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Abstract

Service oriented architecture (SOA) and web services make it possible to construct rich and complex

distributed systems which operate at internet scales. However, the underlying design principles of

SOA can lead to management problems for processes over web services.

This thesis identifies several potential problems with the management of processes over web

services, and proposes the use of explicit context as a possible solution. The available options are

explored, and the WS-Context specification is implemented and evaluated.

The SOA design principles of loose coupling, interaction at an interface, autonomy, and com-

posablity can lead to management problems for processes over web services. Processes over web

services where one composite service invokes other composite services which in turn invoke other

composite services can lead to complex invocation trees. These invocation trees may be different at

different times due to the shifting effect of loose coupling, as new services are swapped in to replace

those in previous invocations. In such an environment how well can we define the interface of the

top level service in a static document such as a WSDL? Because there is a separation between

the ultimate service consumer, and the ultimate service provider how can the service consumer

correctly assign fault when a service fails? When concurrency is used, and encouraged, how can

we deal with the inevitable race conditions and deadlock? In distributed systems where portions

of processes execute on systems beyond our organizational control, how can we pause, or kill these

processes? Many of these systems model long-running business processes. How do we communicate

changes in process requirements?

The use of an explicit context is a potential solution to these types of problems. The abstraction

context provides an environment in which the process participants can describe their requirements,

query those of other process participants, and react to changes in the environment.

A sample context server, based on the WS-Context specification, was implemented using the

Erlang language. The sample context server provides the basic operations required to manage and

store contextual information about a process.

The sample context server was evaluated to determine the cost of employing a context as part

of a web service based software system. The performance of the sample server was also evaluated.

Test were conducted on the time costs of the basic operations of the context server, and they

were found to have a constant time cost. The operations for getting and setting the contents of the

context were found to have a time cost dependant on the size of the context. The cost of propagating

the context along a chain of service invocations was tested and found to have an overhead which

increased linearly with the length of the service invocation chain.

The context server was stress tested using a closed loop test which simulated the interaction of
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a number of concurrent clients, and an open loop test which simulated bursts of arriving requests.

The open loop testing showed that the context server could handle 75 concurrent clients. Beyond

75 concurrent clients, the response times of the context server began to slowly increase. The closed

loop testing showed that the context server had a maximum throughput of 190 requests per second

for bursts of 200 requests with an interarrival time of 4 milliseconds.
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Chapter 1

Introduction

Service Oriented Architecture (SOA) is a paradigm for the development of internet scale software

systems. SOA models the world in terms of services. A service is some well defined capability (data

storage, data manipulation, or action with some real-world effect) which is offered by a service

provider and may be discovered, and utilized by a service consumer.

The appeal of SOA is that it aligns well with the way businesses tend to organize their work, in

terms of delegation. Automating a business process therefore becomes a matter of identifying its

natural points of delegation and modelling them as services. Services at a higher level delegate to

those at a lower level, this continues down to the most basic services which cannot be decomposed

further. The entire business process becomes a well defined set of contractual interactions between

service providers and service consumers.

Currently, most SOA systems are implemented using web services. Web services are software

services which are accessible over a network. Web services may be implemented in different ways

(SOAP, REST). SOAP is a high-level XML (Extensible Markup Language) based messaging pro-

tocol modeled as envelopes of data, typically exchanged using the HTTP (Hypertext Transfer

Protocol). REST (Representational State Transfer) is a lower level messaging scheme which fo-

cusses on the use of HTTP to interact with web addressable objects. The focus of this thesis is

SOAP based web services. SOAP based web services are defined in WSDL (Web Service Definition

Language) documents which describe the services being offered and the format of the messages

through which a service consumer may communicate with them. The messages between the service

consumer and service provider are SOAP envelopes wrapping an XML document payload delivered

by HTTP.

Web services define the method of communication between services, but the services themselves

could be implemented using any programming language which includes a web services capability,

such as Java, C#, or BPEL (Business Process Execution Language). Quite often web services wrap

legacy business systems, allowing them to interface easily with the business’ current systems.

1



1.1 Problem Description

One of the guiding concepts of SOA is that service providers and service consumers interact at an

interface. The participants have no understanding of the process in which they execute beyond the

interface. This myopic view of the process’ execution context is meant to simplify software design,

but can complicate application management, and in some ways the applications themselves.

Several problems can arise from such a narrow view of the execution context:

• SOA is a flexible architecture. The loose coupling between service provider and consumer

means that swapping service providers is easy (and encouraged) for maintenance, cost, or

strategic reasons. In complex applications which cross several levels of abstraction, these

shifting dependencies may result in subtle bugs. If it is possible to observe the process as a

whole (which services were consumed), it may be possible to work around these problems.

• The document style, asynchronous, routed messaging patterns which typify web service in-

teraction can lead to complex patterns of communication which make understanding what is

happening with an application difficult.

• It is difficult for high level consumers to communicate their intentions to low level providers. A

consumer must find a provider which meets their functional and non-functional requirements,

or they must create their own composite service to meet their needs. Abstraction suffers in

this environment. Either providers expose all the functionality of lower level services, leading

to complicated interfaces, or they decide on defaults which simplify the interface, forgoing

flexibility.

• Things change, especially in business. In a world of long running business transactions, it is

likely that the intentions of the participants may change. Current management technologies

leave the consumer little recourse once a service has been invoked.

• The very properties of SOA which make it easy to develop business systems, make it diffi-

cult to manage them. The management of SOA based web services would benefit from the

notion of a process, with an explicit acknowledgement that all the participating services were

working towards the same goal, and process level information available to all participants and

management applications. This can be accomplished by providing a context for the process.

The focus of this research is the use of explicit context with SOAP based web services.

2



1.2 Motivation

This research is motivated by the possibility that large internet scale systems may be constructed

using web services using the SOA approach. It is inevitable, given the tools available that these

systems will consist of complex composite services which cross many levels of abstraction and

organizational control. While web services and the concepts of SOA dramatically simplify the

process of constructing these internet scale systems, the complexity of their message-based runtime

behaviour, and the lack of overall process visibility or control, can make attempting to manage

these systems difficult or impossible.

1.3 Objectives

The objectives of this research are to explore the use of context in a SOAP based web services

environment. An argument will be made for the use of context. An infrastructure for the use

of contextual information based on the WS-Context specification will be constructed. The use of

context, focusing on the overhead of employing a context will be evaluated. Finally, some potential

management uses of the context will be discussed.
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Chapter 2

Service Oriented Architecture

In their reference model [1] the OASIS group describe Service Oriented Architecture (SOA) as

”a paradigm for organizing and utilizing distributed capabilities that may be under the control of

different ownership domains.”

SOA employs the concept of a service to satisfy the goals/needs of interacting entities. The

participants in SOA are the service provider and service consumer. The Service provider makes

some capability (data storage, data manipulation, real-world effect) available to be consumed. A

service consumer whose needs may be satisfied by that service may then consume it.

The concept of a service aligns well with the way humans tend to organize work; through

delegation. As a result, automating an existing workflow involves decomposing it at natural points

of delegation which may be modelled by services.

Service providers must make their capabilities visible to potential service consumers. These

capabilities may be described in terms of their effects, technical requirements, policies, and the

method for accessing the service. The descriptions may be circulated to potential service consumers,

or published in centralized queriable registries.

ConsumerService

1. Publishes

Service
Registry

2. Discovers

3. Consumes

Figure 2.1: 1. A service publishes its information in a service registry. 2. A service
consumer queries the registry and discovers the service. 3. The service consumer
consumes the service.

The classic illustration of the service lifecycle depicts the publication of a service’s information

to a queriable third party service registry. A service consumer queries the service registry, and

discovers the service, then consumes it. Figure 2.1 illustrates this process.

SOA promotes reuse. Constructing applications by composing well defined capabilities exposed

4



as services, leaves those capabilities exposed, and available to other, future applications.

SOA promotes flexibility through loose coupling between services. By hiding application logic

behind a service interface with well defined capabilities, it becomes easy to substitute an alternative

service providing an equivalent capability. In aid of loose coupling, SOA encourages the use of

stateless services. If a service consumer relies on a service which maintains some state information,

then the consumer looses the option of choosing another equivalent service. Ideally any state

information relative to the consumption should be passed as part of the messages between the

service consumer and service provider.

The following is a collection of potential problems with the solely consumer-provider view of

SOA.

2.1 Brokers

Broker services, or virtual web services are a popular example of a composite service.

A common example of a broker service is one which manages airline ticket reservations[2][3]. If

you want to construct airline ticket reservation application using web services, you would design

some user interface, most likely a website. On the server side, you would have to consume all the

reservation services of the various airlines to present the available trip plans to your customers. But

this is something which would be common to many airline ticket reservation systems, so someone

may create a service which aggregates all the individual airline services behind a single uniform

web service, vastly simplifying your ticket reservation application.

Brokers aggregate the functionality of several similar services, and may or may not add some

extra value. At their simplest, they could act as middle men, collecting a commission and passing

the request on to another service. But, more typically, they would add value by selecting the service

with the fastest, most reliable, cheapest, highest quality, or other desirable attributes, from a set

of similar available services.

The Broker Problem

A potential problem arises from this separation of the service consumer and ultimate service

provider. It may be the case that some peculiarity of the consumer’s request (message, timing)

causes a failure in the ultimate service provider. If the service consumer is separated from the

ultimate service provider by a broker, the service consumer sees only the failure of the broker. In

subsequent transactions, the service consumer may select different brokers, but the newly selected

broker may also select the same ultimate provider, resulting in the same failure. This would be

experienced as an intermittent failure by the consumer.

It may be argued that some quality of service scheme could be used to register the failures.
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But if the failing service performs acceptably for the majority of its other transactions, it may still

enjoy a good reputation which results in its continued selection.

This brokering example is just a special case of the problem of separation between the service

consumer, and the ultimate service provider. In the case of a process which descends through a tree

of composite services, each composite service acts, in effect, as a broker for the requesting service;

decomposing its request and consuming other services to satisfy it. Each composite service being

another point of choice of which services to consume.

It may be argued that the problem lies with the faulty service provider, and should be addressed

there, but from a pragmatic point of view, the interest in securing a successful consumption lies

mostly with the consumer. A possible solution would be for the ultimate consuming service (or an

agent acting on its behalf) to be aware of potential points of failure, and communicate that to the

other participating services in the process.

A Pricing Scenario

A common example for broker services is the case where a broker attempts to get the best price on

some service from a set of subservices. If a consumer contacts several services in order to discover

the best price for a certain service, some of which are brokers, redundant pricing queries may arrive

at same service. This may be interpreted by the service provider as an increased demand for the

service which it provides, and it may increase the price it quotes accordingly. Unfortunately, there is

ultimately only one interested consumer, and the misquoted price may not be competitive. Figure

2.2 illustrates this scenario with a simple example involving a single broker service.

Consumer

Service
Broker
Service

Price
Request Price

Request

Price
Request

Service

Price
Request

Figure 2.2: A service consumer queries the price of several services. One is a
broker service, which results in a redundant price request at the first service.

By making the context of the call explicit, the redundant pricing requests could be observed,

and would not be considered when assessing demand.

This pricing scenario may possibly be generalizable to performance tuning scenarios, where

system resources are allocated based on some expected demand for a particular service.
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Redundant Broker Chaining

Another interesting potential problem with brokers is the case where a broker selects another broker

to ultimately perform the service. That a service is a broker may not be immediately evident

(possibly advantageously so). The selected broker may also select a broker to provide the service,

and so on, unnecessarily slowing the eventual response, or resulting in a potentially infinite chain

of unfulfilled requests. Figure 2.3 illustrates this scenario.

Consumer

Service

Potential Service Providers

Service Service Broker
Service

Broker
Service

Service
Broker
Service Service

ServiceService Service Broker
Service

1. Selects

2. Selects 3. Selects

4. Selects
5. Selects ...

Figure 2.3: A consumer selects a broker which selects a broker, which selects a
broker. . .

Worse than simply slowing the response to this single request, the extra requests which are

generated consume network bandwidth, and the waiting service consumers occupy computational

resources.

In a service domain saturated with brokers, the probability of this occurrence may be quite high,

presuming that the value added by a broker makes it a more desirable selection than a non-broker

service.

At some point, hopefully, the consumer will assume that the request has failed and will give up

waiting for a response, but that does nothing to recall the in flight request. Perhaps a consumer

would notify the provider that it will no longer wait, but this would, at best, chain-on after the

initial request, and may or may not catch it. The existence of a context which could be queried to

determine the status of the overall process could help in this situation.

2.2 Nonfunctional Requirements

When a service executes, it changes the state of the system/world. Some of the changes are

explicitly in the service interface, others are not. If, for example, a service exists which manufactures
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a shirt, the resulting shirt is an explicit result of the service consumption. However, where it is

manufactured may not be explicitly stated. The materials out of which it is constructed may not be

explicitly stated. The carbon foot print may not be explicitly stated. These possible non-functional

requirements, and others, may not be taken into account by the service provider.

In an ideal world, a service provider would explicitly state all the effects of the service invocation,

but practically, this is not possible. The service provider cannot know what is important to the

service consumer, other than in the broadest sense. It could list some obvious effects, in terms of

their existence, or nonexistence, but the service consumer would be left guessing about the rest.

In the case of composite services, the provider can only pass on as much information as it itself

is provided. In the case where the composite service employs some form of dynamic selection, the

changing nature of underlying services, can make it impossible to list any but the most obvious,

and universal effects with certainty. The more complex and dynamic the service, the less definite

it may be in terms of its effects.

Yet, it may be important to a service consumer that their clothing is not manufactured by a

particular company (for ethical reasons), or in a particular country (for legal reasons), or from

particular materials (for health reasons), or with a limit on its carbon foot print (for environmen-

tal reasons). The service provider itself may also be bound by some legal, ethical, or strategic

constraints in terms of whether to allow a particular service consumer to consume its service.

It would be nice to have a way to reconcile the nonfunctional requirements of the service con-

sumer/provider with the effects of every service in the process. It seems that separating the nego-

tiation of this functionality from that of the service’s core functionality would be best.

2.3 Concurrency

There are many Web service and SOA examples which promote the idea of concurrency. This opens

up a host of potential opportunities, as well as problems. There are the classical problems of race

conditions and deadlock between competing threads of execution in the same process. More subtly,

different threads of execution, may compete for system resources, such as network bandwidth,

storage, or access to particular to a particular set of underlying service providers, which may result

in intermittent slowdowns or timeouts.

Ideally, a process’ threads of execution could be in some way coordinated, so as not to compete

with each other.

2.4 Process Control

For management purposes, it may be desirable to pause, resume, and end processes. It may be

desirable to know how complete a process is, or get an estimated time of completion.
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Failed Thread

Thread 1

Failed 
Service

Thread 2

Unfinished
Work

ServiceService

Service

Figure 2.4: If one thread of a concurrent web service process fails, the other
threads, unaware, may continue to wasteful conclusions.

In a process over some composite services, which employs multiple threads of execution, a failure

may occur on a particular thread which may make the completion of the other threads unnecessary.

In such a scenario, it would be advantageous to halt all threads of execution, rather than letting

them run to a possibly wasteful conclusion. This scenario is illustrated in figure 2.4.

Failed 
Service

Reconnect

Equivalent
Service

Reconnect

Service Service

Figure 2.5: If an intermediate service fails, the portion of the process beyond the
failure is lost. Would it be possible to reconnect it through a new equivalent service?

In a process over some chain of services, some intermediate service may fail. The work being

completed on its behalf may still be relevant to the successful completion of the overall process, but

because of the intermediate service failure, this work will be abandoned. It would be nice if it were

possible to replace the failed service with an equivalent service, and reconnect it to the services

which the failed service had consumed. This scenario is illustrated in figure 2.5.
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2.5 Changing Requirements

In a long running process, for example a process which modelled the building of a house, the

requirements of participating entities may change. The service consumer may need to change the

number of windows, the door manufacturer may need more time to complete the doors.

2.6 Summary

The previous observations illustrate that in some cases, the SOA ideal of systems constructed of

stateless, loosely coupled services, can lead to problems.

The problems outlined all deal with the problem of the services, or agents acting on their

behalf, being aware of the other services in the process, and being able to communicate with them.

Providing a context for the process, to share information related to the successful completion of

the process could be a possible solution.
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Chapter 3

Background

3.1 Current Technology

3.1.1 Web Services

Web services are currently the most popular technology for realizing SOA (Service Oriented Ar-

chitecture). A service may be defined as some capability made available for use by another. Web

services are software services which are network accessible. The capabilities of a web service are

described in a WSDL (Web Services Description Language) [4] document.

The web service consumer and the web service provider typically communicate by exchanging

XML messages wrapped in the SOAP messaging protocol over an HTTP (Hypertext Transfer

Protocol) connection.

A UDDI (Universal Description Discovery and Integration) [5] server may be used to store

the WSDL documents of deployed web services. The UDDI server provides a method of locating

available services.

3.1.2 Communication Styles

Call Style

Web services can communicate synchronously or asynchronously. In a synchronous interaction,

the service consumer blocks waiting for the service provider to return a result. This is typical of

traditional programming style. In an asynchronous interaction, the service consumer does not block

waiting for service provider’s response, but may register a callback function to handle the response,

or provide a callback operation. This is typical of event driven programming, and implies some

level of concurrency in the service consumer.

Encoding Style

In SOAP, the messages can be either Remote Procedure Call (RPC) or document styles. In RPC

style the consumed service is thought of as a function, which consists of a list of ordered parameters,
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and returns a return value. In document style encoding, the consumed service can be thought to

be digesting a document, and producing a document in response.

Transports

The web service messages may be transferred using various transport mechanisms such as: HTTP,

SMTP, JMS, MQ, or FTP. While there are many transport options, HTTP and HTTPS, are the

de facto standards for SOAP web services.

Message Exchange Patterns

”A message exchange pattern is a template that establishes a pattern of messages between com-

municating parties.” [6] The WSDL 2.0 proposal defines the following MEPs (Message Exchange

Patterns): In-Only, Robust In-Only, and In-Out which can be used to describe the way in which a

service exchanges messages. An In-Only MEP indicates that the operation accepts a single message

and does not return a reply. The robust In-Only MEP is the same as In-Only with the addition

that a fault message may be sent instead. The In-Out MEP is the standard request response stye

of messaging.

Philosophy

Some see web services as distributed objects, some as RPCs, some as agents, and others as something

completely different. The type of communication experienced between services will be different

based upon which idea is subscribed to, or what type of underlying legacy system is being exposed.

The various call styles, encoding styles, transports, MEPs, and underlying philosophies mean

a potentially chaotic system which is difficult to monitor or understand. Even the emerging stan-

dard use of document style encoding and asynchronous communication opens the door to complex

patterns of interaction beyond the simple provider-consumer model. Documents may be altered,

routed, or stored along the way, before they are eventually processed. The consumer may receive

a document in response from an entirely different service than the one it consumed.

3.1.3 Composite Services

Composite services are services which aggregate the functionality of several other services and

present it as a new service. Composite services may be as simple as offering a single interface to

several equivalent services, or combining several different services with additional business logic to

create a value added service.

There are many ways to construct composite web services. It is possible to create a composite

web service using traditional languages such as java, C++, or C#, but there is a recognition in the

community that the stringing together of the coarse grained functionality which services provide
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requires a more appropriate language which simplifies issues such as parallelism and asynchronous

service consumption.

Currently, BPEL (Business Process Execution Language) [7] is the most popular standard for

defining composite services. BPEL is a workflow language, which is popular for modelling business

workflows as service.

Composite services provide the layers of abstraction which make services so easy to use. Once

a company has defined a workflow, that business value can be encapsulated as a composite service

and offered internally and/or externally at a higher level of abstraction.

3.1.4 Enterprise Service Bus

An Enterprise Service Bus (ESB) is an abstract messaging backbone for connecting web services.

The main benefit of an ESB is to further decouple the system, by acting as a broker and common

point of communication. As a common point of communication, the problem of changing which

service to consume moves from being a coding task in the program consuming the service, to being

a configuration task in the ESB. As a broker, the ESB can route messages to the most appropriate

service, based on rules, or the content of the message, or QoS data.

The ESB also acts as a translator between services implementing different messaging proto-

cols. It provides standard wrappers for various communication/middleware protocols (for example:

SOAP, REST, JMS, MQ, and many others). This saves service providers from having to write web

service interfaces to standard legacy systems. With some configuration, they can be offered directly

by the ESB.

ESBs can provide management capabilities such as: monitoring (system resources, services),

auditing the flow of messages in the system, diagnosing performance problem, and start and stop

services[8].

In a way, the ESB can be used to establish a context for a process. If the entire process uses the

ESB, it can inspect the messages between services to infer the structure of the process. It can then

alter the routing of messages, or their content manage the process. There is however no explicit

idea of a context, and all messages must use the ESB to benefit.

3.2 Contexts

A context may be defined as ”a set of constraints that influence the behavior of a system (a user

of computer) embeded in a given task” [9].

There has been some work in the use of contexts with web services. This work covers several

areas:
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3.2.1 Standards

WS-Context

The Organization for the Advancement of Structured Information Standards (OASIS) (http://www.

oasis-open.org) released the WS-Context specification [10] as part of the WS-CAF (Web Services

Composite Application Framework)[11] family of specifications [12] whose purpose is to provide

a framework to support multiple services used in combination. WS-Context forms the general

foundation for the other WS-CAF specifications: WS-BP, WS-CF, WS-LRA, and WS-ACID which

are seen as specific contexts of an activity’s operation.

In the WS-Context specification, a context is a container for storing information about the

execution environment of one particular activity, where an activity is ”a series of related interactions

with a set of web services” [10]. The context’s information is encoded as an xml document. The

context can be embedded within SOAP messages exchanged between services, or stored in an

external context service.

The context service provides only the getContents and setContexts operations which get or set

the entire context. It is mentioned that the context service may return a subset of context where

security warranted. Also, it is mentioned that should the activity require co-ordination between

web services operating on the context, that should be externally implemented.

WS-Context defines two participants in a contextual interaction: the ContextService and the

UserContextService, and outlines interfaces which each must implement. The interface covers,

creating a context/beginning an activity (the begin operation), destroying a context/forcing com-

pletion of an activity (the complete operation), polling the status of the activity, and retrieving and

setting timeouts, and retrieving and setting the content of a context.

3.2.2 Standards Built on WS-Context

WS-CF Web Services Coordination Framework

The WS-CF standard [13] is part of the WS-CAF set of standards, and is build on top of WS-

Context. WS-CF is used to register a service ”as a participant in some domain specific function”[13].

The standard gives examples such as registering to a publish-subscribe topic to receive asynchronous

messages. WS-Context’s context type is extended to create a registration context type by adding

a web service reference. Web services participating in an activity can be registered in the context

creating an activity group. The registration can be the basis for some form of communication

between participants. The standard mentions ”work flow, atomic transactions, caching, and repli-

cation security, auctioning”[13] as possible applications. Again, WS-CF is meant to be a building

block for higher level standards such as WS-ACID, WS-LRA, and WS-BP.
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WS-ACID Web Services ACID

WS-ACID[14] is a standard for managing atomic transactions. ”WS-ACID defines a pluggable

transaction protocol that can be used with the coordinator to negotiate a set of actions for all

participants to execute based on the outcome of a series of related Web services executions”[14].

This can be used to accomplish various types of transaction protocols, such as two-phase commits.

WS-ACID assumes that all services in the activity have native ACID semantics, and that activities

complete quickly. The transaction participants must be part of a WS-CF activity group. The

WS-Context begin operation triggers the creation of a transaction coordinator, and the complete

operations triggers the commit or rollback of the activity.

WS-LRA Web Services Long Running Activity

WS-LRA[15] is a transaction scheme for long running business processes, which would strain tra-

ditional transaction models. Unsuccessful activities employ a compensator to undo the work they

have done. Not all services must be compensatable. It is a deployment decision. It may be the

case that compensation must be undertaken outside the application, such as an alert to a system

administrator.

WS-BP Web Services Business Process

WS-BP[16] is a transaction model in which business processes operate over business domains.

”Business process transactions are responsible for managing interactions between these domains”.

A business process has a manager which is informed of its success or failure, or may query the task

to determine its status. The business process will either succeed or fail in which case its work will

be undone. Any work which cannot be undone will be logged to be handled offline. The business

process model is optimistic, assuming that only a small number of failures will occur, which can be

handled offline.

3.2.3 Criticism of WS-Context

There are three basic options for creating a context service: Create your own, use a common context

server, or extend and implement some basic server standard which has a common subset of the

required functionality. WS-Context has chosen the third option. Any attempt to prescribe the

functionality of a context service may limit its usefulness, but if everyone implements their own,

there will be much duplication of work, and inconsistencies between approaches to the problem. A

middle ground seems like a good solution, but it may be the worst of both worlds.

There may be an independent need for a context for different reasons, for example to com-

municate nonfunctional requirements, but also to record monitoring information. In an everyone
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implements their own context service world, these would be independent context services. In a

standard server example, these could be separate pieces of data within a single context.

The Context Manager

Getting and setting the whole context at a time seems too blunt an approach. This method of

access seems to have been added as an afterthought. The standard seems to favour simply passing

the context along, inside the SOAP header, of messages between participants. The getContext and

setContext operations rely on the participants which have retrieved the content of the context to

put back the existing content, and only alter the portion of the context which is of interest to them.

It also seems that searching for and obtaining only the elements of interest within the context would

be more appropriate. In this respect, WS-RF seems to have a much richer set of operations.

Since the context manager can be separate from the context service, the context manager must

check with the context service to ensure that the context being accessed is valid. Since there is the

possibility of of a timeout for the context, a separate context manager may process a request after

the context has timed out, almost a race condition.

If different parts of a process interact with the context manager concurrently, there is the pos-

sibility of lost edits as participants’ updates clobber one another. Some sort of locking mechanism

seems to be appropriate.

As it stands, with the getContents operation, participants must poll the context manager to

discover changes in a context of interest. It seems as though this would be such an obvious use

case, that some sort of notification system would be of great value.

Overall, the WS-Context specification seems to have been abstracted out of other work in the

wider WS-CAF set of specifications. It is a good start at a notion of a process context, but it could

use some extension.

The Context Service

The structure of the context is maintained in the context service, but there is no way to access it

by the participants. It can be communicated by storing it separately as information in the contents

of the context, but this relies on the participants to propagate this information correctly. It seems

that this would be better handled by allowing the participants to query the structure of the context

directly from the context service.

3.2.4 WS-RF

WS-RF (Web Services Resource Framework http://www.oasis-open.org/committees/tc_home.php?

wg_abbrev=wsrf) is a standard for dealing with stateful services. While SOA encourages stateless

services, there are many real world instances where state is unavoidable. An example would be a
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service which exposes a physical resource, which is unique, and cannot be accessed alternatively

through another service such as a physical printer, or an order with a particular retailer. In these

cases it is necessary to be able to identify the unique resource in the messages to the service.

Since resources have common usage patterns such as getting and setting properties of the resource,

WS-RF, provides a standard way to do this.

While WS-RF does not define the concept of a context explicitly, it is mainly used to maintain

sessional data. Contextual data could be attached using the ReferenceProperty element. [17]

3.2.5 Service Selection

Mostéfaoui et al. [18] demonstrate an extension to WSDL which marks certain operations as

providing contextual information. Services providing these functions are polled and the responses

are used to select the service to invoke.

Chen et al. [19] use a semantic matchmaker which attempts to discover a suitable service based

on the requested functionality, and contextual data supplied by the requester.

3.2.6 Frameworks and Architectures

Keidl and Kemper [20] developed a framework to support contextual information about the web

service client which would provide personalized web services.

Elsafty et al. [21] introduce an architecture for contextual semantic web services. The architec-

ture focusses on agreeing on a set of sensors which will develop the context by sensing the client and

server environments. A monitor observes the sensors, and triggers a response to a defined change

in the context.

Chen et al. [19] introduce CA-SOA (Context Aware Service Oriented Architecture) which

utilizes an agent based broker system for service selection based on contextual data.

3.2.7 Customization

Keidl and Kemper [20] developed a framework to support contextual information about the web

service client which would provide personalized web services. They focus on the client device

characteristics and user data such as preferences and current location. The framework pre- and post-

processes web service messages based on contextual information, so individual web services need

not be context aware, but may access the context blocks directly through an API. The contextual

information is transmitted from the client to the web service in the soap header block. Each context

may contain multiple context blocks each of a particular type, for example location or client device.

Context information is utilized either explicitly by the web service, or by automatically through

pre- and post-processing of the web service messages by plugin modules. The context may be
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altered by the invoked web service, and is propagated to any web services which it invokes. The

returned context may be integrated into the existing context which is returned to the client. The

framework includes the facility to direct the processing of contexts. Which context plugin/service

is used to process a context block may be specified in context block in the SOAP header, advertised

on a UDDI server, or selected dynamically (context service). Which host processes the service may

also be specified either next (the next web service which no longer propagates the context block)

or all (every web service to which this context is propagated).

Matsummura et al. [22] transmit data about available communication protocols as contextual

data which the service can use to select a higher performance protocol for future communications.

3.2.8 Session Data

In any system where an activity requires multiple interactions between distinct participants, it may

be necessary to remember what occurred during previous interactions. An example might be using a

web browser for online shopping. Each page requested from the web server is a separate interaction.

It is necessary for the web server to remember what you have already added to your shopping cart.

This can be accomplished by maintaining some small amount of data on the server, usually called

a session, and providing the user with a some unique identifier. The identifier, encoded in the

resulting web page is returned to the server as part of the next web page request.

The interactions between participants in a process over web services is no different. Some

interactions take on a conversational style with multiple invocations of the operations of a distinct

service. The WS-RF[23] standard seeks to support and standardize these types of interactions.

In other cases, a service consumer might favour a particular service provider, and return to

consume it again and again. In such cases remembering something about the previous interactions

may be of benefit. Information may be stored in order to improve performance such as Matsum-

mura et al.’s [22] investigation of the storage of static (unchanged between invocations) operation

parameters as contextual data.

It is possible to avoid storing the session data directly by the participants, by encoding it in the

messages which they exchange. This avoids the problem of tight coupling between the participants,

as the session could be continued between any other functionally equivalent pair. There are some

potential problems with this approach. The message may be lost or corrupted in transit. One, or

both, participants may alter the sessional data in the message to their advantage.

Other research in this area includes Elsafty et al. [21], who look at maintaining a context repos-

itory on both the client and server side to cache the context over multiple client server interactions.
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3.2.9 Acquiring Contextual Information

There is an area of context research which focuses on the environment of the end user. In this case,

the properties of the end user and their environment must populate the context which can then

be used in dynamic service selection, or passed along during any service consumption to further

customize the service.

Acquiring the context information can be done through the use of some form of sensor scheme[21].

The properties of the user’s environment could be their location (acquired by GPS), the properties

of the device they are using to access the service, the contents of their electronic calendar, or the

responses to a survey [19].

3.2.10 Encoding Context Data

The information stored in a context must be in some way interpretable to the participants utiliz-

ing that context. The WS-Context specification uses XML for the encoding the context content.

The Chen et al. [19] developed requester and service context ontologies to encode the contextual

information. Unfortunately, the ontologies are limited to location, social calendaring, and device

network settings.

3.2.11 Co-ordination

The WS-CAF specification is intimately related to coordination. The WS-CF standard introduces

the use of registration to group participants in an activity. This grouping of related participants

forms the basis for coordination between participants. The WS-ACID, WS-LRS, and WS-BP

specifications provide different levels of transaction management to ensure some level of process

consistency.

3.3 Management of Web Services

The major focus of management activities in the web service world has been providing standardized

web service interfaces to manageable resources, and the management of web services as resource.

The OASIS Group has published the WSDM[24] (Web Services Distributed Management) stan-

dards, which include the WSDM-MUWS (Management Using Web Services) [25] [26] and WSDM-

MOWS (Management of Web Services) [27] standards.

DMTF (Distributed Management Task Force, Inc.) has published the WS-Management speci-

fication [28].

At the workflow level, many BPEL (Business Process Execution Language) engines (Active-

BPEL, Apache Ode, Oracle) provide limited management capabilities.
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Apache Ode provides a Java management API which is exposed as web services. The manage-

ment API consists of two interfaces ProcessManagement and InstanceManagement.

There seems to be no concept of management at an entire process level. This is not surprising,

as it may be difficult to decide where a process begins or ends, and who has the responsibility for

managing it; especially since services often cross organizational and intra-organizational boundaries.

Never the less, situations may arise because of the natures of SOA and web services in which it

would be desirable to have some level of process control.

3.4 Co-ordination of Web Services

Coordination of web services deals with managing the interactions of participants in a process to

achieve some goal. This area covers ideas such as transaction management, service choreography,

and service orchestration.

Transaction Management

There has been much work on transaction management of processes over web services. WS-CAF

(section 3.2.11) and WS-TX [29] are two such specification groups.

WS-CAF (WS-ACID and WS-LRA, and WS-BP were discussed previously in section 3.2.11).

WS-TX [29] (WS-Coordination [30] and WS-AtomicTransaction [31] and WS-BusinessActivity

[32]) provide a basis for coordinating participants in an activity. It is used as the basis for Trans-

action management.

Choreography

Choreography is a method of coordinating the communication between the web services in some

set. The choreography defines the protocol of message exchanges between the interacting web

services. The WS Choreography Model [33] describes this model of communication. WS-CDL (Web

Services Choreography Description Language) [34] is a specification for describing choreographed

communications.

Orchestration

Orchestration is another, more familiar, method of coordinating web services. ”Orchestration

refers to an executable business process that can interact with both internal and external Web

services.” [35]. BPEL (Business Process Execution Language) [36] uses orchestration to coordinate

the execution of a process over a set of services.

WSCI Web Service Choreography, WSFT Web services transaction framework, Web services

transaction WS-TX, BPEL.
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3.4.1 Table of Papers

The following table summarizes the work on the use of context with web services. The summary is

presented by area of interest with references to the papers and notes on their contributions.

Area Papers Notes

Acquiring

Context

Pokraev et al. [37] Context acquired dynamically from context

services.

Sashima et al. [38] Context from context services which sense en-

vironment at runtime.

Mostefaoui et al. [18] Discovers context by running client side utili-

ties described in CWSDL.

Elsafty et al. [21] Context is acquired using sensors (vague).

Blake et al. [39] Context inferred by agents, which observe

user.

Mobile User

Context

Pokraev et al. [37] Personalized voice and data, point of interest

selection.

Sheng and Bentallah [40] Users expect awareness of personal environ-

ment.

Context Based

Service

Selection

Pokraev et al. [37] Location based service selection.

Riaz et al. [41] Uses narrowing approach.

Sashima et al. [38] Location/Capability/Requirements based ser-

vice selection.

Mostefaoui et al. [18] Elects service based on client computed con-

text.

Elsafty et al. [21] Service selected negotiator based on sensor

data (context).

Blake et al. [39] Agents proactive select and consume services

based on context.

Chen et al. [19] Agents assist the requester and provider with

semantic matching.

Context

Encoding

Keidl and Kemper [20] Context Ids, context types/blocks, SOAP

Header.

Kaltz and Zeigler [42][43] Context represented in ontologies (OWL[44]).

Elsafty et al. [21] Uses OWL-S[45] ontology with extensions and

SOUPA[46] ontology.
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Area Papers Notes

Changing

Context

Pokraev et al. [37] Notification of context changes.

Elsafty et al. [21] Context changes monitored by sensors.

Formalizations

and Standards

Sheng and Bentallah [40] ContextUML: describe context, generate soft-

ware.

Mostefaoui et al. [18] CWSDL Language for describing context in

terms of client computable functions.

Little et al. [10] WS-Context standard.

Constraints

Sheng and Bentallah [40] Use context constraints to filter service replies.

Session Data

Tatsubori and Takahashi [47] Create service compositions from existing web

apps, encode session information in context.

Matsumura et al. [22] Save static portions of client server messages,

and protocol choice to improve performance.

Harrison and Taylor [48] Stateful loosely coupled web services.

Frameworks

and

Architectures

Orriens and Yang [49] BCCF

Kaltz and Zeigler [42][43] CATWALK framework, alter web pages with

XSLT based on Context.

Elsafty et al. [21] Context Oriented Architecture (COA). All

service interactions have context.

Harrison and Taylor [48] WSPeer P2P context service.

Chen et al. [19] Context Aware Service Oriented Architecture

(CA-SOA). Agent based service selection.

[23] Web Service Resource Framework (WSRF).

Little et al. [10] WS-Context. Context Service and Context

Manager services.

Context

Propagation

Keidl and Kemper [20] Context is propagated in SOAP Header to fur-

ther services.

Nonfunctional

Requirements

Elsafty et al. [21] Context expresses nonfunctional require-

ments.
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Area Papers Notes

Management

Maamar et al. [50] Manage web service compositions, using con-

text and policies.

Security
Riaz et al. [41] Implicit identification from client context.

Keidl and Kemper [20] Context should be selectively propagated.

Table 3.1: Reviewed context papers, by area.

3.5 Summary

Web services are a technology for constructing distributed systems according to the principles of

service orientation. Systems constructed using web services can have complex and varied commu-

nication patterns.

Composite web services allow for the construction of complex hierarchies of service consump-

tions.

The available tools for managing web service based systems tend to focus on managing the

services themselves (in the case of WSDM, ESBs), or managing the flow of messages to and from

services (in the case of ESBs).

The idea of a supporting web services with contextual information is relatively new. The

contextual information usually provides some real world context for the web service consumption,

such as the consumer’s current location, or it stores sessional data relating to past consumptions

of a service, such as a purchase history.

The main available standard in the area of context and web services is WS-Context. The WS-

RF standard provides many desirable properties for constructing a context, but its focus is on

maintaining state information associated with a particular service.

The current research in the area of contexts focuses mainly on acquiring contextual information,

encoding contextual information, and storing sessional data. The applications of context seem

focussed on location based service personalization, or context based service selection.

There does not seem to be research on the use of context for process level communication and

management. There does not seem to be any implementation or analysis of the costs of employing

a context service such as WS-Context.
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Chapter 4

Operating Within a Shared Context

4.1 Idea

A context model can be constructed to represent the context within which a whole process executes.

Each service, or an agent acting on its behalf, operating within the context has an opportunity

to react to contextual information provided by other participants and to contribute contextual

information itself.

Contextual information could be anything the participants feel is relevant to the successful

completion of the process. Generally it would consist of non-functional requirements which focus

the intent of the service consumers beyond the functional parameters required by an immediate

service provider. Participants may also provide information about their current execution status in

the context.

For example a participant may be prohibited by law from conducting business with a particular

state. By encoding this in a context, it is possible to ensure future selected services conform to

these requirements.

If a context becomes too constrained, it is possible to request that the constraint be relaxed to

facilitate the successful completion of the execution.

In a situation of parallel execution, if a critical failure occurs in one thread of execution it is

possible to alert the remaining threads that their completion is redundant.

An Example

Figure 4.1 illustrates an example of a process over web services, which uses uses contextual infor-

mation to communicate nonfunctional requirements and record logging information for a portion

of the process.

Suppose a retailer uses a web service to make an order of desks from a furniture company.

The furniture company then uses a broker service to select a manufacturer for the desks. The

selected manufacturer receives the plans for the desk, and uses services to order select suppliers

and order the materials for the desk. The materials suppliers (lumber, paint, bolts, etc) each select

a manufacturer as well.
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Retailer

Broker
Furniture
Broker

Furniture Manufacturers

ManManMan ManManMan

Hardware Suppliers

SupSupSupSup SupSup

Lumber Suppliers

SupSupSupSup

Paint Suppliers

SupSupSupSup SupSup

Nail Mans

ManMan ManMan

Bolt Mans Oak Sups

SupSup SupSup

Maple Sups Paint Mans

ManMan

Parent Context

Subcontext

Context

<dontUseService>
  http://badsupplier.com/SupplySvc
</dontUseService>
<requestForInformation>
  <serviceProp>country</serviceProp>
<requestForInformation>

<logging>
  <subProcessMustLog>
    <subServiceInvocation/>
    <subServiceInvocationCompletion/>
    <subServiceFailure/>
  </subProcessMustLog>
</logging>

Context
Service

Figure 4.1: A manufacturing process is modelled using web services, using a
context service.

In this simple example, there may be the need for separate contexts at the retail and manufac-

turing levels of decomposition. It may be the case that the retailer knows, from experience, that

a bolt sold by a particular supplier, which may sometimes be used in the construction of the desk

is prone to failure. It adds an assertion that this supplier’s service should not be selected in this

process, to avoid receiving desks with poor bolts.

The manufacturer creates a subcontext and adds an assertion that call logging must be done

on the sub process. The manufacturer adds an assertion that the lumber supplier must not be a

Brazilian company, as it has ethical concerns about deforestation in the amazon.

The selected bolt supplier adds a request that participants disclose their nationality, as it is

illegal for it to supply its product to Cubans. This request is placed in the top level context so that

it is visible to all participants.
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4.2 Considerations

4.2.1 Location

The context could be passed as part of the messages between services, but this would be limiting

as communication during the completion of a process tends to travel in one direction (until the

operation has completed). Also, it may be the case that there is contextual information a process

participant would wish to disseminate after it had already invoked a service.

A scheme of context messages could be passed along the call structure of the process, but this

would greatly increase the number of messages exchanged by the process. Also, in the case of a

failure of a portion of the process, the messages would not reach the disconnected portions of the

process.

A separate service for storing the contextual information has the advantage that it can be

reached by any process participant at any time during the completion of the process. This allows

for the flow of contextual information in any direction at any point in the lifetime of the process.

There is, however, a danger in using a separate context service that you introduce a central point

of failure to the process.

4.2.2 Operations

Creation

There must be some way to create a context model. At very least, the creation of a context should

create some identifier which represents the shared context, and can be used by process participants

to access it.

Population

There must be a way to place contextual information inside the context model. Given the location

of the context service, and an identifier which identifies the particular context of interest, the

consumer can address the context. The write scheme could be to write the context as a whole, or

add to the context, or update some information already in the context or remove some information

from the context.

Observation

There must be a way for interested process participants to inspect the context model. Again,

given the location of the context service, and an identifier which identifies the particular context of

interest, the consumer can address the context. The observation could be active or passive.
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In an active observation, the participant requests some portion of the context (the whole, or

some part).

In a passive observation, the participant registers an interest in some portion of the context

(the whole, or some part), under some condition of interest (addition, deletion, alteration, some

particular value). In this case, the participant is notified of the change when it occurs.

4.2.3 Structure

There could be a single context for all participants, and/or some structure of related contexts

specific to some sub-groupings of participants.

A natural structure for a context is a hierarchy. This maps well to the functional decomposition

style of service consumption. Functionally decomposed activities naturally form contexts over the

activities they attempt to complete.

4.2.4 Ownership and Visibility

It may be beneficial for there to be a concept of ownership associated with the information stored

in the context. It may be the case that only a subset of participants should be allowed to update

a particular piece of information, and only a subset of participants should be able to observe it.

In this case a scheme involving the assigning of privileges starting with the creator of the

context could be employed. The creator could assign privileges such as the ability to add pieces of

information, update, or delete them. These participants could then assign privileges to the other

participants with regards to the information that they add. The context creator could also assign

the privilege of creating a sub context as well.

The visibility of sub-contexts, and parent contexts is another issue to consider. Again, the

creator of the context could control the visibility of the context by the parent or the children.

Maintaining a system of privileges would require that the participants themselves be identifiable,

and verifiably so.

4.2.5 Semantics

The participants in a process must have some shared understanding of the meaning of the entries

in the context. Process participants could be selected based on their understanding of the elements

which make up the context, as defined in their WSDL entries. Alternatively, services could use an

ontology based scheme for writing to the context.
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4.2.6 Encoding

The information stored in the context could be encoded in any way that makes sense to the process

participants which will make use of it. However, it is standard practice that web services com-

municate using XML documents, and it seems appropriate to use XML to encode the information

within the context too.

4.2.7 Requests for information

The dynamic nature of SOA means that it is difficult to know what information is important to

other services in system, especially if it is a service provider attempting to learn about a service

consumer. It is important that participants have a mechanism for soliciting information from other

participants within a context.

4.2.8 Technical Considerations

In the situation where a process has separate threads of execution, the context must have some

mechanism for ensuring that writes to the context do not clobber one another. This could be

accomplished by a locking mechanism, either at a context wide level, or per entry level. An

alternative might be to require that no other writes have been made since the writing service’s last

read. Again, the granularity of the reads and writes (how much of the context they affect) will

have a bearing on the performance of these operations.

4.2.9 Potential Problems

The addition of a context to processes over web services has some potentially beneficial properties,

but it also introduces its own problems: The context service introduces tight coupling, and a single

point of failure. The process participants must use the context. The process participants must

understand the information stored in the context. The process participants must provide truthful

information to the context. The portion of the process employing the context may only be a small

part of the overall process, and/or part of some larger non-web service process for which it can not

obtain the information it desires. The participants in the process may make unreasonable demands

on the other participants, over constraining the process, and causing its overall failure.
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Chapter 5

An Erlang Implementation of WS-Context

This chapter introduces a sample implementation of a context server. The context server imple-

ments the basic functionality described in the WS-Context specification. The server is implemented

using the Erlang programming language (http://www.erlang.org). The Erlang programming lan-

guage was chosen because of its ability to handle high concurrent processes, and its growing popu-

larity as platform for implementing network services.

5.1 Architecture

The architecture of the basic context service follows the WS-Context specification. The WS-Context

specification is meant to be extended to implement specific context types, as such it tends to avoid

all but the most basic issues associated with implementing a context. Even so, some of its decisions

seem too general.

Context Server

HTTP
Server

Context
Manager
Module

Context
Service
Module

Context
Identifier
Module

Context
Table

Content
Table

Mnesia DB

Figure 5.1: The architecture of the basic context server.
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Figure 5.1 illustrates the architecture of the basic context server. The context server is composed

of the Context Service, and the Context Manager. The Context Service manages the creation,

structure, and completion of the contexts. The Context Manager stores the information placed

in the context. The HTTP server handles the transfer of messages to and from the server. The

Mnesia database (http://www.erlang.org/doc/apps/mnesia/) stores the internal data for the context

service, and context manager. Mnesia is a small efficient table-based based database which is part

of the Erlang platform. The context identifier generator. generates a unique identifier for each

context. The context manager consults the context service to determine if an accessed context is

still open.

5.1.1 HTTP Server

This implementation of the WS-Context specification uses HTTP as the transport mechanism for

interacting with the context service and context manager. The HTTP server hosts the context

service, and context manager. The HTTP server dispatches the incoming SOAP messages to the

appropriate handler function, and returns the resulting message to the client.

The HTTP server used in this case was an altered version of an example server implemented

in Erlang (http://www.trapexit.org/A_fast_web_server_demonstrating_some_undocumented_Erlang_

features).

5.1.2 Context Service

The Context Service manages the structure and lifecycle of the contexts. The begin operation

creates an new context, or, a new child context if a the begin message contains an existing context.

The begin operation may also include a timeout value indicating when the context’s state should

automatically be set to complete. The complete operation sets the internal state of the context to

completed. At which point, further attempts to interact with the contest will generate a fault. The

getTimeout, and setTimeout operations provide a way to retrieve a context’s timeout, or update it.

The getStatus operation returns the status of the context if such a thing exists for the particular

context in question.

The context service creates a context identifier for each new context. The context identifier

is a URI which uniquely identifies the context. In this implementation, a pseudo unique URI

is generated using the current time and a randomly generated number. This context identifier

is returned to the caller of the begin operation. It can then be shared by the caller with other

participants within the same context, and used refer to that context in future interactions with the

context service, and context manager.
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−record ( context , { id = [ ] , % The con t ex t i d e n t i f i e r .

has t imeout = false , % Whether or not the con t ex t

% has an a s s o c i a t e d exp i r y time .

t imeout = 0 , % The con t ex t w i l l e x p i r e at

% t h i s time .

parent = [ ] , % The con t ex t i d e n t i f i e r o f t h i s

% con t ex t ’ s parent i f i t has one .

ch i l d r en = [ ] , % A l i s t o f c on t e x t s which are

% ch i l d r en o f t h i s con t ex t .

has completed = false , % Whether or not t h i s con t ex t has

% completed .

ha s s t a tu s = false , % Whether or not t h i s con t ex t has

% an a s s o c i a t e d s t a t u s va lue .

s t a tu s = [ ]} ) . % The s t a t u s o f the con t e x t ( t h i s

% va lue i s s p e c i f i c to t h i s

% implementat ion ) .

Listing 5.1: The context service record format used in the Mnesia database

The context data is stored as a set of records in a mnesia database (http://www.erlang.org/

doc/apps/mnesia/index.html). The stored record consists of the context identifier for the context,

the context identifier of the parent context if one exists, the context identifiers of any child contexts

if they exist, the timeout value if it exists, a status value if it exists, and a flag indicating whether

the context has completed. Listing 5.1 shows the erlang record definition for the context record.

5.1.3 Context Manager

The context manager is where information added to the context is stored. The context is transferred

as a whole. The getContent operation returns the whole context for provided context identifier.

The setContent operation sets the whole context to the one provided in the set Content message.

−record ( contents , { id , % The con t ex t i d e n t i f i e r f o r t h i s content .

content} ) . % The content as a xmlElement record

% conta in ing the content o f the con t ex t .

Listing 5.2: The context manager record format used in the Mnesia database

The content data in the context manager is stored as a set of records in mnesia database (http:

//www.erlang.org/doc/apps/mnesia/index.html). The records consist of the context identifier, and

the XML representing the context. Listing 5.2 shows the erlang record definition for the content

record
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5.1.4 Context Server Interactions

Context
Service

Context
Manager

S1 S2

Figure 5.2: Services S1 and S2 interact with a Context Service and Manager

Figure 5.2 illustrates the basic interactions between the participants in a web services process

which uses a context service. Initially, service S1 would use the context service to create a context

and obtain a context identifier. Service S1 could then store some information in the context

manager. The context manager would contact the context service to verify that the context which

service S1 was trying to write to existed, and had not completed. Service S1 would then consume

Service S2 passing it the context identifier. Service S2 could then obtain the context contents from

the context manager, and/or create a subcontext using the context service.

5.1.5 Context Propagation

The context is propagated by passing the context identifier to other participant services in a process.

The context identifier is included in the header of a SOAP message during the invocation of a

service’s operations.

An example of context propagation

In this example (fig. 5.3), a service (S1), creates a new context by consuming the begin operation

of the context service (listing 5.3). The context service creates a new context, and returns its

context identifier to the service in the context section of the message’s SOAP header (listing 5.4).

The service S1 then consumes an operation of service S2, passing the context identifier, and the

locations of the context service, and context manager in the message to S2, again as part of the

context section of the SOAP header (listing 5.5).
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Context
Service

S1 S2

1 2 

3

Figure 5.3: 1. Service S1 invokes begin operation. 2. Context Service returns a
new context identifier. 3. S1 invokes an operation of S2, includes context identifier
in SOAP message.
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<?xml version=” 1.0 ”?>

<S:Envelope xmlns:S=” ht tp : // schemas . xmlsoap . org / soap/ envelope /”>

<S:Body>

<wsctx :beg in xmlns:wsctx=” ht tp : // docs . oas i s−open . org /ws−ca f /2005/10/wsctx”>

</wsctx :beg in>

</S:Body>

</S:Envelope>

Listing 5.3: 1. The SOAP document sent by S1 to obtain a context.

<?xml version=” 1.0 ”?>

<S:Envelope xmlns:S=” ht tp : // schemas . xmlsoap . org / soap/ envelope /”>

<S:Header>

<wsctx :context xmlns:wsctx=” ht tp : // docs . oas i s−open . org /ws−ca f /2005/10/wsctx”>

<wsctx:context−i d e n t i f i e r>ht tp : // example . org / contexts /789739443585</wsctx :context−i d e n t i f i e r>

</wsctx : context>

</S:Header>

<S:Body>

<wsctx:begun xmlns:wsctx=” ht tp : // docs . oas i s−open . org /ws−ca f /2005/10/wsctx”/>

</S:Body>

</S:Envelope>

Listing 5.4: 2. The SOAP document returned to S1 containing the context iden-

tifier.

<?xml version=” 1.0 ”?>

<S:Envelope xmlns:S=” ht tp : // schemas . xmlsoap . org / soap/ envelope /”>

<S:Header>

<wsctx :context xmlns:wsctx=” ht tp : // docs . oas i s−open . org /ws−ca f /2005/10/wsctx”>

<wsctx:context−i d e n t i f i e r>ht tp : // example . org / contexts /789739443585</wsctx :context−i d e n t i f i e r>

<wsctx:context−s e r v i c e>ht tp : // example . org /ContextServ ice</wsctx :context−s e r v i c e>

<wsctx:context−manager>ht tp : // example . org /ContextManager</wsctx :context−manager>

</wsctx : context>

</S:Header>

<S:Body>

<quest ion />

</S:Body>

</S:Envelope>

Listing 5.5: 2. 1. The SOAP document sent by S1 to S2 propagating the context.

5.1.6 Context Structure

The use of subcontexts allows the process participants to structure the context as a tree of related

contexts. A subcontext is created by including the context identifier of an existing context in the

soap header of a call to the begin operation of the context service. The context service will create

a new context and return it’s context identifier.

According to the WS-Context specification, the structure of the context is recorded in the con-

tent stored in the context manager. The WS-Context specification includes the <parent−context>

tag which can be used to indicate the current context’s parent, by referencing its context identifier.

The specification does not mention a <child−context> tag, but as the standard is meant to be

extended to fit the needs of particular applications, child relations could be included as well.

This implementation of the context server also stores the context structure in the context service

record, by recording a context’s parent, and its children. This would allow the context service to
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complete the child contexts of a context if that were appropriate to the particular application at

hand. Storing the structure of the context in the context service would also allow for the structure

stored in the context manager to be rebuilt if it were lost.

Process participants can only access one context per operation, so if a participant wants to view

the contents of a related context (parent, or child), it must invoke the getContent operation using

the appropriate context identifier (parent’s, or child’s) from the current context’s contents.

5.1.7 Using the context

The process participants can make use of the context in one of two ways. It can be aware of the

context, or it can be unaware of the context.

Service is Aware of Context

There may be cases where the awareness of a context is an integral part of a service. It these cases,

the web server passes the entire soap message to the web service operation being invoked. The web

service operation is responsible for interpreting the context portion of SOAP messages it receives,

and propagating the context with messages it sends. Figure 5.4 illustrates this process.
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Figure 5.4: The service is responsible for handling context information.
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Service is Unaware of Context

More commonly, it is unnecessary for the service to be aware of the context. The context is used

solely as a tool to facilitate the management of the overall process, and is invisible to the service

itself. Figure 5.5 illustrates this process.

In such cases, a context handler function is called by the http server. The context handler

strips the context from the SOAP message, and stores the relevant context properties (ContextId,

ContextServiceURL, and ContextManagerURL), and context handler locations in a per-thread ets

data table (an erlang dictionary). The context handler calls the onReceive handler, which has been

registered with the http service for this web service operation. The onReceive handler performs

any operations related to the invocation of the web service operation. The context handler then

returns the SOAP message, now stripped of its context, to the http server now invokes the web

service operation requested by the service consumer, and passes it the contextless SOAP message.

During its completion, if the web service operation consumes some other web service, the onSend

handler will be triggered, and passed the SOAP message. The onSend handler has an opportunity

to complete any context related operations before it adds the context information to the SOAP

header, and returns it to the message sending function.

If a reply is received from the web service which has been consumed, the onReply handler is

triggered. The onReply handler has an opportunity to complete any context related operations,

before stripping the context and returning the contextless SOAP message to the message receiving

function.
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Figure 5.5: A set of handler functions process the context, and the service is un
aware of its existence.
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5.1.8 Monitoring Processes (An Example)

The process monitor service logs the consumption of services in the process. Each service in the

process creates its own child context, and records its invocation, and consumptions.
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begin (create sub context)
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Figure 5.6: The function of the onReceive, onSend, and onReply handlers.

The monitoring management functionality is an example of a context unaware service. The

onReceive, onSend, and onReply handlers record the service interactions to the context, and the

service being monitored is unaware that it is being monitored. Figure 5.6 illustrates the function

of the onReceive, onSend, and onReply context handlers.
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The onReceive Handler

The onReceive handler invokes the context service’s begin operation, creating a new sub-context.

Next, the context manager’s getContext operation is invoked to retrieve the parent context. Then

the context manager’s setContent operation is invoked to add a new context content to the context

manager. The new context includes a reference to the parent context, and a callLog with a record

of the invocation of this operation. Listing 5.6 illustrates the content of the new context. Finally,

the onReceive handler invokes the context manager’s setContent operation to add the new child

context to the parent context’s content. This is illustrated in listing 5.7.

”<content>

<wsctx:parent−context xmlns:wsctx=” ht tp : // docs . o a s i s o p e n . org / w s c a f /2005/10/wsctx”>

<wsctx:context−i d e n t i f i e r >

ht tp : // example . org /Contexts /514094808

</wsctx :context−i d e n t i f i e r >

</wsctx:parent−context>

<ca l lLog>

<r ece ivedCa l l>

<thisEndpoint>

ht tp : // example . org /AnswerService

</thisEndpoint>

<th isOperat ion>

answer

</thisOperat ion>

<atTime>

2010−12−06T12:00:00

</atTime>

<c a l l e r >

192 . 168 . 0 . 123 :65049

</c a l l e r >

</rece ivedCa l l>

</cal lLog>

</content>” ,

Listing 5.6: The contents of the new context

”<content>

. . .

<wsctx : ch i ld−context xmlns:wsctx=” ht tp : // docs . o a s i s o p e n . org / w s c a f /2005/10/wsctx”>

<wsctx:context−i d e n t i f i e r >

ht tp : // example . org /Contexts /23789837498

</wsctx :context−i d e n t i f i e r >

</wsctx:parent−context>

</content>” ,

Listing 5.7: The addition to the parent context.

The onSend Handler

The onSend handler is passed the outgoing SOAP message. First, it retrieves the context informa-

tion from the ets table storage, then invokes the context manager’s getContent operation to retrieve

the context’s content. The handler then invokes the context manager’s setContent operation to up-

date the context’s content with the addition of a record recording this service consumption. Listing

5.8 illustrates the added record. Finally, the onSend handler adds the context information to be

propagated to the SOAP message, and returns it to the message sending function.
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”<content>

. . .

</wsctx:parent−context>

<ca l lLog>

. . .

<sending>

<thisEndpoint>

ht tp : // example . org /AnswerService

</thisEndpoint>

<th isOperat ion>

answer

</thisOperat ion>

<atTime>

2010−12−06T12:01:00

</atTime>

<toEndpoint>

ht tp : // example . org /SomeOtherService

</toEndpoint>

</sending>

</cal lLog>

</content>” ,

Listing 5.8: The callLog record added by onSend

The onReply Handler

The onReply handler is passed the incoming SOAP reply message. First, it retrieves the context

information from the ets table storage, then invokes the context manager’s getContent operation

to retrieve the context’s content. Then, it invokes the context manager’s setContent operation

updating the content with a record in the callLog indicating that a reply was received. The addition

to the context’s content is illustrated in listing 5.9. Finally, the onReply handler strips the context

from the SOAP reply, and returns it to the message sending function.

”<content>

. . .

</wsctx:parent−context>

<ca l lLog>

. . .

<gotReply>

<thisEndpoint>

ht tp : // example . org /AnswerService

</thisEndpoint>

<th isOperat ion>

answer

</thisOperat ion>

<atTime>

2010−12−06T12:02:00

</atTime>

<replyFromEndPoint>

ht tp : // example . org /SomeOtherService

</replyFromEndpoint>

</gotReply>

</cal lLog>

</content>” ,

Listing 5.9: The callLog record added by onReply
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Chapter 6

Use Scenarios of Context in SOAP Web Services

6.1 Monitoring

The context may be used to store data about the status of the process. At least it may be used to

record the services which have been involved in the process, and the hierarchy of execution. If a

service fails this may be recorded in the context.

The process could record when a consumer consumed a service, when the service consumption

completed, what the completion status was (successful, unsuccessful). While a process is active, the

various service providers may note processing milestones, and may post expectations of completion

times.

While the process is active, a monitoring agent (human or software), may inspect the context

to observe the status of the process. The context may be saved, and analyzed, or played back at a

later date.

Being able to analyze process performance at a later date may reveal problem which may not

be otherwise immediately obvious. Situations such as a complex failure where the process fails only

when a certain service provider is selected on a certain day, may become apparent. This provides

a heuristic which may then be encoded in the context, which will avoid this failure in the future.

6.2 Reacting to Changing Requirements

The context may be updated with new or changed requirements. The service providers may inspect

the context and react to these changes, or a monitoring agent may be employed to notify the service

providers of the change.

The parameters which are supplied to a service provider on service consumption should be

recorded in the context, and as they pass down through the process, providers which depend on

them should register to be notified if they change. This provides the process with a mechanism for

reacting quickly to changing requirements.
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6.3 Avoiding Self Competition

In a process which employees parallelism, the prospect of self competition arises. Separate branches

of the execution may compete for resources, and may influence the overall cost of the process. By

using information in the context it may be possible to avoid this self competition.

If an area of self competition is identified in the process, an exclusion scheme such as a context

based semaphore [51] may be employed.

6.4 Fault Handling

6.4.1 Terminating Redundant Branches

If a process employs parallelism, and a failure has occurred on one branch. It is possible using the

context to terminate the entire process. Instead of letting the other branches run to completion.

A value could be stored in the context which indicated the status of the process, or of a sub

component of the process. Interested participants could register to receive notifications if this value

changed. This could be used to pause or halt processing of the interested portions of the process.

6.4.2 Extending Runtime On Timed Out

In the case of processes which have failed due to some constraint, for example time-out failure. It

is possible to use the context to relay the cause of the failure to the originating entity, which may

then relax the operating constraints, and continue the process.

This is really a special case of changing requirements. A service provider has reached a timeout.

By pausing the sub process, it is working on, and registering a fault, referencing the requirement

that it has violated, and noting that it could complete if the requirement were relaxed, it gives the

specifier of the requirement the opportunity to relax that constraint, and continue the process.

6.5 Implicit Parameters

It is unreasonable in the construction of composite services to account for every possible variation

in the needs of potential consumer. The composite service will likely make arbitrary parameter

choices of the services it consumes. It could register these decisions in the context, and similar

to the case of changing requirements, a service consumer may have an opportunity to alter these

arbitrary, pass-through requirements.
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Chapter 7

Performance Evaluation

The additional overhead of a context service definitely adds to the completion time of a process,

but it is envisaged as an aid to long running processes, which are modelling real world processes.

As such, the performance overhead should be more than acceptable.

7.1 Testing the Basic Context Service

Any context service developed following the WS-Context specification will have at a minimum these

basic operations: begin, complete, setTimeout, and getTimeout. If a context manager is employed,

then the operations getContent, and setContent would also be available.

Wireless Router

Desktop
(Server)

Laptop
(Client)

Figure 7.1: The test hardware and network configuration.

The performance of these basic operations was tested using a desktop computer running the

context server, and a laptop running test client software. The desktop computer is an Apple

Macintosh with a 3.06 GHz Intel Core 2 Duo processor, and 4 GB of memory, running OS X version

10.6.5. The laptop is an Apple iBook with 1.2 GHz PowerPC processor, and 768 MB of memory,

running OS X version 10.5.8. The computers communicated over a wireless LAN connection. The

wireless router is a D-Link DI-534 802.11g. The basic hardware setup is illustrated in fig. 7.1.
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Figure 7.2: The test of the basic context operations.

The speed of the wireless LAN connection was estimated using the scp utility to transfer a large

file, and found to average approximately 472 kb/s with a high degree of variance. The variance in

the network performance is assumed to be a result of interference with the wireless network signal,

possibly by other devices operating in the same frequency range or some physical obstruction.

A Test of the Basic Operations Over a Network Connection

The test client software invoked each of the basic operations of the context service, and those of

the context manager (illustrated in fig. 7.2). The four forms of begin operation were all invoked.

These operations were all invoked in order sequentially. The test client blocked waiting for each

response. The invocation times were recorded for each operation. The sequence of invocations was

repeated 50 times. The number of repetitions (50) was selected with the objective of capturing a

representative sample of server performance.

The average invocation time (in microseconds) for each operation is reported in table 7.1, along

with their standard deviations. Histograms of the call times for the various operations are illustrated

in figures 7.3 - 7.11.

The standard deviations are quite large relative to the mean times. For example, the begin

operation had a mean time cost of 90,011 microseconds with a standard deviation of 252,292.

Possible explanations for the large standard deviations are the poor wireless network performance

or context switching on either the client or server. There is also an unexpected difference between
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the performances of the different forms of the begin operation, which one would expect to be almost

identical.

Operation Mean Time to Complete Standard Deviation

(microseconds)

begin 90,011 252,292

begin with expiry 45,743 129,835

begin subcontext 41,927 141,074

begin subcontext with expiry 27,492 20,175

complete 91,391 227,632

setTimeout 32,416 29,354

getTimeout 57,286 159,350

setContents 33,356 29,332

getContents 46,748 135,087

Table 7.1: Sample time costs of basic WS-Context operations over a LAN connec-
tion

A Test of the Basic Operations on the Same Machine

In an attempt to isolate the impact of the network connection on the performance of the basic

operations, the test client software was run again; this time on the same machine as the context

server. Again, the basic operations were invoked in sequence and their invocation times were

recorded. The sequence of invocations was again repeated 50 times.

The average invocation times (in microseconds) for each operation is reported in table 7.2,

along with their standard deviations. Histograms of the call times for the various operations are

illustrated in figures 7.3 - 7.11.

Overall, the variances are considerably smaller relative to the mean, with the exceptions of the

first and fourth forms of the begin operation, and the getContents operation. The first invocation of

the begin operation took 188,539 microseconds, and must suffer from a cold start problem skewing

the results. The other high invocation times must represent interference from other processes on

the machine most likely operating system context switches.
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Figure 7.3: A histogram of the call times for the begin operation on the loopback
network (a) and the local area network (b).
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Operation Mean Time to Complete Standard Deviation

(microseconds)

begin 6,320 26,315

begin with expiry 2,416 687

begin subcontext 2,638 926

begin subcontext with expiry 3,292 3,532

complete 2,540 594

setTimeout 2,303 351

getTimeout 2,528 678

setContents 2,660 915

getContents 3,265 4,001

Table 7.2: Sample time costs of basic WS-Context operations on the local machine

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1000  2000  3000  4000  5000  6000  7000

N
um

be
r 

of
 In

vo
ca

tio
ns

Time (microseconds)

Time Costs of the begin with expiry Operation On the Loopback Network

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10000  15000  20000  25000  30000  35000  40000  45000  50000

N
um

be
r 

of
 In

vo
ca

tio
ns

Time (microseconds)

Time Costs of the begin with expiry Operation On the Local Area Network

(b)
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Figure 7.5: A histogram of the call times for the begin subcontext operation on
the loopback network (a) and the local area network (b).
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Figure 7.6: A histogram of the call times for the begin subcontext with expiry
operation on the loopback network (a) and the local area network (b).
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Figure 7.7: A histogram of the call times for the complete operation on the
loopback network (a) and the local area network (b).
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Figure 7.8: A histogram of the call times for the setTimeout operation on the
loopback network (a) and the local area network (b).
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Figure 7.9: A histogram of the call times for the getTimeout operation on the
loopback network (a) and the local area network (b).
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Figure 7.10: A histogram of the call times for the setContents operation on the
loopback network (a) and the local area network (b).
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Figure 7.11: A histogram of the call times for the getContents operation on the
loopback network (a) and the local area network (b).

55



7.1.1 Testing the Performance of different Context Sizes

The time costs of all the basic operations, with the exception of getContent, and setContent, are

constant. The getContent, and setContent operations time costs depend in some part on the size

of the contest being transferred. A test was conducted, again on the desktop machine to isolate

the network variance, to determine the impact of increasing context size on the time cost of the

operations.

Tests were conducted for context sizes of 10 bytes, 100 bytes, 1,000 bytes, 10,000 bytes, and

100,000 bytes. It is not possible to anticipate how the context service will be used, so a broad range

of context sizes were tested. For each test, a setContent operation set the content to the characters,

and a getContent retrieved the characters. This operation sequence was repeated 50 times for each

content size. The average time costs for each operation at each content size are reported along with

their standard deviations in Table 7.3. Figure 7.12 illustrates the relationship between the size of

the content and the time it takes to complete the getContent and setContent operations.

As expected, the bigger the content size, the longer the operations take to complete. For the

smaller sizes context (10 to 1,000 bytes), the basic cost of doing a database read/write dominates.

For the larger sizes (10,000 and 100,000 bytes), the size of the context takes over, and the time cost

can be seen to grow linearly with size of the context.

Content Size Operation Mean Time to Complete Standard Deviation

(microseconds)

10 setContents 1,612 452

10 getContents 1,686 653

100 setContents 1,754 678

100 getContents 1,679 435

1,000 setContents 2,322 493

1,000 getContents 2,582 1,238

10,000 setContents 6,821 418

10,000 getContents 7,431 546

100,000 setContents 66,508 1,556

100,000 getContents 74,754 6,528

Table 7.3: Sample time costs for Context Manager operations, with varying con-
tent sizes, on the local machine
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7.2 Context Propagation

The most basic function of operating in a context is creating and propagating a context. These

tests measure the cost of propagating a context through a process.

7.2.1 Context Propagation Over Services on the Same Machine

Consumer S1
S2

Service Consumption Chains

Two Propagations

Consumer S1
S10

Ten Propagations

Figure 7.13: Service consumption chains with two to ten propagations were tested.

This test shows the overhead of propagating a context for chains of 2 to 10 service consumptions

(Figure 7.13). The test was run on an Apple Macintosh with a 3.06 GHz Intel Core 2 Duo processor,

and 4 GB of memory, running OS X version 10.6.5. This test has two parts: service consumption

chains with context propagation, and service consumption chains without context propagation. In

each case, a set of services was run, with a client service consumer initiating the first consumption.

The service receiving the request would then consume another service, and so on, to form the chain.

In the tests where contest was used, the client consumer creates the initial context, and passes it

to the initial server. The initial, and subsequent services retrieve the context information from the

incoming requests, and contact the context manager to retrieve the context, add to it, and return

it to the context manager. Each test was run 50 times and the resulting mean times to complete,

and standard deviations are presented in Table 7.4.
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There is overhead to propagating the context and it increases approximately linearly to the

number of propagations. The area of application of systems employing the context will determine

whether this is an acceptable overhead.

The standard deviation for the test with the service chain length of 9 at 19,075 microseconds

is high relative to the other standard deviations reported. One reason for this could be a context

switch at the operating system level on the test machine.

Has Context Chain Length Mean Time to Complete Standard Deviation

(microseconds)

no 3 2,160 1,776

yes 3 18,118 4,721

no 4 3,490 2,262

yes 4 24,747 5,523

no 5 4,362 2,150

yes 5 32,357 7,928

no 6 5,580 2,606

yes 6 39,573 6,750

no 7 6.842 2,816

yes 7 46,001 7,411

no 8 7,791 2,629

yes 8 51,747 6,001

no 9 9,230 3,797

yes 9 63,796 19,075

no 10 10,361 3,006

yes 10 67,485 5,491

no 11 11,952 8,181

yes 11 73,950 4,646

Table 7.4: Sample time costs of service consumption chains with and without
context propagation.

7.3 Stress Testing

These tests attempt to discover the performance limits of the server. In both tests, the context

server was run on an Apple iBook laptop with a 1.2 GHz PowerPC processor and 768 MB of

memory, running OS X version 10.5.8. The context server test software was run on an Apple

Macintosh with a 3.06 GHz Intel Core 2 Duo processor, and 4 GB of memory, running OS X
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version 10.6.5. The machines were connected by an ethernet LAN using a D-Link DI-534 router.

The network connection speed was tested using the scp utility to send a large file between the

machines, and was found to be 10.9MB/s with a low degree of variability.

7.3.1 Closed Loop Test

This test simulates a set of clients interacting with the server, and it attempts to determine how

many clients can simultaneously interact with the server. The test software simulates n clients

making k sequential requests, with a interrequest think time of t. For all tests, the interrequest

think time (t) was set to one second. The test was run for 10 to 170 clients sending 10, 20, and 30

requests.

The results of the tests are summarized in Figures: 7.15 (minimum response times), 7.14 (max-

imum response times), 7.16 (mean response times), and 7.17 (mean duration to complete all re-

quests). All figures show plots for tests where the clients each send 10, 20, and 30 requests.

For the mean duration plots, the mean duration rises slowly from 10 to 70 clients, then begins

to rise more quickly from 80 to 170 clients as the server begins to saturate, and arriving clients

are must wait in a queue. There is a peak in the plots of the clients sending 10 requests (Figures

7.16 and 7.14 subfigure a). This was most likely a result of some network, or operating system

interference.

The mean response times plots, as expected, follow a similar, pattern; rising slowly to 70 clients,

then rising more quickly to 170 clients.
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7.3.2 Open Loop Test

This test simulates bursts of arriving requests, and attempts to determine the maximum throughput

of the system. The test software makes b bursts of r requests (five bursts were used for all tests),

with an interarrival time i (times of 500 to 0 milliseconds were used). For each burst, requests

are sent every i milliseconds, without waiting for the response of the previous request. When all

the requests have been sent, the software waits for all requests to complete. The software records

the time it takes to complete all the requests d and how many requests were successful s. The

throughput is calculated by dividing the number of successful requests by the time it takes to

complete all the requests.

The results of the test is summarized in figures: 7.18 (throughput for 100 requests sent at

decreasing interarrival times), 7.19 (throughput for 100 requests sent at decreasing interarrival

times), and 7.20 (throughput for 100 requests sent at decreasing interarrival times). Each figure

contains two plots. The first plot (a) shows the full test. The second plot (b) focusses on the point

around the peak throughput.

All figures follow a similar pattern. The throughput remains low for interarrival times between

500 to 150 milliseconds where the server is under utilized and waiting between requests. Then, the

throughput begins to climb sharply from 150 to 4 milliseconds as the server becomes fully utilized.

Finally, the throughput falls precipitously from 4 to 0 milliseconds as the server becomes overloaded,

and queues incoming requests. It is notable that the server did not fail, but eventually completed all

requests successfully. For the tests with 100 and 200 requests, the maximum throughput achieved

was 190 requests per second. For the test with 300 requests, the maximum throughput achieved

was 160 requests per second.

7.4 Summary

The context server was evaluated to determine the performance implications of employing a context

server, and the server it self was stress tested to determine its performance.

Testing the basic operations of the context service showed that they had an effectively constant

time cost in the 10s of milliseconds. The operations for setting and retrieving a context’s content

were tested and observed to change linearly with the change in the size of the context. The cost of

propagating the context along chains of service invocations was tested and observed to have a time

cost overhead which grew linearly with the length of the service invocation chains.

Stress testing the context server found that for the closed loop tests, which simulated the

interaction of concurrent clients, response times remained relatively unchanged up to 75 concurrent

clients, and increased slowly for increasing numbers of concurrent clients. The open loop tests,

which simulated bursts of arriving requests, showed a maximum throughput of between 160 and
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190 requests per second with an interarrival time of 4 milliseconds.
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Figure 7.14: The maximum observed response times at each number of clients,
for clients sending 10, 20, and 30 sequential requests
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Figure 7.15: The minimum observed response times at each number of clients, for
clients sending 10, 20, and 30 sequential requests
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Figure 7.16: The mean response times at each number of clients, for clients sending
10, 20, and 30 sequential requests
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Figure 7.17: The mean duration of time for all the client’s requests to be processed
at each number of clients, and for clients sending 10, 20, and 30 sequential requests
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Figure 7.18: (a) The context server throughput for interarrival times from 500 to
0 milliseconds for a burst of 100 requests. (b) A close up of the area of maximum
throughput.
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Figure 7.19: The context server throughput for interarrival times from 500 to 0
milliseconds for a burst of 200 requests. (b) A close up of the area of maximum
throughput.
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Figure 7.20: The context server throughput for interarrival times from 500 to 0
milliseconds for a burst of 300 requests. (b) A close up of the area of maximum
throughput.
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Chapter 8

Conclusion

Problems with SOA

This thesis identified some potential management problems associated with processes over web

services. These problems stem somewhat from the fundamental principles of Service Oriented

Architecture, that service participants interact through a contracted interface and ignore what

lies behind it. While this approach significantly reduces the complexity of system development,

it pushes the system complexity to runtime system management. Most of the identified problems

deal with the communication of information relevant to the successful completion of the process

between process participants which are not directly connected. These communications could be

viewed as providing the context in which the web service process executes. Using a context service

is a potential solution to the identified communication problems.

Context Options

There is only one existing context standard in the web services area; WS-Context. It describes

a basic context scheme, prescribing the structure and encoding of the context, along with the

architecture of a context structure service, a context storage service, and the operations they must

provide. The WS-Context specification is spartan, and meant to be extended to implement a

particular context type.

WS-RF provides a more comprehensive set of operations, which would be useful in the imple-

mentation of a context service, but it is not in and of itself a context specification.

There are context service examples in the literature which are convenience components of the

particular system being studied, and attempts to create complete solutions for context aware ser-

vices, but none have been widely accepted as standards.

WS-Context Implementation and Performance

A basic WS-context server was implemented, and evaluated. The evaluation looked at: the time

costs of the basic operations provided by the context service and context manager, the cost of

propagating the context between process participants, and the performance of the context server
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under stress.

The basic operations test found that there was a time cost in the tens of milliseconds per

operation. Most basic operations have a constant time cost, however the getContent and setContent

operations for setting and retrieving the context’s content are dependant on the size of context being

transferred.

A context propagation test simulated the propagation of the context to two or more process

participants. The test ran all services on the same machine, but with separate http servers. There

is an appreciable difference (8 milliseconds per propagation) between a service consumption which

propagates a context and one which does not. However, the overhead was for a dummy service

which did no work.

The stress tests simulated loads on the context service, and attempted to determine the max-

imum throughput, and the effects multiple concurrent clients on response times. The maximum

throughput of the context server was found to be 190 requests per second. The response times were

generally unaffected by other clients up to 75 concurrent clients, beyond which, response times

began to slowly increase.

Outlook

In the future, the WS-Context specification could be extended to include support for concurrent

access to a single context. It could also include a notifications scheme, and context searching

facilities. Some hybrid of WS-RF and the WS-Context specifications might be best. The outlined

uses for the context service could implemented and evaluated against the identified problems with

web services. The context service could be reimplemented as a cloud computing based service to

improve its scalability.

While a context is one way to deal with some of the problems associated with processes over

web services, it does not seem to be the direction that industry is going. Management systems such

as ESBs, rely on observing the documents in transit and inferring their context, rather than having

it explicitly communicated. It could be possible to use a context server as an addition to the ESB

as there are many cases such as nonfunctional requirements in which useful management directives

would not be inferable.

The abstraction of context itself might not be the best approach to this problem of commu-

nication between process participants. Perhaps a scheme involving direct communication between

process participants, or agents acting on their behalf, would be better.

71



References

[1] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, and Rebekah Metz.
Reference model for service oriented architecture 1.0. Technical report, OASIS, October 2006.

[2] Casey K. Fung, Patrick C. K. Hung, Richard C. Linger, and Gwendolyn H. Walton. Extending
business process execution language for web services with service level agreements expressed
in computational quality attributes. Hawaii International Conference on System Sciences,
7:166a, 2005.

[3] D.A. Menasce and V. Dubey. Utility-based qos brokering in service oriented architectures. In
Web Services, 2007. ICWS 2007. IEEE International Conference on, pages 422 –430, 2007.

[4] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web services
description language (wsdl) 1.1. W3C Recommendation, mar 2001.

[5] Oasis uddi specification tc. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

uddi-spec.

[6] Hugo Hass. Web services message exchange patterns. Technical report, W3C, July 2002.

[7] Diane Jordan and John Evdemon. Web services business process execution language version
2.0. Published on Web Site, April 2007.

[8] Mule esb management console — mulesoft. http://www.mulesoft.com/

management-console-mule-esb.
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Mark Ford, Yaron Goland, Alejandro Gúızar, Neelakantan Kartha, Canyang Kevin Liu, Ra-
nia Khalaf, Dieter König, Mike Marin, Vinkesh Mehta, Satish Thatte, Danny van der Rijn,
Prasad Yendluri, and Alex Yiu. Web services business process execution language version 2.0.
Technical report, OASIS, April 2007.

73



[37] S. Pokraev, J. Koolwaaij, M. van Setten, T. Broens, P. D. Costa, M. Wibbels, P. Ebben,
and P. Strating. Service platform for rapid development and deployment of context-aware,
mobile applications. Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International
Conference on, pages –646, 2005.

[38] A. Sashima, N. Izumi, and K. Kurumatani. Location-mediated web services coordination
in ubiquitous computing. Services Computing, 2004. (SCC 2004). Proceedings. 2004 IEEE
International Conference on, pages 109–114, 2004.

[39] M. Brian Blake, Daniel R. Kahan, and Michael Fitzgerald Nowlan. Context-aware agents for
user-oriented web services discovery and execution. Distrib. Parallel Databases, 21(1):39–58,
2007.

[40] Quan Z. Sheng and Boualem Benatallah. Contextuml: A uml-based modeling language for
model-driven development of context-aware web services development. In ICMB ’05: Proceed-
ings of the International Conference on Mobile Business (ICMB’05), pages 206–212, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[41] Maria Riaz, Saad Liaquat Kiani, Sungyoung Lee, Sang-Man Han, and Young-Koo Lee. Service
delivery in context aware environments: Lookup and access control issues. In RTCSA ’05: Pro-
ceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’05), pages 455–458, Washington, DC, USA, 2005. IEEE
Computer Society.

[42] Joachim Wolfgang Kaltz and Jürgen Zeigler. Supporting systematic usage of context in web
applications. In Geoff Sutcliffe and Randy Goebel, editors, Proceedings of the Nineteenth In-
ternational Florida Artificial Intelligence Research Society Conference, page 643. AAAI Press,
May 2006.

[43] J. Wolfgang Kaltz. Using context-awareness to support user interaction withweb services. In
AICT-ICIW ’06: Proceedings of the Advanced Int’l Conference on Telecommunications and
Int’l Conference on Internet and Web Applications and Services, page 155, Washington, DC,
USA, 2006. IEEE Computer Society.

[44] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuinness,
Peter F. Patel-Schneider, and Lynn Andrea Stein. Owl web ontology language. Technical
report, W3C, February 2004.

[45] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila McIlraith,
Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren Sirin, Naveen Srini-
vasan, and Katia Sycara. Owl-s: Semantic markup for web services. Technical report, W3C,
November 2004.

[46] Harry Chen, Tim Finin, and Anupam Joshi. The SOUPA Ontology for Pervasive Computing.
Whitestein Series in Software Agent Technologies. Springer, July 2005.

[47] Michiaki Tatsubori and Kenichi Takashi. Decomposition and abstraction of web applications
for web service extraction and composition. Web Services, 2006. ICWS ’06. International
Conference on, pages 859–868, 2006.

[48] Andrew Harrison and Ian Taylor. Service-oriented middleware for hybrid environments. In
ADPUC ’06: Proceedings of the 1st international workshop on Advanced data processing in
ubiquitous computing (ADPUC 2006), page 2, New York, NY, USA, 2006. ACM Press.

[49] Bart Orriens and Jian Yang. A rule driven approach for developing adaptive service oriented
business collaboration. Services Computing, 2006. SCC ’06. IEEE International Conference
on, pages 182–189, 2006.

74



[50] Zakaria Maamar, Djamal Benslimane, Philippe Thiran, Chirine Ghedira, Schahram Dustdar,
and Subramanian Sattanathan. Towards a context-based multi-type policy approach for web
services composition. Data Knowl. Eng., 62(2):327–351, 2007.

[51] Edsger Wybe Dijkstra. Cooperating sequential processes, technical report ewd-123. Technical
report, 1965.

75


