

BUILDING A DISTRIBUTED

TRUST MODEL

OF RESTFUL WEB SERVICES

FOR MOBILE DEVICES

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Min Luo

 Copyright Min Luo, September, 2012. All rights reserved.

PERMISSION TO USE
In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the

College in which my thesis work was done. It is understood that any copying or publication or

use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part

should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan (S7N 5C9)

iii

ACKNOWLEDGMENTS

First of all I would like to thank my supervisor, Dr. Ralph Deters for his support, guidance,

patience throughout my graduate study. I would like to thank Dr. Julita Vassileva, Dr. Gord McCalla

and Dr. Chris Zhang. I also would like to thank other faculty &staff at the department of Computer

Science, who has been very helpful throughout my study at University of Saskatchewan. Finally, I

would like to thank friends and classmates at MADMUC lab for their selfless support.

iv

ABSTRACT

As of 2011, there were about 5,981 million mobile devices in the world [1] and there are

113.9 million mobile web users in 2012 [2]. With the popularity of web services for mobile

devices, the concern of security for mobile devices has been brought up. Furthermore, with more

and more cooperation of organizations, web services are now normally involved with more than

one organization. How to trust coming requests from other organizations is an issue.

This research focuses on building a trust model for the web services of mobile devices. It

resolves the issues caused by mobile devices being stolen, lost, users abusing privileges, and

cross-domain’s access control. The trust model is distributed in each node of the web servers.

The trust value is calculated for every incoming request to decide whether the request should be

served or not.

The goals of the trust model are 1) flexible; 2) scalable; 3) lightweight. The implementation

is designed and accomplished with the goals in mind. The experiments evaluate the overhead for

the trust module and maximum capacity of the system.

v

TABLE OF CONTENTS

page

ABSTRACT ... IV

LIST OF TABLES .. VIII

LIST OF FIGURES .. X

INTRODUCTION .. 1

PROBLEM IDENTIFICATION .. 4

2.1 Web Services for Mobile Devices ... 4

2.2 Research Goals ... 7

LITERATURE REVIEW ... 9

3.1 Web Service ... 9

3.2 Access Control .. 12

3.3 Enterprise Service Bus (EBS) ... 15

3.4 Mobile Device Security and Comfort .. 16

3.5 Mobile Context .. 19

3.6 Cloud Computing ... 21

3.7 Trust Model ... 23

3.8 Summary.. 29

DESIGN AND ARCHITECTURE ... 32

4.1 Overview.. 32
4.1.1 The Trust Model Analysis ... 32

4.2 Architecture ... 37
4.2.1 Physical Architecture ... 37
4.2.2 Logical Architecture ... 38
4.2.3. Replication Trust Module Nodes ... 39

4.2 Data Format & Flow ... 41

vi

4.3 System Functionalities ... 42

4.4 Design .. 47
4.4.1 Mobile Device Design .. 47
4.4.2 Proxy Server and Web Server Design ... 51

4.5 Data Model .. 54

IMPLEMENTATION .. 57

5.1 Android Tablet Implementation ... 57
5.1.1 Set development environment .. 57

5.1.1.1 Mobile device information ... 57
5.1.1.2 Mobile device setting ... 57
5.1.1.3 Mobile devices’ development tools: ... 58
5.1.1.4 Set Google Map API key ... 58

5.1.2 Android Implementation Files ... 59
5.1.2.1 Mainfest.xml.. 59
5.1.2.2 Layout files .. 60
5.1.2.3 HTML & JavaScript Files ... 61
5.1.2.4 Resource File ... 62
5.1.2.5 Java File ... 62

5.1.3 Mobile Application Design ... 63
5.1.4 JavaScript AJAX call for Erlang Module ... 66

5.2 Proxy Server/Data Server Implementation .. 67
5.2.1 mobile_services .. 68
5.2.2 proxy_services .. 71
5.2.3 Other Erlang Module ... 73

5.3 Data Model .. 76
5.3.1 Data Structure ... 76

5.3.1.1 Trust Policy .. 76
5.3.1.2 Domain Trust Mapping .. 77
5.3.1.3 Request Routing .. 78
5.3.1.4 Mobile Device Registry Information ... 78
5.3.1.5 Student Grade Information .. 79
5.3.1.6 Transaction Information... 79

5.3.2 Setting Mnesia database in Erlang nodes ... 80
5.3.3 Mnesia Table Operation .. 82

EXPERIMENTS ... 84

6.1 Experiment environment setup.. 84
6.1.1 Android tablet ... 84
6.1.2 Client terminal .. 84
6.1.3 Proxy/web servers... 86
6.1.4 System setup ... 86
6.1.5 Trust formulas ... 89

6.2 Experiment results ... 90

vii

6.2.1 Functionality ... 90
6.2.2 Scalability .. 94
6.2.3 Overhead .. 105

6.3 Summary.. 109

SUMMARY AND FUTURE WORK .. 111

7.1 Summary.. 111
7.1.1 Problem and solutions ... 111
7.1.2 The system’s features .. 112
7.1.3 Novelty ... 113

7.2 Future work ... 113
7.2.1 More context values should be considered .. 113
7.2.2 Explore iPhone, Windows mobile and Blackberry other mobile devices.. 114
7.2.3 Adding exchange data functionality in the trust module .. 114
7.2.4 Adding more trust formulas suitable for a variety of business requirements .. 115
7.2.5 Apply the trust module for practical use, such as: health care system, commercial industry 116

viii

LIST OF TABLES

Table page

Table 3-1 SOAP and REST ... 11

Table 3-2 Issues/Goals and Solutions Found from Literature Review 30

Table 4-1 The Trust Model’s functionalities .. 36

Table 4-1 trust policy for location .. 43

Table 4-2 mobile native application vs. pure embedded browser application 48

Table 4-3 mobile device implementation tools ... 48

Table 4-4 proxy server/web server implementation tools .. 51

Table 4-5 maps of URL and Erlang modules ... 52

Table 4-6 transaction functions comparison .. 55

Table 5-1 trust policy table ... 77

Table 5-2 Domain Trust Mapping Table.. 77

Table 5-3 an example of route table ... 78

Table 5-4 routing table .. 78

Table 5-5 Mobile Device Register Table ... 79

Table 5-6 Student Grade ... 79

Table 5-7 Transaction Table ... 79

Table 6-1 servers setting ... 86

Table 6-2 Scenario 1 trust rules .. 91

Table 6-3 Scenario 1 experiment results .. 91

Table 6-4 Scenario 2 trust policies .. 91

Table 6-5 Scenario 2 experiment results .. 92

Table 6-6 Scenario 3 trust policies .. 92

Table 6-7 Scenario 3 experiment results .. 93

ix

Table 6-8 Scenario 4 trust policy .. 93

Table 6-9 Scenario 4 experiment results .. 93

Table 6-10 Scenario 5 trust policy .. 94

Table 6-11 Scenario 5 experiment results .. 94

Table 6-12 Maximum capacity for scenario A ... 97

Table 6-13 Maximum capacity for scenario B ... 99

Table 6-11 Maximum capacity for scenario C ... 101

Table 6-12 Maximum capacity for scenario D ... 104

Table 6-13 Average process time for one web server ... 106

Table 6-14 Average process time for one web server and one proxy server 107

Table 6-15 Average process time for two web servers and one proxy server 108

x

LIST OF FIGURES

Figure page

Figure 2-1 enterprise web services architecture .. 4

Figure 4-1 the proposed system structure .. 33

Figure 4-2 an alternative system structure ... 33

Figure 4-3 calculating trust value for mobile devices .. 35

Figure 4-4 calculating trust value for other servers ... 36

Figure 4-5 system physical architecture ... 38

Figure 4-6 logical architecture .. 39

Figure 4-7 replication trust module nodes ... 40

Figure 4-8 data format and flow ... 41

Figure 4-9 entities interaction sequence ... 42

Figure 4-10 calculating trust ... 46

Figure 4-11 mobile devices modules ... 51

Figure 5-1 files and activities structure .. 62

Figure 5-2 Android application process ... 63

Figure 5-3 the main activity for Android Tablet .. 64

Figure 5-4 the simulated activity for Android tablet ... 65

Figure 5-5 MapView activity for Android tablet ... 65

Figure 5-6 get student grade result ... 68

Figure 5-7 Process of module “mobile_services” ... 70

Figure 5-8 process of module “proxy_services” ... 71

Figure 6-1 APACHE JMETER HTTP -request .. 85

Figure 6-2 Experiment setup for testing functionalities .. 87

Figure 6-3 Experiment setup for scenario A .. 87

xi

Figure 6-4 Experiment setup for scenario B .. 88

Figure 6-5 Experiment setup for scenario C .. 88

Figure 6-6 Experiment setup for scenario D .. 89

Figure 6-7 JMETER setup for testing scalability (1) ... 95

Figure 6-8 JMETER setup for testing scalability (2) ... 96

Figure 6-9 Average process time for scenario A (message size 2K) 96

Figure 6-10 Median process time for scenario A (message size 2K) 96

Figure 6-11 Average process time for scenario A (message size 3K)......................... 97

Figure 6-12 Median process time for scenario A (message size 3K) 97

Figure 6-13 Average process time for scenario B (message size 1K) 98

Figure 6-14 Median process time for scenario B (message size 1K) 98

Figure 6-15 Average process time for scenario B (message size 3K) 99

Figure 6-16 Median process time for scenario B (message size 3K) 99

Figure 6-17 Average process time for scenario C (message size 1K)....................... 100

Figure 6-18 Median process time for scenario C (message size 1K) 100

Figure 6-20 Median process time for scenario C (message size 2K) 101

Figure 6-21 Average process time for scenario D (message size 2K)....................... 103

Figure6-22 Median process time for scenario D (message size 2K)......................... 103

Figure 6-23 Average process time for scenario D (message size 3K)....................... 104

Figure 6-24 Median process time for scenario D (message size 3K) 104

Figure 6-25 JMETER setting for testing overhead .. 106

Figure 6-26 Overhead for scenario A ... 107

Figure 6-27 Overhead for scenario B ... 108

Figure 6-28 Overhead for scenario C ... 109

xii

List of Acronyms

ABAC ..Attribute-based access control

AES .. Advanced Encryption Standard

CDACM Context based dynamic access control model for web service

DAC ...Discretionary access control

DES .. Data Encryption Standard

ESB .. Enterprise Server Bus

GPS ... Global Positioning System

IAAS ... Infrastructure as Services

LBS ..Location Based Service

MAC ...Mandatory access control

MD ... Message-Digest

OC .. Opinion Credibility

OW ... Opinion Weight

P2P ... Peer-to-Peer

PAAS .. Platform as Services

PCA .. Proof-Carrying Authorization

PDA .. Personal Digital Assistant

RBAC .. Role-based access control

REST .. Representational State Transfer

RPC .. Remote Procedure Call

SAAS .. Software as Services

SMS ... Short Message Services

SOA .. Service Oriented Architecture

SOAP .. Simple Object Access Protocol

xiii

UDDI ... Universal Description Discovery and Integration

WACUAB .. Web Access Control using User Access Behavior

WSCL ... Web Services Conversation Language

WSDL .. Web Services Description Language

WTV ... Weighted Trustworthiness Value

XML ... Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

Mobile devices, such as BlackBerry phones, iPhones and Personal Digital Assistants (PDA)

are widely used. As of 2011, there were about 5,981 million mobile devices in the world [14].

Mobile devices have evolved over the years with wireless connection, increased storage and

memory, computing abilities and built-in sensors. As a result, mobile devices are no longer just

for phone calls or Short Message Services (SMS), they are used for social activities, commercial,

entertainment, personal care and personal health and business. There are 113.9 million mobile

web users in 2012 [9], and mobile networks have developed from primary 2G (GSM, iDen),

2.5G (GPRS), 3G (EDGE, CDMA2000) to 4G (Mobile WiMAX).

With the improved transfer speed, variety of mobile network channels and unlimited mobile

applications there is imperative need to address critical security issues such as: 1) how to protect

data that is transferred by wirless connection or stored in a portable device; 2) how to properly

use corporations’ applications through mobile devices; and 3) how different corporations’ mobile

applications trust each other.

Many mobile applications are involved with sensitive information. Corporations, for example,

store financial business information on their servers that their accountants access. When an

accountant requests financial reports through his BlackBerry phone on a business trip, this

mobile device may be lost or stolen, and the sensitive financial data can be leaked which can

cause enormous profit loss for this corporation.

Mobile computing has more security issues than traditional computing systems. From the

mobile network’s perspective, the connected network is constantly changing. Mobile devices

2

connect to the internet using different infrastructures. For example, Wi-Fi and Bluetooth are used

for short distance communication; while the cellular telephone network is used for long distance

communication. Mobile Networking has these vulnerabilities: 1) The insecurity of the wireless links; 2)

No centralized authorization; 3) Energy constraints; 4) Relatively poor physical protection of nodes in a

hostile environment; and 5) Malicious nodes in ad-hoc network [15]. Since mobile devices constantly

move in and move out of the mobile networks, there is no traditional administration and authentication,

and the mobile network is susceptible to link attacks such as eavesdropping, message distortion and

message replay.

Mobile devices are relatively small and portable computers, which can not only be the targets of

malicious attacks, but also the tools for attacking. Mobile devices have more exposure than traditional

computers, and they can be maliciously used by someone to attack host servers. The sensitive

information stored on mobile devices can be leaked due to being lost or stolen and transferring such data

through wireless network can cause data leaking.

Recently, there has been a growing interest in opening the web service of corporate systems to access

through smart phones and tablets as a means to increase employee productivity and to simplify access to

IT services. Furthermore, there are interactions between mobile applications for each organization.

Because of these reasons, mobile devices can cause either corporate data or personal data leakage and

even corporate network attacks. How to protect business and personal sensitive information is a great

challenge for mobile computing. In this research, I proposed a distributed trust model built on RESTful

web services for mobile devices. This trust model evaluates each incoming request’s trust value, thus

reduces the security issues of web access for mobile devices. For instance, in a hostile environment, a

mobile device cannot access data through the corporate web applications due to the being at high risk

location.

3

The rest of the proposal is organized as follows: chapter 2 identifies the problems current corporate

web services have; chapter 3 reviews previous research about web services, mobile devices’ context

information and building trust models; chapter4 describes the architecture of the proposed system;

chapter 5 illustrates every component of the system and implementation details; chapter 6 presents the

results of the experiments; and chapter 7 summarize the research and list the tasks for future work.

4

CHAPTER 2

PROBLEM IDENTIFICATION

2.1 Web Services for Mobile Devices

With the increasing wireless bandwidth, CPU speed, memory capacity and disk storage,

mobile devices are now beginning to be used increasingly often as platforms for accessing IT

resources. Corporations allow their employees using mobile devices to access enterprise web

applications to improve efficiency and reduce cost. Figure 2.1 presents the structure of currently

used web services access control.

Smart Phone

PDA

Desktop

WAP

Laptop

Enterprise

Services

Bus

Http Requet

Http Request Through

Local Area Conection

Http Request Through

Wireless Local Connection

Enterprise

Application 1

Enteprise

Application 2

Enterprise

Application 3

Enterprise

Database

...

Corporation 1 Corporation 2

Tablet

Enterprise

Application 1

Enterprise

Application 2

Enterprise

Application 3

Enterprise

Database

Figure 2-1 enterprise web services architecture

5

Figure 2-1 shows the standard enterprise web services architecture. It includes clients,

Enterprise Service Bus (ESB), applications and databases. The clients can be mobile devices,

laptops or desktops. Normally mobile devices like smart phones, tablets, PDAs connect ESB via

mobile networks or Wi-Fi; Laptops connect ESB through Wi-Fi or fixed cables; Desktops

connect ESBs through fixed cables. ESB then forwards these HTTP requests to different web

applications based on the request types. Web applications respond to these requests, retrieve

information from databases and send them back to the clients. The requests can be transferred to

other ESBs of different corporations if needed.

When it comes to mobile devices’ interactions with the web services, there are challenges for

security and trust requirements. Mobile devices are typically small and portable devices which

use no-fixed infrastructure, no central administration network to access enterprise web services.

The convenient of access and vulnerability of network introduces more attacks. The potential

risks for mobile devices in composite web services system are:

P1) Lost or Stolen Devices: Mobile devices tend to be less (or not at all) secured, since their

users want fast access and prefer to avoid tedious login procedures due to the text interface

constraints of mobile devices; and the mobile devices are usually small and carried to all

kinds of place, so the chances for being used by other people or stolen are much higher than

for a traditional desktop/laptop. Not only may some resource be leaked out to unauthorized

users, but it also can be used as an attack tool for some fragile web services.

P2) Abuse of Privileges: Even legitimate users can cause security issues due to their

misbehavior. Since the mobile devices are carried everywhere all the time, the chance for

abusing privileges is much higher than for desktops/laptops.

6

P3) Traditional Access Control Issues: Composite web services, especially some cross-

domain web services, contain multiple tasks. This leads to the question of how to aggregate

multiple services into one logic unit safely. By using authentication access control, we assign

users privileges for each domain and service. While assigning a user privilege for a certain

task is relatively easy, it is complicated to assign privileges to a user for multiple tasks.

Assigning a user privileges cross-domain can cause potential risks. Composite web services

must keep changing to adopt to dynamic and increasing business requirements, but current

authorized web access may not be sufficient for future or have more than enough access

privilege. Under cross-domain web services, more than one organization are involved which

makes the management of web access more difficult.

To resolve these risks mentioned above, I propose a trust/reputation mechanism to enhance

security for composite web services. As shown in figure 2-2, there are trust modules and trust

policies for each web services. When mobile devices invoke web services, they send context

information along with http requests. The trust modules handle the http requests before they are

sent to web services and calculate trust and reputation of coming requests based on trust policies

set by the corporation. If the trust value of the request is not higher than a certain value, it is

rejected by the system. Thus, in addition to the traditional authentication access control, we

enable trust/reputation mechanisms for enterprise web services.

7

Smart Phone

PDA

Desktop

WAP

Laptop

Enterprise

Services

Bus

Http Requet

With Context

Information

Send Requst

Http Request through

Local Area Conection

Http Request through

Wireless local connection

Reject/Response

 Request

Corporation 1

Enterprise

Application 2

Enterprise

Application 3

Enterprise

Database

Trust

Model

Trust

Model

Trust

Model

Corporation 2

Enterprise

Application 1

 ...

Trust

Policies

Tablet

Send Requst

Reject/Response

 Request

Send Requst

Reject/Response

 Request

Enterprise

Application 2

Enterprise

Application 3

Enterprise

Database

Trust

Model

Trust

Model

Trust

Model

Enterprise

Application 1

Trust

Policies

Figure 2-2 proposed enterprise web services architecture

2.2 Research Goals

Since there are distributed trust models and trust policies data for each web service, minimal

overhead and robustness are required for the system. This leads to 3 goals; the system should be

G1) Flexible: To adopt the dynamic changed business processes and policies, this trust

model should be flexible. Trust policies can be adjusted smoothly.

G2) Scalable: With the rapid development of mobile devices and the enormous variety of

mobile services, scalability becomes an important factor. The system should be able to

handle a large amount of concurrent requests without significant performance degradation. It

should be easy to set up more nodes with hardware and software.

8

G3) Lightweight: Even though the performance of hardware for mobile devices has

significantly improved, there is still a limit for wireless connection, computing capability and

storage. Reducing the complicity of user interface and minimize the data flow are needed.

9

CHAPTER 3

LITERATURE REVIEW

This research is creating a trust model for mobile web services under the enterprises

environment based on mobile context information. The system should reinforce the enterprise’s

trust policies; the system’s features should meet our goals: flexible, scalable and lightweight.

Previous research has been conducted related to web services, web access, enterprise service bus,

cloud computing, mobile context, mobile comfort concept and trust models, which are reviewed

in this chapter. Based on the literature review, the most suitable architecture structure and

approaches are chosen to implement this distributed trust model system.

3.1 Web Service

According to the World Wide Web consortium (W3C) [31], web service is “a software system

designed to support interoperable machine-to-machine interaction over a network” [31]. There

are three types of web services, from Remote Procedure Call (RPC) that goes back to 1970 to the

current Service-Oriented Architecture (SOA) and Representational State Transfer (REST).

RPC is initialized by a client machine that calls a server machine according to a stub, a

contract between a client and a server. It is criticized for its tight coupling compared with SOA.

SOA was first introduced in 1998 in a project for Microsoft, and is a collection of services

using SOAP (Simple Object Access Protocol) as a way to transfer messages. SOAP relies on an

XML formatted message with an envelope head which contains metadata and an envelope body

which contains the actual data. Web services are needed to be published and discovered after

being created, so potential consumers can access them. [24] “SOA model is usually composed of

three actors and three operations. The three participants are service provider, service registry and

service consumer; the three basic operations are publishing, find and bind.” [24]. Service

10

provider is an addressable entity which provides, publishes the service and interfaces the service

contract to the service register. The Web Services Description Language (WSDL) is an interface

of the service contract. It explains web services’ functionalities, parameters and return data

structures. Service providers register their services at Universal Description Discovery and

Integration (UDDI). UDDI registry, the services registry, offers a standard mechanism to

classify, catalog and manage web services, so they can be discovered and utilized. It also

provides inquiries of the services for the service requestors. The service requestor finds the

services through the service registry and binds the services through the transport mechanism.

According to the contract interface, the service requestor invokes the services [24].

A REST web service is a resource-oriented service which is based on web standard and HTTP

protocols. Roy Fielding [11] first introduced the concept of REST in his 2000 dissertation.

Fielding derived REST by adding a set of constraints. The first constraint uses a client-server

architecture, which separates a user’s interface and data storage. The second constraint is

stateless communication, which improves visibility, reliability and scalability. The third

constraint is caching that improves efficiency. The fourth constraint is uniform interface. REST

web services supports HTTP methods such as POST, GET, PUT, and Delete. These methods

enable developers to manipulate resources through the Create, Read, Update and Delete (CRUD)

operations. The generality of the component interface makes the system simpler and more

visible. The fifth constraint is a layered system that simplifies components and improves system

scalability. The sixth constraint is Code-On-Demand which improves system extensibility but

trades off system visibility. [11] “The key abstraction of information is a resource.” [11]. A

resource is identified by URI (Universal Resource Identification). Overall, the features of REST

enable the system’s generality and scalability.

11

Compared with SOA and REST, RPC is not supported by certain vendors due to scalability

issues and tight coupling. Nowadays, SOAP services and RESTful services are pervasive. The

debate between the two services is on-going. According to the Gartner Survey in 2008 [13], there

has been an increase in the number of organizations implementing web services using REST.

When asked to indicate their past, present, and estimated future use of SOAP-based web services

vs. REST-based web services, respondents showed a marked drop-off in use of SOAP; from 54%

in 2008 to a projected 42% in 2009 and 2010. The number of organizations primarily using or

considering REST-based web services is predicted to grow by a proportional amount, from 14%

to 24% over the same time frame.

 Architecture, technology and practice for the RESTful web service and the SOAP web

service are compared in table 3-1.

Table 3-1 SOAP and REST

 SOAP REST

Invoke from Endpoint URL

Transfer Message SOAP (Simple

Object Access Protocol)

Plain xml & JSON

(Usually lightweight)

Operation Methods Uniform interface

GET, PUT, DELETE, POST,

PATCH, HEAD

HTTP Transport layer Application layer

Idempotency

Normally Not (Depend on

implementation)

GET, DELETE and POST are

idempotent, PUT is not

Use Scenario Usually Enterprise Applications Ad- hoc

Scalable network

Caching The semantics is not clear so

requires some efforts

Clear semantics which enhances

caching

Interface Multiform Uniform

Browser More compatible Some methods such as PUT,

DELETE, and PATCH are not fully

supported by some browsers.

12

The debate over using SOA or REST has been on-going for several years. It is an important

architectural decision for new and existing projects. Alshahwan and Moessner compared these

two web services: REST-based mobile web services and SOAP-based mobile web services on

three aspects: 1) Message size and its corresponding response time; 2) Effect of concurrent

requests on process time; and 3) Message size and its corresponding consumed memory size.

From the result of these experiments, REST-based web services perform better for large size

request messages or a large number of concurrent requests.

 In summary, REST web services have superior scalability than SOAP web services. Since

REST web service uses HTTP and HTTPS as its foundation, it is easier to modify a pre-existing

web system. The lightweight of REST web service makes performance more efficient. SOA

supports more transport and it is generally believed that SOA provides more reliable, and more

secure services compared with REST. Choosing between SOA and REST web services should

be dependent on business requirements.

3.2 Access Control

Web services are now becoming the dominant paradigm for e-business; thus, web service

access control is getting more interest. There are four models for access control [2]:

1) Attribute-based access control (ABAC); access is granted based on attributes of the users;

2) Discretionary access control (DAC); object owners decide access policies;

3) Mandatory access control (MAC); access policies are determined by the system; and

4) Role-based access control (RBAC); users are assigned different roles and each role has its

operation permissions.

Standard web access control uses RBAC. RBAC is performed through authorization and

authentication. Authentication is the process that verifies that someone is who they claim to be.

13

Normally, users are prompted to enter usernames and passwords; or other technologies like

scanning a fingerprint, face recognition etc. are involved. Authentication is used to find out what

level of access the identified person has. For instance: in which group the user is in, or if the

user has permission to access certain resources. An issue for authentication and authorization is

that they lack the capability to provide access control for cross-domain web services and cannot

provide dynamic control to adapt to business changes. Due to these reasons, some additional

“access control” mechanisms are brought up.

To address the issue of access cross-domain services, Context based Dynamic Access Control

Model for web service (CDACM), an RBAC extending based dynamic access control model for

web service is proposed [28], where Shang et al use “global services” and “global users”

concepts to refer to cross-domain composite web services and roles to call these services. “A

service is composed of several operation on objects, and services are provided by various

providers” [28]. Service is distinguished into global services and local services. "A global

service consists of local services or global services from other providers” [28]. “Roles in this

model are also distinguished into global and local roles. A global role consists of local roles and

global roles from other providers.” [10]. A global role is granted to call a global service which

includes more local web services from different domains. When a user requests a global service,

the global role is active and granted to the user. The “global role” is also suggested by Jeffrey

Fischer, Rupak Majumdar [12]. They developed an algorithm that computes a global RBAC

policy from RBAC policies of different applications. Web service interfaces in each domain are

defined as well as each associated role. A global role is granted permission to one or more global

services. For each web portal, local roles are mapped to global roles to satisfy the web

interoperation.

14

 Coetzee et al. [6] discuss a conversation process based on context awareness to control web

services access. The conversation is a list of tasks to fulfill certain business processes. The

specification for conversation is Web Services Conversation Language (WSCL). Conversation

is essentially trust negotiation which goes back and forth between services requests and service

providers.

Abdrahman [1] proposes Web Access Control using User Access Behavior (WACUAB). The

system first prepares mineable data using users’ logging history like: log date, log time, access

URL and logging frequency; then analyzes this data, generates an access pattern and uses this

pattern to enforce access control.

Bauer [4] designed a Proof-Carrying Authorization (PCA) web access control system to solve

the interoperability issue [4]. In order not to touch any pre-existing infrastructures, a fact server

and a proxy server are added in a standard web browser and web server architecture. The proxy

server is an intermediary between a normal web browser and a PCA-enabled web server. The

fact server holds the fact gathered from clients. The process of accessing a required URL is: 1)

A User’s requests to access a URL are generated as challenges and are sent to the PCA enabled

web server by the proxy server; 2) The PCA enabled web server returns an unproven proposition

to the clients; and 3) The client contacts the fact server to get a certificate asserting for the

unproven proposition. The process of step 2 and 3 is called “iterative authorization”. “Iterative

authorization” continues until all the propositions are successfully proven or the process gives up

due to not being able to providing the asserting. If the process succeeds, the user gets access to

the requested URL. The whole process is transparent to users and there is some overhead which

affects performance. To make the system efficient enough for feasible use, some approaches like

caching and pre-guessing tactics are applied.

15

Trust comes naturally in terms of access control. Trust has played an important role in human

interaction and cooperation for a long time. It is one entity’s belief of whether another entity can

provide certain services or not. Different web services have corresponding trust thresholds.

Depth-Analysis authorization, usually trust policy; access control decision-making; and trust

computing algorithms compose the trust-based access control of Web Service. More detail about

trust model systems will be discussed in later sections.

Overall, current web access is controlled by using RBAC, extended RBAC, historical logging

data, users’ context information, negotiation between clients and servers and trust calculating.

3.3 Enterprise Service Bus (EBS)

Enterprise Service Bus (ESB) is middleware software that provides requests routing, message

queuing and transforming, service orchestration, process monitoring, UDDI registry and security

services functionality. The intention for ESB is to integrate and interoperate different

applications in a complex enterprise computing environment. Currently, most enterprises run

multiple applications in their software ecosystem; how to make these applications interoperate

with each other and synchronize data becomes an issue. For example: At a university there are

varieties of services providing by different organization. The services for each organization are

developed with different computing languages, platforms, and databases. Exchanging data

between these services is an issue. ESB can be used to exchange messages and route these

messages from service providers to the service consumers.

The main functionalities for ESB are outlined below [19]:

1) Routing: services and messages need to be routed from consumers to providers and the

vice versa;

16

2) Transformation/queuing: a message from one service in a particular format needs to

be converted into another format so that it can be understood by other services. ESBs can

also synchronize messages between different services and act as temporary storage

repositories for messages;

3) Service orchestration: ESBs combine independent services together and expose the

service as a logic unit;

4) UDDI registry: services are registered using WSDL in an ESB framework. Service

requesters can find these services at design time and find the endpoint at the running

time;

5) Security: ESBs provide identification and authentication services for entities;

6) Management: ESBs monitor business process, logging and auditing information.

Numerous companies offer ESB business integration solutions like IBM, Microsoft. There

are also many open sources for EBS, such as Apache Camel, and JBoss Enterprise SOA

platform. Each ESB has its own strength and pattern; therefore, customers need to understand

both the vendors’ technologies and their business requirements in order to choose the right ESB.

3.4 Mobile Device Security and Comfort

By 2011, there were about 5.9 billion mobile devices in the world [14]. The increasing

capability and wireless connection is becoming a new threat to mobile security. Many solutions

for mobile computing security and trust issues have been proposed and used. Some of the

approaches from mobile devices perspective are:

1) Adding trust hardware for distributed mobile devices and components for mobile

devices’ OSs. The Root Trust Model was proposed to improve the trust between

users and devices through a set of hardware (HW) and software (SW) mechanisms for

http://en.wikipedia.org/wiki/Apache_Camel
http://en.wikipedia.org/wiki/JBoss_Enterprise_SOA_Platform
http://en.wikipedia.org/wiki/JBoss_Enterprise_SOA_Platform

17

authenticated booting, platform integrity attestation and data access/operation

controls [16]; and

2) Customizing IT security policies on mobile devices. Security policies can be

mandatorily loaded when the mobile devices’ OSs start up. The security policies are

usually formulated by the management of organizations. As an example, security

policies enforce mobile devices’ users to use password authentication.

Another approach enhancing the transmission security is explained below:

1) The data transferred between servers and mobile devices is encrypted. For example,

BlackBerry provides Advanced Encryption Standard (AES) and Triple Data

Encryption Standard (Triple DES) encryption method; and

2) Support for HTTPS connection. For example BlackBerry supports two types of

HTTPS connections: the first one is proxy mode where the security connection is

between BlackBerry enterprise servers and BlackBerry application servers. The other

connection is end-to-end mode where the data is transferred through Secure Sockets

Layer (SSL) or Transport Layer Security (TLS) connection from mobile devices to

application servers.

Due to mobile device features such as mobility and accessibility, mobile device usage

becomes a consideration. Stephen Marsh [21] proposed the “device comfort” concept to describe

the relationship between human beings and devices. Comfort is “a feeling of relief or

encouragement …contented well-being … a satisfying or enjoyable experience” [21]. Marsh

believes this definition explains device-owner relationships. Marsh also proposes a mechanism

for mobile devices to make a value judgment based on reasoning about the following three

specific components: user, location and task.

18

From the perspective of the “user”, there are several trust level states between their mobile

devices and themselves. These trust level phases are listed below as explained by Marsh [21].

1) Imprinting: an initial state; during this period, devices build a strong model of trust

and behavior using users’ identifiers;

2) Nurturing: in this phase, the trust between users and devices are reinforced;

3) Growth: when users use the devices properly, the trust grows;

4) Repair: if something goes wrong, the relationship between users and device needs to

be fixed. For example, the trust level is getting lower when the user misbehaviors;

and

5) Use: when the user needs to access sensitive information not only his/her credentials

need to be provided but also the device comfort level.

The process of building device-owner relationships can go back and forth through these five

phases described above.

From the “location” perspective, Marsh categorizes locations as comfort, discomfort, Tahrir,

and social zones. The location affects the overall devices’ comfort, when in a comfortable zone,

such as, home or office, the devices’ comfort level increases; on the other hand, when in a

discomfort zone the comfort level reduces. There is a zone called Tahrir which is defined as

discomfort but it is vital to open certain services; for example, despite uncomfortable events that

have occurred in the Middle East, communication is important in this area and mobile device

services remain even when the comfort level is low. Social zones are special cases too. Mobile

devices detect other devices around and recognize they belong to social friends such as co-

workers or some club members. Based on different social zones, different data or applications

are accessible.

19

From the “task” perspective, if a task is a routine job and it is executed in a normal context,

the device’s comfort level increases; if a task has never been done before, or the context value is

not normal, the device’s comfort level decreases. Some tasks under certain context are

proscribed or flagged, for instance driving & calling simultaneously, it is hard to know who is

actually calling, the owner might be just a passenger but it certainly affect devices’ comfort level

negatively.

To enhance mobile devices’ security, building a proper device-owner trust relationship is a

key factor. Some factors like users’ behaviors and users’ context are discussed in the upcoming

sections.

3.5 Mobile Context

“Context” is defined as any information that can be used to characterize the situation of an

entity [8]. A situation can be a time, a location, a heading direction or a social context. These

situations are observed in our daily lives. From a mobile device perspective, a mobile device‘s

location, time and current network speed are examples of contexts.

 Schilit [27] divided context into three categories: computing context, user context and

physical context. Computing context can be current network type, bandwidth, mobile devices’

memory and storage. User context can be current location, a user profile, etc. Physical context

can be current temperature, wind direction, etc.

One trend in mobile devices is that a number of built-in sensors have become standard.

Cameras, GPS receivers, acceleration sensors and level sensors are now commonly built into

smart phones and tablets. Thus, the mobile devices’ hardware meets the requirement for

implementation of context aware applications.

20

Mobile context aware applications are now developing fast with the trend towards a highly

mobile workforce. Context awareness was first envisioned by Mark Weiser [33] who uses

storytelling style to convey his idea on how context aware computing makes our lives efficient

and smoothly.

Dey et al. [8] categorize context-aware applications into three types:

“1) Presentation of information and services to a user

 2) Automatic execution of a service

 3) Tagging of context to information for later retrieval” [8].

The “presentation of information and services to a user” ensures that the application has the

ability to detect the context information and present it to users. “Automatic execution of a

service” refers to the ability to execute services based on the context information. “Tagging of

context” is the ability to associate digital data with a certain context. For example, a virtual post

introducing of a person pops up when this person’s face shows.

With the growth of context-enabled applications, some researchers propose context

provisioning systems which make building of context-aware applications more efficient. Some

examples are: context toolkit [26] which is a context GUI widget; a context provisioning

architecture which provides a platform for discovery and provisioning context information to the

different entities [25]; middleware which allows for providing context information between

consumers and providers [7].

Among all the context information, one of the most important factors is location. Location

Based Service (LBS) technology is developing fast for mobile computing due to the mobile

devices’ nature. Mobile device users sometimes are not contented with just using static

applications; they often prefer to get services and information based on their current need and the

21

surrounding situation. For example: mobile device users may like to know what is going on in

the cities where they live. When traveling, mobile device users may want to get the latest traffic

status and check the nearest restaurant. Location also provides information for mobile

networking security concerns: how safe the current mobile device’s network is; what type of the

network is in use; what type of location they are at, such as the office or a coffee shop. Trust

policies are formulated based on these security concerns. There are several technical ways to get

current geographical location. These methods are used in different scenarios according to the

accuracy and acquiring speed requirements, mobile devices, indoor or outdoor and available

networks. A common method to get location is to use Global Positioning System (GPS)

tracking. Most modern mobile devices have built in GPS receivers. GPS provides accurate

location service and works well in an open wide area but not so well indoors or around

skyscrapers. For indoors and some areas where the satellite signal is blocked, Wi-Fi positioning

systems are used. This technical method detects the entire wireless routes around the mobile

device and based on the gathered information calculates where the mobile device is located. In

San Francisco, for example, mobile device users can get quite accurate results. The third method

is using telecommunication networks. The mobile carriers can triangulate the position of the

mobile device. The accuracy of this method depends on the density of network cell towers since

mobile carriers use cell towers to detect the devices’ locations. Usually this technique provides

less accuracy than GPS and Wi-Fi positioning.

3.6 Cloud Computing

Mobile web services are usually deployed in a cloud computing environment. Cloud

computing is a new emerging computer paradigm, it provides on-demand storage, application

and computing service over network—usually the internet. Consumers use the cloud hosted

22

services without having any knowledge about the physical location of the service provider and

technology infrastructure. Cloud computing can be private or public: public cloud computing

sells services to everybody while private cloud computing only provide services to certain

people.

There are three types of cloud computing based on their services known as [5]:

1 Infrastructure as Services (IAAS): This is hardware related services such as providing

storage or virtual machine services, for instance, Amazon EC2.

2 Platform as Service (PAAS). This is defined as “delivery of a computing platform and

solution stack as a service.”, for instance: Google App Engine.

3 Software as Services (SAAS). This service is the most commonly use services. We use

such services in our daily life, like: hotmail and Google mail are examples of SAAS.

Cloud computing provides a flexible business model for organizations, especially medium or

small size businesses. Traditionally, businesses purchase hardware and software at one-time

payment and hire people for hardware and software maintenance. Now they can purchase these

services on demand; similar to purchasing utilities. Small and medium size corporations need

scalability as their businesses grow. The hardware and software they invested before might not

suitable for current situation. Cloud computing offers these businesses flexibility by simply

allowing for upgrading the cloud computing services in order to satisfy growing business needs.

Cloud computing is also suitable for massively distributed systems such as ad hoc mobile

networks.

A main challenge for cloud computing is scalability: A program can continue running

smoothly even when concurrent requests significantly increase.

http://en.wikipedia.org/wiki/Computing_platform
http://en.wikipedia.org/wiki/Solution_stack

23

 Cloud computing is evaluated by the standards of security, availability, scalability and

performance. A good cloud computing service should deliver consistent, efficient and reliable

services to its clients with zero or low maintenance effort. With the growing cloud computing

providers, it is difficult to choose the right vendor. In the state-of-the-art survey, Habib et al. [16]

summarized some parameters that customers need to measure when choosing cloud computing

vendors. These parameters are: “i) Service Level Agreement (SLA), ii) Compliance or

accreditation or certification, iii) Portability feature, iv) Interoperability feature, v) Geographical

location of the data center (Cloud), vi) Customer support facilities, vii) Performance test, viii)

Deployment models(e.g., private, public, and hybrid clouds) ix) Federated identity management

solution, x) Security measures, and xi) User recommendation, feedback and publicly available

reviews.” .

A more accurate evaluated mechanism is needed and a third party should be involved in the

evaluation process.

3.7 Trust Model

With the exceptional growth of e-business, e-commerce and emerging enterprise

technologies, building trust models has become one of the hottest research areas. It certainly

leads the trustworthy computing system. General trust is regarded as one entity’s belief about

another entity in certain aspects under certain conditions. The essential of building a trust model

is defining trust relationships and the mechanisms for calculating the trust values. Normally a

trust value is established based on the interaction with other entities directly or indirectly,

recommendation and context information, etc. A well-built trust system allows users to share

information, do business and store sensitive data without worrying about security issues.

24

Some existing trust models are characterized in this section. Wang et al. [32] propose

Bayesian Network trust Model in a peer-to-peer (P2P) network [32]. The foundation of this

approach is the Bayesian rule. Basic Bayesian formula is:

P(C=T|A=T) =P(C=T, A=T)/P (A=T) ……………………………………………………... (3.1)

 Where,

P (C=T|A=T) represents the probability of “C=T” given “A=T”

P (C=T, A=T) represents the probability of “C=T” and “A=T”

P (A=T) represents the probability of “A=T”

Wang et al. [32] use file-sharing systems in P2P environment as an example, and they discuss

calculating the trust value from the transfer speed, file quality aspects for each peer. The overall

satisfaction for a peer can be calculated as:

S =Wds *Sds + Wfq * Sfq……………………………………………………………………… (3.2)

Where S is overall satisfaction

Wds is the weight of file download speed

 Sds is the satisfaction of file download speed

Wfq is the weight of file quality

 Sfq is the satisfaction of file quality

Wang et al. [32] also propose a formula which calculates the recommendation values from

other peers, as shows in equation 3.3:

g

t
w

tr

trt
WR

g

z zj

sk

l il

k

l ilij

tij





 



  1

1

1 *
*

* …………………………………………………….. (3.3)

Rij is the total recommendation value for the j
th

 file provider that the i
th

 agent gets.

25

k and g are the number of trustworthy references and the number of unknown references

respectively.

tril is the trust that the i
th
 user has in the l

th
 trustworthy reference.

tlj is the trust that the l
th

 trustworthy reference has in j
th

 file provider.

tzj is the trust that the z
th
 unknown reference has in j

th
 file provider.

Wt and Ws are the weights to indicate how the user values the importance of the

recommendation from trustworthy references and from unknown references.

 Agents also update their trust values of other agents who provide recommendation, as

equation 3.4 shows.

 etrtr t

ij

t

ij *)1(*1  ………………………………………………………………... (3.4)

where

1t

ijtr denotes the trust value that the i
th

 agent has for J services for t+1 transaction.

α is learning rate.

еα is new transaction evidence value which can be 1 or -1. If it is positive evidence then it

is 1; otherwise -1.

Agents can also exchange their information with each other and update the trust values as

equation 3.5 shows.

 etrTr t

ij

t

ij *)1(*1  ……………………………………………………………….. (3.5)

where β is a learning rate and еβ is the new transaction evidence. β is less than α because this

approach reflects agents’ preferences based on their own interactions with the file providers

more than the influence of any other agents’ recommendations.

Lee et al. introduce a fuzzy trust model [20]. Lee et al use three trusts: situational trust,

dispositional trust, general trust to calculate total trust value, “Situational trust (a.k.a.,

26

interpersonal trust) is the trust that an entity has for another entity in a specific situation.

Dispositional trust (a.k.a., basic trust) is the dispositional tendency of an entity to trust other

entities. General trust is the trust of an entity in another entity regardless of situation. The

reputation is valuable information for estimating the trust of an entity. ” [20]. When an entity

starts to work, it initializes a dispositional trust value which is use as general trust value. It

obtains the situational trust and the reputation from other entities as it interacts with them.

General trust becomes situational trust when a sufficient number of interactions have been made

for a given situation.

V. Varadharajan [29] defines a trust relationship as a tuple as shown below.

{P, Q, C, T, D, τ, ν, p, n}…………………………………………………………………….. (3.6)

where

P and Q are domains belonging to an entity set D

C is a class

T is trust type (direction trust, indirection trust, recommendation)

τ is time duration in which the trust relationship is considered valid

ν is the trust value.

p is positive experience in term of trust relationship

n is negative experience in term of trust relationship

Varadharajan et al. [29] explain equation 6 as following: “…entity P trusts entity Q with

regard to trust class C, trust type T , time duration τ, that security domains of P and Q are

contained in D, and that ν holds the trust valuation” [29]. Varadharajan et al. [29] use subject

logic to represent trust evaluation and trust evidence. There is a key component, trust

management: trust management uses a combination of trust evaluation, trust evidence mapping

27

and trust comparison to make trust decisions and send them to a security management in a

mobile open network.

Laurent Eschenauer et al. [10] compare trust establishment through the internet and mobile

ad-hoc networks. Due to the nature of ad-hoc network, there is no long-term, stable evidence,

“therefore, trust relations can be short-lived and the collection and evaluation of trust evidence

becomes a recurrent and relatively frequent process”. In summary, the protocols in ad-hoc

mobile network should be

1) “Peer-to-peer, independent of a pre-established trust infrastructure”;

2) “Short, fast and on-line” and;

3)”Flexible and support uncertain and incomplete trust evidence”.

Wu [34] introduces three procedures in his trust model for a mobile device environment. The

three phases are:

1) collection of observations;

2) filtering of observations

The procedure is designed based on Kalman filter theory. The basic Kalman filter

employs the formula:

Si = Si-1 + Ωi -1 …………………………………………………………………………….. (3.7)

where

Si is quality service at time i

Si-1 is quality service at time i-1

Ωi -1 is a random noise

The procedure uses recursive mathematical equations to update its current trust state;

and

28

3) Predication of trust.

Entity A predicts entity B’s trust value based on the last observation. The more frequently

A contacts B, the more quickly the filter stabilizes the trust value and reduces the distance

between the actual trust value and the predicated trust value. If the entity cannot endure

high risk, the value Ω should be set at a high number. This value can also be an initial

trust value if there is no previous history. A higher value of Ω means higher importance

of freshly available information.

Jiang et al. [17] propose a trust system using interaction experiences, and recommendations

from other peers. Their research focuses on mobile devices in a ubiquitous environment. Due to

the features of mobile devices, a “hard to gain, easy to lose” trust policy is applied. The trust

value is calculated by the following formula:

Vaj = max { }1,*
2*


n

j

a

cn

j

SL

SL

Total

a
…………………………………………………………….. (3.8)

where

aj is the security level for j
th

 action , it can be either positive number or negative number.

Totala is the total action number of a period.

SLn is the highest security level in an applying domain

SLj is a security level of target service which j
th
 action performed

cn is a counter number of continuous negative actions

When there is a continuous negative action, the trust value declines dramatically. The trust

value increases slowly when the action turns into positive. It is more suitable for calculating the

mobile devices’ trust value since mobile devices have a high possibility of being used by other

malicious people, so if any abnormal situations are found for a mobile device, it takes effort for

this device to go back to normal status.

29

In an open network environment, especially in an ad-hoc mobile environment where there is

no central administration, building a trust model is the key to let entities rely on the system

where they can perform critical functions securely; process, store and communicate sensitive

information safely. Generally speaking, building a trust model comprises setting an initial trust

value, updating the trust value based on interactions, context and recommendation and risk

considerations. A successful trust model should effectively prevent any attacks or malicious

behaviors and adapt to dynamic environments.

3.8 Summary

The RESTful web service constraints derive by Roy Fielding [11] including: stateless

communication, cacheable features and a uniform interface, make systems perform better for

scalability and lightweight. Hence, the RESTful web service methodology suits our

implementation goals. The “Device comfort” concept was proposed by Stephen Marsh [21]

addresses the “lost or stolen devices” and “abuse of privileges” issues we raise in chapter 2.

Trust relationships should be built and maintained between users and devices through user-

location-tasks perspectives. Standard web services access control use authentication and

authorization but cannot resolve the “cross-domain web services access” issue highlighted in

chapter 2. For cross-domain interactions, many approaches have been proposed and

implemented, and myriads factors are used such as user log history, users’ context and so on.

Among other factors, context information gets more attention for web access controls [28][6]. To

build a proper relationship between users and mobile devices, context information like location

and time also plays an important role [21]. Context information can be any physical, social or

device’s information [27]. Location is one of the most important factors for evaluating a trust

value. Building a trust model for mobile devices, the previous trust value should be considered.

30

The previous trust value refers to the accumulated trust and reputation derived from the history

transactions. The weight of the previous trust value depends on how risky the system can

tolerate [34]. An initial value is set for each mobile device when it starts sending requests [20].

The evidence for establish trust relationship in mobile ad-hoc networks should be independent,

fast to retrieve and flexible [29]. The formula to calculating mobile devices should be “hard to

gain, easy to lose” to improve the mobile security [17]. Trust policy should be flexible and easy

to maintain to adopt the dynamically changed business.

The list of papers reviewed is presented in Table 3-2 below.

Table 3-2 Issues/Goals and Solutions Found from Literature Review

System scalability & lightweight Create RESTful web services on cloud servers

Reference [11]

Lost or stolen devices/ abuse of

privileges

Building trust relationship between users and devices

based on interaction history and context information;

adding a trust module for each web service.

Reference [28] [21].

Cross-domain web access Context information is used for dynamic access

control.

Reference [28] [6].

User behavior and historical history are used to

control web services

Reference [1].

Calculating trust value for mobile

devices

The trust value is calculated by previous trust value

and recently observation of mobile devices'

transaction.

Reference [32].

A trust threshold is used when make trust decision.

Reference [10].

An initial value is set as a general trust value for an

entity when the entity starts work.

Reference [29].

The protocol for establish trust in MANET should be

fast, independent, and flexible.

Reference [10].

The formula should be “hard to gain, easy to lose”.

The continuous negative interaction number should

be used in trust formula.

Reference [17].

31

However, since this implementation handles web services from multiple domains, there are

still some open issues:

 How to distribute the trust models?

 How much overhead for each transaction is introduced due to the additional trust

component?

Not much has been done in the area of building a trust module for mobile devices’

requests and cross-domain interactions. In this proposal, I propose and implement a

distributed trust module which calculates requests trust value based on context value and

trust credit while exploring approaches to achieve efficient performance and lightweight

transactions.

CHAPTER 4

DESIGN AND ARCHITECTURE

4.1 Overview

The goal of this research is to create a trust model and integrate it with mobile devices

web services.

4.1.1 The Trust Model Analysis

In Chapter 2, three scenarios were used as examples for the issues of using mobile

devices and web services.

 Scenario 1: Lost or stolen mobile devices can be used by malicious people to hack

web services, including legacy applications, thus causing profit loss and data

leakage.

 Scenario 2: Some mobile device users abuse the privileges which are granted to

them to access the web services. For example, they retrieve sensitive information

in public or update data when they are drunk.

 Scenario 3: There are unforeseen interactions from the requests sent by other

domains. Even a well known domain can be hacked and become untrustworthy,

so interacting with these domains can be risky.

Figure 4-1 shows a basic structure of the implemented system. There can be many

other kinds of system structures. An example of alternative structure is a proxy server

connecting two web servers as figure 4-2 shows.

In figure 4-1, the mobile client sends a request to server 1 or its replication node

server 1’, depending on the trust setting, this request can be sent to server 2 (or

replication node server 2’) and server 3 (or replication node server 3’) and so on. (For the

33

33

sake of simplicity, replication server nodes are not mentioned in the following sections).

Server 1 questions the request sent by the mobile device; Server 2 questions the request

sent by server 1 and so on. The trust modules under each server answer the questions by

calculating the trust value of each request.

Server 1

(2)

Server 2

(3)
Server … N

(5)

Server 3

(4)

Mobile

device

(1)

Is this request proper? Is Server 1 trustworthy? Is Server 2 trustworthy?

Trust

module

Trust

module
Trust

module

Trust

moduleFirewall

E

S

B

Server 1

replication

(2')Trust

module

Server 2

replication

(3')Trust

module

Server 3

replication

(4')Trust

module

Server …N

replication

(5)Trust

module

TCP/IP TCP/IP TCP/IP TCP/IP

Figure 4-1 the proposed system structure

Server 1

(2)

Server 2

(3)

Server 3

(4)

Mobile

device

(1)

Trust

module

Trust

module

Trust

module

Firewall

E

S

B

Server 1

replication

(2')Trust

module

TCP/IP

Figure 4-2 an alternative system structure

Server 1 checks if the context value, such as location and time, meets the trust

policies, the operation pattern matches the mobile user’s pattern, and the mobile device’s

34

34

previous transactions. If the request is sent by a malicious person who pretends to be the

mobile user, the possibility of operation pattern matching is low and the other context

factors might not be allowed by the trust policies, thus the request is most likely rejected.

On the other hand, if a legitimate user sends a request at an improper time and location,

the trust module catches it and either rejects the request or sends a warning to the mobile

user. If the request needs information from other server(s), or in another words, it is a

cross-domain request, then it is forwarded to other sever(s), in this case, it is server 2.

Server 2 calculates the trust value of requests coming from server 1; server 3 calculates

the trust value of requests coming from server 2 and so on. If any domain is hacked, the

trust value of this domain is adjusted accordingly on other domains; thus, the whole risk

of unforeseen interactions from the requests sent by other domains is mitigated.

In figure 4-2, besides check the trust value of coming requests same as figure 4-1,

server 1 sends requests to both server 2 and server 3 and combine the responses from the

two servers together, and send the merged response to the mobile device.

The trust module is built as a decentralized attachable module for several reasons.

First, each organization has its own business rules and security requirements, so each

organization’s web site correspondingly has their own trust policies. Second, since

mobile devices’ services are regarded as rapidly changing, a decentralized system is more

flexible to adapt these changes. Except for the three goals mentioned in chapter 2, there

are several other considerations about the system’s features. The trust module is an

independent module with its own database and it should be easily called by other web

services; adding the trust module with an existing web site should be smoothly. In order

to exchange information about the reputation of other domains, the trust module’s data

35

35

should be exchangeable. To make the system more robust, one or more replication nodes

are needed and database backup should be simple and easy to carry on as a routine work.

Figure 4-3 illustrates how the trust module works in server 1. It analyses the context

value and the mobile device’s history transactions, and then calculates the trust value

based on the analyzed result. The formula for calculating trust value will be discussed in

later section.

Figure 4-4 illustrates how the trust module works in server 2. After the process of

authorize and authenticate, the trust module parses the HTTP header and gets the trust

value, it then recalculates the trust value of the incoming request based on how much the

current server trusts the requesting server.

Authentication/

authorization

Trust

module

Web

services

HTTP request

1) query parameters

2) client and password

3) context value

authorized

[Client ID,

password]

[Client ID,

Context

values]

[Query

parameters]

Trust value> =trust threshold

unauthorized

Trust value <trust theshold

Reject

request

Reject

request

Transaction

Figure 4-3 calculating trust value for mobile devices

36

36

Authentication/

authorization

Trust module

Provide

services

HTTP request

1) query parameters

2)client ID and password

2) domain name

authorized

[Client ID,

password]

[Domain

name]

[Query

parameters]

Trust value> =trust threshold

unauthorized

Trust value <trust theshold

Reject

request

Reject

request

Domain

trust value

Figure 4-4 calculating trust value for other servers

There can be three results for handling HTTP requests depending on the trust value

and the trust setting. The request can be rejected if it is not trustworthy. For the

trustworthy requests, the requests are severed by the current server if the current server

can provide the services. Otherwise the requests are forwarded to the proper server(s) if

the current server finds the server(s) that provide the services.

The trust module’s functionalities and features are summarized in table 4-1.

Table 4-1 The Trust Model’s functionalities

1. Set constrains for web requests based on business needs

2. Keep HTTP transactions, the trust values of history transactions are considered

when calculated trust value

3. Generate and update trust value for each domain

4. Attach/unattached by other web services effortless

5. Replicate/migrate trust model smoothly

6. Exchange data, such as transactions, trust policies and reputation for other

domains

37

37

4.2 Architecture

The system architecture is explained through a physical perspective and a logical

perspective.

4.2.1 Physical Architecture

The proposed system is divided into two components from the physical architecture

perspective: the mobile clients and the servers as figure 4-5 shows.

 Mobile Clients

The mobile clients initialize requests and send them to the server(s), and represent the

response from the server(s) to users.

 Servers

Servers analyze requests and calculate requests’ trust values. They provide direct

services to the mobile requesters as well as forwarding some requests to other web

servers. After the requests going through the firewall and the enterprise server bus (ESB)

which normally has authorization and authentication process for users to identify

themselves, they are calculated by the trust module. The requests are rejected if the trust

values are lower than the trust threshold which is initially set in the server. Depending on

whether the servers provide direct services or not they are divided into proxy servers and

web servers. The proxy server and the web server are illustrated into more detail in the

logic perspective below.

38

38

Smart phone

PDA

Enterprise B

…...

Enterprise...Firewall

Authoriz

ation/

authenti

cation

Web

services

ESB

Trust

module

...

Other

module

Enterprise A

Tablet

Trust module

database

Figure 4-5 system physical architecture

4.2.2 Logical Architecture

From the logical perspective, the architectural structure is divided into three

components based on functionalities: the mobile devices, the proxy servers, and the web

servers.

 Mobile Devices

This component which can be smart phones, tablets, and PDAs as shown in Figure

4.5, is the same as the mobile devices component in physical aspect.

 Proxy Servers

The proxy servers do not provide direct services. They analyze the requests’ context

information according to the trust policies and request types, and calculate the requests’

trust value. Based on the trust value and the trust threshold for this type of request, the

proxy servers either forward the request to other servers, either web servers or other

proxy servers, or reject the request.

39

39

There can be more than one proxy server in a request route: a proxy server can

forward a request to another proxy server according to the request type and route settings.

There is a table “route” in each proxy server which indicates the next forward server.

After retrieving the next server, the proxy server acts as an HTTP client and sends this

request to the next server.

 Web Servers

The web servers provide direct services for the mobile clients. When the web servers

receive requests either from proxy servers or directly from mobile devices, they calculate

the requests’ trust values and decide to provide the requested service(s) or reject them

based on the result.

Smart phone

PDA

Proxy server

with the trust module Web server

with the trust module

Cloud

Mobile devices Proxy server
Web server

Mobile device context

Information; request

parameter

Mobile device trust

Value;

request parameters;

Reject or

request result

(JSON)

Reject or

request result

(JSON)

Tablet

Figure 4-6 logical architecture

4.2.3. Replication Trust Module Nodes

In order to build a robust and efficient trust model, a replication node for the trust

module along with the Mensia database is added in the system. Mnesia is chosen as a

40

40

NOSQL DBMS in the system since it is fault-tolerant and distributed. It naturally

provides mechanisms for building a replication node. A replication node can improve the

throughput and act as a backup server if the other nodes fail.

As Figure 4-7 shows, two trust modules are connected with other modules under the

enterprise web services environment. ESB routes the requests to different trust modules

and balance the workload between different trust modules. A database scheme and tables

are created identically in the two modules and transaction data are also written in the two

nodes simultaneously using the Mnesia mechanism to support distribution.

Firewall

Authoriza

tion/

authentic

ation

Web

services

ESB

Trust

model(2)

Other

module

Replication nodes

Trust module

database(2)

Trust

model(1)

Trust module

database(1)

HTTP request

Figure 4-7 replication trust module nodes

41

41

4.2 Data Format & Flow

The mobile devices (HTTP clients) initiate the task by sending requests to the proxy

servers or the web servers. The content of the HTTP requests contains query parameters

and context information. The servers calculate the trust values of the incoming requests

and either pass them to the next server(s) or provide the services. If the servers forward

these requests to other servers, they act as the proxy servers; if the servers directly

provide the services, they act as the web servers.

Status: 200

Head: header,["Content-Type: application/json;

charset=utf-8"],

JSON body:

{GRADES,[{GRADE,[{"id","0001"},

 {"name","Abc"},

 {"class","CMPT110"},

 {"grade","80"}]},

 {GRADE,[{"id","0001"},

 {"name","Abc"},

 {"class","CMPT115"},

 {"grade","85"}]}]}

Http_request(PO

ST,{url?student_i

d=0001&time=09

00&lat =52.12137
&lng=106.63845&

movement =still})

Status: 200

Head: header,["Content-Type: application/

json; charset=utf-8"],

JSON body:

{GRADES,[{GRADE,[{"id","0001"},

 {"name","Abc"},

 {"class","CMPT110"},

 {"grade","80"}]},

 {GRADE,[{"id","0001"},

 {"name","Abc"},

 {"class","CMPT115"},

 {"grade","85"}]}]}

Android tablet
Proxy server Web server

HTTP_request(get,

{url?student_id=0001}

{header,["Content-

Type: application/json;

charset=utf-8"],

 ["rrust_value: 0.8],

 ["date: 20120118],

 ["time: 12:00:00"]},}

Student

grade

information

Figure 4-8 data format and flow

After receiving requests, the proxy servers recalculate the trust value, and check their

route settings and send the request to the next server along with the new trust value and

query parameters.

The web servers retrieve the records from the database and generate JSON (JavaScript

Object Notation) objects after receiving the requests, and send these JSON objects back

to the last requesting HTTP clients. If the last HTTP client is one of the proxy servers, it

42

42

passes the JSON objects to its HTTP client and so on until the JSON objects are delivered

to the mobile devices. If the trust value of a request is less than a trust threshold in any

servers, the request is rejected and error information is sent back to the mobile device.

Proxy servers also can integrate multiple responses together if a request needs more

information which is distributed in different domains.

Figure 4-9 illustrates data exchange between the mobile device, the proxy server 1, the

proxy server 2, and the web server.

Mobile agent Proxy server 1 Web server

1)Send request with

context Information

2)Forward the request to next server

with calculated trust value

in request head

(if trust value>=trust threshold)

Reject response

(if trust value<

trust threshold)

4) Response

status =200

JSON body

student information

Proxy server 2
...

3)Forward the request

with recalculated

trust value in

request head

(if trust value>=

trust threshold)Reject response

(if trust value<

trust threshold)

Forward reject response

Reject response

(if trust value<

trust threshold)

5) Response

Status =200

JSON body

student information

6) Response

status =200

JSON body

student information

Reject response

(if trust value<

trust threshold)

Reject response

(if trust value<

trust threshold)

Reject response

(if trust value<

trust threshold)

Figure 4-9 entities interaction sequence

4.3 System Functionalities

The system has the following functionalities:

43

43

 Invoking web service from mobile devices: An Android tablet is used as a

mobile client in the implementation. When the mobile clients send requests, the

context information, such as location, time, device position and device moving

speed are also sent to the proxy servers or web servers along with other query

parameters. This context information is used to calculate the trust value.

 Analyzing mobile devices’ context information and calculating trust value:

Prior to calculating requests’ trust value for mobile devices, a set of trust policies

needs to be defined. The trust policies are stored in the “trust_policy” table. For

the “location” context as an example, the records in table “trust_ policy” are

shown in table 4-1:

Table 4-1 trust policy for location

 Keyword Policy Name Criteria Trust

Value

1 Location Trust value for location

in U of S campus

1;lat:>=52.12137 and

<=52.14271;lng:>=-106.63845

and <=-106.62197

0.3

2 Location Trust value for location

in Saskatoon

2;lat:>=52.08657 and

<=52.18593;lng:>=-106.72565

and <=-106.55142

0.1

3 Location Trust value for location

in Canada

3;lat:>=46.52863 and

<=69.83962;lng:>=-141.15234

and <=-52.82226

0.0

Mobile devices' context values reveal the devices’ situation in many aspects; for

example, the temperature can indicate outdoor or indoor; a moving speed can shows

whether the users is driving, or waling or being still; Bluetooth connects can suggest

whom the users are with. With more context values, a more accurate situation can be

determined. More context values will be considered in the future work.

44

44

Different approaches to calculate mobile devices’ trust values depend on the business

requirements. Two formulas are proposed for calculating mobile devices’ trust values in

this research.

When the proxy server and the web servers receive the HTTP requests along with the

mobile devices’ context information, they look up each corresponding trust policy. For

instance, if the location is not at the University of Saskatchewan campus but within the

city of Saskatoon, the trust value is 0.1; if the location is not in Saskatoon but within

Canada, the trust value is 0.0. Trust values for each context category are summed up as

the request’s current trust value.

 i

n

i

current VT 



1

………...……………………………………………………... (4.1)

Where

Tcurrent is current request’s trust value

Vi is the context value of i category

To apply the rule specified for mobile devices in Chapter 3 which is “hard to gain,

easy to lost”, the total trust value of mobile devices is calculated as follows:

Ttotal = α Ti + β

 * min((Ti-1 - Th) ,0) + λ

 * min((Ti-2 - Th) ,0) …………… (4.2)

where

Ttotal is the total trust value

Ti is the current transaction trust value

Ti-1 is the last transaction trust value

Ti-2 is the second last transaction trust value

Th is the trust threshold

α, β and λ are weight factors range from 0-1

45

45

The equation 4.2 is used as formula 1 in the experiments.

If trust values of the last two previous transactions are less than the trust threshold,

they are involved when calculating the total trust value. The previous trust values are

recorded in mobile devices registry table.

If previous transactions are not important for business requirement, then context

values is enough for calculating the mobile devices’ trust values as follows:

Ttotal = α Ti ..………………………………………………………………….. (4.3)

where

Ttotal is the total trust value

Ti is the current transaction trust value

α is weight factors range from 0-1

The equation 4.3 is used as formula 2 in the experiments.

The request’s current trust value is the summary of each context category as the

equation 4.1 shows. The formula 2 is much simpler than the formula 1, and it shows

better scalability and less overhead which are discussed in chapter 6.

 Calculate web requests’ trust value: A proxy server or a web server calculates

the trust value sent by other proxy servers. In each server node, there is a table

called “domain_trust_mapping” which specifies how the current server trusts

other servers. When the proxy servers forward the requests from the mobile

devices to other servers, either proxy servers or web servers, they also forward the

recalculated trust values. The formula listed in equation 4.4 is employed to

calculate the current trust value:

46

46

Previous

proxy

server

Web

server

DataBase

Tprevious Tcurrent

Tcurrent_previous

Figure 4-10 calculating trust

Tcurrent = Tprevious * Tcurrent-previous…………………………………………………….. (4.4)

where

Tcurrent : the trust value for the coming request calculated by the current server

Tprevious: the trust value for the coming request calculated by the the last server

Tcurrent-previous: how much the web server trusts the proxy server. The value ranges

from 0-1

Hence, the new trust value is the incoming trust value multiplied by how the current

server trusts the client.

 Forward web requests to the proper web servers; combine multiple web

services: The HTTP responses from different domains can be combined together

to complete a business process. A “route” table is defined in all servers for each

type of requests. For example: when request type A needs to forward a composite

request to web server B and web server C, we merge the responses from server B

and server C together and send the combined information to the mobile device.

 Replicate data between two or more trust modules nodes: To improve

throughput and enhance the system’s fault tolerance, multiple trust module nodes

47

47

are set in the system. The transaction data of the requests is replicated to all other

nodes. When one node fails, other nodes can continue work without affecting

business.

 Maintain trust policies interface: Trust policies need changing according to

business requirements. In order to build a more flexible and automatic system, a

web form is created to maintain trust policies.

4.4 Design

According to the physical components, system design is divided into mobile device

design and servers design.

4.4.1 Mobile Device Design

The mobile devices act as HTTP clients in the system. In additional to send query

parameters, they also provide context information. The functionalities of the mobile

devices are detecting context information and sending requests to proxy servers and web

servers.

Motorola MZ604 is used as the mobile device in this implementation. It runs on

android API 3.2. Android is a software stack which includes:

 Applications like phone, web browsers and so on;

 Application framework;

 Libraries. Developers can access these libraries though the Android

application framework; and

 Operating system. Android relies on Linux operating system.

48

48

Android 3.2 supports mobile tablets also. It provides zoom capabilities and supports

extended screens.

 There are normally two approaches for mobile devices’ development. The first

approach is the pure native application most likely using Java or C# and the second

approach is the embedded browser design which mostly involves the use of HTML,

JavaScript and CSS. Andy Wang [30] compares the two approaches as summarized in

table 4-2.

Table 4-2 mobile native application vs. pure embedded browser application

 Native application Pure embedded browser application

Pro Performance (compiled code)

 Full access to native API

 Easy to test and debug

 Rich GUI features

Platform independent

Less specialty required

Easy to maintain and upgrade

Con Platform dependent

Maintenance and upgrade cost

Browser compatibility

Performance (interpreter)

Browser limitations

No access to native API

The hybrid implementation is adopted in our system which involves the combination

of embedded browser and the native application. The embedded browser approach is

used for sending web requests and the native approach is used for detecting the device’s

context information via built-in sensors. The mix of two approaches makes development

process and maintenance work relatively easy, also it takes advantage of the rich features

of the Android SDK.

Table 4-3 shows the tools we use for this implementation.

Table 4-3 mobile device implementation tools

Mobile Devices Devices Operation System Programmer Language

Android tablet Android Java; Android SDK; HTML,

49

49

e.g. Motorola

MZ604

JavaScript; Google map

JavaScript API

As we recall the issues identified in Chapter 2, the system is going to build a trust

model by using the mobile devices’ context information. The tasks of mobile devices are

initializing requests along with context information and representing the responses from

the server. According to the tasks, there are three main Java classes and three activities.

The three major Java classes are “ThesisActivity”, “GetContext”, and

“UseSimulation”. There are some other Java classes but they only provide facility

functions.

“ThesisActivity”: This is the main Java class in this implementation. It provides the

entry interface. Users can choose how they get the context value: through the mobile

device’s hardware or through simulation. Depending on the user’s choice, different Java

classes are called to get context values. After getting context values, a request is

initialized and sent to the server, and then it waits for the server’s response and represents

the result to users. A widget called “webView” is used in this class which is an extended

view class that allows developers to display HTML pages on the mobile embedded

browser. The HTML page provides an interface for end user to enter query parameters

and send requests to web servers along with context information.

“GetContext”: The function of this class is getting context values such as current

location and speed from the devices’ hardware. It calls the Android “Android.location”

SDK package. There are three location providers which are GPS, Wi-Fi and

telecommunication network. The “Android.location” package provides the function to

choose the best location provider according to requested criteria. “accuracy_high” is

50

50

chose as the criteria to get location provider. The speedy can also be retrieved from

“Location” class from location provider.

“UseSimulation”: The function of this Java class provides interface for users to enter

simulated context information if use choose simulated context.

The three activities are “CreateMapActivity”,”UseSimulation” and “ThesisActivity”.

An activity is a user interaction to complete certain task in android development.

“ThesisActivity”: The tasks for “ThesisActivity” are 1) collecting context

information and request parameters; 2) Sending the HTTP requests to the web servers

and the proxy servers and 3) presenting the result from the web servers or proxy servers.

“SimulationActivity”: “SimulationActivity” is created for experiment purposes. This

activity feeds the context values users enter into the “webView” in “ThesisActivity” in

order to simulate different scenarios to test the trust model. After starting the

“UseSimulation” activity, users can enter simulated location, speed and time. These

values will be returned to the “TrustActivity” activity.

“CreateMapActivity”: “CreateMapActivity” feeds location information to

“SimulationActivity”. It shows the map when activated and lets users choose the location

they like to use for the simulation. This location value is sent to “SimulationActivity”.

51

51

GetContext

CreateMapActivity

UseSimulation

ThesisActivityThesisActivity

UseSimulation

Java classes Andorid activities

CreateMa

pActivity

MapItemO

verlay

Figure 4-11 mobile devices modules

4.4.2 Proxy Server and Web Server Design

In Chapter 2, the requirements and features of the system were brought up: the system

should be flexibility, scalability, and lightweight. To meet the requirements, Yaws 1.9

and Mnesia database have been chosen as tools to implement the web server and the

proxy server. Table 4-4 shows the tools used in this implementation.

Table 4-4 proxy server/web server implementation tools

Operating System Windows 7

Web Server Yaws 1.9

Program Language Erlang OTP

Database Mnesia

Present Page HML; Yaws

Interchange Data JSON

Style Sheet Cascading Style Sheet

HTML Script Language JavaScript

52

52

The proxy servers and the web servers are different in functionality in respond to

users’ requests, but they have same data structures and source files.

There are several approaches to implement dynamic web contents for YAWS 1.9,

such as EHTML tag, Web Sockets, embedded mode, appmods (application modules) etc.

In this implementation, “appmods” is chosen since it lets programmers take control of

URL paths which is suitable for dynamic web contents. Table 4-5 is the list of URLs and

their corresponding modules. The map between URLs and Erlang modules needs

specified in configure file too. The following is a snippet of the configuration file.

<server semeru.usask.ca>

 port = 8080

 listen = 0.0.0.0

 docroot = "C:\Program Files (x86)\Yaws-1.91\thesis/www"

 appmods = </mobile_services,mobile_services,

 /proxy_services,porxy_services>

</server>

This snippet defines: 1) listening IP address, “0.0.0.0” menas listens all the IP address;

2) listening port, 8080 in this case; and 3) the server’s root directory and web services.

Table 4-5 gives an example of URLs and their web services.

Table 4-5 maps of URL and Erlang modules

URL Erlang Module/Yaws Pages

http://semeru.usask.ca:8080/ Home page

http://semeru.usask.ca:8080/mobile_services Web services for mobile devices

http://semeru.usask.ca:8080/proxy_services Web services for proxy servers

http://semeru.usask.ca:8080/trust_policy Trust policy editing interface

The main modules in YAWS1.9 that we use are discussed below.

“mobile_services:” This is the one of the main services for handling requests from

mobile devices. It monitors and handles the mobile devices’ requests, parses mobile

http://semeru.usask.ca:8080/
http://semeru.usask.ca:8080/mobile_services
http://semeru.usask.ca:8080/proxy_services
http://semeru.usask.ca:8080/trust_policy

53

53

devices’ parameters and context information, calls the “calculating_trust” function to get

the requests’ trust values, and compares these values with the trust threshold. If the

current trust value is higher than trust threshold value, it either retrieves information the

mobile devices ask or transfers this request to other server(s) depending on the setting

which is defined in table “route”; otherwise it rejects the request with “trust is not

enough” error message.

“proxy_services”: This is the main module for handling requests from the proxy

servers. It monitors and handles proxy servers’ requests, parses proxy servers’ requests to

get the trust values and query parameters, recalculates the trust value for this request

based on how much the current server trusts the proxy server, and compares this value

with the trust threshold value. If the current trust value is higher than the trust threshold

value, it either retrieves information the proxy server asks for or transfers this request to

other servers depending on the setting which is defined in the table “route”.

“calculating_trust”: This module analyzes the context information, calculates each

context factor’s trust value based on the trust policies. The content of trust policies

includes context keywords such as location, time, criteria for the context value and

corresponding trust values. The process of calculating trust values is: 1) search the trust

policies table to get all records with the specific keyword ordered by sequence number; 2)

traverse the set of records and check if the criteria matches the given context value. If

matched, get the trust values; if no matched record is found, return 0 which means no

trust value.

“student_information”: This module maintains student grade information. It

provides “update” and “query” functions. The “update” function can add or delete student

54

54

grade records. The “query” function returns a set of student grade records based on query

parameters.

4.5 Data Model

In this system, the proxy server and web servers are required to provide constant and

high performance services. Mnesia is a distributed DBMS written in Erlang which It

features fast data searching and runtime DBMS configuration, so it is chose as database

management system (DBMS) in this system.

Mnesia data can be either disk-based or memory based and it can be replicated to

different Erlang nodes.

The trust module’s data includes mobile devices’ registry information, trust policy,

request route, and trust value for each domain; other data include the experiment data

which is student grade information in this implementation.

Mensia’s data is organized as a schema and tables. The schema and tables are created

in multiple Erlang nodes. An Erlang node refers to an executing Erlang runtime system

which is assigned a name. Nodes are connected through TCP/IP connections.

Authentication between Erlang nodes is processed by comparing Erlang cookies. Erlang

cookie is an Erang atom which is assigned a name when the node starts. When one node

tries to connect to other nodes, it checks the other nodes’ cookies. If they don’t match

then the connection fails. “Since Mnesia is running on top of distributed Erlang the

implementation is greatly simplifed. In a distributed application there are separate Erlang

nodes running on different machines. Erlang takes care of the communication between

processes possibly on separate nodes transparently. Processes and nodes can easily be

started, supervised and stopped by processes on other nodes. This makes lots of

55

55

communication implementation problems disappear for Mnesia as well as for

applications” [23].

To create schemes and tables, a node list of parameters is provided in creating schema

and table functions. The “node list” is an array of Erlang server nodes. The schemes and

tables are created in each node after calling the functions. The transaction data is written

in each node as well. Data can be either in memory or disk. In this implementation, data

is recorded in the disk. The updating data can be performed asynchronously and

synchronously. Updating synchronously means the transaction function waits all the

nodes successfully being updated and then continues. Performing asynchronously means

the transaction function waits for only one node successfully being updated but not all

other nodes. In the synced approach, there are transaction operations and dirty operations.

Transaction operation ensures the data’s consistency and isolation while losing some

performance. [9] “Dirty operations are short cuts which bypass much of the processing

and increase the speed of the transaction.” [9]. Table 4-6 lists different features of the

approach.

Table 4-6 transaction functions comparison

Function sync_transaction async_dirty sync_dirty Ets

Synchronous Yes No No No

Data

Consistent
Yes No No No

Replication Yes Yes Yes No

Performance Slow Fast Fast Very fast

Usage

Scenario

For application

need to make sure

all nodes are

updated

No need for

100% consistence

for replication

Be sure the

remote update

is completed

before any

process is

spawned

Only for local

use; no

replication

56

56

In this system, data consistency is ensured to make sure the system is reliable, so the

synced transaction approach is chosen to spread out data.

There are three types of Mnesia tables 1) Set. 2) Ordered Set. 3) Bag. A set table has a

unique key, if a new record is inserted with same key as an existing item, the old item is

overwritten. Ordered sets store data by the unique key, they perform efficient for

searching. Bag type table can holds several records with the same key.

More details such table structure and of transactions are provided in Chapter 5.

57

57

CHAPTER 5

IMPLEMENTATION

More details about the design and coding for the mobile clients, servers and data

model are discussed in this chapter.

An Android tablet is used as the mobile client since this type of mobile devices is

commonly used now due to their capability and compatibility. YAWS 1.9 web server is

chosen as the programming platform for the proxy servers and the web servers because of

its light weight and scalability.

5.1 Android Tablet Implementation

The development tool, development environment, the source files structure and the

mobile client’s design, including three activities, are discussed in this section.

5.1.1 Set development environment

5.1.1.1 Mobile device information

Device Model: Motorola, MZ604 Android tablet

OS: Android Version#: 3.2.

Internal Memory: 29475MB

RAM: 719MB.

Total Storage: 30GB.

5.1.1.2 Mobile device setting

 Wireless connection setting: Wi-Fi is used to connect to the internet or any

available networks, set mobile device’s security configuration and access point for the

connections.

58

58

Since mobile context information is crucial in this research, the location providers

should be enabled. In “Setting” application, under the “Location & security” category,

“Use wireless network”, “Use GPS satellites” and “Use Location for Google search”

items should be enabled.

 In order to install the mobile application into the mobile devices, set the

“unknown source” under the “Applications” enabled.

5.1.1.3 Mobile devices’ development tools:

 Eclipse IDE with Android Development Tools (ADT) plug in is the typical

development environment for Android devices. For the particular MZ604 Motorola

device, Android SDK 3.2 and Google API3.2 are used.

5.1.1.4 Set Google Map API key

For the convenience of the experiments, “MapView” class that integrates Google map

is called. The map shows the simulated locations. Since MapView gives the access to

Google Map data, registration with Google Developer Community is required to get the

services.

There are two steps required in the Maps API key Registering process.

1) Registering the Message Digest Algorithm (MD5) fingerprint of the

certificate.

2) To sign up for the Android Maps API, under

“http://code.google.com/android/maps-api-signup.html”, enter the MD5

fingerprint and generate the API key.

The API key is used in MapActivity activity layout file, as the following XML

file shows:

http://code.google.com/android/maps-api-signup.html

59

59

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/mainlayout"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<com.google.android.maps.MapView
 android:id="@+id/mapview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey="0_YnbkWeTacthupcU7xOaaHdDaGEOrI_7wckyKQ"
 android:clickable="true" />

</RelativeLayout>

5.1.2 Android Implementation Files

5.1.2.1 Mainfest.xml

Every Android application must have a mainfest.xml file. This file defines application

package name, the Android SDK API version, the application permissions and

application components.

Based on the requirements of the system, permissions such as internet and location

access are needed. The following snippet shows how to grant these permissions in

manifest.xml file.

<uses-sdk android:minSdkVersion="13" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.INTERNET"/>

There are three activities in the application: “ThesisActivity”,”UseSimlation” and

“CreateMapActivity”, as the part of manifest.xml below shows.

60

60

<activity
android:label="@string/app_name"
android:name=".ThesisActivity" >
 <intent-filter >

. . .
 </intent-filter>
</activity>
 <activity
 android:label="@string/pop_simulation"
 android:name=".UseSimlation" >
</activity>
<activity
 android:label="@string/pop_map"
 android:name=".CreateMapActivity" >
</activity>

Figure 5.1 shows the file structure of the implementation on the Android device.

5.1.2.2 Layout files

Corresponding to the three activities, there are three layout xml files which declare

every UI components in the interface.

The following snippet is a part of main.xml file which describes the layout for

MainActivity activity. It claims Textview, RadioGroup, Radio Button and WebView

component and their screen position.

 Main.xml: main frame layout xml file

61

61

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical"
 android:padding="10px" >

 <TextView
 android:id="@+id/tvChoose"

. . .
 <RadioGroup
 android:id="@+id/ChooseTypeQueGroup1"

 . . .
 <WebView
 android:id="@+id/web_simulation"

 . . .
</LinearLayout>

 Simulation.xml: The layout interface for simulation activity.

 Mapview.xml: The layout for the Google map activity.

5.1.2.3 HTML & JavaScript Files

In order to migrate and upgrade the application smoothly, the mobile embedded

browser is used to facilitate the communication between the servers and the clients. The

following HTML and JavaScript files ensure message passing and parsing.

 Request.html: An HTML form to send the requests to servers.

 Utility.js: A JavaScript file used for message parsing.

The JavaScript library for Erlang JSON AJAX call is provided by YAWS which

includes three JavaScript files. They are:

 Jsonrpc.js

 Urllib.js

 Jsolait.js

62

62

Android Application MainActivity

SimulationActivity

MapActivity

AndroidMainfest.xml

Utility.js

Request.html

Main.xml

Simulation.xml

UseSimlation.java

Mapview.xml

CreateMapActivit

y.java

urllib.js

Jsolait.js

GetLocation.java

ThesisActivity.java

Jsorpc.js

SimulationMsg.java

MapItemOverlay.

java

Android_maker.pn

Security.png

Figure 5-1 files and activities structure

5.1.2.4 Resource File

 Android_maker.png: A map marker resource file

 Security.png: The application log resource file

5.1.2.5 Java File

 CreateMapActivity.java: Defines the map view activity.

63

63

 GetContext.java: Retrieves the devices’ current location information. The location

information includes latitude, longitude and speed.

 MapItemOverlay.java: The Google map overlay class which shows the markers

for simulated location that the users choose.

 SimulationMsg.java: Defines the structure of the communication message

between the main activity and the simulation activity.

 ThesisActivity.java: The main activity. This is the entry activity for users and

other activities are triggered by users’ actions.

 UseSimlation.java: The simulation activity.

5.1.3 Mobile Application Design

Context value from

physical device

or simulation

Call

GetLocation.java

get mobile device’s

context information

Call

UseSimlation.java,

shows simulation

interface

From physical device From simulation

Set request.html value

according to the

context value

simulated context

information

Send request to web server

along with context

information

Waiting for web server’s

response, parse response

and present the result on

mobile device

Show map

Press

“Map”

button User

choose

location

from map

Figure 5-2 Android application process

64

64

As illustrated in Figure 5.2, the mobile application detects current context information

and sends requests to the proxy server and the web servers. The interface of the main

activity, “ThesisActivity”, shows as Figure 5-3, first users select the source of context

information, the source can be detecting from the mobile device’s hardware or users’

simulation. If users choose “context information from the device”, the application calls

class “GetContext” to get the current context information from the mobile device.

Figure 5-3 the main activity for Android Tablet

“SetWebValue” is a Java function in “ThesisActivity” class which calls JavaScript

function “setValue”. This function sends data from the Java class to the HTML web

page. The code snippet of the “setWebValue” function show as following:

protected void setWebValue(String s_lat,String s_lng,String s_speed,String s_time)
{
web_simulation.loadUrl("javascript:setValue(\""+s_lat+"\",\""+s_lng +"\",\""+s_speed
+"\",\""+s_time +"\")");
}

65

65

If users choose “context information from simulation”, the “UseSimulation” activity

class is triggered, as figure 5-4 shows. In this activity, users enter the simulated context

information.

Figure 5-4 the simulated activity for Android tablet

By pressing the “Location” button, the “CreateMapActivity” activity is triggered.

This

activity shows a map and let users choose the location. The Android marker shows the

location users choose, as Figure 5-5 shows.

Figure 5-5 MapView activity for Android tablet

66

66

The “startActivityForResult” callback function is used to get the return value from

other activities. The following snippet shows how to call “UseSimulation” activity from

“ThesisActivity” activity.

Intent i = new Intent(ThesisActivity.this,UseSimlation.class);
startActivityForResult(i, SUB_ACTIVITY_REQUEST_CODE);

The “UseSimulation” activity set the returned value in a bundle, as the following

snippet shows: the “UseSimulation” activity returns the simulated context information.

Bundle bundle = new Bundle();
f_speed= Float.valueOf(et_speed.getText().toString());
s_time =et_time.getText().toString();
bundle.putInt("LAT",mPoint.getLatitudeE6());
bundle.putInt("LNG",mPoint.getLongitudeE6());
bundle.putFloat("SPEED",f_speed);
bundle.putString("TIME",s_time);
Intent mIntent = new Intent();
mIntent.putExtras(bundle);
setResult(RESULT_OK, mIntent);
finish();

5.1.4 JavaScript AJAX call for Erlang Module

The JavaScript remote procedure is used to capture the server’s return message.

YAWS1.9 provides JavaScript and Erlang library to call a server’s function remotely. To

call a server side function, the service’s URL and a method need be defined to create a

proxy for the server.

The following snippet shows the URL is

“http://domain_name:8080/mobile_services”, and the method is “get_result”. They are

explained into more detail in the proxy server and the web server implementation section.

http://domain_name:8080/web_services

67

67

<script>
var serviceURL = "mobile_services";
var methods = ["get_result"];

var jsonrpc = imprt("jsonrpc");
var service = new jsonrpc.ServiceProxy(serviceURL, methods);
function get_result() {
 try {
 type = document.getElementById("type").value;

 . . .
 document.getElementById('result').innerHTML =
 "<PRE>" + service.get_result(type,lat,lng,time,movement,user_profile,studentid)
+ "</PRE>";
 } catch(e) {
 alert(e);
 }
 return false;
}
</script>

 If the context values meet the servers’ requirements, the mobile client gets

response from the server(s) successfully, as Figure 5-6 shows.

Figure 5.6 shows a successful result. In this scenario, grade information for a student

with ID “0001” is retrieved in Saskatoon at 9:00am. The “user mode” is “at home”; the

“movement” is “still”. The device ID is “1-306-881-8188”. Since the grade information

is distributed in different departments, this request is also sent to each department which

has the grade information for this student. The trust value for this request is higher than

the trust thresholds in each department, so the result, which combines responses from two

departments, is successfully retrieved.

5.2 Proxy Server/Data Server Implementation

YAWS 1.9 is chosen as the proxy server and the web server because of its high

performance which is suitable for dynamic changed mobile devices’ services. YAWS 1.9

web server is written in Erlang which features light weight processes, thus YAWS has

better performance for multiple concurrent requests and good scalability.

68

68

Figure 5-6 get student grade result

Based on different type of requestors, there are two main Erlang modules:

 “mobile_services”: handles requests coming from mobile devices.

 “proxy_services”: handles requests coming from proxy servers.

5.2.1 mobile_services

The module “mobile_services” uses “http://domain:8080/mobile_services” as its

URL. The function“out” is an entry point for handling requests, and it parses mobile

devices’ context information and calculates the mobile device’s trust value. The process

flow for the mobile services is shown in Figure 5.6.

As code snippet below shows, the function “out” calls the get_result” function as

shown in the following snippet.

http://server_domain:8080/MOBILE_SERVICES

69

69

out(Arg) ->

 %% record current time

 utility:track_time_log("Start:"),

 mnesia:start(),

 %% ywas remote call

 yaws_rpc:handler_session(Arg, {?MODULE, get_result}).

The mobile device clients call the “get_result” function through a JavaScript function.

The parameter “Value” in function “get_result” contains the mobile device’s context

information as a tuple, and the function first parses parameters “Value” to get mobile

devices’ context value and query information. It calls function “calcuate_trust_mobile”

which calculates the trust value based on context value. The code snippet below shows

the “get_result”function.

%% this is the function which is called by javascript

%% Value is the post parameters

get_result(Argument =_State, {call, get_result, Value} = _Request, Session)->

{array,[_,Device_id,Lat,Lng,Time,Movement,User_profile,StudentID]} =Value,

case

%% should we calculate trust, if so, call calculate_trust_mobile, otherwise,

%% set Total_trust_value to full trust value

 ?CALCULATE_TRUST of

 true->

 %% get the trust value of current transaction

Total_trust_value

=calcuate_trust_mobile(Time,Lat,Lng,User_profile,Movement);

...

 %% get current domain and foward domain list

 Current_domain = route:get_current_domain("student_info"),

 %% get forward domain list

 Domain_list =route:get_foward_domain("student_info"),

 Context_info =lists:concat([Time,Lat,Lng,User_profile,Movement]),

 case

 %% handle the request according to the domain list

 handle_multiple_request(Domain_list,Device_id,StudentID,Total_trust_val

ue,Current_domain,Context_info) of

...
end.

 The function “route:get_foward_domain(‘student_info’)” in the above code

checks whether the current server can provide direct services or not, if not, then the

request is forwarded to the proper server(s). Before forwarding this request to the next

70

70

server, the server recalculates the trust value and sets this value in the request header.

If the other server(s) respond successfully, then the server forwards the responses to

mobile devices; otherwise, it returns error messages.

Log the request;

track time

HTTP request

from mobile

device

Parse HTTP get

parameters

and context value

Calculate

trust value

Compare trust

value and trust

threshold

Does current

server provide this

services?

Get the required

information

Forwards this

request to the

proper server(s)

Return decline

response to client

Return successful

response to client with

the required data

End

Trust_value>=trust threshold

Yes

Trust value<

trust threshold

No

Get the response

from other

server(s)

Return the

response to

mobile client

End

The process of

“mobile_servies”

End

Figure 5-7 Process of module “mobile_services”

71

71

5.2.2 proxy_services

The module “proxy_services” uses “http://domain:8080/proxy_services” as its URL.

The process flow is shown as Figure 5-8.

Log the request;

track time

HTTP request

from proxy servers

Parse HTTP post

get trust_value

and query

parameters

Recalcuate

trust value

Compare trust value

and trust threshold

Does current server

provide this services?

Get the required

information

Forwards this

request to the

proper server(s)

Return decline

response to the

proxy server

Return successful

response to the

proxy server with

the required data

End

Trust value>=trust threshold

YES

Trust value<

trust threshold

No

Get the response

From other

server(s)

Return the

response to the

proxy server

End

The process of

“proxy_servies”

End

Figure 5-8 process of module “proxy_services”

72

72

The “out” function is an entry function for “proxy_services” module as the following

snippet shows. The “out” function calls the “forward_request” function to get queried

information, if it successfully gets the result which is JSON format, it returns the JSON

data; otherwise it returns an error message.

out(Arg) ->

 %% record current time

 utility:track_time_log("start:"),

 mnesia:start(),

 %%call foward_request , get json object

 Response =foward_request(Arg),

 utility:track_time_log("get response from foward server"),

 %% generate http response header

 Header =http_server_utility:generate_header(),

 case

 Response of

 %% if succeeds

 {ok,NewBody} ->

 [{status,200},

 {header,{"Vary","Accept"}},

 {content,"application/json",NewBody}];

 %% if fails

 {error,Ret,NewReasonPhrase} ->

 [{status,Ret},

 Header,

 {content,"text",NewReasonPhrase}]

 end.

 As the following snippet shows, the “forward_request” function first parses the

query parameters and gets the trust value from the HTTP header. If the trust value is

greater than or equal to the trust threshold, the process continues, otherwise an error

message is returned. The rest of the process is same as “mobile_services” module: it

checks the “route” table to decide if it provides the direct services or not, if so, it

retrieves the information from the Mnesia database, otherwise it forwards the requests to

the next server(s). Before sending the request to the next server(s), it reset the trust value

in the request header, and encodes the parameters which include the current domain name

and student ID.

73

73

%% it is called by out module

%% it parse request parameters,recalculate trust value and call

%% handle_multiple_request to handle the request

foward_request(Arg)->

 %% get http request parameters

 Response =http_server_utility:get_query_parameters(Arg),

 %% get student ID from parameters

 StudentID =http_server_utility:search_parameter("studentID",Response),

 %% get trust value from http header

 Request_trust=http_server_utility:get_request_trust(Arg),

 case Request_trust of

 . . .
 end,

 %% get the coming request's domain

Request_domain

=http_server_utility:search_parameter("current_domain",Response),

 . . .
 Total_trust_value = Trust_value_float * Request_domain_trust_value,

 Current_domain = route:get_current_domain("student_info"),

 %% get the foward domain list

 Foward_domain =route:get_foward_domain("student_info"),

 %% handle the request through the domain list

 handle_multiple_request(Foward_domain,StudentID,Total_trust_value,Curre

nt_domain).

5.2.3 Other Erlang Module

Besides the two main web services, there are other Erlang modules which server as

utility functions and data providers.

“grade”: This module maintains table “grade”. It provides updating and querying

functionalities, also provides data formation conversion such as from data list to JSON

object, or from data list to string etc.

The record “grade” is defined as:

-record(grade,{studentid,studentname,class,grade}).

The table is created in “disc_copies” modes on the local node, using bag type.

74

74

init() ->

 mnesia:create_schema([node()]),

 mnesia:start(),

 mnesia:create_table(grade,

 [{disc_copies, [node()] },

 {attributes,record_info(fields,grade)},

 {type, bag}]),

insert_grade_data().

The function “insert_grade()” inserts a record into this table. It defines a write

transaction for table “grade”. The four parameters “id,name,class,grade” are fields of

“grade” records.

insert_grade(Id,Name,Class,Grade) ->

 Fun = fun() ->

 mnesia:write(

 #grade{studentid =Id,

 studentname=Name,

 class=Class,

 grade=Grade })

 end,

 mnesia:transaction(Fun).

The “insert_grade_data()” function calls “insert_grade()” function and creates some

initial records for “grade” table.

%% insert grade data

insert_grade_data()->

 insert_grade("0001","Abc","CMPT110","80"),

…

 insert_grade("0001","Abc","CMPT115","85").

The following code searches the record with the given student ID.

select_id(Id) ->

 Fun =

 fun() ->

 mnesia:read(grade,Id)

 end,

 {atomic, Results}=mnesia:transaction(Fun),

Results.

To convert an Erlang list to a JSON object, the mochijsion2 library [22] is called. In

the following example, the Erlang list is first converted to an array variable and then a

JSON object through function “encode()” from the mochijsion2 library.

75

75

%% create erlang list to json structure

generate_json_term(List)->

 generate_json_term(List,[]).

generate_json_term([Head|Tail],Prev) ->

 {grade,Studentid,Studentname,Class,Grade} =Head,

 Tmp

={struct,[{"id",Studentid},{"name",Studentname},{"class",Class},{"grade",Grad

e}]},

 generate_json_term(Tail,lists:append(Prev,[Tmp]));

%%generate json object using the return array of student info

generate_json_term([],Result) ->

 {array,Result}.

%% create json object from the generate json structure

generate_json(List)->

 Json_term =generate_json_term(List),

 mochijson2:encode(Json_term).

“http_server_utility”: It provides HTTP server side functionalities, including getting

query parameters, getting clients’ post data and checking header information.

“http_client_utility”: It provides HTTP client side functionalities, including

generating post and get requests data; presenting data on HTML pages.

“mobile_context”: It supports looking up for a trust value based on mobile devices’

context value. Each category of mobile context has a set of trust values, in the

implementation, the trust policies are set based on time, location and other factors. Take

location as an example, if the location of the incoming request is within the campus of the

University of Saskatchewan, the trust value is 0.3, if not within the campus but within the

city of Saskatoon, the trust value is 0.1, otherwise it is 0.0. Given a set of context values,

total trust value can be calculated by calling “mobile_context” function.

“route”: This module maintains table “route”, table “route” provides route path for

each type of requests. Under some scenarios, a request is sent to multiple domains to get

a proper result, for example, on the server “sermua.usask.ca:8080”, a request

“get_student_info” is set to be forwarded to two web servers. First the request is sent to

76

76

“xoxo.usask.ca:8080/proxy_services”, then the request is sent to

“yuting.usask.ca:8080/proxy_services”. The two sets of returned JSON objects are put

together and the combined result is sent back to the mobile device.

“domain_trust_value”: It maintains table “domina_trust_value”. The

“domain_trust_value” table keeps information about how much the current domain trusts

other domains. When the current domain recalculates the trust value for the incoming

requests, how much it trusts the request domains is used.

“mochijsion2”: This is a JSON library module written by Bob Ippolito [22]. It

exports encode () and decode () functions to convert a JavaScript JSON object to a Erlang

binary list and the vice versa.

5.3 Data Model

The Mnesia database is used in this implementation. The system’s data structure,

setting Mnesia database in Erlang node and data transaction are discussed in this section.

5.3.1 Data Structure

Schemas and tables are Mnesia’s basic data structure. In this system, some tables serve

as setting configuration information and some serve as data providers.

Tables are created by “init” function in each module. Also, there are functions to

maintain the tables.

 Tables are described in the following sections.

5.3.1.1 Trust Policy

This table builds a link between the mobile devices’ context value and the trust value.

For example, if a request is sent from the University of Saskatchewan campus and the

trust value is 0.3, then this record is: keywords :”Location”; policy_name: “U of S trust

77

77

value”; criteria: “1;lat:>=52.12137 and <=52.14271;lng:>=-106.63845 and <=-

106.62197”; trust_value: 0.3.

Table 5-1 trust policy table

trust_policy

It exists in each proxy server node and web server node

bag type table; disc copy

Fields Name Type Key

Words

Description

keywords string identifies mobile device context information

“location”,”time”,”user profile”,”movement”

policy_name string The name for each policy

criteria string this field gives more detail specification For

example: if location is within Saskatoon, the

trust value is 0.1, otherwise it is 0.

trust_value float Trust Value if the criteria are matched

5.3.1.2 Domain Trust Mapping

This table builds a trust relationship between the current domain and other domains it

interacts with.

For example: if the current domain is serum.usask.ca:8080 and it fully trusts domain

xoxo.usask.ca:8080, then this record on node sermua.usask.ca is: domain_name:

“xoxo.usask.ca:8080”, trust_value:1

Table 5-2 Domain Trust Mapping Table

domain_trust_mapping

It exists in each proxy server and web server node.

set type table; disc copy

Fields Name Type Key

Words

Description

domain_name string yes URL for each servers

trust_value float trust value, value ranges from 0-1

0—is not trusted; 1-fully trusted

78

78

5.3.1.3 Request Routing

This table builds a path for each type of requests on each server node. A request type

has one or more route records. When a request comes, it is either served or forwarded to

other server(s) according to the route setting.

For example: when domain serum.usask.ca:8080 receives a request asking for

querying a student grade information, it sends the request to other two domains:

“xoxo.usask.ca:8080” and “yuting.usask.ca:8080”, then the two records on

“sermua.usask.ca” are show as Table 5.3:

Table 5-3 an example of route table

Request

Type

Seq. Current request

path

Forward request

path

Response

request path

Trust

threshold

student_info 1 serum.usask.ca:8080 xoxo.usask.ca:8080/

proxy_server

“” 0.5

student_info 2 serum.usask.ca:8080 yuting.usask.ca:8080

/proxy_server

“” 0.5

Table 5-4 routing table

request_routing

It exists in each proxy server node and web server node

bag type table; disc copy

Fields Name Type Key

Words

Description

request_type string URL for each server;

different type request is routed to send to

different servers.

Sequence int Forwarding domain sequence#

current_request_path string Refers to current URL for the requests

foward_request_path string Refers to forwarding URL.

response_request_path string Not used

trust_threshold float The trust threshold for the current domain

5.3.1.4 Mobile Device Registry Information

To reduce the risk for mobile devices, the previous transactions’ trust values are used

to calculate the mobile device’s overall trust value.

79

79

Table 5-5 Mobile Device Register Table

mobile_device

It exists in each proxy server node and web server node

set type table; disc copy

Fields Name Type Key

Words

Description

mobile_id string Yes Mobile device ID

last_trust_value decimal The second last transaction’s trust value

trust_value decimal The last transaction’s trust value

5.3.1.5 Student Grade Information

Student grade information is used as an example used in this implementation. Mobile

devices invoke student grade information via student ID.

Table 5-6 Student Grade

grade

It exists in each web server node

Bag type table; disc copy

Fields Name Type Key

Words

Description

studentid string Yes ID

studentname string student name

class string class name

grade integer Grade

5.3.1.6 Transaction Information

This table is transaction logs for the HTTP requests. When a server receives a request,

it logs the related information for future reference.

Table 5-7 Transaction Table

Trans

It exists in each proxy server node and web server node

Bag type table; disc copy

Fields Name Type Key

Words

Description

mobile_id string Mobile ID

time string Transaction happen time

request_type string Request type, for example,

80

80

“GET_STUDENT_INFO”

server string Current server name

trust_value string Calculated trust value

context_info string Mobile context information

result string Success or fail

5.3.2 Setting Mnesia database in Erlang nodes

 Mnesia database is running on top of Erlang code. In order to share the Mnesia

database, Erlang nodes need to be connected. Erang node is executing running time

Erlang system, and they communicate with each other through TCP/IP connection.

 Set TCP/IP connection

Make sure computers can “ping” with each other. If not, check the TCP/IP connect.

There could be some other reasons for connection failure, for example: DNS name

setting, firewall setting etc.

 Start Erlang nodes

Start Erlang using the following command:

 Erl –name computer1

This command starts a Erlang running with name computer1@computer1.usask.ca,

“computer1” is the name used when the Erlang node is started,

“computer1.usask.ca” is the machine’s host name.

 Set Erlang cookies

Every Erlang node has its own cookie. Under the windows system, the Erlang cookie

is stored in “user\username\erlang.cookie”. In order to communicate with other

nodes, the cookies must be same for the security reason. Run the following command

to set cookie to “trust_model”.

erlang:set_cookie(node(),”trust_model”).

81

81

 Connect Erlang nodes

Run command “net_adm:ping”, to connect to other Eralng nodes. For example,

computer1 uses the following command to connect computer2 under domain

“usask.ca”.

net_adm:ping(“computer2@computer2.usask.ca”)

 Building distributed Mnesia schema

mnesia:create_schema([node()|nodes()]).

This command creates a Mnesia database schema on all the Erlang nodes to which it

connects to.

 Building distributed tables under the schema

First, start Mnesia database on all connected Erlang nodes.

Mnesia:start().

Then create table on all connected nodes, for example, create student grade

information tables using the following code:

mnesia:create_table(grade,

 [{disc_copies, [node()|nodes()]},

 {attributes,record_info(fields,grade)},

 {type, bag}]),

 Sharing data in each Erlang node

Each node can share the data now. The updating happens on one node spreads out to

other nodes. For example, “Student Grade Information” records are inserted at

computer1.

82

82

insert_grade_data()->

 insert_grade("0001","Abc","CMPT110","80"),

 insert_grade("0001","Abc","CMPT115","85"),

 insert_grade("0002","Def","CMPT110","90"),

 insert_grade("0002","Def","CMPT115","95"),

 insert_grade("0003","Ghi","CMPT110","70"),

 insert_grade("0003","Ghi","CMPT115","75").

These records can be seen on other Erlang nodes.

 Data Initialization

To run the system properly, tables include: “trust_policy”, “domain_trust_mapping”

and

“request_routing” are initialized. The table “trust_policy” reflects the business

requirements which are the basis for calculating trust value. The table

“domain_trust_mapping” keeps the trust relationship between each server. The table

“request_routing” lists the path information for each type of requests. For the

experiments of the system, the table“grade” is also initialized for showing the

request result. Each module has a function “init” which added initial records at the

beginning.

5.3.3 Mnesia Table Operation

 There are two tables associated with transaction updates. The table

“mobile_device” keeps mobile ID and its last two transactions’ trust values. The table

“trans” keeps transaction information including request mobile ID, transaction time,

request context value and transaction’s result.

 When a requests come, the system checks the previous trust value of this mobile

device from the table “mobile_device”, and then calculates trust value based on the

context information and the previous trust value of the mobile device. If there is no

previous trust value, then this mobile device is regarded as a new mobile device and the

83

83

system automatically registers it, and a trust value “0” is used as a initial trust value.

After finishing the HTTP session, a transaction record is written to the distributed Mnesia

databases, and the previous trust values of “mobile_device” are updated according to the

trust value of the current transaction.

84

84

CHAPTER 6

EXPERIMENTS

6.1 Experiment environment setup

An android tablet, a client with Internet browser and four YAWS web servers are used

for the experiments.

6.1.1 Android tablet

The Android tablet‘s hardware is listed as following:

Model #: Motorola XOOM MZ604

CPU: Dual-core 1 GHz Cortex-A9

Memory: 32GB

Storage: 30GB

Sensors: GPS, accelerometer, gyro, barometer, compass

6.1.2 Client terminal

In order to test the system’s loading capacity, a batch of requests is sent to the

server(s). In this case, using an Android tablet is not feasible, so APACHE JMETER is

used. APACHE JMETER is a desktop application written in JAVA which is designed

for loading and performance testing.

 The terminal needs Java SE 1.5 or later and APACHE JMETER 2.6. APACHE

JMETER could be downloaded from “http://jmeter.apache.org/download_jmeter.cgi”

[35].

In each test plan, a thread group or more are created. “Number of Threads (users)”

represents the number of concurrent users. “Ramp-Up Period (in seconds)” indicates the

http://jmeter.apache.org/download_jmeter.cgi

85

85

total time for APACHE JMETER to create the users. “Loop Count” specifies how many

times the test is to be repeated.

Under each thread, a sample for HTTP request, three listeners 1) views result, 2)

summary report, and 3) aggregate report are created. Requests’ average process time,

median process time, maximum process time and error rate are recorded. In this HTTP

request, suppose a POST request is sent to web server “xoxo.usask.ca”, and the path is

“mobile_services”, then the HTTP request‘s setting is shown as Figure 6-1.

Figure 6-1 APACHE JMETER HTTP -request

The result can be seen in the “result table” after this experiment is completed. The

summary information is gathered and presented in the “aggregate report” and the

“summary report”.

86

86

6.1.3 Proxy/web servers

YAWS servers act as proxy servers and web servers with a Mnesia database. In this

experiment, four servers are used as the proxy servers and the web servers. The

configuration of the four servers is list in table 6-1.

Table 6-1 servers setting

 CPU Memory Storage OS Other

Software

burgas.usask.ca Intel (R)

Xeon(TM)

CPU

3.20GHz

5.0GB 69.1GB Windows 7

Enterprise

Erlang OTP R14B03

YAWS 1.91 Web

Servers

yuting.usask.ca Intel (R)

Xeon (R)

CPU

2.33GHz

10GB 465GB Windows 7

Enterprise

Erlang OTP R14B03

YAWS 1.91 Web

Servers

xoxo.usask.ca Intel (R)

Xeon(R)

CPU

2.33GHz

16GB 148GB Windows 7

Enterprise

Erlang OTP R14B03

YAWS 1.91 Web

Servers

varna.usask.ca Intel (R)

Xeon(TM)

CPU

3.20 GHz

4 GB 69.1GB Windows 7

Enterprise

Erlang OTP R14B03

YAWS 1.91 Web

Servers

6.1.4 System setup

To evaluate system’s functionalities, an android tablet, and a YAWS web server with

Mnesia database are set up as figure 6-2.

87

87

Figure 6-2 Experiment setup for testing functionalities

Different situations are simulated to test diverse trust policies. HTTP post requests

with the combinations of different context values are sent to web servers, trust polices

and trust thresholds are adjusted according to the situations.

To evaluate the system’s scalability and overhead for the trust module, four scenarios

are categorized and tested in the experiments.

 Scenario A includes 1) a client running APACHE JMETER, 2) A YAWA web

server with the Mnesia database as figure 6-3 shows.

Figure 6-3 Experiment setup for scenario A

88

88

Scenario B includes 1) a client running APACHE JMETER, 2) a YAWA web server

(“yuting.usask.ca”) with the Mnesia database and 3) a YAWS proxy server

(“xoxo.usask.ca”) with the Mnesia database.

Figure 6-4 Experiment setup for scenario B

Scenario C includes 1) a client running APACHE JMETER; 2) two YAWA web

servers (“yuting.usask.ca” and “burgas.usask.ca”) with the Mnesia databases and 3) a

YAWS proxy server (“xoxo.usask.ca”) with the Mnesia database.

Figure 6-5 Experiment setup for scenario C

89

89

Figure 6-6 Experiment setup for scenario D

Adding a replication server can improve the system’s scalability. System with a

replication server is tested in scenario D. Scenario D includes 1) a client running

APACHE JMETER, 2) two YAWA web servers with the Mnesia databases and 3) a

YAWS proxy server and its replication server with the Mnesia database.

6.1.5 Trust formulas

As mentioned in chapter 4, the two formulas that are used for calculating mobile

devices’ trust value are shown in equation 6.1 and 6.2.

Ttotal = α Ti + β

 * min((Ti-1 - Th) ,0) + λ

 * min((Ti-2 - Th) ,0) ………………(6.1)

Ttotal = α Ti ..………………………………………………………………….. (6.2)

Equation 6.1 calculates the mobile devices’ trust value based on context values and

previous transactions while equation 6.2 calculates the mobile devices’ trust value based

only on context value.

One formula used for calculating other domain’s trust value is shown in equation 6.3.

90

90

Tcurrent = Tprevious * Tcurrent-previous…………………………………………………… (6.3)

Three cases are evaluated in each scenarios when evaluate the system’s scalability and

the trust module’s overhead, they are 1) the trust module using formula 1, 2) The trust

module using formula 2 and 3) Without the trust module.

Case 1: the trust module using formula 1

The system calculates the trust values of requests from mobile devices using equation

6.1 and calculates requests from other domains using equation 6.3.

Case 2: the trust module using formula 2

The system calculates the trust values of requests from mobile devices using equation

6.2 and calculates requests from other domains using equation 6.3.

Case 3: Without the trust module

The system does not calculate any trust values. The trust module is not used in this

case.

6.2 Experiment results

6.2.1 Functionality

Checking functionality is one of the experiments’ goals. The trust module is evaluated

under different business requirements. Varieties of combination of trust policies and trust

thresholds are set according to these requirements.

Scenario 1: the request must be sent at University of Saskatchewan and must be sent

between 9am and 5pm.

The trust policies are set as table 6-2:

91

91

Table 6-2 Scenario 1 trust rules

Context Criteria Trust value

Location Within University of Saskatchewan 1.0

Time Invoking time is greater or equal than 9am and less than 5pm 1.0

Trust formula: trust formula 2 which calculates the mobile devices’ trust value(s) is

only based on current context information.

Trust threshold: 2.0.

The experiment setup is as figure 6-2 shows.

The experiment results are shown in table 6-3.

Table 6-3 Scenario 1 experiment results

Condition Result

Sending a request on the University of

Saskatchewan campus at 10am

Get required information

Sending a request on the University of

Saskatchewan campus at 12pm

Get an error message: “The trust

value is not enough”

Sending a request in another place rather than

the University of Saskatchewan campus at

10am

Get an error message: “The trust

value is not enough”

Scenario2: If the request must be sent at University of Saskatchewan and must be sent

between 9am to 5pm, and the mobile device’s credit must be good.

The trust policies are set as in table 6-4:

Table 6-4 Scenario 2 trust policies

Context Criteria Trust value

Location Within University of Saskatchewan 1.0

Time Invoking time is greater or equal than 9am and less than 5pm 1.0

Trust formula: trust formula 1 which calculates the mobile devices’ trust values based

on context information and previous transactions.

92

92

Trust threshold: 2.0

The experiment setup is as figure 6-2 shows.

The experiment results are shown in table 6-5.

Table 6-5 Scenario 2 experiment results

Condition Result

Sending a request on University of

Saskatchewan campus at 10am at first time

Get required information

Sending a request on University of

Saskatchewan campus at 12pm

Get an error message: “The trust

value is not enough”

Sending a request in other place rather than

University of Saskatchewan campus at 10am

Get an error message: “The trust

value is not enough”

Sending a request on University of

Saskatchewan campus at 10am at second time

Get an error message: “The trust

value is not enough”

Scenario 3: If request location is not within Canada or the sending time is not between

9am to 5pm, then the request is prohibited.

The trust policies are set as in table 6-6:

Table 6-6 Scenario 3 trust policies

Context Criteria Trust value

Location Within the city of Saskatoon 1.0

Time Invoking time is greater or equal than 9am and less than 5pm 1.0

Trust formula: trust formula 2 which calculates mobile devices’ trust values only

based on current context information.

Trust threshold: 1.0

The experiment setup is as figure 6-2 shows.

The experiment results are showed in table 6-7.

93

93

Table 6-7 Scenario 3 experiment results

Condition Result

Sending a request on University of

Saskatchewan campus at 10am

Get required information

Using simulation interface, simulate another

place rather than Saskatoon and sending a

request at 10am

Get required information

Using simulation interface, simulate another

place rather than Saskatoon and sending a

request at 12pm

Get an error message: “The trust

value is not enough”

Scenario 4: the request must be sent using “at office” profile and must have good

credit.

The trust policy is set as table 6-8.

Table 6-8 Scenario 4 trust policy

Context Criteria Trust value

User profile Office 2.0

Trust formula: trust formula 1 which calculates the mobile devices’ trust values based

on context information and previous transactions.

Trust threshold: 2.0.

The experiment setup is as figure 6-2 shows.

The experiment results are shown in table 6-9.

Table 6-9 Scenario 4 experiment results

Condition Result

Sending a request using “at office” profile. Get required information

Sending a request using other profile rather

than “at office” several times.

Get an error message: “The trust

value is not enough”

Sending a request using “at office” profile

again.

Get an error message: “The trust

value is not enough”

Scenario 5: if the request must not be sent when driving.

94

94

The trust policy is set as table 6-10.

Table 6-10 Scenario 5 trust policy

Context Criteria Trust value

Speed =0 2.0

Trust formula: trust formula 1 which calculates the mobile devices’ trust values based

on context information and previous transactions.

Trust threshold: 2.0.

The experiment setup is as figure 6-2 shows.

The experiment results are shown in table 6-11.

Table 6-11 Scenario 5 experiment results

Condition Result

Sending a request when the mobile device is

in still state.

Get required information

Sending a request when the mobile device is

in moving state.

Get an error message: “The trust

value is not enough”

6.2.2 Scalability

The system’s maximum capacity is tested for the system’s scalability. The system’s

scalability is discussed from three aspects: 1) concurrent users, 2) transfer message size,

3) the number of server hops. Concurrent users are changed by adding concurrent threads

in JMETER; transfer message size is changed by changing the records of the students’

score information; the number of server hops is changed by changing the architecture of

the system. To evaluate system’s scalability under different scenarios mentioned above,

the maximum capacity and average process time are tested. Under each scenario,

95

95

experiments are tested several (3-5) times, a typical set of data are chosen as the

experiment results.

 Scenario A

Two different message sizes, of 2K and 3K, and gradually increased concurrent users

are tested for this scenario.

Set test plan in JMETER as following:

Concurrent: start from 100 concurrent users, gradually add 100 concurrent users

every time till the server(s) crashes, or the error rate is greater than 10%.

Ramp-up period: 10 seconds.

Loop count: 10.

Figure 6-7 JMETER setup for testing scalability (1)

96

96

Figure 6-8 JMETER setup for testing scalability (2)

The results for average process time and median process time are shown in figure 6-9

and figure 6-10 for message size 2K. The horizontal number represents concurrent users

and the vertical number represent average process time in milliseconds.

Figure 6-9 Average process time for scenario A

(message size 2K)

Figure 6-10 Median process time for scenario A

(message size 2K)

The results for average process time and median process time for message size 3K are

shown in figure 6-11 and figure 6-12.

Figure 6-11 Average process time for scenario A

(message size 3K)

Figure 6-12 Median process time for scenario A

(message size 3K)

Maximum capacities for the two different message sizes are summarized as in

table 6-12.

Table 6-12 Maximum capacity for scenario A

 System without

the trust module

System with the trust

module using

formula 1

System with the trust

module using formula

2

Message size 2K 1600 users/10 sec 1600 users/10 sec 1500 users/10 sec

Message size 3K 1600 users/10 sec 1500 users/10 sec 1600 users/10 sec

The results show the trust module has a very slight impact on the system’s scalability

under scenario A. However, the trust module using formula 1 takes a noticeably longer

time than the no trust module system while the trust module using formula 2 takes a little

longer time. The overhead is evaluated and discussed in section 6.2.3.

There are some fluctuations in these figures due to the different network traffic. The

duration of these experiments is about 2 hours. During the two hours, there were some

fluctuations on how busy the internet was. These factors affect the process speed.

Generally, the process time goes up when there are more concurrent users.

 Scenario B

98

98

Two different message sizes of 1K and 3K, and gradually increased concurrent users

are tested under JMETER.

JMETER’s setting is the same as scenario A.

“xoxo.usask.ca” is set as a proxy server which forwards HTTP requests to

“yuting.usask.ca” and sends responses from “yuting.usask.ca” to the clients.

The results for the average process time and the median process time for transfer

message size of 1K are shown in figure 6-13 and figure 6-14.

Figure 6-13 Average process time for scenario B

(message size 1K)

Figure 6-14 Median process time for scenario B

(message size 1K)

The results for the average process time and the median process time for message size

of 3K are shown in figure 6-15 and figure 6-16.

Figure 6-15 Average process time for scenario

B (message size 3K)

Figure 6-16 Median process time for scenario

B (message size 3K)

Table 6-13 Maximum capacity for scenario B

 System without

the trust module

System with the

trust module using

formula 1

System with the trust

module using formula

2

Message size 1K 1200 users/10 sec 1000 users/10 sec 1400 users/10 sec

Message size 3K 600 users/10 sec 900 users/10 sec 600 users/10 sec

When the message size is 3K, the scalability for the “system without the trust

module” and the “system with the trust module using formula 2” is worse than the

“system with the trust module using formula 1”, since in this experiment setup, the proxy

server “xoxo.usask.ca” which calculates the trust value of the mobile devices is much

faster than web server “yuting.usask.ca” and “yuting.usask.ca” cannot handle too many

requests sent by “xoxo.usask.ca” while retrieving relatively bigger size data. The trust

module using formula 1 takes a longer time to process, so “yuting.usask.ca” can match

the speed better. This experiment also demonstrates a balanced system has better

scalability.

The process time for scenario B is longer than the process time for scenario A since

there are 2 hops in scenario B.

100

100

 Scenario C

Two different message sizes, of 1K and 2K, and gradually increased concurrent users

are tested under JMETER.

JMETER‘s setting for scenario C is same as scenario A.

Transfer message size: 1K bytes.

The result for the average process time and the median process time shows in figure 6-

17 and figure 6-18.

Figure 6-17 Average process time for scenario C (message size 1K)

Figure 6-18 Median process time for scenario C (message size 1K)

101

101

Transfer size per transaction: 2K bytes.

The result for the average process time and the median process time shows in figure 6-

19 and figure 6-20.

Figure 6-19 Average process time for scenario C (message size 2K)

Figure 6-20 Median process time for scenario C (message size 2K)

Table 6-11 Maximum capacity for scenario C

 System without

the trust module

System with the

trust module using

formula 1

System with the trust

module using

formula 2

Message size 1K 1300 users/10 sec 1300 users/10 sec 1300 users/10 sec

Message size 2K 1500 users/10 sec 1100 users/10 sec 1500 users/10 sec

102

102

Scenario C’s scalability is better than that of scenario B because there are two web

servers which can handle more requests than one web server.

The scalability for message size 2K is better than message size 1K because in scenario

C, the bottleneck is the proxy server “xoxo.usask.ca”. It crashes because it fails to

connect the other two web servers. The communication frequency is less when the

message size is bigger, so “xoxo.usask.ca” can handle more concurrent users when the

message size is bigger.

There is a noticeable drop for process time and median time before the system reaches

its maximum capacity from the figure 6-17, figure 6-18, and figure 6-19, because when

the system is reaching its maximum capacity, some errors occurs (error rate < 10%), so

the process time and the median time drops a bit. After that, the error rate gets bigger

(>10%) and the system crashes.

 Scenario D

Adding replication web server makes the system more robust and increases scalability.

In this experiment, “xoxo.usask.ca” acts as a proxy server and “varna.usask.ca” acts as a

replication server for xoxo.usask.ca. “burgas.usask.ca” and “yuting.usask.ca” act as web

servers.

The results for message size of 2K are shown in figure 6-21 and figure 6-22.

103

103

Figure 6-21 Average process time for scenario D (message size 2K)

Figure6-22 Median process time for scenario D (message size 2K)

The experiment results for message size of 3K are shown in figure 6-23 and figure 6-

24.

104

104

Figure 6-23 Average process time for scenario D (message size 3K)

Figure 6-24 Median process time for scenario D (message size 3K)

Table 6-12 Maximum capacity for scenario D

 System without

the trust module

System with the

trust module using

formula 1

System with the

trust module using

formula 2

Message size 2K 1600 users/10 sec 1400 users/10 sec 1600 users/10 sec

Message size 3K 900 users/10 sec 1400 users/10 sec 900 users/10 sec

105

105

This experiments show that adding a replication server improves the system capacity.

A load balancer is simulated using JMETER. Since “varna.usask.ca” is not as efficient as

“xoxo.usask.ca”. The proportion of number of requests sent to “varna.usask.ca” and

“xoxo.usask.ca” is 2:1.

In this experiment for message size 3K, the “system with the trust module using

formula 1” shows better scalability. The reason is same as scenario B. With the proxy

server “xoxo.usask.ca” and its replication server “varna.usask.ca”, the bottleneck

switches to the web server “burgas.usask.ca” and “yuting.usask.ca”. The two web servers

cannot handle too many requests while retrieving 3K data.

From the experiments above, the trust module using formula 1 affects system’s

scalability to a certain degree, but balancing work load, adding replication server(s) and

improving servers’ hardware can help to solve this issue.

6.2.3 Overhead

Overhead for the trust module using formula 1 and formula 2 is tested in this set of

experiments.

 Scenario A

JMETER is set as in figure 6-25. In order to minimize the influence of network traffic,

the requests to “the system without the trust module”, “the system with the trust module

using formula 1” and “the system with the trust module using formula 2” are sent

simultaneously.

106

106

Figure 6-25 JMETER setting for testing overhead

The transfer message size of 300 bytes is tested in this experiment. The result is shown

in table 6-13 and figure 6-26.

Table 6-13 Average process time for one web server

Concurre

nt users

Average

process

time

without the

trust

module

(ms)

Average

process time

with the

trust module

using

formula 1

(ms)

Average

process time

with the

trust module

using

formula 2

(ms)

Overhead

for the

trust

module

using

formula 1

Overhead

for the

trust

module

using

formula 2

100 5 6 5 20% 0%

200 7 9 7 28.6% 0%

300 18 32 13 77.8% N/A

400 32 53 44 65.6% 34.4%

500 55 70 53 27.2% N/A

600 132 283 136 114.4% 3.0%

700 141 184 177 30.5% 25.5%

800 102 320 146 213.7% 43.1%

107

107

Figure 6-26 Overhead for scenario A

 Scenario B

The test plan setting is the same as scenario A.

A transfer message size of 1K is tested in this experiment. The result is shown in

Table 6-14 and figure 6-27.

Table 6-14 Average process time for one web server and one proxy server

Concurrent

users

Average

process

time

without

trust

module

(ms)

Average

process time

with trust

module

using

formula 1

(ms)

Average

process

time with

trust

module

using

formula 2

(ms)

Overhead

for the

trust

module

using

formula 1

Overhead

for the

trust

module

using

formula 2

100 18 25 18 38.9% 0%

200 148 277 167 87.2% 12.8%

300 849 1135 931 33.7% 9.8%

400 675 1118 764 65.6% 13.2%

108

108

Figure 6-27 Overhead for scenario B

 Scenario C

The test plan setting is the same as scenario A.

A transfer message size of 1K is tested in this experiment. The result is shown in table

6-15 and figure 6-28.

Table 6-15 Average process time for two web servers and one proxy server

Concurrent

users

Average

process time

without trust

module (ms)

Average

process time

with trust

module using

formula 1

(ms)

Average

process time

with trust

module using

formula 2

(ms)

Overhead

for the

trust

module

using

formula 1

Overhead

for the

trust

module

using

formula 2

100 18 25 18 38.9% 0%

200 148 277 167 87.2% 12.8%

300 849 1135 931 33.9% 10.0%

109

109

Figure 6-28 Overhead for scenario C

When there are more concurrent users, the overhead for the trust module using either formula

1 or formula 2 is getting bigger. Overhead of the trust module using formula 1 is much more than

using the trust module using formula 2 because the trust module using formula 2 calculates trust

values only based on current context values while the trust module using formula 1 calculates

trust values not only based on current context values but also on history transactions, and the

process involves searching history transactions and updating the new transactions.

6.3 Summary

The goals for the experiments are testing the system’s functionality, scalability and overhead

for the trust module.

Functionalities: the trust module either for using formula 1 or formula 2 works as expected.

According to different business requirements, by adjusting trust policies and trust thresholds, the

trust module prevents improper requests.

Scalability: Generally, the system can handle hundreds of requests/per second. Normally this

is sufficient for small to medium-sized business demands. If the business demand grows, adding

replication servers and balancing work load can improve the system’s scalability.

110

110

Overhead: “The trust module using formula 2” adds little overhead to the system since it

only calculates the current trust values based on the context values while “the trust module using

formula 1” adds some overhead since it includes searching previous transactions and updating

the trust credits for the mobile devices. A suitable trust formula should be chosen based on

business requirements. If previous transactions are very important when considering the trust

value, then “the trust module using formula 1” should be applied even though it adds more

overhead.

Overall, the experiments prove the system can prevent scenarios such as the mobile devices

being used by malicious persons or being abused, or the requests sent by hacked systems. The

overhead for the trust module is reasonable, especially if history transactions are not considered.

The system’s scalability is sufficient for small to medium-sized size business. With the growth in

the size of the business, improving hardware and balancing the system, and adding replication

servers can improve the system’s scalability.

111

111

CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary

As mobile device hardware and mobile applications rapidly grow and enterprises open their

web applications for mobile devices, it is getting more and more common to access data either

on mobile devices or on web servers. How to trust the requests sent by mobile devices becomes

an issue. This research has proposed a distributed trust module which is specific for mobile

devices’ web services. The trust module calculates mobile devices’ requests based on the

devices’ context values and calculates the requests from other domains based on the

trustworthiness of the domains. The system is built in the Erlang language to achieve better

performance and scalability.

7.1.1 Problem and solutions

In chapter 2, I describe three scenarios which are 1) lost or stolen devices; 2) abuse of

privileges; and 3) traditional access control issues. Normal mobile access control and web access

control cannot solve these issues. A distributed trust module is proposed in this research which is

built on the top of enterprise web system, adding additional security mainly for the problems

mentioned.

1. Lost or stolen devices

By calculating the trust value based on mobile owners’ operation patterns, mobile owners’

normal working routine (schedule, location etc.), most of lost or stolen devices’ cannot be used

to access protected data.

2. Abuse of privileges

112

112

Many enterprises open their gates to mobile devices for their employees to improve

productivity. Unlike desktops which employees use during office hours, mobile devices can be

access at any time and locations; therefore the possibility of abusing the privileges is much

higher. For example, an employee can easily make mistakes when they are drunk. With the

limitation of sending location type and sending time, or other restrictions, abusing privilege can

be reduced.

3. Tradition access control

Cross-domain access is always a challenge which involves assigning global roles to users, and

considering other domains’ security. The trust module which is built on the top of the original

security settings, calculates the requests from other domains based on the context values and

trustworthiness of the other domains. It protects current domain from other malicious requests.

7.1.2 The system’s features

 Lightweight

Since the proposed system is also designed to be built on top of the existing system, in order

to minimize the impact of the existing system, the system must be lightweight to achieve good

performance. The system is written in Erlang which features lightweight process, scalability and

distribution, so the system is good at handling multiple concurrent users and easy to expand.

 Attachable

As mentioned above, since the trust module can be built for a new system or a legacy system,

being attachable is important. It is an independent module which includes a client side

component, a server component and a database. Adding a new trust module in an enterprise’s

legacy system can be seamless.

113

113

7.1.3 Novelty

 Evaluate the requests’ trust value

Most trust systems focus on evaluating servers’ or other peers’ trust value and reputation, for

example, how to choose the best vendor, or exchange files between other peers which have good

reputations. The approaches for calculating trust value and reputation are specific for servers.

Not much has done on how to evaluate clients’ requests. Since the requests from other clients

can also be risky, especially for mobile devices due to their nature, there is the need for building

a system calculating the trust value of mobile client’s requests.

 Decentralized module

The trust module is light weight component which can be attached to a distributed system.

Every module works independently and also communicates with each other, exchanging trust

information of mobile devices and server domains. Different trust policies, trust thresholds and

trust history for mobile devices and servers can be set individually for each trust module. Each

trust module acts as a small agent to protect sensitive data.

7.2 Future work

The trust module enhances the security for enterprise mobile web services and provides a

mechanism to calculate requests’ trust value. To make it work better in any new or existing

system, additional needs to be done.

7.2.1 More context values should be considered

Context value is essential when calculating the trust value for mobile devices. The more

context values, the more accurate to predicate mobile devices’ situation. For example: if a

mobile device detects any Bluetooth connections around, it most likely can determine its

114

114

environment: office or any social club; If it detects certain wireless network, it can determine

how risky the network is; A mobile device’s sensor can detect the owner’s low blood pressure

and irregular heart rate, or if any abnormal condition occurs, some tasks which demand certain

health condition are prohibited. The mobile devices can also send the owner’s health data to a

doctor if the device can connect to a health care system. Also, current location only refers to

geography information. It is helpful to estimate the risk of the request if more location

information like location type can be found and used. If a location type is a “bar” or a

“restaurant”, then it is less safe than an “office” type for accessing work information.

7.2.2 Explore iPhone, Windows mobile and Blackberry other mobile devices

Current mobile clients’ component is implemented for Android tablets. It applies hybrid

implementation, a combination of a native application and a pure embedded browser application.

The “pure embedded browser” part can be migrated to other mobile clients smoothly, but the

“native application” needs some work. In this system, “native application” part is mainly

collects context values from sensors of mobile clients. Some open sources provide a

platform/framework to develop a variety of mobile device implementations, like iPhone,

Blackberry and Android. PHONEGAP is one of these frameworks which uses HTML, CSS and

JavaScript to create applications for mobile devices. These tools certainly give some freedom to

developers, and it is the trend for mobile application development. For future work, a platform

like PHONEGAP can be used to implement more general applications.

7.2.3 Adding exchange data functionality in the trust module

The trust module has mobile device’s transactions, so they are considered when calculating

trust value if the trust policy involves mobile devices’ credit. Each trust module only stores its

own transaction history, data can be copied to other trust modules, but it is not timely and

115

115

efficient. A function for automatically propagating data to other domains can improve system’s

robustness and practicality as figure 7-1shows. If a mobile device sends any improper request to

a server, this transaction not only is stores in this server, but also is propagated to other servers

and other servers’ data is propagated into current server. If a malicious person fails to hack a

certain sever, the chance he success hack into other servers is low.

Server 1

Database for

server 1
Database for

server 2

Database for

server 3

Send server 1 data to server2 Send data to server3

Send server 3 data to server 2

...

Send server 1 data to server 3

Send server 3 data to server 2

Send server 2 data to server 1

Figure 7-1 Exchange data between the trust modules

7.2.4 Adding more trust formulas suitable for a variety of business requirements

I propose two trust formulas to calculate mobile devices’ trust value which are 1) using

context values and mobile devices’ credit to calculate the trust value, 2) only use context values

to calculate trust value, and one formula which is using calculated trust value and trustworthiness

of the domain to calculate the trust value of the requests from other domains. Enterprises have

different security level for their web access. So these formulas may not fit all security

requirements, as some have higher security standards and some have lower security standards.

For example, an alternation for calculating the trust value of a request coming from another

domain is recalculating trust value based on the context values. This may cause overhead but it

116

116

certainly gives better protection. For less secure system, using the calculated trust value may be

good enough to satisfy business needs while being more efficient.

7.2.5 Apply the trust module for practical use, such as: health care system, commercial

industry

This trust module is proposed and implemented but it has not been put into any real system

yet. As mentioned before, the trust module can be used either for new systems or any legacy

systems. When the trust module is attached to a legacy system, how to integrate it with the

existing system is aan issue. Different operation systems, EBS, web services and databases of the

existing systems have different solutions. The trust module can be used in a variety of areas. In

the implementation, I use student academic records as an example. These records are stored in

different departments and each department has its own rules for accessing these records. This

research presents how to use the trust module to control the access. Other areas, like health and

personal care system, commercial system can certainly benefit from this module too. Health

systems which involve patient’s sensitive information are access by only a few people, such as

the doctors who are in charge of the patient in certain areas to prevent the data leaks. A trust

policy for restricting location, restricting any other wireless connection can be set to ensure data

is only access to the doctor in the specific areas. Commercial data could involve commodity

prices, purchase orders, sales volume, etc which are only open to trustworthy vendors. Setting

rules for selecting vendors so they can view data would be potentially helpful for the business.

117

117

LIST OF REFERENCES

[1] S. E. Abdrahman, “Web Access Control Using User Access Behavior (WACUAB)”,

Proceedings of the 2008 International Conference on Semantic Web & Web Services (SWWS

2008), pages 242-5, 2008.

[2] Access control “http://en.wikipedia.org/wiki/Access_control”, last retrieve May 15, 2012.

[3] F. Alshahwan and K. Moessner, “Providing SOAP web services and RESTful web services

from Mobile hosts”, IEEE fifth international conference on internet and web applications and

services, 2010.

[4] L. Bauer, M. A. Schneider, and E. W. Felten, “A Proof-Carrying Authorization System”,

Proceedings DARPA Information Survivability Conference and Exposition, 117-19 vol.2, 2003;

ISBN-10: 0 7695 1897 4; DOI: 10.1109/DISCEX.2003.1194942; Conference: Proceedings

DARPA Information Survivability Conference and Exposition, 22-24 April 2003.

[5] Cloud computing “http://en.wikipedia.org/wiki/Cloud_computing”, last retrieve May 15,

2012.

[6] M. Coetzee and J. H. P. Eloff, “A Trust and Context Aware Access Control Model for web

service conversation”, Trust, Privacy and Security in Digital Business. Proceedings 4th

International Conference, TrustBus 2007. (Lecture Notes in Computer Science vol. 4657), pages

115-24, 2007.

[7] A. Corradi, R. Montanari, D. Tibaldi, A. Toninelli, and U. Bologna, “A Context-centric

Security Middleware for Service Provisioning in Pervasive Computing,” Symposium A

Quarterly Journal In Modern Foreign Literatures, 2005.

[8] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of Context and Context-

Awareness.”, Proceeding HUC '99 Proceedings of the 1st international symposium on Handheld

and Ubiquitous Computing pages 304 – 307, 1999.

[9] Erlang – Mnesia User’s Guide “http://www.erlang.org/doc/apps/mnesia/Mnesia_chap4.html”,

last retrieve May 15, 2012.

[10] L. Eschenauer, V. D. Gligor, and J. Baras, “On trust establishment in mobile ad-hoc

networks”, In B. Christianson, B. Crispo, J. A. Malcolm, and M. Roe, editors, 10th International

Security Protocols Workshop, Cambridge, UK, April 2002, volume 2845 of Lecture Notes in

Computer Science, pages 47-66.Springer-Verlag, 2004.

[11] R. T. Fielding, “Architectural Styles and the Design of Network-based Software

Architectures”, Doctoral dissertation, University of California, Irvine, 2000.

[12] J. Fischer and R. Majumdar, “A Theory of Role Composition,” 2008 IEEE International

Conference on Web Services, pages 320-328, Sep. 2008.

[13] Gartner 2008 SOA User Survey. http://www.soabloke.com/2008/11/06/gartner-2008-soa-

user-survey/, last retrieve May 15, 2012.

[14] Global mobile statistics 2012 http://mobithinking.com/mobile-marketing-tools/latest-

mobile-stats, last retrieve May 15, 2012.

[15] P. Goyal, V. Parmar, R. Rishi, (2011) MANET: Vulnerabilities, Challenges, Attacks,

Application, IJCEM International Journal of Computational Engineering & Management, Vol.

11.

[16] S. M. Habib, S. Ries, M. Mühlhäuser, “Cloud Computing Landscape and Research

Challenges Regarding Trust and Reputation”, uic-atc, pages 410-415,2010 Symposia and

Workshops on Ubiquitous, Autonomic and Trusted Computing,2010.

http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Cloud_computing
http://www.erlang.org/doc/apps/mnesia/Mnesia_chap4.html
http://www.soabloke.com/2008/11/06/gartner-2008-soa-user-survey/
http://www.soabloke.com/2008/11/06/gartner-2008-soa-user-survey/
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats

118

118

[17] Z. Jiang and S. Kim, “Trust Model for Mobile Devices in Ubiquitous Environment” ,

Network-Based Information Systems. Proceedings First International Conference, NBiS 2007,

pages 426-34, 2007.

[18] Inbound Internet Marketing Blog http://blog.hubspot.com/blog/tabid/6307/bid/30495/25-

Eye-Popping-Internet-Marketing-Statistics-for-2012.aspx, last retrieve May 15, 2012.

[19] K. Kanetkar, “A roadmap to building an ESB.”, Integration for everyone, May 22-24, 2006,

Boston, MA.

[20] K. M. Lee, K. Hwang, J.-hyong Lee, and H.-joon Kim, “A fuzzy trust model using multiple

evaluation criteria”, Fuzzy Systems and Knowledge Discovery. Third International Conference,

FSKD 2006. Proceedings (Lecture Notes in Artificial Intelligence Vol.4223), pages 961-9, 2006.

[21] S. Marsh, P. Briggs, K. El-khatib, B. Esfandiari, and J. A. Stewart, “Defining and

Investigating Device Comfort,” Processing, vol. 19, no. July, pages 231-252, 2011.

[22] mochi / mochiweb https://github.com/mochi/mochiweb/ , last retrieve Jan 31,2012.

[23] H. Nilsson, C. Wikstrom, and E. T. Ab, “Mnesia - An Industrial DBMS with Transactions,

Distribution and a Logical Query Language”, International Symposium on Cooperative Database

Systems for Advanced Applications. Kyoto Japan, 1996.

[24] X. Pan, “SOA-based enterprise application integration,” 2010 2nd International Conference

on Computer Engineering and Technology, pages V7-564-V7-568, 2010.

[25] Dana Pavel, Dirk Trossen, "Context Provisioning for Future Service Environments," iccgi,

pages 45, International Multi-Conference on Computing in the Global Information Technology -

(ICCGI'06), 2006.

[26] D. Salber, A. K. Dey, and G. D. Abowd, “The Context Toolkit: Aiding the Development of

Context-Enabled Applications”, Proc CHI 99Conference on Human Factors in Computer

Systems, Pittsburgh, PA, 1999, pages 434-441.

[27] W. N. Schilit, “A System Architecture for Context-Aware Mobile Computing,” Doctoral

Dissertation, Columbia University, New York, NY, 1995.

[28] C. Shang, Z. Yang, Q. Liu, and C. Zhao, “A Context Based Dynamic Access Control

Model for Web Service,” 2008 IEEE/IFIP International Conference on Embedded and

Ubiquitous Computing, pages 339-343, Dec. 2008.

[29] V. Varadharajan and V. Pruthi, “Trust Enhanced Security for Mobile Agents,” Seventh

IEEE International Conference on E-Commerce Technology (CEC’05), pages 231-238, 2005.

[30] Q. A. Wang, “Mobile Cloud Computing,” Thesis for the degree of master of computer

science, university of Saskatchewan 2010.

[31] Web services “http://en.wikipedia.org/wiki/Web_service”, last retrieve May 15, 2012.

[32] Y. Wang and J. Vassileva, “Bayesian Network Trust Model in Peer-to-Peer Networks”,

Agents and Peer-to-Peer Computing. Second International Workshop, AP2PC 2003. Revised and

Invited Papers (Lecture Notes in Artificial Intelligence Vol.2872), pages 23-34, 2004.

[33] M. Weiser, “The Computer for the 21st Century” Scientific American, 1991.

[34] X Wu, (2010) A Distributed Trust Model for Mobile Computing Environments Intelligent

Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on pages 248 –

252.

[35] Z. Yan, P. Zhan, “A Trust Management System in Mobile Enterprise Networking”, WSEAS

Transactions on Communications, Issue 5, Vol. 5, pages 854-861, 2006.

http://blog.hubspot.com/blog/tabid/6307/bid/30495/25-Eye-Popping-Internet-Marketing-Statistics-for-2012.aspx
http://blog.hubspot.com/blog/tabid/6307/bid/30495/25-Eye-Popping-Internet-Marketing-Statistics-for-2012.aspx
../../../../../Documents%20and%20Settings/mil283/My%20Documents/thesis/WORD_FILES/
https://github.com/mochi/mochiweb
https://github.com/mochi/mochiweb/
http://en.wikipedia.org/wiki/Web_service
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5639100
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5639100

