

Benefits and Implications of Agricultural Drainage in Southeast Saskatchewan

Robin Brown and Angela Bedard-Haughn

Department of Soil Science

The Issue

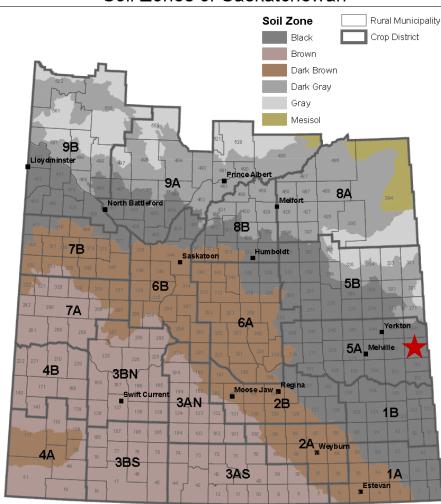
 f precipitation
 Flooding
 Waterlogged soils

The Solution

- Agricultural drainage
 - Increase land
 - Reduces cost
 - Extends growing season
 - Greater nutrient availability

Concerns

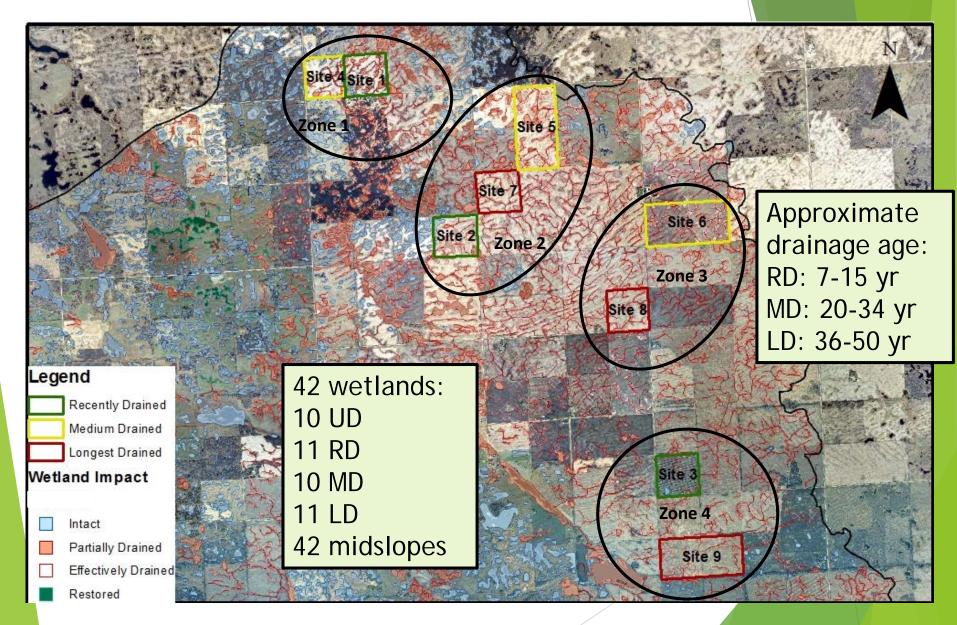
- Minimal research on how drainage affects the soil
- Water quality issues


Questions

- How does drainage change soil properties?
 Field Study
- 2. Could nutrient losses vary across soils drained for different durations of time?

Greenhouse Experiment

Study Area


Soil Zones of Saskatchewan

- RM of Churchbridge
 Smith Creek Watershed
- Oxbow and Yorkton soils

Methods: Field Study

Source of data: Saskatchewan Geospatial Imagery Collaborative and Ducks Unlimited

Methods: Field Study

- Field descriptions
- pH, EC and texture
- Bulk density
- Structure
 - Wet aggregate stability

►TC,IC,OC

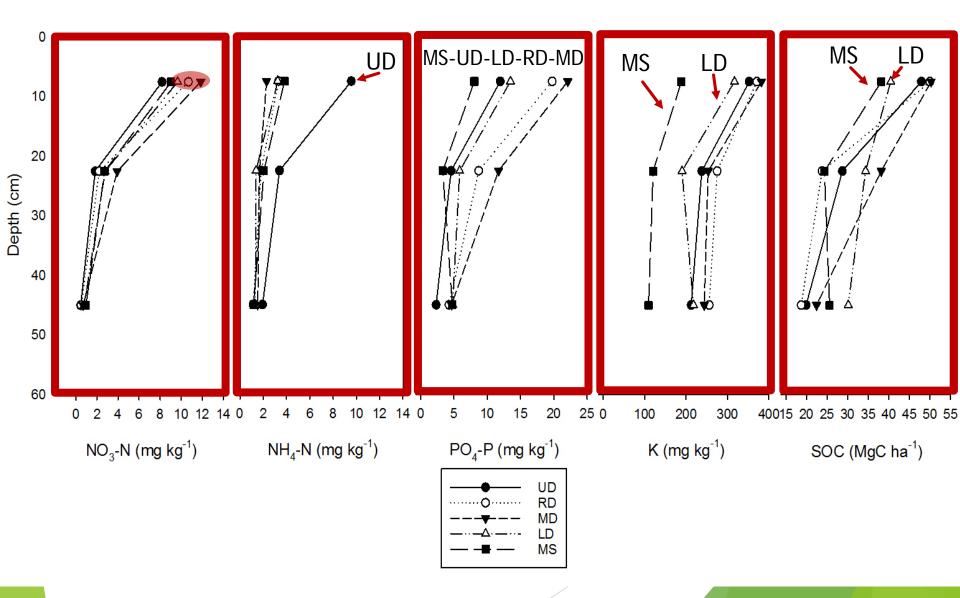
►LF/HF

- **Availlable NI,, PP, KK**
- Net minerallization

P sorption/desorption

Methods: Greenhouse Experiment

- ► 5 x 3 x 2 (drainage x moisture x fertilizer)
 - Drained for: 0, 14, 20, 42 yr
 - Moisture: Below, normal, above
 - Fertilizer: 300 kg N ha⁻¹, 20 kg P ha⁻¹
- 3 reps
- Leachate 1/week
- ▶ 6 wk. duration
- Analyzed N and P
 - Wheat
 - Soil
 - Leachate



Results: Field Study

Nutrient Availability and SOC

Nutrients and OC¹/remain consistent in RD and MD but in LD and MS

Nutrient Availability

Drainage Category†	n	Net Mineralized N (mg kg ⁻¹ d ⁻¹)	Potential Nitrification (mg kg ⁻¹ d ⁻¹)	P Sorption (mg PO ₄ -P kg ⁻¹)	P Desorption (mg PO ₄ -P kg ⁻¹)
UD	10	0.25 ^{ab} ‡	35.0°	597.1ª	44.1°
RD	11	0.18 ^{ab}	46.7 ^{bc}	586.9 ^{ab}	55.7 ^{ab}
MD	10	0.38ª	74.4 ^a	571.4 ^b	61.1ª
LD	11	0.24 ^{ab}	54.7 ^{ab}	573.6 ^b	46.0 ^{bc}
MS	42	0.11 ^b	38.9°	569.8 ^b	45.0 ^c
P value		0.0277	<0.0001	0.0181	<0.0001

†UD=undrained, RD=recently drained, MD=medium drained, LD=longest drained, MS=midslope.

‡ANOVA used to test differences. Means with same letter in same row are not significantly different according to Tukey Kramer test (P>0.10).

Results:

Greenhouse Experiment

Plant Uptake and Yield

	Drainage Category†	Mass (g pot ⁻¹) ‡	P Uptake (mg pot ⁻¹)	N Uptake (mg pot ⁻¹)
	UD	15.99 ^b §	26.69 ^c	226.85 ^d
Γ	RD	16.75 ^b	35.65 ^b	289.18 ^b
	MD	20.63 ^a	43.23 ^a	329.44 ^a
	LD	18.59 ^{ab}	35.21 ^b	307.43 ^{ab}
	MS	17.67 ^{ab}	21.62 ^d	257.55 ^c
	P value	0.0017	<0.0001	<0.0001

†UD=undrained, RD=recently drained, MD=medium drained, LD=longest drained, MS=midslope.

‡Averaged across all moisture treatments.

§ ANOVA used to test differences. Means with same letter in same row are not significantly different according to Tukey HSD test (P>0.05).

Nutrient Loss to Water

▶ PO₄⁻³
 ▶ NH₄⁺

Greater nutrient availability = greater nutrient losses

Drainag	$_{\circ}$ NH ⁺ ₄ in	NO_3^- ir	PO $_4^{-3}$ in
category	laabat		e leachate
category	(mg pot ⁻¹)	¹) (mg pot ⁻¹)
UD	0.27 ^a §	20.12	0.10 ^{ab}
RD	0.15 ^b	21.94	0.13 ^a
MD	0.08 ^b	27.05	0.09 ^{ab}
LD	0.08 ^b	16.92	0.06 ^{bc}
MS	0.09 ^b	28.96	0.02 ^c
P value	<0.0001	0.4286	0.0001

†UD=undrained, RD=recently drained, MD=medium drained, LD=longest drained, MS=midslope.

‡Averaged across all moisture treatments.

§ ANOVA used to test differences. Means with same letter in same row are not significantly different according to Tukey HSD test (P>0.05).

Conclusions

- Drainage 1/maintain OC, NO₃, PO₄, K, mineralization, and nitrification initially
 - Benefits appear to decrease after 50 yr
- 2. Not all soils contribute equally to nutrient losses
 - Most improved soils have greatest nutrient loss potential

Acknowledgements

Committee: Dr. Angela Bedard-Haughn Dr. Jeff Schoenau Dr. Dan Pennock Lab Group: Xiaoyue Wang Shayeb Shahariar Zhidan Zhang Amanda Schurman Jay Bauer Jeremy Kiss Cierra Wallington Louis-Pierre Comeau

• Funding:

- Saskatchewan Ministry of Agriculture Development Fund
- NSERC Discovery Grant
- Saskatchewan Innovation and Opportunity Scholarship

- Water Security Agency
- Assiniboine Watershed
 Stewardship Association
- Landowners

Thank you! Ouestions?

References

- Akinremi, O., S. McGinn, and H. Cutforth. 2001. Seasonal and spatial patterns of rainfall trends on the Canadian Prairies. J. Clim. 14: 2177-2183
- Bedard-Haughn, A., A.L. Matson, and D.J. Pennock. 2006. Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands. Soil Biol. Biochem. 38(12): 3398-3406
- Bonsal, B.R., R. Aider, P. Gachon, and S. Lapp. 2012. An assessment of Canadian prairie drought: Past, present, and future. Clim. Dyn. 41(2): 501-516
- Brunet, N.N., and C.J. Westbrook. 2012. Wetland drainage in the Canadian prairies: Nutrient, salt and bacteria characteristics. Agric. Ecosyst. Environ. 146(1): 1-12
- Cortus, B.G., J.R. Unterschultz, S.R. Jeffrey, and P.C. Boxall. 2009. The impacts of agriculture support programs on wetland retention on grain farms in the Prairie Pothole Region. Can. Water Resour. J. 34(3): 245-254
- Cutforth, H.W., B.G. McConkey, R.J. Woodvine, D.G. Smith, P.G. Jefferson, and O.O. Akinremi. 1999.Climate change in the semiarid prairie of southwestern Saskatchewan: Late winter-early spring. Can. J. Plant Sci. 79(3): 343-350
- Ducks Unlimited. Smith Creek Watershed. Available at http://www.ducks.ca/what-we-do/gis/
- Ewing, J.M., Vepraskas, M.J., Broome, S.W., and J.G. White. 2012. Changes in wetland morphological and chemical properties after 15, 20 and 30 years of agricultural production. Geoderma. 179-180: 73-80
- Global Institute for Water Security. Research theme Land-water management and environmental change. Available at http://www.usask.ca/water/Research%20Themes/water-management/index.php
- Nelson, J.D.J., Schoenau, J.J., Malhi, S.S., and K.S. Gill. (2007). Burning and cultivation effects on greenhouse gas emissions and nutrients in wetland soils from Saskatchewan, Canada. Nutr. Cycl. Agroecosyst. 78: 291-303
- Ramsar Convention on Wetlands. (1993). Towards the wise use of wetlands. Available at http://archive.ramsar.org/cda/en/ramsarpubs-books-towards-wise-use-of-21381/main/ramsar/1-30-101%5E21381_4000_0__
- Saskatchewan Agriculture and Food. (2005). Soil zones of Saskatchewan. Available at http://www.agriculture.gov.sk.ca/Default.aspx?DN=73038864-c825-4087-b0e9-ec96c2e78b75
- Six, J., Bossuyt, H., Degryze, S. and K. Denef. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research. 79 (1):7-31

Streeter M.T. and K.E. Schilling. (2015). A comparison of soil properties observed in farmed, restores, natural closed depressions on the Des Moines Lobe of Iowa. 129: 39-45