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ABSTRACT 

Diagnosis codes in administrative health databases (AHDs) are commonly used to ascertain 

chronic disease cases for research and surveillance. Low sensitivity of diagnosis codes has been 

demonstrated in many studies that validate AHDs against a gold standard data source in which 

the true disease status is known. This will result in misclassification of disease status, which can 

lead to biased prevalence estimates and loss of power to detect associations between diseases 

status and health outcomes. Model-based case detection algorithms in combination with multiple 

imputation (MI) methods in validation dataset/main dataset designs could be used to correct for 

misclassification of chronic disease status in AHDs. Under this approach, a predictive model of 

disease status (e.g., logistic model) is constructed in the validation dataset, the model parameters 

are estimated and MI methods are used to impute true disease status in the main dataset. This 

research considered scenarios that the misclassification of the observed disease status is 

independent of disease predictors and dependent on disease predictors. When the 

misclassification of the observed disease status is independent of disease predictors, the MI 

methods based on Frequentist logistic model (with and without bias correction) and Bayesian 

logistic model were compared. And when the misclassification of the observed disease status is 

dependent on disease predictors, the MI based on Frequentist logistic model with different 

variables as covariates were compared. Monte Carlo techniques were used to investigate the 

effects of the following data and model characteristics on bias and error in chronic disease 

prevalence estimates from AHDs: sensitivity of observed disease status based on diagnosis 

codes, size of the validation dataset, number of imputations, and the magnitude of measurement 

error in covariates of the predictive model. Relative bias, root mean squared error and coverage 

of 95% confidence interval were used to measure the performance. Without bias correction, the 

Bayesian MI model has lower RMSE than the Frequentist MI model. And the Frequentist MI 

model with bias correction is demonstrated via a simulation study to have superior performance 

to Bayesian MI model and the Frequentist MI model without bias correction. The results indicate 

that MI works well for measurement error correction if the missing true values are not missing 

not at random no matter whether the observed disease diagnosis is dependent on other disease 

predictors or not. Increasing the size of the validation dataset can improve the performance of MI 

better than increasing the number of imputations.
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CHAPTER 1. INTRODUCTION 

 1.1 Background 

Population-based administrative health databases (AHDs), including hospital records and 

physician claims, are widely used for chronic disease research and surveillance
1-4

. In AHDs, 

diagnostic information is usually based on the International Classification of Diseases (ICD) 

codes, which was developed by the World Health Organization. The presence or absence of a 

diagnosis code in AHD is used to ascertain disease status (i.e., disease presence/absence). 

Ascertained disease status is used to estimate prevalence and incidence in surveillance studies. 

As well, the association between disease presence and health outcomes, such as hospitalization 

or death, might also be investigated using AHDs. Accurate disease case ascertainment is 

important not only for obtaining accurate prevalence estimates but also for producing unbiased 

epidemiologic and clinical studies about disease outcomes.  

AHD was originally developed for health system management and physician remuneration. 

The accuracy of diagnoses in AHDs for research has been questioned. Validation studies, in 

which AHDs are linked, via a unique personal identifier, to a ‘gold standard’ data source in 

which the true disease status is known, have been used to assess the accuracy of diagnoses 

recorded in AHDs.  In general, these studies have demonstrated high specificity but low 

sensitivity of diagnoses
5-7

, although sensitivity and specificity will vary across chronic diseases
8
. 

Sensitivity is defined as the probability of correctly identifying disease individuals from all the 

individuals who truly have the disease, while specificity is defined as the probability of correctly 

identifying non-disease individuals from amongst those who truly do not have the disease
9
.  

Inaccuracies in diagnosis codes in AHDs lead to misclassification of observed disease 

status. In particular, low sensitivity and perfect specificity will result in under-reporting of 

disease prevalence
10,11

.  Misclassification of observed disease status can also attenuate the 

association between disease presence as a response variable and risk factors, or the association 

between disease presence as an explanatory variable and health outcomes
12

. Model-based case-

detection algorithms, which can improve sensitivity of the observed disease status without loss of 

specificity, have been proposed for AHDs as well as for other related problems
11,13

. Model-based 
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algorithms develop a predictive model for chronic disease status in a validation dataset, that is a 

dataset in which the true disease status is known and the observed disease status (i.e., ascertained 

based on diagnosis codes) is also captured. The model is then applied to another dataset, known 

as the main dataset, which only contains observed disease status, to predict true disease status. 

The model that is fitted to the validation dataset predicts true disease status from disease 

predictor variables; these predictor variables are also found in the main dataset. Examples of 

disease predictor variables could include the presence of prescription drug treatments, comorbid 

conditions, severity of illness, and demographic variables. True disease status can be predicted 

using a parametric model, such as logistic regression, or a non-parametric model, such as 

classification and regression tree (CART) analyses. Model-based case-detection algorithms have 

been shown to have better discriminative performance and lower prediction error than case-

detection algorithms based on diagnosis codes alone. However, there are several issues that arise 

in the development of the predictive model. First, some disease predictors, particularly those 

based on ICD codes, may also contain measurement/misclassification error
14

. Second, there are 

several approaches that can be used to construct model-based case-detection algorithms and it is 

not clear which approach should be preferred.   

A number of studies have proposed treating measurement error as a missing-data problem
15-

17
. In particular, multiple imputation (MI) methods have been proposed to accurately estimate 

true disease status and its variation in main/validation dataset designs. MI is a flexible technique 

that has been applied to problems of missing data
18,19

 and confidential data
20

, as well as 

measurement error
15,21,22

. A primary advantage of using a MI method is that it is relatively 

straightforward to implement, which is beneficial for applied researchers. MI methods based on 

both Frequentist and Bayesian paradigms have been proposed and applied
17,23,24

, but few, if any 

studies have compared these methods. As well, there has been limited investigation about the 

characteristics of the study design and MI methodology that may influence the performance of 

model-based case-detection algorithms. Such studies could help researchers take maximum 

advantage of AHDs for chronic disease research and surveillance.  
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1.2 Purpose and Objectives 

The purpose of this research is to investigate the performance of MI model-based case 

detection methods for estimating chronic disease prevalence in validation/main datasets designs. 

The objectives are: 

1. To investigate MI methods using Frequentist and Bayesian logistic regression model as 

predictive model; 

2. To examine characteristics of model-based case-detection algorithms that may influence 

the performance of MI methods, including sensitivity of AHD diagnosis codes, and type 

and magnitude of measurement error in the predictors of disease status; and  

3. To investigate the effects of size of the validation dataset and number of imputations on 

the performance of MI methods. 
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CHAPTER 2. LITERATURE REVIEW 

The literature review covers the following topics: measurement error, validity of diagnosis 

codes in AHD, measurement error correction methods, MI methods, and software to implement 

MI methods. 

2.1 Types of Measurement Error 

Measurement error is defined as the difference between the observed value of a variable and 

the true value of a variable. Measurement error in categorical variables is usually referred to as 

misclassification. When a categorical variable is subject to misclassification, sensitivity and 

specificity are used to quantify the accuracy of the measurement.  

Measurement error can be defined using both Classical and Berkson models
16

. For the 

Classical measurement error model, the measurement measures the truth with additive error, 

usually with homoscedastic variance. For example, in feeding studies, researchers have posited 

that protein biomarkers will capture true protein intake with added constant variability
25,26

. The 

Classical model is defined as      , where   denotes the observed variable,   denotes the 

true variable and   is the error term.  In the Berkson measurement error model, the true value 

contains more variability than the measured value. For example, in the Hanford Thyroid Disease 

Study, it is thought that the true thyroid dose equals to the measured dose plus error
27

. The 

Berkson model is      , indicating that the variability of the true variable ( ) equals the 

sum of the variability of the observed variable ( ) and error ( ). If a variable is measured 

uniquely for all individuals, measurement error is likely to follow the Classical model. For 

example, if people fill out a self-report questionnaire about their health conditions or if they get a 

blood pressure measurement, then the errors will likely follow the Classical model. However, if 

all individuals in a stratum are given the same value of the measure but the true value is specific 

to an individual, then the Berkson model is a reasonable choice.  For a given measurement error 

variance, measurement error in the Classical model results in greater loss of power than 

measurement error in the Berkson model
16

.   

Measurement error can also be characterized as differential or non-differential. Non-

differential measurement error means that the observed covariate contains no information about 

the response given the true covariate. Measurement error is non-differential if the observed 
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covariate is independent of the response, conditional on the values of the true covariate. 

Otherwise, the measurement error is differential. For example, in the Framingham study, which 

is a large cohort study about the cardiovascular disease predictors, one response of interest is the 

presence of coronary heart disease; the main predictor of interest is systolic blood pressure which 

is not possible to measure directly
28,29

. Only blood pressure measurements observed during a 

clinic visit are available. Since given the long term systolic blood pressure one visit’s measured 

blood pressure provides no information to the coronary heart disease, the measurement error is 

non-differential
30

. In AHDs when the interested response is the disease status, if the probabilities 

of mismeasurement of disease predictors are assumed to be the same for persons with the disease 

as for persons without the disease, the measurement error is non-differential. However, 

measurement error is differential if the probabilities differ for persons with and without disease. 

In case-control studies, the response is observed first and then subsequent follow-up ascertains 

the predictors of the response, which is known as recall bias, so the measurement of the 

predictors usually depend on the response and are known as differential measurement. And 

differential measurement error typically occurs in retrospective studies. If the response is 

measured after the covariates are measured, which is typical of cohort studies, measurement 

error in the covariates tends to be non-differential. Carroll et al.
16 

concluded that additive, 

unbiased, homoscedastic response measurement error in linear or nonlinear regression will result 

in increased variability of the fitted models and decreased power to detect effects of covariates. 

Misclassification of the response not only masks the features of the data but also results in bias in 

the parameter estimates.  

2.2 Measurement Error in AHD 

A number of studies have investigated the validity of diagnosis codes in AHD for 

ascertaining cases of chronic disease.
31-35

 Under reporting of disease cases, in which the 

observed value has high specificity (i.e., close to 1.00) but low sensitivity (i.e., less than 0.95), 

appears to be a common problem in AHDs. Data sources that have been used to validate 

administrative databases include medical records, patient or physician surveys, and clinical 

laboratory test results
6,36-38

. For example, Rector et al.
3
 investigated the validity of diagnosis 

codes for identifying cases of hypertension, heart failure, chronic lung disease, arthritis, 

glaucoma, and diabetes using survey data as the gold standard. For all six conditions the 
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specificities of diagnosis-based case-detection algorithms were greater than 0.95 but sensitivities 

were rarely higher than 0.90. A study about hypertension found that a diagnosis-based case-

detection algorithm had a sensitivity of 0.73 and a specificity of 0.95 when medical records were 

used as the gold standard and a sensitivity of 0.64 and a specificity of 0.94 when self-reported 

survey data were used as the gold standard
6
. Osteoarthritis is another disease that is prone to 

misclassification in AHDs; it has been estimated that the sensitivity of diagnosis-based case- 

detection algorithms is between 0.70 and 0.80, while specificity is between 0.90 and 1.00
12

. 

Diagnoses for comorbid conditions are also prone to misclassification in AHDs. Comorbid 

conditions are co-occurring diseases that are related to the primary disease. Validation studies 

based on chart data have shown that comorbidities are likely to be underestimated in AHDs
37

. As 

well, the type of AHD that is used to ascertain comorbidities may also influence sensitivity. 

Klabunde et al. demonstrated that in cohorts of elderly prostate and breast cancer patients the 

proportion of patients identified with comorbid conditions increased to as much as 25 percent by 

using physician claims data to identify diagnoses instead of hospital records. The latter data 

source could detect less than 10 percent of the true comorbid conditions
39

. However, physician 

claims data were still prone to misclassification of comorbid conditions. A Canadian study that 

compared chart data and administrative data revealed that the latter generally underestimate 

individual comorbidities
37

. Another study that undertook a chart review in 817 hospitalized 

patients receiving percutaneous coronary interventions also found that administrative data tended 

to underestimate the prevalence of some comorbidity
40

. Therefore, if comorbid conditions are 

used as disease predictor variables in model-based case-detection algorithms, they may induce 

bias in the predictive model.  

The effect of error in the response variable on bias in the covariate effect estimates depends 

on the sensitivity and specificity of the observed response; when both sensitivity and specificity 

are low, the estimate of the covariate effect will be biased downward
41

. For measurement error in 

a continuous covariate, the amount of error also impacts on the performance of measurement 

error correction methods
16

. The characteristics of the measurement error or misclassification 

deserve more investigation.    



7 

  

 

2.3 Measurement Error Correction Methods  

Measurement error correction methods have primarily been developed for the case of 

measurement error or misclassification in model covariates
22,42-47

. For example, one approach for 

measurement error in covariates is the regression calibration (RC) model, which uses 

information from a validation dataset to analyze the association between the true and observed 

variables and then corrects the estimate of association in the main dataset
48,49

. The RC method is 

popular because it is a simple approach to use. However, it can be problematic in situations 

where the covariates have skewed distributions
50

. When the covariate is analyzed on a 

categorical scale, the RC method will result in similar estimates of the effects of covariates as the 

estimates without measurement error correction
51

.   

A second approach to address measurement error in covariates is the maximum-likelihood 

(ML) method, which maximizes the likelihood function as if the true values were observed based 

on the assumed measurement error model (i.e., Classical or Berkson model)
52-55

. Firstly, the 

likelihood function of response given the true covariates is constructed. And then depending on 

whether the error model is assumed to be Classical or Berkson, the likelihood analysis is defined 

based on the joint distribution of the response, true covariates and observed covariates. This 

method can derive reliable likelihood-based confidence intervals in nonlinear models but model 

misspecification is a serious limitation. Pepe demonstrated that the ML parameter estimates are 

not robust to misspecification of the error model
56

. As well, ML estimation of misspecified 

models have been shown to result in invalid inference
57

. 

MI methods has been investigated to correct for measurement error in covariates and 

compared with both RC and ML methods
58

.  MI and RC methods were compared for estimating 

the hazard ratios in a simulation study based on a real study about end-stage renal disease
15

. The 

variable of interest was the glomerular filtration rate (GFR), which is considered to be an error 

prone measure of renal function. In the simulation study, sensitivities of 0.7 or 0.9 and 

specificities of 0.7 or 0.9 were investigated for the GFR. The MI method produced unbiased 

estimates of the hazard ratio and had approximately correct coverage of the 95% confidence 

interval. When the sensitivity and specificity of the observed GFR was low the MI method was 

more powerful than the RC method. Other studies have shown that for validation dataset/main 
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dataset designs, the MI method results in smaller bias and similar error rates when compared to 

the ML method
58

.   

Methods for inference and estimation in the presence of an error-prone binary response 

variable have also been proposed
56,59-61

. However, most of these methods assume the covariates 

are measured without error. One exception is the method by Mallick and Gelfand; they proposed 

a Bayesian approach based on a semiparametric generalized linear model, which can 

accommodate measurement error in both the response variable and the covariates
62

. Their 

Bayesian model involves fitting three separate regression models for measurement error in the 

covariates, the response variable, and the relationship between the response variable and 

covariates. For each regression model, a semiparametric generalized linear model was introduced 

utilizing an unknown monotonic function (nonparametric links) along with parametric regression 

coefficients. However, only a Poisson regression model for the link function of the response and 

covariates was illustrated by simulation. Different link functions were specified to investigate the 

ability to modify misspecified true functions of the semiparametric models. The results 

demonstrated the large sensitivity of the method to the link function specification.    

Chakraborty and Banerjee
63

 considered bivariate regression models containing one binary 

response and one continuous response when the covariate was error prone and the binary 

response was misclassified. The covariate was assumed to follow a normal distribution with a 

Berkson error model and non-differential measurement error. The responses were generated from 

bivariate normal distribution, and the binary response was obtained by dichotomizing a 

continuous variable. A simulation study was undertaken to investigate the effects of 

measurement error and/or misclassification on the model parameter estimates based on different 

choices of the additive variance of the observed covariate and probability of misclassification. 

Four models were compared, including a naïve model (i.e., without consideration of 

measurement error and misclassification), a model incorporating classification error, a model 

incorporating measurement error, and a model incorporating both classification error and 

measurement errors. Misclassification attenuated the estimated correlation between the response 

variables, while measurement error inflated the coefficient estimates. The attenuating effect of 

measurement error in the error prone covariate on the estimated covariate coefficients became 

larger as the additive variance of the measurement error increased, when the binary response was 
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not misclassified. When the additive variance was 0.5, the estimate of the correlation between 

the response variables whose true value was 0.60 was estimated to be 0.73, but when the additive 

variance increased to 1.0, the estimated correlation increased to 0.80. When measurement error 

was absent, misclassification of the binary response also attenuated the coefficient estimates of 

the covariate and the bias became larger as the misclassification probability increased. For 

instance, when the probability of misclassification was 0.01 (i.e., the sensitivity and specificity 

were 0.99), the estimate of the coefficient of the covariate equaling to 1.00 was 0.73; when the 

probability of misclassification was 0.05 (i.e., the sensitivity and specificity were 0.95), the 

estimate of the coefficient of the covariate decreased to 0.55. The study demonstrated that if both 

measurement error and misclassification exist in the data, the attenuation of the estimate of the 

covariate’s coefficient became pronounced with increase in the value of the misclassification 

error rates as well as measurement error variance. The measurement errors result in attenuation 

of the estimate of the correlation between response variables, and the misclassification results in 

inflation of the estimate of the correlation between response variables.       

2.4 MI Methods 

MI methods have been used to address nonresponse in large survey datasets, such as the US 

National Health and Nutrition Examination Survey
64

, the US Survey of Consumer Finance
65

, the 

US National Health Interview Survey
66

, and the Cancer Care Outcomes Research and 

Surveillance Consortium
67

. MI methods have also been used to handle missing data in non-

survey contexts
24

. As noted in the previous section, MI methods were applied to observational 

health care outcomes data to address measurement error in binary treatment variables
60

.  

One consideration in adopting a MI method is the mechanism by which observations are 

missing. The data may be missing completely at random (MCAR), missing at random (MAR), or 

missing not at random (MNAR). If missingness of the observations does not depend on the 

actual values, regardless of whether they are missing or observed, the missing data are MCAR. 

On the other hand, if the missingness mechanism is MAR, this means that the missingness 

depends only on the observed values and not on the missing values. Under the MAR assumption, 

the missing data may depend on the data itself, but only indirectly through relationships with 

observed values. If the missingness mechanism is MNAR, missingness depends on the missing 
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values
68

. Research has demonstrated that even if the missingness mechanism is MNAR, the MI 

method will not always result in biased regression parameter estimates and standard errors
69

; 

however the size of the bias is dependent on the amount of missing data. Moreover, some studies 

have applied the MAR missingness mechanism as a plausible assumption 
60,70

. For the 

validation/main datasets design, the sampling frame of the validation subjects determines the 

missingness mechanism. If the individuals in the validation dataset are a random sample from the 

population, the missing values in the main dataset are MCAR. If individuals’ presence in the 

validation dataset is dependent on variables that are observed in both the validation and main 

datasets, the missing values in the main dataset are MAR. And if individuals’ presence in the 

validation dataset is dependent on variables that are not observed (i.e., missing) in the main 

dataset, the missing values in the main dataset are MNAR.   

Yucel and Zaslavsky
71

 applied imputation methods for binary treatment variables with 

measurement error in administrative data.  In their study, the administrative database was a 

cancer registry that collected data on treatment and survival for all incident colorectal cancer 

cases in California. The validation dataset was a dataset collected by surveying physicians or 

reviewing office records, which covered 74% patients. The MAR missingness mechanism was 

assumed, because treatment information was obtained less often from physicians’ surveys or 

office records for patients 75 years of age and older, unmarried patients, nonrural patients, those 

in low-volume hospitals or hospitals with radiation facilities, and those living in San 

Francisco/Oakland than in San Jose/Monterey or Sacramento.    

MI accounts for the uncertainty introduced by the imputation process and reduces potential 

bias due to systematic differences between the observed and missing data
68

. Compared with a 

single imputation approach, MI results in accurate estimates of the confidence intervals. Messer 

and Natarajan studied the ML, MI, and RC methods for adjustment in the covariates and 

suggested that MI methods can be an appropriate approach to impute unobserved values of both 

the response and covariates
58

.  

Rubin proposed MI based on Bayesian theory
24

. MI methods derived from a Frequentist 

approach have also been evaluated
72

. The Bayesian and Frequentist approaches handle 

uncertainty in model parameters differently. Under the Bayesian approach, the model parameters 

are treated as random variables whose prior distributions can be specified based on experience 
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and other sources. The likelihood and prior distribution determine the posterior distribution of 

the parameter
73

. MI methods under the Bayesian approach draw values of the unobserved 

variables by sampling from the posterior distribution, given the observed values and the other 

parameters
23

. Under the Frequentist approach, the values of the parameters are fixed and the MI 

method is used to obtain multiple draws of the plausible values from the asymptotic distribution 

of the parameters as estimated from a predictive model. Thus, when imputing the unobserved 

true covariate, the Bayesian approach conditions on the response as well as the observed 

measurement of the true covariate(s), while the Frequentist approach only depends on the 

observed measurement. In addition, the Frequentist inference is based on asymptotic 

approximations; the Bayesian approach converges stochastically to a posterior distribution that is 

exact, regardless of sample size
72

. To implement MI in the Bayesian approach when the 

likelihood function is complicated to derive, the sampling-based Markov Chain Monte Carlo 

(MCMC) method has been proposed
23

. A Markov chain is a sequence of random variables in 

which each element’s value depends only on the value of the previous element and the chain 

converges to a stationary posterior distribution.   

In addition, the size of the validation dataset as a proportion of the entire population will 

have an influence on inference using the MI method. The MI method proposed by Rubin works 

best if the missingness rate is less than forty percent. Consequently, the efficiency and 

consistency of MI methods when the missingness rate is higher than this requires further 

consideration. The relative efficiency of an estimate based on K imputations compared to an 

estimate based on an infinite number of imputations is (  
 

 
)

  

, where λ is the rate of missing 

data
68

. As few as three to 10 imputations will produce efficient results
74

. However, one 

simulation study about a simple regression model showed that when   is held constant, as the 

number of imputations increased from three to 100 the values of mean squared error (MSE) and 

standard error (SE) decreased and power increased. For instance, when the proportion of missing 

information was 0.30 the MSE, SE and power for three imputations were 1.31, 0.04, and 0.69, 

respectively. In contrast, the MSE, SE and power based on 100 imputations were 1.20, 0.04, and 

0.79, respectively. When the fraction of missing information was 0.90, the MSE, SE and power 

for K = 3 were 1.67, 0.04, and 0.39, while the corresponding values for 100 imputations were 
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1.21, 0.04, and 0.78, respectively. Consequently, the authors recommended using 40 imputations 

when λ = 0.70 and 100 imputations when λ = 0.90
75

.  

2.5 MI in Practice  

Software packages that implement MI methods include SAS, S-PLUS, Stata, R and MICE 

(Multivariate Imputation by Chained Equations). In SAS, PROC MI and PROC MIANALYZE 

are available to implement MI methods. However, most MI methods in SAS are available for 

monotone missing pattern data, when the pattern of missingness is arbitrary, only continuous 

variables can be imputed using PROC MI
76

. There are also a few SAS macros for MI using 

sequences of regression models or distance-aided selection of donors
77

. The MICE method has 

also been implemented as a S-PLUS library and an R package as well as in Stata. Overall, these 

programs provide an easy to use environment for applying MI. However, the restrictions of 

assumptions still limit the application of MI in specific study
78

.  

2.6 Summary of Literature Review 

Previous research has demonstrated that measurement error exists in chronic disease 

outcomes and comorbidities defined from diagnosis codes in AHDs. This measurement error is 

primarily due to low sensitivity of the diagnoses in AHDs. While a few procedures have been 

proposed to address measurement error in AHDs, developing a predictive model that uses MI 

methods to impute disease status is appealing because this approach should be relatively 

straightforward to implement and interpret. MI methods based on Frequentist or Bayesian 

approaches have been proposed and applied in real datasets, but the performance of both 

approaches has not been compared in previous research. Factors that have been shown to directly 

or indirectly influence the performance of the MI method for measurement error correction have 

been investigated, but few studies have simultaneously investigated these factors when both the 

response variable and the covariates are error prone. Factors that have been investigated in 

previous research that may influence the performance of MI measurement error correction 

methods included the sensitivity of the error-prone response variable, the amount of 

measurement error in the covariates of the predictive model, the size of the validation dataset and 

the number of imputations.   
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CHAPTER 3. STUDY METHODS 

This chapter describes the MI methods using Frequentist and Bayesian logistic regression 

model as predictive model for a main study/validation study design. Using the MI method, K >1 

complete datasets are obtained by replacing the missing true values with K simulated values 

obtained from independent draws from a predictive model. The estimates of the interested 

parameters from K complete datasets are combined by averaging. The variability of the estimates 

includes both within-imputation and between-imputation variance. The following sections 

describe the characteristics of the validation and main datasets, measurement 

error/misclassification models, predictive models, inference of MI and the underlying 

assumptions of the models. 

3.1 Validation and Main Dataset Characteristics 

Let n denote the number of subjects in the validation dataset and N denote the number of 

subjects in the entire dataset. The number of subjects in the main dataset, in which the 

information on true disease status is missing, is N – n. The error-free measure of disease status 

(i.e., presence/absence) is denoted by  . Note that   is not observed in the main dataset but it is 

observed in the validation dataset. The observed, error-prone measure of disease status, denoted 

by  , is observed in both the validation and main datasets. Specificity and sensitivity of the 

observed disease status are defined as,               and              , 

respectively. In this study, we consider the case in which the observed response is under-reported 

(i.e., sensitivity < 1.0) but there are no false positives (i.e., specificity is equal to 1.0).  

The disease model considered in this study is one in which two covariates are associated 

with the probability of disease presence in the validation and main datasets
42,43,48

. These are a 

continuous covariate denoted by    and a categorical (i.e., binary) covariate denoted by   . The 

covariate    is assumed to follow a normal distribution with parameters    and   
  denoting the 

mean and variance, respectively. The covariate    is assumed to follow a binomial distribution 

with parameters B=1 and    denoting the number of trials (equals to 1) and the probability of 

success, respectively. We assume that    and    are independent. Formally, the disease model is 

given by 
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 (    |         )          
            

 
                

   
                ,              (3-1) 

for         where             
T
 is the vector of regression parameters and 

T
 denotes the 

transpose operator.  

Let    and    denote the error-prone measures of the true covariates    and   , 

respectively. As well, an indicator variable,   , indicates whether the jth subject is in the 

validation dataset or main dataset. If      the j
th

 subject is in the validation dataset and if 

     the j
th

 subject is in the main dataset. To summarize, the validation dataset contains Y,  , 

  ,   ,    and   , while the main dataset only contains  ,    and    (see Figure 3-1). Missing 

values are denoted by ‘.’. 

 

 

Validation 

Dataset 

                  

1 1 1 12 12 1 0 

1 1 0 16 14 0 1 

1 0 0 9 10 1 1 

1 1 0 5 6 0 0 

1 0 0 20 21 1 0 

 

Main  

Dataset 

0 . 1 . 23 . 1 

0 . 0 . 6 . 0 

0 . 0 . 15 . 1 

0 . 0 . 17 . 1 

0 . 1 . 13 . 0 

… … … … … … … 

Figure 3-1 An illustration of the validation dataset/main dataset design 
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3.2 Measurement Error and Misclassification in Disease Predictors       

Measurement error under a continuous covariate    can be considered under both the 

Classical and Berkson models
46,79

. As defined previously, the Classical model is         , 

where    is uncorrelated with    that is           . In this model    is an unbiased 

measurement of   . The structure of    is homoscedastic. The Berkson model is defined as 

        , where    is uncorrelated with   , that is           .  

Let    
     denote the marginal distribution of   . The Classical model can be incorporated 

into a model to predict    via Bayes theorem, 

      
        

                    

∫                       
                              (3-2) 

where       
        is the density of    given   . Having    

     the density of   , equation 

(3-2) can transform the Classical model into a predictive model. Thus the predictive model for 

the continuous covariate    is 

      
                       ,                                 (3-3) 

where          ,          
T
 and            which is independent of    and   . The 

function       
            is the calibration function of true continuous covariate conditional on 

the measured continuous covariate and can be used to predict the true value of the continuous 

covariate. The predictive model for the binary covariate is,  

      
            

           

             
                                          (3-4) 

where          
T
 is the vector of parameters reflecting the association between    and   . 

The function       
            is the calibration function of true binary covariate conditional on 

the measured binary covariate and can be used to predict the true value of the binary covariate.    

3.3 Development of the Predictive Model 

In this study, a logistic regression model is used to build a predictive model for disease 

status in the validation dataset. Two models were considered: 
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3.3.1 Scenario 1: Misclassification of Observed Disease Status is Independent of Disease 

Predictors 

The first scenario is one in which misclassification of the observed disease status is assumed 

to be independent of the disease predictors in the validation dataset. In this case, true disease 

status is predicted from observed disease status only. Thus, the predictive model is 

                      ,                                                 (3-5) 

where       . This predictive model is fitted to the validation dataset to estimate the 

parameters          
T
. The predictive model for the main dataset is  

                ̂   ̂                                                     (3-6) 

where          . Using equation (3-6), the probability of being a disease case is estimated. 

This probability becomes the parameter for an observation sampled from the Bernoulli 

distribution. Specifically, Bernoulli (          ) generates a binary response for the  th 

subject in the main dataset.   

To estimate the parameters of this logistic regression model, the most widely used method 

is the iterative Newton-Raphson algorithm, 

                                                                  (3-7) 

where      is the parameter vector for the     iteration,            ̂  , and                          

        ̂    ̂   with  ̂  
 

            .   

When the sample size or the total Fisher information is small, there is the potential for bias 

in the maximum likelihood estimates. The amount of bias in the estimated parameters for linear 

logistic models, as proposed by Cordeiro and McCullagh
80

, is 

                                                                        (3-8) 

where                      ̂       and         ̂    ̂  . Therefore, a bias-

corrected estimate, was proposed by the authors, and is given by  ̂   ̂   .  
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In studies that validate AHDs, the validation dataset is often small
81,82

, therefore we 

compared both the bias-corrected estimates and uncorrected estimates for the Frequentist 

approach. Using the bias-reduced estimates  ̂  and covariance matrix C( ̂ ), multiple values of 

the parameters  ̃              are drawn from its asymptotic normal posterior distribution 

 ̃   ~N[ ̂ , C( ̂ )]. The corresponding values of the probability     
   

    ̃     are obtained 

from equation 6 and multiple imputed values of the true response are drawn from the Bernoulli 

distribution   
   

           (  
   

|   ̃   ) .  

For the Bayesian approach, we used a previously proposed logistic regression model
83

. 

Specifically, the authors used a prior in the conjugate form as the likelihood function, so the 

posterior had the same form as the likelihood as well. Then the value of the interested parameter 

that maximized the posterior was the maximum posterior estimator. Generally, the Markov chain 

Monte Carlo (MCMC) algorithms such as the Metropolis-Hastings and the Gibbs sampler can be 

implemented to sample the parameters of interest from their posterior distributions
84

. The 

predictive model in equation (3-6) was adopted. The parameters          
T
 were treated as 

random variables. Non-informative priors were chosen; these follow a normal distribution with a 

mean of zero and large variance. Multiple values of the parameters  ̂  (       ) were 

randomly drawn from the posterior distribution and used to compute the disease probability, that 

is  (  
   

|   ̂   ). Subsequently, multiple imputed values of the true response were drawn from 

the Bernoulli distribution   
   

              
   

    ̂     .   

3.3.2 Scenario 2: Misclassification of Observed Disease Status is Dependent on Disease 

Predictors 

For this scenario, the misclassification of the observed disease status is conditional on one 

or more disease predictor variables. Under the Frequentist approach, a predictive logistic model 

was developed in the validation dataset using two covariates, one of which was binary and one of 

which was continuous, and the observed disease status. From equation (3-3) and equation (3-4), 

the bias-reduced parameters ( ̂  and  ̂ ) and the covariance matrixes (   ̂   and    ̂  ) were 

estimated. Multiple values of the parameters of each model were drawn from the asymptotic 

normal distribution N[ ̂ , C( ̂ )] and N[ ̂ , C( ̂ )]. The multiple predicted values of the true 

covariates were obtained using the equations  ̂  
   

  ̂ 
   

  ̂ 
   

    and 
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 ̂  
   

              ̂  
   

      ̂
      with  ( ̂  

   
|     ̂

   )  
   ̂ 

   
  ̂ 

   
    

     ̂ 
   

  ̂ 
   

    
, where   

     . The predictive model of the true response fitted in the validation dataset to estimate the 

parameter vector                
T
 was 

                                        .             (3-9) 

The model to predict the missing true response in the main dataset is 

       (    |  ̂    ̂  )   ̂   ̂  ̂    ̂  ̂    ̂    .     (3-10) 

From equation (3-9) the bias-reduced estimates were used to produce the estimates  ̂  and 

   ̂  . Multiple values of  ̂  were drawn from the asymptotic normal distribution ~N[ ̂ , 

C( ̂ )]. To impute Y in the main dataset, we apply  ̂  and estimated covariates  ̂  and  ̂  to 

equation (3-10) to obtain        (  
   

  |  ̂    ̂  )   ̂   ̂  ̂    ̂  ̂    ̂   . The 

multiple imputed values of the missing true response in the main dataset    were drawn from the 

Bernoulli distribution,   
   

         ( (  
   

|   ̃   )).  

Three different predictive models were considered. The predictive model defined in 

equation (3-9) was compared with two other predictive models:   

                           ̂      ̂                           (3-11) 

                            .                                     (3-12) 

These model comparisons were done because in practice, different variables might be 

selected as covariates in the predictive model.  

3.4 Prevalence and Variance Estimation 

Using the imputed disease status values computed in the previous section, the estimated 

prevalence for the     dataset is  ̂    
∑   ∑  

   

 
. For the MI method, the final estimated 

prevalence for the entire population is  ̂  
 

 
∑  ̂    

   , which reflects the uncertainty caused by 
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the missingness of true values. The total variability, TK, includes within-imputation variance 

( ̅ ) and between-imputation variance (BK), that is,  

 ̅  
 

 
∑   

 
                                                                       (3-13) 

where       ( ̂   )     (
∑   ∑  

   

 
)  

 

  
∑       

   
  

      
 

  
∑  (  

   
)       

   
   

     , 

   
 

   
∑   ̂     ̂   

                                                       (3-14) 

    ̅  
   

 
  .                                                               (3-15)  

With the final estimated prevalence  ̂ and the total variability TK, the 95% confidence interval 

was calculated based on asymptotic normal distribution.  
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CHAPTER 4. SIMULATION STUDY 

A Monte Carlo simulation study was undertaken to investigate the MI methods for 

measurement error correction. The parameters that were manipulated and investigated in the 

Monte Carlo study include sensitivity of the observed disease status, amount of error in the 

covariates, size of the validation dataset, and numbers of imputations. Table 4-1 summarizes the 

conditions that were investigated for each of these parameters. The mechanism by which 

observations were missing, including MCAR, MAR and MNAR conditions were also examined. 

Table 4-1: Parameters of the simulation study 

Sensitivity of 

observed 

disease status 

 

Measurement 

error in    

Misclassification 

in    

Size of 

validation 

dataset 

Number of 

imputations 

0.60 Var(  )=1 or 2 
SN=SP=0.7 or 

SN=SP=0.9 
 

0.05, 0.20, 

0.35 

 

3, 5, 10, 15, 

20, 40 

0.75 Var(  )=1 or 2 
SN=SP=0.7 or 

SN=SP=0.9 

0.90 Var(  )=1 or 2 
SN=SP=0.7 or 

SN=SP=0.9 

Note: SN denotes sensitivity and SP denotes specificity 

The Monte Carlo study was conducted using SAS/IML (Interactive Matrix Language) 

software version 9.2. The simulation program is included in Appendix D. The RANGEN 

procedure was used to generate random numbers from the specified distributions. A total of 

 =500 replications was conducted for each combination of conditions. A population size of 

 =10,000 was used to implement the models.  

The data were generated using the disease model defined in the previous chapter. The 

continuous covariate, X1 was generated from the standard normal distribution (i.e.,         and 

the binary covariate, X2 was generated from the binomial distribution (i.e., BIN(N,   )). These 

two covariates were generated independently. The true response was generated based on the 

disease model (equation 1) using specified values of the regression coefficients   ,    and   . 

Then the Bernoulli random variable with probability P was generated as 1 or 0, where 1 denotes 

disease presence and 0 denotes disease absence.  
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The coefficients    and    denote the strength of association between   ,    and the true 

response  . The values of these coefficients were selected based on the odds ratio, which is 

obtained by exponentiation of the regression coefficient. The choice of          corresponds 

to an odds ratio of 1.3 while          corresponds to an odds ratio of 2.0 between the 10
th

 and 

the 90
th

 percentile of the standard normal covariate. The choice of           corresponds to 

an odds ratio of 0.5 while          produces an odds ratio of 2.0 between 0 and 1 of the 

Bernoulli distributed covariate. These odds ratios are realistic for epidemiological studies about 

chronic disease
85-87

. We specified          ,          and           to generate the 

data has prevalence of the true response is 0.05, because of the low prevalence of chronic disease 

in the population.  

The methods to generate the observed response are different for the two scenarios of the 

sensitivity of the observed response. For Scenario 1, under-reporting is independent of the 

covariates, that is, when     the probability of     is randomly generated from the 

Bernoulli distribution with     the sensitivity of the response variable, as the parameter of this 

distribution. Values for    from 0.6 to 0.9 in increments of 0.15 were considered. For Scenario 2, 

under-reporting depends on the covariates, that is when     the probability of     was 

generated based on the association with the model covariates. By specifying the coefficients of 

the generation model for observed disease status, the observed response also had sensitivity from 

0.6 to 0.9 in increments of 0.15.  

For Scenario 2,    was generated by adding the additive variance as Classical error model
88

. 

Specifically, the additive variance was generated from a normal distribution with variance of 1 

(i.e., N(0,1)) or variance of 2 (i.e., N(0,2)). And the measurement error of    was assumed non-

differential. The observed binary covariate was generated by manipulating values of sensitivity 

and specificity for two conditions. In Condition 1, the sensitivity and specificity of the 

mismeasured binary covariate were equal to 0.7. In Condition 2, both the sensitivity and 

specificity were equal to 0.9. Specifying the coefficients of the true disease predictors generated 

the observed disease status with sensitivity from 0.6 to 0.9 in increments of 0.15, because the 

misclassification of the observed disease status is dependent on the true values of the disease 

predictors.  
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The mechanisms of the missingness of true response were also considered in the study 

design. If V, the indicator of the validation dataset, is a random variable then the missing 

mechanism is MCAR. If V is dependent on the observed response not on the missing true 

response then the missing mechanism is MAR. And if V is dependent on the missing true 

response then the missing mechanism is MNAR.  

In terms of the size of the validation dataset, we considered cases where it was a fixed 

proportion of the entire dataset: 0.05N, 0.20N and 0.35N. The number of imputations took on 

values of 3, 5, 10, 15, 20 and 40
15

, in keeping with previous research. 

As for the Bayesian logistic regression, the MCMC procedure, which is available in SAS 

9.2 was adopted. It uses a random walk Metropolis algorithm to simulate samples from the 

specified logistic regression model
89

. A total of 21,000 iterations were conducted in the 

simulation loop of MCMC procedure, and the first 1000 iterations were burn-in iterations. Thus, 

the last 20,000 iterations, with the thinning rate of 100, were saved as posterior samples. That 

means every 100
th

 simulation sample of the 20,000 iterations was kept and the rest were 

discarded, which results in 200 posterior samples. The posterior statistics and diagnostics such as 

MCSE/SD (the Monte Carlo standard errors of each parameter relative to the posterior standard 

deviations) and autocorrelation were calculated using the thinned posterior samples.  

Bias, relative bias, RMSE and coverage were used to evaluate the performance of the 

models,  

     
 

 
∑  

 

 
∑   ̂      

     
   ,                                      (4-1) 

              
    

               
 ,                                          (4-2)                      

                  ,                                                   (4-3) 

where   is the number of replications,   is the number of imputations, the variance is the total 

variability as defined in equation (3-15), and  ̂   is the estimate of prevalence in the  th 

replicated dataset and  th imputation. To put the measure on the same scale as the prevalence, 

we report the square root of the MSE (RMSE). Coverage was calculated as the proportion of the 

simulations in which the 95% confidence intervals covered the true parameter value.   
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CHAPTER 5. RESULTS  

5.1 Scenario 1: Misclassification of Observed Disease Status is Independent of Disease 

Predictors  

Table 5-1: Relative bias, RMSE and 95% confidence interval coverage when the size of the 

validation dataset is 0.05N 

Sensitivity of 

observed disease 

status 

Missing 

mechanism 

Bayesian Frequentist Frequentist 

(Bias Corrected) 

  Relative Bias (%) 

0.60 MCAR -37.13 -26.14 -0.32 

 MAR -37.69 -28.34 -6.61 

 MNAR -39.69 -23.57 -32.03 

0.75 MCAR -23.53 -31.36 -0.69 

 MAR -23.75 -33.66 -6.86 

 MNAR -25.01 62.97 -23.16 

0.90 MCAR -9.53 37.61 -0.31 

 MAR -9.81 27.18 -6.99 

 MNAR -10.33 310.49 -13.05 

  RMSE 

0.60 MCAR 0.0185 0.0145 0.0031 

 MAR 0.0188 0.0155 0.0048 

 MNAR 0.0197 0.0323 0.0162 

0.75 MCAR 0.0117 0.0198 0.0027 

 MAR 0.0118 0.0192 0.0048 

 MNAR 0.0125 0.0678 0.0120 

0.90 MCAR 0.0047 0.0497 0.0022 

 MAR 0.0049 0.0466 0.0048 

 MNAR 0.0052 0.1903 0.0072 

  Coverage 

0.60 MCAR 0.00 0.00 0.53 

 MAR 0.00 0.00 0.50 

 MNAR 0.00 0.00 0.05 

0.75 MCAR 0.00 0.41 0.53 

 MAR 0.00 0.00 0.50 

 MNAR 0.00 0.00 0.10 

0.90 MCAR 0.00 0.49 0.60 

 MAR 0.01 0.00 0.50 

 MNAR 0.00 0.01 0.26 

Note: RMSE = root mean squared error; MCAR is missing completely at random; MAR is 

missing at random; MNAR is missing not at random 
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Results for Scenario 1 are reported first. The simulation results are described for each of the 

measures of relative bias, RMSE, and coverage probability. Tables 5-1 to 5-3 present the results 

for the three different sizes of the validation dataset. 

When the size of the validation dataset was 0.05 N (Table 5-1), the Bayesian MI model 

resulted in relative bias and RMSE values for the MCAR condition that were smaller than for the 

MAR and MNAR conditions. For the Frequentist MI model without bias correction, the relative 

bias and RMSE were the largest when the sensitivity was 0.90 under the MNAR condition. The 

Frequentist MI model with bias correction had substantially smaller relative bias for the MAR 

condition (70.02%) than for the MNAR condition. When the sensitivity of the observed disease 

status was 0.75 or 0.90, the Bayesian MI model had smaller relative bias than the Frequentist 

model without bias correction. However, the Frequentist model without bias correction had 

better coverage when the missingness mechanism was MCAR and the sensitivity was 0.75 or 

0.90. In this situation, the Frequentist model with bias correction had the smallest relative bias; 

absolute values were less than 1.00% under the MCAR condition and less than 7.00% under the 

MAR condition. The 95% confidence intervals for the Frequentist model with bias correction 

had coverage probability greater than 0.50 if the MAR assumption was not violated. As for the 

effect of the sensitivity of the observed disease status, the results revealed that different methods 

behaved differently as the sensitivity increased. For the Bayesian model, the relative bias and 

RMSE became smaller when the sensitivity increased. For the Frequentist model with bias 

correction, only under the MNAR condition did the relative bias and RMSE decrease with 

increasing sensitivity.  
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Table 5-2: Relative bias, RMSE and 95% confidence interval coverage when the size of the 

validation dataset is 0.20  

Sensitivity of 

observed disease 

status 

Missing 

mechanism 

Bayesian Frequentist Frequentist 

(Bias Corrected) 

  Relative Bias (%) 

0.60 MCAR -31.32 -23.36 -0.33 

 MAR -31.18 -27.80 -2.43 

 MNAR -37.26 -53.61 -28.73 

0.75 MCAR -19.66 -29.02 -0.06 

 MAR -19.67 -34.72 -2.49 

 MNAR -23.36 -50.76 -18.97 

0.90 MCAR -7.98 -35.12 -0.25 

 MAR -7.99 -41.68 -2.55 

 MNAR -9.42 -24.07 -9.07 

  RMSE 

0.60 MCAR 0.0156 0.0126 0.0018 

 MAR 0.0155 0.0150 0.0023 

 MNAR 0.0185 0.0273 0.0143 

0.75 MCAR 0.0098 0.0156 0.0015 

 MAR 0.0098 0.0186 0.0021 

 MNAR 0.0116 0.0263 0.0095 

0.90 MCAR 0.0040 0.0189 0.0011 

 MAR 0.0040 0.0223 0.0019 

 MNAR 0.0047 0.0287 0.0047 

  Coverage 

0.60 MCAR 0.00 0.00 0.72 

 MAR 0.00 0.00 0.71 

 MNAR 0.00 0.00 0.00 

0.75 MCAR 0.00 0.50 0.73 

 MAR 0.00 0.00 0.69 

 MNAR 0.00 0.00 0.01 

0.90 MCAR 0.00 0.51 0.76 

 MAR 0.00 0.00 0.66 

 MNAR 0.00 0.00 0.06 

Note: RMSE = root mean squared error; MCAR is missing completely at random; MAR is 

missing at random; MNAR is missing not at random 

 

When the size of the validation dataset was 0.20N (Table 5-2), the results followed similar 

trend to those when the size of the validation dataset was 0.05 . However, the RMSE values for 

all MI models were smaller than when the size of the validation dataset was 0.05N. And in this 

situation, measures for each model under MCAR and MAR conditions were similar, which were 
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quite different from the measures for the model under MNAR condition. The Bayesian MI model 

had smaller relative bias than the Frequentist MI model except when the sensitivity was 0.60 and 

under MCAR and MAR. Under MCAR and when the sensitivity was 0.75 and 0.90, the 

Frequentist model without bias correction had coverage 0.50 and 0.51 much better than other 

conditions for this model.  The Frequentist model with bias correction had the best performance 

in terms of coverage probability and absolute values of relative bias, as long as the missingness 

mechanism was not MNAR. When the sensitivity increased, the Bayesian MI model had 

decreasing relative bias and RMSE, but the coverage was unchanged. With the sensitivity 

increasing, the relative bias and RMSE of the Frequentist MI model increased under MCAR and 

MAR conditions, and the relative bias decreased under MNAR condition. Under MCAR and 

MAR conditions, the Frequentist MI model with bias correction had no trend with the sensitivity 

increasing. Under MNAR, the Frequentist MI model had smaller (33.97%) relative bias when the 

sensitivity was 0.75 than the relative bias when the sensitivity was 0.60, and had smaller 

(52.19%) relative bias when the sensitivity was 0.90 than the relative bias when the sensitivity 

was 0.75.     
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Table 5-3: Relative bias, RMSE and 95% confidence interval coverage when the size of the 

validation dataset is 0.35  

Sensitivity of 

observed disease 

status 

Missing 

mechanism 

Bayesian Frequentist Frequentist 

(Bias Corrected) 

  Relative Bias (%) 

0.60 MCAR -25.45 -19.17 -0.14 

 MAR -25.28 -25.94 -1.47 

 MNAR -35.19 -52.58 -27.89 

0.75 MCAR -16.02 -24.02 -0.10 

 MAR -15.82 -32.30 -1.45 

 MNAR -21.99 -48.96 -17.96 

0.90 MCAR -6.50 -28.42 -0.17 

 MAR -6.41 -39.00 -1.45 

 MNAR -8.84 -44.41 -8.06 

  RMSE 

0.60 MCAR 0.0127 0.0104 0.0016 

 MAR 0.0126 0.0140 0.0019 

 MNAR 0.0175 0.0266 0.0139 

0.75 MCAR 0.0080 0.0129 0.0013 

 MAR 0.0079 0.0173 0.0016 

 MNAR 0.0109 0.0252 0.0090 

0.90 MCAR 0.0032 0.0152 0.0009 

 MAR 0.0032 0.0208 0.0013 

 MNAR 0.0044 0.0237 0.0041 

  Coverage 

0.60 MCAR 0.00 0.49 0.87 

 MAR 0.00 0.00 0.84 

 MNAR 0.00 0.00 0.00 

0.75 MCAR 0.00 0.50 0.87 

 MAR 0.00 0.00 0.84 

 MNAR 0.00 0.00 0.00 

0.90 MCAR 0.00 0.53 0.87 

 MAR 0.00 0.00 0.80 

 MNAR 0.00 0.00 0.02 

Note: RMSE = root mean squared error; MCAR is missing completely at random; MAR is 

missing at random; MNAR is missing not at random 

 

Similarly, as Table 5-3 reveals when the size of the validation dataset was 0.35N, the 

Frequentist MI model with bias correction had the smallest relative bias and RMSE even when 

the missingness mechanism was MNAR. When the missingness mechanism was MCAR and 

MAR the coverage of the Frequentist MI model with bias correction was greater than 0.80. 
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Under MCAR, the Frequentist MI model without bias correction had coverage of 0.49, 0.50 and 

0.53 when the sensitivity was 0.60, 0.75 and 0.90, respectively. Under MAR and MNAR, the 

Frequentist MI model without bias correction had low coverage. Other than when the sensitivity 

was 0.60 and under MCAR, the Bayesian MI model had smaller relative bias than the 

Frequentist MI model without bias correction. The relative bias and RMSE of the Bayesian MI 

model decreased with increasing sensitivity of the observed disease status under all of the three 

missingness mechanisms. Under the MNAR condition, the Frequentist model with and without 

bias correction had smaller relative bias and RMSE when sensitivity was larger.  
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Table 5-4: Relative bias, RMSE and 95% confidence interval coverage with the size of the 

validation dataset increasing 

Missing 

mechanism 

Size of the 

validation 

dataset 

Bayesian Frequentist Frequentist 

(Bias Corrected) 

  Relative Bias (%) 

MCAR 0.05  -23.40 -6.63 -0.44 

 0.20  -19.65 -29.17 -0.22 

 0.35  -15.99 -23.87 -0.14 

MAR 0.05  -23.75 -11.61 -6.82 

 0.20  -19.61 -34.73 -2.59 

 0.35  -15.84 -32.41 -1.46 

MNAR 0.05  -25.01 116.63 -22.75 

 0.20  -23.35 -42.81 -18.92 

 0.35  -22.01 -48.65 -17.97 

  RMSE 

MCAR 0.05  0.0116 0.0280 0.0027 

 0.20  0.0098 0.0157 0.0015 

 0.35  0.0079 0.0128 0.0013 

MAR 0.05  0.0118 0.0271 0.0048 

 0.20  0.0097 0.0186 0.0021 

 0.35  0.0079 0.0174 0.0016 

MNAR 0.05  0.0124 0.0968 0.0118 

 0.20  0.0116 0.0274 0.0095 

 0.35  0.0109 0.0252 0.0090 

  Coverage 

MCAR 0.05  0.00 0.30 0.55 

 0.20  0.00 0.34 0.74 

 0.35  0.00 0.51 0.87 

MAR 0.05  0.01 0.00 0.50 

 0.20  0.00 0.00 0.69 

 0.35  0.00 0.00 0.83 

MNAR 0.05  0.00 0.00 0.13 

 0.20  0.00 0.00 0.02 

 0.35  0.00 0.00 0.01 

Note: MCAR is missing completely at random; MAR is missing at random; MNAR is missing 

not at random 

To assess the effect of the size of the validation dataset, the table above displays the average 

values of relative bias, RMSE, and coverage over the imputations and sensitivities. The Bayesian 

MI model did not result in a change in the coverage probability as the size of the validation 

dataset increased regardless the missingness mechanisms. The relative bias and RMSE of the 

Bayesian MI model decreased as the size of the validation dataset increased under all three 



30 

  

 

missingness mechanisms. However, the coverage probability of the Frequentist MI model 

without bias correction increased as the size of the validation dataset increased under the MCAR 

condition. When the size of the validation dataset was 0.35 , the coverage was 0.51, which was 

much more (70.00%) than the coverage when the size of the validation dataset was 0.05 .  For 

the Frequentist MI model with bias correction, under the MCAR condition, the average coverage 

when the size of the validation dataset was 0.35  was 17.57% greater than when it was 0.20N. It 

was also 34.55% when the size of the validation dataset was 0.20N than when it was 0.05 . 

Under the MAR condition, the Frequentist MI model with bias correction had better coverage 

when the size of the validation dataset was larger.     

Based on the results in the tables, the Frequentist MI model with bias correction performed 

better than other methods. So we further explore this model, showing how the prevalence 

estimates and the standard errors of the prevalence estimates vary with changes in the size of the 

validation dataset and the number of imputations.   
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Figure 5-1Prevalence estimates for the Frequentist MI model with bias correction when the 

missingness mechanism is MCAR and sensitivity is 0.60  
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Figure 5-1 contains box and whisker plots for the prevalence estimates under the MCAR 

condition for different sizes of the validation datset when the true population prevalence was 

0.05. The estimates were very close to 0.05 regardless of the number of imputations. As panel A 

reveals, prevalence estimates ranged from 0.03 to 0.07. When the size of the validation dataset 

was 0.20  and 0.35 ,  the prevalence estimates ranged from 0.04 to 0.06. The trends of the 

prevalence estimates for Bayesian MI model and Frequentist MI model were parallel as the trend 

shown in Figure 5-1 for Frequentist MI model with bias correction.  
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Figure 5-2 Standard error of prevalence estimate for the Frequentist MI model with bias 

correction when the missingness mechanism is MCAR and sensitivity is 0.60  
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Figure 5-2 contains box and whisker plots for the standard error values. The standard error 

decreased as the number of imputations increased. However, when the size of the validation 

dataset was 0.05N, the standard error decreased significantly (almost 50.00%) when the number 

of imputations increased from 3 to 10. As the number of imputations increased beyond 10, the 

change in the standard error was small. When the size of the valdiation dataset was 0.35N, the 

standard error decreased slightly as the number of imputations increased from 3 to 40. Holding 

constant the number of imputations,  the standard error was about one third smaller when the size 

of the validation dataset was 0.35  than when it was 0.05N.  

For other values of sensitivity, including 0.75 and 0.90, they followed the similar pattern as 

the sensitivity 0.60 in Appendix A.   
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Figure 5-3 Prevalence estimates for the Frequentist MI model with bias correction when the 

missingness mechanism is MAR and sensitivity is 0.60 
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Figure 5-3 reveals that under the MAR condition, average prevalence estimates remained 

stable as the number of imputations increased. When the size of the validation dataset was 0.05N 

the range of values was from 0.02 to 0.08, which was larger than for the MCAR condition (Panel 

A of Figure 5-1). When the size of the validation dataset was 0.35  the range of values for the 

MAR condition (Panel C of Figure 5-3) was similar to the range for the MCAR condition (Panel 

C of Figure 5-3). Under MAR, the increase of the size of the validation dataset can decrease the 

range of the prevalence estimates too. The Bayesian MI model and Frequentist MI model 

without bias correction had similar pattern as the Frequentist MI model with bias correction.  
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Figure 5-4 Standard errors of prevalence estimates for the Frequentist MI model with bias 

correction when the missingness mechanism is MAR and sensitivity is 0.60 
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Figure 5-4 presents the descriptive statistics for the standard error of the prevalence 

estimates for the MAR condition. When the size of the validation dataset was 0.05 , the range of 

values decreased from over 0.04 to slightly more than 0.01 as the number of imputations 

increased. The standard error was almost 50% smaller for ten imputations than for three 

imputations. While the size of the validation dataset was 0.20  and 0.35N, there was also a 

decrease in the size of the standard error, but the magnitude of change was smaller than for the 

0.05N condition. And the decrease of the standard error when the number of imputations beyond 

10 was minor, regardless the size of the validation dataset. When the number of imputations was 

fixed as 10, the mean of the standard error decreases as the size of the validation increased.  
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Figure 5-5 Prevalence estimates for Frequentist MI model with bias correction when the 

missingness mechanism is MNAR and sensitivity is 0.60 
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From Figure 5-5, we can see that the MNAR mechanism results in a range of prevalence 

estimates that were also stable when the number of imputations increased. And under MNAR the 

means of the prevalence estimates were negatively biased for different sizes of the validation 

dataset. In panel A, the range of prevalence estimates was from less than 0.01 to 0.05. In panel B, 

the range of prevalence estimate was from a little more than 0.02 to a little over 0.04. In panel C, 

the range of prevalence estimate was from 0.03 to a little more than 0.04. Although, increase the 

size of the validation dataset can reduce the range of the prevalence estimates but the means of 

the prevalence estimates were still biased.   
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Figure 5-6 Standard error of prevalence estimates for the Frequentist MI method with bias 

correction when the missingness mechanism is MNAR and sensitivity is 0.60 
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Figure 5-6 also demonstrates that increasing the number of imputations reduced the range 

and mean of the standard error of the prevalence estimates under the MNAR condition. When the 

size of the validation dataset was 0.05N the range of standard errors for a small number of 

imputations was large. When the size of the validation dataset was 0.35N the range of standard 

error was narrower and decreased slightly as the number of imputations increased. However, 

increasing the number of imputations to more than 10 was not efficient. The trends of the 

standard errors of prevalence estimates with the number of imputations increasing and the size of 

the validation dataset increasing under MNAR (Figure 5-6) were similar to those under MCAR 

(Figure 5-2) and MNAR (Figure 5-4).  

5.2 Scenario 2: Misclassification of Observed Disease Status is Dependent on Disease 

Predictors  

In this section, we report the results for the MI models for which when the observed disease 

status is dependent on the two predictors of true disease status. That means the probability of 

misclassification of the observed disease status was conditional on the disease predictors. As 

noted in the previous chapter, Model 1 contained observed disease status and imputed predictors 

as covariates of the predictive model, while Model 2 has imputed predictors as covariates of the 

predictive model. Finally, Model 3 has observed disease status the sole covariate of the 

predictive model. Given the results for Scenario 1, which indicated that the Frequentist MI model 

with bias correction resulted in less biased estimates of prevalence and generally small values for 

RMSE, we focused only on the Frequentist MI model with bias correction. However, for 

comparison, we have included the results for the Frequentist MI model without bias correction in 

Appendix B.  
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Table 5-5: Relative bias, RMSE and 95% confidence interval coverage when the size of the 

validation dataset is 0.05 , Frequentist MI model with bias correction 

Sensitivity of 

observed disease 

status 

Missing 

mechanism 

Model 1 Model 2 Model 3 

  Relative Bias (%) 

0.60 MCAR -0.82 -4.05 -0.47 

 MAR -6.61 -38.99 -5.78 

 MNAR -29.80 -61.02 -31.99 

0.75 MCAR 0.32 -4.13 -0.56 

 MAR -6.58 -47.74 -6.83 

 MNAR -29.80 -61.15 -22.97 

0.90 MCAR 1.38 -4.06 -0.27 

 MAR -6.67 -55.67 -7.06 

 MNAR -12.46 -61.06 -13.43 

  RMSE 

0.60 MCAR 0.0033 0.0048 0.0030 

 MAR 0.0050 0.0197 0.0046 

 MNAR 0.0152 0.0305 0.0162 

0.75 MCAR 0.0029 0.0048 0.0027 

 MAR 0.0049 0.0240 0.0048 

 MNAR 0.0109 0.0305 0.0118 

0.90 MCAR 0.0029 0.0049 0.0023 

 MAR 0.0050 0.0279 0.0048 

 MNAR 0.0073 0.0305 0.0075 

  Coverage 

0.60 MCAR 0.54 0.51 0.52 

 MAR 0.50 0.08 0.50 

 MNAR 0.07 0.01 0.04 

0.75 MCAR 0.56 0.51 0.54 

 MAR 0.52 0.03 0.50 

 MNAR 0.16 0.01 0.10 

0.90 MCAR 0.61 0.51 0.59 

 MAR 0.53 0.01 0.50 

 MNAR 0.34 0.01 0.24 

Note: Model 1 is the predictive model with the observed disease status and the imputed disease 

predictors as covariates; Model 2 is the predictive model with the imputed disease predictors as 

covariates only; Model 3 is the predictive model with the observed disease status as covariate 

only. RMSE = root mean squared error. MCAR denotes the missing completely at random 

mechanism; MAR denotes the missing at random mechanism; MNAR denotes the missing not at 

random mechanism.  

 

Table B-1 shows the values of all measures for the Frequentist MI model without bias 

correction. The values of measures of Model 1 and Model 3 were larger than those of the 
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Frequentist MI model with bias correction. For the Frequentist MI model without bias correction, 

the Model 2 had the smallest absolute value of relative bias under MCAR, and the Model 1 had 

the smallest absolute value of relative bias under MAR when the sensitivity was 0.60 and 0.75. 

There was no obviously trend of measures with sensitivity increasing for this model too.  
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Table 5-6: Relative bias, RMSE and 95% confidence interval coverage when the size of the 

validation dataset is 0.20 , Frequentist MI model with bias correction 

Sensitivity of 

observed 

disease status 

Missing 

mechanism 

Model 1 Model 2 Model 3 

  Relative Bias (%) 

0.60 MCAR -3.14 -24.20 -0.24 

 MAR -5.46 -54.04 -2.34 

 MNAR -29.15 -72.74 -28.63 

0.75 MCAR -2.10 -24.26 -0.21 

 MAR -4.56 -61.06 -2.29 

 MNAR -19.23 -72.83 -18.94 

0.90 MCAR -0.77 -24.28 -0.24 

 MAR -3.53 -67.99 -2.42 

 MNAR -9.84 -72.84 -9.32 

  RMSE 

0.60 MCAR 0.0024 0.0123 0.0018 

 MAR 0.0034 0.0269 0.0023 

 MNAR 0.0146 0.0362 0.0143 

0.75 MCAR 0.0018 0.0124 0.0015 

 MAR 0.0028 0.0304 0.0021 

 MNAR 0.0097 0.0362 0.0095 

0.90 MCAR 0.0012 0.0124 0.0011 

 MAR 0.0023 0.0339 0.0019 

 MNAR 0.0051 0.0362 0.0048 

  Coverage 

0.60 MCAR 0.65 0.06 0.73 

 MAR 0.57 0.00 0.71 

 MNAR 0.00 0.00 0.00 

0.75 MCAR 0.68 0.06 0.74 

 MAR 0.59 0.00 0.71 

 MNAR 0.01 0.00 0.01 

0.90 MCAR 0.74 0.06 0.75 

 MAR 0.59 0.00 0.67 

 MNAR 0.07 0.00 0.06 

Note: Model 1 is the predictive model with the observed disease status and the imputed disease 

predictors as covariates; Model 2 is the predictive model with the imputed disease predictors as 

covariates only; Model 3 is the predictive model with the observed disease status as covariate 

only. RMSE = root mean squared error. MCAR denotes the missing completely at random 

mechanism; MAR denotes the missing at random mechanism; MNAR denotes the missing not at 

random mechanism.  

 

Table 5-6 displays the results when the size of the validation dataset was 0.20 . The 

MNAR condition resulted in very large relative bias and the coverage became extremely small 
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even for Model 1 and Model 3. For Model 1 and Model 3, the coverage under the MAR 

condition was slightly smaller than the coverage under the MCAR condition. Model 2 performed 

badly when the size of the validation dataset was 0.20 . And in this situation, Model 3 had a 

little higher coverage probability compared with Model 1.  The RMSE for Model 1 was slightly 

larger than for Model 3, but the coverage of Model 1 was lower than that of Model 3 when the 

sensitivity was 0.60 or 0.75 under the MCAR condition. Under the MAR condition, the coverage 

of Model 1 was 16.28% less than that of Model 3. As for the effect of sensitivity of the observed 

disease status, the relative bias and RMSE of Model 1 decreased with increasing sensitivity. For 

Model 3, the relative bias and RMSE decreased with increasing sensitivity only for the MNAR 

condition. However, compared with the impact of the missingness mechanism, the impact of the 

sensitivity was not significant.  

Table B-2 (Appendix B) displays the results of the Frequentist MI model (without bias 

correction) when the size of the validation dataset was 0.20 . In this situation, Model 2 had the 

smallest relative bias and RMSE, and largest coverage compared with Model 1 and Model 3 of 

the Frequentist MI model under MCAR. The performance of Model 2 of the Frequentist MI 

approach was better than that of Model 2 of the Frequentist MI approach with bias correction. 

While the performance of Model 1 and Model 3 of the Frequentist MI approach were worse than 

the performance of Model 1 and Model 3 of the Frequentist MI approach with bias correction.  
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Table 5-7: Relative bias, RMSE and 95% confidence interval coverage when the size of the 

validation dataset is 0.35 , Frequentist MI model with bias correction 

Sensitivity of 

observed 

disease status 

Missing 

mechanism 

Model 1 Model 2 Model 3 

  Relative Bias (%) 

0.60 MCAR -2.88 -39.09 -0.12 

 MAR -4.27 -63.20  -1.45  

 MNAR -28.49 -78.48 -27.78 

0.75 MCAR -1.98 -39.06 -0.11 

 MAR -3.43 -69.06 -1.48 

 MNAR -18.49 -78.50 -18.04 

0.90 MCAR -0.82 -39.09 -0.12 

 MAR -2.50 -74.55 -1.45 

 MNAR -8.82 -78.45 -8.39 

  RMSE 

0.60 MCAR 0.0021 0.0196 0.0016 

 MAR 0.0027 0.0315 0.0019 

 MNAR 0.0142 0.0390 0.0139 

0.75 MCAR 0.0016 0.0196 0.0013 

 MAR 0.0022 0.0344 0.0016 

 MNAR 0.0093 0.0391 0.0090 

0.90 MCAR 0.0010 0.0196 0.0009 

 MAR 0.0017 0.0370 0.0013 

 MNAR 0.0045 0.0390 0.0043 

  Coverage 

0.60 MCAR 0.74 0.00 0.87 

 MAR 0.66 0.00 0.85 

 MNAR 0.00 0.00 0.00 

0.75 MCAR 0.78 0.00 0.86 

 MAR 0.67 0.00 0.84 

 MNAR 0.00 0.00 0.00 

0.90 MCAR 0.83 0.00 0.87 

 MAR 0.70 0.00 0.81 

 MNAR 0.02 0.00 0.02 

Note: Model 1 is the predictive model with the observed disease status and the imputed disease 

predictors as covariates; Model 2 is the predictive model with the imputed disease predictors as 

covariates only; Model 3 is the predictive model with the observed disease status as covariate 

only. RMSE = root mean squared error. MCAR denotes the missing completely at random 

mechanism; MAR denotes the missing at random mechanism; MNAR denotes the missing not at 

random mechanism.  

 

Table 5-7 shows that the effect of the missingness mechanism was substantial when the size 

of the validation dataset was 0.35 . Model 2 had very large relative bias and RMSE compared to 
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Model 1 and Model 3, similar to the results for the other sizes of the validation dataset. Model 3 

had slightly larger coverage probability than Model 1. Increasing the sensitivity of observed 

disease status from 0.60 to 0.90 reduced the relative bias by 71.53% under the MCAR condition, 

by 51.45% under the MAR condition, and by 69.04% under the MNAR condition for Model 1, 

while Model 3 was stable with the increasing of the sensitivity of observed disease status under 

MCAR and MAR.    

Table B-3 (Appendix B) reveals that the missingness mechanism was also substantial for 

the Frequentist MI model. For example, when the sensitivity was 0.90, the relative biases of 

Model 1 under MCAR, MAR and MNAR were -0.31%, -13.44% and 88.17%, respectively.  

From Table 5-5 to 5-7, the Model 1 and Model 3 had smaller absolute values and RMSE 

with the size of the validation dataset increasing. And the coverage of Model 1 and Model 3 

became larger when the size of the validation dataset increases only under MCAR and MAR. On 

the other hand, Model 2 had bigger absolute values of relative bias and RMSE and smaller 

coverage with the size of the validation dataset increasing. Tables in Appendix B show that the 

relative biases of all three models had no relationship with the size of the validation dataset. But 

the coverage of Model 2 significantly increased, and the coverage of Model 1 and Model 3 

slightly decreased with the size of the validation dataset enlarger.   

 

 



Table 5-8: Relative bias, RMSE and 95% confidence interval coverage for different conditions of measurement error in covariates 

when the size of the validation dataset is 0.05 , Frequentist MI model with bias correction 

 

Additive 

Variance 

Misclassification Model 1 

Relative Bias (%) RMSE Coverage 

  MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

 

1 

SN=SP=0.90 1.53 -5.03 -20.22 0.0031 0.0045 0.0107 0.58 0.55 0.21 

SN=SP=0.70 1.40 -5.48 -20.36 0.0031 0.0045 0.0108 0.58 0.54 0.20 

 

2 

SN=SP=0.90 -0.96 -8.03 -21.71 0.0030 0.0055 0.0115 0.56 0.49 0.18 

SN=SP=0.70 -0.80 -7.93 -21.76 0.0030 0.0054 0.0115 0.56 0.49 0.18 

  Model 2 

  Relative Bias (%) RMSE Coverage 

  MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

 

1 

SN=SP=0.90 -1.99 -45.78 -59.91 0.0044 0.0230 0.0299 0.53 0.05 0.01 

SN=SP=0.70 -2.01 -45.89 -60.12 0.0044 0.0231 0.0301 0.52 0.05 0.01 

 

2 

SN=SP=0.90 -6.17 -49.17 -62.19 0.0054 0.0247 0.0311 0.49 0.04 0.01 

SN=SP=0.70 -6.16 -49.03 -62.07 0.0053 0.0246 0.0310 0.50 0.04 0.01 

  Model 3 

  Relative Bias (%) RMSE Coverage 

  MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

 

1 

SN=SP=0.90 -0.55 -6.42 -22.93 0.0027 0.0047 0.0119 0.56 0.50 0.13 

SN=SP=0.70 -0.42 -6.64 -22.91 0.0027 0.0048 0.0119 0.55 0.51 0.12 

 

2 

SN=SP=0.90 -0.41 -6.68 -22.67 0.0026 0.0048 0.0118 0.55 0.50 0.13 

SN=SP=0.70 -0.35 -6.48 -22.67 0.0027 0.0047 0.0118 0.55 0.50 0.13 

 

Note: Model 1 is the predictive model with the observed disease status and the imputed disease predictors as covariates; Model 2 is the 

predictive model with the imputed disease predictors as covariates only; Model 3 is the predictive model with the observed disease 

status as covariate only. SN = sensitivity; SP = specificity. RMSE = root mean squared error. MCAR denotes the missing completely 

at random mechanism; MAR denotes the missing at random mechanism; MNAR denotes the missing not at random mechanism.  

 

4
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Next, the effects of the magnitude of the error in the covariates on the performance of three 

different models were described. As Table 5-8 indicates, Model 1 had slightly larger coverage 

probability (8.12% on average) when the additive variance Var(  )=1 than when the additive 

variance Var(  )=2, regardless of the missingness mechanism. Model 1 had slightly less absolute 

value of relative bias and RMSE when the additive variance Var(  )=1 than when the additive 

variance Var(  )=2. For Model 2, when the additive variance Var(  )=1, the relative bias and 

RMSE were slightly smaller and the coverage probability was slightly greater than when the 

additive variance Var(  )=2 under the MCAR and MAR conditions. Both Model 1 and Model 2 

were not sensitive to the different values of the sensitivity and specificity of the binary covariate. 

And for the Model 3, the results were similar across different magnitudes of the measurement 

error in the covariates.  

 

 

 

 

 

 

 



Table 5-9: Relative bias, RMSE and 95% confidence interval coverage for different conditions of measurement error in covariates 

when the size of the validation dataset is 0.20 , Frequentist MI model with bias correction 

Additive 

Variance 

Misclassification Model 1 

Relative Bias (%) RMSE Coverage 

  MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

 

1 

SN=SP=0.90 -1.35 -2.86 -19.02 0.0016 0.0020 0.0096 0.72 0.74 0.03 

SN=SP=0.70 -1.29 -2.85 -19.12 0.0016 0.0020 0.0096 0.73 0.74 0.03 

 

2 

SN=SP=0.90 -2.63 -3.92 -19.68 0.0020 0.0024 0.0099 0.66 0.62 0.02 

SN=SP=0.70 -2.74 -3.96 -19.79 0.0020 0.0024 0.0100 0.65 0.62 0.02 

  Model 2 

  Relative Bias (%) RMSE Coverage 

  MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

 

1 

SN=SP=0.90 -22.89 -68.08 -72.06 0.0117 0.0339 0.0358 0.07 0.00 0.00 

SN=SP=0.70 -22.71 -68.13 -72.18 0.0116 0.0339 0.0359 0.08 0.00 0.00 

 

2 

SN=SP=0.90 -25.70 -69.75 -73.42 0.0131 0.0347 0.0365 0.05 0.00 0.00 

SN=SP=0.70 -25.69 -69.80 -73.48 0.0130 0.0347 0.0366 0.04 0.00 0.00 

  Model 3 

  Relative Bias (%) RMSE Coverage 

  MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

 

1 

SN=SP=0.90 -0.29 -1.49 -18.99 0.0015 0.0016 0.0095 0.74 0.83 0.02 

SN=SP=0.70 -0.19 -1.44 -19.00 0.0015 0.0016 0.0096 0.75 0.83 0.02 

 

2 

SN=SP=0.90 -0.13 -1.46 -18.92 0.0015 0.0016 0.0095 0.74 0.83 0.02 

SN=SP=0.70 -0.30 -1.46 -18.94 0.0015 0.0016 0.0095 0.74 0.83 0.02 

Note: Model 1 is the predictive model with the observed disease status and the imputed disease predictors as covariates; Model 2 is the 

predictive model with the imputed disease predictors as covariates only; Model 3 is the predictive model with the observed disease 

status as covariate only. Model 3 is the predictive model with the observed response only. SN = sensitivity; SP = specificity. RMSE = 

root mean squared error. MCAR denotes the missing completely at random mechanism; MAR denotes the missing at random 

mechanism; MNAR denotes the missing not at random mechanism.  

5
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The results shown in Table 5-9 were based on the validation dataset whose size was 0.20 . 

Under the MCAR, MAR and MNAR conditions and when the additive variance Var(  )=1, the 

coverage probability of Model 1 was 10.69%, 19.35% and 50.00% greater than the coverage 

probability when the additive variance Var(  )=2, respectively. For example, under the MAR 

condition when the additive variance Var(  )=1 and sensitivity and specificity were both equal to 

0.90, the relative bias, RMSE and coverage probability were -2.86%, 0.0020 and 0.74, 

respectively. Under the MAR condition, when the additive variance Var(  )=1 and sensitivity 

and specificity were both equal to 0.70, the relative bias, RMSE and coverage probability were   

-2.85%, 0.0020 and 0.74, respectively. However, under the MAR condition when the additive 

variance Var(  )=2 and sensitivity and specificity were equal to 0.90, the relative bias, RMSE 

and coverage probability were -3.92%, 0.0024 and 0.62, respectively. For Model 2, when the 

additive variance Var(  )=2, the average of the absolute relative bias over three the missingness 

mechanisms was 3.62% greater than that when the additive variance Var(  )=1. However, the 

coverage probability of Model 2 was very small and does not change as the magnitude of 

measurement error in the covariates change.  Model 3 still had stable values of relative bias, 

RMSE, and coverage probability with the additive variance increases and sensitivity and 

specificity decrease. For example, under the MAR condition the coverage was 0.83 regardless of 

the amount of error in the continuous covariate and the sensitivity and specificity of the binary 

covariate.              



Table 5-10: Relative bias, RMSE and 95% confidence interval coverage for different conditions of measurement error in covariates 

when the size of the validation dataset is 0.35 , Frequentist MI model with bias correction 

Additive 

Variance 

Misclassification Model 1 

Relative Bias (%) RMSE Coverage 

  MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

 

1 

SN=SP=0.90 -1.37 -2.86 -18.36 0.0014 0.0020 0.0092 0.82 0.74 0.01 

SN=SP=0.70 -1.38 -2.85 -18.34 0.0014 0.0020 0.0092 0.82 0.74 0.01 

 

2 

SN=SP=0.90 -2.41 -3.92 -18.84 0.0017 0.0024 0.0094 0.74 0.62 0.01 

SN=SP=0.70 -2.41 -3.96 -18.86 0.0017 0.0024 0.0094 0.74 0.62 0.01 

  Model 2 

  Relative Bias (%) RMSE Coverage 

  MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

 

1 

SN=SP=0.90 -37.95 -68.08 -77.96 0.0190 0.0339 0.0388 0.00 0.00 0.00 

SN=SP=0.70 -37.87 -68.13 -78.00 0.0190 0.0339 0.0388 0.00 0.00 0.00 

 

2 

SN=SP=0.90 -40.27 -69.75 -78.93 0.0202 0.0347 0.0393 0.00 0.00 0.00 

SN=SP=0.70 -40.22 -69.80 -79.02 0.0201 0.0347 0.0393 0.00 0.00 0.00 

  Model 3 

  Relative Bias (%) RMSE Coverage 

  MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

 

1 

SN=SP=0.90 -0.14 -1.49 -18.08 0.0013 0.0016 0.0091 0.87 0.83 0.01 

SN=SP=0.70 -0.12 -1.44 -18.07 0.0013 0.0016 0.0091 0.87 0.83 0.01 

 

2 

SN=SP=0.90 -0.07 -1.46 -18.09 0.0013 0.0016 0.0091 0.87 0.83 0.01 

SN=SP=0.70 -0.14 -1.46 -18.06 0.0013 0.0016 0.0090 0.87 0.83 0.01 

Note: Model 1 is the predictive model with the observed disease status and the imputed disease predictors as covariates; Model 2 is the 

predictive model with the imputed disease predictors as covariates only; Model 3 is the predictive model with the observed disease 

status as covariate only. SN = sensitivity; SP = specificity. RMSE = root mean squared error. MCAR denotes the missing completely 

at random mechanism; MAR denotes the missing at random mechanism; MNAR denotes the missing not at random mechanism.

5
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Table 5-10 reveals that when the size of the validation dataset increased to 0.35  the 

magnitude of the measurement error in the covariates remained influential for Model 1 but has 

less impact on the results for Model 2. Specifically, under the MCAR condition, when the 

additive variance Var(  )=1, the coverage was 10.81% larger than when the additive variance 

Var(  )=2. And under the MAR condition when the additive variance Var(  )=1, the coverage 

was 19.35% greater than when the additive variance Var(  )=2. For Model 2, there was little 

difference in the relative bias and RMSE between the two measurement error conditions for the 

continuous covariate, but the coverage for Model 2 were all close to zero. As for Model 3, it still 

remained stable across different magnitude of the measurement error in covariates.
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Figure 5-7 Prevalence estimates of Model 3 by number of imputations when the sensitivity is 

0.60, Frequentist MI model with bias correction, and the missingness mechanism is MCAR 
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The effect of the number of imputations is examined next. Figure 5-7 reveals that the 

average prevalence estimate remains close to 0.05 regardless the size of the validation dataset. In 

panel A, the prevalence estimates range from 0.03 to 0.08 and does not change with the number 

of imputations. Specifically, the minimum and maximum of the prevalence estimates with three 

imputations are 0.030 and 0.076 (mean is 0.049) and the minimum and maximum of the 

prevalence estimates with forty imputations are 0.034 and 0.066 (mean is 0.050). Panel C 

displays the range of prevalence estimates when the size of the validation dataset is 0.35 . The 

range is similar for different number of imputations. For example, the minimum and maximum 

of the prevalence estimates with three imputations are 0.042 and 0.058 (mean is 0.048) and the 

minimum and maximum of the prevalence estimates with forty imputations are 0.040 and 0.056 

(mean is 0.048). Comparing panel A and panel C, we can notice that the range of the prevalence 

estimates based on 0.35  validation dataset is eloquently smaller than that based on 0.05  

validation dataset through all different numbers of imputations. But the mean of the prevalence 

estimates over 500 replications for specific number of imputations remains close to the true 

prevalence.           
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Figure 5-8 Standard errors of prevalence estimates of Model 3 by number of imputations when 

the sensitivity is 0.60, Frequentist MI model with bias correction, and the missingness 

mechanism is MCAR 
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As Figure 5-8 reveals, the range of the standard error of the prevalence estimate decrease 

from almost 0.020 to just over 0.005 when the number of imputations increases from 3 to 15. 

However, when the number of imputations is 20, the range increases, and is similar in size to 

when the number of imputations is three. When the number of imputations is 40, the range of the 

standard error of prevalence estimate decreases to approximately 0.005. The mean of the 

standard error of prevalence estimate decreased by 45.87% as the number of imputations 

increases from three to 10. Panel C of Figure 5-8 shows the box plot of the standard error of 

prevalence estimate when the size of the validation dataset is 0.35 . In this situation, the mean 

of the standard error of prevalence estimate slightly decrease from 0.002 to 0.001 and the range 

also decreases with the number of imputations increases except than when the number of 

imputations is 10.  

For the MCAR condition, the range and mean of the prevalence estimates was constant 

across the different dataset size conditions. As for the range and mean of the standard error of the 

prevalence estimates they decreased significantly as the number of imputations increased when 

the size of the validation dataset was 0.05  and decrease slightly when the size of the validation 

data set was 0.35 . 
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Figure 5-9 Prevalence estimates of Model 3 by number of imputations when the sensitivity is 

0.60, Frequentist MI model with bias correction, and the missingness mechanism is MAR 
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Figure 5-10 Standard errors of prevalence estimates of Model 3 by number of imputations when 

the sensitivity is 0.60, Frequentist MI model with bias correction, and the missingness 

mechanism is MAR
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Figure 5-11 Prevalence estimates of Model 3 by number of imputations when the sensitivity is 

0.60, Frequentist MI model with bias correction, and the missingness mechanism is MNAR
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Figure 5-12 Standard errors of prevalence estimates of Model 3 by number of imputations when 

the sensitivity is 0.60, Frequentist MI model with bias correction, and the missingness 

mechanism is MNAR 
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Other than the figures shown above, the trend of the prevalence estimates and standard 

errors of prevalence estimates with increasing size of the validation dataset and the number of 

imputations for other values of sensitivity and models were same as when the sensitivity was 

0.60 and for Model 3.  
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CHAPTER 6. CONCLUSIONS AND DISCUSSION 

The purpose of the research was to investigate different MI methods that can estimate the 

disease prevalence accurately and examine the factors that influence the performance of MI 

methods. The simulation study fulfilled the objectives that MI methods using Frequentist or 

Bayesian logistic regression model as predictive model could improve the prevalence estimate; 

the characteristics of model-based case-detection algorithms including sensitivity of observed 

disease status and type and magnitude of measurement error in the predictors of disease status 

slightly influenced the performance of the MI methods; and the effect of the size of the 

validation dataset was significant to accurately estimate the prevalence while increasing the 

number of imputations on the performance of MI methods only decreased the standard error of 

the prevalence estimate.  

6.1 Conclusions 

The Frequentist MI model with bias correction had superior performance of estimating 

disease prevalence to Frequentist MI model without bias correction and Bayesian MI model 

regardless the size of the validation dataset, which was demonstrated via the simulation study in 

scenario 1. In scenario 1, the Frequentist MI model with bias correction performed well under 

MCAR and MAR with small relative bias, RMSE and reasonable coverage probability of the 

95% confidence interval. When the sensitivity was 0.75 or 0.90, the Bayesian MI model had 

smaller relative bias and RMSE than the Frequentist MI model without bias correction, but under 

MCAR the Bayesian MI model had substantially smaller coverage compared with the 

Frequentist MI model without bias correction. For the Bayesian MI model, the relative bias 

under MNAR was greater than the relative bias under MCAR and MAR, and the relative bias 

decreased with the size of the vlidation dataset increasing. For the Frequentist MI model without 

bias correction, the relative bias and RMSE increased with the size of the validation increasing.  

In both scenario 1 and scenario 2, the missingness mechanism had a significant impact on 

the accuracy of the prevalence estimates. Especially, when the missingness mechanism was 

MNAR that is the data violated the MAR assumption of the MI methods, even the Frequentist 

MI model with bias correction would have very small coverage.  
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Based on the results of scenario 1 and scenario 2, it is demonstrated that the predictive 

model with observed disease status as covariate can achieve the goal to estimate the disease 

prevalence correctly. In scenario 1, the Frequentist MI model with bias correction having 

observed disease status as covariate of the predictive model had the smallest relative bias 

regardless of the missingness mechanism, the size of the validation dataset and the sensitivity of 

the observed disease status. In scenario 2, the Frequentist MI model with bias correction having 

observed disease status as covariate of the predictive model also had the smallest relative bias 

compared with the other two predictive models. Table 5-5, Table 5-6 and Table 5-7 suggest that 

the Model 1 with the observed disease status and imputed disease predictors as covariates and 

Model 3 with observed disease status only can be applied to estimate the prevalence. And the 

model (Model 2) only with imputed disease predictors as covariates has low coverage probability 

indicating that the method to impute the disease predictors first and then use the imputed disease 

predictors to impute the true disease status did not perform well, especially when the missingness 

mechanism is MAR. From Table 5-8, Table 5-9 and Table 5-10, one can quickly make the 

observation that larger additive variance in the continuous disease predictor can result in bigger 

relative bias, RMSE and smaller coverage than when variance is smaller in the disease predictor 

for Model 1. Generally, the Model 3 did not change with the change of the magnitude of the 

measurement error in disease predictors. The reason is that Model 3 only has the observed 

disease status as the covariate of predictive model. However, if the Frequentist MI model without 

bias correction is used, Model 2 performed better than Model 1 and Model 3.   

The effect of the size of the validation dataset was significant both in scenario 1 and 

scenario 2. Increasing the size of the validation dataset reduced the relative bias and RMSE for 

both Frequentist MI model with bias correction and Bayesian MI model as well as for different 

predictive models under different missingness mechanisms. This is reasonable because the larger 

the size of the validation dataset is the more information are provided to build the model which 

can correctly reflect the association between the observed disease status and true disease status. 

It is recommended to increase the size of the validation dataset when implementing the MI 

methods to correct for measurement errors.  

The consequence of the sensitivity of the observed disease status depends on the MI method 

and the missingness mechanism. Generally, if the missingness mechanism is MNAR, the relative 

bias and RMSE would decrease with the sensitivity of the observed disease status increasing. In 
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scenario 1, it is also shown that the Bayesian MI model had smaller relative bias and RMSE 

when the sensitivity of the observed disease status is increased. 

The results for scenario 1 and scenario 2 also demonstrate that a large number of 

imputations can improve the precision of the prevalence estimate regardless the missingness 

mechanism. The range and mean of standard errors for different validation dataset sizes and 

different missingness mechanisms (including MCAR, MAR and MNAR) all decreased in 

varying degrees with the number of imputations increasing. Overall, we can see that the effect of 

the number of imputations was important when the size of the validation dataset was 0.05 , 

while it became less important when the size of the validation dataset was as large as 0.35 , 

regardless of the missingness mechanism. Increase the validation dataset can improve both the 

accuracy and precision of prevalence estimate, and increase the number of imputations can only 

improve the precision.   

6.2 Discussion 

The predictive models in this research were constructed using a logistic regression model 

with selected variables. In medical research, the logistic regression model is widely used to 

construct predictive models
90,91

. By using logistic regression, the observed disease status is 

directly modeled to the true disease status. In this way, the MI can be easily implemented to 

impute the individual’s true disease status so that the prevalence of the entire population is 

estimated. On the other hand, the predictive model can also be defined by the conditional 

distribution of true disease status on all the information provided by observed disease status and 

disease predictors. The alternative approach is sequential regression multiple imputation, which 

specifies a series of separate conditional distributions for each incomplete variable without the 

need to fit a multivariate model
92

. In this way, the relationship between the observed disease 

status and true disease status is studied based on the separate models, which preserves the 

structure in the data as well as the uncertainty about this structure and includes any knowledge 

about the process that generated the missing data. Usually, these foundational models are 

specified by expertize in the field, which may also be misspecified. We also studied the 

sequential regression multiple imputation that can be used as the predictive models in Frequentist 

approach and as the joint distribution in fully Bayesian approach (Appendix C). The sequential 
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regression models include the model of sensitivity and specificity (i.e., in scenario 1 is the true 

disease status conditional on the observed disease status; in scenario 2 is the true disease status 

conditional on the observed disease status and disease predictors), the disease model, the 

measurement error model for continuous disease predictor, and the misclassification model for 

binary disease predictor.   

In scenario 1, the comparison of the Bayesian MI model and the Frequentist MI model 

without bias correction substantiated the theory that the Bayesian approach with non-informative 

prior distribution should have approximate results as the maximum likelihood estimation of 

Frequentist approach. However, in reality the size of the validation dataset is quite small and the 

prevalence is very low. That means we encountered the problem of small sample size and sparse 

data (i.e., data with few or no subjects at crucial combinations of variable values). For the 

Frequentist MI model without bias correction, the relative bias and RMSE were the largest when 

the sensitivity was 0.90 under the MNAR condition. The reason is the very small sample size and 

the unbalanced values in the contingency table with sensitivity 0.9 and specificity 1.0. We 

implemented the bias correction algorithm with maximum likelihood estimation in Frequentist 

approach and it produced small relative bias, good precision and confidence coverage. The 

Bayesian approach may be improved by selecting an appropriate prior distribution based on 

expert recommendation. A number of studies have developed different informative prior 

distributions that can also improve the inference of Bayesian approach
93,94

. 

In scenario 2, we investigated predictive models with different selected variables as 

covariates of the predictive model based on Frequentist MI model with bias correction. It is 

generally recommended to include a rich set of predictors that are relevant to the imputed 

variable when imputing missing values
95

. However, the results indicate that the observed disease 

status as covariate of the predictive model to impute the true disease status is as good as the 

predictive model with observed disease status and imputed disease predictors. If the primary 

object of this research is to correctly estimate the association between the disease predictors and 

the disease status, using the predictive model with observed disease status and imputed disease 

predictors to impute true disease status should be helpful to correctly estimate the coefficients of 

the disease model.      
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The assumption of the MI methods in this research was that non-differential measurement 

error exists in the covariates, which means the measurement error models are the same for 

individuals with disease as those without disease. In AHDs, the data are usually collected 

prospectively, thus the non-differential measurement error assumption of the covariates is 

assumed to be reasonable. In addition, the non-differential measurement error assumption is 

appropriate, except for case-control studies and when           is not the observed measure 

of           but a surrogate variable as a proxy of  . That means for case-control studies the 

measure of the true values tend to be biased. Thus the methods here may not be applied to 

problems in which measurement error models are different for individuals with and without 

disease.  

If the missingness mechanism is MNAR, MI methods could not substantially improve the 

accuracy of population disease prevalence estimates over the naïve estimation method. So it is 

important to identify the missingness mechanism based on how the validation study was 

conducted. In one study, the diagnoses contained in the medical charts of the cohort of Quebec 

seniors enrolled in the medical office of the 21
st
 century (MOXXI) study were used to validate 

administrative health data
5
. This validation dataset should result in the MCAR mechanism for 

missing records of people not enrolled in the MOXXI study because the study adopted a 

randomized trial design in a study population of 110 primary care physicians in Montreal, 

Quebec. In a different study, Bone Mineral Density (BMD) testing results from Manitoba were 

used to assess the validity of osteoporosis cases ascertained from administrative databases.
11

 It is 

likely that the MAR mechanism characterizes the missing test results. Bone Mineral Density 

(BMD) testing in Manitoba requires physician referral; individuals who are referred are more 

likely to be female and age 65 years or older. Thus, whether a person is in the testing program is 

conditional on observed covariates. Another study to validate the accuracy of identification of 

patients with immune thrombocytopenic purpura (ITP) through administrative records
38

 is likely 

to result in MNAR missing diagnoses from the Electronic Patient Record (the medical record) of 

people who do not have the records. The reason is that the records were retrieved from inpatients 

and outpatients with ITP as a primary or secondary diagnosis which was missing if people do not 

have the medical record of ITP.   
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6.3 Summary and Recommendations  

Our finding suggest that using MI methods to improve the accuracy of case ascertainment in 

AHDs can result in a valid dataset for public usage including surveillance, utilization review of 

services, policy evaluation, and risk adjustment. In this research, the MI methods accounted for 

the measurement error both in disease status and disease predictors, which appears frequently in 

practice. More reliable estimates of variability are provided by accommodation of the uncertainty 

caused by missing data. So it is recommended to apply MI methods to correct the potentially 

inaccurate disease diagnoses in AHDs before using the AHDs to do further research or decision-

making.   

We examined MI methods using both a Bayesian and Frequentist logistic model, which, to 

the best of our knowledge, has not previously been studied. Considering the characteristics of the 

AHD, we developed a valid MI method (in Frequentist approach with Bias Correction algorithm) 

that can estimate the disease prevalence even though the validation dataset is small and the 

specificity is close to one.  

From the results, the Frequentist MI with bias correction is not sensitive to the sensitivity of 

the observed disease status under MCAR and MAR missingness mechanisms. Thus the MI 

methods can be applied to address the misclassification of the observed response when it is 

assumed to be under-reported.  

The investigation of the potential factors that may influence the performance of the 

estimation of the disease prevalence provides a guideline for future research to deal with the 

missing data and measurement error problem. The most appropriate method can be implemented 

depending on the missingness mechanism and the size of the validation dataset. If the sampling 

mechanism of the validation dataset can be expected to result in MCAR or MAR missing data in 

the main dataset, the size of the validation dataset is less than 35% of the population, and there is 

no specified prior distribution for the Bayesian method, then the Frequentist MI model with bias 

correction provides more accurate estimates of prevalence and is recommended based on our 

simulation study. When selecting covariates for the predictive model, regardless of whether the 

misclassification of the observed disease status is dependent on or independent of disease 

predictors that contain measurement error, the Frequentist MI model with bias correction is 
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recommended. And it is recommended that when applying the MI method, the number of 

imputations toned not be greater than 20. Not only will more imputations result in a longer 

computational time, but may also decrease the coverage probability (i.e., precision) of the 

confidence intervals.  

6.4 Future Research 

There are a number of opportunities for future research. The study is based on the 

main/validation dataset design in which the validation dataset contains disease status and disease 

predictors measured without error. However, the validation dataset may also contain 

mismeasured values. Further research might explore this situation. Methods for measurement 

error correction with the assumption that the ‘true’ values gathered from validation dataset are 

also error-prone should be investigated.  

We compared the MI methods based on Frequentist logistic model and Bayesian logistic 

model in scenario 1. We would like to explore the MI method using Bayesian logistic model in 

scenario 2 in next step. The MI method using Bayesian logistic model is using MCMC to draw 

the samples of the parameters of the predictive logistic model, then the multiple values of true 

disease status are imputed using the multiple values of the parameters. The fully Bayesian MI 

method that draw the multiple samples of the disease status from the posterior distribution based 

on the joint distribution also deserves investigation so that it can be applied in AHDs.   

In this research, we propose the method to correctly ascertain the disease cases by taking 

use of the observed disease status and relevant disease markers. For future research, the 

association between the true disease status and the disease predictors might be examined. We 

will examine the performance of MI methods to estimate the coefficient of the covariates in the 

disease model.   

The attention of the study has been restricted to the case where the covariates of the disease 

model are independent. The disease markers maybe correlated with each other. Thus extensions 

to the correlated covariates could also be developed.  
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In practice, the MAR assumption is very difficult to test. And the MNAR is possible, so the 

development of the method that can be implemented to deal with the missing data even the 

missingness mechanism is MNAR would be valuable and innovative.
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APPENDIX A: EXTRA RESULTS FOR SCENARIO 1 

 

 

 

Figure A-1 Prevalence estimates for the Frequentist MI model with bias correction when the 

missingness mechanism is MCAR and sensitivity is 0.75  
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Figure A-2 Standard error of prevalence estimate for the Frequentist MI model with bias 

correction when the missingness mechanism is MCAR and sensitivity is 0.75 
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Figure A-3 Prevalence estimates for the Frequentist MI model with bias correction when the 

missingness mechanism is MCAR and sensitivity is 0.90 
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Figure A-4 Standard error of prevalence estimate for the Frequentist MI model with bias 

correction when the missingness mechanism is MCAR and sensitivity is 0.90   
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APPENDIX B 

Table B-1: Relative bias, RMSE and 95% confidence interval coverage when the size of the 

validation dataset is 0.05 , Frequentist MI model without bias correction 

Sensitivity of 

observed 

disease status 

Missing 

mechanism 

Model 1 Model 2 Model 3 

  Relative Bias (%) 

0.60 MCAR -20.29 -3.70 -26.69 

 MAR -22.83 -40.14 -27.66 

 MNAR 119.68 -37.06 -23.45 

0.75 MCAR 11.56 -3.59 -32.07 

 MAR 7.23 -48.14 -33.78 

 MNAR 269.57 -39.44 55.86 

0.90 MCAR 326.42 -3.57 25.50 

 MAR 321.73 -39.72 20.64 

 MNAR 566.74 -37.88 320.38 

  RMSE 

0.60 MCAR 0.0169 0.0048 0.0147 

 MAR 0.0167 0.0206 0.0157 

 MNAR 0.0790 0.0291 0.0329 

0.75 MCAR 0.0276 0.0053 0.0186 

 MAR 0.0256 0.0247 0.0193 

 MNAR 0.1518 0.0286 0.0640 

0.90 MCAR 0.1797 0.0050 0.0467 

 MAR 0.1778 0.0271 0.0445 

 MNAR 0.2967 0.0285 0.1937 

  Coverage 

0.60 MCAR 0.28 0.49 0.33 

 MAR 0.28 0.07 0.32 

 MNAR 0.13 0.02 0.06 

0.75 MCAR 0.27 0.49 0.28 

 MAR 0.26 0.03 0.27 

 MNAR 0.18 0.02 0.12 

0.90 MCAR 0.25 0.49 0.25 

 MAR 0.24 0.02 0.24 

 MNAR 0.18 0.02 0.21 

Note: Model 1 is the predictive model with the observed disease status and the imputed disease 

predictors as covariates; Model 2 is the predictive model with the imputed disease predictors as 

covariates only; Model 3 is the predictive model with the observed disease status as covariate 

only. RMSE = root mean squared error. MCAR denotes the missing completely at random 

mechanism; MAR denotes the missing at random mechanism; MNAR denotes the missing not at 

random mechanism.  
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Table B-2: Relative bias, RMSE and 95% confidence interval coverage when the size of the 

validation dataset is 0.20 , Frequentist MI model without bias correction 

Sensitivity of 

observed 

disease status 

Missing 

mechanism 

Model 1 Model 2 Model 3 

  Relative Bias (%) 

0.60 MCAR -27.06 -5.28 -23.52 

 MAR -31.22 -42.82 -27.51 

 MNAR -53.52 -66.91 -53.85 

0.75 MCAR -31.93 -5.30 -29.37 

 MAR -36.98 -51.81 -34.22 

 MNAR -37.64 -67.00 -50.78 

0.90 MCAR 62.96 -5.27 -35.22 

 MAR 50.10 -60.76 -41.24 

 MNAR 202.53 -66.94 -27.71 

  RMSE 

0.60 MCAR 0.0144 0.0038 0.0127 

 MAR 0.0166 0.0214 0.0148 

 MNAR 0.0276 0.0333 0.0274 

0.75 MCAR 0.0170 0.0038 0.0158 

 MAR 0.0197 0.0256 0.0184 

 MNAR 0.0238 0.0333 0.0263 

0.90 MCAR 0.0481 0.0038 0.0189 

 MAR 0.0434 0.0303 0.0221 

 MNAR 0.1167 0.0333 0.0285 

  Coverage 

0.60 MCAR 0.21 0.63 0.27 

 MAR 0.19 0.00 0.26 

 MNAR 0.03 0.00 0.04 

0.75 MCAR 0.20 0.63 0.24 

 MAR 0.19 0.00 0.23 

 MNAR 0.08 0.00 0.08 

0.90 MCAR 0.22 0.63 0.23 

 MAR 0.22 0.00 0.22 

 MNAR 0.22 0.00 0.14 

Note: Model 1 is the predictive model with the observed disease status and the imputed disease 

predictors as covariates; Model 2 is the predictive model with the imputed disease predictors as 

covariates only; Model 3 is the predictive model with the observed disease status as covariate 

only. RMSE = root mean squared error. MCAR denotes the missing completely at random 

mechanism; MAR denotes the missing at random mechanism; MNAR denotes the missing not at 

random mechanism.  
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Table B-3: Relative bias, RMSE and 95% confidence interval coverage when the size of the 

validation dataset is 0.35 , Frequentist MI model without bias correction 

Sensitivity of 

observed disease 

status 

Missing 

mechanism 

Model 1 Model 2 Model 3 

  Relative Bias (%) 

0.60 MCAR -22.21 -4.62 -19.15 

 MAR -29.32 -42.30 -26.30 

 MNAR -53.42 -66.94 -52.62 

0.75 MCAR -26.13 -4.53 -23.94 

 MAR -34.83 -51.63 -32.99 

 MNAR -49.10 -66.96 -49.24 

0.90 MCAR -0.31 -4.60 -28.94 

 MAR -13.44 -60.51 -39.24 

 MNAR 88.17 -66.89 -44.80 

  RMSE 

0.60 MCAR 0.0118 0.0033 0.0104 

 MAR 0.0156 0.0211 0.0141 

 MNAR 0.0271 0.0333 0.0267 

0.75 MCAR 0.0139 0.0033 0.0129 

 MAR 0.0185 0.0257 0.0176 

 MNAR 0.0254 0.0333 0.0253 

0.90 MCAR 0.0178 0.0033 0.0155 

 MAR 0.0191 0.0301 0.0210 

 MNAR 0.0586 0.0333 0.0241 

  Coverage 

0.60 MCAR 0.19 0.73 0.27 

 MAR 0.19 0.00 0.24 

 MNAR 0.03 0.00 0.03 

0.75 MCAR 0.20 0.74 0.23 

 MAR 0.20 0.00 0.22 

 MNAR 0.06 0.00 0.07 

0.90 MCAR 0.22 0.74 0.22 

 MAR 0.22 0.00 0.22 

 MNAR 0.19 0.00 0.13 

Note: Model 1 is the predictive model with the observed disease status and the imputed disease 

predictors as covariates; Model 2 is the predictive model with the imputed disease predictors as 

covariates only; Model 3 is the predictive model with the observed disease status as covariate 

only. RMSE = root mean squared error. MCAR denotes the missing completely at random 

mechanism; MAR denotes the missing at random mechanism; MNAR denotes the missing not at 

random mechanism.  
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APPENDIX C 

Based on the conditional distribution, the predictive model for imputing the missing true 

response in the main dataset is conditional on the information of observed response, true 

covariates and observed covariates. 

                   
                  

                
                     (C-1)     

To factor the joint distribution                    is dependent on the assumptions of 

the variables. The true disease predictors    and    are independent. From section 3.2, the forms 

of the measurement error models are clarified. When the misclassification of the observed 

response is independent on the disease predictors which is in Scenario 1 of our study, the 

decomposition of the joint distribution of                    is 

                                                                             (C-2)       

The relationship between the observed disease status   and the true disease status   is 

described by measures of sensitivity and specificity. The probability of   conditional on    and 

   is the disease model in Equation 1, which reflects the relationship between the disease and 

predictors. When the misclassification of the observed disease status is dependent on the disease 

predictors, the decomposition of the joint distribution of                    is 

                                                                    (C-3)   

The relationship between the observed disease status   and the true disease status   is 

dependent on the true disease predictors, which means the sensitivity and specificity of the 

observed disease status   varies across different values of the disease predictors. It characterizes 

how the errors appear in the observed response. Also, the probability of   conditional on    and 

   is the disease model as Equation 1 that reflects the relationship between the disease and 

disease markers.   

We develop the sequential regression MI method first for the scenario 1 when the 

misclassification of the observed disease status is independent of the disease predictors. Based on 

the decomposition of the joint distribution of                    as Equation 23, we can 

have 
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∑                                        
 

 
                       

                                                   
 

As for the sequential regression MI method for the scenario 2 when the misclassification of 

the observed disease status is dependent on the disease predictors, based on the decomposition of 

the joint distribution of                    as Equation 24 we can have 

                     

 
                                                       

∑                                        
 

Based on this predictive model for true disease status, the probability of disease conditional 

on the disease predictors need to be estimated from validation dataset, the sensitivity and 

specificity of the observed disease status also need to be estimated from the validation dataset. 

Since in the main dataset the true values of the covariates are unobservable, this predictive model 

also needs more information to be applied to correct for measurement error. 

  



88 

  

 

APPENDIX D 

Computer Simulation Program for Scenario 1: Misclassification of Observed Disease 

Status is Independent of Disease Predictors 

Following program code were run for the conditions that when the sensitivity of the 

observed disease status was 0.60, the size of the validation dataset was 0.05N, the number of 

imputations including 3, 5, 10, 15, 20 and 40, and the missingness mechanism was specified as 

MCAR, MAR or MNAR.   

Libname MCAR 'C:\MISIM Program\MCAR'; 

proc iml; 

** Specify simulation parameters**; 

ntot=10000; **total number of observations in the dataset**; 

specificity=1.0; **Specificity of whole population dataset**; 

nsim=500; **number of simulations**; 

sensitivity=0.6; 

valrate=0.05; 

numberofimpute={3 5 10 15 20 40}; 

beta0=-2.785; **Specify the coefficient value**; 

beta1=0.539;  

beta2=-0.693; 

**create counters for disease state**; 

indtrue=j(ntot,1,.); **Temporary indicator of true disease status**; 

indobs=j(ntot,1,.); **Temporary indicator of observed disease status**; 

indval=j(ntot,1,.); **Temporary indicator of presence on the validation cohort**; 

ind=j(ntot,1,.); 

alldata=j(ntot,3,.); 

**ALLDATA: 
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first column = member of the validation cohort (presence=1, otherwise=0), 

second column = true disease state (presence=1, otherwise=0), 

third column = observed disease status (presence=1, otherwise=0); 

 

start binest(beta,cov,y,x,b); **Newton-Raphson Algorithm**; 

 a=nrow(x); 

 b=repeat(0,ncol(x),1); 

 p=j(nrow(x),1,.); 

 oldb=b+1;  

 do iter=1 to 20 while(max(abs(b-oldb))>1e-8); 

  oldb=b; 

  z=x*b; 

  do j=1 to a; 

   if z[j]>0 then pj=1/(1+exp(-z[j])); 

   else pj=exp(z[j])/(1+exp(z[j])); 

   p[j]=pj; 

  end; 

  g=x`*(y-p); 

  w=diag(p*(1-p)`); 

  f=x`*w*x; 

  b=b+ginv(f)*g; 

 end; 

 beta=b; 

 cov=ginv(f); 

finish; 

 

**Bias correction by Cordeiro and McCullagh**; 
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start biascor(bc_beta,bc_cov,y,x,b); 

 a=nrow(x); 

 b=repeat(0,ncol(x),1); 

 p=j(nrow(x),1,.); 

 oldb=b+1; 

 do iter=1 to 20 while(max(abs(b-oldb))>1e-8); 

  oldb=b; 

  z=x*b; 

  do j=1 to a; 

   if z[j]>0 then pj=1/(1+exp(-z[j])); 

   else pj=exp(z[j])/(1+exp(z[j])); 

   p[j]=pj; 

  end; 

  w=diag(p*(1-p)`); 

  f=x`*w*x; 

  d=ginv(f); 

  g=x`*(y-p); 

  e=diag(x*d*x`)*(p-0.5); 

  c=d*x`*w*e; 

  b=b+d*g-c; 

 end; 

 bc_beta=b; 

 bc_cov=d; 

finish; 

 

**Build model to generate vector of regression coefficients for multiple imputations**; 

start betagen(tx,beta,cov,nimpute,seed); 
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 v=nrow(cov); 

 do i=1 to v; **Make sure the covariance matrix is symmetric**; 

  do j=1 to v; 

   if cov[j,i]^=cov[i,j] then cov[j,i]=cov[i,j]; 

  end; 

 end; 

 l=t(root(cov)); 

 z=normal(j(v,nimpute,seed)); 

 x=l*z; 

 x=repeat(beta,1,nimpute)+x; 

 tx=t(x); 

finish; 

 

**Specify starting seeds for all random number generators**; 

randseed=j(11,1,.); 

do i=1 to 11; 

 randseed[i]=int(10000*ranuni(0)); **the seed 0 make sure the ranuni generate differently 

random number each time**; 

end; 

seed1=randseed[1]; 

seed2=randseed[2]; 

seed3=randseed[3]; 

seed4=randseed[4]; 

seed5=randseed[5]; 

seed6=randseed[6]; 

seed7=randseed[7]; 

seed8=randseed[8]; 

seed9=randseed[9]; 
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seed10=randseed[10]; 

seed11=randseed[11]; 

 

ResultAll=j(6,29,.); 

 

do ni=1 to 6; 

 nimpute=numberofimpute[ni]; 

yimpute=j(ntot,nimpute,.); **YIMPUTE: values of disease status for imputation based on 

logistic regression**; 

yimpute_bc=j(ntot,nimpute,.); **YIMPUTE_BC: values of disease status for imputation based 

on bias correction logistic**; 

b_yimpute=j(ntot,nimpute,.);**BYIMPUTE: values of disease status for imputaton based on 

bayesian method**;  

prev=0; **true value of prevalence**; 

obs_prev=0; **value of observed prevalence**; 

obs_bias=0; **The bias of the observed prevalence**; 

SN_U=0; **The sensitivity of the observed response (diagnosis U)**; 

SP_U=0; 

mim_prev=0; **value of prevalence based on bias correction logistic with multiple 

imputation**; 

bias=0; 

rel_bias=0; 

st_bias=0; 

tvar=0;**Total variability of bias correction MIM based on observed response**; 

coverage=0; 

bcmim_prev=0; **value of prevalence based on bias correction logistic with multiple 

imputation**; 

bc_bias=0; 

bcrel_bias=0; 
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bcst_bias=0; 

bc_tvar=0;**Total variability of bias correction MIM based on observed response**; 

bc_coverage=0; 

B_prev=0; **value of prevalence based in Bayesian approach**; 

B_bias=0; **value of bias in Bayesian approach**; 

B_relbias=0; 

B_stbias=0; 

B_tvar=0; 

B_coverage=0; 

 

**Main Body of Simulation**; 

do r=1 to nsim; 

**Generate a continuous covariate data and a binary covariate data**; 

x1=j(ntot,1,.); 

call randseed(seed1); 

call randgen (x1,'normal',0,1); 

x2=j(ntot,1,.); 

call randseed(seed2); 

call randgen (x2,'Bernoulli',.50); 

 

**Create true disease status**; 

do i=1 to ntot; 

 pi=exp(beta0+beta1*x1[i]+beta2*x2[i])/(1+exp(beta0+beta1*x1[i]+beta2*x2[i])); 

 call randseed(seed3); 

 call randgen(yi,'bernoulli',pi); 

 alldata[i,2]=yi; 

end; 
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prev1=sum(alldata[,2])/ntot; 

ytrue=alldata[,2]; 

prev=prev+prev1; 

 

**Create observed disease status**; 

call randseed(seed4);  

call randgen(indobs,'bernoulli',sensitivity); **Depend on Sensitivity only**; 

do i=1 to ntot; 

 if alldata[i,2]=1 then alldata[i,3]=indobs[i]; 

 else alldata[i,3]=0; 

end; 

 

obsprev1=sum(alldata[,3])/ntot; 

obs_prev=obs_prev+obsprev1; 

obs_bias1=prev1-obsprev1; 

obs_bias=obs_bias+obs_bias1; 

**Estimate the sensitivity and specificity of the diagnosis(U)**; 

SN_count=0; 

SP_count=0; 

do i=1 to ntot; 

 if alldata[i,2]=1 & alldata[i,3]=1 then SN_count=SN_count+1; 

 else if alldata[i,2]=0 & alldata[i,3]=0 then SP_count=SP_count+1; 

end; 

SN_U=SN_U+SN_count/sum(alldata[,2]); 

SP_U=SP_U+SP_count/(ntot-sum(alldata[,2])); 

 

**Create indicator for membership in the validation cohort and output validation cohort data into 

a new dataset for analysis**; 
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**MCAR**; 

call randseed(seed5); 

call randgen(indval,'uniform'); 

validss=valrate*ntot; 

temp=rank(indval); 

yset=j(validss,5,1); 

count=0; 

do i=1 to ntot; 

 if temp[i]>validss then alldata[i,1]=0; 

 else if temp[i]<=validss then do; 

  alldata[i,1]=1; 

  count=count+1; 

  yset[count,1]=alldata[i,2]; 

  yset[count,2]=1; 

  yset[count,3]=alldata[i,3]; 

  yset[count,4]=x1[i]; 

  yset[count,5]=x2[i]; 

 end; 

end; 

Varname={y n u x1 x2}; 

create validation from yset [colname=varname]; 

append from yset; 

close validation; 

Val= "Work.Validation"; 

 

**Original estimates of logistic with observed response**; 

call binest(beta,cov,yset[,1],yset[,2:3],b); 
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call betagen(betamat,beta,cov,nimpute,seed6); 

storval=j(nimpute,1,.); 

storvar=j(nimpute,1,.); 

 

do k=1 to nimpute; 

 prob=j(ntot,1,.); 

 fill_vec=j(ntot,1,.);  

 indvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if betamat[k,1]+betamat[k,2]*alldata[i,3]>0 then p=1/(1+exp(-

(betamat[k,1]+betamat[k,2]*alldata[i,3]))); 

  else 

p=exp(betamat[k,1]+betamat[k,2]*alldata[i,3])/(1+exp(betamat[k,1]+betamat[k,2]*alldata[i,3])); 

  prob[i]=p; 

  if alldata[i,1]=0 then do; 

   call randseed(seed7); 

   call randgen(fill,'bernoulli',prob[i]); 

   fill_vec[i]=fill; 

  end; 

  else if alldata[i,1]=1 then fill_vec[i]=alldata[i,2]; 

 end; 

 yimpute[,k]=fill_vec; 

 fprev=sum(fill_vec)/ntot; 

 do i=1 to ntot; 

  indvar[i]=prob[i]*(1-prob[i]); 

 end; 

 predvar=sum(indvar)/ntot**2; 

 storval[k]=fprev; 
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 storvar[k]=predvar; 

end; 

fprev0=sum(storval)/nimpute; 

mim_prev=mim_prev+fprev0; 

bias1=fprev0-prev1; 

bias=bias+bias1; 

rel_bias1=bias1/prev1; **The bias relative to the true prevelance**; 

rel_bias=rel_bias+rel_bias1; 

wvar=sum(storvar)/nimpute;  **Within Imputation Variance of Bias Correction MIM based on 

observed response only**; 

 

do q=1 to nimpute; 

 bvar=sum((storval[q]-sum(storval)/nimpute)**2)/(nimpute-1); 

end; 

 

tvar0=(wvar+(1+1/nimpute)*bvar); **Total variability of Bias Correction MIM based on 

observed response only**; 

tvar=tvar+tvar0; 

SE=sqrt(tvar0); 

st_bias1=bias1/SE; 

st_bias=st_bias+st_bias1; 

LCI=prev-1.96*SE; 

UCI=prev+1.96*SE; 

a=LCI<=prev1 & prev1<=UCI; 

coverage=coverage+a; 

 

**Bias Correction estimates of logistic with observed response**; 

call biascor(bc_beta,bc_cov,yset[,1],yset[,2:3],b); 
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call betagen(bcbetamat,bc_beta,bc_cov,nimpute,seed8); 

bc_storval=j(nimpute,1,.); 

bc_storvar=j(nimpute,1,.); 

 

do k=1 to nimpute; 

 bc_prob=j(ntot,1,.); 

 bcfill_vec=j(ntot,1,.);  

 bc_indvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if bcbetamat[k,1]+bcbetamat[k,2]*alldata[i,3]>0 then bcp=1/(1+exp(-

(bcbetamat[k,1]+bcbetamat[k,2]*alldata[i,3]))); 

  else 

bcp=exp(bcbetamat[k,1]+bcbetamat[k,2]*alldata[i,3])/(1+exp(bcbetamat[k,1]+bcbetamat[k,2]*al

ldata[i,3])); 

  bc_prob[i]=bcp; 

  if alldata[i,1]=0 then do; 

   call randseed(seed9); 

   call randgen(bcfill,'bernoulli',bc_prob[i]); 

   bcfill_vec[i]=bcfill; 

  end; 

  else if alldata[i,1]=1 then bcfill_vec[i]=alldata[i,2]; 

 end; 

 yimpute_bc[,k]=bcfill_vec; 

 bcprev=sum(bcfill_vec)/ntot; 

 do i=1 to ntot; 

  bc_indvar[i]=bc_prob[i]*(1-bc_prob[i]); 

 end; 

 bcpredvar=sum(bc_indvar)/ntot**2; 
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 bc_storval[k]=bcprev; 

 bc_storvar[k]=bcpredvar; 

end; 

 

bc_prev=sum(bc_storval)/nimpute; 

bcmim_prev=bcmim_prev+bc_prev; 

bc_bias1=bc_prev-prev1; 

bc_bias=bc_bias+bc_bias1; 

bcrel_bias1=bc_bias1/prev1; **The bias relative to the true prevelance**; 

bcrel_bias=bcrel_bias+bcrel_bias1; 

bc_wvar=sum(bc_storvar)/nimpute;  **Within Imputation Variance of Bias Correction MIM 

based on observed response only**; 

 

do q=1 to nimpute; 

 bc_bvar=sum((bc_storval[q]-sum(bc_storval)/nimpute)**2)/(nimpute-1); 

end; 

 

bc_tvar0=(bc_wvar+(1+1/nimpute)*bc_bvar); **Total variability of Bias Correction MIM based 

on observed response only**; 

bc_tvar=bc_tvar+bc_tvar0; 

bc_SE=sqrt(bc_tvar0); 

bcst_bias1=bc_bias1/bc_SE; 

bcst_bias=bcst_bias+bcst_bias1; 

bc_LCI=bc_prev-1.96*bc_SE; 

bc_UCI=bc_prev+1.96*bc_SE; 

bca=bc_LCI<=prev1 & prev1<=bc_UCI;   

bc_coverage=bc_coverage+bca; 
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submit Val; 

proc mcmc data=&Val ntu=1000 nmc=21000 nthin=100 nbi=1000 outpost=valest seed=2481; 

 ods select PostSummaries PostIntervals mcse ess ; 

 parms (alpha0 alpha1) 0; 

 prior alpha0 alpha1 ~ normal(0, var=1000); 

 p = logistic(alpha0+alpha1*u); 

 model Y ~ binomial(n,p); 

run; 

endsubmit; 

 

declare DataObject dobj; 

dobj=DataObject.CreateFromServerDataSet("Work.valest"); 

postn=dobj.GetNumObs(); 

dobj.GetVarData("alpha0",alpha0); 

dobj.GetVarData("alpha1",alpha1); 

 

postsample=alpha0||alpha1; 

randind=j(nimpute,1,.); 

call randseed(seed10); 

call randgen(randind,'uniform'); 

MIsample=j(nimpute,2,.); 

B_Yimpute=j(ntot,nimpute,.); 

B_storval=j(nimpute,1,.); 

B_storvar=j(nimpute,1,.); 

 

do j=1 to nimpute; 
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 B_prob=j(ntot,1,.); 

 B_fill_vec=j(ntot,1,.); 

 B_indvar=j(ntot,1,.); 

 MIind=int(randind[j,]*postn)+1; 

 MIsample[j,]=postsample[MIind,]; 

 do i=1 to ntot; 

  if MIsample[j,1]+MIsample[j,2]*alldata[i,3]>0 then bp=1/(1+exp(-

(MIsample[j,1]+MIsample[j,2]*alldata[i,3]))); 

  else bp=exp(MIsample[j,1]+MIsample[j,2]*alldata[i,3])/(1+exp(-

(MIsample[j,1]+MIsample[j,2]*alldata[i,3]))); 

  B_prob[i]=bp; 

  if alldata[i,1]=0 then do; 

   call randseed(seed11); 

   call randgen(B_fill,'bernoulli',B_prob[i]); 

   B_fill_vec[i]=B_fill; 

  end; 

  else if alldata[i,1]=1 then B_fill_vec[i]=alldata[i,2]; 

 end; 

 B_Yimpute[,j]=B_fill_vec; 

 Bprev=sum(B_Yimpute[,j])/ntot; 

 do i=1 to ntot; 

  B_indvar[i]=B_prob[i]*(1-B_prob[i]); 

 end; 

 Bpredvar=sum(B_indvar)/ntot**2; 

 B_storval[j]=Bprev; 

 B_storvar[j]=Bpredvar; 

end; 
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B_prev0=sum(B_storval)/nimpute; 

B_prev=B_prev+B_prev0; 

B_bias0=B_prev0-prev1; 

B_bias=B_bias+B_bias0; 

B_relbias0=B_bias0/prev1; **The bias relative to the true prevelance**; 

B_relbias=B_relbias+B_relbias0; 

B_wvar=sum(B_storvar)/nimpute;  **Within Imputation Variance of Bias Correction MIM 

based on observed response only**; 

 

do q=1 to nimpute; 

 B_bvar=sum((B_storval[q]-sum(B_storval)/nimpute)**2)/(nimpute-1); 

end; 

 

B_tvar0=(B_wvar+(1+1/nimpute)*B_bvar); **Total variability of Bias Correction MIM based 

on observed response only**; 

B_tvar=B_tvar+B_tvar0; 

B_SE=sqrt(B_tvar0); 

B_stbias0=B_bias0/B_SE; 

B_stbias=B_stbias+B_stbias0; 

B_LCI=B_prev0-1.96*B_SE; 

B_UCI=B_prev0+1.96*B_SE; 

Ba=B_LCI<=prev1 & prev1<=B_UCI;  

B_coverage=B_coverage+Ba; 

end; 

 

prev=prev/nsim; 

obs_prev=obs_prev/nsim; 

obs_bias=obs_bias/nsim; 
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SN_U=SN_U/nsim; 

SP_U=SP_U/nsim; 

mim_prev=mim_prev/nsim; 

bias=bias/nsim; 

rel_bias=rel_bias/nsim; 

st_bias=st_bias/nsim; 

tvar=tvar/nsim; 

mse=tvar+bias**2; 

rmse=sqrt(mse); 

coverage=coverage/nsim; 

bcmim_prev=bcmim_prev/nsim; 

bc_bias=bc_bias/nsim; 

bcrel_bias=bcrel_bias/nsim; 

bcst_bias=bcst_bias/nsim; 

bc_tvar=bc_tvar/nsim; 

bc_mse=bc_tvar+bc_bias**2; 

bc_rmse=sqrt(bc_mse); 

bc_coverage=bc_coverage/nsim; 

B_prev=B_prev/nsim; 

B_bias=B_bias/nsim; 

B_relbias=B_relbias/nsim; 

B_stbias=B_stbias/nsim; 

B_tvar=B_tvar/nsim; 

B_mse=B_tvar+B_bias**2; 

B_rmse=sqrt(B_mse); 

B_coverage=B_coverage/nsim; 
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SEED=seed1||seed2||seed3||seed4||seed5||seed6||seed7||seed8||seed9||seed10||seed11; 

Parameter=ntot||sensitivity||valrate||nimpute; 

OBS=nsim||prev||obs_prev||obs_bias; 

MIM=mim_prev||bias||rel_bias||st_bias||tvar||rmse||coverage; 

BCMIM=bcmim_prev||bc_bias||bcrel_bias||bcst_bias||bc_tvar||bc_rmse||bc_coverage; 

B_MIM=B_prev||B_bias||B_relbias||B_stbias||B_tvar||B_rmse||B_coverage; 

Result=Parameter||OBS||MIM||BCMIM||B_MIM; 

ResultAll[1#(nimpute=3)+2#(nimpute=5)+3#(nimpute=10)+4#(nimpute=15)+5#(nimpute=20)+

6#(nimpute=40),]=Result; 

 

Varnames={TotalNumber Sensitivity ValRate NImpute SimulationNumber Prevalence 

ObservedPrevalence ObserPrevBias FIPrev FIBias FIRelBias FIStBias FIVar FIRMSE 

FICoverage BCPrev BCBias BCRelBias BCStBias BCVar BCRMSE BCCoverage BIPrev 

BIBias BIRelBias BIStBias BIVar BIRMSE BICoverage}; 

end; 

Create MCAR.MCAR05S65 from ResultAll [colname=varnames]; 

append from ResultAll; 

close MCAR.MCAR05S65; 

Create MCAR.SEED05S65 from SEED; 

append from SEED; 

close MCAR.SEED05S65; 

quit; 
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Computer Simulation Program for Scenario 2: Misclassification of Observed Disease 

Status is Dependent on Disease Predictors 

Following program code were run for the conditions that when the sensitivity of the 

observed disease status was specified as 0.60, 0.75 or 0.90, the size of the validation dataset was 

0.05N, the number of imputations including 3, 5, 10, 15, 20 and 40, the sensitivity and specificity 

of the binary disease predictor were 0.90 or 0.70, and the additive variance of the continuous 

disease predictor was 1 or 2, and the missingness mechanism was specified as MCAR, MAR or 

MNAR. 

LIBNAME MCAR2 'C:\MISIM Program\MCAR2'; 

proc iml; 

**Multiple Imputation in the Frequentist Approach**; 

**This program is to compare Naive Logistic Regression and Bias Corrected Logistic 

Regression for observed response is depend on covariates**; 

 

** Specify simulation parameters**; 

ntot=10000; **total number of observations in the dataset**; 

nsim=500; **number of simulations**; 

sensitivity=0.6; 

valrate=0.05; 

numberofimpute={3 5 10 15 20 40}; 

beta0=-2.785; **Specify the coefficient value**; 

beta1=0.539;  

beta2=-0.693; 

**The coefficient for sensitivity 0.60 of the observed disease status**; 

rho0=1.2; 

rho1=-0.26934; 

rho2=-1.7536; 

**The coefficient for sensitivity 0.75 of the observed disease status**; 

rho0=1.8295; 

rho1=-0.269; 

rho2=-1.386; 

**The coefficient for sensitivity 0.90 of the observed disease status**; 

rho0=1.995; 

rho1=-0.26934; 

rho2=1.36; 

**create counters for disease state**; 

indval=j(ntot,1,.); **Temporary indicator of presence on the validation cohort**; 

alldata=j(ntot,3,.); 

indobs1=j(ntot,1,.); ** Temporary indicator of measurment of x1**; 

indobs2=j(ntot,1,.); 

**ALLDATA: 
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first column = member of the validation cohort (presence=1, otherwise=0), 

second column = true disease state (presence=1, otherwise=0), 

third column = observed disease status (presence=1, otherwise=0); 

 

**Build Logistic Regression model for estimating the parameters**; 

start binest(beta,cov,y,x,b); **Newton-Raphson Algorithm**; 

 a=nrow(x); 

 b=repeat(0,ncol(x),1); 

 p=j(nrow(x),1,.); 

 oldb=b+1;  

 do iter=1 to 20 while(max(abs(b-oldb))>1e-8); 

  oldb=b; 

  z=x*b; 

  do j=1 to a; 

   if z[j]>0 then pj=1/(1+exp(-z[j])); 

   else pj=exp(z[j])/(1+exp(z[j])); 

   p[j]=pj; 

  end; 

  g=x`*(y-p); 

  w=diag(p*(1-p)`); 

  f=x`*w*x; 

  b=b+ginv(f)*g; 

 end; 

 beta=b; 

 cov=ginv(f); 

finish; 

  

**Bias correction by Cordeiro and McCullagh**; 

start biascor(bc_beta,bc_cov,y,x,b); 

 a=nrow(x); 

 b=repeat(0,ncol(x),1); 

 p=j(nrow(x),1,.); 

 oldb=b+1; 

 do iter=1 to 20 while(max(abs(b-oldb))>1e-8); 

  oldb=b; 

  z=x*b; 

  do j=1 to a; 

   if z[j]>0 then pj=1/(1+exp(-z[j])); 

   else pj=exp(z[j])/(1+exp(z[j])); 

   p[j]=pj; 

  end; 

  w=diag(p*(1-p)`); 

  f=x`*w*x; 

  d=ginv(f); 

  g=x`*(y-p); 

  e=diag(x*d*x`)*(p-0.5); 
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  c=d*x`*w*e; 

  b=b+d*g-c; 

 end; 

 bc_beta=b; 

 bc_cov=d; 

finish; 

 

**Linear regression analysis to estimate the parameters of the linear model to impute the true 

continuous covariate**; 

start regress(y,x,b,covb); 

 xpxi=ginv(t(x)*x); 

 beta=xpxi*(t(x)*y); 

 yhat=x*beta; 

 resid=y-yhat; 

 sse=ssq(resid); 

 dfe=nrow(x)-ncol(x); 

 mse=sse/dfe; 

 covbeta=xpxi*mse; 

 b=beta; 

 covb=covbeta; 

finish; 

 

**Build model to generate vector of regression coefficients for multiple imputations**; 

start betagen(tx,beta,cov,nimpute,seed); 

 v=nrow(cov); 

 do i=1 to v; **Make sure the covariance matrix is symmetric**; 

  do j=1 to v; 

   if cov[j,i]^=cov[i,j] then cov[i,j]=cov[j,i]; 

  end; 

 end; 

 l=t(root(cov)); 

 z=normal(j(v,nimpute,seed)); 

 x=l*z; 

 x=repeat(beta,1,nimpute)+x; 

 tx=t(x); 

finish; 

 

**Specify starting seeds for all random number generators**; 

randseed=j(27,1,.); 

do i=1 to 27; 

 randseed[i]=int(10000*ranuni(0)); **the seed 0 make sure the ranuni generate differently 

random number each time**; 

end; 

seed1=randseed[1]; 

seed2=randseed[2]; 

seed3=randseed[3]; 
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seed4=randseed[4]; 

seed5=randseed[5]; 

seed6=randseed[6]; 

seed7=randseed[7]; 

seed8=randseed[8]; 

seed9=randseed[9]; 

seed10=randseed[10]; 

seed11=randseed[11]; 

seed12=randseed[12]; 

seed13=randseed[13]; 

seed14=randseed[14]; 

seed15=randseed[15]; 

seed16=randseed[16]; 

seed17=randseed[17]; 

seed18=randseed[18]; 

seed19=randseed[19]; 

seed20=randseed[20]; 

seed21=randseed[21]; 

seed22=randseed[22]; 

seed23=randseed[23]; 

seed24=randseed[24]; 

seed25=randseed[25]; 

seed26=randseed[26]; 

seed27=randseed[27]; 

 

ResultAll=j(24,69,.); 

**Vary the parameters**; 

do MEvar=1 to 2; **The varianace of additional measurement error of the continuous covariate 

x1**; 

 

 do XSN=1 to 3 by 2; **Specify the sensitivity and specificity of the covariate's 

misclassification**; 

  SN=1-XSN/10; 

  if SN=0.9 then FP=0.1; **False Positive equals 1-Specificity**; 

  if SN=0.7 then FP=0.3; 

 

    do ni=1 to 6; 

     nimpute=numberofimpute[ni]; 

 

prev=0; **true value of prevalence**; 

obs_prev=0; **value of observed prevalence**; 

obs_bias=0;**the bias of the observed prevalence**; 

SN_U=0; **The sensitivity of the observed response (diagnosis U)**; 

SP_U=0; **The specificity of the observed response (diagnosis U)**; 

 

t_prev=0; 
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t_bias=0; 

t_relbias=0; 

t_stbias=0; 

t_tvar=0; 

t_coverage=0; 

 

t_bcprev=0; 

t_bcbias=0; 

t_bcrelbias=0; 

t_bcstbias=0; 

t_bctvar=0; 

t_bccoverage=0; 

 

o_prev=0; 

o_bias=0; 

o_relbias=0; 

o_stbias=0; 

o_tvar=0; 

o_coverage=0; 

 

o_bcprev=0; 

o_bcbias=0; 

o_bcrelbias=0; 

o_bcstbias=0; 

o_bctvar=0; 

o_bccoverage=0; 

 

c_prev=0; 

c_bias=0; 

c_relbias=0; 

c_stbias=0; 

c_tvar=0; 

c_coverage=0; 

 

c_bcprev=0; 

c_bcbias=0; 

c_bcrelbias=0; 

c_bcstbias=0; 

c_bctvar=0; 

c_bccoverage=0; 

 

oc_prev=0; 

oc_bias=0; 

oc_relbias=0; 

oc_stbias=0; 

oc_tvar=0; 
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oc_coverage=0; 

 

oc_bcprev=0; 

oc_bcbias=0; 

oc_bcrelbias=0; 

oc_bcstbias=0; 

oc_bctvar=0; 

oc_bccoverage=0; 

 

t_yimpute=j(ntot,nimpute,.); 

t_bcyimpute=j(ntot,nimpute,.); 

o_yimpute=j(ntot,nimpute,.); **O_YIMPUTE: imputed values of MI in frequentist with 

observed disease status only**; 

o_bcyimpute=j(ntot,nimpute,.); 

c_yimpute=j(ntot,nimpute,.); **C_YIMPUTE: imputed values of MI in frequentist with imputed 

covariates**;  

c_bcyimpute=j(ntot,nimpute,.); 

oc_yimpute=j(ntot,nimpute,.); **OC_YIMPUTE: imputed values of MI in frequentist with 

observed disease status and covariates**; 

oc_bcyimpute=j(ntot,nimpute,.); 

 

**Main Body of Simulation**; 

do r=1 to nsim; 

**Generate a continuous covariate data and a binary covariate data**; 

x1=j(ntot,1,.); 

call randseed(seed1); 

call randgen (x1,'normal',0,1); 

x2=j(ntot,1,.); 

call randseed(seed2); 

call randgen (x2,'Bernoulli',.50); 

**Create true disease status**; 

do i=1 to ntot; 

 pi=exp(beta0+beta1*x1[i]+beta2*x2[i])/(1+exp(beta0+beta1*x1[i]+beta2*x2[i])); 

 call randseed(seed3); 

 call randgen(yi,'bernoulli',pi); 

 alldata[i,2]=yi; 

end; 

prev1=sum(alldata[,2])/ntot; 

ytrue=alldata[,2]; 

prev=prev+prev1; 

**Create observed disease status**; 

do i=1 to ntot; 

 underp=1/(1+exp(-(rho0+rho1*x1[i]+rho2*x2[i]))); 

 call randseed(seed4);  

 call randgen(indobs,'bernoulli',underp); **Misclassification probability conditional on 

true covariates**; 
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 if alldata[i,2]=1 then alldata[i,3]=indobs; 

 else alldata[i,3]=0; 

end; 

obsprev1=sum(alldata[,3])/ntot; 

obs_prev=obs_prev+obsprev1; 

obs_bias1=prev1-obsprev1; 

obs_bias=obs_bias+obs_bias1; 

 

**Estimate the sensitivity and specificity of the diagnosis(U)**; 

SN_count=0; 

SP_count=0; 

do i=1 to ntot; 

 if alldata[i,2]=1 then do; 

  if alldata[i,3]=1 then SN_count=SN_count+1; 

 end; 

 if alldata[i,2]=0 then do; 

  if alldata[i,3]=0 then SP_count=SP_count+1; 

 end; 

end; 

SN_U=SN_U+SN_count/sum(alldata[,2]); 

SP_U=SP_U+SP_count/(ntot-sum(alldata[,2]));  

 

**Create observed covariates**; 

**Non-differential**; 

m1=j(ntot,1,.); **The observed values of the continuous covariate**; 

epsilon=j(ntot,1,.); 

call randseed(seed5); 

call randgen(epsilon,'normal',0,MEvar); 

do i=1 to ntot; 

 m1[i]=x1[i]+epsilon[i]; 

end; 

 

m2=j(ntot,1,.); **The measurement of the dichotomous covariate which is assumed to be non-

differential**; 

call randseed(seed6); 

call randgen(indobs1,'bernoulli',SN); 

call randseed(seed7); 

call randgen(indobs2,'bernoulli',FP); 

do i=1 to ntot; 

 if x2[i]=1 then m2[i,1] = indobs1[i]; 

 else m2[i,1]= indobs2[i]; 

end; 

  

**Create indicator for membership in the validation cohort and output validation cohort data into 

a new dataset for analysis**; 

**MCAR**; 
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call randseed(seed8); 

call randgen(indval,'uniform'); 

validss=valrate*ntot; 

temp=rank(indval); 

**Create indicator for membership in the validation cohort and output validation cohort data into 

a new dataset for analysis**; 

**MAR**; 

call randseed(seed8); 

call randgen(indval,'uniform'); 

validss=valrate*ntot; 

temp=rank(indval#(alldata[,3]+0.5)); 

**Create indicator for membership in the validation cohort and output validation cohort data into 

a new dataset for analysis**; 

**MNAR**; 

call randseed(seed8); 

call randgen(indval,'uniform'); 

validss=valrate*ntot; 

temp=rank(indval#(alldata[,2]+0.5)); 

yset=j(validss,9,1); 

count=0; 

do i=1 to ntot; 

 if temp[i]<=validss then do; 

  alldata[i,1]=1; 

  count=count+1; 

  yset[count,1]=alldata[i,2]; 

  yset[count,2]=1; 

  yset[count,3]=alldata[i,3]; 

  yset[count,4]=x1[i]; 

  yset[count,5]=x2[i]; 

  yset[count,7]=m1[i]; 

  yset[count,9]=m2[i]; 

 end; 

 if temp[i]>validss then alldata[i,1]=0; 

end; 

 

**Impute the true covariates**; 

call regress(yset[,4],yset[,{6 7}],phi,covphi); 

call betagen(phimat,phi,covphi,nimpute,seed9); **Impute multiple coefficients for x1**; 

ix1=j(ntot,nimpute,.); 

do k=1 to nimpute; 

 ix1_fill=j(ntot,1,.); 

 do i=1 to ntot; 

  if alldata[i,1]=1 then ix1_fill[i]=x1[i]; 

  else ix1_fill[i]=phimat[k,1]+phimat[k,2]*m1[i]; **Linear regression to predict 

true covariates**; 

 end; 
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 ix1[,k]=ix1_fill; 

end; 

call biascor(x2delta,x2covdelta,yset[,5],yset[,
48

],b); 

call betagen(deltamat,x2delta,x2covdelta,nimpute,seed10); 

ix2=j(ntot,nimpute,.); 

do k=1 to nimpute; 

 ix2_fill=j(ntot,1,.); 

 do i=1 to ntot; 

  if alldata[i,1]=0 then do; 

  

 epx2=exp(deltamat[k,1]+deltamat[k,2]*m2[i])/(1+exp(deltamat[k,1]+deltamat[k,2]*m2[i

])); 

   call randseed(seed11); 

   call randgen(ex,'bernoulli',epx2); 

   ix2_fill[i]=ex; 

  end; 

  else if alldata[i,1]=1 then ix2_fill[i]=x2[i]; 

 end; 

 ix2[,k]=ix2_fill; 

end; 

 

**Original with true covariates ie the disease model**; 

call binest(t_beta,t_cov,yset[,1],yset[,{2 4 5}],b); 

call betagen(tbetamat,t_beta,t_cov,nimpute,seed12); 

t_storval=j(nimpute,1,.); 

t_storvar=j(nimpute,1,.); 

do k=1 to nimpute; 

 t_prob=j(ntot,1,.); 

 tfill_vec=j(ntot,1,.); 

 t_indvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if tbetamat[k,1]+tbetamat[k,2]*x1[i]+tbetamat[k,3]*x2[i]>0 then tp=1/(1+exp(-

(tbetamat[k,1]+tbetamat[k,2]*x1[i]+tbetamat[k,3]*x2[i]))); 

  else 

tp=exp(tbetamat[k,1]+tbetamat[k,2]*x1[i]+tbetamat[k,3]*x2[i])/(1+exp(tbetamat[k,1]+tbetamat[

k,2]*x1[i]+tbetamat[k,3]*x2[i])); 

  t_prob[i]=tp; 

  if alldata[i,1]=0 then do; 

   call randseed(seed13,0); 

   call randgen(tfill,'bernoulli',t_prob[i]); 

   tfill_vec[i]=tfill; 

  end; 

  else if alldata[i,1]=1 then tfill_vec[i]=alldata[i,2]; 

 end; 

 t_yimpute[,k]=tfill_vec; 

 tprev=sum(t_yimpute[,k])/ntot; 
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 do i=1 to ntot; 

  t_indvar[i]=t_prob[i]*(1-t_prob[i]); 

 end; 

 tpredvar=sum(t_indvar)/ntot**2; 

 t_storval[k]=tprev; 

 t_storvar[k]=tpredvar; 

end; 

 

t_prev0=sum(t_storval)/nimpute; 

t_prev=t_prev+t_prev0; 

t_bias0=t_prev0-prev1; 

t_bias=t_bias+t_bias0; 

t_relbias0=t_bias0/prev1; **The bias relative to the true prevelance**; 

t_relbias=t_relbias+t_relbias0; 

t_wvar=sum(t_storvar)/nimpute;  **Within Imputation Variance of Bias Correction MIM based 

on observed response only**; 

 

do q=1 to nimpute; 

 t_bvar=sum((t_storval[q]-sum(t_storval)/nimpute)**2)/(nimpute-1); 

end; 

 

t_tvar0=t_wvar+(1+1/nimpute)*t_bvar; **Total variability of Bias Correction MIM based on 

observed response only**; 

t_tvar=t_tvar+t_tvar0; 

t_SE=sqrt(t_tvar0); 

t_stbias0=t_bias0/t_SE; 

t_stbias=t_stbias+t_stbias0; 

t_LCI=t_prev0-1.96*t_SE; 

t_UCI=t_prev0+1.96*t_SE; 

ta=t_LCI<=prev1 & t_UCI>=prev1; 

t_coverage=t_coverage+ta; 

 

**Bias Correction with true covariates ie the disease model**; 

call biascor(t_bcbeta,t_bccov,yset[,1],yset[,{2 4 5}],b); 

call betagen(tbcbetamat,t_bcbeta,t_bccov,nimpute,seed14); 

t_bcstorval=j(nimpute,1,.); 

t_bcstorvar=j(nimpute,1,.); 

 

do k=1 to nimpute; 

 t_bcprob=j(ntot,1,.); 

 tbcfill_vec=j(ntot,1,.); 

 t_bcindvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if tbcbetamat[k,1]+tbcbetamat[k,2]*x1[i]+tbcbetamat[k,3]*x2[i]>0 then 

tbcp=1/(1+exp(-(tbcbetamat[k,1]+tbcbetamat[k,2]*x1[i]+tbcbetamat[k,3]*x2[i]))); 
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  else 

tbcp=exp(tbcbetamat[k,1]+tbcbetamat[k,2]*x1[i]+tbcbetamat[k,3]*x2[i])/(1+exp(tbcbetamat[k,1

]+tbcbetamat[k,2]*x1[i]+tbcbetamat[k,3]*x2[i])); 

  t_bcprob[i]=tbcp; 

   if alldata[i,1]=0 then do; 

    call randseed(seed15,0); 

    call randgen(tbcfill,'bernoulli',t_bcprob[i]); 

    tbcfill_vec[i]=tbcfill; 

   end; 

   else if alldata[i,1]=1 then tbcfill_vec[i]=alldata[i,2]; 

 end; 

 t_bcyimpute[,k]=tbcfill_vec; 

 tbcprev=sum(t_bcyimpute[,k])/ntot; 

 do i=1 to ntot; 

  t_bcindvar[i]=t_bcprob[i]*(1-t_bcprob[i]); 

 end; 

 tbcpredvar=sum(t_bcindvar)/ntot**2; 

 t_bcstorval[k]=tbcprev; 

 t_bcstorvar[k]=tbcpredvar; 

end; 

 

t_bcprev0=sum(t_bcstorval)/nimpute; 

t_bcprev=t_bcprev+t_bcprev0; 

t_bcbias0=t_bcprev0-prev1; 

t_bcbias=t_bcbias+t_bcbias0; 

t_bcrelbias0=t_bcbias0/prev1; **The bias relative to the true prevelance**; 

t_bcrelbias=t_bcrelbias+t_bcrelbias0; 

t_bcwvar=sum(t_bcstorvar)/nimpute;  **Within Imputation Variance of Bias Correction MIM 

based on observed response only**; 

 

do q=1 to nimpute; 

 t_bcbvar=sum((t_bcstorval[q]-sum(t_bcstorval)/nimpute)**2)/(nimpute-1); 

end; 

 

t_bctvar0=t_bcwvar+(1+1/nimpute)*t_bcbvar; **Total variability of Bias Correction MIM based 

on observed response only**; 

t_bctvar=t_bctvar+t_bctvar0; 

 

t_bcSE=sqrt(t_bctvar0); 

t_bcstbias0=t_bcbias0/t_bcSE; 

t_bcstbias=t_bcstbias+t_bcstbias0; 

t_bcLCI=t_bcprev0-1.96*t_bcSE; 

t_bcUCI=t_bcprev0+1.96*t_bcSE; 

tbca=t_bcLCI<=prev1 & t_bcUCI>=prev1; 

t_bccoverage=t_bccoverage+tbca; 
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**Original only with observed response**; 

call binest(obeta,ocov,yset[,1],yset[,2:3],b); 

call betagen(obetamat,obeta,ocov,nimpute,seed16); 

o_storval=j(nimpute,1,.); 

o_storvar=j(nimpute,1,.); 

 

do k=1 to nimpute; 

 o_prob=j(ntot,1,.); 

 ofill_vec=j(ntot,1,.); 

 o_indvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if obetamat[k,1]+obetamat[k,2]*alldata[i,3]>0 then op=1/(1+exp(-

(obetamat[k,1]+obetamat[k,2]*alldata[i,3]))); 

  else 

op=exp(obetamat[k,1]+obetamat[k,2]*alldata[i,3])/(1+exp(obetamat[k,1]+obetamat[k,2]*alldata[

i,3])); 

  o_prob[i]=op; 

   if alldata[i,1]=0 then do; 

    call randseed(seed17); 

    call randgen(o_fill,'bernoulli',o_prob[i]); 

    ofill_vec[i]=o_fill; 

   end; 

   else if alldata[i,1]=1 then ofill_vec[i]=alldata[i,2]; 

 end; 

 o_yimpute[,k]=ofill_vec; 

 oprev=sum(o_yimpute[,k])/ntot; 

 do i=1 to ntot; 

  o_indvar[i]=o_prob[i]*(1-o_prob[i]); 

 end; 

 opredvar=sum(o_indvar)/ntot**2; 

 o_storval[k]=oprev; 

 o_storvar[k]=opredvar; 

end; 

 

o_prev0=sum(o_storval)/nimpute; 

o_prev=o_prev+o_prev0; 

o_bias0=o_prev0-prev1; 

o_bias=o_bias+o_bias0; 

 

o_relbias0=o_bias0/prev1; **The bias relative to the true prevelance**; 

o_relbias=o_relbias+o_relbias0; 

o_wvar=sum(o_storvar)/nimpute;  **Within Imputation Variance of Bias Correction MIM based 

on observed response only**; 

 

do q=1 to nimpute; 

 o_bvar=sum((o_storval[q]-sum(o_storval)/nimpute)**2)/(nimpute-1); 
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end; 

 

o_tvar0=o_wvar+(1+1/nimpute)*o_bvar; **Total variability of Bias Correction MIM based on 

observed response only**; 

o_tvar=o_tvar+o_tvar0; 

o_SE=sqrt(o_tvar0); 

o_stbias0=o_bias0/o_SE; 

o_stbias=o_stbias+o_stbias0; 

o_LCI=o_prev0-1.96*o_SE; 

o_UCI=o_prev0+1.96*o_SE; 

oa=o_LCI<=prev1 & prev1<=o_UCI; 

o_coverage=o_coverage+oa; 

 

**Bias Correction only with observed response**; 

call biascor(obcbeta,obccov,yset[,1],yset[,2:3],b); 

call betagen(obcbetamat,obcbeta,obccov,nimpute,seed18); 

o_bcstorval=j(nimpute,1,.); 

o_bcstorvar=j(nimpute,1,.); 

 

do k=1 to nimpute; 

 o_bcprob=j(ntot,1,.); 

 obcfill_vec=j(ntot,1,.); 

 o_bcindvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if obcbetamat[k,1]+obcbetamat[k,2]*alldata[i,3]>0 then obcp=1/(1+exp(-

(obcbetamat[k,1]+obcbetamat[k,2]*alldata[i,3]))); 

  else 

obcp=exp(obcbetamat[k,1]+obcbetamat[k,2]*alldata[i,3])/(1+exp(obcbetamat[k,1]+obcbetamat[

k,2]*alldata[i,3])); 

  o_bcprob[i]=obcp; 

  if alldata[i,1]=0 then do; 

   call randseed(seed19); 

   call randgen(o_bcfill,'bernoulli',o_bcprob[i]); 

   obcfill_vec[i]=o_bcfill; 

  end; 

  else if alldata[i,1]=1 then obcfill_vec[i]=alldata[i,2]; 

 end; 

 o_bcyimpute[,k]=obcfill_vec; 

 obcprev=sum(o_bcyimpute[,k])/ntot; 

 do i=1 to ntot; 

  o_bcindvar[i]=o_bcprob[i]*(1-o_bcprob[i]); 

 end; 

 obcpredvar=sum(o_bcindvar)/ntot**2; 

 o_bcstorval[k]=obcprev; 

 o_bcstorvar[k]=obcpredvar; 

end; 
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o_bcprev0=sum(o_bcstorval)/nimpute; 

o_bcprev=o_bcprev+o_bcprev0; 

o_bcbias0=o_bcprev0-prev1; 

o_bcbias=o_bcbias+o_bcbias0; 

o_bcrelbias0=o_bcbias0/prev1; **The bias relative to the true prevelance**; 

o_bcrelbias=o_bcrelbias+o_bcrelbias0; 

o_bcwvar=sum(o_bcstorvar)/nimpute;  **Within Imputation Variance of Bias Correction MIM 

based on observed response only**; 

 

do q=1 to nimpute; 

 o_bcbvar=sum((o_bcstorval[q]-sum(o_bcstorval)/nimpute)**2)/(nimpute-1); 

end; 

 

o_bctvar0=o_bcwvar+(1+1/nimpute)*o_bcbvar; **Total variability of Bias Correction MIM 

based on observed response only**; 

o_bctvar=o_bctvar+o_bctvar0; 

o_bcSE=sqrt(o_bctvar0); 

o_bcstbias0=o_bcbias0/o_bcSE; 

o_bcstbias=o_bcstbias+o_bcstbias0; 

o_bcLCI=o_bcprev0-1.96*o_bcSE; 

o_bcUCI=o_bcprev0+1.96*o_bcSE; 

obca=o_bcLCI<=prev1 & prev1<=o_bcUCI; 

o_bccoverage=o_bccoverage+obca; 

 

**Original with imputed covariates**; 

call binest(cbeta,ccov,yset[,1],yset[,{2 4 5}],b); 

call betagen(cbetamat,cbeta,ccov,nimpute,seed20); 

c_storval=j(nimpute,1,.); 

c_storvar=j(nimpute,1,.); 

 

do k=1 to nimpute; 

 c_prob=j(ntot,1,.); 

 cfill_vec=j(ntot,1,.); 

 c_indvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if cbetamat[k,1]+cbetamat[k,2]*ix1[i,k]+cbetamat[k,3]*ix2[i,k]>0 then 

cp=1/(1+exp(-(cbetamat[k,1]+cbetamat[k,2]*ix1[i,k]+cbetamat[k,3]*ix2[i,k]))); 

  else 

cp=exp(cbetamat[k,1]+cbetamat[k,2]*ix1[i,k]+cbetamat[k,3]*ix2[i,k])/(1+exp(cbetamat[k,1]+cb

etamat[k,2]*ix1[i,k]+cbetamat[k,3]*ix2[i,k])); 

  c_prob[i]=cp; 

  if alldata[i,1]=0 then do; 

   call randseed(seed21,0); 

   call randgen(cfill,'bernoulli',c_prob[i]); 

   cfill_vec[i]=cfill; 
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  end; 

  else if alldata[i,1]=1 then cfill_vec[i]=alldata[i,2]; 

 end; 

 c_yimpute[,k]=cfill_vec; 

 cprev=sum(c_yimpute[,k])/ntot; 

 do i=1 to ntot; 

  c_indvar[i]=c_prob[i]*(1-c_prob[i]); 

 end; 

 cpredvar=sum(c_indvar)/ntot**2; 

 c_storval[k]=cprev; 

 c_storvar[k]=cpredvar; 

end; 

 

c_prev0=sum(c_storval)/nimpute; 

c_prev=c_prev+c_prev0; 

c_bias0=c_prev0-prev1; 

c_bias=c_bias+c_bias0; 

c_relbias0=c_bias0/prev1; 

c_relbias=c_relbias+c_relbias0; 

c_wvar=sum(c_storvar)/nimpute; **Within Imputation Variance of Bias Correction based on 

observed response and covariates**; 

 

do q=1 to nimpute; 

 c_bvar=sum((c_storval[q]-sum(c_storval)/nimpute)**2)/(nimpute-1); 

end; 

 

c_tvar0=c_wvar+(1+1/nimpute)*c_bvar; **Total Variability of Bias Correction based on 

observed response and covariates**; 

c_tvar=c_tvar+c_tvar0; 

c_SE=sqrt(c_tvar0); 

c_stbias0=c_bias0/c_SE; 

c_stbias=c_stbias+c_stbias0; 

c_LCI=c_prev0-1.96*c_SE; 

c_UCI=c_prev0+1.96*c_SE; 

ca=c_LCI<=prev1 & prev1<=c_UCI; 

c_coverage=c_coverage+ca; 

 

**Bias Correction with imputed covariates**; 

call biascor(cbc_beta,cbc_cov,yset[,1],yset[,{2 4 5}],b); 

call betagen(cbcbetamat,cbc_beta,cbc_cov,nimpute,seed22); 

c_bcstorval=j(nimpute,1,.); 

c_bcstorvar=j(nimpute,1,.); 

 

do k=1 to nimpute; 

 c_bcprob=j(ntot,1,.); 

 cbcfill_vec=j(ntot,1,.); 
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 c_bcindvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if cbcbetamat[k,1]+cbcbetamat[k,2]*ix1[i,k]+cbcbetamat[k,3]*ix2[i,k]>0 then 

cbcp=1/(1+exp(-(cbcbetamat[k,1]+cbcbetamat[k,2]*ix1[i,k]+cbcbetamat[k,3]*ix2[i,k]))); 

  else 

cbcp=exp(cbcbetamat[k,1]+cbcbetamat[k,2]*ix1[i,k]+cbcbetamat[k,3]*ix2[i,k])/(1+exp(cbcbeta

mat[k,1]+cbcbetamat[k,2]*ix1[i,k]+cbcbetamat[k,3]*ix2[i,k])); 

  c_bcprob[i]=cbcp; 

  if alldata[i,1]=0 then do; 

   call randseed(seed23,0); 

   call randgen(cbcfill,'bernoulli',c_bcprob[i]); 

   cbcfill_vec[i]=cbcfill; 

  end; 

  else if alldata[i,1]=1 then cfill_vec[i]=alldata[i,2]; 

 end; 

 c_bcyimpute[,k]=cbcfill_vec; 

 cbcprev=sum(c_bcyimpute[,k])/ntot; 

 do i=1 to ntot; 

  c_bcindvar[i]=c_bcprob[i]*(1-c_bcprob[i]); 

 end; 

 cbcpredvar=sum(c_bcindvar)/ntot**2; 

 c_bcstorval[k]=cbcprev; 

 c_bcstorvar[k]=cbcpredvar; 

end; 

 

c_bcprev0=sum(c_bcstorval)/nimpute; 

c_bcprev=c_bcprev+c_bcprev0; 

c_bcbias0=c_bcprev0-prev1; 

c_bcbias=c_bcbias+c_bcbias0; 

c_bcrelbias0=c_bcbias0/prev1; 

c_bcrelbias=c_bcrelbias+c_bcrelbias0; 

c_bcwvar=sum(c_bcstorvar)/nimpute; **Within Imputation Variance of Bias Correction based 

on observed response and covariates**; 

 

do q=1 to nimpute; 

 c_bcbvar=sum((c_bcstorval[q]-sum(c_bcstorval)/nimpute)**2)/(nimpute-1); 

end; 

 

c_bctvar0=c_bcwvar+(1+1/nimpute)*c_bcbvar; **Total Variability of Bias Correction based on 

observed response and covariates**; 

c_bctvar=c_bctvar+c_bctvar0; 

c_bcSE=sqrt(c_bctvar0); 

c_bcstbias0=c_bcbias0/c_bcSE; 

c_bcstbias=c_bcstbias+c_bcstbias0; 

c_bcLCI=c_bcprev0-1.96*c_bcSE; 

c_bcUCI=c_bcprev0+1.96*c_bcSE; 
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cbca=c_bcLCI<=prev1 & prev1<=c_bcUCI; 

c_bccoverage=c_bccoverage+cbca; 

 

**Original with observed response and imputed covariates**; 

call binest(ocbeta,occov,yset[,1],yset[,2:5],b); 

call betagen(ocbetamat,ocbeta,occov,nimpute,seed24); 

oc_storval=j(nimpute,1,.); 

oc_storvar=j(nimpute,1,.); 

 

do k=1 to nimpute; 

 oc_prob=j(ntot,1,.); 

 ocfill_vec=j(ntot,1,.); 

 oc_indvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if 

ocbetamat[k,1]+ocbetamat[k,2]*alldata[i,3]+ocbetamat[k,3]*ix1[i,k]+ocbetamat[k,4]*ix2[i,k]>0 

then ocpv=1/(1+exp(-

(ocbetamat[k,1]+ocbetamat[k,2]*alldata[i,3]+ocbetamat[k,3]*ix1[i,k]+ocbetamat[k,4]*ix2[i,k]))); 

  else  

ocpv=exp(ocbetamat[k,1]+ocbetamat[k,2]*alldata[i,3]+ocbetamat[k,3]*ix1[i,k]+ocbetamat[k,4]*

ix2[i,k])/(1+exp(ocbetamat[k,1]+ocbetamat[k,2]*alldata[i,3]+ocbetamat[k,3]*ix1[i,k]+ocbetamat

[k,4]*ix2[i,k])); 

  oc_prob[i]=ocpv; 

  if alldata[i,1]=0 then do; 

   call randseed(seed25,0); 

   call randgen(ocfill,'bernoulli',oc_prob[i]); 

   ocfill_vec[i]=ocfill; 

  end; 

  else if alldata[i,1]=1 then ocfill_vec[i]=alldata[i,2]; 

 end; 

 oc_yimpute[,k]=ocfill_vec; 

 ocpredprev=sum(oc_yimpute[,k])/ntot; 

 do i=1 to ntot; 

  oc_indvar[i]=oc_prob[i]*(1-oc_prob[i]); 

 end; 

 ocpredvar=sum(oc_indvar)/ntot**2; 

 oc_storval[k]=ocpredprev; 

 oc_storvar[k]=ocpredvar; 

end; 

 

oc_prev0=(sum(oc_storval)/nimpute); 

oc_prev=oc_prev+oc_prev0; 

oc_bias0=oc_prev0-prev1; 

oc_bias=oc_bias+oc_bias0; 

oc_relbias0=oc_bias0/prev1; 

oc_relbias=oc_relbias+oc_relbias0; 
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oc_wvar=sum(oc_storvar)/nimpute; **Within Imputation of logistic MIM based on observed 

response and covariates**; 

 

do q=1 to nimpute; 

 oc_bvar=sum((oc_storval[q]-sum(oc_storval)/nimpute)**2)/(nimpute-1); 

end; 

 

oc_tvar0=oc_wvar+(1+1/nimpute)*oc_bvar; **Total variability of logistic MIM based on 

observed response and imputed covariates**; 

oc_tvar=oc_tvar+oc_tvar0; 

oc_SE=sqrt(oc_tvar0); 

oc_stbias0=oc_bias0/oc_SE; 

oc_stbias=oc_stbias+oc_stbias0; 

oc_LCI=oc_prev0-1.96*oc_SE; 

oc_UCI=oc_prev0+1.96*oc_SE; 

oca=oc_LCI<=prev1 & prev1<=oc_UCI;  

oc_coverage=oc_coverage+oca; 

 

**Bias Correction with observed response and imputed covariates**; 

call biascor(ocbcbeta,ocbccov,yset[,1],yset[,2:5],b); 

call betagen(ocbcbetamat,ocbcbeta,ocbccov,nimpute,seed26); 

oc_bcstorval=j(nimpute,1,.); 

oc_bcstorvar=j(nimpute,1,.); 

 

do k=1 to nimpute; 

 oc_bcprob=j(ntot,1,.); 

 ocbcfill_vec=j(ntot,1,.); 

 oc_bcindvar=j(ntot,1,.); 

 do i=1 to ntot; 

  if 

ocbcbetamat[k,1]+ocbcbetamat[k,2]*alldata[i,3]+ocbcbetamat[k,3]*ix1[i,k]+ocbcbetamat[k,4]*i

x2[i,k]>0 then ocbcpv=1/(1+exp(-

(ocbcbetamat[k,1]+ocbcbetamat[k,2]*alldata[i,3]+ocbcbetamat[k,3]*ix1[i,k]+ocbcbetamat[k,4]*

ix2[i,k]))); 

  else  

ocbcpv=exp(ocbcbetamat[k,1]+ocbcbetamat[k,2]*alldata[i,3]+ocbcbetamat[k,3]*ix1[i,k]+ocbcbe

tamat[k,4]*ix2[i,k])/(1+exp(ocbcbetamat[k,1]+ocbcbetamat[k,2]*alldata[i,3]+ocbcbetamat[k,3]*

ix1[i,k]+ocbcbetamat[k,4]*ix2[i,k])); 

  oc_bcprob[i]=ocbcpv; 

  if alldata[i,1]=0 then do; 

   call randseed(seed27,0); 

   call randgen(ocbcfill,'bernoulli',oc_bcprob[i]); 

   ocbcfill_vec[i]=ocbcfill; 

  end; 

  else if alldata[i,1]=1 then ocbcfill_vec[i]=alldata[i,2]; 

 end; 
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 oc_bcyimpute[,k]=ocbcfill_vec; 

 ocbcpredprev=sum(oc_bcyimpute[,k])/ntot; 

 do i=1 to ntot; 

  oc_bcindvar[i]=oc_bcprob[i]*(1-oc_bcprob[i]); 

 end; 

 ocbcpredvar=sum(oc_bcindvar)/ntot**2; 

 oc_bcstorval[k]=ocbcpredprev; 

 oc_bcstorvar[k]=ocbcpredvar; 

end; 

 

oc_bcprev0=(sum(oc_bcstorval)/nimpute); 

oc_bcprev=oc_bcprev+oc_bcprev0; 

oc_bcbias0=oc_bcprev0-prev1; 

oc_bcbias=oc_bcbias+oc_bcbias0; 

oc_bcrelbias0=oc_bcbias0/prev1; 

oc_bcrelbias=oc_bcrelbias+oc_bcrelbias0; 

oc_bcwvar=sum(oc_bcstorvar)/nimpute; **Within Imputation of logistic MIM based on 

observed response and covariates**; 

 

do q=1 to nimpute; 

 oc_bcbvar=sum((oc_bcstorval[q]-sum(oc_bcstorval)/nimpute)**2)/(nimpute-1); 

end; 

 

oc_bctvar0=oc_bcwvar+(1+1/nimpute)*oc_bcbvar; **Total variability of logistic MIM based on 

observed response and imputed covariates**; 

oc_bctvar=oc_bctvar+oc_bctvar0; 

oc_bcSE=sqrt(oc_bctvar0); 

oc_bcstbias0=oc_bcbias0/oc_bcSE; 

oc_bcstbias=oc_bcstbias+oc_bcstbias0; 

oc_bcLCI=oc_bcprev0-1.96*oc_bcSE; 

oc_bcUCI=oc_bcprev0+1.96*oc_bcSE; 

ocbca=oc_bcLCI<=prev1 & prev1<=oc_bcUCI; 

oc_bccoverage=oc_bccoverage+ocbca; 

end; **END of the simulation**; 

 

prev=prev/nsim; 

obs_prev=obs_prev/nsim; 

obs_bias=obs_bias/nsim; 

SN_U=SN_U/nsim; 

SP_U=SP_U/nsim; 

 

t_prev=t_prev/nsim; 

t_bias=t_bias/nsim; 

t_relbias=t_relbias/nsim; 

t_stbias=t_stbias/nsim; 

t_tvar=t_tvar/nsim; 
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t_mse=t_tvar+t_bias**2; 

t_rmse=sqrt(t_mse); 

t_coverage=t_coverage/nsim; 

 

t_bcprev=t_bcprev/nsim; 

t_bcbias=t_bcbias/nsim; 

t_bcrelbias=t_bcrelbias/nsim; 

t_bcstbias=t_bcstbias/nsim; 

t_bctvar=t_bctvar/nsim; 

t_bcmse=t_bctvar+t_bcbias**2; 

t_bcrmse=sqrt(t_bcmse); 

t_bccoverage=t_bccoverage/nsim; 

 

o_prev=o_prev/nsim; 

o_bias=o_bias/nsim; 

o_relbias=o_relbias/nsim; 

o_stbias=o_stbias/nsim; 

o_tvar=o_tvar/nsim; 

o_mse=o_tvar+o_bias**2; 

o_rmse=sqrt(o_mse); 

o_coverage=o_coverage/nsim; 

 

o_bcprev=o_bcprev/nsim; 

o_bcbias=o_bcbias/nsim; 

o_bcrelbias=o_bcrelbias/nsim; 

o_bcstbias=o_bcstbias/nsim; 

o_bctvar=o_bctvar/nsim; 

o_bcmse=o_bctvar+o_bcbias**2; 

o_bcrmse=sqrt(o_bcmse); 

o_bccoverage=o_bccoverage/nsim; 

 

c_prev=c_prev/nsim; 

c_bias=c_bias/nsim; 

c_relbias=c_relbias/nsim; 

c_stbias=c_stbias/nsim; 

c_tvar=c_tvar/nsim; 

c_mse=c_tvar+c_bias**2; 

c_rmse=sqrt(c_mse); 

c_coverage=c_coverage/nsim; 

 

c_bcprev=c_bcprev/nsim; 

c_bcbias=c_bcbias/nsim; 

c_bcrelbias=c_bcrelbias/nsim; 

c_bcstbias=c_bcstbias/nsim; 

c_bctvar=c_bctvar/nsim; 

c_bcmse=c_bctvar+c_bcbias**2; 
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c_bcrmse=sqrt(c_bcmse); 

c_bccoverage=c_bccoverage/nsim; 

 

oc_prev=oc_prev/nsim; 

oc_bias=oc_bias/nsim; 

oc_relbias=oc_relbias/nsim; 

oc_stbias=oc_stbias/nsim; 

oc_tvar=oc_tvar/nsim; 

oc_mse=oc_tvar+oc_bias**2; 

oc_rmse=sqrt(oc_mse); 

oc_coverage=oc_coverage/nsim; 

 

oc_bcprev=oc_bcprev/nsim; 

oc_bcbias=oc_bcbias/nsim; 

oc_bcrelbias=oc_bcrelbias/nsim; 

oc_bcstbias=oc_bcstbias/nsim; 

oc_bctvar=oc_bctvar/nsim; 

oc_bcmse=oc_bctvar+oc_bcbias**2; 

oc_bcrmse=sqrt(oc_bcmse); 

oc_bccoverage=oc_bccoverage/nsim; 

 

Parameter=ntot||sensitivity||valrate||nimpute||MEvar||SN||FP; 

OBS=nsim||prev||obs_prev||obs_bias||SN_U||SP_U; 

TMIM=t_prev||t_bias||t_relbias||t_stbias||t_tvar||t_rmse||t_coverage; 

TBCMIM=t_bcprev||t_bcbias||t_bcrelbias||t_bcstbias||t_bctvar||t_bcrmse||t_bccoverage; 

OMIM=o_prev||o_bias||o_relbias||o_stbias||o_tvar||o_rmse||o_coverage; 

OBCMIM=o_bcprev||o_bcbias||o_bcrelbias||o_bcstbias||o_bctvar||o_bcrmse||o_bccoverage; 

CMIM=c_prev||c_bias||c_relbias||c_stbias||c_tvar||c_rmse||c_coverage; 

CBCMIM=c_bcprev||c_bcbias||c_bcrelbias||c_bcstbias||c_bctvar||c_bcrmse||c_bccoverage;  

OCMIM=oc_prev||oc_bias||oc_relbias||oc_stbias||oc_tvar||oc_rmse||oc_coverage; 

OCBCMIM=oc_bcprev||oc_bcbias||oc_bcrelbias||oc_bcstbias||oc_bctvar||oc_bcrmse||oc_bccover

age; 

Result1=Parameter||OBS||TMIM||TBCMIM||OMIM||OBCMIM||CMIM||CBCMIM||OCMIM||OC

BCMIM; 

 

ResultAll[1#(MEvar=1)+13#(MEvar=2)+0#(SN=0.9)+6#(SN=0.7)+0#(nimpute=3)+1#(nimpute

=5)+2#(nimpute=10)+3#(nimpute=15)+4#(nimpute=20)+5#(nimpute=40),]=Result1; 

 

Varnames={TotalNumbers Sensitivity ValRate NImpute AddVar XSensitivity XFalsePositive 

SimulationNumber Prevalence ObservedPrevalence ObservedPrevBias TestUSensitiviy 

TestUSpecificity PrevT BiasT RelBiasT StBiasT TotVarT RMSET CoverageT PrevTBC 

BiasTBC RelBiasTBC StBiasTBC TotVarTBC RMSETBC CoverageTBC PrevO BiasO 

RelBiasO StBiasO TotVarO RMSEO CoverageO PrevOBC BiasOBC RelBiasOBC StBiasOBC 

TotVarOBC RMSEOBC CoverageOBC PrevC BiasC RelBiasC StBiasC TotVarC RMSEC 

CoverageC PrevCBC BiasCBC RelBiasCBC StBiasCBC TotVarCBC RMSECBC 

CoverageCBC PrevOC BiasOC RelBiasOC StBiasOC TotVarOC RMSEOC CoverageOC 
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PrevOCBC BiasOCBC RelBiasOCBC StBiasOCBC TotVarOCBC RMSEOCBC 

CoverageOCBC}; 
 

end; **END of number of imputation loop**;  

end; **END of misclassification characteristics**; 

end; **END of measurement error characteristics**; 

 

create MCAR2.MCAR2P05S65 from ResultAll [colname=varnames]; 

append from ResultAll; 

close MCAR2.MCAR2P05S65; 

 

SEED=seed1||seed2||seed3||seed4||seed5||seed6||seed7||seed8||seed9||seed10||seed11||seed12||seed1

3||seed14||seed15||seed16||seed17||seed18||seed19||seed20||seed21||seed22||seed23||seed24||seed25|

|seed26||seed27; 

 

create MCAR2.SEED2P05S65 from SEED; 

append from SEED; 

close MCAR2.SEED2P05S65; 

 

quit; 

 

 

    

    

  

    

 

    

    

    

 

    

    

   

    

    


