
 

A Q-ENHANCED 3.6 GHZ TUNABLE CMOS 

BANDPASS FILTER  

FOR WIDEBAND WIRELESS APPLICATIONS 

 
 

A Thesis Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science 

In the Department of Electrical Engineering 

University of Saskatchewan 

Saskatoon 

 

By 

 
JIANDONG GE 

 
March 2004 

 

 

 Copyright Jiandong Ge, March, 2004. All rights reserved. 



 
PERMISSION TO USE 

 
In presenting this thesis in partial fulfilment of the requirements for a Postgraduate 

degree from the University of Saskatchewan, I agree that the Libraries of this University 
may make it freely available for inspection. I further agree that permission for copying 
of this thesis in any manner, in whole or in part, for scholarly purposes may be granted 
by the professor or professors who supervised my thesis work or, in their absence, by the 
Head of the Department or the Dean of the College in which my thesis work was done.  
It is understood that any copying or publication or use of this thesis or parts thereof for 
financial gain shall not be allowed without my written permission. It is also understood 
that due recognition shall be given to me and to the University of Saskatchewan in any 
scholarly use which may be made of any material in my thesis. 

 
Requests for permission to copy or to make other use of material in this thesis in 

whole or part should be addressed to: 
 
 Head of the Department of Electrical Engineering 
 University of Saskatchewan 
 Saskatoon, Saskatchewan, S7N 5A9, Canada 

 

 

 

 i



 

 
ABSTRACT 

 

With the rapid development of information technology, more and more bandwidth 

is required to transmit multimedia data. Since local communication networks are moving 

to wireless domain, it brings up great challenges for making integrated wideband 

wireless front-ends suitable for these applications. RF filtering is a fundamental need in 

all wireless front-ends and is one of the most difficult parts to be integrated. This has 

been a major obstacle to the implementation of low power and low cost integrated 

wireless terminals. 

Lots of previous work has been done to make integrated RF filters applicable to 

these applications. However, some of these filters are not designed with standard CMOS 

technology. Some of them are not designed in desired frequency bands and others do not 

have sufficient frequency bandwidth. This research demonstrates the design of a tunable 

wideband RF filter that operates at 3.6 GHz and can be easily changed to a higher 

frequency range up to 5 GHz. This filter is superior to the previous designs in the 

following aspects: a) wider bandwidth, b) easier to tune, c) balancing in noise and 

linearity, and d) using standard CMOS technology. 

The design employs the state-of-the-art inductor degenerated LNA, acting as a 

transconductor to minimize the overall noise figure. A Q-enhancement circuit is 

employed to compensate the loss from lossy on-chip spiral inductors. Center frequency 
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and bandwidth tuning circuits are also embedded to make the filter suitable for multi 

band operations. 

At first, a second order bandpass filter prototype was designed in the standard 0.18 

μm CMOS process. Simulation results showed that at 3.6 GHz center frequency and 

with a 60-MHz bandwidth, the input third-order intermodulation product (IIP3) and 

input-referred 1 dB compression point (P1dB) was -22.5 dBm and -30.5 dBm 

respectively. The image rejection at 500 MHz away from the center frequency was 32 

dB (250 MHz intermediate frequency). The Q of the filter was tunable over 3000 and the 

center frequency tuning range was about 150 MHz. 

By cascading three stages of second order filters, a sixth order filter was designed to 

enhance the image rejection ability and to extend the filter bandwidth. The sixth order 

filter had been fabricated in the standard 0.18 μm CMOS process using 1.8-V supply. 

The chip occupies only 0.9 mm ×  0.9 mm silicon area and has a power consumption of 

130-mW. 

The measured center frequency was tunable from 3.54 GHz to 3.88 GHz, 

bandwidth was tunable from 35 MHz to 80 MHz. With a 65 MHz bandwidth, the filter 

had a gain of 13 dB, an IIP3 of -29 dBm and a P1dB of -46 dBm. 
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CHAPTER 1  INTRODUCTION 

This chapter serves as an introduction to integrated RF circuits and integrated 

RF filtering in wireless communication front-ends. The first section explains why 

integrated RF filters are required, current progress in integrated RF filter design and the 

problems that remain. Section 2 illustrates some of the technical challenges in 

implementing wideband CMOS RF filters. Section 3 highlights the contributions of this 

research work. Section 4 gives the thesis outline. 

1.1 Motivation 

Traditional radio transceiver front-ends include analogue components such as 

RF filters, low-noise amplifiers, mixers, IF filters and power amplifiers. Each circuit 

component is implemented with specialized analogue process technologies such as 

GaAs pHEMT, GaAs MESFET, hetero junction bipolar transistor (HBT) and SiGe 

BiCMOS [1]. Most transceivers today are implemented with two chips, one is the 

integrated RF front-end using one of the above analogue technologies, and the other is 

the baseband back-end which is implemented using CMOS technology. CMOS is now 

the most popular technology in digital design. It is used for band processors and 

memory in wireless communication terminals [2]. Three important advantages of CMOS 

are its high integration level, low cost, and low power consumption. If the RF front-end 

needs to be integrated into a single chip with the baseband, CMOS would be the best 
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choice. However active devices in CMOS technology exhibit lower unity-gain 

frequencies and lower transconductance than the analogue technologies mentioned 

above. In addition, due to the lossy substrate of CMOS, the noise performance is much 

worse than other technologies and the high quality passive components are not available. 

These factors make it very difficult to integrate RF front-ends using CMOS technology. 

The rapid advancement in deep sub-micron CMOS technology and the continuous 

downscaling in CMOS device size have made low-cost and small-size implementation 

of CMOS RF integrated circuits more and more feasible [3], [4]. More recently, many 

analogue circuits have been integrated using low power, cost effective CMOS 

technology to meet the fundamental needs for radio reception [5]-[7]. In order to reduce 

cost and power consumption of the wireless communication systems, a single chip 

transceiver in which the integrated RF filtering is an essential part is the ultimate 

solution.  

RF filtering is a fundamental need in wireless communications. The RF filter 

is usually the first block in the transceiver after the antenna and it is used to filter out the 

out-of-band blocking signals and to improve the selectivity of the receiver. 

Unfortunately the RF filter is one of the most difficult parts of the RF transceiver to be 

integrated due to the lack of high quality passive components in CMOS technology. 

Much work has been done in the area of integrated filters. Most of these filters are 

narrow band second order filters, some high order filters either do not have enough 

bandwidth or do not work at frequency in the gigahertz range. With the development of 

the wireless personal communication systems, there is an increasing demand for RF 

front-ends working at wider bandwidths and higher center frequencies. For example, 
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Bluetooth needs 100 MHz bandwidth at a 2.4 GHz center frequency [8]. The lack of 

integrated wideband RF front-end filter becomes a big obstacle for the single chip 

solution of the transceiver. There are some technology challenges that need to be 

overcome before wideband RF filters can be integrated using CMOS technology. These 

challenges are described in the next section. 

1.2 Technical Challenges 

Usually passive filters can not be integrated using CMOS technology because 

the on-chip inductors have very low quality factor (typically 2-4 in the standard CMOS 

technology) and thus the use of on-chip passive filter inhibits a huge insertion loss. On 

the other hand, active filters are not linear and usually can not operate in the GHz range. 

In recent years, the CMOS technology has improved tremendously in 

analogue (RF) circuit design. By shrinking the length to less than one-tenth of a 

micrometer, unity gain frequencies (fT) of the transistor have exceeded 100 GHz [9]. 

The poly resistors, MIM capacitors and thick top layer metal inductors also provide 

relatively high quality passive components [4], [9]. 

On-chip spiral inductors have emerged in the CMOS substrate for more than a 

decade, but their quality factor is still in the low end. These low Q inductors dominate 

the loss in the LC resonator and greatly contribute into the loss of the on-chip LC filters 

[10]. In order to improve frequency selectivity and to reduce noise, it is required to keep 

the resonator loss as low as possible. In order to improve the quality factor of the 

on-chip inductor, a loss compensation technique must be employed. By using loss 

compensation techniques, the Q of on-chip inductors can be tuned very high and thus 

brings the possibility of implementing on-chip LC filters [11], [12]. These loss 
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compensation circuits usually consist of active devices and thus degrade the overall 

filter linearity and noise performance. In other words, research in loss compensation 

with high linearity and low noise is extremely important. 

In order to fit into the multi-band RF systems, wide frequency tuning range of 

the RF filters is also required. At the same time, because of the lack of the precise 

models of the on-chip inductors and varactors, extra frequency tuning range for the 

design margin is required. The design of a wide tuning range and high quality varactor 

in the CMOS technology is also a great challenge [13]. 

The wideband wireless communication systems require wideband RF filters. 

The wideband filter with good selectivity can be implemented with higher order filters, 

the simplest way is to cascade several stages of the second order filters together (i.e., 

ladder filter) [14]. However, in order to acquire designed frequency response, the values 

of the inductors and capacitors must be very accurate; this is not possible in CMOS 

technology. As the result, new filter architecture must be found to implement the 

wideband solution without using precise passive components. Another drawback of the 

traditional high order LC filters is that it is very difficult to tune; the new filter 

architecture also needs to simplify the tuning scheme. 

In summary, the research work is to achieve a low noise, high linearity CMOS 

wideband RF filter with a wide tuning range and a simple tuning scheme. 

1.3 Contributions 

This research work makes some contributions to the field of RF filtering in 

CMOS transceivers. The contributions are the design of a high Q inductor in the 

standard CMOS on low resistive substrates, research on improving the linearity of the 
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filter, and the exploration of the new architecture to implement wideband RF filter. The 

new architecture does not require the precise value of capacitors and makes the filter 

performance more predictable and reliable. This research work also finds a tuning 

scheme that greatly simplifies the tuning of the high order filter and makes the filter 

more applicable to commercial products. 

1.4 Thesis Outline 

Some background knowledge in RF circuit design is presented in Chapter 2. 

The chapter includes some basic RF fundamentals: noise figure, linearity, sensitivity and 

dynamic range and quality factor of the RF filters. The chapter also discusses radio 

receiver architectures, general filter requirements and common filtering solutions. 

Chapter 3 covers the second order differential filter design, which include 

input LNA design, second order resonator design, noise analysis and linearity 

considerations. The chapter also includes the sixth order bandpass filter design based on 

the second order filters. 

Chapter 4 presents the layout of the circuit components which includes the 

layout of a LNA, an inductor, capacitors and a Q-enhancement circuit. The chapter also 

discusses the floor planning of the layout. 

Chapter 5 demonstrates the simulation and measurement results. This chapter 

also compares the results from simulation and measurement; with the difference being 

explained. 

Chapter 6 presents the conclusion of the thesis. 
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CHAPTER 2  BACKGROUND 

This chapter provides background information to the field of RF and RF 

filtering. The first section describes some basic RF fundamentals. The second section 

presents some different radio receiver architectures and explains how these architectures 

affect the RF filter requirements. Section 3 describes some general filter requirements. 

An example of the Bluetooth RF filter requirements is included in this section. The 

requirements for the proposed RF filter are also set in this section. In Section 4, some 

common filtering solutions are presented. This section also discusses the proposed filter 

architecture. 

2.1 Basic RF Fundamentals 

In this section, some of the useful parameters for measuring RF circuit 

performances, such as noise figure, third-order intermodulation distortion, 1 dB 

compression point and quality factor are introduced. 

2.1.1 Noise figure (NF) 

The signals received at the antenna are very weak and have to be amplified in 

order to drive the mixer. In order not to further deteriorate the signal to noise ratio (SNR) 

of the received signal, the following circuits should be designed to add as little noise as 
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possible especially at the front end of the receiver. Noise factor is a measure of the 

amount of noise added after the signal goes through a circuit. The noise factor is defined 

as the input signal to noise ratio divided by output signal to noise ratio (shown in Eq. 

2.1). Another expression of noise factor can be found in Eq. 2.2 [15]. 
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where Nc,o is noise generated by the circuit’s components. Nc,i is the input-referred noise 

of Nc,o and equals to Nc,o/G. G is the circuit gain and Ni is the source noise power. Noise 

figure (NF) is usually expressed in log scale (dB) and the noise factor (F) is its 

corresponding value in linear scale. In this dissertation, the noise performance is 

evaluated in terms of noise figure. The relationship between the noise figure and the 

noise factor is as follow: 

)log(10 FNF =                          (2.3) 

2.1.2 Linearity 

Ideally, when the input is a sinusoid signal, the input-output relationship of a 

linear, time-invariant system can be modeled as: 

)()( 1 txaty =                            (2.4) 

where x(t) and y(t) are the input and output of the linear system. But, due to 

non-linearity of the active devices, the input-output relationship is changed to be: 

...)()()()( 3
3

2
21 +++= txatxatxaty                   (2.5) 

The coefficients a2, a3 … provide information on the non-linearity of a device 
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or of a circuit. When a sinusoidal signal x(t)=Acos(�t) is applied to the system in Eq. 

2.5, the output y(t) is: 
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From Eq. 2.6, the output contains not only the fundamental frequency term, 

but also many higher order harmonics caused by x2(t) and x3(t) and so on. Typically, 

high-order terms are negligible when the input signal level is small. However as the 

input amplitude becomes large, the high-order terms increase rapidly and significantly 

affect the output. If the circuit is implemented in a fully differential architecture, the 

even-order harmonics will be mostly canceled out and can be neglected (shown in Fig. 

2.1 and Eq. 2.7).  

 

Fig. 2.1 Signal through a differential mode system 
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             (2.7) 

When a sinusoidal signal x(t)=Acos(�t) is applied to the system of Fig. 2.1, 

the output y(t) is: 
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As seen from Eq. 2.8, there is no second order frequencies terms remained at 
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the output. 

There are two important parameters used to measure the performance of 

linearity, that is the 1 dB compression point (P1dB) and the third-order intermodulation 

distortion (IP3). 

2.1.2.1 1 dB compression point 

The 1 dB compression point is defined as the input signal amplitude at which 

the output deviates from the ideal response by 1 dB. Fig. 2.2 illustrates the concept of 

this parameter. In Eq. (2.6), the first-order coefficient includes two terms, the desired 

gain a1, and the undesired term 3a3A3/4. For a small input amplitude A, the first term 

dominates and the output is linearly dependent on the input. However, due to 

non-linearity, when the input signal amplitude is large, the third order term increases 

rapidly and the gain of the fundamental frequency will drop off. 

 

Fig. 2.2 1 dB compression point 

2.1.2.2 Third-order intermodulation distortion 

Another key parameter to evaluate the linearity of a circuit is the 

intermodulation distortion. When two closely spaced signals )cos()( 111 tAtx ω=  and 
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)cos()( 222 tAtx ω=  mix with each other, they produce a signal with frequencies other 

than the high-order harmonics of the two signals.  
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The most severe distortion is called the third-order intermodulation due to the 

non-linear x3 term. As seen from Eq. 2.9, the output will consist of fundamental 

frequency terms cos�1t, cos�2t and the third order intermodulation frequency terms 

cos(2�1+�2)t, cos(2�2+�1)t, cos(2�1-�2)t and cos(2�2-�1)t. Two strong interferers 

A1cos(�1t) and A2cos(�2t) can generate in-band distortion components 

[ ]tAAa )2(cos
4
3

212
2

13 ωω −  and [ ]tAAa )2(cos
4
3

12
2
213 ωω −  (shown in Fig. 2.3). 
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Fig. 2.3 Signal propagation through a non-linear circuit 

The third order intermodulation can be measured by applying two tones 

Acos(�1t) and Acos(�2t) at the input of the circuit, the amplitude of the intermodulation 

product is measured at the output of the circuit. A plot of the output signal versus the 

input signal of both fundamental and intermodulation product frequency in logarithmic 

scale is shown in Fig. 2.4. 

)/( 21 ωω

)2/2( 1221 ωωωω −−

 

Fig. 2.4 Third-order intermodulation distortion 

The third-order intermodulation interception point (IP3) is used to measure the 

distortion, which occurs when the third-order intermodulation products equals the 

fundamental signal amplitude. However this never happens in the real case due to the 

compressive nature of the circuit. The IP3 is calculated by extrapolating both 

components until they finally intercept. The input-referred IP3 is called IIP3. Assuming 



 12 

the input power of two tones are the same (A1=A2), the amplitude of IIP3 (AIP3) can be 

calculated as follow: 
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2.1.3 Sensitivity and dynamic range (DR) 

The sensitivity of a receiver is usually defined by the minimum detectable 

signal (MDS) of that receiver. A minimum detectable signal must have the power higher 

than the noise floor of the receiver. A definition of MDS is given by Eq. 2.11 [15]. 

Where Nf is the noise floor, NF is the noise figure of the receiver, B is the receiver 3dB 

bandwidth and SNR is the required signal to noise ratio at the output. The Nf can be 

defined by Eq. 2.12. Where k is the Boltzmann constant (1.38×10-23 J/K); T0 is the room 

temperature in Kelvin (290 K). 

SNRdBmBdBNFHzdBmNP fMDS +++= )(log10)()/( 10        (2.11) 

)/(174)log(10 0 HzdBmkTN f −==                   (2.12) 

The dynamic range of a receiver is the ratio of the maximum to the minimum 

input signal power levels over which the receiver can operate within some specified 

range of performance. The minimum level is usually determined by the sensitivity of the 

receiver, while the maximum level is usually set by the maximum tolerable nonlinear 

effects. This maximum tolerable nonlinearity is usually defined by the input 1 dB 

compression point P1dB (shown in Fig. 2.5). Then the dynamic range of the receiver can 
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be expressed as [15]: 

MDSPPdBDR −= dB1)(                       (2.13) 

 

Fig. 2.5 Dynamic range 

2.1.4 Quality factor (Q) 

The figure of merit for assessing the performance or quality of a resonator, the 

quality factor, is a measure of energy loss or dissipation per cycle as compared to the 

energy stored in the fields inside the resonator. The Q is defined by: 

cycleper  dissipatedenergy 
storedenergy  maximum

2π=Q                  (2.14) 

Fig. 2.6 shows a simple parallel RLC resonator driven by a current source. 

The impedance Z(s) of the resonator is: 
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Fig. 2.6 Second order parallel resonator 

where k is a constant, LC/10 =ω and BW3dB=1/RC. �0 is the resonant frequency and 

the BW3dB is the 3 dB bandwidth of the transfer function. The frequency response of this 

system is given in Fig. 2.7. The quality factor of this second order resonator can be 

expressed as [16]: 

L
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==
3

0ω
                        (2.16) 

Therefore is equal Q, to the ratio of the resonant frequency to the 3 dB 

bandwidth. The higher the quality factor, the smaller the 3 dB bandwidth and the better 

the selectivity. From the equations above, if the center frequency of the filter is tuned by 

decreasing the value of capacitor, the Q of the filter decreases accordingly. So when the 

filter center frequency is tuned by changing the value of the capacitor, the Q of the filter, 

at the same time is inevitably changed. 

0ω

dB3

dBBW 3

 

Fig. 2.7 Frequency response of a second order resonator 
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2.2 Radio Receiver Architectures 

The three most important attributes of a good receiver design are: (a) high 

sensitivity, (b) good selectivity and (c) low power consumption. Receiver architectures 

have been developed over the last century to accommodate the increasing demand of 

selectivity, sensitivity and low power in wireless communication systems. The 

super-heterodyne receiver was introduced in 1918 which successfully overcame the 

problem of selectivity, and until today, almost all commercial receivers are built using 

this architecture. A special case of the super-heterodyne receiver is the direct conversion 

receiver where the LO coincides with the incoming carrier frequency and converts the 

RF directly to the baseband. 

Super-heterodyne receiver 

Heterodyning in this context simply refers to the inclusion of a mixer in the 

chain to convert the incoming high frequency RF signal to a lower frequency (usually a 

fixed intermediate frequency (IF)). Fig. 2.8 shows a typical modern super-heterodyne 

receiver [17]. To achieve this mixing function, a local oscillator (LO) running near the 

incoming carrier frequency is needed. The difference between the LO and input signal 

frequency results in the desired intermediate frequency (IF). 

 

Fig. 2.8 A typical super-heterodyne receiver front-end 

The first stage of the receiver is a Radio Frequency (RF) Filter. The filter 
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provides attenuation of the strong out-of-band interferers. The Intermediate Frequency 

(IF) filter rejects the slightly smaller in-band blockers soon after. The main function of 

the Low Noise Amplifier (LNA) is to provide enough gain to drive the mixer and to 

overcome the noise of the subsequent stages. 

One drawback of this architecture is the image frequency problem. For a given 

LO, there are two distinct frequencies which will generate the same lower frequency 

difference. In the super-heterodyne receiver, this results in an image channel where 

interferers can potentially be mixed into the desired channel (shown in Fig. 2.3). The 

image reject filter is added to attenuate signals at this image frequency in order to 

remedy this problem. Another method to alleviate the image problem is to employ 

multiple frequency conversion stages, with a high IF chosen as the first stage to make 

image rejection easy, and a low IF chosen for the second (and third) stages to make 

channel selection more precise.  

Direct conversion receiver 

The direct conversion or homodyne receiver is shown in Fig. 2.9 [17]. The 

direct conversion receiver, sometimes called the Zero-IF receiver, converts the 

modulated signal directly to the baseband. The benefit of this architecture is that there is 

only one conversion stage and there is no image frequency to be dealt with. There are 

unfortunately two design challenges with the direct conversion receiver solution. The 

first is the problem of local oscillator re-radiation from the antenna [17]. Very careful 

design is needed to ensure that the LO, which is now at the frequency of the incoming 

signal, does not leak back through the front end mixer/amplifier/filter chain and violate 

spurious emission regulations.�The second design challenge is the problem of dc-offset 
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within the two baseband signals which can corrupt wanted information that has been 

mixed down around zero Hz [17]. Causes of the dc offset are either drift in the baseband 

components (e.g. op amps, filters, A/D converters), or dc from the mixer output caused 

by the LO mixing with itself or with the mixers acting as square law detectors for strong 

input signals. 

 

Fig. 2.9 Direct conversion receiver architecture 

Proposed Receiver Architecture 

As mentioned earlier, both the RF filter and image rejection filter in the 

super-heterodyne receiver are implemented using off-chip discrete components (ceramic 

and/or SAW filters). By implementing an on-chip BPF with LNA, one can replace the 

LNA, the off-chip RF bandpass filter and the image rejecting filter in the receiver 

front-end as shown in Fig. 2.10 thus reducing the system cost and power consumption. 

The most important is that the integration of the RF and image rejection filter makes 

single-chip transceiver implementation feasible. The proposed RF filter is a broadband 

filter which has a tunable bandwidth range from 80 MHz to 120 MHz. 
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Fig. 2.10 Proposed receiver architecture 

2.3 General Filter Requirements 

This section will describe some common RF filtering requirements which 

need to be met for the transceivers used in wireless applications. 

2.3.1 Out-of-band blocker rejection 

The antenna usually picks up all the RF signals present in the air. There are 

some very strong unwanted signals located far away from the desired signal in spectrum. 

The RF filter must be implemented to attenuate these strong out-of-band blocking 

signals (Fig. 2.11.) in order not to saturate the LNA and thereby desensitize the receiver. 

Out-of-band blocking signals also create intermodulation products that may corrupt the 

desired signal. 

 

Fig. 2.11 In-band and out-of-band rejection 
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2.3.2 In-band blocker rejection 

The strong unwanted signals found in the allocated frequency band of a 

wireless system are called the in-band blocking signals (Fig. 2.11). These blockers are 

not as strong as the out-of-band blockers. They are located close to the desired signals. 

Therefore it would be necessary to have an RF filter with extremely sharp edges to filter 

out these in-band blocking signals. The filtering at these frequencies is called channel 

selection filtering. 

2.3.3 Image rejection 

When the super-heterodyne receiver architecture is used, the image frequency 

superimposes on the desired signal after the first frequency conversion (shown in Fig. 

2.3). Once that happens, it is not possible to recover the desired signal if the image is 

stronger than the desired signal. Therefore it is important to ensure that the image is 

rejected by a sufficient amount before or during the first conversion. 

2.3.4 Noise filtering 

In some situations it is necessary to filter wideband RF noise. One of the 

common examples is the transmitter noise in the receive band. When a strong signal is 

transmitted in the upper end of the transmit band it may have wideband noise with 

sufficient energy to corrupt a weak wanted signal in the lower end of the receive band 

(Fig. 2.12.) 
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Fig. 2.12 Transmitter wideband noise in the receiver band 

2.3.5 An example of filtering requirements (the Bluetooth receiver) 

The Bluetooth system operates in the 2.4 GHz ISM (Industrial Scientific 

Medicine) band. The system frequency allocation is shown in Fig. 2.13 [8].  

 

Fig. 2.13 Frequency allocation of the Bluetooth system 

The in-band and out-of-band blocking specifications of the Bluetooth system 

are shown in Fig. 2.14 [8]. Other receiver requirements are shown in Table 2.1 [8]. 
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Fig. 2.14 Bluetooth blocking requirements 

Table 2.1 
Bluetooth receiver requirements 

 
Bluetooth receiver requirements Values 

Actual sensitivity level -70 dBm 

Maximum usable receiver input level (BER<0.001) -20 dBm 

Dynamic range >50 dB 

2.3.6 Proposed filter requirements 

The proposed filter presents in this thesis is not designed for a certain wireless 

system. The filter should be able to fit into various broadband short range wireless 

systems such as Bluetooth, 802.11a, 802.11b, 802.11g, etc. Because all of these systems 

operate at different frequency range and have different filtering requirements, a 

prototype RF filter is designed here with the requirements listed in Table 2.2. The 

frequency range in this design is set from 3.55 GHz to 3.65 GHz; this range can be 
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easily changed to other frequency ranges by changing the values of the varactors. 

Table 2.2 
Proposed filter requirements 

 
Proposed RF filter requirements Values 

Actual sensitivity level -85 dBm 

Maximum usable receiver input level (P1dB) -45 dBm 

Dynamic range >45 dB 

IIP3 -30 dBm 

Image rejection (500 MHz away) 50 dB 

Bandwidth 100 MHz 

Noise figure 15 dB 

Q tuning ability (bandwidth) 80 MHz-120 MHz 

Center frequency tuning ability 3.55 GHz- 3.65 GHz 

 

2.4 Common Filter Types 

There are two common types of filter, one is passive filters and the other is 

active filters. Each type of filter operates at a certain frequency range and has both 

advantages and disadvantages. This section describes the filtering solutions which are 

commonly used today. 

2.4.1 Passive filters 

Passive filters are the most common components used in wireless transceivers 

for RF filtering. Some common passive filters are listed as following: 

LC type filters 

LC type filters are the most basic passive filter. These filters are built with 

inductors and capacitors. They have relatively high insertion loss due to the moderate 
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Q-value of the passive devices.  

PWB filters 

Edge coupled filters made by printed wire board (PWB) are cost efficient and 

the out-of-band attenuation is acceptable for some less demanding standards. But the 

structure of the PWB is very bulky in the lower GHz range and can not fit in most 

wireless applications. 

SAW filters 

Surface acoustic wave filters are commonly used in RF filtering. They offer 

low insertion loss, sharp cut-off edges, small size and moderate power handling 

capabilities at a reasonable cost [18]. The drawback is that these filters are not tunable 

and they are not compatible with standard IC technology. 

2.4.2 Active filters 

Active filters are usually used in lower frequency range (< 1 GHz). They can 

be integrated in standard IC technology and easily tuned to fit different frequency bands. 

Some different types of active filters are discussed below: 

Gm-C filters 

Gm-C filters are continuous time filters which are common in lower frequency 

applications. In the GHz range, these filters have serious limitations in terms of linearity 

and noise performance. Usually they are not being employed in RF filtering. 

Switched capacitor filters 

Switched capacitor filters are also very common in lower frequency 

applications. These structures provide better dynamic range than Gm-C filters. These 

filters are discrete time filters; they rely on sampling in the time domain, thus aliasing 
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becomes a major problem. 

Q-enhanced LC filters 

Filters which use loss compensation for the LC resonators are called 

Q-enhanced LC filters. This type of filter has shown to have the best RF performance 

among all the active filter topologies [11]. Noise and linearity problems still exist in 

these filters; in addition the Q-enhancement circuit uses a large portion of the filter 

power consumption. 

DSP filters 

This type of filter uses an A/D converter to convert the analog signal to digital 

signal, and then use a digital processor to implement the filtering, a D/A converter is 

applied to convert the output digital results back to an analog signal. In the GHz range, a 

DSP filter requires about 20 bits of resolution and the computation time (delay) is quite 

long. 

2.4.3 Proposed RF filter 

As discussed above, the proposed filter will fulfill the requirements to filter 

out the out-of-band RF blocks and also provide sufficient image rejection in order to 

eliminate the image rejection filter. The solution to the proposed RF filter is an actively 

coupled Q-enhanced LC filter (shown in Fig. 2.15). By coupling stages of the 

Q-enhanced LC filters, the out-of-band blocker filtering and image rejection are greatly 

improved. The integrating of RF filtering using CMOS technology makes the low cost, 

low power and highly-sophisticated wireless personal communication devices possible. 

This proposed filter has tunable bandwidth and tunable center frequency and thus can fit 

into a wide range of wireless applications. 
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Fig. 2.15 Proposed RF filter solution 
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CHAPTER 3  BANDPASS FILTER DESIGN 

This chapter describes the implementation of the proposed bandpass filter in 

CMOS. The first section illustrates a second order differential filter prototype and 

presents the simulation results of this filter. Section 2 describes a sixth order filter 

architecture using the second order prototype as a building block. The simulation results 

of the sixth order filter are also included in this chapter. 

3.1 Design of a Second Order Differential Bandpass Filter 

In this design, a second order Q-enhanced LC differential filter is used as the 

basic building block for the proposed sixth order bandpasss filter. As shown in Fig. 3.1, 

the second order filter has three parts. The input LNA serves as a tranconductance which 

converts the input voltage to current output; the parallel LC resonate circuit (LC tank) 

forms a second order filter and the Q-enhancement circuit compensates for the loss of 

the LC tank. 

 

Fig. 3.1 Second order Q-enhanced LC differential filter 
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3.1.1 Input LNA design 

When constructing the LC tank in parallel mode, a current source is needed to 

drive the tank. Inputs to the filter are usually voltage signals; an input transconductance 

is required to transfer the voltage signal to a current signal. This input transcondutance 

provides current gain and acts as a low noise amplifier (LNA). 

3.1.1.1 LNA topologies considerations 

A CMOS LNA usually has some basic requirements: a high voltage gain, a 

low noise figure (NF), a good input matching and a high linearity. Two groups of LNAs 

will be discussed here, one is the common gate LNA and the other is the common source 

LNA. 

A typical common gate LNA is shown in Fig. 3.2. The inductor Ls is the 

RF-Choke inductor for the DC-path to ground. From the small signal model of the 

circuit (shown in Fig. 3.3), the input admittance Yin is equal to: 

mgs
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in gsC
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sY ++= 1
)(                       (3.1) 
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1== , where Cgs 

is the gate-to-source capacitance of the input MOS transistor. 
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Fig. 3.2 Common gate LNA 

 

Fig. 3.3 Small signal model of the common gate LNA 

Assuming the thermal noise from the transistor is the most significant noise. 

The noise figure of this LNA is shown in Eq. 3.2. 
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where In the source noise current and rin is the input impedance. � is the drain noise 

constant. For the long channel transistor in saturation, �=2/3, and �=2-3 for short 

channels [19]. When input matching, Eq.3.2 simplifies to: 

γ+= 1F                            (3.3) 

In the equation, The NF of this LNA topology is in the order of 3dB. 

Fig. 3.4 is a typical common source LNA. In order to match the input 

impedance, there are 3 possible choices listed in Fig. 3.5. The first one is to use a 50� 

resistor across the input terminal, the second one is a shunt-series feedback and the third 
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one is on inductive source degeneration. Both the first one and the second one use noisy 

resistor to provide input matching and this degrade the noise figure of the LNA. The 

noise figure of the first one is in the order of 3dB. Shunt-series feedback also has a high 

power consumption problem. These drawbacks make the above topology less attractive 

for LNA portable applications. 

 

Fig. 3.4 A typical common source LNA 

 

Fig. 3.5 (a) Resistive termination, (b) shunt-series feedback and (c) inductive 

source degeneration 

The last one is the inductive source degeneration LNA in which the input 

signal is fed to the gate terminal and to the source terminal through the parasitic 

gate-to-source capacitance. This topology uses a combination of phase shift and 

capacitive coupling to provide a real LNA input impedance. This topology has 2 main 

advantages: (1) it enables a good power match; (2) it allows high gain while adding a 

minimum of noise. Sub-1dB noise figures have been reported for inductively source 
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degenerated CMOS LNA operating in the lower GHz range [20]. These features have 

made this the most commonly used topology for CMOS LNA and it is also the one that 

is pursued in this work.  

3.1.1.2 Input matching for the inductively degenerated LNA  

A good power match at the input of LNA is very important in this case 

because this LNA will connect directly to the antenna. As shown in Fig. 3.6, Cgs is the 

parasitic gate-source capacitance of the input MOS transistor. Cg is the input capacitance. 

Ls is an inductance that lowers the gain through negative feedback. This improves 

linearity and helps creates the desired input impedance. Lg represents the inductance of 

the off-chip PCB traces and the bondwire inductance. The parasitic resistance of the 

inductors Ls and Lg are represented as Rl and Rg. The input impedance of this circuit is 

derived as: 

�
�

�

�

�
�

�

�
−−++++==

gsg
sglg

gs

sm

in

in
in CC

LLjRR
C

Lg
I
V

Z
ωω

ω 11
)(           (3.4) 

 

Fig. 3.6 Input matching of the inductively degenerated LNA 

As shown in the equation, the real part of the input impedance is independent 

of frequency and the imaginary part only equals zero at a single frequency 
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where
)( sggsg

ggs

LLCC

CC

+
+

=ω . This implies that the input impedance can only provide a 

good power match over a certain bandwidth. 

When the impedance matches the source resistor Rs, the input impedance of 

the LNA becomes: 
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3.1.1.3 Noise analysis of the inductively degenerated LNA 

Noise figure (NF) is the most important parameter of the LNA. In this section, 

the noise model of MOSFET will be presented and the NF of the inductively 

degenerated LNA will be calculated and optimized.  

Thermal noise of a resistor 

A resistor is a common noise source in analog circuits. The mean square noise 

voltage spectral density of a physical resistor R due to thermal noise (shown in Fig. 3.7) 

is [22]: 

R
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Fig. 3.7 Resistor thermal noise model 
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High frequency noise model of a deep submicron MOSFET 

A noise model of a deep submicron MOSFET is depicted in Fig. 3.8. The 

mean square drain noise current due to thermal noise is [21]: 

fgkTi ddn ∆= 0
2
, 4 γ                         (3.8) 

In this equation, � is the drain noise constant and gd0 is the zero bias 

drain-source conductance. � equals to 2/3 for long channel and 2-3 for sub micron short 

channel devices [19].  
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2
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2
,dni

 

Fig. 3.8 MOSFET transistor noise model 

Noise figure calculation 

Fig. 3.9 shows a small signal diagram which is used to calculate the LNA 

noise figure. The first noise generator in the circuit is vn,Rs which models the thermal 

noise of the source resistor Rs. The next noise generator is the drain noise current of the 

input transistor.  

2
,dni

2
, sRnv

 

Fig. 3.9 Small signal diagram with noise source for the LNA 
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The output noise current which is caused by thermal noise of the source 

resistor iout,Rs can be calculated as shown in (3.9) where it is assumed that the input is 

power matched. The output noise current which is caused by thermal noise in the 

channel of the input transistor can be calculated as shown in (3.11). 
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The output noise power spectral density which arises due to the noise from the 

source is calculated as shown in Eq. 3.12. The output noise power spectral density 

caused by the parasitic resistance of bond wire inductor and source inductor is shown in 

Eq. 3.13. The output noise power spectral density which is caused by the channel noise 

in the input transistor is calculated as shown in Eq. 3.14 where gd0 is replaced by gm/� 

due to mobility degradation in short channel MOS transistors [22]. 

22

2

222

22
,

222

2
2

,

0, 4
44

)(
gss

m
s

gss

mRn

gss

mRout

Rout CR
kTg

kTR
CR

g
f

v

CR
g

f

i
S ss

s ωωω
ω ==

∆
=

∆
=   (3.12) 

)(4
44

)(
222

22
,

222

2
2

,

0, lg
gss

mRRn

gss

mRRout

RRout RRkT
CR

g
f

v

CR
g

f

i
S lglg

lg
+=

∆
=

∆
= ++

+ ωω
ω  (3.13) 

mm
dndout

dout gkTgkT
f

i

f

i
S γγω ==

∆
=

∆
= 4

4
1

4
1

)(
2
,

2

,
0,             (3.14) 

As defined in Eq. 2.2, noise factor can also be expressed as [15]: 
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Sout,circuit(�) is the output noise power spectral density caused by the circuit 

and Sout,source(�) is the output noise power spectral density caused by the source. Applied 

to the source degenerated LNA, the noise factor is derived as follow: 
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3.1.1.4 Other considerations 

Gate Resistance: The polysilicon material which forms the gate of MOS 

transistors usually has a relatively high resistance. The gate resistance can be expressed 

as [23]: 

Ln

WR
R poly

g 23
=                           (3.17) 

In this equation, Rpoly is the sheet resistance of the polysilicon material, n is 

the number of transistor fingers, L is the length of the transistor and W is the width of 

the transistor. As can be seen from this equation, the gate resistance can be reduced by 

increasing the number of transistor fingers. This Rg can be made negligible if 

Rg=0.01×Rs or less. An expression for the number of transistor fingers can be found as 

follow when Rg=0.01×Rs. 
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Power Gain, Load Impedance: This LNA topology is actually an input 

transconductance (gm) which transfers the input voltage to output current. gm of this 

LNA can be expressed as: 

( )TGS
ox

r
m VV

L
W

t
g −�

�

�
�
�

�= 0εµε
                    (3.19) 

In this equation, µ is the carrier mobility, �r is the relative permittivity, equal to 

3.9 for SiO2, �0 is the permittivity of free space �0=8.85×10-12 F/m, VGS is the gate to 

source voltage, VT is the threshold voltage, and tox is the thickness of the oxide layer. 

The power gain or voltage gain of this LNA depends on the impedance load. 

In the design, the impedance load is a tunable LC tank. As a result, the power gain of 

this LNA is also tunable in a certain range. 

Differential Operation: The LNA designed in this section is in a single ended 

form, because it is easier to analyze the LNA in this form. However a differential LNA 

exhibits some merits and is often used in RF front-ends. If a differential LNA is used, Rs 

needs to be substituted with Rs/2 in the analysis. 

3.1.1.5 Design example 

An example is given here to illustrate the design methodology of the 

inductively degenerated LNA. The LNA is designed in differential mode, but here only 

half of the circuit is considered. The LNA works at f0=3.6 GHz, has a source resistance 

of 25 ohms (Rs) and uses the 0.18 micron CMOS process. The input transistor is biased 

at VGS=VDS=0.95V. Rl=4.3 ohm, Rg=5.7 ohm, Ls=1.021 nH, Lg=1.35 nH. The sample 

design is shown in Fig. 3.10. Cgs and gm can be calculated as follow: 
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Fig. 3.10 A LNA design example 
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An extra gate to source capacitance Cgsx is added to match the input. The value 

of Cgsx can be found as: 
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The NF can be calculated as: 
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From Eq. 3.6, the Cg can be calculated as: 
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3.1.1.6 A differential cascoded LNA 

The source degenerated common source LNA provides good linearity, high 

gain and low noise figure. But it also has some drawbacks, the common source LNA is 

narrow band and has high output impedance. By cascoding a common gate stage, one 

can lower the output impedance and also improve the LNA bandwidth. Once the LNA 

circuit topology is complete, it is necessary to make the circuit differential. Differential 

circuits are an important part of the integrated circuit design because they offer many 

important advantages over single-ended circuits. One important advantage offered by 

the differential LNA is the stable reference point. With any type of circuit, the measured 

values are always taken with respect to a reference. In the case of a non-differential 

LNA in the RF front end, this reference would be the on-chip ground. However, the 

on-chip ground may not be very reliable due to the presence of the parasitic resistance 

and capacitance, leading to unpredictable results. By contrast, with a differential LNA, 

the measured results of the half-circuit are always taken with respect to the other 

half-circuit. This minimizes the chances of getting unexpected results.  

Another significant and relevant benefit of using a differential circuit is the 

linearity improvement. By using differential structure, the even order harmonics are 
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mostly cancelled out thus greatly improves the linearity performance of the LNA (which 

is demonstrated in the Section 1.3.2). The complete differential LNA is demonstrated in 

Fig. 3.11, where two source degeneration inductors are combined together as a center 

tapped differential inductor Ls. 

 

Fig. 3.11 A differential source degeneration LNA 

A differential LNA based on Section 3.1.1.5 design example with tuned load 

(shown in Fig. 3.12) was designed for testing. Where Ld and Cd are the load impedance. 

The input impedance is 50 ohms. The parameters for the circuit elements are shown in 

Table 3.1 

 

Fig. 3.12 A differential LNA with tuned load 
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Table 3.1 
Circuit parameters for the differential LNA 

 
Symbol Component Value 

Lg input inductor 1.35 nH 

Ls source inductor 4.042 nH 

Ld load inductor 4.042 nH 

Cd load capacitance 1.0 pF 

Cg input capacitance 2.875 pF 

M1 & M2 cascode MOSFET 15 m / 0.18 m 

M3 & M4 input MOSFET 15 m / 0.18 m 

Cgsx extra gate-to-source capacitance 1.14 pF 

 

The differential LNA was simulated under the ADS dynamic-link using 

standard 0.18 m CMOS technology file. In the simulation, the LNA is defined as a 

two port network. Scattering parameters are used to evaluate the gain and input 

matching of the LNA. By defining the input port as port 1 and the output port as port 2, 

the forward transmission coefficient S21 represents the gain of the LNA, the reflection 

coefficient S11 represents the ratio of reflected signal at the input, and the reflection 

coefficient S22 represents the ratio of reflected signal at the output. The simulation 

results are shown in the following: 

1) Input matching: 

The input matching is evaluated by the reflection coefficient S11. A smaller 

S11 represents a better match; a perfect match appears at S11 equals zero. As can be 

seen from the simulation result in Fig. 3.13, a maximum input match appears at 3.58 

GHz where S11 equals -52 dB. S11 is less than -20 dB over the designed frequency 
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range. 

 

Fig. 3.13 Input matching of the differential LNA 

2) Gain: 

The forward transmission coefficient S21 of the two port network is the gain 

of the LNA. The simulated S21 is shown in Fig. 3.14. The maximum gain of 11.5 dB 

appears at 3.58 GHz. 

 

Fig. 3.14 Gain of the differential LNA 

4) Noise performance: 

The noise performance of the LNA is evaluated by the noise figure. Seen from 
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the simulated result in Fig. 3.15, a minimum NF of 2.75 dB appears at 3.58 GHz which 

is very close to the calculated value of 2.56 dB. 

 

Fig. 3.15 Noise performance of the differential LNA 

5) Linearity performance: 

The linearity performances are evaluated by IIP3 and 1 dB compression point. 

The simulated result is shown in Fig. 3.16, where P1dB equals to 3.8 dBm and IIP3 

equals to 18 dBm.  

 

Fig. 3.16 Linearity of the differential LNA 

The performances of the differential LNA are summarized in Table 3.2. 
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Table 3.2 
Differential LNA performance 

 
Symbol Comment Value 

Vdd power supply 1.8 V 

Iss current dissipation 8 mA 

G Gain 11.5 dB 

NF noise figure 2.8 dB 

IIP3 input third order intercept point 18 dBm 

IP3 output third order intercept point 26 dBm 

P1dB input 1 dB compression point 3.8 dBm 

3.1.2 Parallel RLC resonant circuit 

In this section, the most important properties of resonators used for filtering in 

RFIC filters will be discussed. A LC tank is simply an inductor and a capacitor coupled 

in parallel. A model for the parallel LC resonator is given in Fig 3.17, where Rp 

represents the resistance loss of the LC tank which mainly comes from the series 

parasitic resistance Rs of the inductor Ls. The relationship between Rp, Rs, Cp, Cs, Lp, Ls 

can be found in the following equations [16]: 
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sp CC =                             (3.28) 

The resonance frequency of the resonator is: 
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And the quality factor is in the form of [16]: 
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where 
π

ω
2

0
0 =f and BW3dB is the 3dB bandwidth in Hz.  

 

Fig. 3.17 Parallel LC resonator model 

3.1.3 CMOS inductor design 

One of the key factors that determine the performance of the RF integrated 

circuits (RF IC's) is the availability of good quality integrated inductors. Unfortunately, 

parasitic effects, such as coupling capacitance and losses related to the integration 

substrate degrade their performance. These unwanted effects are particularly important 

for silicon substrates. 

The on-chip CMOS inductor design is critical important in the RF filter design 

because the Q value of the inductor dominates the losses in the LC tank thus directly 

affects the filter selectivity. 
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3.1.3.1 CMOS spiral inductor parasitics and modeling 

On-chip inductors in CMOS processed with EPI substrates are affected by the 

lossy substrate. The resistivity of the bulk CMOS substrate is much lower than which 

for bipolar, BiCMOS and SOI CMOS processes [24]. There are three dominating loss 

mechanisms in on-chip inductors in CMOS processes. The first is the series parasitic 

resistance of the inductor. The second is the eddy currents loss due to the lossy substrate. 

The third is the capacitive coupling to the conducting substrate [25]. 

Fig 3.18 is a layout of an on-chip spiral inductor and Fig 3.19 is the model of 

this inductor. 

 

Fig. 3.18 A layout of an on-chip spiral inductor 
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Fig. 3.19 A model of the on-chip spiral inductor 

The parameters of the model are listed below [25]: 
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where µ0=4�×10-7, � is the conductivity of the material, D is the diameter of the inductor, 

a is the distance from the center of the inductor to the middle of the windings, L is the 

total length of the spiral, t is the thickness of the metal and � is the skin depth given by 

σµ
δ

0

2
W

=  [26], Gsi (Csi) is process-dependent parameters. 

3.1.3.2 Design guidelines for CMOS spiral inductors 

1) Layer topology: Use the upper most metal layer for inductor turns. The 

upper most metal layer in CMOS technology usually is the thickest metal layer and it is 

located far away from the lossy substrate. 

2) Inductor shape: An inductor with circular turns gives the highest 

inductance value and hence the highest Q-value [27].  

3) Outer radius (R): The quality factor of the inductor increases with the 

radius of the spiral for small R, but self-resonant frequency also increases with R, as 
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parasitic capacitance between the substrate and the spiral increases. A good design 

usually has R<100 micron [27], [28]. 

4) Metal width (W): Metal width should be as wide as possible. The series 

parasitic resistance (Rs) decreases when the metal width increases and hence the quality 

factor of the inductor also increases. However, as the metal width increasing, the skin 

effects appear in the metal traces, this tends to increase Rs. The chip areas also increase 

with the metal width. A good design uses 10µm < W < 20µm [27]. 

5) Spacing between turns: Spacing should be as small as possible. The 

mutual inductance decreases as the spacing increases. 

3.1.3.3 Layout consideration for CMOS spiral inductors 

CMOS inductors suffer from the substrate loss and hence have very low Q. 

With patterned ground shields (PGS) in the first metal layer under the inductor, the 

substrate loss is greatly reduced and further more, the noise from the substrate is also 

isolated [29]. Fig. 3.20 shows an optimized PGS which can reduce substrate resistance 

loss and eddy currents (shown in Fig. 3.21). 

 

Fig. 3.20 Patterned Ground Shield (PGS) 
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Fig. 3.21 Eddy currents 

3.1.3.4 Design example of a CMOS spiral inductor 

Designing a high Q CMOS spiral inductor with an accurate model requires 

tremendous work. Fortunately, there are a few commercial and free software programs 

that provide some degrees of assistant. This software includes ASITIC [30], Spiral 

Inductor Simulation Program (SSIP), Agilent ADS Momentum circuit designer and 

other 3D electromagnetic simulation programs. ASITIC is used here to design the 

inductor because the software contains a 0.18 m technology file and it calculates the 

eddy current effect. Fig 3.22 is the layout of the CMOS spiral inductor in differential 

mode designed with ASITIC software. Fig 3.23 illustrates the inductor model. Table 3.3 

lists the geometries of this inductor. Table 3.4 lists the parameters of the model. 
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Fig. 3.22 Differential mode spiral inductor 

Table 3.3 
Geometries of the inductor 

 
Symbol Comment Value 

W wire width 8 m 

S spacing between turns 1 m 

N number of turns 5 

R1 inner radius 16 m 

R2 outer radius 60 m 

 

 

Fig. 3.23 Model of the differential spiral inductor 
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Table 3.4 
Parameters of the model 

 
Symbol Comment Value 

L inductor 2.042 nH 

R serial parasitic resistor 4.3 ohms 

Cs1 inductor to substrate capacitor 45.81 fF 

Cs2 inductor to substrate capacitor 44.92 fF 

Rs1 substrate loss 3.314 ohms 

Rs2 substrate loss 4.376 ohms 

Q quality factor 4.9 

f0 resonance frequency 16.45 GHz 

 

The parallel equivalent resistance RP of this inductor can be calculated using 

Eq. 3.26. The calculated RP equals 256.7 ohms at the center frequency of 3.6 GHz. 

3.1.4 Variable capacitors (Varactors) design 

Because of the inaccuracy of passive models of CMOS technology and the 

process variation, the resonate frequency of the LC tank can not be precisely made. So a 

frequency tuning mechanism must be employed. There are two types of variable 

capacitors (varactors) can be employed in the design; one is a MOS varactor based on 

NMOS FET and the other is a junction varactor based on a pn junction [13]. The 

Cmax/Cmin ratio and the Q value are the two main considerations of the capacitor 

varactors. Cmax is the maximum capacitance value of the varactor and Cmin is the 

minimum capacitance value of the varactor. Junction varactors have larger Q than MOS 

varactors and have similar tuning Cmax/Cmin ratio to MOS varactor but occupy larger 

silicon area [31]. The junction varactors are chosen in this design because the tank loss 
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is the main concern. Fig 3.24 is the illustration of a p+-to-n-well junction. The depletion 

region between the p+-implantation and the n-well results the junction capacitance 

varactor (Cj). The capacitance is a function of the width of the depletion region, which is 

controlled by the reverse voltage (VR). The inherent losses are represented by the series 

resistor, Rsj and the parallel resistor Rpj. The series resistor is expected to represent the 

major loss contribution, and hence dominates the Q. 
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Fig. 3.24 p+ to n-well junction 

3.1.4.1 Junction varactor model 

A simplified model of a p+ to n-well junction is shown in Fig. 3.25. 

 

Fig. 3.25 Junction varactor model 

where Cj is the junction capacitance and can be expressed as a function of the reverse 

voltage (VR) [32]: 
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C’
j0 is the junction capacitance per unit area at zero voltage, Aj is the junction 

area, Vj is the built-in junction potential and mj is a fitted process constant dependent on 

the doping profiles for the p- and n- implantations. 

For an abrupt junction, C’
j0 is given by [32]: 
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where q=1.602×10-19 C is the elemental charge, 0=8.85×10-12 F/m is the permittivity 

of free space, r=11.8 is the relative permittivity of silicon, NA is the concentration of 

the acceptor dopants [holes/m3] in the p-region and ND is the concentration of the donor 

dopants [electrons/m3] in the n-region. 

The series resistor Rse,j represents the losses associated with the junction. RW 

represents the lossy signal path through the p-substrate. CW is n-well to p-substrate 

junction capacitance. 

3.1.4.2 Cmax/Cmin ratio 

From Eq. 3.37, the Cmax/Cmin ratio can be derived as: 
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The exact value of Vj depends on doping levels and temperature. Typical 

values of Vj at room temperature are 0.8 V- 0.9 V and mj has a typical value of 0.4 [31]. 

In order to avoid forward biasing, the VR,min should not lower than the swinging voltage 
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in the LC tank, by choosing the reverse voltage from 0.6 V to 2.4 V, the Cmax/Cmin=1.37. 

However, this ratio is a theoretical value which can not be realized in practice. Due to 

the fixed parasitic capacitances, the overall Cmax/Cmin ratio for a pn-junction could be 

much smaller than 1.37.  

 3.1.4.3 Layout consideration 

Eq. 3.37 is a simplified expression for Cj which does not take the parasitics 

into account. As shown in Fig 3.26, there two important parasitic capacitances, one is 

the side wall parasitic capacitance (Cj,SW) which is also tunable by the reverse voltage 

[33], the other is the fixed interconnection parasitic capacitance which decreases the 

Cmax/Cmin ratio. In order to occupy as small chip area as possible, an array of small 

junctions are used in the layout instead of a large junction (shown in Fig. 3.27) as the 

side wall capacitance increases the variable capacitance per unit area. But at the same 

time, an array of small junctions needs more interconnections and degrades the 

Cmax/Cmin ratio [34], [35]. 

 

Fig. 3.26 Side wall parasitic capacitance of a p+-to-n-well junction 
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Fig. 3.27 Junctions array 

3.1.4.4 Varactor design example 

A well designed junction varactor array is shown in Fig. 3.28, which consists 

of two varactor arrays working in parallel mode. Table 3.5 shows the geometries of the 

designed junction varactor array. 

 

Fig. 3.28 A p+-to-n-well junction varactor array example 
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Table 3.5 
The geometries of the designed junction varactor array 

 
Symbol Comment Value 

L length of the junction cell 5.8 m 

W width of the junction cell 5.8 m 

Column junction array columns 8 

Row junction array rows 7 

 

The simulation result of the junction varactors is shown in Fig.3.29. As seen 

from the figure, Cmax=2.825 pF and Cmin=2.550 pF. The Cmax/Cmin ratio is 1.11, which is 

less than the theoretical value of 1.37. As will be seen later, this ratio determines tuning 

frequency range of the filter. 

 
Fig.3.29 Junction capacitance versus bias voltage 

3.1.5 Q compensation technique 

As discussed in previous sections, the series resistance loss of the on-chip 

inductor dominates the losses in the LC tank, which must be compensated in order to get 

the desired selection requirements of the filter. This section explains how loss 

compensation or equivalently negative resistance circuits can be designed for 
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Q-enhancement of the LC resonators. 

As shown in Fig. 3.30, a negative conductance Gn is introduced in parallel to 

the resonant tank, where Req is the equivalent parallel resistance of the resonant tank 

after compensation. Req can be expressed as: 

pn

p
eq RG
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Fig. 3.30 A parallel LC resonant tank compensated with negative conductance 

The quality factor Qc of the Q-enhanced LC resonator is: 

p

p
eqc L

C
RQ =                        (3.41) 

The impedance of the LC tank is: 
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The quality factor of the Q-enhanced resonator Qc can be set arbitrary large by 

tuning the Gn approaching 1/Rp. As discussed in Section 3.1.1.4, the power gain of the 

input LNA depends on the load impedance which is the impedance of the LC tank in this 

case.  

A cross-coupled differential pair given in Fig. 3.31 is a simple way to achieve 

a negative conductance [36]. Fig. 3.32 gives the equivalent small signal representation 
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of the circuit. As seen from Fig. 3.32, the negative conductance provided by the 

cross-coupled differential pair can be found as: 

min
m

in

inm

in
eq gV

g

V

Vg
V

Z
1

2

2 −=−== −

+

                 (3.43) 

 

Fig. 3.31 A cross-coupled differential pair 

 

Fig. 3.32 The small signal equivalent of a cross-coupled differential pair 

3.1.6 Noise analysis of the Q-enhanced LC resonator 

A simplified schematic with noise sources of the Q-enhanced LC resonator is 

shown in Fig 3.33. As seen from Fig 3.33, there are three noise sources in the 

Q-enhanced LC resonator: the thermal noises of transistor M1 & M2 and the thermal 

noise of the parallel equivalent resistor RP. The contributions from these noises can be 

computed by calculating the different noise voltages resulting from each noise source. 
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Fig. 3.33 Q-enhanced LC resonator with noise sources 
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From Eq. 3.47, noise model of the Q-enhanced LC resonator can be simplified 

as shown in Fig 3.34. The equivalent noise current is: 
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Fig. 3.34 Equivalent noise model of the Q-enhanced noise LC resonator  

3.1.7 Linearity Consideration of the Second Order Filter 

In RF circuit design, trade-offs exist between noise, linearity and power gain. 

Noise performance can be improved by increasing the gain of the circuit, but at the same 

time, high gain causes linearity degradation. In this design, the non-linearity is 

contributed mainly from the Q-enhancement circuit. In this section, a couple of methods 

will be provided to improve the filter linearity. 

3.1.7.1 Non-linear characteristic of the MOS device 

The drain current Id of a MOS device is modeled as [37]: 

2)(
2
1

TGSoxds VV
L

W
CI −= µ                      (3.49) 

where µ is the mobility of the majority carrier, Cox is the gate oxide thickness, W/L is the 

width to length ratio, VGS is the gate to source bias voltage, VDS is the drain to source 

bias voltage, and VT is the threshold voltage. For a simple differential pair shown in Fig 

3.35, the drain current Ids1, Ids2 can be expressed as: 
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Fig. 3.35 A simple differential pair 

From Eq. 3.50 and 3.51: 
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By substituting Eq. 3.54 into Eq. 3.53 and forming a quadratic, the solution for 

Ids1 and Ids2 can be obtained as: 
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Assuming the two MOS transistors are working in the saturation region, the 

output current Io of the differential-pair is: 
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The Gm of the differential-pair is then: 
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From Eq. 3.58, for small input signals, the Gm is constant. However, for large 

input signals, Gm drops and becomes non-linear. As a result, linearization techniques for 

Gm-cells are required. 

3.1.7.2 Different types of linearization techniques 

1) Source-degeneration with resistor 

One of the commonly used techniques for improving the linearity of a Gm-cell 

is the source degeneration shown in Fig. 3.36 [38]. 

 

Fig. 3.36 Source degeneration with resistor 

The effective Gm of this Gm-cell is: 

sourcem

m
m Rg

g
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+
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1
                     (3.60) 

In the equation, gm is the tranconductance of the differential pair before 

degeneration. The linearity depends on the choice of Rsource. If a large source resistor is 
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employed, the linearity can be improved at the expense of a reduction in Gm. The 

drawback of this method is that the source resistor consumes power and the resistor also 

degrades the noise performance.  

2) Source-degeneration by using varying bias triode transistors 

Another choice in source-degeneration is to use varying bias triode transistors. 

Transistors M3 and M4 shown in Fig. 3.37 are biased in their triode regions and act as 

resistors [38]. The small-signal source resistance of a MOS transistor can be expressed 

as: 
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Fig. 3.37 Source-degeneration by using varying bias triode transistors 

The small-signal output current of the circuit can be calculated by: 
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By defining Gm as io/(v1-v2): 
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where                         L
WC

k ox

2
µ=

                          (3.64) 

Gm can be tuned by changing the bias current Iss. Other two types of circuits 

using triode transistors degeneration are shown in Fig 3.38. The comparison of three 

types of linearization techniques using triode transistors is listed in Table 3.6. 
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Fig. 3.38 (a) Source degeneration with transistor biased at triode region and (b) 

with saturated transistors 

Table 3.6 
Comparison of three types of linearization techniques 

 
Figure Transconductance Properties 
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3.1.8 Second order differential filter implementation 

The fully integrated second order differential filter for personal wireless 

communication applications is implemented in this section. This second order filter is 

also the building block for the proposed sixth order bandpass filter which provides much 

more out-of-band attenuation and image rejection ability.  

This section combines all the results of the previous sections to design a fully 

integrated front-end filter for wireless communications. 

3.1.8.1 Filter topology 

The block diagram and the schematic diagram of the designed second order 

filter are shown in Fig. 3.39 and Fig. 3.40 respectively. The input stage uses a source 

degenerated LNA (implemented in differential mode) which is designed in Section 3.1.2. 

The LC tank consists of an inductor and a varactor. The inductor is the differential 

on-chip spiral inductor designed in Section 3.1.3 and the varactor is an array of small 

junctions designed in Section 3.1.4. The Q-enhancement circuit is the cross-coupled 

different pair discussed in Section 3.1.5. Linearization techniques discussed in Section 

3.1.7 are employed to improve the linearity. The bias and output buffer circuits are not 

shown in the schematic. 

 

Fig. 3.39 Block diagram of the designed second order bandpass filter 



 64 

 

Fig 3.40 Schematic diagram of the second order differential filter 

3.1.8.2 Filter simulation results 

The second order differential filter was designed under the Cadence 

environment and the schematic was simulated under ADS dynamic link for Cadence. 

1) Tuning ability: 

Using the equations in Table 3.6, the Gm of the designed Q compensation 

circuit can be expressed as: 
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where I1 is the current flow through M5 and M7, R is the source degeneration resistor 

and k5, k9 are the process parameters of M5 and M9 defined by Eq. 3.64 respectively. At 

resonate frequency, the overall tank impedance is RP Gm), where RP is the parallel 

equivalent of the tank loss. The tank impedance can be expressed as: 
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From Section 3.1.3.4, the parallel equivalent resistance of the designed 

inductor is equal to 256.7 ohms which can be considered to be the tank loss RP. The tank 

impedance is a function of the current I1 which is illustrated in Fig. 3.41. 

 

Fig. 3.41 Tank impedance versus current I1 

From Eq. 3.49 and 3.64, I1 can be expressed as: 

2
771 )( TGS VVkI −=                       (3.67) 

And from Eq. 2.17, quality factor of a second order tank can be expressed as: 
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As can be seen from Eq. 3.66, 3.67 and 3.68, the Q tuning voltage changes the 

current I1, thus changes the tank impedance and the quality factor of the filter [40]. 

k7 is the process parameters of M7 defined by Eq. 3.64, VGS7 is the gate to 

source voltage of M7 and M8 in Fig. 3.40 which equals to the quality factor tuning 

voltage Vq. The calculated Q tuning versus Vq is shown in Fig. 3.42. 
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Fig. 3.42 Calculated quality factor tuning 

The simulated Q-tuning ability of the filter is demonstrated in Fig. 3.43. In this 

second order filter, the Q value can be tuned very high when the source degenerated Gm 

value of the cross-coupled differential pair M5, M6 is tuned approaching to the parallel 

equivalent conductance of the LC tank loss. As shown in Fig. 3.44 the Q value can 

exceed 3000 in the simulation. According to Eq. 2.17, the bandwidth of the filter will 

decrease when Q increases. At the same time, the image rejection will increase as Q 

increases (shown in Fig. 3.45). 
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Fig. 3.43 Q tuning ability of the second order filter 

 

Fig. 3.44 Quality factor of the second order filter versus tuning voltage 
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Fig. 3.45 Bandwidth and image rejection of the second order filter versus tuning 

voltage 

The simulated center frequency tuning ability is shown in Fig. 3.46. When the 

tuning voltage sweeps from -0.6 V to 1.2 V, the center frequency shifts from 3.69 GHz 

to 3.54 GHz. The tuning range is about 150 MHz.  

 

Fig. 3.46 Frequency tuning ability of the second order filter 
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2) Linearity performance: 

Another consideration is the linearity of the filter. The input referenced third 

order distortion (IIP3) and 1 dB compression point are two important parameters to 

measure the linearity. In the linearity simulation, the Q of the filter is set at 150 and the 

center frequency is set at 3.60 GHz. Two tones at 3.595 GHz and 3.605 GHz are used as 

the fundamental frequencies at the input. The third order products are at 3.615 GHz and 

3.585 GHz, both are in the pass band of the filter. Fig. 3.47 shows the fundamental 

product and third order product at the output of the second order filter. The image 

rejection at this operation point is 32 dB, IIP3 is -21.5 dBm, 1 dB compression point is 

-30.5 dBm. 

 

Fig. 3.47 Linearity performance of the second order filter at Q=150, center 

frequency=3.6 GHz 

Fig. 3.48 shows the IIP3 and 1 dB compression point of the filter versus 

tuning voltage. As can be seen from the figure, tuning up the quality factor of the filter 

degrades the linearity performance of the filter. 
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Fig. 3.48 IIP3 and 1 dB compression point of the second order filter versus tuning 

voltage 

From the simulation results shown in Fig. 3.44 and Fig. 3.45, if an image 

rejection of 50 dB is required, the Q of the filter needs to be tuned to over 4000. At this 

situation, the bandwidth of the filter is merely 1.2 MHz, which is not suitable for the RF 

front end of wideband systems. At the same time, as seen from Fig. 3.48 the IIP3 of the 

filter is less than -42 dBm which indicates that the linearity is unacceptable. In order to 

fit this second order filter into wideband systems, the Q of the filter needs to be tuned 

around 50. At this Q, the bandwidth is about 80 MHz and the IIP3 is around -11.5 dBm. 

However, the image rejection is reduced to 22 dB. An image rejection filter is required 

to filter out the image signals. 

3) Noise performance: 

The simulated noise figure of the filter is shown in Fig. 3.49. As seen from the 

figure, the minimum noise figure appears around center frequency of the filter, 3.6 GHz 

in this case. The minimum noise figure is 8.65 dB, in which the LNA contributes 2.8 dB 
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and the Q-enhancement circuit and LC tank contributes 5.85 dB. 

 

Fig. 3.49 Noise figure of the second order filter 

4) Input matching: 

In the design, the input matching is calculated to be a perfect match to 50 ohm. 

The simulated result is shown in Fig. 3.50. At the center frequency point, the input 

reflection coefficient S11 is -54 dB which can be considered a very good match. 

 

Fig. 3.50 Input matching of the second order filter 

3.2 Sixth order Bandpass Filter Design 

Section 3.1.8 shows a second order bandpass filter which may be used in the 
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with 100 MHz bandwidth is about 25 dB, which can not satisfy the specification, an 

off-chip image rejection filter is needed between the second order filter and a mixer in 

the receiver to filter out image signals. One of the design goals is to eliminate the 

off-chip image rejection filter and implement a fully integrated RF front end. To provide 

enough image rejection on-chip, the second order filter that designed in the pervious 

section will be used as part of the proposed sixth order filter design. In this section, the 

design methodology will be discussed and the circuit schematic will be presented. The 

simulation results of the designed sixth order bandpass filter will be shown to 

demonstrate its performance. 

3.2.1 Topology of the sixth order filter 

As shown in Fig. 3.51, the sixth order filter is realized by cascading three 

stages of the second order filters. They are coupled together using ac-coupling 

capacitors. There is a LNA in front of each stage of the resonator. This topology is 

referred as active resonator coupling which shows that the resonators can be coupled 

without affecting each others impedances [41]. In this case, the individual resonator’s 

frequency selectivity is not affected by other resonators. 

 

 

Fig. 3.51 Sixth order filter topology 
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3.2.2 Gain and quality factor distribution 

In order to operate with a supply voltage as low as 1.8 V, the gain distribution 

of the three stages is very important in order not to saturate the following stages. At the 

same time, the distribution of the gain will affect the noise performance and linearity of 

the sixth order filter. The Friis’s equation on system noise factor (Fsys) (3.69) is 

presented here for reference [42], where noise factor of each stage is calculated with 

respect to the source impedance of the next stage. Fi and Gi are the noise factor and the 

available gain of the ith stage. 
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For a three-stage system, Eq. 3.69 can be simplified to Eq. 3.70. 
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As illustrated in Eq. 3.70, noises of the second and third stages are attenuated 

by their gains. Noise performance of the system is optimized by maximizing the gain of 

the first stage. 

Distribution of the gain in each stage also affects linearity performance of the 

whole circuit. Fig 3.52 shows the signal pass two cascaded nonlinear systems.  

 

Fig. 3.51 Linearity of a cascaded system 

Assume that the input signal is x(t), output of the first stage is given in Eq. 

3.71 and, output of the second stage is given in Eq. 3.72: 
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If only the first order term and the third order term are considered, then: 

...)()2()()( 3
3

3
132113112 ++++= txbabaabatxbaty           (3.73) 

By using Eq. 2.10, the input amplitude at the IIP3 point AIP3 is: 
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A worst case estimate is: 
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As a1 increase, the overall IIP3 decreases. With higher gain in the first stage, 

the second stage has larger input levels; producing much greater third order 

intermodulation products thus decreases the overall IIP3. In differential mode, a2, b2.0, 

the AIP3 of the overall circuit can be simplified to: 
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a1 and b1 in the above equations are the circuit gains of the fundamental 
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frequencies which can be considered approximately equal to the gain of the circuits G1 

and G2. 

It is easy to see the trade off here; when the gain of the first stage increases, 

noise performance will improve, but the linearity performance will degrade. In this 

design, the gains of each stage are set to be G1, G2 and G3. In order to get a compromise 

between the noise performance and the linearity performance, the ratio among G1, G2 

and G3 must be carefully selected. From the simulation results of the second order filter, 

the noise figure is chosen to be 8.6 dB (the noise factor is 7.24) and IIP3 is chosen to be 

-15 dBm (AIP3 is 0.04 V). The overall gain (G1+G2+G3) is 20 dB. By choosing different 

values of G3, a set of curves shown in Fig. 3.53 which demonstrates the relationship 

between the gain of first stage (G1) and the overall noise figure of the sixth order filter. 

 

Fig. 3.53 Overall noise figure versus gain of the first stage 

Fig. 3.54 demonstrates the relationship between the gain of first stage (G1) and 

the overall IIP3 performance. 
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Fig.3.54 Overall IIP3 versus gain of the first stage 

The proposed filter requires an IIP3 greater than -30 dBm. When G3 is chosen 

to be 6 dB, the IIP3 ranges from -29 dBm to -32 dBm that satisfies the requirement. The 

noise figure is also limited to 11.7 dB. In this design, the gain of each stage is chosen to 

be 6 dB, 8 dB and 6 dB. Under this configuration, the IIP3 is -29.7 dBm, the noise factor 

is 10.6 dB and a compromise between the noise performance and the linearity 

performance is obtained. 

3.2.3 Quality factor and gain tuning 

In the design, the gain of the filter is not only determined by the current output 

of the LNA but also by the impedance of the resonate tank. The gain of each stage can 

be expressed as: 
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As seen from Eq. 3.68, the quality factor is proportional to the tank impedance 
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ZTank thus proportional to the circuit gain. 

In this design, the input tranconductance (gm) of each stage are all set to be 

equal. The gain and quality factor of the stages can be tuned by changing the impedance 

of the tank (ZTank). In order to keep a reasonable gain and quality factor relationship 

among stages while tuning the quality factor of the circuit, each stage must be tuned 

accordingly. This makes the filter more difficult to tune and limits its applications. To 

simplify the Q tuning scheme, only one tuning terminal is used in the design. From Eq. 

3.78, 3.66 and 3.67, the gain relationship among stages can be expressed as: 
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In this design, k5, k9, R and RP of each stage are all set to be the same. By 

changing the width to length ratio of current source MOSFET, k7 of each stage can be 

changed to different values. Try using k71:k72:k73=1:1.1:1, the gain distribution is 

illustrated in Fig. 3.55. 
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Fig. 3.55 Calculated gain distribution versus Q tuning voltage 

The ratio between G2 and G1(G3) is demonstrated in Fig. 3.56. 

 
Fig. 3.56 Calculated G2/G1(G3) ratio 

As can be seen from Fig. 3.55 and Fig. 3.56, when the overall voltage gain 
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designed gain relationship G1:G2:G3=1:1.25:1. 

3.2.4 Center frequencies distribution 

In order to acquire a larger bandwidth, center frequencies of each stage are to 

be set slightly different. By choosing the center frequencies of each stage, the bandwidth 

of the overall response can be effectively controlled. Unfortunately the overall gain will 

be smaller than the combined gain of the three stages because frequency response of the 

first stage is attenuated by the second stage and so on. The attenuation from the second 

stage and third stage largely depends on the center frequency spacing of each stage. The 

attenuation becomes less with a smaller spacing. However, at the same time, the 

bandwidth of the overall filter also becomes smaller. At the extreme case, when three 

stages work at exactly the same center frequency, there will be no attenuation, thus 

maximize the overall gain of the filter. But on the other hand, this configuration 

minimizes the filter bandwidth. In case the filter is used in wideband applications, some 

gain must be traded for bandwidth by increasing the spacing among the center 

frequencies. 

Fig.3.57, 3.58, and 3.59 show simulation results of the bandwidth associated 

with different center frequency spacings. 
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Fig. 3.57 Three stages with the same center frequencies 

 
Fig.3.58 Three stages with 40 MHz spacing between center frequencies 
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Fig. 3.59 Three stages with 60 MHz spacing between center frequencies 

As shown in the simulation results, when three stages are at the same center 

frequency, the gain of the overall response is the largest, which is 24.4 dB for a 

bandwidth of 40 MHz (Fig. 3.57). When the spacing between stages is 40 MHz and the 

bandwidth is 75 MHz, the gain of the overall response is 19.5 dB (Fig. 3.58). When the 

spacing increasing to 60 MHz, the gain is 15.4 dB and bandwidth is about 85 MHz (Fig. 

3.59). 

3.2.5 Center frequency tuning 

Frequency tuning of the second order filter is implemented by tuning the 

reverse voltage of the junction diode varactors. In the sixth order filter, there are three 

resonate tanks; each must be tuned to different center frequency to provide a certain 

overall bandwidth. This can be done by tuning each stage separately. To simplify the 
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In order to set the center frequencies apart, extra capacitances are inserted into 

the first stage and the third stage. From Eq. 3.29 and 3.37: 
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0

+

++
=ω                    (3.80) 

where Cxn are the extra capacitances added to each stage. Using Cx1=80 fF, Cx2=0 and 

Cx3=40 fF, center frequency of each stage is shown in Fig. 3.60. The spacing between 

stages is shown in Fig. 3.61. As can be seen from this figure, frequency spacing changes 

with the frequency tuning voltage. The spacing range from 70 MHz to 77.8 MHz, these 

spacings are in the acceptable range and provide an overall bandwidth between 100 

MHz and 150 MHz. 

 

Fig. 3.60 Calculated center frequency of each stage 
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Fig. 3.61 Calculated frequency spacing between stages 

3.2.6 Circuit design of the sixth order filter 

As shown in Fig. 3.62, the sixth order filter was implemented by cascading 

three stages of the second order filter. These stages are coupled with ac capacitors. The 

LNA in each stage is the same, in order to control the gain distribution, the width to 

length ratios of the current source transistors in each stage are scaled to 1:1.1:1 to satisfy 

the equation k71:k72:k73=1:1.1:1. Extra capacitances Cx1 and Cx2 are added to the first 

and the third stages to set the center frequencies apart. 

All the parameters of the elements in Fig. 3.62 are shown in Table 3.7. 
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Table 3.7 
Parameters of the sixth order bandpass filter 

 
Symbol Comment Value 

M1, M2, M11, M12, 
M21, M22 

common gate cascade MOSFETs L=0.18 m, W=15 m 

M3, M4, M13, M14, 
M23, M24 

input common source MOSFETs L=0.18 m, W=15 m 

M5, M6, M15, M16, 
M25, M26 

cross couple differential pairs L=0.22 m, W=80 m 

M7, M8, M27, M28 current sources L=2 m, W=21.84 m 

M17, M18 current source for second stage L=2 m, W=24 m 

M9, M10, M19, 
M20, M29, M30 

triode biased MOSFETs L=0.22 m, W=24 m 

L1, L3, L5 source degeneration inductors 2.042 nH 

L2, L4, L6 tank inductors 2.042 nH 

D1, D2, D3, D4, 
D5, D6 

varactors 5.8 m×5.8 m ×4×7 

C1, C2, C3, C4 coupling capacitors 0.3 pF 

Cx1 extra capacitor for the first stage 35 fF 

Cx2 extra capacitor for the third stage 25 fF 

R1, R2, R3 source degeneration resistors 35 ohms 
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3.2.7 Simulation results of the sixth order filter 

Q tuning ability 

Tuning of the filter gain has effects in changing the bandwidth and image 

rejection of the filter. Fig. 3.63 shows the bandwidth and gain tuning ability of the sixth 

order filter. 

 

Fig. 3.63 Bandwidth and gain tuning ability of the sixth order filter 

As shown in Fig. 3.63, when the gain is tuned to a certain level, ripple appears 

and at the same time the linearity of the filter degrades. In the design, the maximum gain 

of the filter is set by the ripple less than 1 dB and the minimum gain of the filter is set to 

0 dB. The bandwidth tuning range seen from Fig. 3.63 is 48 MHz to 125 MHz. Fig. 3.64 

shows the filter response of each stage under the maximum gain operation. The overall 

gain of the filter is about 29 dB, and image rejection after each stage is 26 dB, 42 dB 

and 69 dB.  
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The frequency spacing of each stage can be also identified from Fig. 3.64, 

which is about 40 MHz. 

 

Fig. 3.64 Frequency responses of three stages with maximum gain 

By increasing the Q of each stage, the gain of the sixth order filter and the 

image rejection increase. But at the same time, the bandwidth decreases. Fig. 3.65 shows 

the tradeoff between the bandwidth and image rejection. As seen from this figure, if a 

100 MHz bandwidth is needed, a 50 dB image rejection can be achieved by this sixth 

order filter. 

"�� # �� 
$�� % & ��� �' �   
� � ("(�)
 **& � � 

"�� # � 
  
$�� % & ���� ' �   
� � ("(� )
 **& 
 � 
"�� # � �  
$�� % & ��� �' �   
� � ("(�)
 **& 
 �  
"�� # �� 
$�� % & ��� �' �   
� � ("(�)
 **& � � 

"�� # � 
  
$�� % & ���� ' �   
� � ("(� )
 **& 
 � 
"�� # � �  
$�� % & ��� �' �   
� � ("(�)
 **& 
 �  

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 3.0 4.2 

	�� 

	� � 

� 

� � 

�� 

	� � 

� � 

Frequency (GHz) 

G
ai

n 
(d

B
) 

 

 

After stage1 

After stage2 After stage3 



 88 

 

Fig. 3.65 Bandwidth and image rejection versus tuning voltage of the sixth order 

filter 

Frequency tuning ability 

As illustrated in Chapter 2, tuning of the center frequency inevitably changes 

quality factor of the filter. Fig. 3.66 shows a frequency tuning combined with the Q 

tuning results. 

 
Fig. 3.66 Center frequency tuning ability of the sixth order filter 
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As shown in Fig. 3.66, the frequency tuning range is from 3.51 GHz to 3.65 

GHz. 

Input and output matching 

The input and output ports in the design are both set at 50 ohm. The 

simulation result of input matching of the sixth order filter is the same as the input 

matching of the second order filter (shown in Fig. 3.50). The output matching (reflection 

coefficients) after each stage is shown in Fig. 3.67. As can be seen from this figure, all 

the reflection coefficients at the output are less than -40 dB in the frequency range of 

interest. 

 
Fig. 3.67 The output matching of three stages in the sixth order filter 

Linearity performance 

The linearity performance highly depends on the Q value of the filters; high Q 

is accompanied with the high gain, the large image rejection and the degradation in 

overall linearity. Fig. 3.68 shows the linearity performance versus the tuning voltage. 

From Fig. 3.65 and Fig. 3.68, when quality factor tuning voltage is 855 mV, the sixth 

order filter provides a 100 MHz bandwidth, a 50 dB image rejection, a -44 dBm 1 dB 

compression point and a -29 dBm IIP3. 
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Fig.3.68 1 dB compression gain and IIP3 versus tuning voltage of the sixth order 

filter 

Noise performance 

The noise performances after each stage are shown in Fig. 3.69. From the 

figure, the minimum noise figure of the sixth order filter (third stage) is about 13.9 dB. 

 

Fig. 3.69 Noise performance of three stages 

Dynamic range 

By using Eq. 2.12 and Eq. 2.14, the dynamic range can be expressed 

���� ���� ���� ��� � ��� � ��� � ��� � ���� ���� 


 � 


 � 

� � 

� 

� � 

Frequency (GHz) 

  
  

  
  

 

- $�� ��� ��1��"�� # �  
- $�� ��"� + 2 � � �"�� # �  
- $�� ��� � ��� �"�� # �  

N
oi

se
 F

ig
ur

e 
(d

B
) 

800 820 840 860 880 900 920 940 
-80 

-70 

-60 

-50 

-40 

-30 

-20 

-10 

Tuning Voltage (mV) 

P1
 d

B
 (d

B
m

) /
 II

P3
 (d

B
m

) 
1 dB Compression Point 
IIP3 



 91 

as SNR)Blog10NFdBm/Hz 174(1 +++−−= dBPDR . Using the simulation results, 

P1dB=-44 dBm, NF=13.9 dB, bandwidth of the filter=100 MHz, and the minimum 

required SNR=10 dB, the calculated dynamic range is 45.1 dB. 
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CHAPTER 4  CIRCUIT LAYOUT 

A layout is the equivalent of an engineering blueprint of the circuit. In digital 

design, the layout of the circuit is automatically generated by the software but this is not 

the case in analog design, the layout has to be manually created. Layout is critical to an 

analog circuit design, especially for RF circuits in the GHz range. Careful floor plan and 

layout considerations are important. A poor layout generates unexpected parasitics and 

leads to performance degradation or circuit failures. This chapter describes the layout 

techniques of some basic elements used in the design and layout considerations for the 

filter circuits. 

4.1 Layout design flow 

After optimizing the schematic to meet the design requirements, each circuit 

block is implemented to layout using Cadence Virtuoso. There are two guidelines to 

implement the layout, one is to optimize the layout to reduce parasitics (R, L and C), and 

the other is to improve device matching (transistors, capacitors, resistors and inductors). 

When the layout of each block is finished, they need to be arranged together, this is 

called floor planning. Some guidelines to floor planning are: optimizing area efficiency, 

isolating noisy devices (resistors) and reducing parasitics. Extraction from the layout 

finds expected and unexpected parasitics. Post-layout simulation indicates if these 

parasitics have significant effects to the circuit performance. If so, one may need to redo 
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the floor plan and even the individual block layout. After successful post layout 

simulation, the design can be streamed out for fabrication. 

4.2 Inductor layout 

The guidelines of design for a CMOS inductor were discussed in detail in 

Section 2.1.3. An actual layout of design example in Section 2.1.3 using Cadence 

Virtuoso is shown in Fig. 4.1. 

Fig. 4.1 Inductor layout (left) and patterned ground shield (PGS) layout (right) 

As stated in Section 2.1.3, the most top layer of metals (metal_6) is used to 

layout the inductor because this is the thickest metal layer with the smallest sheet 

resistance. In addition, this layer is located far away from the lossy silicon substrate, 

which reduces the substrate loss and provides better noise isolation. A wide metal width 

helps to reduce the series resistance of the metal inductor. However at high frequencies, 

current only flows through the surface of the metal due to skin effect. The skin depth of 

a conductor, δ  can be calculated as: 

    

Metal_6 

Metal_5 

Metal_1 
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σµπ
δ

0

1
f

=                              (4.1) 

where f is the frequency of the signal, 0 is the permeability in free space and  the 

conductivity of the metal. For pure aluminum, the skin depth can be estimated to be 

around 1.35 m at 3.6 GHz. An 8 /m metal width is chosen in the design which can be 

considered a good conductor at 3.6 GHz. At the same time, increasing the metal width 

increases the silicon area dramatically. With the increasing of inductor size, the parasitic 

capacitance from inductor to the substrate increases proportionally and thus lowers the 

self-resonant frequency of the inductor. 

By removing some of the inner turns of the inductor, hollow inductors usually 

have better Q value than the solid ones. The reason for that is the innermost turns of the 

inductor do not provide much of the inductance while they suffer from series resistance 

loss due to eddy current in the substrate. The inner radius in the design is set to be 16 

/m, compared to the outer radius of 60 /m, which can be considered a hollow inductor. 

To improve the magnetic coupling between segments of an inductor, the spacing 

between metal segments is often kept to a minimum size. In this design, the spacing is 

set to be 1 /m. 

As shown in Fig. 4.1 (right) a patterned ground shield (PGS) is used under the 

inductor to reduce eddy currents in substrate, and at the same time, it reduces the noise 

generated from the substrate. 

4.3 Capacitor layout 

Two different capacitors have been utilized in the design, one is the 

metal-to-metal capacitor and the other is metal-insulator-metal (MIM) capacitor (shown 
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in Fig. 4.2). MIM capacitor uses an extra metal layer CTM, which is much closer to the 

next metal layer and thus provides much more capacitance per unit area than the usual 

metal-to-metal capacitors.  

Fig. 4.2 Layout of a metal-to-metal capacitor (left) and a MIM capacitor (right) 

4.4 Resistor layout 

All the resistors in the design are unsilicide polysilicon resistors. These 

resistors have relatively large resistances, low temperature coefficient and relatively low 

parasitic capacitances. Fig. 4.3 shows a layout of the degeneration resistor using 

polysilicon. 

 

Fig. 4.3 Layout of the polysilicon resistor 
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4.5 Transistor layout 

The layout of a transistor has a great influence on the overall performance of 

the design including symmetry, noise, parasitic capacitance and gate resistance issues, 

especially for low noise circuit design. The transistor with a large width is usually 

divided into a number of small width transistors placed in parallel to reduce parasitic 

capacitance as well as gate resistance. To isolate the noise, a guard ring with many 

substrate contacts is also employed. 

Symmetry needs to be carefully planned if differential topology is used in the 

design. Dummy transistors and common-centroid are two common methods used to 

overcome process variances. Transistors in a half layout of the differential LNA using 

above techniques are shown in Fig 4.4. 

 

Fig. 4.4 Layout of transistors in the LNA 

4.6 Sixth order filter layout 

As the filter operates in differential mode, the layout needs to be symmetrical 
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to keep the passing signal balanced. The floor plan and the layout of the filter are shown 

in Fig. 4.5 and Fig. 4.6. 

 

Fig. 4.5 Floor plan of the sixth order filter 

 

Fig. 4.6 Layout of the sixth order filter 
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The varactor is designed in Section 2.1.4. The actual layout of one side is 

shown in Fig. 4.7. 

 

Fig. 4.7 Layout of the varactor array 

The layout of the Q-enhancement circuit is shown in Fig. 4.8. 

 

Fig. 4.8 Layout of the Q-enhancement circuit 
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The layout of the current source of the Q-enhancement circuit is shown in Fig. 

4.9. 

 

 

Fig. 4.9 Layout of the current source of the Q-enhancement circuit 

The layout of the entire sixth order filter circuit including power ring and 

bonding pads is shown in Fig. 4.10. 

 

Fig. 4.10 Final layout of the sixth order filter 
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 100 

 

CHAPTER 5  MEASUREMENT RESULTS 

The proposed sixth order filter was fabricated using standard 0.18 m CMOS 

technology. A micrograph of the fabricated chip is shown in Fig. 5.1. 

 

Fig. 5.1 Micrograph of the fabricated chip 

In this chapter, testing setup and measurement results of the sixth order 

bandpass filter will be presented. Testings include the following: 

1) Input matching, 

2) Frequency response and filter gain, 
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3) Image rejection, 

4) Q tuning ability, 

5) Frequency tuning ability, 

6) Input 1 dB compression point, 

7) Input third-order intermodulation intercept point (IIP3), 

8) Noise figure, 

9) Power consumption. 

5.1 Center frequency, gain and image rejection 

In order to carry out the measurement, a testing board was made as shown in 

Fig. 5.2. The balun on the testing board acts as a 2-way 1800 power splitter to split the 

single sided signal (RF_in) from the network analyzer to a pair of differential signals 

(RF_in+ and RF_in-). The testing board includes the following ports: RF input (RF_in), 

first stage RF output (RF_out_1), second stage RF output (RF_out_2), third stage RF 

output (RF_out_3), power supply terminal (power), frequency tuning terminal 

(Freq_tuning), and quality factor tuning terminal (Q_tuning). The measurement setup 

shown in Fig. 5.3 was used to evaluate the circuit parameters including center frequency, 

maximum gain, Q tuning and frequency tuning abilities and image rejection. In the setup, 

a HP 8722 vector analyzer was used to test the S parameters of the circuit. The power 

board provided power supply, Q tuning and frequency tuning voltages. The tuning 

voltages are generated by adjusting the variable resistors on the power board. To prevent 

the filter gain from being compressed, the test signal power of the network analyzer was 

set at -50 dBm. 
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Fig. 5.2 Layout of the testing board 

 

 

Fig. 5.3 Frequency response measurement setup 

The filter under test can be seen as a two port network, the parameter S21 is 

the gain of the filter. By setting the network analyzer center frequency to 3.6 GHz and 

the bandwidth to 600 MHz, the tested result of S21 is plotted in Fig. 5.4. 
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Fig. 5.4 Measurement of frequency response of the sixth order filter 

As shown in Fig. 5.4, the center frequency of the filter is at 3.67 GHz, the 

bandwidth is 72 MHz, and the gain of the filter is 13 dB. With an intermediate frequency 

(IF) of 250 MHz, the image signal attenuation at 500 MHz away from the desired 

frequency is 50 dB. 

The frequency responses under different Q tuning voltages to determine 

tuning bandwidth are plotted in Fig. 5.5. As seen from the figure, if the insertion gain 

great than 0 dB is required; the bandwidth of the filter can be tuned from 35 MHz to 95 

MHz. The tuning bandwidth is less than the simulated value of 48 MHz to 125 MHz; 

this may be caused by the losses introduced by the off-chip balun (the power splitter) 

and the unexpected resistance parasitics from the PCB trace, the on-chip gate resistance 

and the interconnections. These losses lower the gain of the filter and reduce the 

available bandwidth.  
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Fig. 5.5 Measurement of bandwidth tuning ability of the sixth order filter 

To determine frequency tuning range, the frequency tuning voltage was varied 

from -0.6 V to 1.2 V. The frequency responses are shown in Fig. 5.6. As shown in this 

figure, the frequency tuning range is from 3.54 GHz to 3.88 GHz. The frequency tuning 

range is about 340 MHz which is much larger than the simulated value of 140 MHz. The 

reason for this may be the inaccuracy of the varactor model and the over estimation of 

the fixed parasitic capacitance of the varactors. As discussed in Chapter 2, the tuning of 

center frequency inevitably changes the Q of the filter. A frequency tuning combined 

with the Q tuning to achieve the same bandwidth at different center frequencies is 

shown in Fig. 5.7. The combinations of the frequency tuning voltages and Q tuning 

voltages to achieve the same bandwidth are shown in Fig. 5.8. 
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Fig. 5.6 Measurement of center frequency tuning ability of the sixth order filter 

 

Fig. 5.7 Measurements of the center frequency tuning combined with bandwidth 

tuning 
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Fig. 5.8 Combination of bandwidth tuning and frequency tuning 

5.2 Input matching 

In order to measure the input matching, the balun on the testing board is 

bypassed and the differential input ports are connected to the terminals. Since there is no 

differential calibration kit available, only single-ended input matching is measured. The 

source impedance of the network analyzer is 50 ohm; the ideal value of the single-end of 

the differential input is actually 25 ohm. Another 25 ohm resistor was added to the input. 

The other input port was terminated with a 25 ohm terminal and the output ports were 

all terminated by 50 ohm resistors. Fig. 5.9 shows the measurement setup. 
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Fig. 5.9 Input matching measurement setup 

The measured input reflection coefficient S11 is shown in Fig. 5.10. The S11 

minimum is about -34 dB and appears at 3.818 GHz. The measured input match is not as 

good as the simulated result. The matched frequency range shifted from 3.6 GHz to 3.82 

GHz. This may be caused by the off-chip parasitics on the testing board. 

 
Fig. 5.10 Measurement of the input matching 
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5.3 Linearity measurement 

1 dB compression gain measurement is realized by increasing the input signal 

power and measuring the output power of the filter. Testing was carried out by setting 

the center frequency at 3.67 GHz and a bandwidth of 65 MHz. A 3.67 GHz RF signal 

with sweeping power was fed into the circuit. The output was displayed in the spectrum 

analyzer. This measurement setup is shown in Fig. 5.11. 

 

Fig. 5.11 Linearity measurement setup 

The output power versus input power of the filter is shown in Fig. 5.12. As 

shown in the figure, the output of the filter deviates from the straight line with the 

increasing of the input power. The input 1 dB compression point is -46 dBm and the 

output 1 dB compression point is about -33.5 dBm. 
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Fig. 5.12 Measurement of 1 dB compression point of the sixth order filter 

The IIP3 is measured by a two-tone test and its basic principle is already 

discussed in Chapter 2. Fig. 5.13 shows the test setup. Two closely spaced signals (3.77 

GHz+5 MHz and 3.77 GHz-5 MHz) with equal power were first combined by a 2-way 

00 power combiner before being split by the on board balun (2-way 1800 power splitter). 

Then, the signals were fed into the circuit, the output response at the fundamental 

frequencies and third-order intermodulation frequencies were measured from the 

spectrum analyzer. Fig. 5.14 shows the fundamental and third-order products of the filter 

captured by the spectrum analyzer. 
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Fig. 5.13 Two tone test measurement setup 

 

Fig. 5.14 Two tone test results 

The plot of the relationship between the input and output powers are depicted 

in Fig. 5.15. The measured IIP3 is about -29 dBm. 
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Fig. 5.15 Measurement of fundamental and third order products of the sixth order 

filter 

5.4 Noise figure and dynamic range 

Because of the lack of the noise source at the desired frequency range, the 

noise figure measurement could not be performed. Since the input dynamic range 

depends on the noise figure of the system, this could not be measured either. However, 

as seen from the spectrum analyzer in Fig. 5.14, the noise floor is about -90 dBm. The 

output dynamic range can be calculated by using DRout = P1dB (output) – Nf (output) – 

SNR. The output 1 dB compression point is -33.5 dBm, if the minimum SNR required is 

10 dB, the calculated output DR is around 46.5 dB.  

5.5 Power consumption 

The measured DC current of the filter is 72 mA, for a 1.8 V voltage supply, 

the DC power consumption of the filter is about 130 mW. 
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5.6 Summary 

To sum up, the measured and the simulated results of the sixth order filter are 

shown in Table 5.1. As seen from this table, most simulated and tested parameters of the 

sixth order filter are very well matched. However, there are two main differences from 

the simulation and measurement results. The measured center frequency is shifted 3.5% 

higher and the tuning range is about 2.4 times of the simulated result. The center 

frequency shifting may be caused by the inaccuracy of the varactor and inductor models. 

The wider tuning range could come from the over estimation of the fixed parasitic 

capacitance of the varactors during simulation. The other difference is the gain of the 

filter; this also affects the usable bandwidth of the filter. The measured gain is 12 dB 

lower than the simulated result and the maximum usable bandwidth is 45 MHz less. The 

lower of the gain may be caused by the off-chip balun (power splitter) and some 

unexpected on-chip parasitic resistances. Since the maximum usable bandwidth is 

defined by the 0 dB gain of the filter, the lower of the gain inevitably shrinks the 

bandwidth. As seen from Table 5.1, most filter requirements are met by the 

measurement results. The measured maximum usable bandwidth is about 80 MHz, 

which is close to the requirement of 100 MHz bandwidth. The measured 1 dB 

compression point is -46 dBm, which meets the required value of -45 dBm. 
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Table 5.1 
The measured and simulated results of the sixth order filter 

 
Parameters Specifications Simulation Measurement 

Voltage Supply 1.8 V 1.8 V 1.8 V 

Center frequency 3.6 GHz 3.6 GHz 3.67 GHz 

Gain - 0-30 dB 0-18 dB 

Frequency tuning 

range 

- 3.51 GHz-3.65 GHz 3.54 GHz-3.88 GHz 

Bandwidth (Q tuning) 100 MHz 48 MHz-125 MHz 35 MHz-80 MHz 

IIP3 > -30 dBm -29.5 dBm -29 dBm 

P1dB > -45dBm -44 dBm -46 dBm 

Dynamic range > 45 dB 45.1 dB 46.5 dB 

Image rejection (500 

MHz away) 

>50 dB 50 dB 50 dB 

Noise figure 15 dB 14.9 dB - 

Power consumption - 65 mA 72 mA 
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CHAPTER 6  CONCLUSIONS 

A 3.6 GHz bandpass filter designed using the 0.18 m CMOS technology 

was presented. This filter is suitable for variety implementations of the wideband RF 

transceivers. The design employed state-of-the-art inductive degeneration techniques to 

minimize the noise of the input stage. A Q-enhancement circuit was designed to 

overcome the lossy inductors on the CMOS epi substrate. A center frequency tuning 

circuit was also included to compensate frequency deviation due to process variations 

and the inaccuracy of the models. The causes of the poor circuit linearity were 

investigated and a couple of linearization techniques were employed to improve the 

device linearity. 

In the first prototype, a second order bandpass filter is designed and simulated. 

With a 1.8 V supply, the design achieves a voltage gain of 30 dB with a 15 MHz 

bandwidth for a Q of 240. The reflection coefficient S11 is -55 dB, the input 1 dB 

compression point and input third-order intermodulation product (IIP3) are -20 dBm and 

-16 dBm respectively. The noise figure of the filter is around 10 dB. The filter has a 150 

MHz (3.54 GHz to 3.69 GHz) tuning range. 

In order to enhance the image rejection ability of the filter, a three-stage, sixth 

order bandpass filter was designed and fabricated. The design cascades three stages of 

the second order filters to achieve wider bandwidth and higher image rejection. 
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Simulation results show that an image rejection as high as 59 dB can be achieved and 

the bandwidth can be extended to 125 MHz. 

By research into the relationship between tuning voltage and the center 

frequency, an innovation method is employed to set apart the center frequency of each 

stage in the 3-stage cascading filter. With the need of only one tuning terminal, this 

method greatly simplifies the center frequency tuning scheme and makes the filter 

response much more predictable and reliable. Gain distribution affects the linearity and 

noise performance of the overall filter. The research provides an optimized configuration 

of each stage gain. The research on the relationship between the tuning voltage, and the 

gain and the quality factor innovates a new tuning scheme. This bandwidth tuning 

scheme needs only one tuning terminal and greatly simplifies the tuning method thus 

makes the filter more applicable to commercial applications.  

The design was fabricated using 0.18 m CMOS technology, and the area of 

the circuit including 25 bonding pads is 0.9mm×0.9mm. The total current consumption 

including the bias circuits and the output buffers is 72 mA using 1.8 V supply. In the 

testing, for the three stage design, the voltage gain is 13 dB at a bandwidth of 75 MHz. 

The bandwidth is tunable from 35 MHz to 80 MHz by tuning the Q of each stage. The 

center frequency is tunable from 3.54 GHz to 3.88 GHz. In addition, the input third 

order intermodulation product (IIP3) and the input-referred 1 dB compression point are 

-29 dBm and -46 dBm respectively (when the bandwidth is tuned to 75 MHz). 

Frequency deviation and inaccuracy of the tuning range in the fabricated chip are mainly 

due to the imprecise modeling of the inductors and varactors. The parasitic capacitance 

and inductance also affect center frequency of the filter. The shrink in the filter gain is 



 116 

mainly caused by the off-chip balun in the testing and the parasitic resistance has not 

been extracted in the simulation. In summary, this RF filter meets most of the preset 

requirements.  

Table 6.1 
A comparison of this design to previously reported works 

 
Parameters [11] [43] [44] [45] This work 

Year 1998 2001 2002 2003 2003 

Filter order 4 4 6 4 6 

Center frequency (GHz) 0.85 1.9 2.1 1.8 3.54-3.88 

Passband Gain (dB) 0 0 0 9 0-18 

Ripple in passband (dB) < 2 1.6 0.7 < 0.5 < 1 

Bandwidth (MHz) 18 150 60 80 35-80 

Q of inductor < 3 N/A N/A 2.7 4.9 

Dynamic range (dB) 61 63 63 42 46.5 

Current drain/pole (mA) 19.25 4.5 1.17 4 24 

Supply voltage (V) 2.7 2.7 2.5 2.7 1.8 

Technology 0.8 m 0.25 m 0.25 m 0.5 m 0.18 m 

 

A comparison of this design to previously reported work of on-chip high order 

bandpass filters is given in Table 6.1. As seen from the table, the filter designed in this 

research work using the most advanced CMOS technology and the on-chip inductor has 

the highest Q. Most importantly is that the designed filter works at a higher frequency 

range which makes this filter more applicable for wideband wireless applications. A 

drawback of this filter is its power consumption much higher than the others. Works in 

[11], [43], [44] and [45] are not using Q-enhancement circuit and there is no LNA 

involved, thus the power consumption of these filters can be controlled at a very low 

level. However, without a LNA in the design, high gain cannot be achieved; the LNA is 
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required in the system in order to amplify the weak incoming signal. 

With small modification, the filter can be used in a wide range of wideband 

wireless applications. However, there are still problems that need to be solved. For a low 

power design, the power dissipation needs to be further reduced; this can be achieved by 

removing the linearization resistor and improving the quality factor of the inductor. High 

order passive filters have lower power dispassion but they are usually not tunable and 

can not provide voltage gain. The research on tunable high order passive filter 

architecture is a promising direction. In order to fit in the future ultra wideband and 

multi channel applications, a digital tuning method is needed to switch the filter 

passband to different frequency ranges. Switch capacitors may be used for digital tuning 

and extending the bandwidth.  

The varactor model is extremely important in the design; the model assists to 

determine the accuracy of the center frequency and the available tuning range. There is 

much research work that needs to be done in device physics to achieve better varactor 

model. With the rapid development of CMOS technology, there are more and more 

research opportunities available in CMOS RF filter design. The new 90 nm CMOS 

technology provides a fT over 100 GHz and uses copper instead of aluminum in metal 

layers. With these new features, RF filters working at a center frequency over 20 GHz 

are expected in the near future. 
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