drell 2ol g5 — g5l 2@,

which yields the curl-free condition for ¢ after passing to the limit [ 1 oo.
Showing the vanishing average condition is essentially the same; in particular,
notice that for every [ we may write

‘/Q 9> du(lp)

which gives the vanishing average condition for g* after take the limit [ 1 oo.
Aside from the closedness of X we also notice that the coefficient field I}
is, for fixed € > 0, uniformly elliptic. Using these two observations we notice

S 2@y lg™ = ¢l 2@ (3.24)

that an application of Lax-Milgram provides us with a ¢ € X such that for
every g € X it holds that

| 9 150G +e) duttz) =0, (3.25)

Notice that in this application of Lax-Milgram we have crucially used the
finite mass of the probability space. In order to fix notation for the second
part of this proof, we remark that it is shown in [31] that the stationary
extension of g¢, which we will denote §¢(Ip(- + z)) = g°(Ip,x), satisfies
§(Ip,x) = V¢ (Ip,x), where ¢¢(Ip,x) is a whole-space corrector for the
coefficient field I and is p-almost surely sublinear.

Testing (3.25) with §¢ yields

(SIS

([ st anim) <1 (3.26)

When Ip € Qgooa, as 0 € P, we know that |g¢ - I6(0)g¢[* = |g¢|* and (3.26))

gives that
(/Q §€|2du(1p)> <1, (3.27)
good

which implies that there exists a §° € L*(Qy00a, R?) such that g° SN 3". We
extend the definition of §° to all of  in the following way:

~0
~0 . q ([p) for Ip € ngod
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Notice that since for ¢ € H'(Q) it holds that Dy € X, the relation (3.25)
implies that

| Do 105" + ) dutr) =0, (3.29)

We would like to pass to the limit € | 0 in this equation. To do this we write
| Do (505" + ) = 10 + ) anIy)

= /Q Dy - (I]%(O) — Ip(0))e; + (Ip(0) — Ip(0)) §° — ]P(())(flo - ge)) du(Ip).
(3.30)

The first term is immediately bounded as

/ \Dso-<f;<o>—1p<o>>ei\du<fp>Se( / Ilezdu(fP)> 33

For the second term we use that (3.26]) implies

(/Q |§6|2du(lp)>é <e2,

which allows us to use Holder’s inequality to write

—

106+ 150~ Iyl antie) < [ 1DePdutin) .
Combining (3.30]), (3.31), and (3.32) we find that

/ D - (I5(0)(F + e1) — Ip(0)(3° + e1)) du(Ip)

<D ooy + \ | Do 10)@ - ) auti).

which when combined with ( , after passing to the limit € | 0 and using
the weak convergence of §¢ to §° in L?(Qy00d, RY), yields that

/Q Dy - Ip(0)(3 + e) dpu(Ip) = 0. (3.33)

We now use the notation ¢(Ip(- + z)) = @(Ip,z) and §°(Ip(- + z)) =
3°(Ip, ). Using the relation D;o(Ip(-+ z)) = 9;¢(Ip, ), where “0;" refers
to the standard partial derivative in the spatial variable, we use the station-
arity and ergodicity of u to convert to

R V(e(p,x)) - Ip(z)(3°(Ip,x) + €;) dz = 0, (3.34)

112



which holds g-almost surely for any ¢ € H*(Q) such that ¢(Ip,-) has uni-
formly bounded support for all Ip € Q. In particular, notice that if f(Ip,-)
is a stationary random field such that supp(f(Ip,-)) C B, for all Ip € 2 and
the corresponding random variable f(Ip,0) = f € L*(Q) then

f(Iprv)d / Rdf Ip,x)dxdu(lp)

// f(Ip,z)dzdu(Ip)
_ /B | /Q F(Ip, ) du(Ip) da

= |Br|l/QJ?(IP>O)dN(IP)‘

Here, the first equality holds p-almost surely thanks to the erogodicity of the
ensemble since the left-hand side is a shift-invariant random variable and we
have used the Fubini-Tonelli theorem to swap the integrals in the third step.
In order to obtain ([3.34) we must take f to be the integrand in ([3.33).

We, furthermore, notice that for ¢ € H*(€) such that supp() C Qge0a by
the definition the distributional curl-free condition passes to the limit;
i.e. we have that

Rd

(3.35)

/Q (D;0)) — (D) du(Ip) = 0. (3.36)

Once again assuming that @(Ip,-) has uniformly bounded support for all
Ip € Q and now additionally supp(y) C Qguea, using ([3.35) we obtain that

/ 8jg0(lp,x)§2(]p,x) — 8kgp(lp,x)§?(]p,x) de =0 (3.37)
]Rd

p-almost surely. So, p-almost surely g(Ip,-) is distributionally curl-free on
P, which is simply connected since d > 3. Using the Poincaré lemma this
implies that p-almost surely there exists a scalar potential ¢;(Ip,-) € H. (P)
such that ¢°(Ip,z) = V¢i(Ip,z) on P. Of course, we may, furthermore,
impose that JCBl ¢;(Ip,x)dz = 0 for each realization Ip € Q for which this
potential exists.

To finish our argument we, for a fixed realization Ip+ € 2 such that
and hold, make the substitution §°(Ip-,z) = V¢;(Ip-,x) in (3.34).
Then for any test function g € H},(RY) we define the random variable

o(Ip) = { pla) for Ip=1Ip.(+u) (3.38)

otherwise,

)
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the stationary extension of which satisfies ¢(Ip+, x) = B(z) and also ¢(Ip, )
has uniformly bounded support for all Ip € €). These identifications allow
us to conclude that ¢;(Ip«, x) satisfies the weak formulation of the corrector

equation (3.5)) on P*.
Step 2- (Construction of o)

For a fixed ¢ € {1, ...,d} we now construct the random field o;(Ip, z), which
is matrix valued since we have dropped two indices, using the strategy given
in [31]. In particular, we let

Y= {b € L*(Q, R

Dkglm — Dmglk and / Bkl d,u(]p) = 0} (3.39)
Q

and introduce the three-tensor b;;; € Y, which is the orthogonal projection of
;1 € L*(Q,RI) onto Y with ¢ = Ip(0)(g° +ei) — [, Ip(0) (3" +€;) du(Ip).
We then obtain two relations for b;:

) Notice that if ¢ € H?(Q2) then D?*p € Y. So, we may, in particular, write

0= / D?p —q;1)dp(lp) = /Q(trace D*o)(trace b; — q;) du(IP),
(3.40)

where we have used orthogonality and the curl-free condition in ). In par-
ticular, we use that the relation

/DlDlSObykkd,u([P /DZSODZ bire dpu(Ip)
_/DZSDDkbjk:l du(Ip)
0

= / D Dypbji dp(Ip)
0

holds for all [ ke {l,..,d}. Due to ergodicity the space
{trace D*p| ¢ € H*(Q)} is dense in {¢ € L*(Q)| [, ¢ du(lp) =0}. To see
this choose some 1 in the orthogonal complement of the L2-closure of the
first space; we show that ¢ is p-almost surely equal to some constant. This
is almost immediate since for all ¢ € H?(Q) we have that

/wtrace ¢)du(Ip) = /sz Dodu(Ip) =0,

which implies that D = 0 p-almost surely and by ergodicity this implies
that 1 is p-almost surely a constant. Combining this density observation
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with [, ¢; du(Ip) = [, traceb;du(Ip) = 0, the equality (3.40) implies that
traceb; = bjrr = ¢; (3.41)

p-almost surely.

ii) We find that
Dllekk;j = DjDkbk” (342)

distributionally, where we have used the curl-free assumption in ). There-
fore, if ¢ € H?(2) such that Dy(Ip,-) has uniformly bounded support for
all Ip € 2 we may use (3.33)) to write

/trace(Dng)bkkj du([p) :/DZDZQObkkj d,LL(Ip)
Q Q
:/DijSDbklld,u(IP)
Q

@)
/DijSOQk:dM([P)
0

= 0.

(3.43)

By density this implies that

d
> by =0 (3.44)
k=1
p-almost surely.

To complete the argument we pass to the stationary extensions of the
bjri, which are denoted b (Ip, ). The curl-free assumption in ) implies
that Dibji,, = Dpbji distributionally in the probability space, which then
translates into the condition

815jkm(1p,;c) = 8m6jkl([p,£l?) (345)

which p-almost surely holds in a distributional sense in R?. Combining this

curl-free condition with d > 3 allows one to apply the Poincaré lemma, which
then for every Ip € €2 such that (3.45)) holds gives o;(Ip,-) such that

biri(Ip,x) — bpji(Ip,x) = Oi0,1(Ip, ) (3.46)

holds distributionally on R?. The vanishing average assumption in ) implies
that [, Vojrdu(Ip) = 0 and we may, furthermore, impose that for every
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Ip € Q for which o is defined it holds that f; ojx(Ip,z)dz = 0, which
implies that o, (Ip, z) retains the skew-symmetry of b (Ip, ) — brji(Ip, )
in j and k. After using stationarity and ergodicity to move to physical space
(just like in our argument for the construction of ¢), the equalities and

(3.44)) yield that p-almost surely
610jl(]p, (L‘) = jll([P; 33) - bjjl(fp, x) = Qj(lp, ZI?) (347)
distributionally in R2.

Part 2: Almost sure sublinearity of (¢, o)

Since o is constructed so that fQ Vo du(Ip) = 0 and Voyji, is stationary
for all 4, 7, k € {1, ...,d}, the standard sublinearity argument from [31, Proof
of Corollary 1: Step 1] applies and shows that

2

1
dz =0 (3.48)

Iim —
r—oo 1 Jp
s

oijk(Ip, ) —][ oijk(Ip,-)dx
B,

p-almost surely. Due to the disjointness assumption on the holes of P we
have that r? < |B, N P| uniformly in r and, therefore, we may write

-,
T JB.np

1
5_][ Uijk([Pa') — ][ Uijk(lp,-) dz
" JB, B,

which by (3.48]) then implies the desired sublinearity property for o.
It then only remains to show the sublinearity of ¢, which we do in the
steps below. To avoid the notation becoming too bulky we drop the index ¢

2
dx

oijk(Ip, ) —]é Paijk(]Pa ) dz
M
2
dr,

from ¢; and instead always write ¢. Also, in this argument we make use of
the ¢, which we have introduced in our construction of ¢.

Step 1- (The harmonic extension of the corrector into the holes)

We consider ¢e.(Ip,x), the harmonic extension as defined in Lemma 1 of
the corrector ¢(Ip,x) into the holes of P. We first observe that Ve, is
stationary on R?. To see this we recall from the previous step that V¢¢ — V¢
in L2(ngod). Using the ergodicity of the ensemble we find that this implies
p-almost surely that V¢ — V¢ in L2 (P). As the V¢° are stationary, by

the uniqueness of weak limits we have that for fixed z € R? it holds that
Vo(Ip(-+ 2),x) = Vo(Ip,x + z) on P — z. This, of course, means that on
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P — z we have that ¢(Ip(-+z),x) = ¢(Ip,x+2)+C. The uniqueness of the
harmonic extension then implies that ¢eyt(Ip, T+ 2) = Geut(Ip(- +2),2)+C
for € R?, which implies that V¢, is stationary.

We would then like to show that, in fact, V¢(Ip,:) = Veu(Ilp,-) in
L2 (RY) p-almost surely. We already know that p-almost surely Vo©(Ip, -) —
Vert(Ip,-) in L? (P), which means that, fixing a realization Ip for which
this convergence holds, we only need to concentrate on the holes, of which we
fix Bi(x;). Since our claim is on the level of the gradients, we may assume
that the ¢¢ and ¢ have average 0 on an annulus of radius 1 around Bj(x;),
which we denote A. Using the Poincaré inequality on this annulus we then
find that ¢¢ — Gepe in H. (A), which implies that ¢ — ¢epr in Hz (0B (;))
because the trace operator is continuous. To finish our argument we notice
that ¢ — Peus is the unique harmonic function in H*(By(z;)) with the bound-
ary data ¢ — ¢. This implies our claim since the solution operator of the
Laplacian with Dirichlet boundary data is again linear and bounded, which
implies that it preserves weak convergence.

We then process the above observation to obtain that

lim Vo — Veu d,u(IP) =0, (349)
e—0 Q

which follows via Birkhoft’s ergodic theorem after recalling the stationarity of
V¢ = Ven € L*(Q). Since for every € > 0 we have that [, Vo©du(Ip) =0
this implies that fQ V ezt du(Ip) = 0.

Step 2— (Non-degeneracy of the homogenized coefficients)

Let ¢ € R?. Since o Ve du(lp) = 0 and Vg is, furthermore, curl-free we
have that V¢g € X'. This, in particular, implies that the relation

/Q V6 - Ip(0) (Ve + €)du(Ip) = 0 (3.50)

holds, which allows us to write:

€ Thon€ = [ € 10(0)( + Vo) du(Tr)
= [ (€4 V60 10(0)€ + Vo) du(Tr)
= [ 6+ V60 10(0)€ + Vo) du( 1) (3.51)
# [ (€4 96) - In(0)(Vee — V) du(in
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€+ V[P dpu(Ip) + /Q £ 1p(0) (Ve — V) du(lp)

Z /
ngod

+ [ Ve 1n(0)(Vée — Vo) du(le).
Q

To treat the third term on the right-hand side we use both (3.50) and ({3.25))
to notice that

| Vet 10(0)(Vo: ~ Vo) dutn
=/ Vg - Ip(0)(Ve + & — (Vg + &) du(lp)
- /Q Vot Ip(0)(Ves + €) dpu(Ip) (3.52)
= 0 Voelp(0)(Vog + &) du(lp)
—e / Vol dutip) + [ Vet In(0)Edu(lp).
Qpad Qpad
Combining (3.51]) and - 3.52)) yields
omE > Voel? du(l
e, £>/ng|§+ 62 dpa(Ip)

n /Q & Ip(0)(Ve — Vo) du(Ip) + | V- Tp(0)6 dp(Ip),

Qpaa
(3.53)
where we, furthermore, have that
lim / € 1n(0)(Voc = VoR) dullr) + | k- 1p(0) dulp)| = 0.
) (3.54)

To see (3.54) one uses the weak convergence of V(,bg — Ve on Qyppq and,

furthermore, processes ([3.26) to give HE%V¢ZHL2(QIML{) < [¢], which after an
application of Holder’s inequality gives

1o e 1 1
< Vel z,peclé] < ele’. (3.55)

) Ve - Ip(0)€du(lp)

To finish our argument we notice that by the definition of the coefficient
field I we have that ¢¢(Ip, ) +&-x = ((¢£(Ip, ) +& )| p)eat; Recall, further-
more, that Vg (Ip, ) is a stationary random field. Therefore, we may apply
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(3.17) along with Jensen’s inequality and the condition [ Voedu(lp) =0
to obtain that

/ €+ Vi du(lp) 2 / €+ VP du(Ip)
Qgood Q

2
3.56
2| [ ¢+ votautrr) 350
0
=[¢]*.
This is then combined with (3.53) and (3.54) to give
5 ) ]homg Z ‘5‘2 (357)

Step 3— (The p-almost sure sublinearity of ¢)

For this argument we let {7, }, ., be a family of Gaussian convolution kernels,
where the subscript “r” denotes the rescaling of the kernel n; on the scale
r. We use a superscript “r” to denote convolution with 7,.; e.g. we let
beat(Ip,) ¥ 0y(x) = @y(Ipox) and ¢ (Ip,-) * ny(x) = ¢ (Ip, ). Also,
sometimes we will use the notation (), = - % n,.. The stationarity of the
random fields V¢! , and V@" follows immediately from the stationarity of
Vet and Vor.

We begin our sublinearity argument with an application of the triangle
inequality in L?(R?) and by passing to the harmonic extension

1

1 N
7Y <]ép 6~ dx)
1 2
< 2
Sk <]{9R |beat — ] d:c)
1 3 1 (3.58)
S’E (igﬂg (]iR [Pt = C|2dx> + (]iR Dot — ¢ext|2dx> )
N (f \Vcb’;xt?d:c) +— (7[ \V¢ext|2dx> .
Br R Br

Notice that the first inequality of holds due to the observation that
r? < |B, N P| uniformly in 7. Also, the last inequality is due to the Poincaré
inequality with zero average and a standard convolution estimate.

To treat the first term on the right-hand side of (3.58)), we use that V¢’ is
stationary and apply the maximal ergodic theorem [40), Chapter 1: Corollary
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2.2 |. This gives that

Tim (]i R |v¢;zﬂ|2dx) ( [ 196 an fp>) (3.50)

p-almost surely. We then seek to control ([, |V¢£xt|2d,u(]p))§ for which
we use that I, is nondegenerate: For every e; there is & € R? such that
. = Inom&;. Therefore, we may write

/algbextdli IP /v¢ext ]homgid:u(lp)
/ Vi, - (Ip(0)(Voe, + &) — Thoméi) du(Ip)
(3.60)
/ Vol - Ip(0) (Ve + &) du(lp)

/ v¢ext v¢§ + 52) Ihomgi) d,u(lp),

where for the last equality we use that V. , is distributionally curl-free and
that [, VoL, du(Ip) = 0 by Step 1. To continue (3.60) we write

(/WV@m\duum)

X (/Q |(Ip(0)(Vee, + &) — Ihomﬁz‘)r2du(jp)>§

V&%ﬂwb

2

< ( [ 10)V6c + 6, — uné du(fp)>
(3.61)

By Von Neumann’s ergodic theorem, since Ip(0)(Veyg, + &) is stationary,

Jo Ip(0) (Ve + &) du(Ip) = Inom&, and Ip(0)(Ve, +&;) € L*(Q2), we have
that

1
2

i ([ 100)V05 + )~ Dnél?aulin)) =0, 62

r—00

Since (3.62) holds for all i € {1, ...,d}, (3.61) gives that

lim /ngext du(Ip) (3.63)
r—00
and for any € > 0 we can choose ry > 0 such that
| | Vol du(ir) <l (3.64)
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Another application of Von Neumann’s ergodic theorem implies that we may
choose py > 0 such that for p > py we have that

70 ¢
/ emt /v¢ext d:u IP d:u(]P) S 5 (365)
Q
We then find that
2
/‘ v¢eazt ( )
2
3.66
< 20, [ Vet du(ty) I + o, dutip| 0
§e.

By the semigroup property of the Gaussian convolution kernel, we obtain

that for r > /r3 + p3 it holds that

([ 9ereann) <

We then fix any r > /73 + p? and combine (3.58), (3.59)), (3.17)), and

(3.67) to write

. 1. 2 : 1 . r 2 :
— — < €2 — \V/
lim égf <][Rm \qb c| dx) €2 + lim (][R‘ ¢emt| dx)

w\»—-

(3.67)

<
(3.68)
which, in particular, proves that
1
lim —][ | — ¢pdz|*dr =0 (3.69)
R—oo R Jponp BrNP
as desired.
O

3.4 Proof of the Large-Scale C'*- Excess Decay

3.4.1 Constant Coefficient Regularity and Caccioppoli Estimate

Just as in the previous two chapters, for our proof of Theorem 2 we require
access to a particular Caccioppoli estimate and to some constant coefficient
regularity estimates. We start with the Caccioppoli estimate:

121



Lemma 2. Let r > 0 and u € H'(B, N P) solve (3.2) on B, N P; i.e. u

solves
—Au=0 m  B,NP,
(3.70)
v-Vu=0 on B,NJoP.
Then for any 0 < p < 5 we find that
1
/ Vul? de < — u|? de. (3.71)
B,NP P~ J By,nP

Proof of Lemma 2. Letting n be a smooth radial cut-off for B, in By, such
that |Vn| < %, we test the equation (3.70]) with n?u and obtain

/ 2unVn - Vu + n*|Vul* dz = 0. (3.72)
B.NP

Of course, the boundary terms have vanished due to the no-flux boundary
data of u and the cut-off . The claim then follows from Young’s inequality
and the properties of the cut-off 7. ]

Here are the constant coefficient regularity estimates that we use:

Lemma 3. Let v € HY(B,) be a solution to

-V Ihova =0 m Br,

3.73
V= Uppt on 0B, ( )

for some Ue € H%(ﬁBr) and some constant uniformly elliptic coefficient
Ihom € Mgxqa(R). Then for any x € B, and p > 0 such that By,(z) C B, we
have that

1 n—1
sup |V"v| < <—> ][ \Vol?dz | foralln € N (3.74)
yEB,(x) P By,()

and for 0 <0 < 5 it holds that

N[

0B,

/ IVol? do < i g / |V Uy |* dS. (3.75)
BA\B,_s

Proof. While the proof of (3.74) is exactly the same as in Lemma 6 of Chap-
ter 1 and Lemma 7 of Chapter 2, the proof of (3.75) actually sees some
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simplification because now v solves a constant coefficient equation on B,.
In particular, we have access to the Calderon-Zygmund estimate for (3.73)),
which gives that

1/p 1/p
(/ \Vvlpdx> < C(p,d) (/ |V17\pdx)
Br B'r‘

for all 1 < p < oo, where v is the harmonic extension of v|gp,. We upgrade

this to
1/p 1/2
(/ |Vol? daj) < </ \Vm”uext\de> : (3.76)
B, 0B,

where p = % using ([1.55]). The desired relation then follows from an appli-
cation of Hoélder’s inequality as

2/p
/ |Vv|?dz < |B, \ B,_s| (/ |Vv|pdx) : (3.77)
Br\Br—tS B,
[]

3.4.2 Proof of Theorem 2: A Large-Scale C'“- Excess Decay

With these results in-hand we now prove Theorem 2. A substantial difference
between the case treated here and the cases of Dirichlet or Neumann bound-
ary data treated earlier is that the homogenized and heterogeneous problems
are posed on different domains. As already mentioned in the introduction,
we overcome this by insisting that the holes of P are well-separated and using
our Lemma 1. Here comes the argument:

Proof of Theorem 2.

The main idea of this argument is the same way as the corresponding results
in the previous chapters. In particular, the excess decay follows from the
following observation: There exists a minimal radius ' > 0 such that for any
two radii R > r > 1/ there is a ¢ € R? such that

][ Vu—¢&- (Vo(Ip,z) + x)|* da
B.NP

r 2 R d 1 _d_
< o v (d+4)(d+1) d+1 2
< ((R) + (T) (6T 1 57 )) ]éR\vum\ da.

We now prove this claim. Just as in the previous chapters, we may assume
that € (0, R/8] since the relation (3.78) holds trivially for r € (R/8, R]

(3.78)
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with the choice £ = 0. As was shown in Lemma 1 we may extend u (defined

on P) to uey (defined on R?) such that for > 3 the estimate (3.15) holds.

With u,,; in-hand, we know that there exists a radius R’ € [%, R} such that

the estimate
1
6BR/ R BR

holds. For our argument, we introduce a smooth radial cut-off function 7
that satisfies 7 = 1 on Br_3,, 1 = 0 on R?\ Bg_s,, and |V < 2. We

~Y p'
choose p subject to the constraint p € [1,% :
The main idea of the proof of (3.78)) is to compare u to v solving

—V-I}me’U:O in BR/,

3.80
V = Uyt on OBp. ( )

Making this comparison in the squared energy norm we (as in the previous
two chapters) write

/B IVu=00(0) - (e + VéilIp, @) de
S/B |(d+Volp, z))(Vo - Vo(0))[* dz (3.81)

+ / Vu — div(e; + Vi (Ip, x))\2 dx.
B,NP

We then introduce the homogenization error w, defined on P N By, which is
given by

w=u—uv—ndve;(Ip,x). (3.82)

Notice that thanks to the cut-off n the homogenization error w vanishes on
0Bgr N P. Using that r < R’ — 3p we then re-write (3.81)) as

/B p IVu — 9;v(0) - (e; + Vo (Ip, :r:))\Q dr
S/B . (Vo — Vo(0))(Id + Vé(Ip, z))|* dz (3.83)

+/ \VwP dx+/ ]V(n@iv)@([l),x))'z de
BrpNP BpNP

Again, to continue the estimate (3.83)) we would like to obtain an energy
estimate for w. To do this we notice that w is a distributional solution of

—Aw =V - ((1 =n)(Id = Inom)Vv + (¢; — 0;)V(now)) on PN Bp
(3.84)
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where test functions are taken from C{°(Bg N P). Since w ¢ C3°(Br N P),

when we test (3.84)) with w we pick-up boundary terms; in particular, after
an application of Hélder’s inequality, we can write

/ Vw|* dz
BrNP

<(/ = = D0 (0= ) V) i)

X (/ |Vw|2dx>
BrNP

/ wr - (Vw + (1 —n)(Id = Inom) Vv + (¢; — 0;)V(ndiv)) dS‘ :
BpnoP

(3.85)
The non-boundary terms are simple to treat using the constant coefficient

regularity results from Lemma 3, that v = ug, on 0Bp, and that R’ was

chosen such that (3.79) holds. In particular, in the same manner as in the
previous two chapters we may apply Lemma 3 as

1
2

_|_

1
2

</BRmP (1 = n)(Id — Inom) Vo + (¢ — 0:)V(n00)]? dx)

< (/ VU|2d£L’> + R% sup |V(nov)(y)|og
Bp\Bpg/_3,

YEBRI_s,
d+2

(/ |vm%\2d5> + RS <E> Sr <][ |Vv|2da:)

3BR/ p BR/

B79) s 3 =a 2
p 2d d 2 d R )

< — 2 2 | —

< <R> R (7@1%/ |V test] dx) + R (p) or (723, Vol dx) :

(3.87)

We then treat the boundary term in ([3.85)). Using the no-flux boundary
data of u and x; + ¢;(Ip, ) we rewrite the boundary term as

N

=
SIS

d—1
S (R pa)

/B . wv - (Vw + (1 —n)(Id = Tnom) Vo + (¢; — 0;)V(ndv)) dS
R (3.88)
- / ((U”?aiv)l/ -(e; + Voi(Ip,x))
BpnoP

+w(l —n)v - Iom Vo + wv - O'Z'V(Uﬁﬂ))> ds
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= — / w(l —=n)v - IhemVodS — / wv - o;V(no;v) dS.
BR/ﬁaP

BR/ ﬂaP

For the first term on the right-hand side we find that the relation
/ w(l —n)u-[homVUdS‘
BR/ﬂBP

(3.89)

= / V- (w(l = n)lpom Vo) dz
BrNP

§/ (1 —n)Vw - Loy, V| + |[wVn - o Vo|do
BunP

S./ H vaL2(BR/ﬂP) ||VU HLQ(BR/\BR’—sp)
1
ol e ) VOl 2B,

holds. Notice that in the first step we have used the homogeneous Dirichlet
boundary data of w on 0Bgr N P and in the second step that v solves .
Also, we have used that |Ij,,| < 1, which follows immediately from the
definition. We would then like to apply the inequality

1
;HwHLQ((BR/_gp\BR/_gp)ﬂP) < IVwllzenp), (3.90)

which, when combined with (3.89)), gives

/ w(1l —n)u~[h0mVUdS‘
BR/ﬂaP

,SvaHL?(BR,mP)HVUHLQ(BR,\BR/_M) (391)

P\ L 2 : 2 :
<l=) R (7[ Ve dx) (/ Vw dx) .
(R> BR’ | tl BR/ﬂP ’ |

Here we have treated HVUHLz(BR,\Bqu) just like in ([3.87)).

In order to use (3.90) we notice that the trivial extension w" of w onto P,
defined as

o, Jw(z) if v € Bp NP
w(x) = .
0 1f$EP\BR/,

is in H'(P) and the harmonic extension w’,, € H*(R?) satisfies the standard
Poincaré inequality

) S IVl s,)- (3.92)

1 0
; ||wemt HL2(BR/\BR/73p
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To obtain (3.90) we index the holes of P that nontrivially intersect Bpr: by
J C N; ie. the holes are By(z;) for j € J. The right-hand side of (3.92)) can
then be treated as

IVl Zam, < IV©IZ0e) + D IV 0 T2y ) (3.93)
jed

By Lemma 1 and the definition of the extension w’,, we know that for each

hole Bi(z;) the bound

/ Tl P dr < / Vel da = / Vol da
Bi(z;) Ba(x)\Bi(z;) (B2 (z)\Bi1(z;))NP

holds, which thanks to the disjointness assumption on the holes of P allows
us to post-process ) and - ) to give the desired -

We then treat the second boundary term on the right-hand side of (3.88).
For this we index the holes of P that intersect Br_s, nontrivially by J C N.
Again employing the extension w?, from the previous paragraph, we then

use the divergence theorem and the definition of n to write:

/ wv - O'ZV(n@”U) dS‘
OPNBpg

< / w? v - oV (now) dS
0By (x;)NBg

= / V- w0V (now))dS (3.94)
Bi(z;)

< sw VoWl ([ [welpar) ([ k)
yeEBR_ Bpi BrNP

p

+ s (Vv ([ i) ([ k)
yGBR/,p BR’ BR/ﬁP

+Z/B w’ (V- 0;) - V(now) da

jeJ

The constant coefficient regularity from Lemma 3 and the Poincaré inequal—
ity for functions with homogeneous Dirichlet boundary data applied to w?,,
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allows us to treat the first and second terms on the right-hand as

sop (V00)) ([ 1Vabfae) ([ ok
yGBR/,p Bp BrNP
t s (oo ([ bPa) ([ jopa)
YE€Br_, Bpi Bp/NP
NN ; %
<R? (E + 1+ %) <E> (7[ Vol d:z:) (/ \ngxt|2daz) OR.
P P P B B

(3.95)

D=

We can complete this estimate by noticing again that, in fact, by Lemma 1
and the definition of w! , we have that

</ IVwSmIQdfc> 5(/ !Vwext\de). (3.96)
Bpri Bpr

To treat the third term on the right-hand side of (3.94) we work a bit
harder and use the equation (3.8). In particular, we can rewrite the term as

Z /B ( )ngt(v - 0;) - V(now) dx
jeJ 1T
- Z /B (@) ngt(lhomei) : (@'UV?] + nV@iU) dz
jedJ 1T
= Z /B ( )ngt([homei) : 8ZUV77 dx ,
jeJ 1T

where in the last line we have used the equation for v. We then use Holder’s
inequality, the Poincaré inequality for functions with homogeneous Dirichlet
boundary data applied to w? ,, (3.75)) along with applied to v, and
Lemma 1 to bound

2

jed

1 2
<- (/ |ngt2dx> (/ szdx>
P BR,\BR_SP BR’\BRugp
S (%) R (/ IVl dx) (][ \Vum\de)
R By Br

128

/ ngt(]homei) - 0;uVndx
Bi(z;)

2



p\2i 2 : 2 ’
Sl=) R2 (/ YVw d:z:) (7[ Ve, d:l:)
(R> BpNP | | Br | !

Combining these calculations with (3.94) and (3.95) and the apriori esti-
mate [|Vv||r2,) S [|Vitert| 22(8,,), which we obtain as a consequence of the
energy estimate for the equation

-V ]homv(v - uext) =V Ihomvuemt n BR’a

V— Uegt = 0 on O0Bp,

we find that

‘—/ wv - 0;V (no;v) dS|
OPNBpg

d R\ " P\ 2 ) > ) 3
SEH((Z) ar+ (2) ][ Vttgr|? da / Vwl?dz ) .
P R By Brinp
(3.97)

This finishes our treatment of the boundary terms in the energy estimate of

w. We now combine (3.85)), (3.91)), and (3.97)) to obtain

R d p % R d+4
Vwl*dz < (—) —) + (—) ¥ ][ Vieg|? dz. (3.98
f e : ((R) D)) f vl 395)

Returning to the inequality (3.83) and further using the above apriori
estimate, we notice that the sum of the first and third terms can also be
bounded using Lemma 3 as

]i (Vv — Vo(0))(Id + qu(lp,x)”? dx +][ IV (ndv) i (Ip, x))‘Q A

BR/
<[ (T 2 i 2 2
< ((R) (6% +1) + (p) 5R> ]i Vit |2 .
(3.99)

This observation in combination with (3.83)), (3.98)), g < 1, and the relations
of all the various radii then yields that

]{_gr [Vu = Vu(0) - (e + Véi(lp, )" da
S ((%)2 + (?)d (%)3 I (%)d (g)dﬂ 5R> ]{BR Vttgn|? .
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We post-process this estimate by choosing the width of the boundary layer

p such that
P . 1 (d+4)d(d+f)
= = -0 .
7 = min (8’ R

Plugging in this choice of p yields

]{9 |\Vu — Vou(0) - (e; + V¢i(lp,$))|2 dx

7\ 2 R\ o 4
< o v (d+4)(d+1) d+1 2
< ((R) + <T> (ST 1 57 )) ]iR|vum| da.

With in-hand, one rephrases it in terms of the excess and finds a
ratio of radii 0 = % and minimal radius r* > 0 such that ift R > r > r*
the excess decay holds. To obtain the excess decay for any R > r > r’(Ip)
one then iterates this estimate. As there are no fundamental differences
between the argument used here and that in the previous two chapters, we
omit this. ]

130



Part 11

A Pathwise Approach to a Quasilinear
Initial Value Problem
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Chapter 1

A Pathwise Approach to a Quasilinear Initial Value
Problem

1.1 Set-up and Overview of our Strategy

In this part of the thesis we are interested in developing a pathwise solution
theory for a quasilinear initial value problem, which is singular in the sense
that the data limits the regularity of the solution such that the nonlinear
terms of the equation have no classical meaning. In particular, assuming that
a € (%, 1) we are interested in constructing a continuous solution operator
for

BW —a(W)OFW + W = f in R% (1.1a)
W = Wit on ORZ, (1.1b)

where a : R — [\, 1] for A > 0 is regular, W;,; € C*(R), and f € C*%(R?).
Throughout this part all functions and distributions are assumed to be 1-
periodic in the xq-direction and f is, furthermore, 1-periodic in the xo-
direction. For an overview of the difficulties and the strategy we use in
this contribution the reader is asked to reference the introduction. In the
current section our main goal is to solidify our notation and formally state
our results.

1.1.1 Definitions and Tools

We have already introduced the concept of modelledness in the introduction,
but, for the convenience of the reader, we repeat the definition here:

Definition 1 (Modelledness). Let o € (3,1) and Q@ C R% Assume that for
some I € N we have functions (V1(+,ag),...,Vi(-,a9)) such that V; : Q X
R — R. A function W : Q — R is said to be modelled after (V1(-, ap), ..., Vi(-, ap))
on §) according to functions (ai,...,ar) and (o1, ...,07) with o;,a; € C*(Q)
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if there exists a function v such that

1
Mg := sup ——— 1.2
xF£y;x,ye) d* (.CE', y) ( )

W(y) = W(x) = 0i(@)(Vi(y, ai()) — Vi(z, a;(x))) = v(2)(y — )1

18 finite. We emphasise that here we use the Einstein summation convention
that repeated indices are summed over.

We say that a function W is trivially modelled after (V1(-, ag), ..., V1(-, ag))
according to (ay, ...,ar) if each o; = 0. Since a € (%, 1) this is equivalent to
the condition that W € C?*(Q), but additionally specifies a choice for the
functions (aq, ..., ay).

For a discussion of this definition see the paragraphs following Definition 2.1
in the introduction.
We have explained in the introduction that we expect the solution W of

([1.1) to be modelled after V (-, ag) solving

(09 — agd? + 1)V (-, a0) = f in RZ, (1.3a)
V (-, a0) = Wint on OR2, (1.3b)

where this function decomposes as V (-, ag) = v(-, a9) + V (-, ag) for v(-, ap)
solving

(05 — agd? + 1)v(-,a9) = f in R? (1.4)

and V' (-, ag) solving
(05 — agd? + 1)V (-, a9) = 0 in R%, (1.5a)
V(- a0) = Vi on OR% (1.5b)

with the initial condition ([1.5b)) chosen as Vi = Wi — v(+, ap). Also ex-
plained in the introduction is that the solution W of is obtained via
a fixed point argument that takes as input a solution theory for the linear
problem

(Op — adi + )W = f in R?, (1.6a)

W = Wit on ORZ. (1.6b)

The problem (1.6)) is, in turn, treated via a perturbative ansatz in which we
first handle the forcing a la Otto and Weber and then show that the initial
condition can be enforced classically. In this thesis we treat the linear problem

(1.6) and develop all of the ingredients we need for the fixed point argument,
but leave the actual argument to an upcoming contribution. Really, given the
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results in this thesis, the fixed point argument can now be directly adapted
from the corresponding argument in [47).

When we treat with the perturbative ansatz explained in the intro-
duction, in order to enforce the initial condition, we must handle the initial
value problem

(O — a0 + 1)U =0 in R2, (1.7a)
U=W;—u on 8Ri, (1.7b)

where u € C%(R?) is the solution of
(Oy — a0} + Vu = f in R (1.8)

and a®’ is an extension of a to R%. Even though it is counterintuitive,
the initial value problems we treat in this contribution are sensitive to the
definition of the coefficients also for negative times. This is a result of the
whole-space nature of the singular product, which is defined in terms of
convolutions on the whole-space.

Our treatment of is again perturbative. In particular, we would like
to construct U by correcting the ansatz

q:=V(.a()), (1.9)
where V' (-, ag) solves with initial condition V;,; = Wj,: —u and a solves

(8 — 7)

Ql
I

0 in R?, (1.10a)
a on ORY. (1.10b)

QI
I

Notice that the choice of ¢ as an ansatz is quite intuitive: The most straight-
forward choice of ansatz would be V (-, a(-)), but we would like to vary the
parameter ag in a smooth way for which purpose we introduce a. We choose
to define a without a massive term in order to ensure that a > .

As we have mentioned in the introduction, whenever we write C*(R?) for
a > 0 we are referring to the parabolic Hélder space that is defined in terms
of the distance function

d(z,y) = |1 — | + |z2 — y2|% (1.11)

for any two z,y € R?. We must still define what we mean by “C®” when
a € (1,2) and “C*2" when « € (0,1) U (1,2); here are the definitions:

Definition 2 (Negative Holder seminorm). Let o € (0,1)U(1,2). We define
the CY2-seminorm of a function u as

[u]a—2 := inf ([ul]a + [uQ]a) , (1.12)

(ut,u?)
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where the infimum is taken over pairs of functions (ul,u?) such that u =
O2ul + ou?. We may always assume that a near optimal pair (ut,u?) in the

above sense satisfies ul(0) = u?(0) = 0. When o € (1,2) we define
[u]o = [O1U]a—1- (1.13)

We notice below that for our purposes in this contribution it is (most likely)
possible to use a weaker version of , but for convenience in this thesis
we choose to use the definition given above.

As a side effect of losing periodicity in the zo-direction, we sometimes must
work with a local version of the standard Holder seminorm.

Definition 3 (Local Holder seminorm). Let o € (0,1) U (1,2). We define
local versions of the C* and C* %-seminorms. In particular, for a € (0,1)
we let

W= sp M2 uly) (1.14)
z,y€R? s.t.d(x,y)<1 da(xa y)

and if o € (1,2) then [u]' is defined like (1.13)), but with the local version
of the seminorm on the right-hand side. The definition (1.12)) is adapted in

the same way.

Whenever we are only interested in the local properties of the C'*-seminorm
in the sense of wanting to bound the modulus of continuity, then having an
estimate for the local C'*-seminorm 1is sufficient. To avoid confusion, notice
that if we let

Cr(R?*) = {u|u € C*(Q) for all © € R*}
be the classical local Holder space and
ce —{u\[uloc<oo},

equicts
then clearly the inclusion C%, ;... (R*) C Cf (R?) holds.
Before moving on, we introduce some notation that we use throughout this

contribution. First, for a function u we use the convention
[l := {Jul] =,

where the domain should always be clear from the context. Furthermore,
we will often consider families of functions that are parameterized by either
ap € [\, 1] or ag, aj € [, 1]; we use the notation

il ao, @)l = 1102,0%; iy u(-, ao, ap) |

and |lu(-, ao)|l; =[]0, u(-, ao)||-
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We use the same convention for the Holder norms and seminorms; i.e. we

write
[u(-, a0, ag) |,k : H%@a u(+, ag, ap)|fa;
HU(',ao)Ha,j 1= [|0,u(+, ao)[a;
[u('aQOaag)] a,j,k [szoaa ('7a07a6)]a’

and [U(wao)]a,j = [05,u(, ao)a-

Of course, the analogous definitions can be written down for the local version
of the Hélder seminorm.

While Definition 2 above is the standard definition that we use for the
negative Holder seminorms appearing here, we will often also work with
an equivalent formulation, which is developed in Lemma 1 and relies on
convolution with a specific kernel (¢/; already mentioned in the introduction)
at scales T' < 1. The convolution kernel that we choose to use is the same
as that used by Otto and Weber in [47] and is most easily defined in terms
of its Fourier transform in the sense that

Yr(k) = exp(=T(k{ + 3)). (1.15)

This definition immediately implies that ¢ is a Schwarz function. The
reason for choosing the kernel v is that it is the semigroup associated with
the elliptic operator 9} — 92, which is positive and has the same relative
scaling between x; and zo as the parabolic operator 0y — 07 (+1). Usually,
throughout this exposition, we use the convention

()7 = tr;

occasionally, we even drop the parentheses and simply use the subscript 7.
We now go down a laundry list of useful properties for vp. To prove some
of these properties we rely on the change of coordinates

i = (&1, ) = (xl ‘752) (1.16)

T4 Tz

which we use many times throughout this part of the thesis. Here is the list
of properties:

e Using ((1.15)) and the notation ([1.16]) we find that

V(w1 x) = (T1) >y (21, d2) (1.17)
for any 7" > 0. This means that |[¢r]| 0 = |||t
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e (Bound on the moments of 1) For any i,7 > 0, a > 0, and y € R? we
have that

@ pl0idr(e —y)lde S (T (L18)

To see this we may assume that y = 0. We then rescale using ([1.16]) and
write

[ 0yll0@bin(@) do = [ (T4 @, 0) 0104 ()] da,

RQ
which yields ((1.18)) after using that v is a Schwarz function.

e (Semigroup property of r) For any distribution v and any two scales

t,T > 0 we have that (u * ;) *x ¢y = u * (¢ * ) and by (1.15)),
furthermore, ¥; x ¥ = 1y p. This yields that

(ut)T = UtyT- (119)

e For any 4,j > 0 such that 7 + j > 1 and u € C*(IR?) we have that
[ 00butyinte =y = [ (o) = u(@)0i0fur(e — ) dy

< [U]a/ d°(z, y)Di00pr(z — y)dy  (1-20)
RQ
S [l (T5) 7,
where for the first equality we have used an integration by parts in which

the boundary terms vanish because 17 is a Schwarz function. The second
inequality follows from ([1.18]).

e (Monotonicity of the L*-norm in terms of the convolution scale) For
any distribution v we find that for 7" > ¢ > 0 it holds that

s || S lu* elll[r—illor = [lus delllonllo S flusdll,  (1.21)
where we have used ((1.19) and Young’s inequality in the first inequality
and then ((1.17).

We can now formulate an alternative version of the C* 2-seminorm for
a € (0,1). An analogue of the following lemma is a necessary component for
linking the probabilistic and deterministic components of the solution theory
in [47] and, therefore, also here.

Lemma 1. Let o € (0,1) and Q C R? be convexr. Then a distribution f on
R? that is periodic in the xi-direction satisfies

S12 S sup(TH | frllo (1:22)
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and
oz = sup(T1)*7°| frlq. (1.23)
T<1

If, in addition to the convexity of 2, we have that || f x V|l < oo for all
e >0, then

(Flua S sup(Th) " frl (124

As already alluded to above, this lemma is an analogue of Lemma 9 in [47].
As we will see in our proof of this result in Section 5, things are complicated
by the loss of periodicity in the xo-direction. In particular, this makes it
impossible to use the method of proof in [47] and we instead adapt an argu-
ment from a work by Ignat and Otto [36] in which they analyze a singular
version of a nonlinear elliptic equation, which they derive as a model for the
magnetization ripple. In fact, compared to the work of Ignat and Otto we
are in some sense in a slightly favorable situation because their convolution
kernel is not a Schwarz function.

To reiterate, this alternative formulation of the C“ 2-seminorm is useful
when working with the singular products. In particular, the family of offline
reference products {v(,ag) © 9v(-, afy) } indexed by ag,a € [A, 1] that we
borrow from [47] comes with a commutator estimate of the form

sup sup(T'4)*>* |9}, &, [v(-, o), (-)r] © DPv(-, ap)

ag,ap€[N,1] T<1

‘ <1 (1.25)

As we will see below, this family of offline products only exist almost surely for
a random forcing f satisfying certain criterion (see Section 1.2). By the above
lemma we intuitively think of as C** 2 .control for the commutator.
Inputting these reference products into the reconstruction lemmas, in order
to define a new singular product we then pass to the limit in a sequence of
distributions that are uniformly controlled in the sense of the right-hand side
of . Being able to pass to the limit then relies on the equicontinuity
that is obtained from the left-hand side of H

In the current contribution we treat with the goal of using a fixed
point argument to treat (L.1)). As mentioned in the introduction this means

!Here it becomes clear that there is some ambiguity in our definition of the C*2-seminorm. In
particular, the expression that we use should do two things: 1) It should satisfy an analogue of Lemma
1 and 2) For a sequence of distributions uniform control of the C*~2-seminorm should allow for the
application of the Arzela-Ascoli theorem to pass to a limit. Another choice that would work and which
would simplify the proof of Lemma 1 would be the weaker seminorm

[fleca = inf ([l + [W?)de + [w]e + [[u®])

(ul,u?,u?)

where the infimum is taken over triplets (u!,u? u?®) such that u = 0fu! + dpu? + u3.
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that we would like to think of @ = a(W), where the a on the left-hand side is
the coefficient field in , the a on the right-hand side is that in (, and
W is sampled from the solution space of . For the purpose of defining
the requisite singular products we should choose the assumptions on the non-
linearity a in such that if W is modelled after some family of functions
{V(-,a0)} then a(W) is as well. To motivate the correct assumptions on a
we paraphrase the corresponding lemma from [47]:

“Lemma 1 of [47]." i) Supposed that W is modelled after V (-, ag) according
to a and o both of class C*(R?) with modelling constant M and, furthermore,
that the function b is twice differentiable. Then b(W) is also modelled after
V (-, a0) on R?, but according to a and p := b (W)o with modelling constant

M bounded as
M S VM + 0" W] (1.26)

ii) Suppose for i = 0,1 that the function W; is modelled after V;(-, ag) ac-
cording to a; and o; with modelling constant M;. Furthermore, assume that
Wy — Wy is modelled after (V1(-,a0),Vo(-,a0)) according to (a1,ao) and
(o1, —00) with modelling constant 6M and that b is three times differen-
tiable. Under these assumptions we find that b(Wy) — b(Wy) is modelled
after (V1(-,a0), Vo(+, ag)) according to (ay,ag) and (py == b (Wy)oy, —po :=

=V (Wy)oy) with modelling constant 6M and ||b(Wy) — b(Wy) || bounded as
OM S ||| 6M + [[b" || max[Wi]a[W1 — Wola

+ I I — Wl ma (i
+ {67 [[[[W1r = Wol| max M,
and [[b(W1) — b(Wo)lla < IU[[IW1 — Wolla + 16" I[[W1 — Wi max[Wila
For the proof of this result we ask that the reader consults the paper of Otto
and Weber. As we will see in Section 7, the second part of this lemma is

used for the treatment of the quasilinear problem ([1.1]). For now we use this
lemma to motivate the following assumptions on the nonlinearity a in ([1.1):

ac€ N1 and ], la"||, [a"]] <1, (1.27)

where the first assumption is the standard non-degeneracy condition.

As we have already mentioned, throughout this contribution we will extend
various functions defined only for positive times to negative times. We will
do this in two ways:
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Definition 4 (Extensions to negative times). For a function f defined on
R2 we use f to denote the even-reflection across the azis {x |z =0} and
fE to denote the trivial extension by 0. So, in particular, we have that
< f(x) if ©eR?
flx) == . N
f(z) if xeR2,
(

where we use the convention T = (x1, |x3|) for x = (21, x2), and

f(x) if »xeRy
0 if ©¢€R%.

1.1.2 Offline Products Borrowed from Otto and Weber

We now essentially summarize Section 3 of [47] and, in doing so, find that
their arguments can be used to define the offline products v (-, ag) ©9%v (-, af)
for v(+, ag) solving almost surely assuming a random forcing f satisfying
conditions to be specified below. As noted in the introduction, there are two
differences between their setting (in which vV (- ag) solves

0y — agdH)v°" (-, a9) = P(f) on R? (1.28)

where P denotes the projection onto periodic mean-free functions) and ours:
1) The forcing in ([1.4)) is not assumed to have vanishing average and 2) We
have a massive term. Since the arguments in [47] are lengthy and compli-
cated, we do not repeat their entire exposition here and instead specifically
indicate which steps in their proofs are affected by the differences in the cur-
rent setting. For more details on their results the reader can consult Section
3 of [47] and for proofs Section 5.

Just as in [47], throughout this section we assume that f is a stationary
centered space-time periodic Gaussian distribution that can be expressed in

= > F ka7, (1.29)

ke(2nZ)?

terms of its Fourier series as

where the coefficients \/5 are real-valued, non-negative, and even in k£ and
the Zj, are complex-valued centered Gaussians that, aside from the conditions
that Zy = Z_ and (Z,Z_;) = 0y, are independent. In their exposition, Otto
and Weber encode the standard regularity assumption on f, i.e. that

iN2—a
sup(TH)2 | frl] S 1. (1.30)
T<1
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in terms of the Fourier coefficients; in particular, they assume that there exist
constants A1, A2 € R and « € (0, 1) such that

A
A+ A= —14+ 2 and A, ?2 <1 (1.31)

and for which
. 1

W R IR

for any k = (kyi, k2) € (27Z)%. The difference in our setting introduced due
to the lack of a projection on the right-hand side of , is summarized as
the lack of the condition that C'(0) = 0. As discussed in the introduction,
the massive term in (T.4) instead provides a bound on C/(0) in terms of the

(1.32)

universal constant in (1.30]), which is sufficient for all of Otto and Weber’s
arguments in this section to still work.

Of course, the conditions listed above for the C'(k) are not always equiva-
lent to and the assumptions on the random distribution f are already
used to show the relation between the two conditions. In particular, we sum-
marize Lemma 6 of [47] as:

“Lemma 6 of [47]." Let f be a stationary centered space-time periodic

Gaussian distribution represented as ([1.29) with coefficients satisfying
for some constants A\, \y € R and o € (0,1). We use the notation fr =
f x4, where ¢ is any Schwarz function satisfying fRQ ' dx = 1. Then for
any p < oo and o' < a the bound

<(sng<Ti>“’|fT|)p>; <1 (133

holds. Furthermore, for k € [0,4] there is the bound

<< sup sup(T4)* () " (fo)r — le> > S (1.34)

e€(0,1] T<1

Notice that in both (1.33)) and (1.34) the universal constants depends on o
and p.

The combination of ([1.33) and ([1.34]) shows that in fact the bound ({1.33))

holds for f replaced by f. = f * . uniformly in € > 0. Notice also that
the convolution kernel ¢’ used here must not necessarily be the v used in
the deterministic arguments. In particular, the specific choice of ¢); becomes
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important when we start needing the semigroup property (e.g. in the recon-
struction lemmas) or in the proof of Lemma 1.

Throughout the construction of the offline products in [47], one writes
O (+,ap) in terms of the space-time periodic zero-average Green’s function
corresponding to the operator 9y — apdi. Of course, in our setting this is
replaced by expressing v(-, agp) in terms of the space-time periodic Green’s
function of 9y — agd? + 1. This can easily be determined in terms of the

coefficients of its Fourier series, which are given by
A 1 aok% + Zkg +1
G(k = = :
ka0) = o T~ @Rt 20 TR 1
This is slightly different than (132) in [47] due to the massive term. We can
then write

(1.35)

. _ 1 ;

U(kJ a/O) _ a/()]{f% . 'le 4 1f(k)

- 2 A (1.36)
and  Pv(k,ay) = : f(k).

aok‘% — ikQ +1

Just as in [47] we can observe that defining the offline products 8208261)(-, ap)o

O3v (-, ap) for 4,7 > 0 is essentially the same as for i = j = 0 since for any
number of parameter derivatives the symbol of the Fourier multipliers are
bounded (see (133) of [47]).

The general procedure of Otto and Weber for defining their offline products
is to regularize the terms via convolution with ¢! (already introduced in
Lemma 6 of [47]), multiply the regularized terms, and then to show that,
under the assumptions on f listed above, the regularized products can almost
surely be renormalized so that they converge as ¢ — 0. In particular, using
the notation

C(Q)(E,CLQ,CLB) = <U6('9a0)8506('7a6)>7 (137)

where (-) denotes the expectation, they show that for f satisfying the as-
sumptions almost surely the renormalized products

Ve(+, a0) © D0 (-, ah) = ve(-, ag) © v (-, ah) — ¢ (e, ag, al) (1.38)
and the corresponding commutators

[ve(+; ao), ()r] © Ove(-, ap) = ve(:, a0) (Ove(-, ap))7 — (ve(-, a0) B ve (-, ag))r

(1.39)
converge and satisty the appropriate estimates. Of course, then they define
v(-, ag) © O (-, ap) == lilrol Ve(+, ag) © OFve(-, ap). (1.40)

e—
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In [47] the authors also give a specific expression for ¢? based on in
the sense of ([1.36]) and discuss the convergence of these constants as e — 0.
Since the Green’s function has changed due to the presence of a massive term,
this result will change as well. In particular, their Lemma 7 is replaced by:

“Almost Lemma 7 of [47]." For any e > 0 we have that

c(z)(e,aoa%) = (vg(-,ao)ﬁfve(-,af)»

Z (—aoahkt + k2 — (ao + ah)k})ki C (k)| (¥))* (k)| (1.41)
(a2ki + 2aok? + k3 + 1)((ab)2ks + 2apk? + k3 + 1)

ke (2rZ)2\{0}

The proof of follows from the proof of Lemma 7 in [47] by simply
replacing their (132) by our ((1.35)).

The main result of Otto and Weber in which they pass to the limit in
and is the following lemma, in which we have replaced v’V (-, ag) by

v(-, ap).

“Almost Proposition 2 / Part i) of Theorem 1 of [47] " Let f
be a centered, one-periodic, stationary Gaussian random distribution for
which there exist \y, Ao > 0 and o € (0,1) such that holds. Un-
der these assumptions we find that for ©,7 > 0 the renormalized products

820826?)6(-, ag) © Ov (-, ay) defined in terms of (1.38)) converge almost surely

as € — 0 uniformly in the parameters ag and ay in every CY=2 space for
o/ < a. For every p > 0 we then have that

sup sup(Ti)Q*QO"
ap,ap€[A1] T<1

where the universal constant depends on i, 7, ¢, and p.

9,00, 0(-,a0), (-)1] © BFo(-, af)

ap " q,

The modification of the argument found in [47] is so minor that there is no
new content here as opposed to Proposition 2 of [47] (which is then used in
part i) of Theorem 1 in [47]). We only even mention the modification for
completeness since this is a thesis.

The main tool that Otto and Weber use to obtain the convergence men-

tioned above and ([1.42)) is their Lemma 8, which they then use in the form of
their Corollary 4. Replacing their vV (-, ag) by v(-, ag) we essentially quote

143



their result as:

“Almost Lemma 8/ Corollary 4 of [47]|" Assume that we have f satis-
fying the same assumptions as in the previous statement and let ¢ > 0 and

ag, ay € [\, 1]. Using the notation (1.38) and (1.39) we then find that for
1,7 > 0 the bound

N

1

(8,0 Corl o d0tutea)) ) S (b Ly

holds and additionally for 0 < k < 1 (where “ <7 may depend on A\ and
o) we have that

(Ti)Qa—Q—ﬁ

<(ae (820 a0), (1] oagéa%vec,aa))ff S

= (1.44)

€ 4
The proof of this result relies on the boundedness of the symbol of the Fourier
multiplier corresponding to convolution with the Green’s function (possibly
with parameter derivatives). Since we have already observed above that
this boundedness still holds, their argument does not undergo any relevant
changes when being adapted to our current setting. We remark that in the
work of Otto and Weber the renormalization of the classical products is
necessary in the proof of Lemma 8.

In the first two steps of their proof of Proposition 2 they use the assumed
stationarity on f, the equivalence of moments of random variables in the sec-
ond Wiener chaos (over the Gaussian field f), the Sobolev inequality in terms
of parameter derivatives, and Fubini’s theorem (to switch e. g. an integration

over ag and the expectation) to upgrade ((1.43)) and ((1.44) to
1
P\ »
)) =

sup sup(T%)Z_Qa/
ag,ap €[N 1] T<1
(1.45)

and

01, [0, a0), (7] © DFue(- ap)

ap " a

1
p

—

sup sup(Ti)Q_Qa/ (86 <[a{iove<.7a0)’ ()T] o@iéafve(.,a6))>p>

ag,ape[A,1] T<1

6%_1.

N

(1.46)
The results ([1.45]) and ([1.46]) are then post-processed in Step 3 using Jensen’s
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inequality and the triangle inequality in L? to give

Or Oy [0, 0). (1] © Fvel- ap)

ao

))p>;

(1.47)

<(Sup sup sup(Ti)z_QO/

€€(0,1] ag,ape[N,1] T<1
S

where we emphasize that now the supremum over € € (0, 1] is included. From
there, in Step 5 the authors show that for all p < 0o, o/ < a, kK < 1, and
with the notation

A(T, ao, a67 6) = az aj’ [UG('v aU)? ()T] © 8%1)6(-, a6)7

ao ~ay

there exists a Holder estimate of the form

1y9_9q4/ _k
sup sup  sup(T1)* 2 i |ey — ¢| %
e17€2€(0,1] ag,ape[N,1] T<1

. (1.48)

p
X ||A(T, ag, ag, €1) — A(T, ao,a6,62)|) > <1

To conclude, in their Step 6 they then write
(Ve © 20 )1 = V(00 ) T — [ve, (7] © DFve

and notice that using their analogue of Lemma 1 along with the bounds
(1.33), (1.34), (1.47), and (1.48) they can pass to the limit ¢ — 0 in C*~%(R?).

1.1.3 Summary of the Construction of the New Singular Products

To construct a solution operator for the quasilinear problem ([1.1)) we require
two new families of reference products:

1) The reference products {F0812‘7(-,a0)} indexed by ag € [A, 1], where
F € C*(R?) and V (-, ag) solves with Vi, € C*(R).

2) The reference products {‘7(, ap) © (-, a{))} indexed by ag, a; € [, 1].

From these building blocks we can define all of the reference products men-
tioned in the introduction. As we have already discussed, in order to treat
the linear problem ([1.6)), it is only necessary to construct the first family of
reference products. However, since our final goal is to treat the quasilinear
problem, we also construct the second new family of reference products. In
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order to keep things streamlined, we move all of our work on the singular
product used for the quasilinear problem to an appendix in Section 6. This
appendix contains the construction of the second family of reference prod-
ucts, the reconstruction lemma that allows us to swap out the first factor
of the reference products, and a corollary in which we put the first recon-
struction lemma into the form that we plan to use in our treatment of the
quasilinear problem. We apply this corollary in Theorem 2 (see Section 1.4)
in order to provide the main step necessary for the upcoming fixed point
argument.

As we having already tried to emphasize in the introduction, the main
take-away message from our construction of the new reference products is
that these products are actually classical. In particular, it seems that in
order to address the well-posedness of a la Otto and Weber, we do not
require any new stochastic bounds. In particular, using the notation

V(- a0) = (0 + Ving—o(a0) (- a0), (1.49)
where the subscript “W;,; — v(+,ag)” specifies the initial condition in ({1.5]),
we should think of the reference products Vext(-, ap) © afvm(-, ag) indexed
by ag,ay € [\, 1] (already mentioned in the introduction) as classical per-
turbations of the offline products that we borrow from Otto and Weber. In
particular, we simply define the reference products in a linear way:

—ext

V(- ag) 0 B2V (- ap)
—ext /

=V ('7 ao) © a%VWint—U(',%)('7 0,6) + VWint—U(',ao)('7 a’O) o 8%?)(', aO)
+v(-,a9) © Biv(-, ap),

where the first term on the right-hand side is defined via “1)" above, the
second term is defined via “2)", and the third term is borrowed from Otto
and Weber as detailed in the previous subsection.

We construct the first family of new reference products as an application
of the following general lemma:

Lemma 2. Let o € (0,1). Assume that F € C*(R?) and for G, a function
defined on R?, there exists a constant C(G) € R satisfying
07G(2)] S C(@) (a2l T +

2a0—2

) (1.50)

for every x € R2. Under these assumptions the product FO?G is well-defined
as a distribution on R? and

STgI;(T}*)Q_Q‘“H [F.()r] 0 0:G| S C(G)FI5". (1.51)
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In order to obtain the first family of new reference products we would like
to make the choice G = V(- ag) for fixed ag € [\, 1]. As we will see below,
this choice of G actually only requires the factor with growth ]x2|aT_2 on the

right-hand side. The factor of growth |zo|*% is included in (T.50) because
we will in one step of Proposition 2 consider the case G = ¢ with ¢ as in

)

The admissibility of the choice G = V(-,ag) depends on the first of the
bounds derived in the next lemma. The next lemma, while only containing
elementary estimates, can be viewed as the key ingredient that allows us to
extend the analysis of Otto and Weber to the initial value problem setting.

Lemma 3 (Semigroup bounds). Let a € (0,1) and V (-, ay) solve (1.5) with
initial condition Vi € C*(R). Then the following observations hold:

i) For 2 >k > 0 and j > 0 such that k + j > 1 the i OFV (-, ao) are
well-defined distributions. Furthermore, for x € R?P they satisfy

sup [0,V (2, a0)| < [Vini] o 727 - (1.52)
a()E[)\,].]

i) For j > 0 and a fized time xo € R, we have the L>-estimate

sup |05,V (-, 2, a0) | < || Vil (1.53)
aoé[)\,l]

iii) For 0 < j < 3 the relation
[8£OV(-, aO)]a S H%nt”a (154)
holds.

w) For 0 < j <1 and z,y € R: we have that

sup \830‘/(3:, ag) — 8({0V(y,ao)|
avel\1 (1.55)
S WVintlla(lzl ™2 + [y2] 2)d* (2, y).

v) If V(-,a9) solves (L.5) without the massive term, then the estimates
(1.52)) and (1.55)) still hold. The estimate (1.53)) still holds in a modified

form; in particular, there is no factor of e=*2 on the right-hand side.
Also, (1.54) holds in a modified form in the sense that the right-hand

side is the seminorm [Vigla.

With Lemma 3 in-hand, we are then in the position to post-process Lemma
2 and construct the first of the families of new reference products:
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Corollary 1 (New reference products for the linear problem ). Let o € (0, 1),
F € C*(R?), and V(-,a0) solve (L5) with initial condition Vi, € CY(R).
We then find that the product FOXV (-, aq) is well-defined as a distribution
on R? for any ag € [\, 1] and the bound

sup sup(T7)2 72| [F, ()] 0 2V (-, a0)|| S [Vine)a [ F]' (1.56)
ape[A1] T<1

holds.
Right away, since it is an important tool throughout this entire contribu-

tion, we mention that Lemma 3 is proved mainly by expressing V' (-, ag) in
terms of the heat-kernel; i. e., using the notation

1 —of
G(ag, x1,T9) = —————emew 2 (1.57)
(47&0%2)5

for any = € R% we write

V(z,ay) = / Vint(¥)G(ag, 1 — y, x2)dy. (1.58)

R
Often, we will use the convenient change of variables z = (4961_@’) + and the
Toaq )2

relations

0 -1 0 1

= — and = ——zay . (1.59)

8y (4;[2@0)5 8@0 2

With the first new family of reference products constructed, on the level of
the linear problem ([1.6) we can then move to the reconstruction lemmas. Re-
call that for the quasilinear problem (1.1)) we will require two reconstruction
lemmas, but for the linear problem (1.6|) given our assumptions we only need
the second reconstruction lemma. As already stated, we put the first recon-
struction lemma and the construction of the second family of new reference
products into the appendix. For now, we state the second reconstruction
lemma:

Lemma 4 (Modified Lemma 4 of [47]). Let o € (%,1) and I € N. We have
F € C¥R?), I families of functions {w1(-,aq), ..., wr(+,a0)}, I families of
distributions {F o 0fw: (-, ap), ...., F o 0wy (-, a0) }, and I constants N; € R
such that the bounds

sup [w;(+,a0)],; < NV (1.60)
a0€[>\,1]
and  sup(T1)>72 sup ||[F, ()r] o Bwi(-,a0)||, < NN;  (1.61)
T<1 GQE[)\,H
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hold. Then for a function v € C*(R?) that is modelled after (w1, ..., wy)
according to a € [\, 1] such that [al, < 1 and (o1,...,07) all of class C°,
there exists a unique distribution F o 0?u such that

lin | [F, (1] 0 0%u — 0B [F, ()r] 0 il = 0, (1.62)

where E denotes the evaluation of a function of (x,ay) at (x,a(x)). The
distribution F o O3 has finite local C*~%- seminorm and satisfies the bound

sup(T) 2 [P, ()r] 0 Ofull S [Flab o+ loaNVNe (163

In this lemma we assume that all functions and distributions are periodic in
the x1-direction.

The proof of this lemma, while essentially the same as in [47], is included
for completeness. There are small differences due to the loss periodicity in
the xo-direction, but they are negligible and do not fundamentally alter the
argument. Therefore, occasionally, when the arguments of [47] remain un-
changed and their omission does not detract from an understanding of the
bigger picture, we refer to [47] for details.

1.1.4 Discussion and Statement of our Results

Carrying out our analysis of (1.6)) via the perturbative ansatz that we have
discussed in detail in the introduction and above, we obtain the following:

Theorem 1 (Analysis of the Linear Problem). Let a € (3,1).

i) (Construction of Solution Operator) Assume that we are given:

o A space-time periodic distribution f and a constant Ny € R such that

sup(T)* | fr]| < No. (1.64)
T<1

o A function a®®t € C*(R?) that is periodic in the x1-direction and satisfies
a® € [N\ 1] and [a®"], < 1. Furthermore, a®|gz = a on R2.

e A periodic function Wi € C*(R) and a constant NJ™ € R such that
[Wintlla < Ng™. (1.65)
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o A family of distributions {a“™ o 0v(-,a0)} indexed by ay € [A,1] and a
constant N € R such that [a'], < N <1 and

sup sup(T7)22 | [a“, ()] © OFv (-, ao)]], S N -No; (1.66)
aeM1] T<1

furthermore, for every ag € [\, 1] it holds that

sup(T27)
T<1

a o Fo(-, ap)| < oc. (1.67)

Under these assumptions there exists a solution W € C*(R%) of

(O —aodi + D)W = f in  R2, (1.68a)
W = Wint on OR% (1.68b)

that may be decomposed as W = u + U, where u € C*(R?) solves
(Oy — a0 0? + u=f in  R? (1.69)

and is modelled after v(-, ag) solving (1.4)) according to a®' on R* and U €
C*(R2%) solves

(0 —aod?+1)U =0 in R2, (1.70a)
U=W;—u on 8Ri (1.70b)

and is modelled after V (-, ag) solving with Vi = Wins — (-, ag) accord-
g to a on ]Ri. The solution U 1is, furthermore, decomposed as U = q + w
for q as in and w € C?**(R2) such that w = 0 on OR%. The solution
W is unique within the class of functions admitting such as splitting.

We, furthermore, find that

[Wla S No(N +1) + N (1.71)

and W' = u + G+ w? is modelled after (v+ V) (-, a0) according to a® on
R? such that

M < (N +1)(Ng + N™). (1.72)

ii) (Stability) Leti,j =0,1. Assume that we are given:

e Space-time periodic distributions f; satisfying (1.64]) and a constant § Ny €
R such that

sup(T4)* | (fy = fo)rl] < ONo (1.73)

150



o Two functions as** € C*(R?) satisfying the assumptions of part i) and
a constant ON € R such that

|a$™ — a™||o < ON. (1.74)
o Families of products {ai™" o 0fv;(-,ap)} indexed by ag € (A, 1] satisfying

sup sup(T1)*2 |[ag™, (-)r] © Bvo (-, ap) — [af™, (V7] © Bdvr (-, ap) ||,

CL()G[)\,].] <1
< N5N07
(1.75)
and
sup SUP(T%)Q_ZO[ H [ag™, (-)7] © BFvi(-, ap) — [as™, (-)r] © i, ao)Hl
GQE[)\,l] T<1
< INN,.
(1.76)

e Periodic functions Wiy ; € CY(R) satisfying (1.65) and SN{™ € R sat-
isfying
||V[/int,1 - M/z’nt,OHa S 5N(§m (177)

Under these assumptions, denoting W; as the solution of (1.68)) provided
by i) that corresponds to fi, Wipi, and af“, we find that

W1 — Wolla < (Ng + NJ™ON + 6No(N + 1) + SNJ™ (1.78)

and uy+ i+ (w1)" — (uo+Go+ (wo)”) is modelled after (01 +V1) (-, ag), (vo+
Vo) (-, ap)) according to (a™, ag™) and (1,—1) on R? such that the modelling
constant OM satisfies

SM S ON(No+ NJ™ 4+ 1) + INo(N + 1) + SNJ™. (1.79)

While it may already be clear, we again specify the singular products used
in the initial value problem , the equation ([1.69)), and the initial value
problem . We go backwards and start with . Here, we know that
G+ w” is modelled after V (-, ag), which allows us to define a0 92(4 + w”)

using Lemma 4 and the reference products from Corollary 1. The product
a o A2U in ([1.70) is then defined as

a0 iU = a™ o0} (G4 w") g . (1.80)

The singular product used in ([1.69)) is rather obvious; in particular, since u
is modelled after v(-, ag), we can obtain a®® o 9?u via Lemma 4 taking the
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reference products a®* ¢ 07v(-, ag) as input. Lastly, the product a o &?W is
obtained as

a oW = a™ o 0 (u+ q+w”)[p2, (1.81)

where the product on the right-hand side is obtained via Lemma 4 with the
reference products a® o 92(v+V)(-, ag) 1= a0 d3v(-, ag) + a0 RV (-, ay)
as input.

As we have discussed previously, the proof of Theorem 1 mainly comes
down to combining Proposition 1, in which we take care of the forcing, and
Proposition 2, in which we enforce the initial condition. The proof of our
Proposition 1 can be seen as a variation on the proof of Proposition 1 in [47]
in the sense that we substitute for the periodicity of the coefficients in the
xo-direction with a massive term in ([1.82)). The full statement of Proposition
1 1s:

Proposition 1 (Modified Proposition 1 of [47]). Let a € (3,1). For both
parts of this proposition we adopt the assumptions and notations from The-

orem 1.

i) (Construction of Solution Operator) There exists a unique u € C%(R?)
that is modelled after v(-, ag) according to a®* such that

(Oy —a“ 007+ 1u=f in R2. (1.82)

We may, furthermore, bound the modelling constant M and C“-norm of u
as

M + ||ulla < No(N +1). (1.83)

ii) (Stability) Let i = 0,1. Denoting the solutions given by the part i)
corresponding to af*' and f; as u;, we find that uy — ug is modelled after
(v1(+, @), vo(+, ap)) according to (a$™, a§*) and (1,—1). The modelling con-
stant OM and the C*-norm of uy — ug satisfy

oM + HUO — U,1Ha < 6N(N() + 1) + (N + 1)(5N0 (184)

~Y

Below comes the complete statement of Proposition 2. Indeed, this propo-
sition turns out to follow in an entirely classical manner from the bounds
proved in Lemma 3. Here is the statement:
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Proposition 2. Let a € (%, 1).

i) (Construction of Solution Operator) Assume that we are given a periodic
initial condition Vi, € CY(R) and a®' € CY(R?) satisfying the criterion of
part i) of Theorem 1.

Under these assumptions there exists a unique function U € C“(Ri) such
that

(Oy —aodi+1)U =0 in R, (1.85a)
U = Vi on OR% (1.85b)

and U may be decomposed as U = q + w for q defined in (1.9) and w €
C}QO‘(R%F) such that w = 0 on OR%. We find that § + w¥ is modelled after

V (-, a0) according to a®** on R? and this modelling satisfies

M < e o]l Vintlla- (1.86)
Also, the C“-norm of the solution may be bounded as
HUHa 5 HVintHa- (1'87)

i) (Stability) Let i = 0,1. Assume that we are given two periodic initial
conditions Vi, € C*(R) and two functions af® € C*(R?) all satisfying the
assumptions of part i).

Denoting the solutions of given by part i) as U;, we find that
G + (w)F = (Go + (wo)?) is modelled after (Vi(-,a0), Vo(-, a0)) according
to (a5, ag™) and (1, —1) such that the modelling constant SM satisfies

M S Vinto = Vintallo + lag™ — ai™|a max [Vint,illa- (1.88)

Also, the C“-norm of Uy — Uy satisfies
HUl - UO”a SJ ||‘/int,0 - Vgnt,l“a + ||a8xt - aTItHa m?X H‘/int,iHa- (189)

Aside from the bounds of Lemma 3, which we exploit heavily in the proof
of Proposition 2, the workhorse for both Proposition 1 and Proposition 2 is
the following PDE lemma that is adapted from Lemma 5 of [47].

Lemma 5 (Modified Lemma 5 of [47]). Let a € (1,1) and I € N. Assume
we have I families of distributions {fi(+,aq), ..., f1(+,a0)} indexed by ay €
(A, 1] and I constants N; € R such that

sup(T1)> sup || fir(, a0)ll, < Ni (1.90)
<1 aoE[)\,l]
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and also a function a € [\, 1] satisfying [a]o < 1. Let the function u on R
be modelled after (vi(-,ap), ...,vr(+,ap)) according to a and (o1, ...,07) and
satisfy
1\2-2a
§,Fup(T4)2 2(8y — ad? + Dup — o Efir(-,a0)|| < K (1.91)
<1
for some K € R, where E denotes evaluation of a function of (x,ag) at
(xz,a(x)). We, furthermore, assume that u has a finite local C*-seminorm.
Under these assumptions, the modelling constant of u and the C*-norm are
bounded as

M+ [lulla S K + [|oillaN; (1.92)

~Y

In the setting of Proposition 1, the purpose of this lemma is to quantify
the regularity of an “approximate solution" u of (9 — a®*'0? +1)- = f on R?
using that additionally it is modelled after v(-, ag) according to a®**. In our
proof of Proposition 1 this is helpful because to solve (1.82) we regularize
the right-hand side, which gives a family of regularized solutions that are
“approximate solutions" in the sense of . The estimates obtained from
(1.92) allow us to pass to the limit in the regularization. In Proposition 2
we use Lemma 5 in order to obtain the correction w € C??, but because of
the higher regularity available we can set o; = 0 and our application of the
lemma, is much simplified compared to its use in Proposition 1. For part i)
of the propositions, Lemma 5 is also formulated for right-hand sides that are
the linear combination of some o f;.

Much of the argument for Lemma 5 relies on the analysis of a parabolic
equation with massive term and frozen coefficient a(xg) for g € R? that is
satisfied by ur — o(xg)vr(-, a(zg)). The analysis of this equation is reminis-
cent of the Krylov-Safanov approach to Schauder theory in the sense that
up—o(xg)vp(-, a(zy)) is decomposed into two components up—ao(xg)vr(-, a(zg)) =
W< + w~, where one is a “near-field" contribution and one is a “far-field"
contribution. The near field-contribution w. is chosen to solve the equa-
tion satisfied by ur — o(zg)vr(+, a(xp)) (without the massive term which is
moved to the right-hand side and viewed as part of the forcing) with the
forcing restricted to a ball Bp(zg) for some L > 0. Thanks to the close-
ness of points in this ball to xy the classical regularity estimates that we
obtain for w. are sufficient for our lemma. The far-field contribution is
then defined as w~ = ur — o(xg)vr(+, a(xy)) — w~, which solves a con-
stant coefficient parabolic equation (without a massive term) on the ball
Br(xg) with zero right-hand side. Thanks to the zero right-hand side, the
classical regularity estimates for w~ are also sufficient. The modelling as-
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sumption on u is mainly used to then move from statements about the con-
volved object ur — o(xo)vr(,a(xg)) back to the actual object of interest
u—o(xg)v(-, alxy)).

Combining the result of Theorem 1 with the families of reference products
constructed/ borrowed as described in the previous two subsections, the ref-
erence products constructed in Section 6, and the reconstruction lemmas, we
obtain the below Theorem 2. This will be the main ingredient in the fixed
point argument that is used to treat the quasilinear problem.

Theorem 2. Let a € (%, 1).

i) Assume that f satisfies (1.64); let a, the nonlinearity in (L.I]), satisfy
[1.27); and Wi € C*(R) be periodic and satisfy (1.65). Let W € C*(R?)
such that [W], < 1 be modelled after (v+V) (-, a0), where V (-, ag) has initial
condition Vi = Wine — v(+, ag), according to a € C(R?). We, furthermore,
assume that we have access to a family of C*~2 offline reference products
{v(-,a0) © v (-, ay)} indeved by ay,af € [\, 1] satisfying

ao,z}é%,u ilg(Ti)%Qa H [ a0), ()rl o alv HQ 2~ N NO (1.93)
Using the notation
ezt = a(W) and a:= aeﬂ\Ri, (1.94)
we then find that there exists a unique solution W € C*(R?) of
Oy —aodi +1)W = f in  R2, (1.95a)
W = Wint on ORZ (1.95b)

that may be decomposed as W =u+U = u+q+w as indicated in Theorem
1, where u is modelled after v(-, ag) according to aey and G+ w¥ is modelled
after ‘7(, ag) with initial condition Vi = Wiy — v(-, ag) according to aeyy.
This solution satisfies

[Wila S No(M +1) + Ny (1.96)

with the notation
M := M, + Ny + Ni™, (1.97)
where M, , denotes the modellzng of Qegr after (V + ) (-, a0) (see (1.26)),

and the extension u + G + w¥ is modelled after (v + V)( ) according to
Qegt SUCh that

M < (No+ N&™Y(M + 1). (1.98)
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ii) (Stability) Let i,5 = 0,1. Assume that each f; satisfies (1.64]) and to-
gether they satisfy ; the initial conditions Win; € C*(R) are periodic,
independently satisfy (1.65), and together (L.77). We consider W; € CYR?)
satisfying [Wila < 1 that are modelled after (v; + Vi) (-, ap) according to a;,
where Vi(-,ag) has initial condition Vipe; = Winei — vi(+,a0). We, further-
more, assume that we have access to four families of C*2 distributions
{vi(-, a0) © Bv;(-, ay) } indezed by ay, afy € [N, 1] satisfying (1.93) and

sup sup(74)* > || [vi(-, ao), (-)r] © Bvo(-, ap)

ao,aéE[)\,l] T<1
~[vi(a0), (Ve 0 e ap),, (199
< Nyo Ny,
and

sup sup(Ti)Z_Qa H[UO(-, ag), (-)7] © Ovi(-, ap)
ag,ap€[N,1] T<1

~[v1(-; a0), ()r] © Ofvi(- ap) || (1.100)
< 0Ny Np.
Using the notation
Qicet = a(W;) and a; = ai,ext|Ri (1.101)

and letting W; = u; + q; + w; indicate the solution to (1.95)) with coefficients
a;, forcing f;, and initial condition Wy, ;. We then find that

Wy — Wolla < OM(Ny + N™) + SNo(M + 1) + SN (1.102)

a%

and wr + Gy + (w1 — (uo+Go+ (wo)F) is modelled after ((vi+V1) (-, ag), (vo+
Vo)(+,ag)) according to (ay,ag) and (1,—1) on R? such that the modelling
constant O M satisfies

SM S OM(No+ NJ™ + 1) + 6No(M + 1) + SN™. (1.103)
Here we have used the notation
SM
= 6M,_, + (No + N + 1) (||ay — @olla + [[W1 — Wolla) + INy 4+ SN™,

'Lyhere oM, CONT’I‘BSpOndS to the modelling of Gept1 — Qexro after ((v1 +
V1) (-5 a0), (vo + Vo) (+, a0)) according to (ay,ay) and (1, —1).
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To see how we use Theorem 2, which we prove in Section 7, we sketch
the fixed point argument that we plan to use for the quasilinear problem. In
analogue to and of the introduction and using the notation from
Theorem 2, we consider the map:

(W.a)

£

<a = a(W), {a o d}v(, ao)}a0> (1.104)

E
(Wext =u+q+wf, a(W)) :

Here 1 consists of the construction/ borrowing of reference products and
S indicates the application of Theorem 1. Of course, the main task is to
show that this map is in fact a contraction on a certain space of modelled
functions, which follows from the bounds obtained in Theorem 2. Notice
that the condition [IW], < 1 in Theorem 2 will require us to consider only
small data; this comment will be fleshed out in the up-coming contribution.

Also, a last comment, notice that in Theorem 2 we have again postulated
the existence of the offline products of Otto and Weber. In order to apply
the results we have quoted in Section 1.2 of this chapter, we notice that they
imply that:

“Theorem 1 of [47], ii)" Let f be a stationary, centered, Gaussian random
distribution satisfying (, then there is a positive random constant n such
that = is in every stochastic LP space for p < oo, nf satisfies , and
the offline products n?[v(-, aq), (-)7] 0 0%v(-, afy) satisfy the assumption (1.93).

This will be made formal in the upcoming contribution in which we actually
handle the quasilinear problem.

1.2 Main PDE Ingredient: Proof of the Krylov-Safanov Lemma

We prove this lemma in a series of steps that follow the proof of Lemma
5 in [47]. The difference between their setting and ours is that in place of
space-time periodicity we instead have a massive term in our parabolic op-
erator; in essence, we replace compactness by an L°°-estimate. Here comes
the argument:
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Proof of Lemma 5.

)

Step 1- (u is Lipschitz on large scales and bound for |u)

We first show that for 2,y € R? such that d(z,y) > 1 we have that
[u(z) —u(y)| < 2[ulyd(z,y). (1.105)
This follows easily from the triangle inequality: Fix z,y € R? and define the

functions {n} : R? — RQ}k€Z>O such that if k£ = 0 then nf = z, if k < d(x,y)

then 77 (y) is the point of intersection between the line connecting x and y
and 0By(x), if k = [d(z,y)] then nf(y) = y, and finally if £ > [d(z,y)]
then n{(y) = 0. This notation allows us to write

(@) —u) < Y Julnioi(y) —u@mi(y))]
1<k<[d(zy)]
< [uly” (ld(z, )] + (d(z,y) — [d(z,y)])")
<2l d(x,y).

(1.106)

We would also like to obtain a bound for [u]! in terms of M. For this,
let 2,y € R? such that d(z,y) < 1 and notice that

u(e) = u®l _ e

H lvi(w,a(y)) —vily,a(y))| | [v(y)(@—yhl
d*(z,y)

(l‘,y) + ”01 da(x’y) da(x’y)

S M+ ||og|| N3,
(1.107)

where in addition to the modelling we have used ((1.370)) and ({1.322)).
Step 2 — (Equations satisfied by ur)
We now show that for every zp € R? and T € (0, 1] the function up solves
(02 — a(x0)d; + 1) (ur — oi(zo)vir (-, a(x0))) = gi, on R? (1.108)
where gl (x) satisfies the estimate
98, ()] S N((TH* 72 4 d* (@, 20)(T5)*?) (1.109)
with N = K + [a]a[u]’ 4 ||oy]|oN; for any = € R,
We also find that ur solves
(0y — ad} + up = h* in R? (1.110)
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where
IW71l S K (T3 ol |N(TH) (1111)
We begin by showing that is satisfied for gfo to be determined and
proving the bound . We notice that simple manipulations show that
wr solves
(85 — a(x0)0f + Vur = oi(zo) fir(, azo)) + g5, in R?  (1.112)
where
ga =(8> — adi + 1)ur — 0, E fir(-, a(xo))
+ (a — a(xg))Our + (07 — 04(20)) E fir (-, a(x0)) (1.113)
+ 0i(@o) (E fir (-, a(zo)) — fir(+, a(w))).
For a fixed x € R? we then bound
192, ()]
S(02 — adf + Vur — 0i B fir (-, alwo) )| + |a(z) — a(wo)||0fur (=)
+ |(oi(x) = oix0)) E fir (-, a(zo))|
+ [loi(zo) (E fir (- a(xo)) — fir(-, a(xo)))|l
<K(T1)%72% 4 [a]od®(z, 20)|0%ur ()| (1.114)
+ [oilad®(z, o) sup || fir(- ao)ll

aoe[)\,l}

N —~~

+ [loi||[a]ad®(z, x0) sup || fir(-, a0)|

aoe[)\,l]
SK(T4)* 7 + [alad® (2, 20)|0Fur ()] + oillad® (, 20) Ny(T
where we have used assumptions ((1.90)), (1.91)), and [a], < 1.

In order to obtain ([1.109)) it remains to show the bound
Ofur ()] < [uly (T7)°2 (1.115)
for every x € R2. We do this using our result of Step 1 and ([1.18]), which

allow us to write

Fur ()
[ () = taBtuntc — ) 0

=

)a—2

)

S[uly (/B o 07 (z — y)]d* (2, y) dy (1.116)
+ [ et - e )
Sl (@ 1),
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This is sufficient since we only consider T" < 1. Plugging (1.115)) into ([1.114])
yields the desired ([1.109)).

Using different manipulations we find that ugp solves
(02 — ad} + V)ug = h" in R? (1.117)
where
W' (x) = (02 — aﬁf + Dur — 0ifir(+, a(x)) + Uz'fz':r(', a(z)).
Using the assumptions ((1.90]) and | - we obtain (

Step 3— (L*°-estimates)

We first notice that for T € (0, 1] the estimate
|| S K(T5)%% + ||og| | N(T5)* 2 (1.118)

holds. This follows easily from the previous step by applying Theorem 8.1.7
of [39] to ((1.117) and using ([1.111]). Here, we rely on the massive term.
We also notice that for 7" € (0, 1] the estimate

Jur — oi(xo)vir (-, a(0)) || B, (x0)
< N((T4)2a 2_|_Loz)(T )a 2

holds for L > 0. For this estimate we use the equation (|1.110)) and, let-
ting G(a(xg), 1, z2) denote the heat-kernel as in (1.57), we write up —

oi(zo)vir(-, a(zo)) as

(1.119)

ur(z) — oi(zo)vir(z, a(x))

)

Combining ({1.120)) Wlth the bound ((1.109) and using the notation xy =
(o1, To2), for © € Br(xg) we obtain

(1.120)
ga:o r1 —y,x2 — s)G(a(xy),y,s)dyds.

\

jur(z) — (o) vir(z, alzo))
sN/ J A e L )
% 1Gla(z0), . 5)| dy ds.
<T4 )20-2 4 [T Ty

T /0 /R(Ti)“”(lyla + 52)|G(a(z0),y, 5)| dyds) '
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Here we have used that Bp(zg) refers to the “parabolic ball" and the expo-
nential factor “e~*2” appearing in the Green’s function due to the massive
term. Using the rescaling (1.16)) we then treat the integral on the bottom

line of as
| [ @l + sHi6tat). v 9l dy s

<(Th) 2“/ [ G+ 591 Gatan). .5) 4 s

N(T4)204 2’

where we have again used the presence of the massive term. The previous
estimate in combination with ((1.121)) gives the desired (1.119)).

Step 4— (An excess decay)

In this step we show that for any two radii R and L such that 0 < R < L,
T € (0,1], and xg € R? it holds that

1
5 1mn
R leSpan{l x1}

R 2(1 Oé) 1
S (Z) T2 lgsp;g{fl . lur — o3(zo)vir (-, alz)) — U|p, ) (1.122)

|ur — oi(zo)vir (-, a(z0)) — || Ba(zo)

B 2 L2—|—a
+N( R ki )
RZQ(TZ)Q—QQ RQa(T;)Q—a
Alternatively, we have that
inf ur — oi(xo)vir(+, alxg)) — 1
lESpan{lxl}H T — oi(zo)vir(+, a(zo)) — I 1.193)
S KT 4 o | N (T3)2.

We first show ([1.123)). Here, we plug [ = 0 into the left-hand side of
(1.123)) and use the triangle inequality along with ((1.118]), (1.21]), and ([1.322)
to obtain

lESp&lafll{l,xl}HUT oi(xo)vir (-, a(wg)) — |

S llurll + ol sup |Jvir(-, ao)]|
aoe[/\,l]

< K(TH%72 4 ||l | Ni(T1)* 2,

Showing ([1.122) is the main technical step of this proof: In particular, on
the ball B (z¢) we decompose the function up — o;(xo)vip(-, a(zg)) into a
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“near-field" and “far-field" contribution. Letting w. be the solution of

(02 — a(x0) 07 )we =x8, (g5 — (ur — oi(z0)vir (-, az0)))) in R?
(1.124)

and defining w~ = uy — 0;(xo)vir (-, a(xy)) — w<, we find that w- satisfies
(09 — a(x)0D)ws =0 in  Br(xg). (1.125)
We may then use standard regularity theory to obtain the estimates
lwell S L2923y + lur — ai(@o)vir(-, al@o)) | B, wy)  (1.126)
and
{07, 023w 13, () S L2 Mws — Ul B ay) (1.127)

for any | € Span{l,z;}. The estimate (1.126) follows immediately from
the heat-kernel representation of w. and the triangle inequality in L* and
(1.127)) is proven via Bernstein’s argument in Theorem 8.4.4 of [39] for [ = 0.
As is already mentioned in [47], one can easily reduce to the case that [ =0

since w- — [ still solves (1.125)) when [ € Span {1, z1}.
We maneuver ourselves into a position to apply the estimates (|1.126]) and

by decomposing
ur — oi(zo)vir (-, a(ro)) = w< + w>
and using the triangle inequality to write
|ur — oi(xo)vir (-, a(xg)) — ZRHBR(:co) S RQH{a%a 32}w>”BR(:co) + Hw<HBR(=TO)

for Ip = w () + 52 (w)a1. Using (L126) and (L127) along with (L.109)
and ((1.119)) we may then continue this as

R2H{a%7 a2}w>HBR(Jfo) + Hw<HBR($0)

R\” a2 | Tagmvas
() o =ty + RS2 4 LT
which then yields the desired (1.122)).

Step 4— (An equivalent definition of the modelling constant)

In this step we show that M ~ M’ where M’ is defined as

M’ := sup supR™>* inf |ju— oi(zo)vi(-, a(z0)) — Ul Bpy). (1.128)
xo€R2 R>0 leSpan{1,x;}
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To show this we start with M < M’. For this we begin by observing that

sup inf sup R™**(Ju — o(o)vi(-, a(xo)) — U Bpo) S M" (1.129)
zoeR2 l€Span{l,z1} R>0

for which we wlog assume that xo = 0. Let [ denote the optimal [ for a given
radius R. We then notice that for any R > 0 we have that R~2Y||lop—Ig|| 5, S
M’
R*|[l2r — Ir|l B,

SRiQO&HU — O'Z'(O)Ui(', a(O)) — lR —u—+ O'Z'(O)Ui(', CL(O)) + l2RHBR

<R™**(|lu = i(0)vi(-, a(0)) — lrll 5, + [lu = 03(0)vi(-, a(0)) — Larl B.n)

<M.
Writing [r = vrx1 + cr the above observation gives that R1_2O‘|VR — og| +
R cp — cop| < M, which yields that R'™?Yvg — vp/| + R72%cp — cpr| S
M' for any 0 < R’ < R because a € (%, 1). We find that the sequences
{Vl/n}n and {cl/n}n are Cauchy and there exists [ = vxy + ¢ such that
Rl — Ul Bpwe) S M’ for all R > 0. This observation yields (1.129).
To complete the argument we notice that there is at most one [ making the
expression

sup R~ |u — 03(0)vi(+, a(0)) — ]| s,
R>0

finite since 2a¢ > 1. Therefore, thanks to the modelling of u, the optimal [
on the left-hand side of is given by u(0) — 0;(0)w; (0, a(0)) + v(0)x;.
Repeating this argument for all 7y € R? then gives that M < M’, as desired.

To finish this step we show that M’ < M. This direction follows from the
observation that

M' < sup  infsup R™(ju — ai(xo)vi(-, a(x0)) — Ul ey (1.130)
zoER2 leSpan{l,z1} R>0

and the uniqueness observation that we have made in the previous paragraph.

Step 5— (Use of the modelling)

In this step we show that for T € (0,1], L > 0, and x¢ € R? the estimate
1
(Ti)h

~ L @
T

|ur —u — oi(zo)(vir — i) (-, a(20)) B, (20)
(1.131)
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holds. The argument here is taken essentially verbatim from Step 5 of Lemma
5 of [47]. For brevity we assume wlog that o = 0 and use the notation
vi(y,a(z)) = vi(y,z). We fix x € Br(0) and then use the triangle inequality
to write

lur(z) — u(z) — 0:(0) (vir — v;)(, 0)
/}R?(U(y) — u(x) — o;(x) (viy, ©) — vi(2, 7))

)~ 20}~ ) 4
| [ (o) = ox0)0s.0) = v 0 — ) )
| [ @) wlya) = 500 = (1o.0) = o0 = )0y

<

Notice that we have used that ¢r(x) is even in 7 to smuggle in the term

v(x)(y1 —x1)Yr(z—y) in the first line. We bound the first term on the right-
hand side of the above expression using the modelledness of v and - 1.18) by
M(T4)2O‘ For the second term we use that sup, ¢ 1[vi(+, ao)la < Vi thanks

to ) and (T.18) to obtain the bound N;[oi]o L%(T7)®. The third term is
treated as

/1%2 O-l( )(vl(y’ ) (SL’ :B) (vi(:% O) - Ui(x7 0)))¢T(:C - y) dy

SlaloL?lol [ [ 0t (1 = 1af0) + tafe),
—vi(z, (1 = 1)a(0) + ta(x)))| dt ¥r(z — y) dy

SlalaL{|os | Ni(T)",

where we have used (1.322) to bound [v;(+, ap)] and ( . Using our defi-
nition of NV from Step 2 we then obtain (1.131)).

Step 6 — (Conclusion)

We now show that M < N. To begin, for T € (0,1] and x5 € R?, we
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combine ([1.123)) and ([1.131)) to write

1 :
ﬁ lESpiﬂ{l,xl} Hu o O'Z’(.CU())UZ'(', CL(.IO)) - ZHBR(JJO)

S (K + 1ol NI + fJur = u = 03(ao) (vir = 03) (- (o) |, o))
S(Té)QZ—Q(KJr ]| V) + (%) ) <M+N (%)O) _

Alternatively, combining ([1.122)) with ((1.131)) we find that

1 :
R2 lESpgll{fl,xl} lu = ai(zo)vi(-, a(wo)) — U] Ba(wy)

R 2(1—a) 1
< <Z) —-influ— oi(@o)vil+, a(x0)) — U By (o)

(1.132)

L2« leSpan{l,x,}

2
~ L2 L2+Oé T% L (%
+N . : + = M+N(=) ).
(RQQ(T4)2—204 RQa(T4)2—a> ( R ) ( (T4) )

(1.133)

For the case that R < 1 we make use of (1.133)) and let L = ¢ 'R and
Ti = eR for some £ < 1; the restriction R < 1 guarantees that T < 1.
Making these identifications we obtain

sup ——  inf u— oi(xe)v; (-, alxg)) — 1 .
R<1 RQO‘ leSpan{l,x;} ” ( 0) ( ( 0)) HBR( 2 (1.134)
S(€2 2a + €2a>M+ (6 (4—2a) + 6_4 + 1)N7

where we have also used the equivalence M ~ M’. For R > 1 we alternatively

use (1.132) and let 77 = ¢ and L = e 'R, which gives

sup inf u— oi(xe)v; (-, alxg)) — 1 .

D T g1 I ) Uy
<e YK 4+ ||oy||Ni) + €2 *M + N.

Combining ([1.134)) and ({1.135)) we find that

—— inf — 0; i — Ul Bg(z
D T sty 1 100 020)) = G (1.136)
§(€2 2a + EQQ)M—I— (E a—2 + 6—(4—2a) + 6_4 + 1)]\7

Using M ~ M’ and choosing € small enough yields M < N.
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After plugging in N from Step 1 this gives
M S K + ala[ul + ol N
Using ([1.107) and [a], < 1 we then find that
M + [u]° < K + ||oi]| o N;.

(07

Step 7 : (L>*-bound on u)

To finish we show that

Jul| S K+ |[o3]| Ni + M. (1.137)
To see this we first notice that by with T =1 we have that

Jus ]| S K+ [loi|| Vi,

which we then use to bound
)l = | [ oy
< /R u(r — y)¢1(y)dy| +

| ute =) = u@)iray

K+ ol N+ [l [ (ol + 1) ()l
< K 4 ol Vi + [

(67

for x € R%. Notice that in this calculation we have also used Step 1. ]

1.3 Treatment of the Linear Problem
1.3.1 Proof of Proposition 1

As we have already mentioned in the introduction and also in Section 1.4
above, in the proof of this proposition we emulate the strategy of Otto and
Weber in their proof of Proposition 1 in [47]. Aside from minor details, the
main difference between the proof we present below and that in [47] is our
use of the modified version of their Lemma 5 proved in the previous section.

Proof of Proposition 1. i) We start by showing existence and uniqueness for

solutions of (|1.82)).
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Step 1-(Regularization)

Assume that the conditions of Lemma 4 hold; throughout this step we adopt

the notation of Lemma 4. Denote w; (-, ag) = w;(-,ag) * 1, for any 7 > 0
and define

F o 0fwir (-, a9) := (F o 0fw;(-, ap));. (1.138)

We would like to take the new reference products defined in (|1.138)) as input
into Lemma 4 in order to obtain, for u € C*(R?) modelled after w;, (-, ap), a
meaning for the singular product F ¢ d%u. To do this we must check that the
family of distributions defined by satisfies the conditions of Lemma 4.
Once we have done this, we would like to further characterize the distribution
F o 9?u. In particular, we show that if 97u € C®(IR?), then we have that

F o diu= Folu— o;E[F,(-),] o Ow;. (1.139)

First we check that the family of reference products given by ([1.138)) sat-
isfies the assumptions of Lemma 4. We start with (1.60)) for which we fix
z,z € R* and ag € [\, 1] and write

sup ’wiT(xa CL()) - wiT(Za aO)l
CLQE[/\,l]

< sup

~Y

GQE[)\,H

S sup [wi(s; a)lad® (2, 2) |47 L1 re)-
aoe[)\,l}

[t = o) = iz = )i dy

We obtain the same estimate for 9,,w;, (-, ag) using exactly the same argu-
ment. Since we have assumed that the conditions of Lemma 4 hold, we find
that

[wir (v a0)lp1 S Ni-

[t is also necessary to check that ((1.61)) holds. To do this, we first write

sup sup(T%)2_2a H [F, (-)1] © fwir (-, aO)H1

ape[N1] T<1

= sup sup(T4)* 2 ||[F, (-)14r] © OPwi(-, ao) ||,
ap€[A,1] T<1

< sup sup(7%)* (|\([F7(')T]Oafwi(wao))rﬂl
ap€[A,1] T<1

|| FORwir o, a0) = (FORwir) (- ao)], )
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To bound the first term on the right-hand side by NN; we can use (|1.21])
and the assumption ([1.61). For the second term we may wlog assume that
7 < T (the second line of the above calculation is symmetric in 7" and 7) in

which case we can use ([1.20)) to write
|FOfwir-- (-, ao) — (FOfwir (-, ao))-|h
[ 1ente = i

SI[F), 10fwir (-, ao) |1

(1.140)
1va-2, l\a
rs [F]a [wi]a,l (T4) 2(7_4)
S[F), Ni(T5)™ 2,
Combining these estimates we find that
sup(THE2 sup [[[F, ()r] 0 B2wic]|, S ((Fla+ N)Nie  (1.141)
T<1 aoG[)\,l]

Having verified the assumptions of Lemma 4, we then characterize the
distribution F ¢ 8?u under the assumption that 9u € C*(R?). To obtain
(1.139)) we argue identically to [47] and notice that since

[Fv ()T] © (9%?1}@'7-(', CLO) - [Fa (')T—H'] © a%“%(? CLQ),

which we have already used above, we have that [F, (-)r] ¢ Pw;, (-, ag) —
[F, (+);] © O2w; (-, ag) uniformly for all ag € [A, 1] as T' | 0. By ([1.61)) we find
that this convergence is uniform in (z, ag), which gives

lim | FO2ur — (F o Ou)r — 0B [F, (-);] ¢ Ofw|| = 0
—
by using ([1.62)) for each w;,. Since &7u € C*(R?) this yields
lim | FO2u — (F o 0%u)r — o, E[F, (+);] 0 O3w;|| = 0,
%

which by the uniqueness in Lemma 4 gives (|1.139)).
Step 2— (Analysis of the regularized problem)

In this step we show that for every 7 € (0,1) there exists a distributional
solution u” € C*T2(R?), modelled after v, (-, ag) according to a®** and o = 1,
of the equation

(0o — a0 0f + u" = f; in R (1.142)
and that u” also classically solves

(8 — a0} + W) = fr — E [a™, (-);] 0 Ofv in R%  (1.143)
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Notice that the statements (1.142)) and are, in fact, equivalent thanks
to the previous step applied with the identifications F' = o', I = 1,
wi (-, a9) = v(-, ap), and o1 = 1.

For now assume that f, — E [a®®!, (-),]o0fv € C%(R?). In this case the ex-
istence of u” € C*T2(R?) solving ([1.143) is a simple consequence of standard
Schauder theory. The argument for the existence of u” in this setting can
be found in Theorem 8.7.3 of [39]. In particular, u™ can be obtained using
the standard heat-kernel formulation of solutions to the inhomogeneous heat
equation with a massive term with an “initial" condition u,(z1, —00) = 0.
We have actually already used this result once; in particular, see in
our proof of Lemma 5.

We must still show that f, + E[a®, (-),] ¢ &%v € C*(R?). For this
we notice that f, € C?(R?) since it is periodic and smooth. To see that
E[a®t (-),] ¢ 03v € C*(R?) we first remark that the L>-norm is bounded
via the assumption (1.66]). To finish we show that [E [a®, (-);]00fv]!¢ < cc.
To begin we notice that by the definition of £ we have

[E [aext’ ()7’] o 8%1]] loc

«

Slaa [l O 00, + swp [ ()] o 0f]
agE|A,

The first term on the right-hand side of ([1.144)) may be treated with our
assumption ([1.66]). For the second term we write out
[, (-)7] © B{v(:, a0) = (a* © B]v) (-, a0) — a“" Oy (-, ap)

and check that the terms on the right-hand side have a finite local C“-
seminorm. For the first term we use the assumption (1.67)) and Lemma 1 to
decompose a®od2v = OFh! + sh? for some (hl, h?) that are near optimal in
the sense of Definition 2. Fixing z, z € R? such that d(x, 2) < 1 we integrate
by parts, use that [h]! < oo, and apply to write

|(a6xt o (9%1))7(:1:, ag) — (aemt o 8121))7(2, ap)|

/Rz(hl(x —y) — b (z =) 3e-(y) dy

loc (1144)

a

— [ 0= 9) = 1z~ )0 ) dy
<[a™t o B20)1, (1) 2d (, 2).
The second term may be treated as:

|a6xt(x)8f1)7(x, ag) — aemt(z)afw(z, ao)|
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Sla (@) = a™(2)][107v- (-, ao)

~Y

) [ ot = gra0) = o = g au)l 0F5, (1) dy
e an)la(rh) 24, 2).
Sl laNo(r) *d(z, 2),

where we have used ([1.20]), (1.18]), and ([1.67]).

Thanks to the high regularity of the u™ € C*"2(R?), we know that they
are modelled after v, (-, ap) according to a and o = 1.

Step 3— (Passing to the limit in the regularization)

In order to pass to the limit 7 — 0 we apply Lemma 5 to the u” with
I =1, fi = f-, a = a®, and o0y = 1. In our current setting N; from
Lemma 5 is equal to Ny from assumption . We must check that the u”
are approximate solutions in the appropriate sense. To do this we start by
convolving the equation ((1.143)) with ¢)p. This gives that

(0 — a3} + V)ufp — fror
= (a0 )y — a™Ofuf — (Bla™, (+),] 0 Ofv)r on R

where the right-hand side can be rewritten as
(a'0fu")r — a'Ofuy — (Bla®™, (-)] 0 Ofv)r = [a™, (-)r] 0 Ofu’

by Step 1 and the regularity of the u”. By assumption (1.66]), (1.141)), (1.63])
we then find that

sup o, ()r] © w7 | S o JuMr + No[a]a + N),

where M, refers to modelling of u” after v, (-, ag). So, for large enough ¢ € R
we can set K = c([a®"|, M, + No([a®*"], + N).

After applying Lemma 5 to each u” and using that [a®?], < 1, we find
that

M, + a7 ||l < No(N + 1). (1.145)

This implies that the u” are uniformly bounded and equicontinuous, which
means that up to a subsequence u” — w uniformly as 7 — 0. In order to
see that the limiting u € C%(R?) solves we must pass to the limit in
(1.142)). For this, we first notice that f. — f and Oou™ — Oyu distributionally.
This only leaves us to check that a®® ¢ 92u™ — a®** o 9?u, where a®! o O3u is
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defined via Lemma 4 using the modelling of u after v(-, ag) according to a®**
and o0 = 1. This limiting modelling is the result of Definition 1 in tandem
with the uniform in (z,aq) convergence v,(-,a9) — v(-,ap) and v — wu.

Using (1.63)) of Lemma 4 and ([1.145]) with (1.20), ||a®*|| < 1, and ([1.22)), we

find that the a®! o 9?u” have uniformly bounded local C“~2 seminorm. This
implies that a®! o &?u™ — h for some limiting distribution A.
Towards identifying the limit i, we remark that since

(@, (-)r] © Ofvr = [, ()14r] © i,
and
a® o v, (-, ag) — a®" o OFv(-, ap),

by the definition of a®! o 92v.(-,ap), we have that [a®t (-)7] ¢ v, —
[a®®t, (-)r] © O2v as T — 0 in a pointwise sense. After noticing that
1[a, () 71r]00Fv||1 is uniformly bounded this becomes E[a®™, (-)r]od?v, —

Ela®!, (-)7] o 0?v. Combining our previous observations with the uniform
bound

H(aext o 6fuT)T — aextﬁfuT — E[aext, ()] o (9%UTH < (Ti)zo‘*QNo(N + 1),

which is a result of the triangle inequality along with (1.63]), the uniform

bounds on sup, e |v-(-, a0)llag and supy iy g I[a, (-)7]070- (-, ao)]
and ([1.145]), we see that for 7' € (0, 1] the convergence

(a® o PuT)p — a® Oiur — Ela®™, (-)7] o 020,

5 (h)r — a™Fur — Ela, ()] o Ov.

a,l

holds weak-* in L>°(R?). By the lower-semicontinuity of the L>®-norm with
respect to weak-* convergence, we then know that

lim lim sup || (a*" o O7u" ) — a“*Ofur — Ela™, (-)7] ¢ Ofv.|| = 0, (1.146)
T=0 750

which by Step 10 of Proposition 1 in [47] gives that a®* o §?u™ = h.
Step 4— (Uniqueness)

We argue by contradiction and assume that there are two solutions u and
u’ satisfying ([1.82]) with the desired modelling. Subtracting the two we find
that the difference u — «’ is now trivially modelled. We would then like to
show that

a“ o O%u — a® o 03 = a o O0F (u — u), (1.147)
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where the products on the left-hand side are obtained via Lemma 4 using the
modelling after v(-, ag) according to a®’ and o = 1 and the product on the
right-hand side is obtained via the trivial modelling. Using the definitions

of a® o 92y and a®' o 93u' from Lemma 4 (i.e. that (1.62) holds) and that
they have the same modelling, the triangle inequality gives that

lim (" o OFu)p — (a o O3 ) — (a0 0% (u —u/))7|| = 0, (1.148)
_>

which then yields (|1.147]).

Having shown ((1.147)) we know that the difference u — v’ solves
(O —aodi+1)(u—u)=0 in R (1.149)

to which we may then apply Lemma 5. In particular, welet I =1, fi(-, ap) =

0, o1 = 0, and a = a®**. Convolving the equation (1.149) with ¥ we

find that v — «/ is an approximate solution in the sense of Lemma 5 with
K = [a®,[u — u/]24. Applying the lemma then gives that

[ —u]oa + [lu — 'l < [a“a[u — ]2, (1.150)

which implies that [u — u/]aq + ||u — @/||o = 0 since [a™], < 1.

i) For this part we again follow the strategy of Otto and Weber in [47], but
use our modified version of Lemma 5.

Step 5— (Interpolation of the data)
We linearly interpolate the coefficients and right-hand sides; in particular,
we define a%** and f, as
a = af"(1 —s) +af's and f, = fo(1 —s) + fis.
Correspondingly, we interpolate the solutions of and set
vs = vo(1 — s) + vys.

Notice that in order keep notation lean, in this section we occasionally sup-

press the dependence of vy, v1, and vy on the parameter ag. Of course,
vs(+, ag) solves ([1.4) with right-hand side fs. To make sure that Leibniz’ rule
is satisfied in s, 1.e. that

05(a™" o 0?v,) = 050" o O2v, + a’ o 920, (1.151)

S
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we bi-linearly interpolate the offline products and define
ea:t o 81 Vs
= (s — 1)%af" o 0fvg + s(1 — 8)(af™ o O?vy + a* o Ofvg) + s2a§™ o OFvy.

Using the triangle inequality and the uniqueness in Lemma 4 we find that

a®" o 010,v, = a®" o Ovy — a" o Fluy,
050" o O, = e‘” o O, — a§™ o OPv,, (1.152)
and  aS™ o 070,,vs = 8%@?“ o Ofv,,
which along with the assumptions (|1.66 - and (|1.76]) give that
Sup(T4)2 2| [a%", (- ) ] 0313 vslli S NNy, (1.153)
T<1
sup(TH)2 22| [, ()] 0 920uyvslli S N No, (1154
T<1
and  sup(T7)> 200 [05a%™, ()7] © OFvg||1 < SN N. (1.155)
T<1

As a last remark concerning new reference products, for 7 > 0 we can regu-
larize all of the new reference products as in part i) and define, e. g. |

a“ o 02y = (a o Ovy),. (1.156)

Step 6— (A continuous curve of solutions ul and an equation for Osul)

Using the same method as in part i) we find that for every 7 > 0 there exists
a curve of C*2 solutions u? for s € [0, 1] of

(05 — aZ™07 + V)ul = for — Esla™, (+);] © O7v, on R? (1.157)

where F denotes evaluation of a function of (z,ag) at (z,a"(z)) and f, =
fs*1;. Using the modelling of the u] after vy, where vs; = vs*1),, according
to a¢™ and o = 1 we find that by Step 1 of part i) the relation

as™ o Oful = a“'oful — Ea™, (+),] ¢ OFv, (1.158)
holds. This allows us to rewrite ((1.157)) as
(Oy — a0 07 + 1)ul = fir on RZ (1.159)

We would then like to differentiate ((1.157)) in terms of s in order to obtain
an equation for dsul. For this we notice that by ([1.151]) we have

0, E[a™ | (1);] o Oy
=E,[0,a°", (-);] 0 OFvs + E la™, (-);] o 070sv, (1.160)
+ 05aS" B[, (1)7] © 070y Vs,

173



which means that dsu] solves

S Y

(Do — a™'0% + 1)0,u” <8ﬁthﬁ@w——5@f”QHo¥%

—E,[a", ();] ¢ 070svs — 050" Ey[at™, (-),] o 8%8%05) =0 on R2

S Y

By standard Schauder theory this implies that d,ul € C*™(R?) since the
term in parentheses is in C%(R?), which can be checked using the same tools
as in Step 2. Due to the high regularity of 0su] we know that it is modelled
after (Osvsr, Oy, vsr) according to as® and (1, 95a*"). Using the identities

85a§xt01 — E[0s am ()] © 81203 = Gsaf”t o ﬁfug (1.161)
and

a“" 020.uT — E[a™, (1);] 0 07050, — 050" Ey[a™, (-);] © 070, vs

1.162
= a®" o 920,u’, ( )

which both follow from Step 1 given the high regularity of dsul and ul, we
can rewrite the equation solved by Odsul as

(0 — a0 02 + 1)0su” = Oy for + 00 0 02T on R (1.163)

Step 7- (Estimates for Osul)

We now apply Lemma 5 to Osul with [ = 2 and fi(-,a0) = O0sfsr, 01 = 1,
fa(+, ag) = ag?ve (-, ag), o2 = 0,a!, and a = a®!. Notice that there is now
a slight ambiguity in our notation since we use f; to denote the second forcing
(f1 in the assumptions of the proposition) and also for its identification in
Lemma 5 (i.e. Osfsr). It is always clear which f; is meant.

To apply the lemma we first identify the constants Ny and Ny in ([1.90)).
For Ny we notice that since Osfsr = for — f1- the relation

sup(T4)* (0. )l S sup(TH (o = f)ell SNy (1164

holds by ([1.21]). For Ny we use ((1.322)), that v (-, ag) solves ((1.4]) with right-
hand side fs,, and ((1.21]) along with ((1.20]) to write

1\2—a
sup sup(TH)2 [ (aodver (- a0))ell S [laollrllnes) S Moo (1.165)
ape[\1] T<1
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So, for our application of Lemma 5 for a large enough constant ¢ € R we can
set N1 = cONy and Ny = ¢N,.

We then check that Osu] is an approximate solution in the sense ([1.91]).
For this we convolve m ) with ¢ and notice that the calculation

SUlp(T‘*)2 “[ag™, (-)z] © 00sul + [95a5™, (-)r] © OYug]

< sup(T1)***|[a5™, (-)r] © B0,

e (1.166)
+ sup(7%)* 7| [9uaS™, (1] © B u]|
T<1
S/[ ext] 5MT—|—5NNQ+N5NO+[ ext ext] MT

which follows from of Lemma 4 and m and (| , is sufficient.

Notice that for thls we have also used that N < 1 and Haext ag™|a < ON.
Here 0 M belongs to the modelling of Osul after (Osvs;, On,vsr) according to
as* and (1, 05a5"") and M7 belongs to the modelling of u? after vy, according

to a¢** and o = 1. Since an application of the bounds obtained in part 7)
yields that M7 < No(N + 1), for large enough ¢ € R we can set

K = c([a™"]o6MT + SN (No + 1) + NONy) (1.167)

We can now apply Lemma 5 to the Osul, which after using that [a%'], < 1,
gives

IM + ||0sullla SIN(Nog+ 1) + (N + 1)0Np. (1.168)

~Y

Step 8—(Integration and passing to the limit)

Since we have ((1.168)) for all s € [0, 1] we may integrate it up to obtain

1
H%—%%SH/&%M
0

To obtain a bound for dM7™ we notice that

s (ug (y) — vsr (y, a5 (2)))
= Osug(y) — Osvsr (Y, izt( ) —3sa§”($)5’aovs(y, gxt( ),

which allows us to integrate up our bound on M to give that u] — wuj
is modelled after (vi,,vo,) according to (af™,af”) and (1,—1) with v =

fo vsds. Here vy comes from the modelling of dsul. We find that
OM™ < 5N(N() + 1) + ( + )5N() (1.171)

SON(Ng+1) + (N +1)6N,.  (1.169)

(07

(1.170)
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We have already show in part i) that u] — u; uniformly, which allows us to
pass to the limit in ((1.169). In order to pass to the limit in the modelling
we, furthermore, use that v;-(+, a;(+)) — v;(+, a;(+)) uniformly. O

1.3.2 A Technical Lemma: Post-Processing of the Modelling

In order to obtain the correct modelling in Proposition 2 and in Theorem 1
we need the following technical lemma.

Lemma 6. Let a € (0,1).

i) Assume the a,a’ € C*(R?) so that a = a' on the axis {xg = 0}. Then for

V (-, ap), the even-reflection of V (-, ag) solving (1.3)), and any distinct points
z,y € R? we have that

V(. aly) - V(g aly) = (Vie,d ) - V(y.d 1))
< Winlla([ala + [a]a)d™ (2, y).
ii) Assume that a,a’ € C*(R?) with |la|| and ||| < 1 and Vi € C*(R).
Let U € C*(R?) be modelled after V (-, a9) according to a with modelling
constant M. Under these assumptions we find that if a = a on the axis

{x9 =0}, then U is modelled after V (-, ag) according to o' with modelling
constant M’ bounded as

(1.172)

M" S M+ [[Vila- (1.173)

iii) For i = 0,1 we have a;,a; € CYR?) with ||a;|| and ||al|] < 1 and
Vini € C*(R). We, furthermore, assume that U € C*(R?) is modelled after
(Vi(-, a0), Vo(+, ag)) according to (a1, ap) and (1,—1) with modelling constant
OM. We then find that if a; = a; on the axis {xo = 0}, then U is modelled
after (Vi(-, a0), Vo(+, ag)) according to (a', al) and (1, —1) with modelling con-
stant O M’ bounded as

OM" S OM + |[Vint.x = Vintolla + max [[Vinsilla(llar — aolla + [l — aplla)-

(1.174)
Proof. i) Notice that
V(z,a(y)) = V(y,a(y)) — (V(z,d'(y) = V(y,d'y)))]
S sup |00, (V (. a0) = Viy, ao)llaly) — d'(y)] (1.175)
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and bound the right-hand side in two ways as

s 100,(V(w,a0) = V(s ao)llalw) — ')
- {mea([a]a - []o) a2 (Ja] % + gl %) (2, )
> UlVintlla(lalo + [@]a) gl 2 do (2, 9).

Here, the first bound follows from ((1.55]) applied with j =1 to V(+,ag) and
the observation that |a(y) — da'(y)| < ([a]a + [@']a)|y2|2. The second bound
in follows from the same bound applied to |a(y) — a'(y)|, but
with 7 = 1 applied to V (-, ag). We now consider two cases: |y2| < 2|x2| and
2|za| < |yal-

(1.176)

Case 1- Assume that |yo| < 2|xg|. Then the first bound of (1.176]) immedi-
ately gives

sup |0a, (V' (2, a0) — V(y, a0))|laly) — a'(y)]

aoe[)\,l}
S Vintlla(la]a + [a']a)d%‘(q:,y).

Case 2— Assume that |ys| > 2|x3|. Then it is clear that % < |z — ys|, which
when combined with the second bound in ([1.176)) gives

up 106, (V (2, a0) = V (y, a0))|laly) — d'(y)]

S Wintlla(lala + [0]0)d™ (2, y).

Together the two cases yield ((1.172)).

i1) This part is an easy corollary of part 7). In particular, using (1.2)) and
the triangle inequality we write
a'(y)))|

U(z) = Uly) = (V(w,d' () = V(y,a'(y) )
S M+ |V(z,aly) — V(y,aly) — (V(z,d'(y) — V(y,d'(y)))|
S (M + |Vinilla)d* (2, y).

i11) Now we use the Einstein summation convention. We apply the triangle
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inequality and for z,y € R? write

U(z) — U(y) — (=1 (Vi(z, aj(y)) — V(y, ai(y)))
S OMd* (x, y)
+ [Vol(z, ao(y)) — Vo(y, ao(y)) — Vo(z, ag(y)) — Voly. ag(y)))
— (Vi(z, a1(y)) = Vily, a1 (y)) — (Vi(z, d () — Vi(y, ai(v))))].

(1.177)
We now require some new notation. In particular, we let
al =ta; + (1 —t)a, for i = 0,1 and a}, = sa} + (1 — s)aj
and notice that
Osal, = at — al),
Oral = s(a; — ay) + (1 — s)(ag — ap), (1.178)

and  9;0sa’, = a1 — ag — (a] — ap).

We then calculate

_ / 1 / 0.0Vl al(9)) — Vi, (9)) ds d’f‘

-| [ [ 20uiite o) - o it dmmonasd

/ / 100y (Vi — Vi) . (>>—aaom—%)(y,az(y))\@aé@)\

+105,Vi(w, a(y) — 95, Vi(y, s( ))\If?tat( )| 10sa(y)]

Hor0ual ) ra%w a4)) — il NI) dsa.
(1.179)

To finish we bound the three terms on the right-hand side. Using the relations
, the three terms are treated in a manner very similar to part i) above.
In particular, for the first term using the exact same argument as in part 7)
yields that

[0ay (Vi = Vo) (&, @ (y)) = ay (Vi = Vo) (y, a4 ()] |Beat ()]
SJHV;nt,l - int,0||o¢d2a(xay)7
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where we have used ([1.54) and ({1.55)) with j = 1 applied to (V4 — V)(+, ao)
and that |as(y) —a.(y)| < |y2]2. For the second term of (1.179) we again use

the same strategy as in part ¢) with ({1.54) and with j = 2 applied to
Vi(-,a9) and the observation that |9;al(y)| < |y2|2. Additionally using that
10sa)Il S llar — aoll + [lai — apll, we obtain

10, Vi, al(y)) — 02 Vil al(y)] |0eal(y)| |95l ()]

< WVintslla(llas = aoll + llas — a2 . ).
Getting to the last term of we again use the same strategy, but this
time to set-up we use

(a1 — ao)(y) — (@) = ap) )| S (fa2 = aola + [} — afla)lya?

and either ((1.55) with j = 1 and & = 0 applied to Vi(+,ag) or (1.54) with
j = 1. We then get that

10:05a(y)| |00, Vi (2, al(y)) — Bay Vi(y, al())]
S H‘/;'nt,suoz([al - aO]a + [all - af)]a)d%‘(ﬂ?,y)?

Combining these estimates finishes our argument.

1.3.3 Proof of Proposition 2

Proof of Proposition 2. The main idea of this proof is to postulate an ansatz
for U, i.e. the function ¢ as defined in ([1.9)), and then show that, by correct-
ing ¢ with some w € C2O‘(Ri) such that w = O on GR%F, we can set U = g+w.

i) As in Proposition 1 we start with existence and uniqueness, where now
“uniqueness' means that the correction w is uniquely determined.

Step 1- (Modelling of q)

We first show that ¢ is modelled after V (-, ag) according to a®* on R2. For
our argument we fix z,y € R? and use the notation & = (z1,|z2|). The
triangle inequality gives
V(z,a(2)) = V(§,a(9) — (V(Z,a"(y) — V(5 a"(y)))
<|V(z,a(z)) = V(z,a(y))] (1.180)
+V(@,a(g) - V(@,a(@) — (V(Z,a(y)) = V(7 a™ ¥)))].
To obtain the modelledness result we now use Lemma 3 and Lemma 6. The
bounds from Lemma 3 in the versions mentioned in v) are applicable to a
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with the identifications ayp = 1 and Vj,,; = a thanks to (1.10)). Also, part 7)
of Lemma 6 is applicable with the identifications @ = @ and o’ = a®*. This
immediately allows us to bound the second term of ((1.180)) as

V(& a(7) = V(7.a@)) — (V(Z,a(y)) = V(70" (y)))]
S Wintlla([0™]a + [@la)d™ (2, y) (1.181)
S Wintllala®™]ad™ (, ).

For the first term on the right-hand side of (1.180)) we write

V(z,a(z)) = V(z,a(y))]

S sup |06,V (2, a0)l |a(y) — a(z)]

a0eM 1) (1.182)
- {[Vind lalalaal (122l % + ]~ $) (3, 5)
Vintlalalalz2|?d* (2, ).

Here, the first bound follows from ([1.55)) applied with j = 0 to @ and ({1.52)
applied with j = 1 to V/(+, ag); the second comes from ({1.54)) applied to a and

the same bound applied to V (-, ag). Arguing exactly as in part ¢) of Lemma
6 with the additional ingredient that d(z,7) < d(x,y) we obtain that

V(@,a(2)) = V(Z,a(9))] < [Vintllalalad®(z,y). (1.183)

Combining ([1.180), (1.181)), and ([1.183) we then find that g is modelled after
V (-, ap) according to a®** with modelling constant bounded as

M S [Viatllala™]a. (1.184)

Step 2 — (Regularity for the forcing of the equation solved by w)

We now show that for every = € R? the bound
|(92q — adiq + @)" ()] < llallal|Vinlla (1.185)

holds. Notice that on R% the expression dag — adiq + q is well-defined in a
classical sense since ¢ is smooth for positive times. To begin our argument for
(1.185]) we first apply Leibniz’ rule to rewrite the expression daq — adiq + q

for x € Ri as:
(Dog — adiq + q)(x)
=05V (x,a(x)) + 84,V (2, a(x))Dsa(x) — ad}V (2, a(x))
— 20010,V (2, () D1 () — ady,V (w,a(x))0a(x)
—ady V(x,a(x))(dha(x))* + V(z,a(x)).
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Thanks to (1.5]) we have the relation &V (-, ap) = (agd7 — 1)V (-, ap) on R2,
which allows us to re-write the first term on the right-hand side of (
as BV (x,a(x)) = a(x)0?V (x,a(x)) — V(x,a(x)). In the same way, we can
make the substitution dya = 7@ using (L.10). We obtain the formal identity

(D2g — adiq + q)(x)
=(@—a)(z)07V (z,a(x)) + 0y V (z,a(z))(1 — a(x))dia(x) (1.187)
— 2a(2)0,0,,V (z,a(z))0va(z) — a(z)d; V(z,a(x))(0a(z))>.

We treat each term on the right-hand side of ([1.187]) separately by applying
the bounds from Lemma 3.

Applying ([1.53) and (1.54)) both with j = 0 to @, we find that
lall < laf] <1 and  [a]s S [ala < 1 (1.188)

For the first term on the right-hand side of (1.187)) we use that |a(z)—a(z)| <
[a]a|22]2, which we have already used in the previous step, combined with
an application of (1.52)) with £ =2 and j =0 to V(+,ap) to obtain

|(a —a)(2)d{V (z,a(x))| < lala[Vi

For the second term we apply - 1.52)) with j =1 and & = 0 to V (-, a), (1.52)
with £k =2 and j = 0 to a, and use m to find that

0V 2,0())(1 = o)) a0)] S[Vindalal, (1190

The third term is treated by (1.52) with k =1 and 7 = 1 applied to V' (-, ay)
and with £ = 1 and 5 = 0 applied to a, which gives

|a(2)00, 01V (2, a(x))0ha(z)| < [ala[Vinta

The last term on the right-hand side of ((1.187)) is handled by (|1.52)) with
k =1 and j = 0 applied to a and m 1.53)) with j = 2 applied to V (-, ag):

(1.189)

(1.191)

2a2

|a(2)05,V (z,a(2))(01a(x))*| < [alal| Vinl|z2| 2 (1.192)
Together ((1.189)), (1.190)), ((1.191)), and ((1.192)) give ([1.185)).
Step 3— (Construction of the correction w)
We now show that there exists w € C**(R?%) solving
(0 —ao0? + 1w = —(0aqg — ad?q + q) in R?%, (1.193a)
w =0 on ORY. (1.193b)
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In fact, we construct the solution w of (1.193)) as a C?*-solution of
(05 — a0 02 + 1)w = —(0hq — ad?q + q)* in R? (1.194)

and then show that w|gz = 0. The construction of the correction w follows
essentially the same procedure as our argument for the existence of a solution
u of in Proposition 1. In the current context, however, the argument
from the previous proposition sees some simplification due to the higher reg-
ularity available here.

Step 5.1- (A specific form of the singular product) Let u € C**(R?) and
satisfy 02u € C*(Q) for Q C R?. Using the same argument as in Step 1 of
Proposition 1, we find that the singular product a ¢ 9?u obtained using the
trivial modelling of v via Lemma 4 coincides with the classical product on

Q.

Step 3.2— (Holder bounds for g.) We now use the notation g = —(0aq —
adiq + q)¥ and RZ = R x (—oo,—L] for L > 0. In the current step we
let 7 € (0,1) and estimate [|g;||op2 for each L € (0,1) and [|g-[|a;re. In
particular, for 7 and L € (0, 1) we show that

a+2

g-llazz < WVintllallalla L™ (1) (1.195)

and

N

)—2
We start by bounding the necessary seminorms and then the L°°-norms.

To estimate [g;],r2 we use (1.310)) of Corollary 2 and ([1.185) to obtain

a+2

1 _at2
(9-)aws S [Vintllallalla(r)** L%,

To bound [g;]a.r2 We again use ({1.185)), but now in combination with ([1.309));
we find that

||gTHa;R2 S Vintllallalla (7

1,
910k S WWVintllallalla(r®)~>.

This is, of course, only a bound on the local Hélder seminorm, which upgrades
to a bound on the full seminorm with the addition of an L*°-bound.

We bound the L**-norm ||g;|[gz in the calculation in Corollary
2. In particular, denoting the 7 from (1.313) as 7" we apply for
7' =T = §, which gives

a+2

_ 1
lgrlles < Vinellallalla L™= (75)™
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For the full L*>-norm ||g,|| we can use ({1.311]), which for 7" = 7 implies that

1 —
lgrllze S Vinellallalla(re)™* .

Step 3.3— (Analysis of the regularized problem) In the last step we showed
that g, € C*(R?) for 7 € (0,1). This means that that we may find a solution
w” € CT2(R?) of

(8y — a®™07 + D" = g, in RZ (1.196)

To obtain the desired correction w, we would like to pass to the limit 7 | 0
in the sequence of approximate solutions w”. As in Proposition 1, we do
this with an application of Lemma 5 with I = 1, fi(-,a9) = 0, o1 = 0, and
a = a® to the w".

To apply Lemma 5 with the identifications made above, we check that the
wT are approximate solutions of (9y — a®'0? +1) - = 0 in the sense of
and determine an appropriate choice of K. Convolving with ¥ we
obtain that w” solves

(82 — ae“"t(?% + 1)(wT)T

— (g)1 + (a0 ) — a“t O (w )y in R (1.197)
where by ([1.21]), (1.185]), and we have that
Sup(T4)* > grr| < WVinell o (1.198)
Furthermore, since w™ € C*T?(IR?), Step 3.1 gives that
(@ Py — a3 (w )y = [a, (V7] 0 B2,
which, e.g. by of Lemma 4, implies
sup(TH)* 2 (0" 0fw")r — a0} )l S [0 haal ] (1199)

Combining ((1.197)), (1.198]), and ([1.199) we obtain that w” is indeed an ap-
proximate solution in the desired sense with K = [a®™],[w a0+ | Vint|a || @] -
Applying Lemma 5 we find that

M= [ws S [aext]a[wT]Zoz + |lalla||Vint||

which, after we use that [a“'], < 1, gives that
(w20 S llallal|Vintlla- (1.200)
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We also obtain the corresponding C'*-bound
lwlle < [0 alw 20 + lallalVieella S lallallVintlla, (1.201)
where we have used (1.200) and [a®*"], < 1.

Step 3.4— (Passing to the limit) We now pass to the limit 7 — 0 in the
sequence of approximate solutions w’”. By we can apply the Arzela-
Ascoli theorem, which implies that up to a subsequence w”™ — w uniformly.
In order to pass to the limit in ((1.196f), we first notice that g, — g distri-
butionally. We then show that the a®*'@7w™ have uniformly bounded local
C*2.seminorms. This follows from the identity a®'0iw™ = a® o Fw’,
where the product on the right-hand side is obtained from Lemma 4 using
the trivial modelling of w”. In particular, by (1.63)), (1.201)), and we
then have that

sup(T)” || (a“'fw’ )z |
T<1

S @ ([ a0 + [ Vinella) + sup(T4)>~ a0} (w )z |
T<1

S e [allVinella,

which by implies our claim. As previously observed in the proof of
Proposition 1, the uniform bound on the local C*~2-seminorms implies that,
up to a subsequence, a®!9?w” — h for some limiting distribution h as 7 — 0.
To see that h = a®* o §?w, where the product on the right-hand side is
obtained via the trivial modelling from Lemma 4, we notice that
lim || (@' 07w ) — a® O (w™)r|| = 0 (1.202)
T—0
for every 7 > 0 and that, furthermore, we have the convergence
(@t PwT)r — a0 (w™)r — hr — a®'O3wyr in a pointwise sense. In order to
see that this convergence holds weak-* in L>°(R?), we remark that by
and the bound

I 0fwT)r — a0 (wT)rll S lla™ [la| Vinella (1.203)

holds uniformly in 7. Continuing as in Step 3 of Proposition 1 and using Step
10 of Proposition 1 of [47], we then find that h = a ¢ 9?w and, in particular,
that w solves

(Oy — a0} + 1w =g in R%

Since the bounds ([1.200) and ((1.201) are preserved under taking the limit
T — 0, we have that

[w]lo + [w]aa S llallalVintla- (1.204)
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In order to see that w satisfies the initial condition ([1.193b)) we use ([1.195)).
In particular, the classical Holder estimate for ((1.194)) implies that

e i
Jwrllasorz S grllarz S [Vintllallallo L™ 2 (77)

and passing to the limit 7 — 0 yields that w = 0 on R% for every L > 0.
This means that the boundary condition ([1.193b]) is satisfied.

Step 3.5— (Uniqueness of the correction) In this step we show that the cor-
rection w solving is unique. To see this we assume that we have two
solutions w and w’ of class C?® on Ri. We subtract them and use the same
argument as in Step 4 of the proof of Proposition 1 to obtain that

(O —aod?+1)(w—w)=0 in R%
w—w =0 on OR%,
where the singular product a ¢ 97(w — w') is obtained as the restriction of
a®! o 9% (w — w')¥ to R% and this is obtained via Lemma 4 using the trivial

modelling. We also notice that by Step 3.1 we have that a® ¢ 0?(w —w')F =
a0 (w — w')¥ = 0 on R?. In particular, we find that w — w’ solves

(O — a0 0f + 1)(w—w') =0 in R?
which we can then take as input into Lemma 5. The proof of our claim then
proceeds exactly as in Step 4 of Proposition 1 by showing that ||w—w'||, = 0.
Step 4~ (Conclusion)

To conclude we check the ansatz U = ¢ + w. For this we first remark that
because ¢ = Vj,; on 3Ri and w satisfies ((1.193b)), the boundary condition

(1.85b)) holds. Furthermore, by ((1.194]) we have

(G +w) — a™ 697G — a“™ o 0w + (§ + w)

(i o+ D)~ (O —adfg+a) R D
To finish we show that
a“ o 902G + a0 Fw = a0 03(G + w) (1.206)
and
(092G — a*" 0 34 + @) — (Oq — adiq + q)") sz = 0. (1.207)

For ([L.206)) we first notice that since w € C**(R?), by Step 1 we have that
g + w is modelled after V (-, ag) according to a®’ and o = 1 on R?. This
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allows us to define the product on the right-hand side of via Lemma
4 with this modelling. The first product on the left-hand side is defined
using the same modelling and the second product on the left-hand side is
defined via the trivial modelling. Just like we have done previously in Step 4
of Proposition 1, we find that the triangle inequality and Lemma 4 may be
combined to give

lim [|(a*" 0 07(q + w))r — (a0 91q)r — (a™" 0 Ofw)r| =0,  (1.208)

which gives (|1.206]).

To finish checking the ansatz U = ¢ 4+ w, we notice that a®"* ¢ a%qui is
the classical product, which shows . To see this we first show that ¢
satisfies , which implies that the product a®*'9%q is well-defined in a
distributional sense. We then use - and - to write

lim | (a" ¢ 87¢)r — (a“'07q)r|

ext

T—0
< Jim ([0, ()1] © 91¢ — Bla", ()r1B2V (-, a0) | (1.209)
+ lim [, (’)7]07G — Ela™, (-)2]0;V (-, a0) I,
T—0

where we know by Lemma 4 that the first term goes to 0. We then treat
the second term by performing a calculation that foreshadows our proof of
Lemma 2. In particular, noting that here E denotes evaluation of a function
of (z,a9) at (z,a®(z)) we find that for z € R? the relation

[0, ()28 — Bl ()rlaRV (. ao)
| @) =z )
<RV (2~ y.i(e — )~ Vo — v, ™ () ir(y) dy

5MMh/‘&m\%%ﬁm—y@m
R

2 0,06[/\,1]

ol (o alyl +1a(e ) — 4z — y))or(y)] dy
S Ve [ Joa =l ol (o1 + o = el ) dy

< [aext] 2 [‘/;nt] . (T% )3@—2

~Y «

holds. Here we have used and the bound |a(z) —a®(x)| < [a®!],|xo]>
for + € R?. For the treatment of the integral in the last line refer to the
proof of Lemma 2; the integral converges because 17 is a Schwarz function.
The above calculation shows that the second term on the right-hand side of
([1.209) also vanishes, which implies that a®** o 9?¢ = a®*'93§ as desired.
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Quickly, before moving on, we prove (L.50) for G = ¢. Fix € R and
recall from Step 2 that

9%q(z) =07V (z,a(x)) — 2010,V (x, a(x))01a(x)

— O,V (z, d(m))@fc‘z(m) — 820‘/(:6, EL(:U))(@@(:L‘))Q. (1.210)
As already discussed, the first term may be bounded as
02V (2, a(2))| S [Vindlalzs| = (1.211)
and the other terms as
120104,V (z,a@(x))01a(x)| + |04,V (z, a(x))0%a(x)|
+ 105,V (z,a(z)) (D ()’ (1.212)

2a—2

SlVintllalalalzs| 2

To finish we prove the bounds ([1.87)) and ((1.86)). We start with ([1.87)) and

use the triangle inequality, the estimate ((1.204)), (1.53) with j =0 and j =1
applied to V (-, ap), (1.54)) with j = 0, and ([1.188)) to write

Ula < sup [V(-a0)la + sup |04,V (- ao)ll[a]a + [w]a S [|Vintlla
ap€[A,1] ap€[A1]

and
1Ulle S llalla + llwlla S 1Vintlla-
Likewise, for ([1.86)) we use ((1.184)) and ([1.200)) to write

M5 [w]2a + [aeﬂ]a”VintHa S HaextHozHVintHoz-

i7) In this part we consider two pairs (a;, Vint;) for i = 0, 1. Accordingly, we
use the notation ¢; = V;(+, a;(+)), where V;(-, ag) solves with initial con-
dition Vj,;; and a; solves with initial condition a;. In order to address
the stability of the solution operator here, we use a strategy similar to the
second part of Proposition 1 in combination with some classical estimates
coming from Lemma 3.

Step 5 (Interpolation of the data)

We linearly interpolate the boundary data and coefficients and for s € [0, 1]
define the objects as, a®, and Vi, as

as = a1$ + ap(l — s), (1.213)
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ast = af"s + af"' (1 — ), (1.214)

S

and ‘ths = Vint1S *“GnLO(l _‘5)- (1.215)

This induces the definition

qs == Vs(+ as(")), (1.216)
where Vi(+, ap) solves (|1.5) with initial condition Vj,; ¢ and as solves ({1.10))
% ~ext

with initial condition as. That ¢, is modelled after Vi(-, ag) according to a&
follows from the same argument as in Step 1 with the modelling constant
M, < [aS,||Vint.s|la- Notice that unlike the situation in Proposition 1, here
we not need to interpolate any reference products.

Step 6— (A continuous curve of solutions and an equation for Osw?)

Using the same methods as in part i) we find that, in analogue to (1.185)),
the relation

|(8298 - asa%% + QS)E(x” S HCLSHaHVint7S|

for € R? holds. Feeding ((1.217) into the machinery that we have developed
in part ¢), we find that there exists a correction w, € C?*(IR?) solving
with right-hand side Oxqs — as0%qs + ¢, and coefficients a, and that this
correction actually solves

200—2
a|$2‘ 2

(1.217)

(Oy — aS™" o 07 + 1w, = g, in R? (1.218)

where g, = (Daqs — as03qs + q,)¥. This solution w, is obtained by taking the
limit in C?*(R?) of the sequence of regularized solutions w7 of

(0a — a5 o 0 + D)w? = (gs)r in R% (1.219)

Using the same arguments as in Step 4 we find that Uy = ¢, + ws solves
(1.85)) with coefficients a, and initial condition Vi, s.

Noticing that by Step 3.1 when 7 > 0 the singular product in is
the classical product, we may differentiate the equation ([1.219) with respect

to s and find that dsw] solves
(Oy — a7 + 1)0,w] = (0s9s)r + Osa 0w in RZ (1.220)

Since the right-hand side of ([1.220)) is still of class C'*, we know by the stan-
dard Holder estimate for (1.220)) that dsw? € C*T2(R?). In particular, 5w
is trivially modelled.
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Step 7- (Estimates for Osw?)

We now apply Lemma 5 to the dsw] with inputs I = 2, fi(-,a0) = 0s9s,
fo(c,a0) = 05051027 (+, ag), and o1 = 09 = 0. First, we must check that
Osw? is an approximate solution in the sense of . To begin we convolve
with 7, which gives
(0o — a%0% + 1)(0sw?) 7
= (0s9s)rer + (asagxta%wg)T - [aext (')T]afaswg in R’

s
and we then show that

sup(T1)* | (0sg )7 + (Dsas™ 00w} — [ag™, (-)7)07 05|
T=l (1.221)

~L7s Q-

Slai a0 lea + flag™ — af o masc| Vi lla + [ Vineo = Vior|

Showing ((1.221)) turns out to be the bulk of the work in part ).

To maintain oversight in our argument for ([1.221)) we split it into three steps.
The eventual application of Lemma 5 is included in Step 7.3.

Step 7.1- The main difficultly in showing ([1.221]) is obtaining the inequality

1.9
STgI;(TﬂQ N (@sge)rerll S llao = aalla max [ Vinilla + [|Vint.o = Vintalla-

(1.222)
To obtain (1.222)) we first notice that for x € R? we have that
0s9s(2) = = (92 — a;0; + 1) (Vi(w, a5(2)) — Vo(, a5(2))))"
— ((0y — a,0? + 1) (a1 — ag)0u, Vs(z, as(z)))" (1.223)
+ (a1 — a)0;Vi(w, as(x)))”
and then treat the terms on the right-hand side separately. The first term
may be treated in the same way as in Step 2 using that (V4 —V5)(-, ag) solves

(1.5) with initial condition V1 — Vipo and as solves ([1.10) with initial
condition as. In particular, using the exact same argument and additionally

(1.21)), we obtain
Sﬁg(ﬂ)z‘zall((@? — a0 + 1) (Vi(,a5() = Vol as(-) " )rar |
5 HasHaH%nt,l - ‘/z’nt,Ol o

We treat the second and third terms of ((1.223) together. Using Leibniz’
rule for z € R we obtain (this calculation continues on the next page)

(02 — a0y + 1)(a1 = a0)da, Va(2, as(2)) — (a1 — a0) O Vi(z, as(x))

(1.224)
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=04, Vs(T, a5(x))0a(a; — ag) + (a1 — ag) 0,4, Vs(x, as(x))
+ (a1 — ao)ﬁgovs(:c, as(x))02as — 504, Vs(x, as(x 0% (ar — ag)
— 2a,01 (a1 — ag) (0104, Vs(, as(x)) + 05 Vi(w, as(x))0ras)

— as(a; — agp) (8%8%‘/3(% as(x)) + 281(92 Vis(z, as(x))ohas(z)

08 Vi, ay(2)) (013.)° + 2, Vil (s ))alas)
+ (a1 — ag)0,, Vs(z, as(x))

— (a1 — ap) ((91 s(T,as(x)) + 20104, Vs(x, as(x))Oras

L Vi((,as(2)) (0ras) + a%%((a:,as(x))@%as) .

Following the techniques used in Step 1 we make use of the identities

Oo(ay — ag) = 03 (a1 — ag) — (a1 — ag),
Doty = 02y — G,
and 050, Vs(z, @5(2)) = @4(2)0?04, Vs (2, @s(z))

— O Vis(,@s()) + 0 Vi(, as(2)),
where the last one comes from (1.253). In particular, plugging them in and
rearranging terms we obtain

(05 — as0% + 1)(ay — ag)0a, Vi, ay(x)) — (ay — ag)0iVy(x, as(z))
=(1 = a5)8a, Vi (, as(x))0F (a1 — ap)
+ (a1 — a0)(@s(2) — as(2)) 0704, Vi (., as(x))
+ (a1 — ag — (a1 — ap)) 9 Vi(x, as()))
+ (a1 —a0)82 s(, as(x ))(alas as)
— 2a501(a1 — ag)(010,,Vs(x, as(x)) + 82 Vi(z, as(x))ohas)

— as(a; — ap) (261(92 s(z, as(x))0ras(x)

+ 0 Vi(z, as(z))(as)” + 02 Vi(z, as(x ))8%&5)
— (a1 — ap) (2818%‘/8@, as(x))oas + (920‘/5((@ as(z))(01as)?

+ 04, Vs ((z, Ezs(x))(?%(_zs)

We treat each term on the right-hand side separately: Starting with the first
term, we use that ||as|| < 1, an application of ((1.52)) with k = 2 and j =0
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to a1 — ag, and with k = 0 and j = 1 applied to Vi(+, ap) to obtain

200—2

(1 — as(x)) 0, Vs(z, ds(x))ﬁf(al —ap)(2)| S [a1 — aola[Vintslaws ®

For the next term we use that |(as — as)(z)] < [as]ang, apply (1.52)) with

~Y

k=2and j =1 to Vi(-,ap), and ((1.53)) to a; — ag in the form without the
massive term to write

(a1 = a0)()(as — as)(2)0; 04, Vi(@, as(x))|

S llar — CLOH[CLS]Q[%nt,S]aIQT

The third term is treated in a similar fashion, using that

(@ = a0 — (a1 — @0))(2)] $ [a1 — aolazs

and ([1.52)) applied with £ = 2 and j = 0 to V4(-, ag). In particular, we obtain
that

200—2

(a1 ="a0 — (a1 — o)) (2)0)Va(2, ds(2))| < lar — aola[Vint.slaws ”

For the fourth term we use ([1.53)) in its version without the massive term
applied to a; — ag, the relation ||a,|| < 1, (1.52)) applied with 7 = 2 and
k=0 to Vis(-,ap), and again with kK = 2 and j = 0 to a;. We find that

jar = aq(2)9;, Vi@, as(2)) (0@ — as)(x)

2a0—2
S llasllallar — a0||[vint78]a(x2 *tag).

Continuing on, for the next term we apply ((1.52) with £ = 1 and j = 0 to
a; — ag and ag and with £k =1 and j = 1 to V(+,ap). Furthermore, we use

(1.53)) applied to Vi(+,ag) with 7 = 2; combining these estimates and using
that [jas|]| < 1 we obtain

la(2)Bhar — ao(x)(010a,Vi(, @y (2)) + 02, Vi, as(x))Oras (2)))
<lar — aolal[Vintslla (1 + [ag)a)zy

Again using the bound ||as|| < 1, (1.52)) applied to Vi(-,ap) with & = 1 or
k=0and j =2 and to a; with k = 1or k=2 and j =0, and ({1.53)) applied
to Vi(+, ag) with j = 3 and to a; — ag with j = 0 we find that
’as Ja; — ag(x )(28182 s(z, as(x))01as(x)
+83 (x as( ))(81%( )) +82 (x CLS( ))81%( ))|
Sllar — aol[([Vint slalas)a + HV;nt,SH[CLS] Mol 2 B
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Finally, we come to the last term for which we use (1.52)) applied to V(+, ag)
with k=1 or k=0 and j = 1 and to a; with £k = 1 and j = 0 and ({1.53))
applied to Vi(+, ap) with j = 2. We obtain

(a1 = a0) (@) (20104, Vi, ()1 ()
02, Vi, (@) (910, () + D, Vil () B ()|
SWM—%HOMmA[]%WWmARMQ%Q+W%mde“[hé2)

Sllar — CLOH[CLS]oz||Vimf,aH04932T

Using that ||as|le < 1 we then, in particular, find that for any z € R? it
holds that

(82 — as0F + 1) (@1 = a9)04, Va(-,@s(+)) — (a1 — ag) 0t Vi (-, ay(+))) (@)

2a2

Sllar = aolla max [[Visila| 22|

which using Corollary 2 then gives that
(0 = 0@ + 1)@ = a)du, Vil as()

— (a1 — ag) O Vi (-, ds(')))E>

<llar — aollo m2x |Vl

Combining this with ((1.223)) and ([1.224])) gives (|1.222]).

Step 7.2- To continue checking ([1.221)) we use the triangle inequality to write
sup(T%)*2|(9.a ™ Ofw) x|
T<1
1i9_
<sup(T4)*°|[Dsas™, (-)r]dFw]|| + sup(T+)* | 0yas™ D (w])r .
T<1 T<1

For the first term on the right-hand side we notice that by ([1.63]) of Lemma
4 and the analogue of ([1.200]) for wl, we have that

sup(T1)**[[9sa5™, ()r]ofwill S llag™ — ai™[la[w]]2a
T<1 (1.226)
< llag™ = ai™[lallasllall Vint,sla-

The second term on the right-hand side of ([1.225]) is again handled using
([1.200). In particular, for z € R? we may then use (1.18) and that 7 is an

even Schwarz function to write

[0sa5™ (07wl ()|

sup(7T3)2~2
T<1

TH

(1.225)
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Sl = | [ (0 = wile) = )y - D)0y - o) dy
<||ae:vt _ alth QQ(T‘i)QQ 2

Sllag™ = aillasllal| Vinella(T1)2* 2.

We then combine the last three relations and use ||as||, < 1 to find that

19
S}glf(T‘*V “1(0sas Ot ws )7l S Mlag™ — ai™ ol Vint.slla- (1.227)

Step 7.3 To finish checking m we again use of Lemma 4 to find
that

sup(T4) (a5, ()00l < a5 lalOsw o (1.228)

We then combine ([1.228]) with the estimates already obtained in the previous
(sub)steps and the triangle inequality to obtain ([1.221]).

Having shown ([1.221]) and using [a%""], < 1, we may apply Lemma 5 to
obtain that

10swglla + [Osw]2a

Mo 1% 1.229
< Ha b— ay t”a maXH‘/mtzHa + H‘/znt() ( )

Step 8 — (Conclusion)

We would now like to finish by showing and . Recall from part
i) that the solutions of are constructed as U; = ¢; + w; for i = 0, 1.
Notice that, just like in Step 8 of Proposition 1, the bound may be
integrated over s € [0, 1] to give

lwg = willa + wy = wil2a

1.230
<l — a7 o ma Vil + [ Vioeo — Vi (1.230)

Passing to the limit 7 — 0, we find that the bound ([1.230)) holds also for
wo — wi. It still remains to bound the C**-norm of g1 — g and to quantify
the modelling of ¢; — Gy after (Vi(-,ap), Vo(-,ag)) according to (1,—1) and

(0", a7,
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We start by bounding the C'*-norm of ¢; — qy. First, let x € Ri and notice
that

1) — qo()|
< sup (Vi = Vo) ao)ll + sup [0, Vol an)ll[a=aoll (1 931)

ap€[A,1] ap€[A1]
,S H%nul — ‘/int,OH + H‘/z’nt,OHaHafl - aOHa

where we have used ([1.53]). Moving on to the seminorm, we fix two distinct
points x,y € Ri and write

(1 — q0)(z) — (q1 — q0)(y)]
<|Vi(z,a1(z)) — Vo(z, ao(z)) — (Vi(z,a1(y)) — Vo(, ao(y)))| (1.232)
+ [Vi(z, ar(y)) — Volz, ao(y)) — (Vily, a1 (y)) — Voly, ao(y)))|.
For the first term notice that

Vile,an (@) = Vol ao(a)) = (Vi a1 (y)) = Vol ao(y)
/ 0,(Vi(a, a,(x)) = Vila.as(y))) ds
= [ (M2 - ot ae) - (i) Vit a9

+ (Oay Vs(@, as(2)) — O, Vs(2, a5(y))) a1 — ao(x)
04 Vi () @ = ao(a) — @ — ao(y)) ) ds.

We then apply (1.53) with j =1 to (V4 — Vj)(-, ap) and to as as
Vi(z, as(x)) = Volz, as(x)) — (Vi(z, as(y)) = Volz, as(y)))|
< sup [0 (Vi — V) a7 () — ) 1230

ap€[A1]
Sl Vinta — Vintolllas]ad® (2, y).
For the second term of ([1.233)) we use ((1.53)) with j = 2 applied to V(+, ag)
and with j = 0 applied to a; — ag to obtain
[(0a V(2 C_Ls( ) = 0a,Vis(@, as(y)))ar — ao(x)]
< sup |10, Vil ao)ll as(2) — a@s(y)] lar = aol

(ZQGP\ 1

SHVintﬁHa[GS]a”al - a0||da(x, y)

The last term of ({1.233)) is bounded with ((1.53)) for j = 1 applied to Vi(-, ao)
and ([1.54)) for j = 0 applied to a1 — ay:

[0a, Vs (2, a5 (y))(ar — ao(x) — a1 = ao(y))| S [[Vint.s

alar — aplad®(z,y).
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Combining these estimates and using that [as], < 1 gives

Vi(z, ar(x)) = Volz, ao(x)) — (Vilz, ar(y)) = Volz, ao(y)))|

. 1.235
SWVinto = Vil + Nl — oo max [ Vg L) . ). (1.235)

A similar strategy can be used to bound the second term on the right-hand
side of ([1.232)). In particular, we write

|V1 z,a1(y)) — Vo(z,ao(y)) — (Vi(y, a1(y)) — Vo(y, ao(y)))|

Vis(z,as(y)) — Vs(y,as(y))) ds

- / (|<v1 Vo), a(y)) — (Vi — Vi) (9. (9) (1.250

102 Vs, (1)) = 0u, Vi, 35 (9))] [a1 = au(y)] ) ds
SVanta = Vinsolla + llas = aol max{Vig Ja)d” (2, ),

where we have again used ((1.54)) and (1.53]). Together ((1.232)), (1.235]), and
(11.236]) show that

(1 — qola S |lar — aOHamaX [ Vintilla + [ Vintg — Vi,

(1.237)

We then also consider the modelling of ¢ — o after (Vi(-, aq), Vo(-, ao))
ext ext

according to (a$™, a§™) and (1, —1) on R?. For distinct points z,y € R2 we
use the triangle inequality to write

Vi, (@) = Vol do(x)) = (Va(y, () = Voly @n(y)))
~ (a5 (y)) = Valy. 5™ (v))) + (Vo(ar a5 (1) = Voly. a5 (1)))]

< |Vile, (@) = Vol (@) = (Vi (1) = Vol ()|

(z,a1(y)) = Vilz, ai" (y)) — Vol a0(y)) — Vo(z, ag" (y)))

Sz

+

= (TR0 800) ~ Tl 57 (0) (o () T 1)
(1.238)

Notice that the first term on the right-hand side is the same as in (|1.232));
however, we treat it slightly differently now. In particular, we treat this term
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in the same way as ((1.182]) in Step 1, which gives that

|(Vi(z, as(x)) = Vo(z, as(x))) — (Vi(z, as(y)) = Volz, as(y)))]
S e [0, (Vi = Vo) (2, a0))[[as(x) — as(y)]
SJHV;nt,l - %nt,O'la[as]adQQ(x7 y)

Notice that here we have applied with 7 = 1 to (Vi — Vo)(+, ap) and
have either applied to as or both with § = 0. The second
term of is more involved, but has already been treated in part 7i7)
of Lemma 6. In particular, making the identifications a; = @; and a} = a$"’,
where the left-hand side is notation taken from Lemma 6, and using the
result from the lemma, we find that the second term can be bounded by
[Vinta — Vintolla + max; ||Vinei| ol|af™ — a§™||o. We conclude that ¢; — G is
modelled after (Vi (-, ag), Vo(+, ap)) according to (a§*, a&®) and (1, —1) on R?

with modelling constant given by

M S ||Vinea — Vinto ollas™t — af™|,. (1.239)

|a + mzaX H‘/;nt,z|
[]

1.3.4 Proof of Theorem 1.

We proceed to our proof of Theorem 1, which now consists mainly of com-
bining the two propositions and post-processing the modelling. Most of the
work goes towards post-processing the modelling, which is done for part 7)
in Step 2 and for part 77) in Step 3. This post-processing relies on Lemma 6.

Proof of Theorem 1.

i) In this first part of our proof we combine the two propositions and give an
appropriate solution of ([1.68]) with the correct modelling.

Step 1- (Checking the ansatz)

By Proposition 1 we know that there is a unique solution u € C%(R?)
of that is modelled after v(-,ag) according to the extension a®*.
Proposition 2 gives a solution U € C*(R%) of with initial condition
Vint = Wint — t|z,—0 that decomposes as U = ¢ + w such that ¢ + wF s
modelled after V (-, ay) according to a®*. The ansatz for the solution W of
(1.68]) is then taken to be W =u + U.
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To see that W = u+ U satisfies ((1.68)), we notice that the initial condition
([1.68D) is clearly satisfied. In order to check that (1.68a)) holds on R2 we

show that the singular products from Proposition 1 and Proposition 2 are
compatible in the sense that

aoPW =aodu+aodiU. (1.240)

Aside from acd?u, which is obtained via Lemma 4 from the reference products
assumed to exist in ([1.66]), the other two singular products in ([1.240]) are

defined in ((1.80) and ([1.81)). The argument for ([1.240)) is essentially the
same as for (|1.147)) in Step 4 of Proposition 1; in particular, by using Lemma

4 and the triangle inequality we find that

lim ||(a moﬁl Wr —(a e“toalu) + (ae“oa%U)TH =0,
T—0

which yields (1.240]). The relation ([L.71) is a consequence of (1.83)) and (1.87).

Step 2— (Post-processing the modelling)

We would like to show that ¢ + w? is modelled after V (-, ag) with Vi, =
Wit — v(+,a9) according to a®’.
introducing as : R? — R defined as

Our first step towards showing this is

ay-(r) = a(xy,0) (1.241)

and using part 77) of Lemma 6 with the identifications a = a®** and a’ = ay,. to
obtain that §+w” is modelled after ‘7(, ag) with Vi, = Wins—u according to
as-. In order to swap out the initial condition V;,,; = W;,; — u for the desired
Vint = Wint—v(+, ap) in this modelling, we let v be associated to the modelling

of u after v(-, ag) and, for V (-, ag) solving ([1.5)) with V;,; = v — (-, ag), show
that
V(.au(y) = V(y00 () = 7 ()= = )1 L12)
S No(N + 1)d* (2, y)
for z,y € R? and
vl (y) = e / ! (s, O)e‘l_yé%t_r?; ds. (1.243)
(4mar(y)ys)?

Once we have shown (1.2~42 we can use the triangle inequality to see that
g +w¥ is modelled after V (-, ag) with Vs = Wi — v(-, ag) according to ay,,
now with modelling constant bounded by (N + Ny)(N + 1); by Lemma 6

197



this means that §+w” has the same modelling according to a®!. By

and the results from Propositions 1 and 2 we find that is satisfied.
The argument for comes down to using the heat-kernel representa-

tion for V (-, ag), that u is modelled after the v(-, agy) according to a®** on R?,

and that a®'(z) = as(x) when z9 = 0. In particular, using the definition
(1.243) we find that

V(wan(y) = V(5 00 ) — 7 1)z = )1
S| [t = #(afanln ()%.0) = uton ~ <Calnln ()20
— (v = 2(faslan (1))%,0), alys — (dlyslan (1)%,0))
~ol(yn — 2(Alysla (), 0), alyr — =(Alylan(1))?,0))

—wm—zmwmﬂw>me—err%z

+ \e_m" — e_"”l\(HUH + sup |lv(-, a0)l])-
ao€[A1]

wb—‘

(1.244)

=

We first treat the second term on the right-hand side, which can be easily
bounded by |z5 — 32| No(N + 1) due to the relation |e=172l — e=1v2l| < ||z,| —

ly2|| < |29 — y2| and the bounds ([1.83)) and ((1.322)). This is sufficient when
d(x,y) < 1; when d(x,y) > 1 we use the trivial bound |e~ 12| —e~1#2I| < 1 and

d**(z,y) > 1. For the first term we notice that in the case that d(z,y) > 1
the standard Holder estlmates ) and ([1.322) along with ([L.370) and
([1.83) yield the desired (1.242). Therefore we must only still handle the case
d(x,y) < 1, but this requires a bit more work. In particular We begin by
using the modelling of v and the estimate to bound this term as

[ (st = =(alaslan ()%, 0) = ulon = =(4lla ()%, 0)
= (v((21 = 2(4fslan (9))?, 0), alr — =(4lyelan(y))?,0)

~ol(mn (4l ))?,0), alys - =(4llan()),0)))

—v(y — z(4]y2lan(y))?, 0)(z — y)1) e dz

SNo(N + 1)d**(, y)+

!é”@r—dﬁwww@»%maewawxwﬁ—wewmw@»eerdz.
(1.245)

N

o=
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Continuing, we now split our treatment of the remaining term on the right-
hand side into four cases:

Case 1- We assume that y5]2 > d(x,y), 22|z > d(z,y), and |ys| < |22|. No-
tice that the square-root function is Lipschitz on R X [|ys|, 00) with Lipschitz
constant %\y2|_%. In particular, we have that

|(4]za]an ()2 — (yalam(y))?] S 22 — yolly| 2, (1.246)
which, after using (1.365]) in conjunction with (1.83), yields
[ 0 = =ty ()% 00x(hrson (1) — (g () e o
= | [ = (4020 6)2.0) = v(31,0)
x2((422an (y))F — (dypan(y))F)e " dz(

2a

SNo(N + 1)/ 22 ya] T g — yale ™ dz
RQ
SNo(N + 1)d** (2, y).

Case 2— We assume that |ya]2 > d(z,y), |22]2 > d(z,y), and 25 < yo. The
only difference now is that we must use a different Lipschitz constant for the
square-root function; namely, now we use %|x2\_% as the Lipschitz constant
on R x [x9, 00). Following the same recipe as in the previous case and adding
in a couple of uses of the triangle inequality we obtain

|/ vy — 2(4yelan (1))?, 0)2((4]a2lan (y))? — (4]yelan(y))?)e ™ dz

20

SNo(N + 1)/ 1212 yo| T |aa| "2 |ars — yole™ d
R

2a—1 2a—1

2 —|—|$2‘ 2

SNV + 1) [ a2 — 2 Vsl Has — yale—= dz
R

SNo(N +1)d* (2, y).

Case 3~ We assume that |z5]2 < d(z,y). Now we use the bound
|(4]za]as(y))2 — (4lyolan(y))?] < |22 — 2l2, (1.247)

which, after using the triangle inequality and the same tools as in the previous
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case, yields

2

| [ vt = =tlelant)s 0=(Aaalan () - (sl (v) e a

2a 2a—1

—1 1.2
<NO(N + 1) / 22([ys — 2o T + o] s — yolPe > dz
RQ

SNo(N + 1)d*(z, y).

Case /— We assume that |y2]2 < d(z,y). Reusing (1.247) and again (T.365)
along with ((1.83)), we obtain

|/ vy — 2(4)yalan (1))2, 0)2((4]a2lan (y))® — (4lye|an(y))F)e™ dz

2a

§N0(N+1)/ 22y T |g — 1pole ™ dz
RQ

2

SNo(N + 1)/ |2|2*d* () |zo — y2|%e_"‘ dz
R2
SNo(N + 1)d*(z,y).

Combining these cases with ([1.245]) yields ([1.242)), which, when combined
with (1.86)), gives that ¢ + w¥ is modelled after V (-, ag) with Vi,y = Wins —
v(+, ag) according to as with a modelling constant bounded by

.
My S No(N +1) + [lallal Wi —ulle < (No+ Ni")(N + 1) (1.248)

~Y

By part i) of Lemma 6 we know that this modelling is also according to
a®’ and thanks to that the new modelling constant still satisfies
. We, in particular, obtain that W = u + § + w¥ is modelled after
(v + ‘7)(, ag), where V' (-, ap) has initial condition V;; = Wi — v(-, ag) ac-
cording to a®* with modelling constant satisfying (1.72)) .

i1) We now use the results of part 4i) of Propositions 1 and 2 in combination
with part 7i7) of Lemma 6 to obtain the stability result for Theorem 1.

Step 3— (Stability)

It is immediate that (1.84) and (1.89) yield ({1.78). We now consider the

modelling of u1 —ug+G +w¥ — (Go+wf). By part i) of Proposition 1 we have
that u; —ug is modelled after (vi(-, ag), vo(+, ag)) according to (a$*, a&™) and

(1,—1) and by part i) of Proposition 2 that ¢, +w¥ — (G +wg) is modelled
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after (‘71(~,a0),‘~/0(-,a0)) with Vipei = Winei — u; according to (1,—1) and
(a§®t, ag®). Using part iii) of Lemma 6 the modelling of ¢ +w¥ — (Go +wf)
can be post-processed to give the same modelling according to (ay s, ao)-
Just like above, we now aim to show that ¢; + w¥ — (g + wf) is modelled
after (Vi(-, a0), Vo(-, ao)) with Vips = Winei — vi(-, ag) according to (1, —1)
and (ay 4, agr). After we have done this, we again apply part i) of Lemma
6 to switch out (a4, agy) for (af™, ag™) in the modelling.

Just like in part i), showing that ¢ + wf — (G + wf) is modelled after
(Vi(+, a0), Vo(+, a0)) with Vipei = Winei — vi(+, ap) according to (a4, ag ir)
and (1,—1) comes down to showing that

(Vo(z, aoer () — Vo(y, aoer(y)))

~(Vi(@, a1 (y) = Vily, v () — 7 (y) (2 — )1 (1.249)
<((Ng + 1)6N 4 §No(N + 1))d**(z, y),

where each V;(+, ap) has the initial condition Vi (-, ap) = u; —v;(+, ap). Here
the v is defined in the same way as (1.243)), but with the v in the definition
representing the modelling of u; — wg after (vi,vy) according to (a4, o)
and (1,—1); call the modelling constant here M. To show ([1.249) one
uses the exact same argument as to show in the previous part, but
using the relation instead of and the bound [V]sn—1 < INVy +
OM. We do not repeat the actual calculation here. In the end we find
that ¢, + wF — (G + wf) is modelled after (Vi(-, ap), Vo(-, ag)) with Vi, =
Winti — vi(+, ag) according to (a4, agy) and (1, —1), where the modelling
constant is bounded as

My < (No + 1)SN + (6N + SNJ™)(N + 1).
Notice that here we have used ([1.86]). By part iii) of Lemma 6 this upgrades

to the same modelling, but according to (a{™,a§™). The new modelling
constant M satisfies ((1.79)). O

1.4 Construction of Singular Products for Theorem 1

In this section we prove Lemma 2, Lemma 3, Corollary 1, and Lemma 4,
which are all stated in Section 1.3.

1.4.1 Construction of the Reference Products for Theorem 1

We begin by proving Lemma 2, Lemma 3, and Corollary 1 in the order in
which they are presented in Section 1.3.
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Proof of Lemma 2. Notice that G is clearly well-defined as a distribution
on R? thanks to the bound ([.50)) and the assumption that o € (0,1). This
means that for any F' € L>(R?) the product given by

F o 0iG = FO:G (1.250)
is classically defined. In order to obtain (1.51) we fix € R? and, using
) and (L.50]), write

HF 7] 0 0:G (w0 )}
[ (F@) = Fu)r(a - )26 () dy

<SC(G) [FIY° (/ [br(z —y)d(z,y) (1l = + |yl =) dy
Bl(l‘)
o[ Worte =l ) (l"F + ") ay)
B¢(z)
<C(G)[F ZOC(T%)M 2%

(/ / (& = 9)] (d*(2,9) + d(2,9)) (192 "F + |52] %) dgr A

[l = @) + @) )
(1.251)

where we have rescaled the variables as indicated in ([1.16) and used that
T < 1. To handle the first term on the right-hand side of (1.251)) we use that

0= [ lrtor )l (0l +1- 1% + ol + - 1) dor € 2¥(R)

which follows from ; being a Schwarz function. In particular, this is a
simple application of Morrey’s inequality and the basic properties of Schwarz
functions. Using this we then have that

/ /Wl v —y)| (d*(2,y) + d(@,9)) (1= +[yo| =) dyr dys

a=2 20-2
5|\p||/1<\y2\ 2 4 1l ) dys < oo,

After another application of the Schwarz-ness of ¥; ;now to the second term

on the right-hand side of ([1.251)), we obtain the desired ([1.51]).
[]

Towards our proof of Corollary 1 we then prove Lemma 3, which we have
actually already gotten big milage out of in the proof of Proposition 2. As
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we have already mentioned in Section 1.3, this proof relies mainly on the
heat-kernel representation (1.58)) of V' (-, ag). Here comes the argument:

Proof of Lemma 3. 1) Fix 0 < k <2 and j > 0 such that k+j > 1. We use
the convention that P} and P} ; represent generic polynomials dependent on
k or k and j respectively; even within the same line two appearances of these
expressions may denote different polynomials. Changing variables, using the
relations , and letting C' be a generic constant that changes from line
to line we then write

3,01G(ag, 21 — y, 2)

: e "2 2
—AJ Ak -z
=0 01 < e )

(47’(’&0372)2
1tk

:Ce‘”&{o <(a0$2)_2Pk(Z)€_Z2> (1252)

o _ 1tk

=Ce ™ (Pj(aaé)Pk(z) + Py (=, aaé)> e xy 2.
Fixing a point x € R and ag € [\, 1], we then notice that
AWnt(y)aﬁoﬁfG(aoaxl —y,72)dy
— [ (Vi) = Vasl2))2%, 0 Glaw, 1 = .22,

which follows easily from an integration by parts when £ > 0 and from the
observation that 830 fR G(ag, xo, 1 —y)dy = 0 when £k =0 and j > 0. To

finish we use ((1.252)) to calculate

/(V;nt(y) - %nt(xl))agoafG(am T1 — Y, Ta) dy|
R

<[Vindla / 1223100 B5G (ap, 21 — y, x2)] dy
R

SWadee 2" [ Jo1* (Pestevag?) + Pilay ) Prg(a)) e d
R
<O @) [Vintlae 257 .

As a last remark, notice that because o € (0, 1) the estimate (1.52)) implies
that 87 9fV (-, ap) € L, (R%) and hence is well-defined as a distribution.

loc

i1) For our proof of (1.53)) we again fix j > 0, z € R?, and ag € [\, 1]. The
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relation (1.53) then also easily follows from (1.58) and (1.252)) for k& = 0:

‘ ag xthaa’O)‘
/Rvmt(y)e“ <Pj(a82) + Pj(a, 2, z)) ey’ dy'
Se” 2 | Vinell-

<

~Y

iii) Notice that for j = 0 is the classical Holder estimate for (|1.5)),
which follows from the heat-kernel formulation of V(,ag). To get the es-
timate for 1 < 7 < 3 we derive the equations satisfied by 9,,V (-, ap),
92 V(-,a0), and 93 V(-,a0). The equation for d,,V (-, ag) is derived by dif-
ferentiating ([1.5)) in terms of ag, which yields that

(05 — ag0? +1)0,,V (-, ap) = 03IV (-, ag) in R?, (1.253)
DuyV (-, a0) = 0 on ORZ.
Taking one more ag-derivative we find that 92 V/(-, ag) solves
(82 - Cloaf + 1)820‘/(', ao) = 2812(9&0‘/(', CLQ) n Ri, (1.254)
820\/(-,@0) =0 on ORZ
and differentiating a third time gives that 92 V(-, ag) solves
(85 — apd} + 1)02 V (-, ap) = 3010; V (-, a) in R%, (1.255)
95 V(- a9) =0 on OR?.

From these equations we can read-off ((1.54)); of course, this presupposes the
standard Schauder estimate [g], < [f]a—2 for our definition of the negative
Holder seminorm and g solving

(8y — agdi +1)g = f in R?,
g=20 on (‘3]1%1.
This estimate follows from decomposing f = 05 f2+0% f for two C*functions
that are near optimal in the sense of Definition 2, using the standard Schauder
estimates for the solutions of the initial value problems with right-hand sides

f?, the linearity of the equation, and the uniqueness of the solution g. Using
the Holder estimate that we obtain in this way, we find that

104,V (-, a0)]a S [(9%‘/(-,@0)]@ 2 S | Vintlla
[alaaov( aO)]a—2 S [8610‘/('7 aO)]a ~ HV;ntHow
(0705 V (-, a0)]a—2 S 102,V a0)la S Vit
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iv) For our proof of we fix x,y € Ri and 0 < j < 1. We then use the
triangle inequality to write
|8£0V(a:1, L9, ap) — 86{0\/(%, Yo, ag)|
<|8! V(21, 22, a0) — 82 V (21,42, a0)] (1.256)
+ 02 V (1, y2, a0) — 02V (1, yo, ao)|
and treat the two terms on the right-hand side separately. For the second
term we notice that

107 V (21, Y2, a0) — &2 V(y1, Y2, ao)|
y . 2—2«
§‘6£LOV(5U1, Y2, ao) - Q{OV(yh Y2, ao)\ 2ma
x |02 V (21,2, a0) — O V(y1,y2, a0)| 7=

Qg

2—2a

SNV (- y,a0)lla |z — va|*) 7 (Jz1 — w1 [ 10709,V (-, y2, ao)||) 5
SVintllays 2d** (2, y),

(1.257)
where we have used ([1.52)), the Holder bound (1.54)), and that « € (0, 1).

We may use essentially the same argument to treat the first term on the
right-hand side of ([1.256]). The only additional ingredient that we use is that,

thanks to the equations (1.5)) and ({1.253)), after applying ((1.52)) and (1.53])

we have that
102V (-, 22, a0) || <[|0FV (-, a2, ao) || + [V (-, 22, ao) |
SWVintlla(2y® +€e77) (1.258)
SWVintllazs®
and, similarly,
HaQaaov(Wx?aaO)H
<RV (s, a0) | + 1020,V (w2, a0) | + 100,V (s mssan) | (1.259)
Sl Vintllas® -

Combining ([1.258)) (in the case that j = 0) or ((1.259)) (in the case that j = 1)
with the technique of ([1.257)) then gives

] : 2—2«
<|95 V(x1,29,a0) — 03 V (21,12, ag)| >-=
X |00 V (21, 9, a0) — 83,V (21, Yo, ag)| 7= (1.260)

2—2«a

<(|lz2 — ya|2[02, V]a) 7o (|22 — 4al[|020 V (-, 22, ag)|) ==
SWVintllazy 2 d*(,y)
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Together ((1.256)), ((1.257)), (1.260)) then yield ([1.55]).

v) Notice that when ((1.5)) has no massive term then ((1.58)) still holds, but the
Green’s function in (1.57)) is replaced by the same without the exponential
factor e*2. Our claim then immediately follows from the above arguments.

[]

Using this lemma we can then process Lemma 2 to obtain Corollary 1:

Proof of Corollary 1. This corollary follows immediatelyfrom Lemma 2 with
the identification G = V (-, ay) since (1.50)) holds for C(V (-, ag)) = [Vint|a by
part ¢) of Lemma 3.

O

1.4.2 Proof of the Second Reconstruction Lemma

We move on to the proof of the second reconstruction lemma, which we use
in our treatment of the linear problem in Theorem 1. As already mentioned,
the proof presented here is essentially the same as in [47] and is only included
in an abbreviated version in order for this thesis to be self-contained. There
are small technical differences due to the loss of periodicity in the xo-direction.

Proof of Lemma 4. In [47] it is first shown that for all dyadic multiples T" of
T,1.e. T'= 2"7 for some n € N, the relation

(Fdfur — oiE [F, ()7] 0 0iwi) — (FO{u, — i B [F, (-),] 0 Ofwi)r—r =
3 (wwm%m—wEmcm%W

t=712¢ for 0<i<n
0 [E, ()t] [F) ()t] o 6%11)@ — [Ui, ()t]E[F, ()t] O (9%102) o

holds. As the argument for this identity only relies on the semigroup prop-
erty of the convolution kernel and we use the same kernel here, we use this
decomposition without proof here. We then find that

HF@%UT — O'Z'E [F, ()T] < 5’wa — (FafuT — O'Z‘E [F, ()T] <& G%wz)T_T)H
S ([Fla M + NNilloilla) (T4

~Y

(1.261)
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for any 7 > 0. In particular, using ([1.21]) and the triangle inequality one first
writes

HF@%UT — UZ'E [F, ()T] % afwz — (F@%UT — O'iE [F, ()t] < 8%wi)T_TH
D DR ( FONE IR GO e

t=72% for 0<i<n

+W%WNMVW%w@%M+mmwMEmcmO%wD'

The relation ((1.261)) then follows from the three relations

I[F, ()] Bus — 0, B [F, ()] OPwge|| S [F), M(£1)%72, (1.262)
lo: (B, ()] [F. (-)e] © BFwy|| < lloil| [a], NN:(t)3*72, (1.263)
and |7, (V) E[F, (-4 0 O3wil| < o], NN ()32, (1.264)

which hold for any ¢ > 0, and that [a], < 1 and a € (3,1).
The estimates ((1.262)), ((1.263)), and ((1.264)) are proven in the same way as

in [47], but to maintain oversight we give their proofs here. We start with
1.262 and first write

i) OFur — 0y E [, (-)e] Ofwie) ()

1.265
/ﬁmw— (@) = )@ uly) — i)y, o(@)) dy 0
for € R? and then, furthermore, observe the identity
81Ut oi(x )81w1f(y7 a(r))
(1.266)

/@mt—z u(z) — o(2)wn(z, a(x)) d=.

Using that vy is a Schwarz function on R? that is even in the first variable,
we further process the right-hand side of ([1.266)) by smuggling in terms and
then using the modelling of u along with ([1.18]):

Ofnly — 2)(u(z) — oi(@)wi(z,a(x))) dz

R2

< [ 1ot —2)

X |u(z) —u(z) — oi(x)(wi(z, a(z)) — wi(x,a(z))) — v(z)(z — 2)1|dz
<M . Oy — 2)(d*(y, 2) + d**(z,y)) dz

SM((t1)272 + (1) 24> (2, y)).
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Plugging this result into ((1.265)) and again using ({1.18)) we obtain (|1.262]).

Obtaining ((1.263) and ([1.264)) is mainly an issue of processing notation.
For (1.263) we set w = [F, (+)¢] © &?w; and use (1.18)) to write

o) [, ()] [F, ()i] o Fwn(a)|
o(x) [ e = )@l a(e) ~ (s, afy))) dy
0 .

a—aow('aCLO)

1
Slloill lal, sup (t1)%,

0,06[/\,1]

(07

which holds for all x € R?. The desired estimate ((1.263)) then follows from the

assumption ([1.61)). Moving on, we find that ([1.264)) follows from the previous
argument for (1.263). In particular, now letting w = E[F, (-);] ¢ Ofw; and

using (|1.18]) we write

(03, (WEIF, ()] 0 OFwy) ()| =

| (o@) = i)t = i) dy

which gives ((1.264)).

We now conclude the argument. Using the notation
F = F@%UT — O'Z'E [F, ( . )T] 081211)2',

we define F'o9?u as the distributional limit of the sequence {F7}_as 7 — 0.
To see that this limit exists we first prove

IFT < (IFIN(M + Ny + [|oil [N N (T)22, (1.267)
which we then combine with the rewritten ([1.261))
IF" = (F el S ([Fly M + NNil|oil|) (T5)%2 (1.268)
to obtain
IF)rl S (Fa(M + N;) + NN |logla)(T5)2: (1.269)

of course, all of these relations hold for 7" < 1. With in-hand we can
then use the Arzela- Ascoli Theorem in order to pass to the limit. We will
go over this in detail below, but first we give the argument for . Here,
we first use the triangle inequality to write

1FN <N Fdur| + ol e I[E, (- )-] o Ofwi(-, ao) |
apE|A,
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and then apply ((1.20]) in the style of ((1.116]) to obtain
|0Fur|| S [u)ye(T7)*

Combining these two estlmates with the assumptions ([1.60)) and (| - ) and
the bound (| m we obtain .

Notice that the equivalence then implies that for every 7 > 0 there
exists a decomposition

FT=0iF" 4 0, F? (1.270)

such that the local seminorms [F7™]/¢ are bounded uniformly in 7 and we may

assume that F7(0) = 0. By the Arzela- Ascoli theorem the distributional
limit Fod?u is then well-defined and has a finite local C%~2 seminorm. By the
lower semicontinuity of the L°°-norm with respect to weak-* convergence we
may then pass to the limit in (1.268)), which gives ([1.62)), and also using
gives ([1.63). For the uniqueness of the distribution F ¢ d%u satisfying (1.62))
we argue by contradiction and assume that there is another such distribution
h. By the triangle inequality we then find that

lim ||(F<>81u)T — hTH = 0 (1.271)
T—0
which confirms that F o 0%y = O

1.5 Equivalent Local C“ 2-seminorm

In this section we give a proof of Lemma 1 that is motivated by the proof
of a similar result (Lemma 5) in [36]. As a technical tool, we make use the
convolution kernel e~ 79 that is associated to the semigroup of the operator
A = 0} — 93 + 1. We use the notational convention that f * e Tipp = fi

and, as always, f xy¥p = fr.

Proof of Lemma 1. For brevity, throughout this proof we fix a convex set
Q) C R? and use the notation || - || to denote || - || and [ ], to denote [-]a.q-

Step 1- (Replacing Y7 by e"1r)

In this step we make the simple observation that if we show the equiva-

lences (1.22), (1.23)), and (1.24)) for 17 replaced by e T1)p, then this yields

our claim. The reason for this is that thanks to the restriction 7' < 1 in the
supremums we are able to swallow the terms e~ into the universal constants
of the statements.
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Step 2— (Bound for the C*- seminorm)

We first show that

Flu S sup(TH) T AF| (1.272)

for a € (0,1). Once we have shown ((1.272)), (1.24) follows immediately by
using Young’s inequality for convolutions to notice that

E1.C:) )

ITASF = ITAz « f2]] < L+ DL S 17

We now give our argument for (1.272)). As the left- and right-hand sides of

(1.272)) scale the same if we replace f by cf for some ¢ € R, we may assume
that

2

sup(TH) || TAf2| = 1. (1.273)
T<1

Notice that due to the semigroup property and ((1.21]), the relation ((1.273)
implies that

ITASF = Te " I(Afr)r-ll S Te " JAAI S 1
when 7' > 1 and combining this with ((1.273) we obtain

sup(T) | A S 1. (1.274)
T>0

For 7,1 > 0 and T' > 0 we may then use (|1.274)), the semigroup property of
e Tip, and ([1.18) to write

|HBASH = e 2| D5z * Af7

Se s (T A (1.275)
< €_Z(T4) —j—2l+a—4

Continuing, we notice that by the definition of 7, e T4 is a smooth
solution of (Or + A)e T4 = 0 and that, since e 717 has integrable deriva-
tives, Or(e Tr) is integrable, and we have that || f.|| < oo for all € > 0, fi
is a smooth solution of (Or + A)fj* = 0. Fixing j,1 > 0 and using
allows us to for all 0 < t < T write

| T
[ — )l = \ [ oioaseas
< /T e_%(si)_]’_QH—a—ﬁl dS (1276)

t

< ((Ti)—j—Ql—i—a + (ti)—j—ZH—a).

~Y
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In the case that j = [ = 0 this yields that
1" = s (1), (1.277)

which implies that ((1.277)) holds also for t = 0. Since in this step we have,
in particular, that || f * 1| < oo, we can also write

lim {057 S e T VT = 1)) T Al 5 0as T — 00, (1.278)
—00
Fixing 0 <t < T and j,{ > 0 such that j + [ > 1, we then use the triangle
inequality to write
{05 S| < 18105(f" — F1)Il + 1] Do 12|
S ()72 4 (7)) - oo £
which after using (|1.278]) and ([1.277)) and letting T" — oo gives
|35 < (£5) 72 (1.280)
We have now already shown the key point of this argument: the function f is
“close-to" the convolved function fr by (1.277)) with ¢ = 0 and the convolved
function has nicely behaved derivatives in the sense of ({1.280)).
To finish the argument for (1.272) we fix T" > 0 and two distinct points
x,y € (). We then find that
7 (y) = f1 (@) < ([0uf7 ld(y. @) + | 0ef7 |d* (y, x)),
which we combine with ((1.277]) for ¢ = 0 and ({1.280]) to obtain
() = f@I S = £+ N0 f7 ld(y, =) + 102f7 | (y, @)
ST + (T d(y,2) + (T *d(y, @),

(1.279)

(1.281)

which we may further process by setting 71 = d(y,z). This yields that
[f(y) = f(2)| S d*(y, ).

Step 53— (Using the C°~2 seminorm as an upper-bound)

In this step we take 2 = R? and we show that
sup(T4)* || frll < [flas (1.282)
>0

for v € (0,1). We decompose f = 9?2 f1 + 0y f? in a way that is near optimal
in the sense of Definition 2. For such a tuple (f!, f?) the use of (1.20)) then
yields

sup(T%)* || rl| = sup(TH (D1 + o frl S [flaa (1289)
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as desired.
Step 4 — A specific decomposition of f)

Towards our proof of ([1.22]) we assume that
sup(TH22 7 = 1, (1280
T<1

which we may again do by scaling. We then notice that using (|1.284]) we
have that for T > 1 the relation

oy C19) _ -
121 T s S IR ST (1289)
holds. In this step we show that these observations are enough to show that
u :/ frdT (1.286)
0
is a distributional solution of
Alu) = f on R?. (1.287)
To obtain our claim we first show that for any ¢ € (0,1) the function
u' = / fitpdT (1.288)
0
satisfies Au’ = f/". To see this we recall from Step 2 that f/", solves

(0r + A) I = 0 on R?, which allows us to write

/ OrfiliedT = —/ AfipdT. (1.289)
0 0
Using that ¢ > 0 we process the left-hand side as
/ OpfiipdT = 1 — f = — (1.290)
0

where we have used that || f2|| = 0 by (1.285)). For the term on the right-hand
side of (1.289)) we use ({1.284]) and ([1.285]) to obtain the relation

o0 - 1 . . 1
| ieiiszlar s @y @ [ ppar (1.201)
0 0
1 00
S (ti)“”j)/ (Ti)”dTJr/ e TdT < oo, (1.202)
0 1
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which means that
/ Afillpdl = A (/ fir dT) : (1.293)
0 0
In particular, combining (|1.289)) and ({1.293]) we end up with

A( [ rar) = g

To show that u! — w uniformly as t — 0, we can directly estimate the
difference as

¢

[u! — u| = |/ f;pdTH <t (1.294)
0

Step 5— (Bounds for ;' and 0y')

In this step we show that if f : R? — R? is such that for every fixed z» € R
the function f(-,z7) is periodic and mean-free, then

107 Fllo S M1 flla- (1.295)
If f is constant in the xi-direction, then
05 1o S - (1.296)

We start with our proof of (1.295]). We first notice that because f(-,x2) is
mean-free, 9; ' f (-, z) is again periodic. This means that to obtain (1.295]) we
may fix two distinct points z,y € R? such that x1, 31 < 2 and d(xy,9;) < 2
and assume that y; > 1. We then notice that

H%V@n@%*ﬁ?@n%ﬂSémvwwﬁ—ﬂ&wWBSUMW@w)
and

107 f (w1, y2) — 01 f(y1, u2)]
< [ 1)l ds < o =l S 171G

Z1

We may also bound the L*-norm as

or ) < [ (sl ds < ],
0

Combining the last three estimates we obtain ((1.295]).
The relation ((1.296)) is obtained in essentially the same way; since we are
interested in the local Holder seminorm we fix o,y € R? such that d(z,y) < 1
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and again assume that yo > x5 . We then use the triangle inequality and the
trait that w is constant in the x;-direction to write

Y2
Iaz_lf(fvhfﬂz)—351f(y1,yz)\5/ |f(y1,8)ds S| fl|d*(x,y).  (1.297)

T2

Step 6 — (Proof of (1.22))

Under the same assumptions as in Step 4 we then prove ([1.22)). The main
idea of our argument is to take advantage of the decomposition given in Step
o, 1. e.

f=A(u) = 02(0?u) + 0y(—0ou) +u
with u given as ((1.280)), in the sense that we use the triangle inequality to

write

[f1ie, < [0Fu] , + (02w, + [u]”,, (1.298)

a—2 —

The first two terms on the right-hand side can be treated in the same way

as in [36]. We notice that by (1.284)) it holds that

o L (E21).(C259)
sup(T4)" || f7'|| = sup(T5)"*[|(Au)7]| S L (1.299)
T<1 T<1
which we process with the semigroup property and ([1.18]) to obtain
sup(T4 ) T (A0 05| < 1 (1.300)
T<1

for 4,0 > 0. The bound ||u|| < 1, which we have obtained in the previous
step, can then be combined with Young’s inequality and (1.18]) to yield

107w % e, 101w Well, 19w % el [l 5 | S 1 (1.301)

for any € > 0. We estimate the first two terms on the right-hand side of

1.298)) by first applying ([1.272)) from Step 2 (which we may do thanks to
(1.301)) and then using ({1.300). We find that

[Ofu],, S sup(T) T (AT S 1. (1.302)

The second term on the right-hand side of ([1.298]) is treated in the same way.
In order to treat the third term on the right-hand side of ([1.298]) we use
Step 0. In particular, for a fixed x5 coordinate letting P denote the projection
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onto the space of mean-free periodic functions in one variable, we write

w(y, 29) = & (97 P87 P(w)) + 0 (a;l /0 s, 2) ds) O (1.303)

Applying Step 5 yields

o peor P, 5 lor " Pla H H v [ ot
<ot Plu (1.304)
SlPulla
Sllulla
and
1 loc 1
[82_1/ U(Syxz)dé’] S |/ u(s, xe) ds|| < |Jull. (1.305)
0 a 0
To finish we notice that by Step 2 we have that
([T272) ) (1-300) X
W], < sup(TH)|TA@)E| < sup(T4)* < 1. (1.306)
T<1 T<1

Combining the definition (1.12) with ((1.303)), ((1.304)), (1.305]), ([1.306)), and
the bound ||u|| < 1, we are able to bound the third term on the right-hand

side of (1.298) as [u]'*¢, < 1. O

Corollary 2. Let a € (2,1) and L € (0,1). If the distribution f on R?
satisfies the relation

f(2)] < (1.307)
for any x € R? and some C € R, then we have that
sup(T)F 1] S C. (1.308)
Furthermore, we find that
I S @) (1.309)

for any T € (0,1) If, additionally, we know that f =0 on R%, then for 7 > 0
we have that

ook (—oon) S CL™ 5 (712, (1.310)
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Proof. We start by showing (1.308). For this we fix + € R? and use the
growth condition ([1.307) and the standard rescaling ([1.16]) to write

| fr(z)]
<C(T7)*? /R2 |Zg — ?]2\%2721#1(?3) dy

i.2+1 200—2
/ |2 — To| 2 dy2+/ Wl(yﬂdy)
1 R2

(1.311)

seeriy (

/ Y1 (91, -) dip
R
SC«(T%)204—2'

Notice that here we have relied on 1)y being a Schwarz function and that
|22 < 1.

The relation (1.308), in particular, implies that [f]"¢, < C by (1.22) of
Lemma 6, which we then use to prove (1.309)). For this we let f = 07 f1 -+, f?
be a near-optimal representation of f in the sense of Definition 2. We then

fix 7, 2 € R? such that d(x, 2) < 1 and use an integration by parts and (1.18)
to write

f-(x) = fr(2)]
/R2(f1(x —y) — [z = ). (y) dy

b [ (Pl = G- 0o ) dy
< (£ + [£2)10) () 2, 2)
S C(r)d*(x, 2),

which is ((1.309)).
In order to show ([1.310) we use ([1.24). Notice that due to the estimate

(1.307) we know that || f; * ¥¢|]| < oo for any € > 0, which means that we
may apply ([1.24) with Q = R x (—oo, —L] to obtain

[fT]a;RX(—OO,—L] S STlilfl’(TZ)_aHfT * ZpTHRx(—oo,—L]- (1-312)

To finish, we fix £ € R X (=00, —L], T < 1 and 7 > 0 and first assume that
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7 < T. We then use the growth condition ({1.307)) to write
(TZ)_O‘IfT + Pr(7))|
(.19, (T.21) 1
S ( ) a|f * ¢27

< C'L_ai+2 74 / \362 y2 | 2 o, (y)dy

Eat1 (1.313)
/ 13, ) din / 92 — 822 g
R To—1

[ A ) dg)
RQ

a+2

< CL™ % (r1)% <

where we have used that f is only supported for positive times (so that
we could smuggle |i—z|a7+2 into the integral on the third line) and also that
|zo| > L. Of course, we have also used that 1 is a Schwarz function and
that o € (%, 1). When T' < 7 we simply switch the roles of 7 and 7" in the
above calculation.

O

1.6 Appendix A: Construction of the Singular Products for the
Quasilinear Problem

We now construct the second new family of reference products mentioned in
Section 1.3 and also prove the first reconstruction lemma.

1.6.1 Summary

We begin our construction of the new reference products by proving the
following general lemma:

Lemma 7. Let a € (0,1).

i) Let G € C*(R?) be such that for any x € R*
0FG(w)] S C(G) s (1.314)

holds for k = 1,2 for some constant C(G) € R; we assume that C(G) >
(Glo. Also, assume that we have a family of functions F(-,ap) € C*(R?)
indezed by ag € [, 1] such that

sup || F (-, a0)|laz < No (1.315)
aoe[)\,l]
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for some Ny € R. Under these assumptions there exists a family of C*2-
distributions G o O?F (-, aq) such that

sup sup(Ti)Q_Qo‘H[G, (V7] 0 FF(-,a0) 2 < C(G)Ny. (1.316)
aoe[)\,l} T<1

ii) Let i = 0,1 and G; and F(-,ay) satisfy the assumptions of the previous
part individually. Furthermore, assume that there is a constant C(Gy, G1) €
R satisfying [Go — G1loa < C(Go, G1) such that for any x € R?

0 (Go — G1)(z)| < C(Go, G1)|372\a%k (1.317)

for k =1,2. Under these assumptions we find that the distributions defined
in i) satisfy

sup sup (Ti)QQQ [1Go, (+)r] 0 OYF (-, a0) — [G1, (+)r] 0 OFF (-, ao) |,

aoe[)\,l} T<1
5 C(G()a GI)NO'
(1.318)

iii) Let i = 0,1 and G and F;(+,ap) individually satisfy the assumptions of
part i). Furthermore, assume that

S‘?P | [ Fo (s ao) — Fi(+, ao)lla,2 < 0Ny (1.319)
agc )\,].

for 0Ny € R. Under these assumptions we find that the distributions defined
in 1) satisfy

sup sup <T¢11
aoé[)\,” Tgl

< C(G)SNy.

) NG (el 0 BFu(a) G, ()e] 0 2Fi ()]

(1.320)

Notice that the first part of this lemma is meant to be applied with G =
V(-,a9) and F(-,ay) = v(-, ap), which yields the second family of new ref-
erence products mentioned in Section 1.3; i.e. the family of distributions
{f/(, ag) © O2v(-, a{))} indexed by ag, aj € [A, 1]. In the last two parts of this
lemma we address the stability of the singular products that we have con-

structed in part i) in the sense that in i) we intend to set G; = Vi(-, ag) and
F(-,a() = v(-,ay) and in i) we take G = V (-, a9) and Fi(-, aj) = vi(-, ag).
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In order to show that the identifications made in the previous paragraph
satisfy the necessary assumptions, we use Lemma 3 and the next lemma in
which we derive a Holder estimate for v(-, ag). While the estimates for v(-, a)
that we derive in the next lemma are, aside from our addition of the massive
term, already contained in [47], we include them here for completeness:

Lemma 8. Let v(-,ag) solve (1.4), where the periodic right-hand side f

satisfies
sup(T'4)* | frl| < Ny (1.321)
T<1
for some Ny € R. Then the bound
[v(-; ao)la2 S No (1.322)

holds.

Notice that ((1.321) is exactly ([1.64]), which is the standing assumption
we have for f throughout this entire contribution. With Lemmas 3 and 8

in-hand we can then apply Lemma 7 as described above. We obtain the
following:

Corollary 3 (New reference products for quasilinear problem). Let o €
(0,1) and i,7 = 0,1. Assume that we have two periodic distributions f; on
R? such that independently each satisfies (1.321)) for Ny € R and there exists
0Ny € R such that
sup(T7)* || (f1 = fo)rll S INo. (1.323)
T<1
Assume, furthermore, that for each pair (fi, f;) there exists a family of offline
products {v;(-, ag) cow 07v; (-, ay)} indezed by ag, af € [, 1] satisfying

1.9
sup SUp(T4)2 20 H [Ui('a CL()), ()T] Sow 8%?@(-, a’é)) H2 2 SJ NO27
ao.ahye[1] T<1 ’

(1.324)
aoj{i%ﬂ ?‘gf(T‘l*)Q_Qa [[v1(-, a0), ()7] 0w OFv;(-, ap) (1.325)
~[vo(-, a0), ()r] cow Biv; (-, ap) ||
S Nod N,
and  sup  sup(T5)72 ||[v:(-, ao), (-)7] cow Ovi (-, ap) (1.326)

ag,a( €[N 1] T<1
—[vi(-, a0), (-)7] cow a%UO('v aé)”m
< NydNo.
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We lastly assume that we have two periodic functions Vi, € C*(R) such
that

[Vint.la < Ng" (1.327)
and [‘/z'nt,l - %nt,O]a S 5N(§m (1328)

for Nt SN € R. Under these assumptions, for i,7 = 0,1 we then find
that:

i) There exists a family of distributions {‘N/Z(, ap) © O%v; (-, a{))} such that

< NoNg™. (1.329)

sup sup(T4)? || [Vi(-,a0), (e © 8-, ap)

ag,ahe[M1] T<1 )2,2
ii) Defining the family of distributions

(Vi +0i) (-, a0) © 3 ; (-, ap)

N ) / ) , (1.330)
::V;('v aO) © alvj('a a()) + Ui(') CLO) Cow 81”.7('7 aO)v
we then obtain the relation
sup  sup(TH)22 ||| (Vi + wi) (- a0), (1] © By af)|
ag,agE€A1] T<1 22 (1.331)
S(NG™ + No)No.
iii) The distributions constructed in part ii) satisfy
sup sup(7'%)% % [(‘70 +20) (-, ao), (')T} o 0tv;(-, ap)
ap,ap€(A1] T<1
[+ e Ca0), ()] o Byoap) (1352
S(EN™ + 0 No) No
and
sup  sup(T)22 || [(Vi 4+ 0) (o), ()] © FFun - ap)
ap,ap€[A1] T<1
- [(‘72'"'_'02')('70'0)7 ()T:| 08%00('70’6) ‘11 (1333)
S(N™ 4+ Ny)6Ny.
iv) Defining the further family of distributions
Vi + 01) (-, a0) 0 OV + 0)) (-,
( vi)(+; ao) © 07 (V; + v;) (-, ap) (1.334)

=(Vi + 1) (-, a0) © 91V; (-, ap) + (Vi + 1) (-, ao) © 97v; (-, ay),
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where the first term on the right-hand side is defined via Corollary 1 and the
second term is defined in part ii), we find that

sup  sup(T4)22 ||| (V; + wi) (- a0), (1] © B2V, + ) (-, )|

ap,ap€(N1] T<1
< (N + No)*.

2,2

(1.335)

As we will see below when we discuss Theorem 2, the reference products that
we construct in i) and in iv) are used for the treatment of the quasilinear
problem. As we have explained in Section 1.4, the main step of the fixed
point argument with which we obtain a solution of the quasilinear problem
is the application of Theorem 1 in the case that

a“' = a(W), (1.336)

where W is modelled after (V + v)(-, ao) on R? for some a € C*(R?). The
combination of the reference products from Corollary 3 and the reconstruc-
tion lemma proved below provides us with the necessary reference products
assumed in the statement of Theorem 1; in particular, we obtain the family
of reference products a® ¢ 93v(-, ag) such that is satisfied. In part iv)
of the above corollary we construct the reference products used to define the
singular product a(W) ¢ 92W in the quasilinear problem ([.1)).

We now give the first reconstruction lemma, which allows us to post-
process the family of reference products provided in i) above to obtain the
a®t o 920 (-, ag) assumed in the statement of Theorem 1, where a®® is given
in . We state the reconstruction lemma in a very general form and
then put it into a version we actually use in Corollary 4. Up to the loss
of periodicity in the xs-direction, both the reconstruction lemma and the
resulting corollary are essentially the same as the corresponding statements
in [47]. Here is the reconstruction lemma:

Lemma 9 (Modified Lemma 2 of [47]). Let a € (2,1). Assume that we are
gwen a distribution h and families {w(-,x)}, of functions and {w(-,x) o h},
of distributions both indewed by points v € R? such that the estimates

[w('7 $)]a <N, (1337)

(w(-, z) —w(-, 2], < Nd*(z,2"), (1.338)

sup ()" r| < Vo, (1.339)

sup(T)* || [w(-,z), (-)r]  hl[| < NNo, and (1.340)

<1
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STglf(Ti)Q_Q“II [w(,2), ()] o b — [w(-,2"), (-)7] o h]| < NNod*(z, 2')
: (1.341)

hold for all x,2' € R? and for some constants N, Ny € R.
For u € L>(R?) such that there exists a function v and constant M € R
ensuring that

[u(y) — u(z) — (wly, 2) — w(z,2)) = v(@)(y — x)i| < Md*(z,y) (1.342)
for any x,y € R?, there exists a unique distribution uw o h satisfying
Y [[ [u, (-)r} o h = By [w, (-)r] o h — v [1, (-)r] hl| = 0, (1.343)

where Ey,. denotes evaluation of a function of (x,y) at (x,x). Furthermore,
this distribution has finite local C*~? seminorm and satisfies

sup(T4272 [u, (] o bl < (M + N) N, (1.344)

In this lemma we assume that all functions and distributions are periodic in
the x1-direction.

Just as for the other reconstruction lemma, Lemma 4, the proof of Lemma
9 follows from Otto and Weber’s arguments without any substantial changes.
In order to use this lemma we make various choices of h and {w(-,z)},. In
particular, as indicated above, we plan to use this lemma in two places:
1) To obtain a family of distributions a®** o 9?v(-,ag) from the reference
products (v + V)(-,ap) © 0%v(-,a}) when a®t € C*(R?) is modelled after
(v + V)(-,a0) and 2) To define the product a(W) o &2W in (10) assuming
that W is modelled after (v + V)(-,ap). These applications are summarized
in the following corollary:.

Corollary 4 (Modified Lemma 3 and Corollary 1 of [47]). Let a € (3,1).
All functions and distributions are assumed to be periodic in the x1-direction.
Under the same assumptions as in Corollary 2, we obtain that for any
1,7 = 0,1 the following points hold:

i) If u € C*(R?) is modelled after (v; + V;)(-, a¢) according to a;, o;, and v;
such that ||a;]|o < 1 and ||oi]|a < 1 with modelling constant M € R, then for
every afy € [\, 1] it is possible to construct a unique distribution uod3v;(-, af)
such that

lim H[u, (V7] 0 Ov;(-, ay) — o, {(Uz + Vi) (-, a), ()T} o 0wy (-, ap)

—v; 1, ()] i, ap) || = 0,

(1.345)
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where E; denotes the evaluation of a function depending on (x,ay) at (x,a;(z)).
The distributions uodiv;(-, ay) are constructed to have finite local C*~% semi-
norm and, furthermore, satisfy

sup sup(T |, (] o Bus (e an), < (N + N+ M)No. (1340
CLQE[)\l]T<1
and
sup _sup(T4)** [|[u, (-)r] © fvi (-, ap) — [u, (-)1] © Do (-, ao) |,
CL()E[)\,].] <1

S(NG™ + Ny + M)SNy.
(1.347)

i) Let i = 0,1. Assume that we have two functions u; € C*(R?) each
modelled after (v; + V;)(-,a0) according to a; and o;, which again satisfy
l|ail| < 1 and ||o;|| < 1, such that also the difference uy — ug is modelled
after ((v14+V1) (-, ap), (vo-l—Vo)( 0)) according to (ay,ag) and (o1, —0q) with
modelling constant SM € R. For the singular products u; o 93 (v; + Vi)(-, ap)
constructed in part i) we then have that

sup sup(T1)>72 sup ||[u, (V7] © Bvi(-, ao) — [wo, (V7] © Bvi(-, ao)]
ape[M1] T<1 ao€[A1]
gNg(éM + (NO + Né”t)(Hal — CloHa + ||O'1 — O'o“a) -+ 6N() + 6N8nt)
(1.348)

1.6.2 Proofs

We start with the proof of Lemma 7. Here is the argument:

Proof of Lemma 7. i) Notice that, in comparison to the situation in Lemma
2, we do not have an analogue of for F(-,ap). To remedy the situation,
we symbolically apply Leibniz’ rule with the goal of moving the derivatives
“O1” off of I and onto G-

G@%F(, ao)
“="0(F (-, a0)G) = 201 F (-, a0) DG — F (-, a0) 0} G
“=7 — 2(81(F(, Clo)@lG) - F(a aO)a%G) + 8%(F(7 a’O)G) o F(’ ao)ﬁfG
“="9NF(-,a0)G) — 201(F(-,a0)01G) + F(-,a0)03G.
(1.349)

This heuristic calculation motivates the definition

G o 0iF (- ap) = OH(F(-,a0)G) — 20,(F (-, a0)G) + F(-,a9)0*G. (1.350)
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We must check that the terms on the right-hand side of are well-
defined. To begin, we notice that thanks to the assumption the third
term on the right-hand side was shown to make sense as a distribution in
Lemma 2. For the first term we remark that the product F'(-, ag)G is clearly
classical and of class C'“. Moving to the second term, we find that, thanks
to for i = 1 and the bound ||F(-,ag)|| < Ny, the classical product
F(-,a0)0G € L}, .(R?).

For ([1.316]) we first use our definition (1.350]) to write (over two pages):
(G, (+)r] 0 OFF (-, a0) ()]
- | [ Gt F ) - 60 0 BF (. an)inta 1)

~| [ (6@ = G F(ya)dtira — ) dy
~2 [ Ply.o0)0iG)orin(s — 9)dy (1.351)
- [ Fnaecunte ) a

[ (6@) — Gl)(F(.a0) ~ Fa.au)Obun(e — 9)dy

=2 [ (Flv.a0) = Fla,a) G (0)0uie(a ~ ) dy
- [ (Pl.0) = Fla,a0) G (in(ar =) dy
+ [ (60) = G)F(.a)dhinte =)y
- 2/ F(z,a0)01G(y)0r(z — y) dy
R2
- [ Pl.a)di Gt - ) dy
for ag € [\, 1] and x € R2. Here we have used multiple applications of inte-

gration by parts in which the boundary terms vanish because ¥p is Schwarz
function.

We then treat the terms on the right-hand side of ((1.351]) separately. The
first term is easily handled using ([1.18)):

/RQ(G(x) — GY)(F(y,a0) — F(x,a0))0%r(z —y) dy
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< (61, [Plsanll, [ 10hr(e = )| (2. 9) dy
SIGLNo ()
For the second term we use ([1.314)) for ¢« = 1 and ([1.18)) to obtain

/RQ(F(?J, ag) — F(x,a0))0G(y)o1r(x —y) dy

<C(G) [F(-a0) / A o — g dy (1392
<C(G) (T4 2a 2

Finally, the last term is treated in essentially the same way as the second,
but using ((1.314]) for ¢ = 2. In particular, we may write

/RQ(F(?J, ap) — F(z,a0))07G(y)Yr(z — 1) dy

SCAF(a0)la [ |2l d(x, y)|r(z — )| dy (1.353)

RQ

SCO(G)No(T)2,

Notice that the integrals in the second lines of and are treated
in basically the same way as in ((1.311). To finish our analysis of the right-
hand side of , we lastly notice that a couple of integration by parts,
where once again the boundary terms vanish due to the Schwarz-ness of the
convolution kernel, show that the last three terms on the right-hand side

actually cancel each other. Combining all of these observations and using
that by assumption [G], < C(G) we find that

sup sup ||[G, (- )7] © O2F (-, ap)|| < NoC(G)(T7)* 2, (1.354)
aoe[)\,l] TSI

To obtain a similar result for higher parameter derivatives as claimed in
(11.316]) for 820 with j = 1,2, we notice that due to our definition of G ¢

O?F (-, ap) we have that
(9‘30G & 812F(, ao)

. | | 1.355
— OX(G F(-,a0)) — 200(D), F(-,a0)G) + &, F (-, ap) 92G. (1:355)

Thanks to our assumption ([1.315]), which includes two parameter derivatives,
we then find that the exact same argument as above gives ([1.354)) with the
desired parameter derivatives included.
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ii) The proof of this part is a simple matter of noticing that the definition
(1.350) for G © O F is linear in G. In particular, we notice that

Goo OIF — G100iF = (Gy — Gy) ¢ 0?F, (1.356)
which by the linearity of the convolution then implies that

[Go, (+)r] 0 OPF (-, a0) — [G1, (+)r] © BFF (-, aq)

=[Gy — Gy, ()] 0 FF(-, ap). (1.357)

By assumption (|1.317]) on top of the assumptions that we carry over from part
i), we may then apply the result of i) to obtain the desired bound ([1.318)).
In fact, we get the bound for one more parameter derivative than we claim.

i1) For this part we use the linearity of the definition of the product G ¢ 9? F
in F'. In particular, we have that

GodiFy—Go0F =God(Fy— F), (1.358)

which again, when combined with the linearity of the convolution, implies
that

(G, ()70 i Fy( a0) =[G, (+)z] © AT Fi(-, ao)

=[G, ()r] 0 B (Fy — F1)(-, ap). (1.359)

Since we have carried over the assumptions of i) and have added the as-
sumption ([1.319)), we may apply part i) to obtain the desired ([1.320). Once
again, we actually get the bound for one more parameter derivative than we
need. ]

In order to apply this lemma with the proper identifications in proof of
Corollary 4 we use Lemma 3 and Lemma 8, the latter of which we prove
below. As already mentioned, this argument is standard and essentially
already contained in [47], but we give it here for completeness.

Proof of Lemma 8. Since f is periodic, we may interpret the assumption
(1.321)) in terms of Lemma 9 of [47]. In particular, we find that there exists
a decomposition of f,

f=0f"+0,f* +c, (1.360)

such that for i = 1,2 the f* are periodic of vanishing average,

c= [ fduz, (1.361)
T2
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and [fs + [f?]a + |c| S No. In particular, notice that, as we have already
pointed out in the introduction, ((1.361]) is guaranteed by ((1.360) with the
choice of test function 1. The exact same argument applied to (1.4)) yields
that

/ v(,a0)de = | fda. (1.362)
T? T2
To finish obtaining (1.322)) we let v’(-, ag) be the C*- solution of

(0p — agd? + 1)v'(-, ap) = f° on R?

for ¢ = 1, 2. The classical Holder estimate for these equations then gives that
[0 (-, a0)]are < [fY]a. Using this we obtain that

[8121}1('7 aO)]a + [627}2(', aO)]a 5 Noy.

By the uniqueness of C®-solutions to ([1.4)) we know that v(-, ag) = 92v! (-, ag)+
Dov?(+, ag) + ¢, which yields that [v(-, ag)]a < No.

For the higher parameter derivatives we emulate the argument from part
iii) of Lemma 3. In particular, differentiating in terms of ag gives that

(09 — agd? + 1)0,,v(-, ag) = OFv(-, ap) on R? (1.363)
which by the same arguments as above yields
[Dagv (-5 a0)la < (070, a0)la—2 < [v(- a0)la S No-
Differentiating in terms of ay again we find that 5’201}(-, ag) solves
(Oy — aoaf + 1)8201)(-, ag) = 28128%1)(-, ao) on R? (1.364)
which again yields that
0200, ao)]a S (02000, a0)]a2 S [ayt (s a0)la S No.

Like before, testing the equations (|1.363)) and ({1.364)) with the constant func-

tion 1 yields that 9u,v(-, ag) and 9; v(-, ap) have vanishing average. Combin-
ing all of these observations we obtain the desired ([1.322]).
]

We are now ready to post-process Lemma 7 to get Corollary 3.

Proof of Corollary 4. i) This part follows from i) of Lemma 7 with the iden-
tifications G = 8., Vi(-,a0) and F(-,a() = 82603-(-,@6) for [,j = 0,1,2. The
assumption ([1.315)) holds thanks to Lemma 8 and the assumption ([1.314])
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with C(8., Vi(-,a0)) < N is verified by part i) of Lemma 3. The claim
then follows from the observation that by the definition ([1.350)), we have
that 2%, G (-, ao), (-] © (-, ap) = [0, G-, o), (-)r] o &, F (-, ap).

ii), i) These parts are immediate consequences of the triangle inequality
and the assumption ((1.324) on the offline products borrowed from [47]. For
part iv) we also apply Corollary 1 with F' = (V; + v;)(-, ag).

iii) We start by showing (1.332)). For this we notice that by the definition

we have that

(Vo w0) (s a0), ()] 0 02y ap) = (Vi + 1) (- a0), (+)r | © OFuy (-, ap)
= | (Vo= V) a0), () o Oy ap)

+ [vo (-, ao), (-)7] © Ofvj(-, ap) = [ (-, a0), ()] © Bfvy(-, ap).

The relation then follows from the triangle inequality, the assump-
tion (T.325), and part ii) of Lemma 7 with G; = Vi(-,a9) for i = 0,1,
C(Vo(+, a0),Vi(,a0)) = [Vinto — Vint1la, and F(-, ap) = v;(+, ag).

Obtaining is essentially the same argument. Again by the definition
(11.330) we can write

Uv+wxﬂ@w>]o@m<z»—k%+wxﬂ@<»ﬂo%mu%>
:[ )r| © 2 (v1 — vo) (-, ap)
+wxﬂww»]o@muw»—wwﬂ@w»ﬂo%mu%y

The relation ((1.333)) is then obtained via the triangle inequality using ((1.326))
for the second term on the right-hand side and part éi7) of Lemma 7 with G =

Vi, a0), Fi(-,a0) = vi(-, a0), and Fy(-, ag) = vo(-, ag). For the assumption
(1.319) we notice that v; — vy solves (1.4) with right-hand side f; — fo. O

Having finished our construction of the reference products we then move
on to the proof of the reconstruction lemma. As already mentioned a couple
of times, it is not difficult to adapt the proof of Otto and Weber to our setting
and the majority of the below argument is taken straight from [47]

Proof of Lemma 9. To begin, one notices that as a result of the modelling
the bound

Wy SM+N (1.365)
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holds. To see this we fix z,y € R? and, using the notation I,(y) = v(z)yi,
rewrite ([1.342)) as
(u—w(2) = L) (y) — (u—w(2) = L) (2)] < Md*(z,y).
Using the triangle inequality we see that for a third point ¢/ € R? this gives
(u—w(z) = L)(y) = (u—w(, ) =) Y))
< M(d*(x,y) + d*(2,y)).

Introducing a fourth point 2’ € R?, we then use (1.338) and another appli-
cation of the triangle inequality to write

|(u—w(-,2") = l)(y) — (u—w(2) = L))
<M(d*(,y) + d**(2,y) + Nd*(y,y)d* (z, 2").
Replacing = by 2’ in ({1.366)) and the taking the difference between this and

gives that
(L = L) (y) = (le = L) ()]
< M (d*(2',y) + (2, y) + & (z,y) + d**(z,9)) (1.368)
+ Nd*(y,y)d"(2', z)
We then take y = x and v = = + (R, 0) for some R > 0 to obtain
lv(z) — v(@)|R < M(R* + d**(2/,2)) + NR*d* (', z). (1.369)

To finish the argument for (1.365)), we let R = d(2’, x). Using the modelling
assumption we also obtain an L°°-bound for v. In particular, the triangle
inequality gives that

(@) (@ =yl < Md*(2,y) + |u(z) = uly) - (w(z,z) — w(y,2))],
which, after exploiting the periodicity of v and w(-,x) in the x;-direction,
gives that

(1.366)

(1.367)

vl < M. (1.370)

Having obtained the bounds for v, the proof in [47] then continues in much
the same fashion as the proof of Lemma 4. In particular, for any 7,7 > 0
such that T' = 2"7 for some n € N, it is shown that

(uhr — By [w, (] o b = v [e1, (1] b)
— (uhy = By [w, (), o h = v]ar, ()] W)r—r
- (@uOA—&dwCM—VMhHJWt (1.371)

t=72¢ for 0<i<n

—wonuthh—mﬂmcMhmcmOh)

T-2t
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As in the proof of Lemma 4, for this decomposition we reference Step 3 of the

proof of Lemma 2 in [47] and do not give the argument here. The relation
(1.371) is then used to show that

[uhy — By [w, (-)p] o h = v [z, (-)r] b
— (uhr — By [w, ()] o h = vz, ()] h)r—-|] (1.372)
S(M + N)No(T5)

for 7 < T < 1. In particular, (1.372)) is obtained from ([1.371)) after using
(1.21)) and the three estimates

([, ()] = B [w, ()] = ver, () kel S MNo(#1)%72, (1.373)
1w, () [on, (D) RIS (M + N)No(t5)%72, (1.374)
and || [y, ()] [w, ()] o b S NNo(t7)*72, (1.375)

which hold for all ¢ > 0. Notice that in this step, just as in the corresponding
step of the proof of Lemma 4, one critically uses that a € (%, 1)

The estimates ((1.373), (1.374)), and are proven as in [47] without
any changes necessary. The first estimate relies on the modelledness assump-
tion in the sense that for all z € R? the left-hand side can be rewritten
and bounded as

([, ()] = B [w, ()] = v [1, ()il ()]
/RQ(U(:U) —u(y) — (w(z,z) —w(y,z)) — v(z)(x —y))

X Uy (x — y)hy(x) dy

<Ml [ Jinta = )l a.3)

@339, 1 |
SM Ny (t1)?* 2,

For the relation ((1.374)) one uses Lemma 10 of [47], which gives us that

s, (il S EHIA < Mot

For x € R? we then combine this with Young’s inequality to give

[ v, Ol C)d ()] S, el bl /R v(z) = v(y)| iz —y)| dy

Slaa— [ 1, ()] Al _/RQ A", y) ez — )| dy

1
S(M + N)Ny(t1)*72,
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where we have applied ((1.365)). Lastly, (1.375)) is obtained using ([1.340]) by

writing
[[Eirs ()il [w, (-)e] o h(2)]
/ [Ye(x =yl [w(-, 2), ()] © hy) = [w(-,y), ()] o hy)| dy

SNNo(t* 2 | el — y)ld*(z.y) dy

(1.18)) L
gNNO(tZ)Sa—Q

for every x € R2.
The proof of this lemma is then finished in a manner very similar to Lemma
4. In particular, we introduce the notation

FT =uh; — Ey [w,(-):]oh —v]ry, (-):]h
with which (1.372)) becomes

sup(T'1)* % | FT — (F)r—- || S (M + N)No. (1.376)
<1

Using the restriction 7' < 1, the assumptions (1.339) and ({1.340]), the bound
(1.370), and Lemma 10 of [47] we notice that

sup(T7)> || FL|| =sup(TH)>|luhr — Ey [w, ()7 o b — v [z1, (7] bl
T<1 T<1
<(lull + Iv])) ;gg(Tﬂ?—anth + NN,

Sull + M + N)No.

(1.377)
Combining this with ((1.21) and (1.376)) we find that
sup(TH* I(F)rl S (lull + M + N)No. (1.378)

By Lemma 1 the bound ({1.378)) yields that the F'™ have uniformly bounded
local C“~2 seminorms and the argument then finishes exactly as in Lemma,
4, O

Moving on to the proof of Corollary 4 we note again that every part of
the statement is an application of the previous lemma with different choices
for the family {w(-,x)}, and the distribution h. For each part we must
specify these identifications and then check that the assumptions —
hold for some constants N, Ny € R. In the same fashion as the
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reconstruction lemma, the proof of this corollary is also essentially the same
as in [47]. Since this corollary is quite long and we do not actually handle
the quasilinear problem in this thesis, in some places we only give an outline
of the proof without giving the detailed calculations.

Proof of Corollary 4. For use throughout this proof, we fix points =, 2/, y, vy €
R? and reintroduce the notation

al = ta;(z) + (1 — t)a; (). (1.379)
i) We set,

w(-, x) = oi(z)(vi + Vi) (-, a; ),
h = 8%7]3'('7 a6)7 )
and  w(-,x) o h = oi(x)(v; + Vi) (-, a;(x)) © 0fv; (-, ap)

and check that the assumptions ([1.337))-(|1.341)) hold. We go down the laun-
dry list:

e For the assumption ([1.337)) we may simply write

sup [oi() (v + Vi) (- aq(@))| Slloll(No + NG™) < No + N
r€R? «@

by ([1.54) applied to V;(+, ap), (1.322) of Lemma 8, and the assumption that
il < 1.

e For ([1.338)) we obtain

|w(yax> — w(y7 .CL’/) B (w(y/7 :U) — w(ylax/))‘
d*(y, y')
Sl [0 0. ) — )
|0(33) _0(37/)‘ ] alz)) — vy alz
LT vi(y, a(2")) — vi(y', a2’))]
+ same expression in ‘72

S(NO + Nént)da($7 37/)7

where we have used Lemmas 3 and 8 and the assumptions on o; and a;.

e For (|1.339)) we notice that

1.9 ) , (37
sup(7%)"~[|(91v; (-, ap))rll S [Uj(‘,ao)]a < No.

<1
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e The assumption ([1.340)) is verified in 1) of Corollary 3 with right-hand side
(N{™ + No) No.

e We lastly verify the assumption (|1.341]) for which we write

sup sup(T4)** |lo3(a) | (v; + Vi), ai(a)), ()r] 0 vy, af)

ape[1] T<1

—0i(a") | (v + V) (s ai(a")), Oz ] © 0y (-, ap)

< ([az‘]a sup  sup(T'1)>2 ‘1 ;

ao.aheN1] T<1

0+ V) (), (| © Oy (- af)

+[oi]la  sup sup(Ti)2_2a
ap,ap€(A1] T<1

< (NJ™ + No) Nod® (z, 7).

Uw+%xwmoﬂo%wm%w>fww»

(1.380)

Here we have used the results of Corollary 3 and our assumptions on a; and o;.

Combining all of these calculations we find that we may set the constants
in Lemma 9 as N = ¢(N™ + Ny) and Ny = ¢Ny for some large enough
¢ € R, where the Ny on the left-hand side is the constant in Lemma 9 and
the Ny on the right-hand side come from (|1.321)). The application of Lemma
9 then yields without the two parameter derivatives. It still remains
to show for the indicated parameter derivatives. We start with the
case of one parameter derivative and, setting up for another application of
Lemma 9, let

w(,z) = 0y(2)(v; + V) (-, ai(a)),
h = afvj('a aa_) - afvj('v CL(;),
and w(-,x) o h = 0;(z) ((vz + ‘7@)(, ai(x)) Oa%ij('aa(J)r)
—(vi+ V) ai(x)) 0 O, ap)

for any ay,a; € R. We must again check the assumptions of Lemma 9,
which is made easier by the fact that our choice of w(-, z) has not changed.
Here is the list of assumptions that have not been proved above:

e We start by checking the assumption (|1.339)). In particular, we use Lemma
8, the equivalence in Lemma 1, and the assumption ([1.321)) to write

Sﬁg(T“)Z_aH(@fvj(w a) = 0iv; (-, a))rll < Nolag — ag .
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e The relation ([1.340)) follows from part ii) of Corollary 3 and our assumption
|loi|| <1 as

sup(T1) 2 fu(-, ), ()r] o b

<lag —ag| sup sup(T1)>2

(0 + V) a0), (] 0 i, ap)|

ao,a6€[>\,1] <1 0,1
Slag — ag|(N™ + No)No.
e For the assumption (|1.341)) we write
1220
2}??(714)2 ? H[w(v x)a ()T] oh — [w(7 xl)v ()T] < hH
< llolllag — aglla(z) — d'(z)|x
sup sup(T4)22 || [ (v + V) (. a0), ()| o 9y ap)|
ag,aheM1] T<1 1,1
+ [0]ad™(z,2")|ag — ag |x
sup sup(7T1)** {(w + Vi) (-, ap), (')T} Oﬁfvj(',ao)Hm

ap,ap€[A1] T<1

< lag — ag|d*(z, ") (NG + No) No.

After these calculations we can set N = ¢(N[™ + Ny) and Ny = cNolag —
ay | for ¢ € R large enough and apply Lemma 9. In this way, we obtain a
distribution u ¢ (97v;(-, af) — O3v;(-, ay ) such that

sup(T4)*** ||[u, (-)r] & (80 ag) — Fv (-, ag)|
T<1 (1.381)
Slag — ag [(Ng™ + No + M) No.
To finish showing that holds for one parameter derivative, we notice
that due to the built-in linearity of our definition of the product w(-, x)oh(-),
the property z(97v;(-,ay) — Ovi(-,ay)) = zdiv;(-, af) — 29%v;(-, ay ), and
the uniqueness in Lemma 4 it holds that

uo (0fv;( ag) — Oy (+ ag)) = uo 0ivi(, af) — wo Ofv (-, ag).

Plugging this into (1.381)) we obtain ([1.346)) for one parameter derivative.
Obtaining (|1.346|) for two parameter derivative is a similar argument. In
particular, it follows from applying Lemma 9 with

w(-, @) = oy() (v; + Vi) (-, ail2)),
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— @y a5) = Oy, af ) — By ap™) = BBy, a57)), and
w(-,x) o h = ai(w) ((vi + V) (- ai(x)) 0 By, af™*)
— (0 + V) ai()) o vy, i)
— (i + T ail@)) 0 By, a57)

{
(0 + V) (i) 0 Oy a7 7) ) )

for any af ", al ", a0 ", a5 € Rsuch al ™ —af ™ = ag " —ay . Again, w(-, x)
has not changed, which reduces the number of assumptions of Lemma 9 that
we must check. In this part we often make use of the following estimate

|(vj(2,a5™") = vi(y,a5")) — (vj(w, a5 ") — vy, a5 )
_(Uj(x7a0 +) - UJ(Z/7CL5+) - (Uj(%a(?_) - Uj(yaaa_))”

< suplv; (-, ao)laclag " —ag [lag" —ag
a0 (1.382)

+sup(v; (-, ao)laalag ™ —ag” — (ag™ —ag 7))

ao

< sup[vj(+, ao)laplag ™ —ag |lag " —ag -
ao

which follows from the fundamental theorem of calculus and the condition
that aj™ — ad™ = ag ™ — ag . Here is the list of assumptions:

e We start by checking ((1.339):
sup(T | (@ af ) — 0y )
—(8%1}]'(', a6+) - 8%7{7'('7 a()ii)))T H

S i a0)lazlag™ —ag [ lag ™ —ap ™

[322)
S Nolag™ —ag~|lag™ —ag

—
w
[N
[\

)

where we have used ([1.382)) and ([1.18]).

e The assumption ([1.340)) follows from the calculation

sup(T4) 2oy @), @), (] o ]

Slag™ —ag | |ag ™ — ay 7 |[|o]|x
sup sup(T'7)> 2 [(Uz’ + V) (-, a0), (7| © v+, ap)
ag,ap€[N,1] T<1

Slag™ — a7 | lag™ — ag [ No(NG™ + No).

’0,2
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Here we have again used ((1.382), but now in combination with i) of Corol-
lary 3.

e Lastly, we check ([1.341)) by writing

gyTh*me@x%Hﬂoh—hﬁufxwﬂohH

Slag™ —ag [ lag™ —ag " |[alad” (2, 2) %

sup  sup(T7)272 ||[(v; + Vi) (-, ao), (-)7] © O2v; (-, ap)

ap,ap€[A1] T<1
+lag " —ag Tlag " —ag [[o]ad® (z,2) %
1o ~
sup  sup(74)* 7 ||[(v; + Vi) (-, a0), (-)7] © OFv; (-, ap)
ap,ap€[N1] T<1

Slagt —ag [ ag ™ — ag ~|d*(z, ") (Ng™ + No)No.

‘1,2

‘0,2

With these bounds in-hand we again apply Lemma 9, now with N =
c(No+ Ni™) and Ny = eNolag ™ — ai ™| |ag ™ — ay ~| for large enough ¢ € R.
To obtain for two parameter derivatives one then follows the same
steps as in the case of only one parameter derivative above.

To obtain ([1.347)) without parameter derivative we use Lemma 9, now with
the identifications

w(-,x) = oy(x) (v + Vi) (-, ai(2)),
h = (9fv1 = B{vo) (-, ao),
and  w(-,z)oh = oi(x)((v; + V;) (-, ai(x)) © 0?01 (-, ag) (1.383)

— (vi + V) (-, a;(x)) © Ofug (-, ap)).

Since our choice of w(-, ) is the same as in the previous part, this reduces
the list of assumptions that must be checked. For the last time, here is the
list of remaining assumptions:

e We start with (1.339) and notice that (v; — vg)(-,ag) solves (1.4]) with
right-hand side f; — fy. By Lemma 8 this implies that

i}ili(Ti)Q_aH((a%Ul o a%UO)('v aO))T” ,S 5N0

e The assumption ([1.340)) is verified in part 7i7) of Corollary 3 with right-
hand side given by (N + Ny)dNp.
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e To finish, we check (1.341)) similarly to (1.380]), again using part éii) of
Corollary 3. The right-hand side that one obtains in this calculation is

(NE™ + Ng)dNod®(z, 2').

All combined, we find that we may take N = ¢(N/" + Ny) and N1 = ¢ Ny
for large enough ¢ € R in our application of Lemma 9. The relation (|1.347))
for one parameter derivatives follows in the same way as in part i), but now
taking advantage of the version of involving one parameter derivative
in ay.

i) For this part we would like to apply Lemma 9 with
w(-,x) = o1(z) (01 + Vi) (-, an (@) — (@) (vo + Vo) (-, ao (),
h = 0%v;(-, ap),
and  w(:,z) o h = o1(z)(v1 + Vi) (-, ap(x)) © OFv;(-, ap)
— o0(x)(vo + Vo) (-, ao(x)) © vy (-, ap).

Here is our list of assumptions:

e We start by checking ([1.337)):
w6l Sloul sup ([t = o)Coaoll, + [0 = ) )]

ap€[A1]
Jiao(x) — ay(z)]| ([”UO(" a0)]o1 + F/O(.’ aO)LJ)

+llon—anll sup [(or+ Vi) a0)]
aoe[)v].}

SCSN() + 5N(Z)nt + (||CL1 — CLOHa + HO’l — U()”a)(NO -+ Nént)

«

e For the assumption ([1.338) we calculate

w(y, ) —w(y,2) — (w (y’ z) —w(y, z"))|

do‘ y y
S H0'1H |a1 ao — y,al) 8a0(vl . Uo)(y',a’i)dt‘
ol o o
d*(y,y') UO(yv ag(x)) — vo(y, ao(z)) — (vo(y', ao(z)) — vo(y', ao(z")))

—mw@mm—mmmw»—mwﬂmw—mwmwmﬂ
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+ (o1 — 00) () vo(y, ap(z)) — (o1 — 00)(2")vo(y, an(2"))
— ((o1 — a0)(x)vo (Y, ao(z)) — (o1 — a0) (2" )vo (Y, an(z')))

+ analogous expression in ‘71 and XN/O.
Ultimately, we will be able to bound the right-hand side of this by
(ONo + ONG™ + (lar — aollo + llor = gola) (No + Ng™))d* (z, z").

To bound the second term on the right-hand side of the above expression we
use (|1.382)), which gives

[(vo(y, ao(x)) — vo(y, ao(x'))) — (vo(y', ao(x)) — vo(y', ao(2')))
—((vo(y, a1(x)) —vo(y, ar(2))) — (vo(y', ar(x)) — vo(y', ar(2'))))]

S up ][32000('7 ao)]alai(z) — ag(2’)||ar(z) — a1 (2”)|d*(y, )
ap€|A,1
+ e [0a,v0(+, a0)]alai () — ag(2’) — (ai(z) — ai(2"))|d"(y, y)
aQpE|A,

SNollar — aollad®(x, 2")d* (y, y').

We perform the analogous calculation for the term involving V; and V.

e Continuing, we notice that the assumption (1.339)) of Lemma 9 is verified
with right-hand side Ny in part ).

e For (|1.340)) we use the triangle inequality to write

sup sup(Ti)Z_zo‘

] T<1 oo(z)[(vo + Vo) (-, ao(x)), ()] © Fv;i(-, ag)

—o1(@)[(o1 + V) @ (@), ()r] 0 BFui(-, ao)|

< |loo|| sup sup(TH)22x
ag,ap €A1 T<1

(HUO(» ao), (-)r] © Ovi(-, ag)[10llar — ao|
+l[(vo = v1) (-, a0), ()] © Bfvil-, ap) |
+analogous expression in Vi and ‘71>

Fllos—oul sup sup(TH22 [(on 4+ 2) (- ), (V] o BFvi(- )
ag,ape[N1] T<1

< No((No + Ng™)(llar = aoll + llor = aoll) + 6Ny + SNG™).
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e We finish by showing the assumption ([1.341]). Here, we calculate

T [[w (@), ()r] o i, ap)

- [w(7 x/)v ()T] < 8%1)1'(-, a())”
Slloolllao(z) — ao(x )|SUP(T4)2 2
S}lelﬁ[>A ; [[vo(+, ao), (')T] o tvi(+, ag) — [v1(+, ao), (-)7] © Bfvi(-, ap)|10

A lvr(; ar(@)), (2] © Orvi(-, ap) — [v1 (-, ao(2)), ()r] © i, ap)
+ [v1(, a0(2")), (1] 0 Oi(-, ap)) — [v1 (-, a1 (")), ()z] © Bvi(-, ap) |

+ [lor = ooll[ar]ad” (2, ) Sup ]H[v1(-,ao),(-)T]Oi?fvi(-,aé)
a(],a6€ )\,].

sup sup(T 1)
1e[M] T<1

+ [o1 — a9lad® (2, 2') SUI{) | [[o1(-; ao), (-)z] & (-, ag)|
ag,apE[A,1

+ analogous expression in Vi and V

SNo((lar = aolla + o1 = o0lla) (No + N§™) + 6N + ONG™)d (z, 2').

Combining the above find that we may apply Lemma 9 with N; = ¢Ny
and N = c(dNog+ INE" + (||a; — agl|a + ||o1 — o0 l|a) (No + NE™)). Just like in
part i) it remains to verify for one parameter derivative. However, as
the technique is the same as in i) we do not include the argument here. [

1.7 Appendix B: Proof of Theorem 2

Proof of Theorem 2. i) We apply part i) Theorem 1 with a®*’ = a(W). In
order to check the assumptions, we start by noticing that

[a(W)]a < [la'l[W]a < 1

and a(W) is periodic in the z;-direction since W is. For the assumptions

(1.66) and ([1.67) we must apply part 4) of Corollary 4 with u = a(W). Using
Lemma 1 of [47] as stated in Section 1.1, we have that a(W) is modelled

after (v 4 V) (-, ag) according to @ and pu = o' (W) with a modelling constant
bounded as

Moest S |la[[M + [|a”[[W], (1.384)
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where M corresponds to the modelling of W, and such that
l1ella < max(l|a], [la”[|[W]a) < 1.

By Corollary 4 part i) we then obtain a C*2?(R?) family of distributions

{a(W) o d?v(-,ap)} satistying (1.66) with right-hand side given by (N +
No + Mae’”t)NO Applying part 7) of Theorem 1 then yields the result.

ii) We apply part i) Theorem 1 with ai® = a(Wy) and a§** = a(W;). In
order to check the assumptions, we again use Lemma 1 of [47], but now also
part 7). In particular, we find that

la(Wo) = a(W)lla < Mla/[[IIWy = Wolla + [la”[[W = Wol| max[TWila.

Using the bounds from the previous part, we find that part i) of Corollary
4 also yields with right-hand side (N} 4+ Ny + Meeat)dNy. For the
assumption , we must use part i) of Corollary 4. For this we notice that
a(W1) — a(Wy) is modelled after ((vy + V1)(-, a), (vo + Vo) (-, ag) according
to (a1, dp) and (a’' (W), —a'(Wy)) with modelling constant 6 Mes: bounded
as

5Maext <||CLIH5M—|— HCL”H maX[W'] [Wl _WO]a
Ha’”HHW = Wol| max[IWJ; + [la"[[W1 = W max M;,

where 6 denotes the modelling constant associated to W, — Wy and M;
corresponds to the modelling of W;. Applying part ii) of Corollary 4 along
with the observation

la' (W) = a'(Wo)lla < lla”[[1W1 = Wolla + lla" |[W = Wol| max[Wila,
we find that (1.76]) holds with right-hand side
No(6 My + Nl = ol + /(1) — (W) ) + 6o + 6N3").

Applying part ii) of Theorem 1 then yields the result. ]
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