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1 The obesity problem 

Weight change and maintenance is determined by energy intake and energy expenditure. If 

calories consumed and calories burned, e.g. through resting and physical activity, are 

balanced, weight remains relatively unchanged (Stubbs and Lee, 2004). However, an 

increased energy intake, combined with a decreased or stable energy expenditure might lead 

to fat accumulation and weight gain. From an evolutionary perspective, fat accumulation 

might be related to a previously adaptive process, since in the past fat deposits protected 

people from starvation in states of famine (Speakman, 2013; Genné-Bacon, 2014). 

Mechanisms that lead to such fat accumulation and were once adaptive, such as increased 

responsivity to food cues or high metabolic efficiency, might prove problematic in the 

current obesogenic environment, which is filled with food cues and palatable, unhealthy 

foods (Swinburn et al., 1999; Ravussin and Bogardus, 2000). In short, processes that were 

adaptive have now become the opposite – maladaptive. Together with changes in lifestyle, 

such as a decrease in physical activity, these processes associated with increased food intake 

are problematic and can lead to overweight and obesity.  

It has become evident in the past that obesity is a global problem and that it carries personal 

and economic burden (James, 2008; Finucane et al., 2011; Stevens et al., 2012). Obesity is 

defined by the World Health Organisation as abnormal or excessive fat accumulation 

presenting a health risk (WHO, 2000). One measure for classification of the degree of obesity 

is the body mass index (BMI), which is the ratio of a person’s weight in kilograms to their 

squared height in meters (kg/m2). BMI of 25-30 is classified as overweight, and that above 

30 as obesity. Overweight and obesity have a number of comorbidities, such as diabetes or 

hypertension (Khaodhiar et al., 1999; Gärtner, 2018), which decrease life quality and 

expectancy. It is therefore a problem that must be solved sooner, rather than later. Tackling 

a problem involves its precise characterising and finding strategies that would use this 

knowledge in a beneficial manner. Research in this thesis focuses on the definition of certain 

behavioural characteristics that are associated with obesity and which could potentially lead 

to excessive weight gain. Secondly, it tackles the problem of altering those maladaptive 

processes towards more beneficial routines. The focal point of this thesis is on automatic 
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behaviours that lead to overconsumption of food, and on other processes that might prove 

helpful in dealing with maladaptive decision-making processes in obesity. In this theoretical 

introduction, I will characterise behavioural and neural correlates of obesity, and present 

possible targets for modern obesity interventions. 

 Maladaptive behaviours in obesity 

A large factor contributing to the obesity epidemic is the environment (Swinburn et al., 

1999). The abundance of food-related cues potentially works to our disadvantage by 

increasing food consumption. Indeed, obese individuals differ in their susceptibility to 

environmental food-related and food-unrelated cues (e.g. Carnell and Wardle, 2008; Kemps 

et al., 2014a; Simmank et al., 2015). Moreover, obesity is characterised by deficits in a 

number of different behavioural domains, not only food-related. In their systematic review, 

Vainik and colleagues conclude that people with higher BMI consistently show lower 

executive functioning and altered responses on food motivational tasks (tasks testing 

responses to food stimuli; (Vainik et al., 2013). Executive functions (also termed executive 

or cognitive control) generally adapt people’s behaviour to current goals. They include 

response inhibition, working memory and cognitive flexibility (Diamond, 2013). Executive 

functions are also related to control of food intake and their impairment is consistently 

related to increased food intake and weight gain (Guerrieri et al., 2007; Hofmann et al., 2009; 

Jansen et al., 2009; Nederkoorn et al., 2010; Horstmann et al., 2011; Hall, 2012; Dietrich et 

al., 2016a). In obesity, executive functions have been shown to be altered in the context of 

inhibition of prepotent responses or decision-making (Levitan et al., 2015; Price et al., 

2016a). This alteration is especially pronounced in the intertemporal domain (Weller et al., 

2008; Rasmussen et al., 2010; Bickel et al., 2014; Jarmolowicz et al., 2014; Lawyer et al., 2015; 

Simmank et al., 2015; Amlung et al., 2016; Price et al., 2016b), where individuals are faced 

with a choice between two monetary options: a smaller one, available immediately (e.g. 20 

Euro), or a larger one, available after a variable delay (e.g. 40 Euro after 2 months). Subjective 

value of the latter amount is discounted due to its temporal distance; hence, this behaviour 

is called delay discounting, and is reflective of an individual’s temporal impulsivity. 

Temporal impulsivity is considered a proxy of executive functions (Bickel and Yi, 2008).  
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Food motivation tasks, in contrast to executive functioning, test participants’ tendencies 

towards food-related stimuli. Behaviour in those tasks was previously shown to be 

associated with obesity (Roefs and Jansen, 2002; Castellanos et al., 2009; Epstein et al., 2010; 

Giesen et al., 2010; Epstein et al., 2011; Roefs et al., 2011; Werthmann et al., 2011; Kemps et 

al., 2014b, but see: Mathar et al., 2016). One such task is the approach-avoidance task (AAT), 

which measures approach bias. This bias reflects higher approach, rather than avoidance 

towards problematic stimuli, such as unhealthy foods. It is believed that increased responses 

to food stimuli are a reflection of their increased incentive salience (Berridge et al., 2010). 

Because those stimuli are highly rewarding, and constitute well-conditioned cues, they are 

perceived more easily in the environment by obese participants and might render automatic 

responses. Such automatic approach responses are considered maladaptive, as they might 

lead to unhealthy weight-gain and obesity. This, in combination with a decrease in executive 

functioning, especially response inhibition, constitutes a serious risk for some people and 

might be an underlying factor of unhealthy weight gain and obesity. 

On a more general level, obesity is associated with changes in a number of self-reported 

measures, such as eating- or general motivational behaviours. Eating behaviour can be 

measured using the Three-Factor Eating Questionnaire (TFEQ; Stunkard and Messick, 1985), 

which encompasses cognitive control of food intake, disinhibition, and influence of hunger 

on behaviour. General motivational behaviour, can be assessed using the Behavioural 

Inhibition System/Behavioural Activation System questionnaire (BIS/BAS; Carver and 

White, 1994), which describes sensitivity to reward/approach behaviour and sensitivity to 

punishment/withdrawal, respectively. Eating behaviour, especially in the cognitive control 

and disinhibition aspects, accounts for a large portion of variance in BMI (Dietrich et al., 

2014). Furthermore, approach/avoidance measures are also related to obesity, showing 

positive correlations with BMI in women, and an opposite relationship in men. This shows 

that the associations between behavioural measures and BMI are not straightforward, and 

that gender should be taken into account in similar investigations. This gender aspect could 

potentially point to different mechanisms that are engaged in increased BMI, such as 

compensatory eating in females (increased approach behaviour), or disregard for long-term 
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consequences of overeating in males (decreased avoidance behaviour/sensitivity to 

punishment).  

In sum, studies show that obesity is related to a number of maladaptive behaviours, such as 

increased temporal impulsivity, or increased approach towards unhealthy foods.  These 

behaviours can be related to general executive functioning, predominantly response 

inhibition, but also to reactions to food stimuli in food motivation tasks. Obesity is also 

associated with alterations in general approach and avoidance tendencies, and self-reported 

measures of eating behaviour. Thus, characterising these maladaptive tendencies is an 

important step in the development of modern, improved interventions. 

 Measuring neural correlates of maladaptive behaviours in obesity 

The behavioural characteristics of obesity described above are merely a reflection of altered 

neural functioning, since behavioural processes are inherently driven by the brain. It is 

therefore of utmost importance to investigate neural mechanisms underlying these 

maladaptive behaviours in obesity. A valuable tool for assessing brain function is functional 

magnetic resonance imaging (fMRI). Using the phenomenon of magnetic resonance, this 

method non-invasively assesses the ratio of oxygenated to deoxygenated blood within the 

brain’s vascular system. This creates a blood-oxygen-level-dependent (BOLD) contrast, 

which indirectly reflects activations of brain regions, as brain areas with higher activation 

require more oxygenated blood (Ogawa et al., 1990). Higher neural activity results in an 

increased BOLD signal, which can then be analysed to find out which brain regions were 

significantly more active either during certain cognitive tasks (task-based fMRI), or during 

rest (resting-state fMRI). fMRI has a relatively good spatial resolution which depending on 

the magnetic field strength can reach around 1mm. However, since imaging the entire brain 

using fMRI is quite a slow process, its temporal resolution is relatively low – usually around 

1 image /2 seconds. This means that it can only measure slow processes, missing out on the 

very fast-paced ones. 

A different measure to investigate brain activity is electroencephalography (EEG). It is a non-

invasive method to measure electrical activity of the brain by placing electrodes on the scalp. 

Since neurons communicate through ionic currents, their activity can be indirectly measured 
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by measuring electrical fields in the brain. In contrast to fMRI, EEG does not possess a high 

spatial resolution and the sources of measured currents can only be approximately matched 

to specific locations in the brain. However, the temporal resolution of EEG is much higher 

than that of fMRI, making it possible to measure fast-paced processes in the brain. EEG can 

be used to measure neural oscillations within different frequency ranges at rest (resting-

state EEG) and electrical potentials evoked by specific tasks (event-related potentials).  

These two neuroimaging methods can be used to better understand maladaptive behaviours 

in obesity, but also to understand mechanisms through which existing obesity interventions 

work. This, in turn, might lead to creating new targets for obesity interventions, and fine-

tuning the already existing ones.  

 Neural correlates of maladaptive behaviours in obesity 

Generally, there are three brain systems that control eating behaviour – the homeostatic 

system, the reward/motivational system, and the executive system (Figure 1.3.1, Berthoud 

and Morrison, 2008; Carnell et al., 2012). The homeostatic system, regulates eating 

behaviour based on peripheral hormonal and metabolic input signalling energy 

requirements. Its main hub in the brain is the hypothalamus. This system will not be 

discussed as a part of this thesis (for further details see a review by Berthoud and Morrison, 

2008). Second, the reward/motivational system, regulates food intake according to previous 

reward experiences. Here, the dopaminergic reward system plays an important role, and 

especially two of its pathways – the mesolimbic pathway, connecting dopaminergic midbrain 

regions (the ventral tegmental area, VTA) with the ventral striatum (most prominently the 

nucleus accumbens, NAcc), and the mesocortical pathway, connecting the VTA with the 

ventromedial prefrontal cortex (vmPFC) and orbitofrontal cortex. This system also 

encompasses the insula, hippocampus and amygdala. Third, the executive system, regulates 

behaviour based on more abstract goals, such as health, or body image. This system exerts 

self-control on food-related behaviours and is tightly paired with frontal cortical areas, 

especially the dorsolateral prefrontal cortex (dlPFC), and the anterior cingulate cortex (ACC). 

It might seem that these systems function independently, however, in his review from 2012, 
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Dagher describes one network consisting of all three systems (Dagher, 2012). This 

‘appetitive network’ is a crucial one driving and controlling food intake.  

Obesity, being related to a number of behavioural alterations. is also related to alterations 

on the neural level. In the context of executive functioning, the dlPFC has often been shown 

to have changed activity in participants with higher BMI. The dlPFC generally guides certain 

aspects of cognitive control in the food context. Specifically, focusing attention on health 

aspects of food (Hare et al., 2011), or downregulating appetitive responses to palatable foods 

(Hollmann et al., 2012; Dietrich et al., 2016b). Participants with higher BMI have been shown 

to have decreased dlPFC activity related to an attentional bias towards food (Janssen et al., 

2017). Moreover, lower activity in the dlPFC on a delay discounting task was associated with 

higher long-term weight gain in women (Kishinevsky et al., 2012). Together, this evidence 

suggests that obesity might be related to decreased executive control, especially inhibition 

and impulse control, over prepotent responses to food cues, which is driven mostly by the 

dlPFC. This, in turn, might lead to an inability to adhere to long-term dietary goals, resulting 

in weight gain. This hypothesis is further corroborated by the fact that disinhibited eaters 

(people who find exerting control over their food intake difficult) show lower pre-meal 

activity to food cues in the ACC, which is a part of the executive system (Carnell et al., 2012; 

Vainik et al., 2013). 
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Figure 1.3.1 Representation of the three main systems driving and controlling food intake 

(appetitive network). The homeostatic system consists of the hypothalamus, the 

reward/motivational system consists of the dopaminergic reward system, the ventromedial 

prefrontal cortex (vmPFC) and the hippocampus, amygdala and insula, whereas the 

executive system includes the anterior cingulate cortex (ACC) and the dorsolateral 

prefrontal cortex (dlPFC). z – MNI coordinate of the slice on the z-axis.  

Information about obesity-related alterations in the dopaminergic reward/motivational 

system can be derived from animal and human literature (Volkow et al., 2008; Geiger et al., 

2009; Stice et al., 2011; Vucetic et al., 2012; Cone et al., 2013; Narayanaswami et al., 2013; 

Horstmann et al., 2015; Friend et al., 2016). This system predominantly governs responses 

on food motivation tasks. Changes reported regarding behavioural findings in those tasks 

are corroborated by imaging findings in corresponding domains. For example, higher 

incentive salience of food-related stimuli in obesity is reflected in larger BOLD responses of 
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the reward system to those stimuli (van der Laan et al., 2011; García-García et al., 2013; 

García-García et al., 2014). Regarding neural correlates of approach bias, insight comes from 

studies investigating alcohol- and marijuana-dependent individuals. These studies often 

show that substance-dependent patients have an increased approach bias towards their 

respective problematic stimuli (Wiers and Rinck, 2009; Cousijn et al., 2011; Cousijn et al., 

2012; Wiers et al., 2013; Wiers et al., 2014). This increased bias has been related to higher 

activations in the vmPFC, amygdala and NAcc (Cousijn et al., 2012; Wiers et al., 2014). The 

amygdala is important for Pavlovian learning and formation of emotional memories (Volkow 

et al., 2004; Koob and Volkow, 2010), suggesting that stimuli for which approach is high are 

highly salient conditioned stimuli. The NAcc receives and sends dopaminergic projections in 

response to rewarding stimuli (Volkow et al., 2004; Hyman et al., 2006; Heinz et al., 2009; 

Koob and Volkow, 2010). The medial prefrontal cortex is commonly referred to as the brain’s 

reward valuation centre – its responses to rewarding stimuli positively correlate with their 

subjective (Kable and Glimcher, 2007; Hare et al., 2009). Together, activation of these brain 

regions to approaching problematic stimuli, as opposed to neutral stimuli (non-alcoholic 

beverages) suggests that they have a higher rewarding value for alcohol-dependent 

individuals. However, these studies do not involve participants with obesity and food stimuli, 

and there is a need to fill this research gap to better understand how approach bias comes 

about in obesity. 

The right brain theory of obesity is a general theory regarding neural underpinnings of 

obesity that possibly integrates changes in the executive and the reward/motivational 

systems (Alonso-Alonso and Pascual-Leone, 2007). Here, obesity is seen as a disease of 

increased approach behaviour/decreased inhibitory behaviour. It therefore concerns both 

the motivational system (since approach and avoidance behaviours are basic motivational 

dimensions; Gray, 1981; Gray and McNaughton, 1992), and the executive system (since it 

controls performance of actions and plans, and interacts with the motivational system; 

Spielberg et al., 2011). A background to this theory is the fact that the right hemisphere 

shows more robust engagement in behavioural inhibition, withdrawal and negative affect 

(Davidson, 2004), whereas the left hemisphere shows predominance over goal-directed, 

approach behaviours (Davidson, 1994; Sutton and Davidson, 1997; Davidson, 2004). The 
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theory itself posits that obesity is driven by a decreased activation of the right frontal brain 

areas relative to the left. This in turn is related to higher approach behaviours, since they are 

mostly driven by the left hemisphere. This theory finds its support in a number of studies 

relating the hemispheric asymmetry described above to self-reported eating behaviour. 

Higher left compared to right brain activity was shown to be associated with a bias to 

respond to reward (vs. punishment) related cues (Pizzagalli et al., 2005), disinhibition, 

hunger (as measured by the TFEQ), and appetitive responsivity (within an 

overweight/obese sample (Ochner et al., 2009), and cognitive restraint (Silva et al., 2002). 

None of these studies, however, investigated whether hemispheric asymmetries are directly 

related to obesity measures. Additionally, as previous studies used only EEG, which suffers 

from a poor spatial resolution, it is difficult to state exactly which parts of the brain are 

related to specific outcome measures. Since sources of EEG signal are limited and come 

predominantly from the cerebral cortex (the executive system), it is difficult to measure 

activity in deep brain structures, such as the NAcc or ventral tegmental area (the 

reward/motivational system). This limits the generalizability and interpretation of such 

asymmetry findings. Research regarding the asymmetries could benefit from an in-depth 

investigation into the whole brain. Hence, new studies should focus on direct links of 

hemispheric asymmetries in obesity, while trying to increase spatial resolution, e.g. by using 

fMRI. 

In sum, obesity is associated with alterations in the appetitive network, especially in the 

executive and the reward/motivational systems. Of course, those systems interact with each 

other and are not fully separate, which must be taken into account while designing potential 

obesity interventions.  

 Obesity treatment interventions 

Described maladaptive behaviours related to obesity can be seen as somewhat automatic 

processes. However, most of current interventions do not target these processes, instead 

aiming to change explicit knowledge of participants – from food education to increasing 

physical activity (Figure 1.4.1). Unfortunately, traditional lifestyle and educational 

interventions present short-term effects and relatively small reductions in BMI (Jeffery et al., 
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2000; Curioni and Lourenço, 2005; Franz et al., 2007; Barte et al., 2010; Kirk et al., 2012). 

Even though individuals with obesity realise that their behaviour could have negative 

consequences, such as weight gain, it is difficult for them to change it. Marteau and colleagues 

suggest that the presence of automatic maladaptive behaviours make traditional therapies 

fairly ineffective (Marteau et al., 2012). Accordingly, it is imperative that novel obesity 

interventions target the automatic processes. The idea is to alter behaviours that actually 

underlie obesity, which may provide long-term beneficial effects (Figure 1.4.1).  

 

Obesity interventions aiming to improve: 

Conscious/reflective processes Automatic/impulsive processes 

1. Lifestyle interventions: 

a. Increasing physical activity 

b. Food education 

c. Cooking classes 

2. Interventions improving executive 

functions: 

a. General working memory 

training 

b. General inhibitory control 

training 

1. Cognitive bias modification for 

attention bias for food 

2. Food specific inhibitory control 

training 

3. Cognitive bias modification for 

approach-avoidance bias 

4. Implicit tendencies towards food 

training 

 

 

Figure 1.4.1 Figure representing some of the possible intervention targets for the treatment 

of obesity (based on Jones et al., 2018). Italic font represents ones that are targeted as part 

of this thesis. 

Many studies have focused on this problem and aimed to apply this sort of interventions in 

the context of eating behaviours with varying degrees of success (Jones et al., 2018). One idea 
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was to apply cognitive bias modification (CBM) to decrease approach bias in individuals with 

obesity. CBM is a promising tool that aims to change automatic tendencies towards 

problematic stimuli, subsequently improving the regulation of unhealthy or maladaptive 

behaviour. An example of CBM is the approach-avoidance task, where automatic 

approach/avoidance responses to problematic stimuli are measured using a joystick in a 

reaction time task. Those responses are then trained in a desired direction, e.g. increasing 

approach for positive/healthy and avoidance for negative/unhealthy stimuli. CBM was 

previously successfully used to decrease alcohol consumption (Wiers et al., 2010), and 

chocolate consumption (Schumacher et al., 2016). Notably, CBM was also successfully 

applied to reduce bias towards unhealthy food cues in obese vs. lean participants (Mehl et 

al., 2018). CBM can take many different forms and is a popular therapy for decreasing 

attentional, approach or interpretation biases. However, it remains unclear what the 

behavioural and neural mechanisms of CBM in the food context are. 

A different approach to tackling problems of disadvantageous decision making involves 

using increased reactivity to environmental cues to the benefit of obese individuals. This 

approach focuses on general executive functioning, not only limited to the food context. 

However, since general executive functions influence food motivational behaviour and food-

related decision making, this approach is equally important. Admittedly, executive 

functioning can be a largely conscious, reflective process. However, using incidental cues to 

alter and possibly improve executive functioning would be an automatic influence over this 

reflective process, which renders this intervention suitable for approaching the problem of 

obesity in light of Marteau’s arguments. It was shown that higher temporal impulsivity – a 

preference for immediate rewards over later but larger ones – can be altered by means of 

incidental cues (Simmank et al., 2015) unrelated to the decision-making process at hand, e.g. 

pictures of happy couples or sexually arousing images. It is still largely unstudied how these 

processes come about in the brain and which mechanisms they involve.  

In sum, evidence suggests that obesity interventions should rather tackle automatic 

processes, than explicit knowledge and actions. This can be done in many ways and can 

possibly involve food specific tasks targeting specific reactions to food stimuli (approach-

avoidance task), but also targeting general executive functioning (temporal impulsivity).  
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2 Characterising maladaptive behaviours in obesity 

Studies performed as parts of this thesis focus on 1) the behavioural and neural 

characterisation of certain aspects of maladaptive decision making and automatic processes 

in obesity – such as food approach bias, temporal impulsivity, general motivational and 

eating behaviour, and 2) the utilization of different strategies for altering these processes 

towards more beneficial ones. Neuroimaging measures are applied to investigate these 

phenomena. The remainder of this introduction will provide methodological details 

concerning testing of specific behavioural aspects of obesity. Additionally, it will describe 

methodological and conceptual considerations that should be taken into account while 

interpreting findings. Lastly, it will focus on behavioural strategies that we applied in order 

to alter disadvantageous behaviours towards more beneficial routines. 

 The approach bias and approach-avoidance task 

Approach bias is a tendency to approach rather than avoid certain problematic stimuli. A tool 

to assess the approach bias is the approach-avoidance task, which was proposed by Rinck 

and Becker in 2007 (Rinck and Becker, 2007). The idea of the task is the following: 

participants are presented with a set of pictures of different categories – usually including a 

problematic and a more neutral category, e.g. healthy and unhealthy foods or alcoholic and 

non-alcoholic beverages. Using a joystick placed in their hands, they are asked to respond as 

quickly as possible to the pictures by either pushing or pulling the joystick. The pushing or 

pulling reaction is based on an irrelevant stimulus feature, such as format of the pictures 

(horizontal vs. vertical). This, in turn, creates congruent conditions, where participants are 

required to pull (approach) the joystick as a reaction to a stimulus that they happen to want 

to approach, and incongruent conditions, where participants are required to push (avoid) 

the joystick as a reaction to stimuli that they want to approach. This allows assessing 

automatic reactions to the implicitly perceived content of the pictures. By measuring 

reaction times investigators may assess whether participants show higher approach 

(shorter reaction times for pulling), or avoidance (shorter reaction times for pushing) for 

stimuli of a certain category. Here, longer reaction times might indicate a conflict between 

intended reaction (e.g. approaching unhealthy foods) and a required reaction (e.g. avoiding 
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unhealthy foods). Hence, responses on this task require two systems of the appetitive 

network – the executive and the reward/motivational system.  

The AAT can take many forms and was previously successfully used in a number of contexts. 

These involved showing increased approach for alcohol, marijuana or nicotine in dependent 

individuals (Wiers and Rinck, 2009; Cousijn et al., 2011; Wiers et al., 2013; Wiers et al., 2014). 

It was also used in a food context, demonstrating increased approach for a number of 

different food stimuli (Kemps et al., 2013; Kemps and Tiggemann, 2015; Schumacher et al., 

2016). AAT was further applied to assess approach bias towards food cues in obese 

individuals (Kemps and Tiggemann, 2015; Mehl et al., 2018). Here, participants were faster 

in their approach, as opposed to avoidance, for unhealthy foods. Moreover, the study by Mehl 

et al. (2018) indicated that participants with obesity show increased automatic approach 

tendencies towards unhealthy food stimuli as compared to healthy food stimuli, but also as 

compared to lean participants. 

Furthermore, the AAT can be used as a tool to investigate neural mechanisms of approach 

bias. These are still largely unknown in obese participants in the food context. However, the 

literature on approach bias towards alcoholic beverages in alcohol-dependent patients and 

towards cannabis in cannabis users offers interesting insights (Cousijn et al., 2012; Wiers et 

al., 2014). Those fMRI studies suggest that regions engaged in the approach bias are the 

amygdala, NAcc and medial prefrontal cortex – structures belonging to the 

reward/motivational system within the appetitive network. Remarkably, these structures 

were consistently shown to have altered functioning in obesity (Volkow and Baler; Wang et 

al., 2001; Carnell et al., 2012; García-García et al., 2014). This could suggest that the approach 

bias for food in obesity shares similar neural correlates with approach bias in alcohol-

dependence. It follows that altering the behavioural phenomenon of approach bias might 

involve changes in these specific brain areas.  

 Cognitive bias modification 

A novel tool to alter approach bias for problematic cues is cognitive bias modification. In the 

food context it takes a form of an altered AAT, where participants are trained to avoid 

problematic stimuli, such as chocolate or unhealthy foods in general, and approach more 
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beneficial stimuli, such as salad and other healthy foods. This is done by presenting stimuli 

in such a way that 90% of negative stimuli are required be avoided, and 90% of positive 

stimuli are required be approached (Mehl et al., 2018). Repeating these reactions was shown 

to effectively decrease approach to alcohol cues (Wiers and Rinck, 2009; Wiers et al., 2010; 

Wiers et al., 2011; Wiers et al., 2015), but also to chocolate (Schumacher et al., 2016) and 

unhealthy foods (Mehl et al., 2018).  

To investigate neural correlates of CBM, it was applied in the alcohol context using fMRI 

(Wiers et al., 2015). Here, alcohol-dependent individuals decreased their approach bias 

towards alcoholic beverages, which was related to decreases in activity of the mPFC – brain’s 

valuation centre – suggesting a lower incentive value of problematic stimuli after the 

experiment. The question, however, remains, whether neural correlates of approach bias 

and CBM in the food context are similar to those in the alcohol context, or follow a different 

pattern. 

 Temporal impulsivity and delay discounting 

A behavioural tendency that is most consistently related to obesity is temporal impulsivity 

(Weller et al., 2008; Amlung et al., 2016; McClelland et al., 2016). It describes a preference 

for lower reward available sooner, rather than larger rewards available later. A paradigm 

that tests these differences is delay discounting (DD). Here, participants are faced with two 

hypothetical (most often) monetary rewards – a smaller reward received sooner (e.g. 20 

Euro now), or a larger reward received later (e.g. 45 Euro in a month). By asking participants 

to repeat similar choices many times, researchers are able to calculate a general measure of 

temporal impulsivity that describes behaviour in this context. Delay discounting is most 

often used with monetary rewards, also in the obesity context, however studies show that 

delay discounting behaviour is not different for rewards of different modalities (such as food, 

drinks or even weight loss; McClure et al., 2007; Lim and Bruce, 2015). As mentioned, obese 

participants often tend to choose smaller and sooner rewards over larger and later rewards. 

This is because the value of later rewards is discounted due to their temporal distance – in 

other words, later rewards, even though larger in value, are not seen as equally rewarding 

as sooner ones.  
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Temporal impulsivity and its neural correlates are a well-studied phenomenon. A large 

number of previous studies showed brain structures related to this phenomenon. In 2004, 

McClure and colleagues proposed an elegant concept of two systems – hot and cold – 

governing decision towards immediate and delayed choices, respectively (McClure et al., 

2004). The hot, more impulsive system was represented by reward related brain areas, such 

as the NAcc or the vmPFC. On the other hand, the cold, less impulsive system was 

represented by the posterior parietal cortex, parietal cortex, and the dlPFC. There is, 

however, some debate about whether those two systems indeed take part in delay 

discounting. Kable and Glimcher argue that there is only one valuation system composed 

mainly of the mPFC and the ventral striatum that takes part in the valuation of potential 

rewards (Kable and Glimcher, 2007; Kable and Glimcher, 2010). Higher subjective value of 

available rewards results in increased activity in the valuation regions, where sooner and 

later rewards are compared and a choice is made. In fact, a number of predominantly 

prefrontal brain structures has been shown to be engaged in delay discounting (Monterosso 

et al., 2007; Shamosh et al., 2008; Figner et al., 2010; Hare et al., 2014). Independent of 

whether the hot and cold systems indeed govern decisions related to temporal impulsivity, 

it is again clear that brain structures engaged in these choices are similar to the ones that 

were shown to have altered functioning in obesity. In fact, a longitudinal investigation of 

weight change and delay discounting showed that activity in the dlPFC correlated negatively 

with weight gain (Kishinevsky et al., 2012). dlPFC being an inhibitory structure also 

responsible for exerting cognitive control over behaviour (Figner et al., 2010) might actually 

protect from weight gain in the long-term. 

 Incidental priming and temporal impulsivity 

Priming is a phenomenon in which exposure to a stimulus affects subsequent behaviour in a 

domain related, or unrelated to said stimulus. For example, reading a passage about elderly 

people slows down the gait in young healthy subjects (Bargh et al., 1996); likewise 

environmental stimuli can influence our consumer choices (Dijksterhuis et al., 2005); e.g. 

priming with thirst-related words might increase beverage consumption in thirsty 

participants (Strahan et al., 2002). Priming was also shown to be effective in the context of 

temporal impulsivity, where delay discounting rates were altered using different stimuli, 
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such as pictures of natural and urban landscapes (van der Wal et al., 2013), pictures of 

attractive women (Wilson and Daly, 2004), faces with positive and negative expressions 

(Luo et al., 2014), or famous brand logos (Murawski et al., 2012). In the latter study, priming 

towards more immediate choices involved modulation of brain structures such as the vmPFC 

and medial orbitofrontal cortex (mOFC). As mentioned earlier, the vmPFC values potential 

rewards (Kable and Glimcher, 2007; Hare et al., 2009), while the mOFC integrates emotional 

and cognitive information (De Martino et al., 2006), but also reward values (Hare et al., 2008; 

Kahnt et al., 2011). Priming towards more delayed choices was observed while priming 

participants with faces showing negative expression (Luo et al., 2014). Here, participants 

showed higher preferences towards larger delayed rewards as opposed to neutral 

conditions. Perception of the negatively valenced faces was related to activations in the 

dlPFC, while priming towards delayed choices per se was related to activity in the anterior 

cingulate cortex and parietal cortex. While the dlPFC is related to exerting cognitive control 

and generally choosing delayed rewards, the anterior cingulate cortex directs attention 

towards relevant stimuli and together with the parietal cortex is a part of the fronto-parietal 

control network. This suggests that priming might increase amounts of cognitive control 

exerted during the task performance. 

Since individuals with obesity seem to be generally more susceptible to environmental 

priming, perhaps altering their maladaptive decision-making processes with priming could 

prove beneficial. This idea was exploited by a study by Simmank and colleagues (2015). 

Using positive visual stimuli unrelated to food, the authors effectively primed obese men 

towards more immediate decisions, and obese women towards more delayed choices. Since 

this was a behavioural study, it unfortunately remains unclear what the neural mechanisms 

of those changes are. 

3 General rationale of the experimental work 

The overall aim of this thesis is to gain a deeper understanding of maladaptive behaviours 

and their neural correlates in obesity. Further, the goal is to alter certain maladaptive 

behaviours using newly developed behavioural and cognitive strategies. We chose to tackle 

performance on a food motivation task and executive functions, since previously those two 
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aspects have been most consistently related to obesity (Vainik et al., 2013). This new 

knowledge might help to better design future obesity interventions and focus them more on 

maladaptive automatic processes which might contribute to obesity therapy.   

Study 1 describes neural correlates of self-reported approach/avoidance and eating 

behaviours in obesity with a focus on hemispheric asymmetries and was designed in part to 

facilitate interpretation of study 2.  

Study 2 focuses on the approach-avoidance task, which engages both the executive and the 

motivational/reward systems. Within this study we aimed to assess and alter food approach 

bias by means of the cognitive bias modification in obese participants.  

Study 3, on the other hand, is a behavioural experiment to set up a methodological 

framework for study 4, and replicate previous findings concerning temporal impulsivity in 

lean, overweight and obese participants. 

Lastly, study 4 involves delay discounting, which represents executive functioning. Here, we 

assessed baseline delay discounting rates and aimed to alter them using incidental cues 

unrelated to the decision-making process in obese individuals.  
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4 Experimental work 

 Study 1 – relationship between obesity measures, self-reported eating 

behaviour, approach/avoidance tendencies and hemispheric 

asymmetries 

4.1.1 Rationale of the study 

We performed study 1 to investigate how self-reported eating and approach/avoidance 

behaviour and obesity in general are related to hemispheric asymmetries. According to the 

right brain theory of obesity, hypoactivation of the right relative to the left hemisphere, 

might be related to increased approach behaviour (e.g. approach bias). This, in turn, is 

related to increased BMI and decreased behavioural inhibition, also in the food context. This 

study was designed to replicate previous EEG findings in a lean sample (Sutton and 

Davidson, 1997), showing that increased activation of the left hemisphere, relative to the 

right, is related to higher approach behaviour as measured by questionnaires. Additionally, 

within the same sample of participants, we aimed to replicate the EEG findings within fMRI 

modality to 1) increase spatial resolution of previous findings, and 2) directly investigate 

relationships between EEG and fMRI measures. Further, we recruited an independent 

sample of lean, overweight and obese participants and, using resting-state fMRI, investigated 

whether asymmetry measures obtained in the Sutton and Davidson (1997) are related to 

BMI and self-reported eating behaviour. As a final validation step, another, larger sample of 

lean, overweight and obese participants was used to further replicate the findings.  

We hypothesised that, within the EEG study, higher relative right hemispheric activity will 

be related to increased avoidance behaviour, whereas higher relative left hemispheric 

activity will be related to increased approach behaviours. Similar relationships were 

hypothesised for the fMRI experiments in all three samples. Regarding eating behaviour, we 

hypothesised that disinhibition will be related to increased relative left hemispheric 

asymmetry, with an opposite relationship for cognitive control. 
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4.1.2 Materials and methods 

Analysed data were parts of different projects, all of which were conducted according to the 

Declaration of Helsinki and approved by local Ethics Committees (University of Leipzig, 

Germany – Sample 1 and 2; Montclair State University and Nathan Kline Institute – Sample 

3). All participants gave their written informed consent prior to participation. 

4.1.2.1 Participants 

4.1.2.1.1 Sample 1  

Sample 1 consisted of 117 healthy, right-handed, predominantly lean participants aged 20-

35 years (mean age: 25 years, SD: 3 years, mean BMI: 23.01 kg/m2, SD: 2.57 kg/m2; 42 

females) with following inclusion criteria: no medications taken, no substance abuse and no 

history of neurological diseases. The data were collected at the Max-Planck Institute for 

Human Cognitive and Brain Sciences in Leipzig. Data available for this sample were self-

reported eating (TFEQ) and approach/avoidance behaviour (BIS/BAS) data, anthropometric 

data (BMI), resting-state EEG and resting-state fMRI (Table 4.1.1). For analysis of EEG data, 

1 participant of the 117 participants was excluded during the preprocessing (electrode of 

interest had to be excluded from the analysis). For analysis of fMRI data, 3 participants were 

excluded due to data preprocessing problems (failed registration), and 3 additional 

participants were excluded due to excessive head motion during data acquisition (maximum 

framewise displacement parameter exceeding 2.3). All participants were compensated with 

9 Euro/hour for their participation.  

4.1.2.1.2 Sample 2  

Sample 2 consisted of 89 healthy, right-handed, lean, overweight and obese participants 

aged 20-37 years (mean age: 27 years, SD: 4 years, mean BMI: 29.54 kg/m2, SD: 8.25 kg/m2; 

73 females). The data were collected at the Max-Planck Institute for Human Cognitive and 

Brain Sciences in Leipzig. This sample was created by merging data of two different studies 

from the O’BRAIN Lab investigating decision-making in obesity. Sub-sample 1 consisted of 

53 lean, overweight and obese females, whereas sub-sample two consisted of 36 obese 

participants, males and females. Data available for this sample were self-reported eating 
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(TFEQ) and approach/avoidance behaviour (BIS/BAS) data, anthropometric data (BMI) and 

resting-state fMRI data (Table 4.1.1). Exclusion criteria were as follows: history of 

psychiatric or neurological disease, hypertension, MRI-related contraindications. No 

participants had to be excluded during data analysis. All participants were compensated with 

10 Euro/hour for their participation. 

4.1.2.1.3 Sample 3  

Sample 3 consisted of participants from an open source database of the enhanced Nathan 

Kline Institute-Rockland Sample (NKI, http://fcon_1000.projects.nitrc.org/indi/enhanced/; 

releases up to 6th). From this database we extracted resting-state fMRI data of 152 healthy, 

right-handed lean, overweight and obese participants aged 18-35 years (mean age: 24 years, 

SD: 4.5 years, mean BMI: 26.40 kg/m2, SD: 5.62 kg/m2; 84 females). Additional data available 

for this sample were self-reported eating behaviour (TFEQ) data and anthropometric data 

(BMI; Table 4.1.1). 

 

Table 4.1.1 Table representing available data for each of the investigated samples. x marks 

available datasets 

Data Sample 1 (n=117) Sample 2 (n=89) Sample 3 (n=152) 

TFEQ x x x 

BIS/BAS x x  

Anthropometric 
data (BMI, xxx) 

x x x 

rsEEG x   

rsfMRI x x x 

TFEQ – Three Factor Eating Questionnaire; BIS/BAS – behavioural activation/inhibition 

system questionnaire; rsEEG – resting-state EEG; rsfMRI – resting-state fMRI 

4.1.2.2 Questionnaire data 

To investigate how hemispheric asymmetries reflect approach and avoidance behaviours, 

we used the BIS/BAS (behavioural inhibition system / behavioural activation system) 
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questionnaire (Carver and White, 1994). This questionnaire was administered in Samples 1 

and 2. It consists of 4 different scales – three subscales reflecting BAS – drive, reward 

responsivity and fun seeking – and a subscale reflecting BIS. According to Carver and White, 

the drive scale reflects persistent pursuit of desired goals; the fun seeking scale reflects a 

desire for new rewards and the inclination to approach a rewarding event; the reward 

responsivity scale focuses on positive responses to rewarding events. The BIS scale, on the 

other hand, describes individual sensitivity to punishment. With regard to the self-reported 

eating behaviour, we used the Three Factor Eating Questionnaire (TFEQ; Stunkard and 

Messick, 1985). It describes eating behaviour on three dimensions – cognitive control for 

food (CC), disinhibition (DI), and susceptibility to hunger (H). In this study we were 

predominantly interested in the first two factors, as they might reflect avoidance and 

approach behaviour towards food, respectively. 

4.1.2.3 Neuroimaging data 

4.1.2.3.1 EEG data collection – Sample 1 

EEG data was collected in Sample 1. Within the study participants completed three 

assessment sessions in three days. The first assessment day included a cognitive test battery, 

and on the second assessment day resting-state electroencephalographic (EEG) data were 

acquired. In the present study resting state EEG (rsEEG) data were analysed together with 

BIS/BAS and TFEQ, as described below. Resting state EEG data acquisition consisted of 16 

blocks, each lasting 1 min of intermittent eyes closed (EC) and eyes open (EO) conditions, 

summing up to a total duration of 8 min per condition. Resting state EEG was recorded (Brain 

Vision ActiCAP; Brain Products GmbH, Munich, Germany) in an electrically shielded room 

with 62 active electrodes placed according to the international standard 10–20 extended 

localization system, also known as 10-10 system (Oostenveld and Praamstra, 2001), 

referenced to FCz. Electrooculographic (EOG) activity was recorded with one electrode 

placed below the right eye, the ground electrode was placed on the sternum. During data 

acquisition EEG signals were band-pass filtered between 0.015 Hz and 1 kHz at 2500 Hz 

sampling rate, and the amplifier was set to 0.1 µV amplitude resolution. Electrode impedance 

was kept below 5kΩ. 
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4.1.2.3.2 fMRI data collection – Sample 1 

Within Sample 1, a third assessment day included acquisition of the resting-state fMRI 

(rsfMRI) data. We have analysed T2* resting-state, MP2RAGE and fieldmap data collected 

with a 3T Siemens Trio scanner. Resting-state data parameters: 657 volumes, TE=30ms, 

FA=69o, TR=1400ms, 64 slices, voxel size: 2.3x2.3x2.3mm3, FoV: 202mm, multiband 

acceleration factor: 4. The images were acquired in an interleaved order. High-resolution 

anatomical MP2RAGE image was acquired for each participant using the following 

parameters: TE=2.92ms, FA1=4o, FA2=5o, TR=2500ms, TI1=700ms, TI2=2500ms, voxel size: 

1x1x1mm3, FoV: 256mm.  

4.1.2.3.3 fMRI data collection – Sample 2 

fMRI data for both of the subsamples within this sample were collected using a 3T Siemens 

Skyra scanner. We have analysed T2* resting-state, MPRAGE and fieldmap data. 320 T2*-

weighted resting-state images were collected using the following parameters: TE=22ms, 

FA=90o, TR=2000ms, 40 slices, voxel size: 3.0x3.0x2.5mm3, FoV: 192mm. The images were 

acquired in an ascending order. High-resolution anatomical MPRAGE image was acquired for 

each participant using the following parameters: TE=2.01ms, FA=9o, TR=2300ms, 

TI=900ms, voxel size: 1x1x1mm3, FoV: 256mm.  

4.1.2.3.4 fMRI data acquisition – Sample 3 

For this sample, we analysed resting-state and anatomical data collected with a 3T Siemens 

Trio scanner. 900 T2*-weighted resting-state images were acquired using the following 

parameters (http://fcon_1000.projects.nitrc.org/indi/enhanced/mri_protocol.html): TE: 

30ms, FA=60o, TR=645ms, 40 slices, voxel size: 3.0x3.0x2.5mm3, FoV: 222mm. The images 

were acquired in an interleaved order. High-resolution MPRAGE image was acquired for 

each participants using the following parameters: TE=2.52ms, FA=9o, TR=2600ms, 

TI=900ms, voxel size: 1x1x1mm3, FoV: 256mm.  
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4.1.2.4 Data preprocessing 

4.1.2.4.1 EEG data - Sample 1 

EEG data were pre-processed using EEGLAB toolbox (version 14.1.1b; Delorme and Makeig, 

2004) and custom Matlab (MathWorks, Inc, Natick, Massachusetts, USA) scripts. EEG data 

were band-pass filtered between 1-45 Hz (4th order, Butterworth filter) and downsampled 

to 250 Hz. EC and EO conditions were extracted and concatenated which resulted in an 8-

min block per condition. Artifactual channels and data segments were removed after visual 

inspection. After principal component analysis (PCA), components (N=30) explaining 95% 

of the total variance were selected. Independent component analysis (Infomax; Bell and 

Sejnowski, 1995) was performed in order to reject artifacts relating to eye movements, 

muscle activity, and heartbeats from EEG data. For further analysis of alpha power, data was 

transformed to a common average reference.  

4.1.2.4.2 fMRI data – Sample 1 and 2 

fMRI data preprocessing for the Samples 1 and 2 was identical. The general pipeline is 

described in details in (Mendes et al., 2017) and was done within the Nipype framework. 

However, note that not all of the steps described in that paper were used for our pipeline. In 

short, the preprocessing steps included discarding first five functional volumes, motion 

correction (FSL MCFLIRT; Jenkinson et al., 2002), distortion correction (FSL FUGUE; 

Jenkinson et al., 2012), coregistration of temporal mean image to individual’s anatomical 

image (bbregister; Greve and Fischl, 2009), denoising (rapidart and aCompCor; Behzadi et 

al., 2007), spatial normalisation to MNI 152 2mm (Sample 1), and 3mm (Sample 2) standard 

space (ANTs; Avants et al., 2011). 

4.1.2.4.3 fMRI data – Sample 3 

fMRI data preprocessing for the NKI data was done within the Nipype framework and follows 

the one described in the supplementary methods of (Liem et al., 2017). Note that the 

bandpass filtering described in Liem et al. was not performed for our data, since further 

statistical analysis of the fMRI data (fALFF) require them to be unfiltered. In short, the 

preprocessing steps included discarding first five functional volumes, motion correction 
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(FSL MCFLIRT; Jenkinson et al., 2002), denoising (rapidart, aCompCor; Behzadi et al., 2007), 

removal of linear and quadratic signal trends), spatial normalisation to a 3mm standard MNI 

152 space (FSL FNIRT; Jenkinson et al., 2012).  

4.1.2.5 Neuroimaging measures  

4.1.2.5.1 Aim 1: EEG replication analysis 

In this step we attempted to directly replicate previous findings of Sutton and Davidson 

(1997) showing a positive correlation of left hemispheric bias with BAS – BIS differential 

scores. Firstly, we calculated EEG asymmetry index (AI) in frontal areas by subtracting 

absolute alpha power (mean value for eyes open and eyes closed, 8-12Hz) in the F3 electrode 

from absolute alpha power in the F4 electrode for averaged EO and EC conditions.  

Next, we wanted to expand on previous findings concerning EEG hemispheric bias, approach 

and avoidance behaviour, and eating behaviour. Due to the fact that resting-state fMRI data 

was collected only in the eyes open condition, we decided to only use eyes open condition 

for the EEG analysis. This step made future comparisons of EEG and fMRI asymmetries data 

more reliable. We selected alpha power in the broad spectrum (8-12Hz) and in the low 

spectrum (8-10Hz) for our analysis. Alpha and low alpha power were calculated as means of 

the squared amplitude obtained after filtering the signal (4th order Butterworth filter) in 8-

12Hz and 8-10Hz frequency range, respectively. In humans, the most prominent resting state 

oscillatory activity is measured at alpha frequency band (8–12 Hz, (Romei et al., 2008; 

Bazanova, 2012; Bazanova and Vernon, 2014), which has been previously linked to cortical 

inhibition by top-down control and suppression of task-irrelevant brain regions (Klimesch 

et al., 2007; Bazanova, 2012) in this way facilitating information gating (Jensen and 

Mazaheri, 2010). Low alpha power was previously shown to reflect general attentional 

demands, basic alertness, vigilance and arousal (Petsche et al., 1997). Including both of the 

measures allowed us to replicate previous results (broadband alpha) and narrow down 

possible mechanistic interpretations to e.g. general attentional demands (low alpha). For this 

analysis we used relative alpha and relative low alpha power that we calculated as the ratio 

of alpha or low alpha power to the power within the frequency range of 4-40Hz. We chose to 

study relative alpha power to control for individual differences in contaminating factors such 
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as skull thickness and properties of scalp and meninges that might affect tissue conductivity, 

consequently influencing electrical signal captured at the sensor level (Babiloni et al., 2011). 

An additional improvement in our study compared to previous research was the fact that we 

calculated asymmetry indices with a different equation: (L-R)/(L+R). These indices better 

reflect actual asymmetries than the simple L-R difference, and are more straightforward to 

interpret (Pivik et al., 1993; Hiroshige and Dorokhov, 1997). This is because they are 

normalised within each subject regarding individual differences in alpha power magnitude. 

In line with Sutton and Davidson (Sutton and Davidson, 1997), the pair of frontal electrodes 

included in this analysis was F4 and F3. We also included a parietal pair, P4 and P3, as a 

control to investigate whether the observed relationship with frontal asymmetries is 

specific. After calculation of asymmetry indices, we have excluded outliers from all variables 

of interest using the a priori defined criterion (see section 4.1.2.6).  

4.1.2.5.2 Aim 2+3: Hemispheric asymmetries in fMRI  

After preprocessing (sections 4.1.2.4.2 and 4.1.2.4.3), analysis of fMRI data in all 3 samples 

was identical. To be able to conceptually compare EEG results with fMRI results, we decided 

to use the fractional amplitude of low frequency fluctuations (fALFF) as a measure of resting-

state brain activity (Zou et al., 2008). fALFF quantifies low frequency oscillations in the 

resting brain, which in turn reflect baseline brain activity. This measure is usually defined as 

a ratio of power within frequency range of 0.01-0.1Hz and the power within the entire 

detectable frequency range. However, in order to further compare results between the 

samples, we adjusted this analysis. Since each of the samples had a different sampling 

frequency during fMRI data collection (repetition time, TR), the detectable frequency range 

would be different for each of them. We therefore changed the definition of the fALFF and 

divided the power within frequency range of 0.01-0.1Hz by detectable power of 0.00Hz – 

0.50Hz (reflecting largest detectable frequency for the sample with lowest TR). This analysis 

was performed within the Nipype framework and using CPAC (Configurable Pipeline for the 

Analysis of Connectomes, version 1.0.3) f/ALFF function. In order to be able to compare EEG 

and fMRI results from our original analysis, we defined a number of regions of interest (ROI) 

for the fMRI analysis. Since for the EEG analysis we have investigated frontal and parietal 
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electrodes, we found brain areas closely corresponding to the ones measured by F4/F3 and 

P4/P3 electrodes. Based on previous literature (Towle et al., 1993; Herwig et al., 2003; 

Giacometti et al., 2014), we came up with 7 ROIs: Brodmann areas 8, 9, 10, 46 reflecting 

frontal contributions, Brodmann area 7, postcentral gyrus and paracentral gyrus reflecting 

parietal contributions. These ROIs were defined using pickatlas (Maldjian et al., 2003). 

Additionally, since fMRI allows to investigate subcortical brain areas, we investigated 

hemispheric bias in the ventral tegmental area (sphere with a 6mm radius, coordinates 

based on Adcock et al., 2006), and the nucleus accumbens (sphere with a 6mm radius, 

coordinates based on Neto et al., 2008). This is in line with previous studies showing 

hemispheric asymmetries in these subcortical areas (Tomer et al., 2008; Aberg et al., 2015). 

Each of the ROIs was defined separately for the left and for the right hemisphere. For each of 

those ROIs we extracted mean fALFF using SPM 12 (Wellcome Department of Cognitive 

Neurology, London, United Kingdom) and calculated an asymmetry index as follows: (R-

L)/(R+L). Note that this is an inverse index compared to the one we used for EEG data, since 

we hypothesised that measures used in EEG and fMRI analysis are inversely correlated to 

each other. This let us directly compare relationships of EEG and fMRI data with behavioural 

measures. Finally, for each of the variables of interest we excluded outliers based on the a 

priori criterion.  

4.1.2.6 Statistical analysis 

For all following analyses, we specified a priori criterion for outlier detection: 

2.2*interquartile range below or above the first or third quartile, respectively (Tukey, 1977; 

Hoaglin et al., 1986; Hoaglin and Iglewicz, 1987). Further, all regression p-values were 

corrected for multiple comparisons using Bonferroni correction, by dividing the alpha value 

0.05 through the number of regressions performed on the same dataset. All Statistical 

analyses were performed using R within JupyterNotebook.  

4.1.2.6.1 Aim 1: EEG replication analysis 

To directly replicate Sutton’s and Davidson’s research, for each participant we calculated the 

differential BAS – BIS score. We then removed outliers from both measures of interest (EEG 

and questionnaire data) using a priori specified criteria (section 4.1.2.6). To analyse the data 
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we performed Pearson’s correlation of the obtained asymmetry indices (section 4.1.2.5.1) 

and the BAS – BIS scores. Final sample size for this analysis after outlier exclusion was 109 

participants. 

To investigate the relationship between approach and avoidance behaviours and 

hemispheric bias, we performed four separate multiple regression analyses with asymmetry 

indices from relative frontal alpha power, relative parietal alpha power, relative frontal low 

alpha power and relative parietal low alpha power as outcome variables. Predictors included 

BAS fun, BAS drive and BAS reward responsivity and BIS - BAS scores. To investigate 

whether gender influences the relationship between questionnaire measures and 

hemispheric bias, we added an interaction term with gender for each of the questionnaire 

variables. To control for age and BMI differences we also added this information to the model 

as predictors. In general, BMI is a variable of interest in this study, however, Sample 1 

included participants with a low range of BMI. We therefore did not look at findings 

concerning BMI in this sample, since the interpretation would prove problematic. This and 

all following regression analyses were calculated using permutation tests in the ‘lmPerm’ R 

package. Alpha threshold for this analysis were corrected for multiple comparisons using 

Bonferroni correction (divided by the number of regression analyses; α=0.125). 

To analyse self-reported eating behaviour, similar regression analysis was performed as 

described in previous paragraph with different questionnaire variables: cognitive control 

and disinhibition (TFEQ) and their interactions with gender (Bonferroni corrected α=0.125).  

4.1.2.6.2 Aim 2: EEG-fMRI correspondence 

Firstly, we wanted to directly investigate the relationship of EEG asymmetries (frontal and 

parietal) and whole brain fALFF asymmetries in Sample 1. Whole brain fALFF asymmetries 

were calculated by means of 1) flipping left and right hemispheres in fALFF images, 2) 

subtracting the flipped image from the original image, 3) adding flipped image to the original 

image, and 4) dividing image obtained in step 2 by image obtained in step 3. This way we 

obtained an image of voxel-wise values corresponding to the asymmetry index (L-R)/(L+R) 

(on the left side of the image). A significant correlation between the EEG asymmetry index 

as calculated in 4.1.2.5.1 and whole brain fALFF asymmetries would indicate that those two 
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measures, even though methodologically very distinct, measure similar brain processes. This 

analysis was performed in SPM12 using GLM with voxel-wise fALFF asymmetries as an 

outcome variable and the EEG asymmetry index as an explanatory variable. Results were 

thresholded on a voxel-level with a 0.001 threshold, and corrected for multiple comparisons 

using the whole-brain 0.05 FWE corrected threshold. 

To investigate relationships of fMRI hemispheric bias, approach/avoidance behaviours and 

eating behaviours, we first used rotated principal component analysis (PCA) on the imaging 

data. This was done to reduce the number of comparisons in further analyses, and PCA is 

often used to this end (Jolliffe and Cadima, 2016). We have used the varimax rotation to make 

the resulting components easier to interpret. This strategy drives component loadings 

(correlations of components and original variables) either towards zero or towards a 

maximum possible value, decreasing a number of components with medium loadings, which 

are difficult to interpret (Richman, 1986; Richman, 1987; Jolliffe, 2002). As a criterion for 

retaining components we chose the minimum cumulative variance explained to be over 70% 

(Jolliffe, 2002). This resulted in 5 components for each of the samples. 

To investigate relationships of fMRI hemispheric bias and approach/avoidance behaviour, 

we performed a similar analysis to the one using EEG data. 5 rotated principal components 

were defined as outcome measures, and predictors included BAS fun, BAS drive, BAS reward 

responsivity and BIS - BAS scores and their interaction with gender. Additionally, we 

included BMI and age as control variables (Bonferroni corrected α=0.100).  

Similar analysis was performed to investigate relationships between fMRI hemispheric bias 

and eating behaviour. It included similar predictors as the EEG investigation of eating 

behaviour – cognitive control and disinhibition and their interaction with gender. Outcome 

variables were 5 rotated principal components. We added BMI and age as control variables 

(Bonferroni corrected α=0.100). 

4.1.2.6.3 Aim 3: fMRI investigations in samples including obese participants 

Investigations of approach/avoidance behaviours in Sample 2 were performed similarly to 

the ones in Sample 1. 5 rotated components were defined as outcome variables, and 
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predictors included BIS/BAS questionnaire measures, their interaction with gender, and 

BMI. Age was added as a regressor of no interest (Bonferroni corrected α=0.100). 

Similar analysis was performed to investigate associations of self-reported eating behaviour 

and hemispheric asymmetries for Samples 2 and 3. Predictor variables included eating 

questionnaire measures and their interaction with gender, BMI, age (regressor of no 

interest), while outcome variables were 5 rotated components (Bonferroni corrected 

α=0.100). 

4.1.2.7 Final sample sizes 

For measurement of approach/avoidance behaviours within Sample 1, to be able to compare 

EEG results with fMRI findings, we reduced the sample size to 100 participants due to outlier 

exclusion in EEG and in fMRI data matrices simultaneously. Further, after outlier exclusion, 

sample size of Sample 2 was reduced to 87. Concerning the analysis of eating behaviour, final 

Sample 1 size was 95. Final Sample 2 size was 87 (however, with different participants 

excluded) and the NKI sample size was 138 participants. We decided to exclude outliers 

separately for analysis of BIS/BAS data and TFEQ data in order to maximise sample sizes 

between analyses which were anyway performed as separate multiple regressions. Hence, a 

potential participant who would be excluded as an outlier in the BIS/BAS data analysis could 

be retained for the TFEQ data analysis. 

4.1.3 Results 

4.1.3.1 Samples comparison 

To compare the three samples regarding their demographic characteristics we ran separate 

one-way ANOVAs for BMI and age, and a χ2 test for equality of gender distribution between 

the samples. We followed up the ANOVAs with post hoc Tukey’s tests to determine which 

groups differed from each other. The results of these analyses can be found in Table 4.1.2. 

We found that regarding BMI all samples differed from each other, while regarding age, 

Sample 2 differed from both other samples, which did not significantly differ from each other. 

Concerning gender distribution, all samples differed from each other.  
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4.1.3.2 Questionnaire data – samples comparison 

Table 4.1.2 represents questionnaire data of all 3 samples included in the study. Performed 

ANOVAs indicated group differences in both cognitive control and disinhibition scales. 

Tukey’s tests showed that concerning cognitive control there were no significant pairwise 

differences between groups. Regarding disinhibition, Sample 2 differed significantly from 

both Samples 1 and 3. We further performed four ANOVAs to compare BIS/BAS data in 

Samples 1 and 2. This analysis revealed no significant differences for this questionnaire. 
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Table 4.1.2 Means, standard deviations and statistical tests concerning questionnaire differences in all experimental samples. 

BIS/BAS questionnaire data were available for Samples 1 and 2, whereas TFEQ data were available for all samples.  

 

 

 

Sample 1 (n=117) Sample 2 (n=89) Sample 3 (n=152) ANOVA 
Sample 1 
vs. 
Sample 2 

p-value 

Sample 1 
vs. 
Sample 3 

p-value 

Sample 2 
vs. 
Sample 3 

p-value 
Mean SD Range Mean SD Range Mean SD Range 

F(2,355)-
value 

p-value 

BMI (kg/m2) 23.01 2.57 
17.95-
31.80 

29.54 8.25 17.67-59.78 26.40 5.62 
16.26-
49.96 

33.70 <0.0001 <0.0001 <0.0001 <0.0001 

Age (years) 25 3 20-35 27 4 20-37 24 4.5 18-35 18.08 <0.0001 0.0002 0.1544 <0.0001 

CC 5.56 4.53 0-18 6.92 4.60 0-20 6.78 4.57 0-20 3.073 0.0480 0.0885 0.0777 0.9719 

DI 5.23 2.48 1-12 6.79 3.52 1-15 4.63 2.90 1-15 15.36 <0.0001 0.0006 0.2158 <0.0001 

 F(1,204) p-value  

BAS fun 3.13 0.41 
2.25-
4.00 

3.03 0.50 1.75-4.00 - -  2.213 0.138 - - - 

BAS drive 2.94 0.51 
2.00-
4.00 

2.92 0.51 1.50-4.00 - -  0.103 0.749 - - - 

BAS reward 
responsivity 

3.41 0.38 
2.40-
4.00 

3.33 0.34 2.60-4.00 - -  2.561 0.111 - - - 

BAS – BIS 0.27 0.61 
-1.37-
2.13 

0.18 0.59 -1.25-1.58 - -  1.077 0.3 - - - 

Gender 
 

 χ2 
 

 test value p-value 

42 females  73 females  84 females  53.636 <0.0001 <0.0001 0.0001 <0.0001 
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4.1.3.3 Aim 1: EEG replication analysis – Sample 1 

In this analysis, we aimed to directly replicate findings of Sutton and Davidson (1997) of 

increased hemispheric asymmetry (F4 – F3 electrodes, absolute alpha power, mean values 

for EO and EC conditions) being related to increased BAS – BIS differential scores. We 

therefore performed Pearson’s correlation between the AI and BAS – BIS scores for all 

participants. This analysis, however, did not reveal a significant relationship between those 

variables (r=0.051, p=0.60). Partial correlation after controlling for BMI, age and gender also 

did not reveal a significant relationship (r=0.002, p=0.98). 

Next, we attempted to expand previous findings linking EEG and approach/avoidance 

behaviours to 1) additional frequencies spectra, 2) additional questionnaire measures. We 

therefore investigated relationships between EEG parietal and frontal asymmetry indices as 

measured by the relative alpha power and relative low alpha power. For questionnaire data 

we included BAS fun seeking, drive, reward responsivity and BAS – BIS differential scores. 

Results of performed multiple regression analyses can be found in Table 4.1.3. They 

indicated a significant relationship of BAS drive and frontal hemispheric bias in low alpha 

frequency for females (as shown by a main effect of BAS drive and an interaction of BAS drive 

with gender – females in the analyses coded as 0). This relationship was not significant for 

overall alpha power. For scatter plots of these relationships see Figure 4.1.1. We also 

observed a significant interaction of BAS – BIS scores and gender on alpha parietal AI, 

suggesting gender influence on the relationship between BAS – BIS and EEG asymmetries. 

We do not interpret significant findings for BMI, age and gender, since those variables were 

added into the model as covariates of no interest. 

Further, we investigated the relationship between self-reported eating behaviour (as 

measured by the TFEQ) and the EEG hemispheric activity. Predictor variables in this case 

included cognitive control, disinhibition and their interactions with gender (BMI and age 

entered as regressors of no interest). Here, we did not find any significant associations. 

Detailed results of these analyses can be found in Table 4.1.4. 
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Table 4.1.3 Table with results of multiple regression analyses investigating the relationship 

between EEG asymmetry indices and approach/avoidance questionnaire measures. 

Statistically significant coefficients have been marked in bold. Please note that the p-value 

threshold after Bonferroni correction for four separate regression analyses is 0.0125. 

 Alpha frontal Low alpha 
frontal 

Alpha parietal Low alpha 
parietal 

Beta p-value Beta p-value Beta p-value Beta p-value 

BAS fun -
0.14 0.5275 0.14 0.2508 0.16 0.4318 0.27 1.0000 

BAS fun * 
gender 

-
0.02 1.0000 -0.13 0.6545 

-
0.29 0.3721 -0.27 1.0000 

BAS drive 0.32 0.3420 0.66 0.0108 0.31 0.5217 0.08 0.8630 

BAS drive * 
gender 

-
0.51 0.1000 -0.88 0.0018 

-
0.34 0.4815 0.06 0.7450 

BAS RR 0.54 0.0477 0.34 0.1083 0.08 0.6545 -0.22 0.3270 

BAS RR * gender -
0.54 0.0660 -0.35 0.1747 

-
0.22 0.4184 0.03 0.6860 

BAS - BIS -
0.38 0.2312 -0.35 0.6863 

-
0.77 0.0304 -0.53 0.1350 

BAS – BIS * 
gender 0.57 0.1294 0.59 0.1241 0.97 0.0078 0.56 0.4130 

Age 0.02 0.8039 0.04 0.7255 0.12 0.3122 0.00 1.0000 

BMI 
0.31 0.0024 0.25 0.0076 

-
0.13 0.1793 -0.11 0.2530 

Gender 0.45 0.0330 0.44 0.0373 0.42 0.4214 0.27 0.2350 

R2 0.22 0.25 0.12 0.07 
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Figure 4.1.1 Figure representing relationship between low/full alpha EEG asymmetry index 

(AI) and BAS drive scores; this relationship was statistically significant for females. Black 

dots represent data points, red line represents the best fit, and grey shaded areas are 95% 

confidence intervals. AI – asymmetry index, R – right, L – left. 
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Table 4.1.4 Table with results of multiple regression analyses investigating the relationship 

between EEG asymmetry indices and eating questionnaire measures. Please note that the p-

value threshold after Bonferroni correction for four separate regression analyses is 0.0125. 

CC – cognitive control; DI - disinhibition 

 Alpha frontal Low alpha frontal Alpha parietal Low alpha parietal 

Beta p-value Beta p-value Beta p-value Beta p-value 

CC -0.11 0.5476 -0.02 0.8627 0.28 0.2444 0.26 0.5810 

CC * gender 0.11 0.5476 -0.11 0.6863 -0.36 0.1537 -0.16 0.7840 

DI 0.26 0.5000 0.23 0.4110 0.28 0.0966 0.12 0.6230 

DI * gender -0.27 0.4951 -0.23 0.4583 -0.29 0.2210 -0.16 0.6670 

Age 0.01 0.9804 0.03 1.0000 0.11 0.8039 -0.02 0.9220 

BMI 0.21 0.0292 0.14 0.5217 -0.14 0.6029 -0.05 0.6600 

Gender 0.35 0.1625 0.45 0.0502 0.33 0.1419 0.16 0.7650 

R2 0.11 0.09 0.08 0.03 

 

4.1.3.4 Aim 2: fMRI correspondence analysis – Sample 1 

Firstly, we investigated direct relationships between EEG asymmetries and whole-brain 

fALFF asymmetry measures in the same sample. This analysis did not produce significant 

results. 

Next, we investigated relationships between fMRI asymmetry indices and 

approach/avoidance behaviours in Sample 1. The analysis included 5 retained components 

describing asymmetry data and questionnaire variables – BAS fun, BAS drive, BAS reward 

responsivity, BAS – BIS and their interactions with gender. Additionally, we included BMI 

and age as covariates of no interest. 

Results of this analysis can be found in Table 4.1.5. We found significant relationships of BAS 

Drive interaction with gender and rotated component 1 (RC1), and of BAS drive and RC1. For 

a visualisation of the data see Figure 4.1.2. Loading of each of the rotated components in the 

PCA analysis can be found in Table 4.1.6. It indicates that the RC1 was mostly influenced by 



 

 

 
36 

the BA9, BA8 and VTA. For visualisation purposes we present raw ROI (BA9, BA8, VTA) data 

relationships with BAS Drive scores for males and females in Figure 4.1.3. The ROIs are 

visualised in Figure 4.1.4.  

Further, we investigated whether hemispheric asymmetries measured with fMRI are related 

to self-reported eating behaviour. This analysis included cognitive control, disinhibition and 

their interactions with gender as predictor variables, while the outcome variables were 5 

rotated components from the PCA analysis.  Variables of no interest included BMI and age. 

Here, we did not find any significant relationships. Results of this analysis can be found in 

Table 4.1.7 and Table 4.1.8. 

 

Table 4.1.5 Table with results of multiple regression analyses investigating the relationship 

between fMRI asymmetry indices (Sample 1) and approach/avoidance questionnaire 

measures.  Please note that the p-value threshold after Bonferroni correction for four 

separate regression analyses is 0.0100. The components have been ordered according to 

decreasing variance explained. 

 RC1 RC2 RC3 RC5 RC4 

Beta p-value Beta p-
value 

Beta p-
value 

Beta p-
value 

Beta p-
value 

BAS fun -
0.23 0.2560 0.43 0.0727 0.03 1.0000 

-
0.07 0.5940 0.40 0.0684 

BAS fun 
* gender 0.32 0.1424 

-
0.41 0.7647 0.06 1.0000 0.13 0.4900 

-
0.56 0.0401 

BAS 
drive 

-
0.62 0.0032 0.36 0.1673 

-
0.25 0.3706 

-
0.09 0.9610 

-
0.17 0.2996 

BAS 
drive * 
gender 0.73 0.0002 

-
0.52 0.4054 0.30 0.2714 0.19 0.6060 0.23 0.2910 

BAS RR 
0.17 0.3827 

-
0.13 0.3043 0.36 0.5733 

-
0.05 0.8040 

-
0.38 0.1781 

BAS RR * 
gender 

-
0.43 0.1002 0.16 0.3636 

-
0.39 0.5476 0.24 0.5410 0.45 0.1729 
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BAS - 
BIS 0.39 0.3030 

-
0.05 0.7843 

-
0.05 0.8431 

-
0.07 0.8430 

-
0.07 1.0000 

BAS – 
BIS * 
gender 

-
0.51 0.2704 0.24 0.6429 

-
0.12 0.8627 

-
0.06 0.9410 0.07 0.9216 

Age 
0.08 0.3300 0.09 1.0000 

-
0.15 0.0689 

-
0.09 0.3800 0.10 0.2652 

BMI -
0.12 0.2333 

-
0.11 0.2525 

-
0.10 0.7647 0.07 0.5410 

-
0.20 0.0438 

Gender 
0.02 0.9020 

-
0.21 0.4234 0.52 0.0277 0.07 0.7250 

-
0.16 0.7059 

R2 0.14 0.10 0.12 0.06 0.11 

 

 

Table 4.1.6 Table representing component loadings for each of the PCA’s rotated 

components (Sample 1) in the BIS/BAS analysis. ROIs represent 9 regions of interest selected 

for the fMRI analyses 

ROI RC1 RC2 RC3 RC5 RC4 

BA10 0.08 0.68 0.16 0.41 -0.22 

BA9 0.73 0.38 -0.11 -0.04 -0.13 

BA8 0.71 0.27 0.10 0.14 -0.17 

BA46 0.24 0.75 -0.02 -0.12 0.10 

NAcc -0.01 -0.02 0.93 -0.05 0.01 

VTA 0.79 -0.24 0.00 0.18 0.18 

BA7 0.17 0.04 -0.09 0.92 0.04 

ParacG -0.06 0.67 -0.49 0.06 -0.01 

PostcG  -0.06 0.00 0.01 0.02 0.96 

Cumulative variance 

explained 0.20 0.39 0.52 0.64 0.76 
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Figure 4.1.2 Figure representing relationship between RC1 and BAS drive scores; there was 

a significant interaction effect of BAS drive scores and gender on RC1, and a significant effect 

of BAS drive scores on RC1 in females. Black dots represent data points, red line represents 

the best fit, and grey shaded areas are 95% confidence intervals. RC – rotated component, AI 

– asymmetry index, R – right, L – left. 
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Figure 4.1.3 Figure representing relationship between A BA8 and BAS drive scores; B BA9 

and BAS drive scores; C VTA and BAS drive scores; black dots represent data points, red line 

represents the best fit, and grey shaded areas are 95% confidence intervals. BA – Brodman 

Area, AI – asymmetry index, R – right, L – left. 
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Figure 4.1.4 Figure depicting regions of interest in the BA8 (red), BA9 (blue), and VTA 

(green) 

 

Table 4.1.7 Table with results of multiple regression analyses investigating the relationship 

between fMRI asymmetry indices (Sample 1) and eating behaviour.  Please note that the p-

value threshold after Bonferroni correction for four separate regression analyses is 0.0100. 

The components have been ordered according to decreasing variance explained. CC – 

cognitive control; DI - disinhibition 

 RC2 RC1 RC4 RC5 RC3 

Beta p-
value 

Beta p-
value 

Beta p-
value 

Beta p-
value 

Beta p-
value 

CC -
0.15 0.9410 

-
0.31 0.0802 

-
0.09 0.5833 0.32 0.0604 

-
0.24 0.1940 

CC * 
gender 0.29 0.1960 

-
0.02 1.0000 

-
0.05 1.0000 

-
0.53 0.0201 0.30 0.1170 

DI -
0.03 0.8430 

-
0.02 0.7647 0.12 0.4265 

-
0.13 0.1670 

-
0.05 0.9410 

DI * 
gender 0.12 0.4050 

-
0.02 1.0000 

-
0.16 0.3961 0.17 0.4265 

-
0.14 0.6550 

Age 
0.11 0.2010 0.06 0.3657 

-
0.15 0.1601 

-
0.09 1.0000 0.06 0.5940 

BMI -
0.16 0.4230 

-
0.02 0.9804 

-
0.17 0.8824 0.11 0.1537 

-
0.02 0.7060 

Gender -
0.09 0.7840 

-
0.21 0.4296 0.50 0.0386 0.07 0.4815 

-
0.44 0.1440 

R2 0.05 0.12 0.11 0.07 0.08 
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Table 4.1.8 Table representing component loadings for each of the PCA’s rotated 

components (Sample 1) in the TFEQ analysis. ROIs represent 9 regions of interest selected 

for the fMRI analyses 

ROI RC2 RC1 RC4 RC5 RC3 

BA10 0.60 0.09 0.17 0.52 -0.20 

BA9 0.42 0.68 -0.08 0.02 -0.15 

BA8 0.25 0.72 0.12 0.15 -0.12 

BA46 0.77 0.16 -0.02 -0.04 0.06 

NAcc -0.05 0.00 0.92 -0.06 0.01 

VTA -0.24 0.80 -0.03 0.13 0.12 

BA7 -0.01 0.19 -0.12 0.91 0.05 

ParacG 0.67 -0.04 -0.49 0.05 0.00 

PostcG 0.00 -0.06 0.01 0.01 0.97 

Cumulative variance explained 0.19 0.38 0.50 0.63 0.75 

 

4.1.3.5 Aim 3: fMRI investigations in samples including obese participants 

Here, we investigated relationships between fMRI asymmetry indices and 

approach/avoidance behaviours in Sample 2. The analysis included 5 retained components 

describing asymmetry data as outcome variables and questionnaire variables – BAS fun, BAS 

drive, BAS reward responsivity, BAS – BIS their interactions with gender, and BMI as 

predictors. Additionally, we included age as a regressor of no interest. 

Results of this analysis can be found in Table 4.1.9. We did not find any significant 

relationships between approach/avoidance behaviours and fMRI hemispheric asymmetries 

in this sample. Loadings of each of the rotated components in the PCA analysis can be found 

in Table 4.1.10. 
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Further, we investigated whether hemispheric asymmetries measured with fMRI are related 

to self-reported eating behaviour in Samples 2 and 3. These analyses included cognitive 

control, disinhibition, their interactions with gender and BMI as predictor variables, while 

the outcome variables were 5 rotated components from the PCA analysis. Age was entered 

as a regressor of no interest. Our analyses revealed no relationships between hemispheric 

asymmetries and eating behaviour in both samples. Details of these analyses can be found in 

Tables 4.1.11-4.1.14. 

 

Table 4.1.9 Table with results of multiple regression analyses investigating the relationship 

between fMRI asymmetry indices (Sample 2) and approach/avoidance questionnaire 

measures.  Please note that the p-value threshold after Bonferroni correction for four 

separate regression analyses is 0.0100. The components have been ordered according to 

decreasing variance explained. 

 RC5 RC3 RC2 RC1 RC4 

Beta p-
value 

Beta p-
value 

Beta p-
value 

Beta p-
value 

Beta p-
value 

BAS fun -
0.10 0.3111 0.09 0.4860 

-
0.11 0.5050 

-
0.04 0.7843 

-
0.02 0.7059 

BAS fun * 
gender 0.08 1.0000 

-
0.51 0.0715 

-
0.45 0.1600 

-
0.30 0.7059 0.58 0.0332 

BAS 
drive 

-
0.03 0.7843 

-
0.29 0.0416 

-
0.06 0.8820 0.17 0.1433 

-
0.11 0.6230 

BAS 
drive * 
gender 0.29 0.3728 0.57 0.0348 

-
0.03 0.9220 

-
0.44 0.0926 0.01 1.0000 

BAS RR 
0.26 0.0412 

-
0.05 0.5942 0.20 0.1260 

-
0.05 0.6863 

-
0.06 0.6667 

BAS RR * 
gender 

-
0.49 0.0317 0.34 0.1245 

-
0.32 0.2380 0.26 0.2927 

-
0.13 0.6029 

BAS - BIS 
0.03 0.9608 0.11 0.6190 0.02 0.5620 

-
0.17 0.2797 

-
0.14 0.6863 
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BAS – 
BIS * 
gender 0.08 0.9020 

-
0.35 0.2915 

-
0.23 0.2820 0.16 0.7843 

-
0.20 0.3678 

Age 0.26 0.0217 0.04 0.6333 0.02 0.8820 0.11 0.5275 0.16 0.0977 

BMI 
0.11 0.8431 

-
0.07 0.5275 

-
0.10 0.6550 

-
0.14 0.2551 0.08 0.8431 

Gender -
0.19 0.4815 0.50 0.0692 0.55 0.1400 

-
0.03 0.7451 0.27 0.3165 

R2 0.17 0.14 0.13 0.09 0.15 

 

Table 4.1.10 Table representing component loadings for each of the PCA’s rotated 

components (Sample 2) in the BIS/BAS analysis. ROIs represent 9 regions selected for the 

fMRI analyses 

ROI RC5 RC3 RC2 RC1 RC4 

BA10 0.02 0.15 -0.01 0.86 -0.16 

BA9 0.22 0.75 -0.06 0.11 -0.29 

BA8 0.53 0.39 0.00 0.31 0.02 

BA46 0.11 -0.27 -0.61 0.55 -0.05 

NAcc -0.01 -0.01 -0.08 -0.17 0.88 

VTA 0.30 -0.68 0.00 0.01 -0.26 

BA7 0.78 -0.11 -0.12 -0.18 -0.22 

ParacG 0.06 -0.14 0.90 0.03 -0.08 

PostcG 0.64 -0.05 0.27 0.22 0.34 

Cumulative variance explained 0.16 0.31 0.45 0.59 0.71 

 

Table 4.1.11 Table with results of multiple regression analyses investigating the relationship 

between fMRI asymmetry indices (Sample 2) and eating behaviour.  Please note that the p-

value threshold after Bonferroni correction for four separate regression analyses is 0.0100. 
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The components have been ordered according to decreasing variance explained. CC – 

cognitive control; DI - disinhibition 

 RC5 RC3 RC2 RC1 RC4 

Beta p-
value 

Beta p-
value 

Beta p-
value 

Beta p-
value 

Beta p-
value 

CC 
0.02 0.9412 0.08 0.3700 

-
0.10 0.4350 0.16 0.4810 

-
0.08 0.2983 

CC * 
gender 0.29 0.5811 

-
0.07 1.0000 0.31 0.9020 

-
0.20 0.3070 

-
0.34 0.2444 

DI 0.03 0.8431 0.01 1.0000 0.07 0.8040 0.09 0.2890 0.00 1.0000 

DI * 
gender 0.46 0.1789 

-
0.01 1.0000 0.03 0.6550 

-
0.02 1.0000 0.72 0.0146 

Age 
0.30 0.0048 0.09 0.2020 

-
0.01 1.0000 0.08 0.5710 0.22 0.0499 

BMI 
0.09 0.2824 

-
0.13 1.0000 

-
0.08 0.6060 

-
0.17 0.1330 0.06 1.0000 

Gender -
0.12 0.9020 0.26 1.0000 0.36 0.2330 

-
0.08 0.7840 

-
0.12 0.4775 

R2 0.12 0.03 0.03 0.04 0.16 

Table 4.1.12 Table representing component loadings for each of the PCA’s rotated 

components (Sample 2) in the TFEQ analysis. ROIs represent 9 regions selected for the fMRI 

analyses 

ROI RC5 RC3 RC2 RC1 RC4 

BA10 0.02 0.15 -0.01 0.86 -0.16 

BA9 0.22 0.75 -0.06 0.11 -0.29 

BA8 0.53 0.39 0.00 0.31 0.02 

BA46 0.11 -0.27 -0.61 0.55 -0.05 

NAcc -0.01 -0.01 -0.08 -0.17 0.88 

VTA 0.30 -0.68 0.00 0.01 -0.26 

BA7 0.78 -0.11 -0.12 -0.18 -0.22 

ParacG 0.06 -0.14 0.90 0.03 -0.08 

PostcG 0.64 -0.05 0.27 0.22 0.34 
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Cumulative variance explained 0.16 0.31 0.45 0.59 0.71 

Table 4.1.13 Table with results of multiple regression analyses investigating the relationship 

between fMRI asymmetry indices (Sample 3) and eating behaviour.  Please note that the p-

value threshold after Bonferroni correction for four separate regression analyses is 0.0100. 

The components have been ordered according to decreasing variance explained. CC – 

cognitive control; DI - disinhibition 

 RC1 RC5 RC2 RC3 RC4 

Beta p-
value 

Beta p-
value 

Beta p-
value 

Beta p-
value 

Beta p-
value 

CC -
0.08 0.7450 0.09 0.1947 

-
0.17 0.7451 0.18 0.1020 

-
0.05 0.5733 

CC * 
gender 0.25 0.8630 0.14 0.3125 0.20 0.2062 

-
0.01 1.0000 0.01 0.9608 

DI -
0.04 1.0000 0.10 0.5714 0.12 0.2500 0.00 0.9410 0.02 0.7647 

DI * 
gender 

-
0.12 0.4300 

-
0.25 0.1154 0.02 0.9804 

-
0.09 0.8820 

-
0.27 0.1009 

Age 
0.08 0.3110 0.01 0.9608 0.20 0.0176 

-
0.05 0.5400 0.07 0.2880 

BMI 
0.02 1.0000 0.14 0.0479 0.03 0.7451 

-
0.11 0.6330 

-
0.11 0.0857 

Gender -
0.12 1.0000 0.18 0.4737 

-
0.40 0.0142 0.16 0.8820 0.01 0.9608 

R2 0.03 0.08 0.11 0.04 0.03 

Table 4.1.14 Table representing component loadings for each of the PCA’s rotated 

components (Sample 3) in the TFEQ analysis. ROIs represent 9 regions of interest selected 

for the fMRI analyses 

ROI RC1 RC5 RC3 RC2 RC4 

BA10 0.28 0.63 -0.09 0.01 -0.09 

BA9 0.78 0.07 0.02 0.06 -0.04 

BA8 0.81 0.10 0.07 0.02 0.00 

BA46 -0.05 0.86 0.00 -0.06 0.05 
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NAcc 0.05 -0.08 -0.04 0.91 -0.05 

VTA -0.04 -0.03 -0.02 -0.03 0.96 

BA7 0.35 0.20 -0.67 -0.11 0.21 

ParacG 0.29 -0.08 0.70 -0.27 0.04 

PostcG 0.17 0.29 0.54 0.39 0.22 

Cumulative variance explained 0.18 0.32 0.46 0.58 0.70 

 

4.1.4 Discussion 

In this study we aimed at replicating previous EEG findings concerning relationships of 

resting-state hemispheric asymmetries and approach/avoidance behaviours in healthy 

participants. Second, we aimed to investigate whether EEG asymmetry findings and fMRI 

asymmetry findings correspond to each other in the approach/avoidance context, similarly 

to language or attention context (Powell et al., 2006; Chakrabarty et al., 2017; Mazza and 

Pagano, 2017). Further, we attempted to expand the findings to self-reported eating 

behaviour and BMI (which indirectly reflects approach behaviour) using resting-state fMRI. 

Here, we tested 3 independent samples. In Sample 1 we were not able to directly replicate 

previous EEG finding showing positive association between BAS – BIS scores (describing 

individual differences between approach and avoidance behaviours) and higher left resting-

state hemispheric bias. We, however, show a conceptual replication of this bias with BAS 

drive in females only. Secondly, we show that BAS drive scores are related to asymmetries 

measured by the resting-state fMRI – with an opposite relationship to the one found in EEG. 

Further, in Sample 2 – including a number of overweight and obese participants and rsfMRI 

data – we did not find any relationship of hemispheric bias and approach/avoidance 

behaviour or BMI using the same measures as in Sample 1. Finally, in none of the samples 

did we find relationships of hemispheric bias and self-reported eating behaviour. 

Past work by Gray and colleagues has suggested that human behaviour is driven by 

behavioural inhibition system and behavioural activation system (Gray, 1981; Gray and 

McNaughton, 1992). Davidson and other authors in a number of previous clinical and 

laboratory research proposed that those fundamental behavioural dimensions are driven by 
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asymmetric engagements of anterior brain regions (Davidson and Hugdahl, 1995). In detail, 

they showed that neural substrate for inhibition system/withdrawal behaviour is the right 

prefrontal cortex, while the left prefrontal cortex was related predominantly to approach 

behaviour. Those conclusions are based predominantly on resting-state EEG studies, but also 

on studies in patients with anterior frontal brain lesions. In this work we aimed to replicate 

a seminal study by Sutton and Davidson (1997), which showed a positive association of BAS 

– BIS differential scores with left hemispheric bias, as measured by rsEEG. We did not find 

this effect in our study, even though we analysed our dataset in a similar way. There were, 

however, small methodological differences. Firstly, our defined alpha power spectrum was 

8-12Hz, as compared to Sutton’s 8-13Hz. Secondly, the reference electrode for our study was 

different. Thirdly, in our study, the rsEEG duration was 16 minutes (eyes closed + eyes open) 

as opposed to 8 minutes in Sutton’s study (eyes closed + eyes open), and longer duration 

might provide a better estimation of resting-state processes. Yet it is unlikely that those small 

methodological differences can explain lack of direct replication. However, our sample size 

was much larger and included participants in a wider age range. Additionally, gender 

distribution was not equal, whereas in Sutton’s work 50% of the sample were women 

(however, we controlled for age, BMI and gender). Those factors might influence results 

beyond what is possible to be corrected by means of statistical analysis. 

Importantly, however, in a different type of analysis, one not aimed at methodologically 

replicating previous work, we found effects that are very similar from a conceptual point of 

view. Namely, we found a positive relationship between left hemispheric bias (low alpha 

power) and BAS drive. This effect indicates that higher approach behaviour (or drive 

towards positive reinforcement) is related to higher left brain activity. This effect points in a 

similar direction to that of Sutton and colleagues. While they found a similar association to 

be true for both genders, in our sample it was only true for females. However, we used a 

different measure of approach behaviour (BAS drive, versus BAS – BIS scores). BAS drive 

describes an absolute strength of the approach system (drive towards positive stimuli), 

while BAS – BIS difference scores represent the balance between the two systems. It is 

possible that those different measures are related to hemispheric asymmetries in a distinct, 

gender-dependent way. Future studies should replicate this result and investigate 
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asymmetries with regard to gender differences. It is worth noting that we found significant 

associations of questionnaire measures and hemispheric asymmetries measured with low 

relative alpha power, but not with broadband relative alpha power, as it was shown 

previously. Since low alpha power represents attentional processes, vigilance etc. (Petsche 

et al., 1997), our results show that hemispheric asymmetries are related to those processes, 

rather than to general inhibitory processing within the brain.  

In our EEG analysis in Sample 1 we also found a significant effect of BMI, where increased 

BMI was related to higher left, vs. right, hemispheric activity. This sample included 

predominantly lean participants and we cannot interpret this findings in relation to 

overweight or obesity. It indicates that this relationship is true within the healthy BMI range. 

In light of the fact, that obesity is related to increased approach behaviour (Mehl et al., 2018), 

this association of asymmetries and BMI is in line with previous literature. However, it needs 

to be replicated in a sample of overweight and obese participants to draw definitive 

conclusions.  

The second aim of our study was to investigate, whether approach/avoidance-related 

asymmetries can be measured with both EEG and fMRI. We show that the relationship 

between hemispheric asymmetries, as measured by fMRI and fALFF, and BAS drive, is 

opposite to the one found in the EEG data (asymmetry index for fMRI data was calculated in 

the opposite manner to the one for EEG data to account for opposite physiological meaning 

of alpha power and fALFF measurements). This is interesting for two reasons. Firstly, it 

shows an indirect relationship between two fundamentally different measures of brain 

activity. Secondly, it provides evidence that fMRI measures of hemispheric asymmetry can 

be meaningfully related to approach and avoidance behaviours. This is an important 

contribution to the field as it provides additional methodological possibilities to investigate 

relationships between hemispheric asymmetries and behavioural measures of 

approach/avoidance. Interesting here is the fact that the direction of the relationships 

measured by EEG and fMRI were opposite. It indicates that alpha power and fALFF might 

measure very different processes, which is also reflected in lack of direct relationship 

between EEG and whole brain fALFF asymmetries. Alpha power indeed is conceptualised to 
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be inversely related to brain activity, but also to measure active inhibition (Klimesch et al., 

2007). fALFF on the other hand is said to be a direct measure of brain activity (Zou et al., 

2008). We hypothesised that those measures could simply be inversely related to each other, 

however, as our results indicate, this relationship seems to be more complicated. This might 

be due to the fact that EEG and fMRI measure electrical activity and hemodynamic response, 

respectively, but also the fact that the oscillations measured by those two methods differ 

greatly in frequency ranges (8-12Hz vs. 0.01-0.1Hz). It comes therefore as no surprise that 

we did not find relationships between relative alpha power and fALFF asymmetries in our 

direct comparison of the two measures. It is nevertheless encouraging that the asymmetries 

measured with fMRI and EEG show relationships to the same behavioural measures. This 

provides a first step for further investigations of relationships between relative alpha power 

and fALFF measurements. 

Being able to find relationships between fMRI asymmetry measures and behaviour, we 

focused on the third aim of the study – investigations of this relationships in samples 

including overweight and obese participants, where only fMRI data were available. 

Concerning approach and avoidance behaviours, we used data of a sample which included 

lean, overweight and obese people. We investigated relationships between hemispheric bias 

and BIS/BAS questionnaires. Additionally, we investigated a direct relationship between 

hemispheric bias and BMI, since BMI is oftentimes related to increased approach behaviour, 

and obesity has been described as deficiency of right-brain activation (Alonso-Alonso and 

Pascual-Leone, 2007). These analyses showed a significant relationship neither between 

hemispheric bias and BMI, nor between hemispheric bias and approach/avoidance 

behaviour. It means that we did not find support for the right-brain theory of obesity. There 

are several possible explanations of this lack of support. Firstly, we used rsfMRI measures, 

which were not included in any studies on which the theory was based. Secondly, our sample 

was heterogenous, including males and females of a wider age range and BMI values. This 

heterogeneity might introduce noise which in turn makes it impossible to exactly measure 

associations of BMI and hemispheric asymmetries. Further, the right brain theory of obesity 

is based on a number of findings relating eating behaviours and physical activity to 

hemispheric asymmetries (Regard and Landis, 1997; Short et al., 2005; Uher and Treasure, 
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2005; Colcombe et al., 2006). None of those studies, however, relates hemispheric 

asymmetries to obesity measures, and the evidence is very sparse in general. To our 

knowledge, ours is a first study investigating relationships between BMI and hemispheric 

asymmetries in large samples and using resting-state neuroimaging measures. Additionally, 

to our knowledge, none of the previous studies on which the right-brain theory of obesity is 

based used functional resting-state brain measures. Instead, the studies predominantly 

investigated patients with unilateral brain lesions or structural asymmetries. Hence, lack of 

significant findings in the resting-state functional domain is not contradicting previous 

findings. Future studies need to focus on relationships between obesity measures and 

hemispheric asymmetries in both resting-state and task contexts to confirm or revise the 

right brain theory of obesity.  

We further investigated associations between hemispheric asymmetries and self-reported 

eating behaviours in all 3 samples. Here, we were unable to find any relationships using 

rsEEG and rsfMRI data. This means we were not able to replicate previous rsEEG findings 

showing hemispheric bias relationships with disinhibition, hunger (Ochner et al., 2009), or 

restrained eating (Silva et al., 2002). The study by Ochner and colleagues included 

overweight and obese participants (so did 2 of our 3 samples), and the study by Silva and 

colleagues included only lean females (one of our samples included mostly lean participants 

and we investigated interactions with gender). However, certain differences between those 

studies and our research exist, which might explain different results. Firstly, Ochner and 

colleagues investigated a group of much older participants (mean age: 49 years). Not 

knowing the causal relationship between obesity, self-reported eating behaviours and 

hemispheric asymmetry measures prevents us from directly comparing our and Ochner’s 

results. It is conceivable that the duration of obesity influences prefrontal asymmetries, 

hence age might explain differences between results. Furthermore, in our study we were 

very conservative with regard to multiple comparisons correction, while Ochner and 

colleagues were more liberal in this respect.  

Some limitations of this study include the fact that EEG data were only available for one 

sample. It would provide additional evidence to investigate differences between EEG and 
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fMRI asymmetry associations with behavioural measures in other samples, especially 

concerning BMI and eating behaviour – aspects not investigated as thoroughly as 

approach/avoidance behaviours. Further, our study investigates relationships between self-

reported approach/avoidance behaviours and resting-state neuroimaging measures. Future 

studies should focus on investigating task-based approach/avoidance behaviour and, 

ideally, task-based neuroimaging measures, especially in the context of obesity. This might 

turn out to be a more precise proxy for everyday motivational behaviours and therefore have 

higher ecological validity. 

In sum, we were able to conceptually replicate findings showing relationships between 

hemispheric bias and approach/avoidance behaviours, but not self-reported eating 

behaviour. Moreover, this study is the first one to investigate relationships between rsEEG 

alpha power measures and rsfMRI fALFF. We show that associations of hemispheric 

asymmetries measured with rsEEG and rsfMRI are opposite. Future studies should answer 

the question of how those measures relate to each other in a more systematic way, which 

was impossible for us, since in our study samples including obese individuals were samples 

with no EEG data available. We suggest that future studies should be performed using well 

controlled samples of lean, obese and overweight participants using both EEG and fMRI 

measures. 
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 Study 2 - unhealthy yet avoidable – how cognitive bias modification 

alters behavioural and brain responses to food cues in obesity 

4.2.1 Rationale of the study 

Study 2 was implemented in order to investigate neural correlates of the approach bias 

found in obesity, and mechanisms underlying successful modification of this bias. This study 

tackled automatic tendencies towards food in obesity. Since similar studies were performed 

only in the alcohol context, it was important to investigate, whether approach bias towards 

food cues and CBM in obesity share similar neural correlates and mechanisms. In our study 

we presented participants with healthy and unhealthy food pictures, to which participants 

were asked to respond by either pulling (approach) or pushing (avoidance) a joystick placed 

in their hands. This reaction was per test instructions based on the format of the picture, not 

its content, to investigate automatic responses to food stimuli. We hypothesised that, in line 

with previous literature, obese participants will show larger approach bias towards 

unhealthy food cues, as compared with healthy food cues. We further expected that this 

would be related to higher activity in the reward-related dopaminergic brain regions, such 

as the ventral striatum, the amygdala or the mPFC. To investigate mechanisms of CBM, we 

trained participants to avoid unhealthy food pictures and approach healthy food pictures. 

We then investigated how this training related to changes in the neural activity measured 

with XXX in responding to food pictures. There were two possible candidate mechanisms: 1) 

changes in brain regions related to reward valuation and perception; 2) changes in the 

brain’s inhibitory system. We hypothesised that CBM will decrease approach tendencies 

towards unhealthy foods and increase approach tendencies towards healthy foods in the 

training group only. We further hypothesised that, should our intervention be successful, it 

will be reflected in changes in activity in the ventral striatum, amygdala and medial 

prefrontal cortex, or within brain inhibitory regions, such as the frontoparietal network, 

including the dlPFC and parietal cortex. 
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4.2.2 Materials and methods 

4.2.2.1 Participants 

34 obese participants aged 18-35 years took part in the experiment (mean BMI=36.49kg/m2, 

σ=6.29, mean age=29.5 years, σ=4.5; for a more detailed sample characteristics see Table 

4.2.1). The sample size was selected according to a similar previous study investigating CBM 

effects in alcohol-dependent patients (Wiers et al., 2014). Participants met the following 

inclusion criteria: no history of neurological/psychological diseases, no thyroid disease, 

normal or regulated to normal blood pressure, no drug or alcohol addiction, no smoking, and 

no MRI-related contraindications. Volunteers were compensated with an amount of 10 

Euro/hour. The study was conducted according to the Declaration of Helsinki and approved 

by the Ethics Committee at the location which will be identified if the article is published. All 

participants gave their written informed consent prior to their participation in the study.   

4.2.2.2 Behavioral assessment 

In our study we included the Three Factor Eating Questionnaire (TFEQ; Stunkard and 

Messick, 1985), assessing eating behavior on three dimensions: cognitive restraint, 

disinhibition and hunger. The behavioral inhibition/activation system (BIS/BAS; Carver and 

White, 1994) was used to evaluate how a person’s behavior is driven by reward and 

punishment. Questionnaires were used as baseline comparison of groups included in the 

study. 

Participants’ BMI was assessed on the day of experiment. Before and after the MRI part,  

participants rated their mood, hunger and tiredness on a visual analogue scale (VAS, scale 0-

10). Moreover, subjects were asked to sort a set of forty food pictures concerning their 

perceived healthiness and liking (see section 4.2.2.4 for details). This picture set was 

independent of the one used in the fMRI task (see section 4.2.2.3 for details). It included 

healthy and unhealthy food pictures of comparable healthiness and liking to the fMRI picture 

set. Each of these credit card-sized pictures was placed by a participant on a large cardboard 

with a printed scale (0-10). 



 

 

 
54 

4.2.2.3 fMRI task 

The overview of the experimental paradigm can be found in Figure 4.2.1. We randomly 

assigned participants to either a training or a no-training group. Participants were not 

informed and not aware that training will take place, and the experiment introduction was 

performed by a blinded experimenter. The fMRI part consisted of a training version of the 

Approach-Avoidance task (AAT; Wiers et al., 2010), which measures and modifies automatic 

action tendencies. The AAT consisted of three main phases: a pre phase, a training or a no-

training phase, and a post phase. Transitions between the phases happened unbeknownst to 

participants. During the task, participants were presented with healthy and unhealthy food 

pictures in two different formats – horizontal and vertical. They were instructed to react to 

them by pushing (avoidance) or pulling (approach) a joystick placed in their right hand. 

Subjects reacted to the format of the picture, not its content, e.g. by pushing the joystick away 

every time a picture in a horizontal format appeared. In this study, participants were 

randomly assigned to either a push-vertical or a push-horizontal condition to make sure that 

picture format did not systematically influence results. Moreover, a zooming feature was 

implemented to highlight avoid and approach reactions. Impressions of approaching and 

avoiding stimuli were created by a consecutive presentation of three pictures increasing or 

decreasing in size, when pulling or pushing the joystick, respectively (Figure 4.2.2). 
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Figure 4.2.1 Overview of the experimental paradigm 

 

During the pre and post phase all pictures appeared equally often in push and pull format in 

both groups. Within the training phase, in the training group, 90% of unhealthy pictures 

appeared in a push format, and 90% of healthy pictures appeared in a pull format. This way 

we attempted to train an avoidance of unhealthy food images and an approach towards 

healthy food images. In the no-training group, the training phase did not differ from the pre 

and post phase.  

Pre and post phases consisted of 120 trials each, whereas the training phase consisted of 200 

trials. Each trial consisted of a picture presentation period, for which participants had to 

react as fast as possible by pushing or pulling the joystick (max. 2000ms), a zooming period, 

where pictures increased or decreased in size depending on participants’ reactions 

(3*250ms), and an intertrial interval (ITI). Duration of the ITI was jittered (1000-3000-

5000ms, exponential distribution of respective durations). In order to keep the duration of 

each trial independent of reaction time, time left from the picture presentation period 

(2000ms – reaction time) was added to the ITI (Figure 4.2.2). 



 

 

 
56 

 

Figure 4.2.2 Modified Approach-Avoidance-Task 

 

Further, we aimed to test whether potential changes in automatic action tendencies are 

specific to pictures included in the training phase or can be generalized to the entire category 

(healthy vs. unhealthy). Therefore, only a subset of pictures used in pre and post phases was 

used for training (randomly chosen set of 20 out of 30 pictures for each participant).  

The entire AAT lasted around 40 minutes and was symmetrically divided into four runs, each 

including 110 trials (independent of pre, training, or post phases). Participants were offered 

breaks between runs to relax and close their eyes.  

During the 90-minute-long fMRI part following scans were collected: fieldmap, pre resting 

state scan, 4 blocks of functional MRI with the AAT, post resting state scan and an anatomical 

scan (for details see section 4.2.2.5). 
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4.2.2.4  Selection of stimuli 

Food images for the AAT and the picture sorting task were selected from the food-pics 

database (Blechert et al., 2014). According to a previous study (Mehl et al., 2018) images 

were categorized in healthy and unhealthy images in line with current nutritional guidelines, 

such as the Healthy Eating Index (Guenther et al., 2013) or the Dietary Guidelines for 

American Adherence Index (Fogli-Cawley et al., 2006). Additionally, an online pre-rating had 

been conducted, where participants (n=100) rated images regarding perceived healthiness 

and liking. Only images that were clearly identified as healthy or unhealthy were included in 

the picture set (Mehl et al., 2018).  

4.2.2.5 Neuroimaging 

Neuroimaging data were acquired using a 3T Siemens SKYRA scanner with a 20-channel 

head coil. For the AAT, 1104 T2*-weighted images were collected using the following 

parameters: TE=22ms, FA=90o, TR=2000ms, 40 slices, voxel size: 3.0x3.0x2.5mm3, distance 

factor: 20%, FoV: 192x192mm2. 2*320 open-eyes resting state T2*-weighted images were 

acquired using the same parameters. The images were acquired in an ascending order. High-

resolution anatomical MPRAGE image was acquired for each participant using the following 

parameters: TE=2.01ms, FA=9o, TR=2300ms, TI=900ms, voxel size: 1x1x1mm3, distance 

factor: 50%, FoV: 256x256mm2.  

4.2.2.6 Data analyses 

4.2.2.6.1 Behavioral analysis 

In line with previous studies, mean reaction times were calculated for the picture categories 

(healthy vs. unhealthy food) and across both conditions (avoid vs. approach) during all three 

phases of the experiment. Bias scores were generated by calculating difference scores per 

category and condition: healthy_push – healthy_pull and unhealthy_push – unhealthy_pull. 

Thus, a positive score reflects faster approach reactions for the respective category, while a 

negative score indicates faster avoidance reactions.  

No subject had to be excluded due to outliers or error rate. Outliers were defined as mean 

reaction times within a condition lying below or above 2 standard deviations from the group 
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mean. The task was performed with a high level of accuracy (mean accuracy = 97%, 

SD=3.23%). 

Baseline behavioral tendencies were assessed by testing whether bias scores significantly 

differed from zero during the pre-training phase. Further, we compared the training and the 

no-training group, to ensure that no baseline differences were present. The analyses were 

carried out using one-sample and independent samples t-tests, respectively.  

Changes from pre to post were analyzed using a repeated-measures 2x2x2 analysis of 

variance. Group (training vs. no-training) was used as a between-subject factor, and image 

category (healthy vs. unhealthy food) and time (pre vs. post) as within-subject factors.  

We further followed up by testing if bias scores significantly differed from zero in the post 

phase and whether bias scores for the two food categories significantly differed from each 

other. Both analyses were performed with t-tests. 

Questionnaire data were analyzed in order to investigate potential group differences using 

an independent-samples t-test. Distribution of all questionnaire measures was normal or 

close to normal, and equal variance between groups was assumed for all the tests.  

Distributions and confidence intervals / observed power for all statistical tests can be found 

in the statistical table (Table 4.2.10). 

4.2.2.6.2 fMRI data analysis 

• Data preprocessing 

AAT-fMRI and rsfMRI data were preprocessed in a similar fashion. Data were preprocessed 

and statistically analyzed using FMRIB Software Library 5.0.8 (FSL, The University of Oxford, 

Oxford, United Kingdom (Jenkinson et al., 2012), SPM 12 revision 6225 (Wellcome 

Department of Cognitive Neurology, London, United Kingdom), Analysis of Functional 

NeuroImages version 17.0.04n (AFNI; Cox, 1996), Advanced Normalization Tools (ANTs; 

Avants et al., 2011) and MATLAB R2012b (The MathWorks, Inc., Natick, Massachusetts, 

United States). Firstly, to enable further preprocessing steps, high resolution anatomical 

images were skull-stripped using FSL’s brain extraction tool (Smith, 2002) and SPM 12 
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segmentation tool. Functional data were motion corrected using McFLIRT (Jenkinson et al., 

2002), fieldmap corrected and registered to high resolution anatomical images (FLIRT, 

boundary based registration; Jenkinson and Smith, 2001; Jenkinson et al., 2002; Greve and 

Fischl, 2009), slice-timing corrected, and smoothed with a 6mm FWHM Gaussian kernel (not 

rsfMRI data used for connectivity analysis (Alakörkkö et al., 2017) using FSL’s FEAT. To 

ensure that motion- and physiological noise-related artefacts were removed from the 

functional time-series, we used independent component analysis automatic removal of 

motion artefacts (ICA AROMA; Pruim et al., 2015) toolbox on the time-series. Further, we 

regressed out the signal in white matter and cerebrospinal fluid from the functional data. 

Then, anatomical images were normalized to a 3mm MNI template using ANTs. Using 

transformation information from the previous registration steps, functional images were 

registered to the 3mm MNI template using ANTs. Prior to statistical analysis on an individual 

level, AAT-fMRI data were high-pass filtered with a filter of 128s (SPM). Prior to connectivity 

analyses, resting state data were high pass filtered (FSL; σ=22).  

•  AAT fMRI data analysis 

A random-effects analysis was performed using SPM12. Individual regressors on a subject 

level were entered into a general linear model and convolved with a double-gamma 

hemodynamic function. Individual contrast files were then entered into second-level 

analysis, where we compared subjects as groups. In this step, BMI and age were entered into 

the analysis as covariates of no interest. Entering BMI as a covariate enabled us to only 

investigate general obesity effects and discard between-subjects differences that could 

potentially be caused by different BMI values. As obesity is defined as having a BMI value 

above 30 kg/m2, the variance in this respect can be large, hence the necessity to adjust our 

analyses for BMI values. Age was entered as a covariate since our groups differed in this 

respect. Results were always thresholded at a whole-brain voxel-wise level with a threshold 

of 0.005, and on a cluster level with a family wise error corrected threshold of 0.05. The 

voxel-wise threshold was chosen a priori and is more conservative than recently suggested 

fMRI practice (Bansal and Peterson, 2018). 
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o GLM1: Pre and post data analysis 

In this analysis we investigated neural correlates of food approach bias, as well as training 

effects on the brain. On a single-subject level we entered only the pre and post trials into a 

general linear model. This resulted in 16 different regressors over 2 sessions. 4 regressors 

for the picture presentation period pre-training (healthy_pull, healthy_push, unhealthy_pull, 

unhealthy_push), 4 regressors for the zooming period pre-training (corresponding to four 

different types of trials) and a similar set of 8 regressors for the post phase. For the picture 

presentation period, onsets of the regressors were time-locked to the picture presentation, 

and event duration was equal to the reaction time. This variable epoch model was described 

as the most appropriate for reaction time tasks (Grinband et al., 2008). The onsets of the 

zooming period regressors were time-locked to the end of the picture presentation period, 

and the durations were set to 750ms. For the pre phase, first level contrasts included general 

food approach and avoidance, and similar contrasts specific to each food category. Moreover, 

we investigated pre to post changes only in trained conditions. We also investigated training 

effects on food avoidance tendencies separately for healthy and unhealthy food pictures. On 

a second-level, individual contrasts regarding the pre phase were entered into a one sample 

t-test, in order to investigate neural correlates of food approach bias independent of group 

membership. To make sure that no pre-training differences in task-related brain activity 

between groups were present, we entered individual contrasts into a two-sample t-test. 

Further, contrasts involving comparisons of pre and post phases were entered into two 

sample t-tests to investigate effects of training. 

o GLM2: PPI analysis 

In order to investigate whether our intervention was related to changes in functional 

connectivity, we conducted a psychophysiological interactions analysis. This analysis 

compares brain connectivity changes from a specified seed in the brain between two 

different experimental conditions. Firstly, we defined a 6mm sphere (radius) around the 

peak voxel in a cluster reflecting training effects (right angular gyrus). Secondly, we 

extracted raw time-series from this volume of interest (VOI). Thirdly, we defined a new GLM 

consisting of six different regressors: the time course of the VOI pre-training (physiological 
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factor), the main effect of unhealthy_push condition (psychological factor), the interaction 

term between the two factors for the pre-training phase, and 3 corresponding regressors for 

the post-training phase.  

• Resting-state fMRI data analysis 

We acquired and analyzed resting state data in order to investigate whether the effects of 

CBM are transferrable to functional changes in the brain not directly related to AAT. These 

data can be used to analyze resting state functional connectivity – answering the question of 

how different brain regions interact with each other. Resting state connectivity analysis 

helps to understand how all brain regions generally interact with each other (degree 

centrality, DC), but also how specific a priori defined brain regions correlate with other brain 

areas (seed-based connectivity analysis, SCA). To our knowledge, this is the first study 

investigating this particular aspect. Hence, we decided to use a hypotheses-based approach 

of seed-based connectivity analysis with different inhibitory and reward-related seed 

regions, but also a hypotheses-free approach of degree centrality. 

• Seed-based connectivity analysis 

In our study we investigated seed-based connectivity using predefined ROIs (see section 

‘definition of seeds’) as seeds. Unsmoothed (Alakörkkö et al., 2017), slice-timed, motion-

corrected and registered to the MNI template images were entered into the analysis. The 

analysis was performed using Nipype and Nilearn algorithms. It resulted in eight 

connectivity maps, one for each ROI, and one for each of the phases of the experiment (pre- 

and post-AAT). Connectivity maps were then smoothed with a 6mm FWHM Gaussian kernel, 

andpre-AAT maps were subtracted from the post-AAT maps. Resulting volumes were then 

entered into a two-sample t-test to investigate group differences. Here, FWE-corrected 

statistical thresholds were also Bonferroni corrected for number of seeds. 

o Definition of seeds 

To investigate task-unrelated connectivity differences caused by CBM, we defined a number 

of seeds directly related to reward processing, visual food stimuli processing and inhibitory 

control. This was done in order to test our hypotheses of reward vs. inhibitory mechanisms 
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involved in the CBM. The following seeds were included in our study: the medial and the left 

and right dorsolateral prefrontal cortex (mPFC, dlPFC, cooridnates from: Shirer et al., 2012), 

the left and right amygdala and nucleus accumbens (Amy, NAcc, coordinates from: pickatlas 

Maldjian et al., 2003) and the left middle frontal gyrus (MFG, coordinates from: van der Laan 

et al., 2011). The mPFC, amygdala and the nucleus accumbens were previously shown to be 

engaged in approach-avoidance tendencies and are widely accepted reward-related brain 

regions (Wiers et al., 2014). The mPFC is widely accepted as the brain’s valuation center 

(Kable and Glimcher, 2007), the amygdala is important for Pavlovian learning and formation 

of emotional memories (Volkow et al., 2004; Koob and Volkow, 2010), whereas the nucleus 

accumbens receives and sends dopaminergic projections as response to rewarding stimuli 

(Volkow et al., 2004; Hyman et al., 2006; Heinz et al., 2009; Koob and Volkow, 2010). The 

dlPFC was previously related to approach-avoidance tendencies and is an inhibitory brain 

region (Hare et al., 2011; Dietrich et al., 2016b). Lastly, the left MFG is a region preferentially 

activated for viewing high versus low caloric food stimuli (van der Laan et al., 2011). 

o Degree centrality 

Degree centrality is defined as a number of direct connections of a node to all other nodes in 

the network (Zuo et al., 2012). This measure was calculated using AFNI within the Nipype 

framework, with correlation thresholds set to 0.5 (only correlations with r>0.5 included in 

results). Firstly, we calculated DC maps separately for each participant and phase of the 

experiment. Secondly, similarly to previous resting-state analyses, we subtracted the pre-

AAT maps from the post-AAT maps. These volumes were then entered into a two-sample t-

test. 

4.2.3 Results 

4.2.3.1 Behavioral results 

To check for possible baseline group differences, we compared VAS ratings, questionnaire 

variables, and AAT picture ratings between groups. Participants in the training and no-

training group did not statistically differ at baseline regarding hunger, tiredness, and mood 

(smallest p = .534d-f,Table 4.2.1). The groups also did not differ regarding all questionnaire 



 

 

 
63 

variables (smallest p = .082g-m) and subjective ratings of the AAT stimulus material in terms 

of healthiness and liking (smallest p = .498n-q, Table 4.2.2).  

 

 

Table 4.2.1 Sample characteristics of the training and no-training groups; p-values reflect 

significance of group differences  

 

Training 
Group 

No-Training 
Group 

p-value/t(31) 
value 

(unless stated 
otherwise) 

Effect size |d| 

(unless stated 
otherwise) 

Mean/SD  

(unless stated otherwise) 

n 17 16   

Sexa 11 ♀. 6 ♂ 7 ♀. 9 ♂ 0.227/χ2=1.460 φ=0.043 

Age [years]b 28/5 31/4 0.027/2.314 0.663 

BMI [kg/m2]c 35.57/4.63 36.95/7.63 0.530/0.635 0.219 

Hunger [VAS cm; 

not hungry – 
hungry]d 

2.31/1.81 2.73/1.91 0.534/0.629 0.226 

Tiredness [VAS cm; 

not tired – tired]e 
4.31/2.60 4.00/2.30 0.726/-0.354 0.126 

Mood [VAS cm; 

in a bad mood – in a 
good mood]f 

7.69/1.58 8.20/1.26 0.711/=0.374 0.357 

TFEQ cognitive 
controlg 

8.11/6.12 6.63/4.01 0.417/-0.822 0.286 

TFEQ disinhibitionh 9.29/3.16 7.19/3.56 0.082/-1.800 0.624 

TFEQ hungeri 6.94/4.35 5.75/3.44 0.391/-0.869 0.303 

BISj 20.53/4.61 19.94/5.23 0.732/-0.345 0.120 
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BAS drivek 12.00/2.06 11.62/2.63 0.651/-0.457 0.161 

BAS fun seekingl 13.18/2.16 12.38/1.89 0.267/-1.131 0.394 

BAS reward 
responsivitym 16.76/1.92 16.75/1.39 0.980/-0.025 0.006 

 

Table 4.2.2 Ratings of healthy and unhealthy images used in the AAT paradigm for 

healthiness and liking on a scale from 0 to 10 

Image 
category 

Scale 
Training 
Group 

No-training 
Group 

p-value/t(31)-
value 

Effect 
size |d|  

 
Mean/SD 

Unhealthy 
Likingn 6.11/0.90 5.95/1.34 0.692/-0.399 0.140 

Healthinesso 1.81/0.78 1.76/1.21 0.885/-0.146 0.049 

Healthy 
Likingp 7.64/0.71 7.44/1.17 0.555/-0.596 0.207 

Healthinessq 8.67/0.67 8.73/0.62 0.775/0.288 0.093 

 

Next, we investigated whether participants rated the AAT pictures differently depending on 

their respective category. Healthy images were rated as significantly healthier 

(t(32)=36.723; p < .001r, d=6.40) and were more liked (t(32)=5.507; p < .001s. d=0.96) than 

unhealthy images.  

Further, we hypothesized that ratings of the independent picture set that participants sorted 

before and after the fMRI AAT (Table 4.2.3) would be affected by training (interaction with 

factor group). To this end we performed separate 2x2x2 ANOVAs for healthiness and liking 

ratings with image category, time and group as factors. They revealed no interactions with 

group (healthiness: F(1,31)=0.001, p=0.975, η2p = .000; liking: F(1,31)=0.453, p=0.503u, η2p 

= .014) 

 



 

 

 
65 

 

 

 

 

 

 

Table 4.2.3 Picture sorting task – ratings of healthy and unhealthy images on healthiness and 

liking on a scale from 0 to 10. We observed no significant group differences 

Image 
Category 

Scale 
Training 
Group 

No-training 
Group Image category * 

time * group 
interaction Effect 

size 
η2p 

 

 
Pre Post Pre Post 

 

 
Mean/SD 

p-value/F(1,31)-
value 

Liking 

Unhealthy 
5.76/ 

1.17 

5.37/ 

1.57 

5.97/ 

1.82 

5.39/ 

1.94 
0.975t/0.001 0.014 

Healthy 
7.24 

/0.99 

7.39/ 

1.07 

7.23/ 

1.63 

7.35/ 

1.63 

Healthiness 

Unhealthy 
1.38/ 

0.82 

1.53/ 

0.88 

1.25/ 

1.01 

1.50/ 

1.16 
0.503u/0.453 0 

Healthy 
8.42/ 

0.76 

8.43 

/0.83 

8.27/ 

0.97 

8.38/ 

0.90 

 

4.2.3.1.1 Approach-avoidance task 

To analyze the AAT data, we first computed bias scores and tested for baseline approach bias 

towards food. As expected, at baseline, both groups showed a significant approach bias 
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towards food, as bias scores for both healthy and unhealthy images were significantly 

greater than zero (training group: t(16)=2.994, p = .009v and t(16)=2.334, p = .033w, no-

training group: t(15)=3.728, p = .002x and t(15)=2.218 p = .042y, respectively). Further, we 

investigated whether bias scores differed from pre to post (independent of group) and 

whether there were differences between picture categories. We found significant main 

effects for image category (F(1,32) = 4.471, p = .042z, η2p = .123) and time (F(1,32) = 9.655, 

p = .004aa, η2p = .232). The first main effect reflects generally higher bias scores for healthy 

food images independent of experimental phase. The second main effect reflects lower bias 

scores in the post compared to pre phase of the experiment.  

The main question of our study was whether CBM can affect approach behavior towards food 

stimuli, and whether this effect depends on picture category. To answer this question, we 

used a 2x2x2 ANOVA with group, image category and time as factors. Indeed, we found a 

significant three-way interaction of group (training or no-training), image category (healthy 

vs. unhealthy) and time (pre-vs. post-training) (F(1,31) = 8.902, p = .006ab, η2p = .223). We 

then performed follow-up paired t-tests to investigate in which conditions there was a 

significant change from pre to post phase. They indicated that in our study individuals in the 

training group, as opposed to the no training group, decreased approach tendencies towards 

unhealthy images only (Table 4.2.4ac-af, Figure 4.3.2). 
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Figure 4.2.3 Bias scores in the training and no-training groups pre and post training 

(errorbars: standard error of the mean). We observed a significant interaction of group by 

time by image category. 

Table 4.2.4 Bias scores for healthy and unhealthy images in the training and no-training 

group for the pre and post phases. P-values reflect significance of changes from pre to post 

in bias scores. 

Image 
category 

Training Group No-training Group 

Pre Post p-value/ 

t(16)-
value 

effect 
size d 

Pre Post p-value/ 

t(15)-
value 

effect 
size d 

Mean/SD Mean/SD 

Unhealthy  
50.35/ 

88.97 

-
17.24/ 

0.004/ 

-3.336ac 

0.810 37.50/ 

67.63 

28.31/ 

64.34 

0.585/ 

0.559ad 

0.140 
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65.18 

Healthy  
51.41/ 

70.80 

69.18/ 

73.78 

0.429/ 

-0.812ae 

0.197 65.06/ 

69.81 

37.75/ 

94.76 

0.126/ 

1.610af 

0.403 

 

In the AAT training phase we used a subset of pictures from the pre and post phases. This 

enabled us to assess whether training effects can be generalized to images that were not 

included in training phase. To test for this effect, a 2x2x2 repeated measures ANOVA was 

carried out in the training group. Factors included picture set (trained vs. not-trained 

images), image category (healthy vs. unhealthy) and time (pre- vs. post-training). A 

significant three-way interaction would indicate lack of the generalization effect, as it would 

show that bias scores for trained and not-trained images of the same category were not 

similarly affected by the training phase. The three-way interaction was marginally not 

significant (F(1,15) = 4.464, p = .051ag, η2p = .218), which suggests that generalization to 

untrained pictures might indeed have occurred. We followed up this analysis with Bayesian 

repeated-measures ANOVA with identical factors to be able to better interpret the results 

(analysis performed with JASP version 0.9; JASP Team 2018). The evidence (Bayes factor) 

for a model with the three-way interaction, as compared to a model without this interaction, 

was 0.493. This magnitude of the Bayes factor indicates anecdotal evidence in favor of lack 

of generalization effects. We therefore cannot conclude with certainty, whether or not the 

generalization effect occurred.  

4.2.3.2 Neuroimaging results 

4.2.3.2.1 General Linear Model 1 

• Baseline food approach and avoidance 

In this analysis we investigated neural correlates of pre-training approach and avoidance 

tendencies towards food pictures. To this end we entered condition specific regressors into 

a one-sample t-test, as in this stage groups did not differ in any way. Our main contrasts of 
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interest included food approach and food avoidance, together and separately for healthy and 

unhealthy food cues. A contrast corresponding to general food avoidance (push>pull 

independent of picture category) revealed significant clusters in the right angular gyrus 

(rAG) and the cuneus. For the opposite contrast (pull>push, general approach for food), we 

found a significant cluster in the left postcentral gyrus. Further investigation showed that 

food avoidance activations were driven by the unhealthy food category. In analysis for 

unhealthy food avoidance bias (unhealthy_push>unhealthy_pull) we found significant 

clusters in the rAG and the cuneus (Figure 4.2.4, Table 4.2.5). Corresponding contrast for 

healthy food and contrasts for unhealthy/healthy food approach produced no significant 

results. 

Moreover, we tested for group differences within the pre phase to ensure that groups were 

homogenous at the beginning of the experiment. This analysis for above mentioned contrasts 

did not elicit any significant clusters.  

• Pre to post changes 

As the main analysis of interest, we tested whether the training effect – decreased approach 

bias towards unhealthy foods – was associated with neuronal changes. To this end, we 

contrasted unhealthy food avoidance (unhealthy_push>unhealthy_pull) with healthy food 

avoidance (healthy_push>healthy_pull) before vs. after training. Indeed, in the training 

group, the rAG showed decreased activity post training, whereas the left middle occipital 

gyrus showed increased activity (Figure 4.2.5, Table 4.2.6). To investigate this effect further, 

we compared unhealthy food conditions (unhealthy_push>unhealthy_pull) pre and post 

training and found a similar effect. In addition, for this contrast we found a decreased activity 

in the left lingual gyrus for the no-training group, and a group difference in the cuneus 

(training>no-training group). Additional analysis showed that the effect in the rAG was 

driven by higher brain activity in the training group for the pre phase for unhealthy food 

avoidance (unhealthy_push>unhealthy_pull; Table 4.2.7). It indicates that brain activity in 

the right rAG for pushing vs. pulling unhealthy foods in the training group decreased after 

the training. In one of previous analysis we found the rAG to be associated with general food 
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avoidance. Hence, we suggest that CBM might make processes relying on this structure more 

efficient.  

 

 

Figure 4.2.4 Figure showing main effects of food approach/avoidance pre training in both 

groups together. A: Main effect of food avoidance. B: Main effect of unhealthy food avoidance 

driving the effect presented in A. C: Main effect of food approach 

 



 

 

 
71 

• PPI analysis 

We consistently found the rAG to be associated with unhealthy food avoidance and the 

effects of CBM. Therefore, we decided to perform a PPI analysis with the rAG as the seed. 

Here, we compared connectivity differences for the unhealthy food avoidance between pre 

and post phases. This analysis showed a significant cluster in the rSFG/rMFG and in the right 

caudate/putamen. This indicates that connectivity between the rAG and these structures 

was decreased post training, as compared to pre training, in the training group (Table 4.2.8, 

Figure 4.2.5).  

4.2.3.2.2 Resting state data  

• Seed-based connectivity analysis 

To describe region specific functional connectivity within the brain we used seed-based 

connectivity analysis. This measure is also task-independent, as it uses resting-state fMRI 

data, and significant findings indicate that CBM elicits neuronal changes not only during AAT 

performance. Here, we investigated whether training was associated with resting state 

connectivity changes between the training and no-training groups. For the left MFG, we 

found a significant group by time interaction in the right MFG. Moreover, we observed a 

similar interaction effect for connectivity between the left nucleus accumbens and the left 

inferior frontal gyrus (IFG; Table 4.2.9, Figure 4.2.5). 

• Degree centrality 

Similar to SCA, DC describes task-independent connectivity changes within the brain. These 

changes, however, are general and not specific to chosen ROIs. In our study, this analysis did 

not produce any significant results. 
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Figure 4.2.5 Figure showing effects of CBM training along with contrast estimates (arbitrary 

units - AU); please note a different scale in the parameter estimates for sub-figure A and B. 

A: Training effect was reflected in a decreased brain activity in the right angular gyrus for 

healthy food avoidance vs. unhealthy food avoidance. B: Cluster in the right dorsal striatum 

showing higher task-related connectivity with the right angular gyrus in the unhealthy push 

vs. unhealthy pull condition after training. C: resting-state seed-based connectivity analysis 
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showing increased connectivity post training in the training vs. no training group in the left 

and right middle frontal gyri. D: Resting-state seed-based connectivity analysis showing 

increased connectivity post training in the training vs. no training group in the left nucleus 

accumbens and inferior frontal gyrus. rAG – right angular gyrus, rdStr – right dorsal striatum, 

rMFG – right middle frontal gyrus, lIFG – left inferior frontal gyrus, AU – arbitrary units, CI – 

confidence intervals. 

 

Table 4.2.5 Brain regions associated with baseline food approach/avoidance bias 

Contrast 
Region of the 
peak voxel 

Cluster size 
[voxels] 

Coordinates 
(MNI) 

Peak z 
score 

Peak t 
score 

Food avoidance  
Angular gyrus R 178 48 -63 36 4.40 5.28 

Cuneus  131 0 -87 24 4.21 4.96 

Food approach  
Postcentral 
gyrus L 

98 -45 -39 63 3.98 4.62 

Unhealthy food 
avoidance  

Angular gyrus R 129 51 -66 33 4.51 5.45 

Cuneus 212 -3 -87 24 4.10 4.80 

L – left, R – right 

 

Table 4.2.6 Brain regions showing training-related changes (pre phase>post phase) 

between- and within-groups  

Contrast 
Region of the 
peak voxel 

Cluster 
size 
[voxels] 

Coordinates 
(MNI) 

Peak 
z 
score 

Peak 
t 
score 

Unhealthy 
food 
avoidance > 
healthy food 
avoidance 

Training 
group 

Angular gyrus R 99 51 -69 33 4.06 4.77 

 

 

Middle occipital 
gyrus L 

163 -21 -90 -15 -4.26 -5.07 
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Unhealthy 
food 
avoidance 

Training 
group 

Inferior parietal 
lobe R 

124 39 -51 39 4.46 5.41 

No-training 
group 

Lingual gyrus L 202 -3 -75 9 3.99 4.65 

Training>no
-training 

Cuneus L 163 -15 -75 9 -3.73 -4.27 

Pre phase; 
Training 
group 

Angular gyrus R 97 51 -66 30 4.00 4.67 

L – left, R – right  

 

Table 4.2.7 Brain region showing altered activity for food avoidance pre training in the 

training group only for unhealthy food avoidance 

Contrast 
Region of the peak 
voxel 

Cluster 
size 
[voxels] 

Coordinates 
(MNI) 

Peak z 
score 

Peak t 
score 

Unhealthy 
food avoidance 

Angular gyrus R 97 51 -66 30 4.00 4.67 

R – right 

 

Table 4.2.8 Brain region showing increased connectivity with the right angular gyrus for the 

unhealthy food avoidance bias in the pre to post phase 

Contrast 
Region of 
the peak 
voxel 

Cluster size 
[voxels] 

Coordinates 
(MNI) 

Peak z 
score 

Peak t 
score 

PPI connectivity in the 
training group; seed: right 
angular gyrus 

Putamen R 170 24 24 3 4.51 5.53 

R – right, PPI – psychophysiological interactions 
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Table 4.2.9 Regions showing a group by time interaction in the resting-state measures of 

brain activity and connectivity 

Analysis 
Region of the 
peak voxel 

Cluster size 
[voxels] 

Coordinates 
(MNI) 

Peak z 
score 

Peak t 
score 

SCA, left middle 
frontal gyrus 

Middle frontal 
gyrus R 

182 39 45 27 4.443 5.38 

SCA, left nucleus 
accumbens 

Inferior frontal 
gyrus L 

136 -48 45 15 4.80 6.01 

Inferior 
temporal gyrus 
L 

118 -54 -48 
-
18 

3.73 4.27 

L – left, SCA – seed-based connectivity analysis 

 

4.2.4 Discussion 

Within this study we aimed to investigate underlying neural mechanisms of cognitive bias 

modification in obese individuals. To this end, a training form of the approach-avoidance 

task was applied in the fMRI scanner, where half of the participants received training, while 

the other half was part of a no-training condition. This between group design combined with 

fMRI measures design allowed us to clarify whether CBM works by a) changing rewarding 

values of food stimuli and brain activation in reward-related brain regions, or b) increasing 

inhibitory abilities and affecting brain regions engaged in inhibitory processing and 

cognitive control. Generally, we found that all participants showed faster approach than 

avoidance reactions towards both healthy and unhealthy food images, suggesting that 

approaching food is an automatic process. This is paralleled by our findings on the neural 

level, where the rAG shows increased activation for avoiding food. The rAG is usually shown 

to be engaged in suppressing stimulus response conflicts, attentional reorientation and 

response inhibition (Rushworth et al., 2001; Schiff et al., 2011; Seghier, 2013; Cieslik et al., 

2015; Kolodny et al., 2017). Next, CBM specifically affected the training group, where we 
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were able to significantly decrease the approach tendencies towards unhealthy food. This 

was related to a decreased activation in the rAG. Additionally, we observed changes in task-

related and resting-state connectivity patterns between inhibitory regions, such as the MFG 

or the IFG (Garavan et al., 1999; Simmonds et al., 2008; Boehler et al., 2010; Cai et al., 2014). 

We also observed task-related connectivity changes between the rAG and the right 

caudate/putamen, which constitute the dorsal striatum. Within our sample, avoiding food 

thus appears to be a potentially conflicting situation, hence requiring more cognitive 

resources. Cognitive bias modification, on the other hand, seems to decrease this demand by 

means of strengthening connectivity between inhibitory brain regions. Further, we did not 

find evidence for altered reward valuation of food stimuli after CBM. 

Though we were able to significantly decrease approach behavior towards unhealthy food 

pictures, we did not increase approach behavior towards healthy food pictures. This is, 

however, in line with previous findings, where decreasing approach behavior towards 

unhealthy food was the main effect of the training (Ferentzi et al., 2018; Mehl et al., 2018). 

In the present study, decreasing approach tendencies towards unhealthy food was related 

to a decrease in brain activation in the rAG. This could indicate that training makes avoiding 

food a less conflicting and more automatic behavior, thus requiring less inhibitory resources. 

We further tested whether observed effects were specific to trained pictures only or would 

generalize to untrained pictures of the same category. Evidence for generalization effects, 

however, were inconclusive. While generalization effects were repeatedly observed when 

applying CBM in the alcohol context (e.g. Wiers et al., 2010) results in the context of food 

have, so far, been mixed. While Mehl and colleagues (2018) found no generalization effect, 

Ferentzi et al. (2018) observed training effects to generalize to new, untrained pictures. 

Further, for unhealthy food avoidance, we found a higher task-related connectivity between 

the rAG and the right SFG/MFG post versus pre training. The right MFG is a part of the 

frontoparietal control network (Vincent et al., 2008) and is widely engaged in exerting 

cognitive control and inhibiting prepotent reactions (Garavan et al., 1999; Simmonds et al., 

2008; Cai et al., 2014). The task-related connectivity post-training was also decreased 

between the rAG and the dorsal striatum. This brain area is related to executive attention 
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and exerting cognitive control, but also to stimulus-response learning (Balleine et al., 2007; 

Jankowski et al., 2009; Liljeholm and O'Doherty, 2012; Mestres-Missé et al., 2012; Robertson 

et al., 2015). Different connectivity patterns were also found in the resting-state data, where 

we showed changes in connectivity between the left and the right MFG, but also between the 

left nucleus accumbens and the left inferior frontal gyrus. We suggest that those findings 

could be interpreted as complementary effects of training. Firstly, we show a decrease in 

activity of the rAG, which might be related to a decreased cognitive conflict after training 

when having to push away unhealthy images. This is additionally related to a more efficient 

inhibition of automatic reactions, which is reflected in a higher functional connectivity 

between the rAG with the rMFG and the dorsal striatum. As an effect of this increased 

coupling of the rAG with these structures, it does not require similar activation strength as 

pre training. Secondly, we propose that the decrease in the rAG activity is related to a higher 

resting state connectivity between inhibitory regions in the brain – the bilateral middle 

frontal gyri, and left inferior frontal gyrus. The left MFG was shown to be activated for 

viewing high caloric food pictures (van der Laan et al., 2011). Changed connectivity between 

the left MFG and the right MFG structures engaged in response inhibition (Garavan et al., 

1999; Simmonds et al., 2008; Boehler et al., 2010; Cai et al., 2014), might therefore be 

associated with training-induced stronger inhibitory tendencies towards unhealthy food 

pictures. Similarly, higher connectivity of a reward related region - the nucleus accumbens - 

and the left inferior frontal gyrus, also engaged in response inhibition (Swick et al., 2008), 

could be associated with increased inhibition of approach response to rewarding stimuli. 

This strengthened inhibitory network in the brain could facilitate avoiding unhealthy food 

pictures, therefore decreasing the demand for suppressing stimulus-response conflicts by 

the rAG. 

To further confirm this, we decided to perform a degree centrality analysis. This was done 

to check whether inhibitory structures, such as the dlPFC or the IFG increased their centrality 

within the whole brain. We did not find any significant between-group changes in degree 

centrality after the training. Potentially, our intervention was not strong enough to elicit 

these changes. Alternatively, changes in DC were too small and could not be detected in our 

analysis. 
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In comparison to CBM in the alcohol context, underlying neural mechanisms seem to differ 

in the food context. A successful reduction of approaching alcohol appears to elicit changes 

in reward valuation areas. A successful reduction of approaching food appears to involve 

conflict, cognitive control and inhibitory areas. One apparent difference between the studies 

is duration of the training, which might potentially explain discrepancies in results. Our short 

training is able to target and change impulsive reactions, increasing inhibitory tendencies 

and decreasing cognitive conflict. Evaluation of stimuli, on the other hand, is more of a 

reflective process and might hence require longer training over multiple sessions. This may 

change rewarding value of problematic stimuli, therefore eliciting different activations in 

reward-related areas. A previous intervention study in obese individuals, applying food 

response training over a four week period, found decreased brain activations in attention 

and reward processing areas, such as the insula, inferior parietal lobe and putamen (Stice et 

al., 2017). Here, authors used a stop signal reaction time task, go/no-go training in a food 

context and a response signal training in a food context, generally training inhibitory 

reactions to high calorie food items. It therefore seems that a longer training elicits changes 

in brain’s valuation system, which is further transferred to changes in motor responses. 

Potentially, short trainings train a motor response and do not have the strength to alter 

reward valuation processes.  

A study by Ritschel and colleagues investigated decision making and cognitive control in 

recovered and acute anorexia nervosa patients. Brain regions including the rAG have been 

shown to be activated to a higher degree in the former group, as compared to the latter 

group, while performing a probabilistic selection task (Ritschel et al., 2017). The authors 

argue that these activations are related to a higher demand for cognitive control in the 

recovered AN patients, since their cognitive control is generally lower than that of acute AN 

patients. This could point to a potential involvement of the rAG in these processes. Further, 

Schonberg and colleagues trained participants to make healthier food choices and found a 

decreased activation in the frontoparietal network after training (Schonberg et al., 2013), 

which might indicate a lower need for cognitive control as a consequence of training. In 

summary, our findings are in line with the aforementioned studies, showing that decreased 

approach bias relates to more efficient connectivity between brain inhibitory regions, which 
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is linked to decreased activity in brain regions related to cognitive control, inhibition and 

suppressing stimulus response conflict. In addition to these studies, ours is the first one 

using a sample of only obese participants. We utilize CBM in the food context and provide 

additional measures that CBM could potentially transfer to, such as rating of an independent 

picture set, but also resting-state fMRI. Moreover, we show that it is possible to change 

people’s tendencies and functional brain layout with just a 20-minute-long training. 

Altogether, our results provide further evidence for the effectiveness of cognitive bias 

modification, as we were able to find significant effects on the neural and behavioral level 

within one session 

It is important to consider some limitations when discussing this study. First of all, sample 

size was moderate (34 participants). Secondly, CBM effects did not translate to the picture 

sorting task. This measure was important in the context of our task as it was meant to assess 

explicit evaluations of healthy and unhealthy food stimuli. We hypothesized that decreased 

approach tendencies towards unhealthy food pictures would relate to explicit evaluations of 

these stimuli. Possibly, additional features of food, such as sweet or savory taste, influence 

this process. Our training only focused on healthy and unhealthy categories without further 

divisions. This may decrease the sensitivity of our analyses and may be related to lack of 

significant effects on the picture sorting task, but also to the lack of generalization effects of 

this training to non-trained pictures. Additionally, in our study we only tested obese 

participants and we cannot infer whether similar training effects would occur in lean 

participants. However, a previous study by Mehl and colleagues hints towards the fact that 

lean participants are not that easily influenced by the CBM in an unhealthy food context, 

possibly because they do not show initial bias (Mehl et al., 2018). Lastly, we compared 

approach and avoidance tendencies between healthy and unhealthy food images, hence not 

including neutral images of non-food objects.  

Importantly, we do not show effects of our training on food intake. This is a main goal of 

cognitive bias modification studies in the food context, which ultimately should lead to a 

decreased consumption of unhealthy foods. Future studies should hence aim to implement 

CBM interventions in real-life settings, assessing its impact on eating behavior and food 
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choice. We believe, however, that our study provides a basis on which further studies 

focusing on food approach bias might be conducted. Our findings shed light on underlying 

efficacy mechanisms of CBM in obesity, indicating that inhibitory control processes play an 

important role. Future studies should therefore aim to specifically strengthen inhibitory 

control, especially regarding unhealthy food. Additionally, showing that already one 20-

minute-long session can modify people’s approach tendencies in the laboratory context is 

very promising. It enables further research using more complicated designs with longer 

training period in a natural context. 

In conclusion, we were able to show that obese individuals have automatic approach 

tendencies towards food. We further present a possibility to retrain and decrease approach 

tendencies, especially towards unhealthy foods, and give insight into underlying neural 

mechanisms. Potentially, this study could constitute a basis for intervention programs 

utilizing similar behavioral paradigms. We suggest that those kinds of studies implement a 

longer training period, similar to ones used with alcohol-dependent patients. Additionally, 

by showing neural correlates of CBM, our results contribute to possible brain stimulation 

research focusing on decreasing approach bias towards food.  

 

Table 4.2.10 Statistical table showing distribution of variables, tests used for hypothesis 

testing and confidence intervals/observed power for each of the tests 

 Distribution Type of test Confidence intervals / observed power 

a - Chi square 0.065 

b Normal T-test 0.40 – 6.34 

c Non-normal T-test -3.07 – 5.84 

d Normal T-test -0.94 – 1.79 

e Normal T-test -2.12 – 1.50 

f Normal T-test -1.53 – 1.06 

g Normal T-test -5.19 – 2.21 

h Normal T-test -4.49 – 0.28 

i Normal T-test -3.99 – 1.60 
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j Normal T-test -4.09 – 2.31 

k Normal T-test -2.05 – 1.30 

l Normal T-test -2.25 – 0.64 

m Normal T-test -1.21 – 1.18 

n Normal T-test -0.96 – 0.65 

o Normal T-test -0.77 – 0.66 

p Normal T-test -0.89 – 0.48 

q Normal T-test -0.39 – 0.52 

r Normal T-test 6.53 – 7.30 

s Normal T-test 2.06 – 0.95 

t Normal T-test 0.050 

u Normal T-test 0.100 

v Normal T-test 15.01 – 87.81 

w Normal T-test 4.61 – 96.10 

x Normal T-test 27.86 – 102.27 

y Normal T-test 1.46 – 73.54 

z Normal ANOVA 0.536 

aa Normal ANOVA 0.854 

ab Normal ANOVA 0.824 

ac Normal T-test 24.64 – 110.54 

ad Normal T-test -25.85 – 44.23 

ae Normal T-test -64.15 – 28.62 

af Normal T-test -8.64 – 63.26 

ag Normal ANOVA 0.510 
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 Study 3 – temporal impulsivity in a sample of lean, overweight and 

obese participants 

4.3.1 Rationale of the study 

Study 3 was carried out in order to replicate previous results concerning increased delay 

discounting in participants with obesity (Amlung et al., 2016; McClelland et al., 2016). 

Secondly, in this study we established methodological framework for study 4. In a simple 

delay discounting paradigm, where participants are offered either smaller and immediate, 

or later but larger rewards, we tested a large group of lean, overweight and obese 

participants. We hypothesised that obese participants will show the highest delay 

discounting of all three subgroups. Additionally, we hypothesised that, based on previous 

reports (Weller et al., 2008), gender might play an important role in this relationship, where 

obese women choose more immediate options than lean women, with this difference being 

absent for men. 

4.3.2 Materials and methods 

4.3.2.1 Participants 

162 healthy participants aged 18-35 years took part in this experiment (77 men in total; 

mean BMI = 27.47 kg/m2, SD 6.03; mean age = 26 years, SD 4 years). BMI distribution in the 

sample can be seen in Figure 4.3.1. Participants met the following a priori inclusion criteria: 

no history of neurological/psychological diseases, no drug, cigarette or alcohol addiction, no 

hypertension or diabetes. Volunteers were compensated for taking part in the experiment 

with 7 Euro/hour. Sample in this study consists of participants recruited as parts of two 

different studies investigating delay discounting. Those studies were conducted according 

to the Declaration of Helsinki and approved by the Ethics Committee at the University of 

Leipzig. All participants gave their written informed consent prior to their participation in 

the studies.   
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4.3.2.2 Behavioural task 

The experimental session consisted of an introduction to the experiment and a computerised 

DD task. During the task, we offered participants two hypothetical monetary options, one 

smaller but immediately available reward (SIR) and one larger, delayed (available after a 

variable delay of 1, 2, 4, 6, 9 or 12 months) reward (LDR). The task was closely aligned to the 

procedures described in Simmank and colleagues’ study (Simmank et al., 2015). The two-

step procedure included a ‘dynamic adjustment task’ and a ‘random choice task’. This session 

provided us with estimates of individual indifference points (IPs), which indicate the point 

of statistical indifference between immediate and delayed options. In other words, the IPs 

were defined as the ratio of SIR to LDR for a given delay where the subjective value (SV) of 

LDR was equal to the value of SIR. In the ‘dynamic adjustment task’, the IPs were calculated 

using a staircase procedure, where participants were offered different immediate and 

delayed rewards. This was done until two consistent IPs were obtained for each of the delays. 

Further, the ‘random choice task’, in which combinations of the previous task were 

administered again in a random order, was used to validate parameters obtained in the 

‘dynamic adjustment task’. This task allowed us to further calculate delay discounting 

parameters and compare them between participants. 

To be able to control our analysis for socioeconomic status, we have included a short 

questionnaire with questions regarding individual’s total income, money available to spend, 

satisfaction with the income, parents’ income, school degree and professional degree. 
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Figure 4.3.1 Figure showing the distribution of BMI in the study sample. Red dot depicts 

sample’s mean, bold line represents sample’s median, horizontal lines below and above 

represent 1st and 3rd quartiles, and the vertical lines represent sample’s range. Violin plot 

depicts frequency of BMI.  

4.3.2.3 Data analysis 

Behavioural data were analysed using R language within Jupyter Notebook framework and 

MATLAB 2012b (The MathWorks, Inc., Natick, Massachusetts, United States, modelling of 

delay discounting data using quasi-hyperbolic model).  

4.3.2.3.1 Delay discounting data modelling 

Simmank and colleagues have used a similar sample of lean and obese participants and, to 

our knowledge, are the only ones to have compared the fit of hyperbolical and quasi-

hyperbolical models to the delay discounting data. The hyperbolic model of delay 

discounting (Laibson, 1997) describes it as a function of a single discount factor k. The quasi-

hyperbolic model assumes that delay discounting is dependent on two distinct parameters 

– beta and delta (Laibson, 1997). The first one describes a bias that is independent of delay 

– discounting the delayed reward just because it is delayed. The latter parameter describes 
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delay-dependent discounting – the larger the delay the more the reward is discounted. 

Findings of Simmank and colleagues showed that the quasi-hyperbolic model better fits the 

data. We therefore decided to follow their recommendations and use this model as well. The 

quasi-hyperbolic model is defined by: 

 

 

α=βδτ, 

 

 

where alpha is the subjective value of a delayed reward, beta is a delay-independent bias 

towards immediate rewards, delta is a delay-dependent discount factor, and tau is the delay 

(Laibson, 1997). Choices in each individual trial were entered into the model and beta and 

delta parameters were calculated (for details see ‘Estimation of Discount Function’ section 

in Simmank et al., 2015). We investigated the relationship between BMI and the DD 

parameters using permutation based multiple regression (lmperm package in R, 5000 

permutations). Further, we investigated the interaction of gender and BMI, because an 

earlier study showed gender-dependent differences in DD between obese and lean 

participants (Weller et al., 2008). In this analysis we also included age and variables 

describing socioeconomic status of participants. Prior to the analysis all numerical variables 

were z-transformed. 

4.3.2.3.2 Participants’ exclusions 

Before the analysis we excluded participants for whom the quasi-hyperbolic model 

estimation process was impossible (n=33). This happened if the estimation process returned 

values below 0 or above 1, since the parameters values must lie between 0 and 1. Other 

values indicate that the estimation process was unsuccessful.  We then tested for outliers 

concerning BMI and beta and delta delay discounting parameters (no outliers detected). A 

priori outlier exclusion criterion was: values being 2.2*interquartile range below or above 
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the first or third quartile, respectively (Tukey, 1977; Hoaglin et al., 1986; Hoaglin and 

Iglewicz, 1987). This resulted in a final sample of 129 participants. 

4.3.3 Results 

The distribution of beta and delta parameters is depicted in Figure 4.3.2. For detailed results 

of the regression analyses see Table 4.3.1. The first regression analysis included beta 

parameter and its interaction with gender as variables of interest, and age and 

socioeconomic status as control variables. It showed a significant relationship between BMI 

and beta parameter dependent on gender (Figure 4.3.3). Further, the second regression 

analysis focused on the delta parameter and its interaction with gender, as well as age and 

socioeconomic status as control variables. It indicated that the delta parameter was related 

to BMI (Figure 4.3.4).  

 

 

Figure 4.3.2 Figure presenting distribution of beta and delta delay discounting parameters 

in the study sample. Red dots depict sample’s means, bold line represents sample’s median, 

horizontal lines below and above 1st and 3rd quartiles, and the vertical lines sample’s range. 
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Figure 4.3.3 Figure presenting a significant interaction of BMI and gender on beta delay 

discounting parameter. Black dots represent data points, red line is the best fit, and the grey 

shaded areas are 95% confidence intervals. 
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Figure 4.3.4 Figure representing relationship between delta delay discounting parameter 

and BMI in full sample. Black dots represent data points, red line is the best fit, and the grey 

shaded areas are 95% confidence intervals. 

 

Table 4.3.1 Table with regression coefficients and p-values for both of regression analysis 

investigating influences of BMI on delay discounting. Significant p-values are marked in bold. 

After Bonferroni correction, p-value threshold indicating significance was 0.0250. 

 
Beta Delta 

Coefficient p-value Coefficient p-value 

BMI -0.0013 0.5275 -0.0022 0.0110 

BMI * Gender -0.0058 0.0224 -0.0008 0.4622 

Age 0.0011 0.6230 0.0011 0.8235 

Total income -0.0169 0.4110 -0.0088 0.1562 

Money available to spend 0.0234 0.4655 0.0018 0.6333 

Satisfaction with the income 0.0449 0.0532 0.0132 0.0515 

Parents’ income -0.0153 1.0000 -0.0051 0.4615 

Highest school degree 0.0754 0.4545 0.0002 0.9608 

Professional degree 0.0035 0.6667 -0.0037 0.5102 
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Gender 0.0205 0.4234 0.0003 1.0000 

Adjusted R2 0.0340 0.0595 

 

4.3.4 Discussion 

We performed this study in order to replicate previous findings relating temporal 

impulsivity to measures of obesity (Weller et al., 2008; Amlung et al., 2016; McClelland et al., 

2016). Further, we wanted to develop a methodological framework for study 4, which would 

enable us to try altering maladaptive impulsive tendencies in obesity. We have successfully 

shown that temporal impulsivity is related to BMI, even after controlling for potential 

confounders, such as age or socioeconomic status. Interestingly, this was true for the delta 

parameter, describing delay-dependent delay discounting, where higher BMI was related to 

increased delay discounting (lower delta values). For the beta parameter, representing 

delay-independent present bias, we found that it can be predicted by BMI depending on 

gender. Here, men and women show opposite directions of relationship between BMI and 

delay-independent delay discounting, where females show increased delay discounting with 

increasing BMI values. 

Findings concerning temporal impulsivity and obesity measures are equivocal and indicate 

that there is a strong relationship between these variables (Weller et al., 2008; Rasmussen 

et al., 2010; Bickel et al., 2014; Jarmolowicz et al., 2014; Amlung et al., 2016; McClelland et 

al., 2016). Previous studies most often use a hyperbolic model of delay discounting (Laibson, 

1997), however, we followed recommendations of Simmank et al., and used the quasi-

hyperbolic model to analyse our data. In this model, the delta parameter corresponds to the 

k parameter from the hyperbolic model. Therefore, our findings are in line with previous 

literature predominantly showing gender-independent relationships between k parameter 

value and obesity measures. On the other hand, the beta parameter is absent in the 

hyperbolic discounting. To our knowledge, the only study that compared this parameter 

between lean and obese participants is the one by Simmank and colleagues. Here, the authors 

did not find significant differences. Our data indicate that there is a gender-dependent 

relationship between present bias and BMI. This is a new finding that suggests that males 
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and females differentially discount rewards just because they are delayed. In females, higher 

BMI correlates with lower value of present bias, which in turn means higher discounting. An 

opposite relationship was observed in males. To our knowledge this is the first finding 

showing this kind of relationship between BMI and delay-independent delay discounting. 

This finding is interesting in light of results shown by Weller and colleagues in 2008. Here, 

using the hyperbolic model of delay discounting, the authors found a significant interaction 

of gender and obesity status, where obese women discounted rewards more than lean 

women, with similar relationship being absent for men. Our study might suggest that this 

gender difference could be ascribed to the present bias (beta parameter), which is not 

directly measured by the hyperbolic model. Future studies should, however, replicate this 

finding, especially the gender effect, and investigate which additional factors, such as 

genotype, might influence delay discounting in obesity.  

This study is not without its limitations. The overweight group in this sample was 

underrepresented, which can be seen in Figure 4.3.1. Therefore, an improved study would 

investigate relationships of delay discounting and homogenously distributed BMI, 

potentially with a much broader range.   
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 Study 4 – medial and dorsolateral prefrontal cortex mediate the 

influence of incidental priming on economical decision making in 

obesity 

4.4.1 Rationale of the study 

This study tackles the processes related to conscious decision-making using incidental 

priming that would allow altering those processes in an implicit manner. Using a delay 

discounting paradigm, we investigated whether 1) whether obese participants indeed 

choose more disadvantageous, immediate options more often than their lean counterparts 

(similar to study 3); 2) whether obese participants are more susceptible to priming and the 

neural underlying mechanisms of this phenomenon. To do this, we implemented a simple 

monetary DD paradigm, just as in study 3. Additionally, in a second part of the experiment 

before each of the choices, we primed participants with a food-related visual or gustatory 

stimulus of positive, neutral or negative valence. Visual stimuli were thought of as more 

distal ones representing food availability, while gustatory stimuli were more proximal ones 

representing actual food intake. A previous study in a similar context used only positive food-

unrelated stimuli (Simmank et al., 2015). With our design we were able to not only expand 

this knowledge to negative stimuli, but also present a more ecologically valid approach of 

priming with food-related stimuli. These are often more problematic in obesity and showing 

how they influence general, non-food related decisions expands our knowledge about 

instability of decision making processes in obesity also in the economic context. Additionally, 

as none of the previous studies have explored what the neural mechanisms of priming in 

obesity are, our study aims to fill this research gap. Based on a previous study, we expected 

that negative cues would elicit more priming towards delayed options, whereas positive cues 

would have an opposite effect (Luo et al., 2014). Based on the assumption that remote cues 

signal potential food intake, i.e. availability of food, and proximal cues signal acute food 

intake, i.e. with direct consequences to the body, we expected stronger effects in the proximal 

condition. Further, we hypothesised that the priming effect would be larger in obese 

participants (Simmank et al., 2015), and that this enhanced effect would be expressed in 

changes of brain activity in the dlPFC, vmPFC (increased activity for delayed choices) and 
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striatal areas (increased activity for immediate choices (McClure et al., 2004; Kable and 

Glimcher, 2007; Hare et al., 2009). This hypothesis was also based on previous literature 

showing changes in the dlPFC and vmPFC activity in similar paradigms utilising incidental 

cues in DD paradigms (Murawski et al., 2012; Luo et al., 2014). In line with previous reports 

showing differences between obese and lean participants in the dlPFC activity in a number 

of tasks, we expected different engagement of this brain region in incidental priming, 

dependent on weight status. Moreover, since the priming effect was hypothesized to change 

the subjective value of delayed rewards, we expected that it would be associated with 

changes in activity of and connectivity between reward valuation regions. 

4.4.2 Materials and Methods 

4.4.2.1 Participants 

56 healthy lean and obese participants aged 18-35 years took part in our experiment (29 

men in total. subsample 1: 30 lean, mean BMI = 22.14 kg/m2, SD 1.81; subsample 2: 26 obese, 

mean BMI = 34.32 kg/m2, SD 3.37; group differences in BMI: t(54)=-16.499, p=0.019; lean: 

mean age = 25.83 years, SD = 3.14, obese: mean age = 27.42, SD = 4.16, group differences in 

age: t(54)=-1.627, p=0.110). BMI criteria for inclusion in the lean group were as follows: 18-

25 kg/m2, obese group: BMI above 30 kg/m2. The majority of our participants were 

registered in the Institute’s database (51 participants) and had previously participated in 

other studies carried out in the Institute. This database includes a large number of 

predominantly healthy participants willing to participate in various studies. It 

predominantly includes students at the University of Leipzig, but also other well-educated 

individuals of all ages. Unfortunately, the number of individuals with obesity included in the 

database is comparably low, hence, it was necessary to recruit additional participants with 

obesity for this study. In total, we recruited 5 new participants, 4 of which were included in 

the obese sample. These participants were recruited through an online advertisement 

specific for this study. Given that no participant previously participated in experiments using 

the same task, and a mixture of more and less experienced participants is common practice 

in most fields (in particular those requiring samples with specific features), we have no 

reason to believe that it affected our results in any way. Our sample size was based on a 
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similar behavioural research (e.g., Simmank et al., 2015; Murawski et al., 2012; Luo et al., 

2014). However, given that we had to accept some drop-out for our fMRI analysis, which is 

unfortunately a common problem in studies of this kind, it is possible that there were subtle 

effects that we might have not been able to detect. Participants met the following a priori 

inclusion criteria: no history of neurological/psychological diseases, no drug, cigarette or 

alcohol addiction, no hypertension or diabetes, no MRI-related contraindications. The full 

fMRI sample was reduced to 51 participants due to technical problems during the fMRI 

session (for exclusions see section 4.4.2.4). Volunteers were compensated for taking part in 

the experiment with 7 Euro/hour for behavioural sessions and 8 Euro/hour for MRI 

sessions. The study was conducted according to the Declaration of Helsinki and approved by 

the Ethics Committee at the University of Leipzig. All participants gave their written 

informed consent prior to their participation in the study.   

4.4.2.2 Procedures overview 

4.4.2.2.1 Behavioural task 

Behavioural task was identical to the one described in section 4.3.2.2. 

4.4.2.2.2 fMRI task 

The fMRI part of the experiment consisted of ‘primed delay discounting’ trials and 

‘perception only’ trials mixed and presented in a random order (see Figure 4.4.1). The total 

number of trials per experiment was 384. Participants indicated their choices by pressing 

buttons on single button boxes that were placed in each of their hands. This part of the MRI 

experiment lasted approximately 54 minutes and was divided into four blocks. Participants 

were offered breaks between the blocks. After completing the experiment, we asked 

participants to evaluate the priming stimuli (described below) on a visual analogue scale 

from 0-100 (negative-positive). To make the hypothetical choices more realistic, we offered 

our participants a 1/6 chance of winning one of the rewards they chose during the ’primed 

delay discounting’ trials. The reward was chosen at random, and the monetary amount was 

either added to the participants’ reimbursement (immediate choice), or transferred to their 

bank account after a delay (2 months) corresponding to their choice.  



 

 

 
95 

 

Figure 4.4.1 Overview on the experimental paradigm. A Delay Discounting (DD) and B 

Perception (P) trial outline. Each trial consisted of a priming period (500ms), task screen 

(3500ms), response screen (2000ms) and a jittered intertrial interval (1000-3000-5000ms, 

logarithmic distribution). During the priming period, a picture (visual conditions) or a 

fixation cross (gustatory conditions) was presented on the screen. In the gustatory 

conditions, taste liquids were delivered to participants simultaneously, for 500ms. The task 

screen consisted of a fixation cross and the two hypothetical rewards presented above and 

beneath it (random placement). For the response screen, the fixation cross turned green and 

the rewards appeared on its left and right sides (random placement). Visual stimulation 
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during the intertrial interval consisted of a fixation cross. C: list of priming stimuli used in 

our experiment. 

 

• Primed delay discounting trials 

Before making each DD decision, we presented participants with one of six different food-

related stimuli (DD conditions, Figure 4.4.1). We used visual and gustatory stimuli of 

positive, negative and neutral valence, thus introducing 6 different DD conditions (gustatory 

positive – Gpos, gustatory neutral – Gneu, gustatory negative – Gneg, visual positive – Vpos, visual 

neutral, Vneu, visual negative – Vneg). Positive and negative food pictures were acquired from 

the FRIDa database (Foroni et al., 2013). We chose positive and negative food pictures 

according to their ratings and content, creating six pairs of valence-matched images with the 

same content (e.g. positive bread – negative bread, Table 4.4.1). To create neutral visual 

prime stimuli, the valenced pictures were divided into a matrix of 53x53 100-pixel squares 

and subsequently randomly scrambled. This step was performed to preserve the colour 

composition of visual stimuli and at the same time erasing their content. To administer the 

gustatory stimuli, three PVC tubes were placed directly in participants’ mouth. The liquid 

delivery was performed using a computer-controlled, MRI compatible gustometer 

(Multistimulator OG001, Burghart Messtechnik, Wedel, Germany). The flow rate was set at 

500μl/s, which means that during the entire experiment volunteers received 50 ml of liquids. 

The stimuli were apple juice (positive), salty tea (negative) and neutral taste solution 

(neutral, O'Doherty et al., 2001). To reduce the duration of the experiment we used only one 

temporal delay for all trials (2 months) in combination with 12 pairs of SIR and LDR 

(corresponding to 12 rs). Each of the pairs was repeated four times per condition. Thus, the 

number of trials in the DD conditions was 288.  

 

Table 4.4.1 . List of pictures used as stimuli in the primed delay discounting task. Pictures 

were taken from the FoodCast Research Images Database (Foroni et al., 2013). The table 

comprises official database picture names and the content of each image. 



 

 

 
97 

Positive food pictures Negative food pictures 

Natural Food 009 - orange Rotten Food 003 - orange 

Natural Food 026 - cucumber Rotten Food 009 - cucumber 

Natural Food 051 - cheese Rotten Food 013 - cheese 

Natural Food 037 - strawberry Rotten Food 014 - strawberry 

Natural Food 055 - apple Rotten Food 018 - apple 

Natural Food 089 - bread Rotten Food 025 - bread 

 

• Perception only trials 

To control for perception-related activity in priming-related brain activity, we introduced 

six analogous ‘perception only’ conditions with the same priming stimuli as in the DD 

conditions. Here, instead of the hypothetical rewards and a delay, participants were shown 

letters X or x and were asked to press a button corresponding to the side on which the capital 

letter X appeared (P conditions, Figure 4.4.1). Each P condition was repeated 16 times, which 

amounted to 96 trials.  

4.4.2.2.3 Questionnaires 

After the experiment, participants filled in a set of questionnaires: Beck’s Depression 

Inventory (BDI; Beck et al., 1996), Three Factor Eating Questionnaire (TFEQ; Stunkard and 

Messick, 1985), Behavioural Inhibition System and Behavioural Activation System (BIS/BAS; 

Carver and White, 1994), Zaubermann Time Perception Scale (ZTPS; Zauberman et al., 

2009). We used BDI as a screening tool to potentially exclude participants with depression. 

The cut-off value was 18 points (Hautzinger, 2006) and none of our participants reached it. 

TFEQ assesses eating behaviour on three dimensions: disinhibition (DI), cognitive restraint 

(CR) and hunger (H). BIS/BAS captures how a person’s behaviour is driven by reward and 

punishment. These features often differ between obese and lean participants and may 

impact on performance in the current task. Additionally, secondary school education, 
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professional qualifications and household income were assessed using a short 

questionnaire.  

4.4.2.3 Neuroimaging 

The neuroimaging data were acquired using a 3T Siemens PRISMA scanner with a 32-

channel head coil. 1520 T2* images were collected using an EPI sequence (TE=22ms, FA=90o, 

TR=2110ms, 40 slices, voxel size: 3x3x3mm) over a time of 54 minutes. Each image was 

acquired in an ascending fashion. For 31 participants, whose anatomical images were not 

available in the Institute’s database, we acquired high-resolution MPRAGE images 

(TE=2.98ms, FA=9o, TR=2300ms, TI=900ms, voxel size: 1x1x1mm). There were 25 

participants whose anatomical images were available through the Institute’s database. For 

those participants the time between anatomical image acquisition and the current 

experiment was: 3 years for 2 participants, 2 years for 8 participants, 1 year for 8 

participants, and images were acquired the same year as the current experiment for 7 

further participants. This sample of 25 participants included 18 lean and 7 obese individuals. 

4.4.2.4 Data analyses 

4.4.2.4.1 Sample sizes 

The full sample size for analysis of behavioural, baseline delay discounting and questionnaire 

data was n=56. The final fMRI sample for analysis of perceptual-related, choice value-related 

and task-related choice-independent brain activity was n=51. For behavioural and fMRI 

priming analyses and task-related choice-dependent fMRI analyses we had to exclude 

participants who chose either exclusively immediate or delayed rewards (post hoc exclusion 

criterion), and outliers concerning the cumulative priming effect for each of the four non-

neutral priming conditions. The outliers were a priori defined as values lying more than 1.5 

interquartile range above/below Tukey’s hinges (H1 and H2). This resulted in a final sample 

size of n=36 participants (19 lean, 17 obese).  
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4.4.2.4.2 Behavioural data  

Behavioural data were analysed using SPSS 22 (IBM, Armonk, New York, United States, 

statistical analysis of behavioural data) and MATLAB 2012b (The MathWorks, Inc., Natick, 

Massachusetts, United States, modelling of delay discounting data using quasi-hyperbolic 

model). To investigate between-group differences in the ratings of the priming stimuli, we 

used an ANOVA with weight status as a between subject variable. To test for rating 

differences between stimuli of different modalities and valences, we used a repeated 

measures ANOVA with modality and valence as within subject factors. Baseline and primed 

delay discounting data were plotted using ggplot2 toolbox for R in RStudio (Wickham, 2009).  

4.4.2.4.3 Delay discounting data modelling 

Delay discounting data modelling was performed using procedures described in section 

4.3.2.3.1. 

4.4.2.4.4 Primed delay discounting data modelling 

In order to obtain a trial-by-trial measure of the priming effect, we calculated the probability 

of choosing the delayed reward during each trial by fitting a generalized linear model with a 

logit link function to the data. Here the 12 r values represented a predictor variable, and the 

dependent variable was denoted by the actual probability of choosing the LDR extracted 

from the data. We then extracted individual probabilities of choosing LDR for each r from the 

model. To obtain a comparable measure of the priming effect, we subtracted the probabilities 

for neutral conditions from the positive and negative conditions within respective 

modalities, thus obtaining four separate measures, one for each non-neutral priming 

condition. 

To investigate whether probabilities of choosing the LDR were different for each r, we 

entered the priming effect values for all r’s into a repeated-measures general linear model as 

a within subject, dependent factor. This was done separately for each of the four non-neutral 

priming conditions. 

Further, we aimed to establish whether the priming effect for different conditions, 

independent of r, was different from 0 and different between groups. For this, we calculated 
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a cumulative priming effect for each condition by adding all the individual probabilities of 

choosing the LDR. We then used a one-sample t-test to investigate whether the cumulative 

priming effect in each condition was different from zero. This would indicate a significant 

change of probability of choosing the LDR from a neutral condition to the corresponding 

positive or negative priming conditions. We used a two-sample t-test to investigate whether 

there were any between-group differences between priming conditions. 

Following our findings on the behavioural level and to mimic our neuroimaging analysis 

(GLM 6), we decided to investigate whether BMI and BMI2 influence r-dependent priming in 

the Gneg condition. To this end we entered priming effect values for all r’s into a repeated-

measures general linear model as a within-subject, dependent factor, and BMI and BMI2 as 

covariates (Brambor et al., 2006).  

4.4.2.4.5 Questionnaire data 

Questionnaire data were tested for group differences using a two-sample t-test. The income 

and education assessment questionnaire data were tested for group differences using a chi 

square test. Moreover, following Simmank et al. (2015), we tested for within-group 

correlations between delay discounting factors and subscales of the Three Factor Eating 

Questionnaire using Spearman’s correlation. 

4.4.2.4.6 Neuroimaging data analysis 

We used FSL 5.0.8 (The University of Oxford, Oxford, United Kingdom), SPM 12 (Wellcome 

Department of Cognitive Neurology, London, United Kingdom) and MATLAB R2012b to pre-

process and statistically analyse the functional imaging data. Brain figures were plotted 

using Nilearn. Anatomical structures corresponding to peak voxels were identified using the 

xjView toolbox (http://www.alivelearn.net/xjview). To enable further pre-processing steps, 

structural images were skull-stripped using FSL’s brain extraction tool (Smith, 2002) and 

SPM12 segmentation tool. Functional data were motion corrected using McFLIRT (Jenkinson 

et al., 2002), slice-timed, and smoothed with a 6mm FWHM Gaussian Kernel, and normalised 

to MNI space using FSL. To remove motion and physiological noise-related artefacts, we used 

an automatized independent component analysis approach (ICA-AROMA; Pruim et al., 
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2015). Prior to statistical analysis on an individual level, the data were high-pass filtered 

with a filter of 128s.  

4.4.2.4.7 Analysis of BOLD response 

A two-level group random effects analysis was performed using SPM12. Single subject 

regressors were entered into a univariate general linear model and convolved with a double-

gamma hemodynamic function. Individual contrast files were then entered into a second 

level analysis (GLM1: flexible factorial model, remaining GLMs: one- or two-sample t-tests). 

In this step, BMI, age and gender were entered as covariates-of-no-interest, in order to 

control for variance in those variables. Additionally, for analysis of priming effects in the Gneg 

condition, we added BMI2 as a covariate of interest (see results section 4.4.3.5). Unless stated 

otherwise, presented results were thresholded at a whole-brain voxel level with a threshold 

of p<0.005 and corrected for multiple comparisons on a cluster level with p<0.05 (family-

wise error, FWE). The FWE p-value was Bonferroni corrected for the number of GLMs used 

in the study, resulting in an effective p-value threshold of 0.007. 

First, we modelled brain activity related to perception and priming-independent choice 

(GLM 1, GLM 2 and GLM 3) in order to replicate findings already reported in the literature. 

GLM 4 and GLM 5 were the models of main interest, as they investigated how brain activity 

is related to priming effects that we observed on the behavioural level. GLM 6 and GLM 7 

were parts of a post-hoc analysis to elucidate mechanisms behind the main effects. 

Including all regressors of interest in one GLM would have required including more than 200 

regressors. Hence, some of the analyses needed to be separated into different models. 

Moreover, this approach allowed us to maximise statistical power for our analyses, as some 

analyses (without finer distinctions between conditions) could be conducted within the full 

fMRI sample (51 participants, GLM 1 and GLM 2), instead of with the priming sample (36 

participants, GLMs 3-7). 

• GLM 1: Perception-related brain activity 

We investigated how brain activity changed with respect to the priming stimulation. 14 

regressors were entered into the single subject analysis: 12 priming regressors representing 
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the 3 visual and 3 gustatory priming conditions for two trial types (DD and P), and 2 

regressors representing the task phase and the response phase (independent of the 

condition). The priming regressors were time-locked to the onset of each trial, and the 

duration of each event was set to 500ms (priming length). On the second level, contrasts for 

individual regressors were entered into a flexible factorial model, with modality and valence 

as factors. We contrasted gustatory and visual related brain activity against each other 

(visual > gustatory; visual < gustatory). Moreover, we investigated brain activity related to 

positive and negative valence (positive > negative; negative < positive; positive > neutral; 

negative > neutral), independent of modality. In this analysis the results concerning 

gustatory and visual brain activity were thresholded at an FWE-corrected whole brain level 

of 0.05 and with an extent cluster threshold of 200 voxels, while all remaining results were 

thresholded at a whole-brain voxel level p<0.005 and FWE-corrected on a cluster level 

(p<0.05). 

• GLM 2: Choice value- and task-related brain activity 

To investigate whether brain activity was modulated by the value of the chosen reward on a 

trial-by-trial level, we entered the choice value on single subject-level as a parametric 

modulator of a single regressor containing all DD trials. The model also included a regressor 

representing task phase for P trials, and two regressors representing priming phase and 

response phase (independent of conditions). Here (and in the following models) the task 

regressors were time-locked to the onset of the task screen and the duration of each event 

was set to 3500ms. We contrasted DD and P trials against each other, as well as investigated 

where brain activity correlated with choice value. Because of high statistical significance, the 

results in the DD>P contrast were thresholded at an FWE-corrected whole brain threshold 

of 0.05 and with an extent cluster threshold of 400 voxels. 

• GLM 3: Choice-dependent brain activity 

We investigated whether brain activity was modulated by whether participants chose 

delayed or immediate rewards. To this end, we entered 5 regressors into the single subject 

analysis: 2 regressors representing DD task phases – one for delayed and one for immediate 
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choices (independent of priming conditions) – 1 regressor representing task phase for P 

trials, and 2 regressors representing priming and response phases (independent of condition 

and trial type). Moreover, the first two regressors were parametrically modulated by the 

choice value on each trial (following the approach described in Hare et al., 2014). Brain 

activity for immediate choices was compared with brain activity for delayed choices.  

• GLM 4: Priming related changes in brain activity 

We investigated whether behavioural priming effects were reflected in changes in brain 

activity. For this analysis we entered 14 regressors into the first level analysis: 12 reflecting 

12 different priming conditions, irrespective of the delayed or immediate choice, and 2 

regressors reflecting the response phase and the priming phase (independent of the 

condition). This analysis was mainly used to investigate how brain activity in the Gneg 

condition differed from the other conditions, since we only found significant behavioural 

effects in this. This was based on a priori assumptions that we would only investigate brain 

activity differences in conditions for which behavioural effects were significant. 

• GLM 5: Trial-by-trial priming effect modulation of brain activity 

To investigate whether brain activity was modulated by the trial-by-trial priming-effect (the 

probability of choosing the LDR in a priming condition minus the probability of choosing the 

LDR in a respective neutral condition) in the Gneg condition, we entered the priming effect as 

a parametric modulator of a regressor containing all DD trials within this condition (unlike 

GLM 4). As described above, this regressor was obtained by modelling r-dependent 

probabilities of choosing delayed rewards for each individual trial. Additionally, we entered 

13 other regressors – 11 for each of the remaining conditions (in which no significant 

priming effect was found), and two other regressors representing the priming phase and the 

response phase (independent of the condition). The contrast of interest was the parametric 

regressor. 

• GLM 6: Psychophysiological interaction (PPI) analysis 

In order to better understand the mechanisms underlying the observed priming effect, we 

performed a PPI analysis. This analysis describes how contributions of different brain areas 
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to each other change within a psychological context (Friston et al., 1997). Since those 

interactions occur on a neural level, not on the hemodynamic level, PPI involves steps such 

as deconvolution of the BOLD signal, calculating interaction term with the psychological 

variable, and reconvolution of this interaction with the hemodynamic response function. 

Here, we tested whether the dlPFC (identified in GLM 4) would change its connectivity with 

other brain regions depending on the trial-by-trial probability of choosing the LDR that we 

entered as a parametric modulation into the model. For this analysis, we used peak voxel 

coordinates from the GLM 4 contrast of the gustatory negative conditions versus other 

conditions (as this condition revealed the strongest results), and defined a 6mm radius 

sphere around it as a volume of interest. We then created a separate GLM, which consisted 

of 16 regressors: time course of the VOI (physiological factor), values of parametric 

modulation (trial-wise probability of choosing the delayed reward; psychological factor), the 

PPI term, and 13 remaining regressors representing 11 priming conditions (without Gneg) 

and response and priming phases of the experiment (independent of condition). This was 

done according to recommendations by O’Reilly and colleagues (O’Reilly et al., 2012). In 

comparison to the GLM 5, GLM 6 includes three additional regressors specific for the PPI 

analysis, and no regressor representing the Gneg condition. The contrasts of interest included 

the PPI interaction regressor, and the BMI regressor, as we tested for correlation of 

functional connectivity and BMI. 

• GLM 7: PPI analysis: group differences in Gneg condition 

In this model we aimed to investigate general group differences in connectivity between 

gustatory negative and gustatory neutral conditions independent of choice difficulty (based 

on behavioural group differences). To do that, we used the same seed regions as in the GLM 

6 analysis and created three PPI regressors: time course of the VOI, main effect regressor 

(Gneg > Gneu, psychological factor), and the PPI term. Similarly to GLM 6, we added 10 

regressors to the model representing the remaining priming conditions and 2 representing 

response and priming phases of the experiment. Here, contrast of interest was the PPI 

interaction regressor. 
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4.4.3 Results 

4.4.3.1 Income and education 

Using a short questionnaire we assessed participants’ secondary school education, 

professional qualifications and household income (Table 4.4.2). The only significant 

difference between groups concerned the professional degree. This analysis revealed that 

lean participants had higher academic education than obese participants. Moreover, 

individual income group differences were on the verge of significance, indicating that obese 

participants earned more than lean participants. Differences in income might influence delay 

discounting behaviour, however, in a way where participants earning more money should 

have lower delay discounting (Reimers et al., 2009). This was not true for our sample, where 

obese participants earned more and were steeper discounters. 

  

 

 

 

 

Table 4.4.2 Income and education group differences between lean and obese participants. 

Lean and obese groups differed significantly concerning their professional degree with lean 

participants having a higher professional degree. Total income differed at trend-level 

between groups with obese individuals having a higher income. 

Variable Test statistic (Pearson chi-
square) 

Exact p-
value 

Phi 
coefficient 

Total income 14.367 0.055 0.507 

Money available to spend 7.456 0.544 0.365 

Satisfaction with the 
income 

4.439 0.346 0.282 

Parents’ income 9.787 0.179 0.418 

Highest school degree 4.045 0.113 0.269 
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Professional degree 17.026 0.001 0.551 

 

4.4.3.2 Priming stimuli ratings 

4.4.3.2.1 Between group differences 

There were no group differences in evaluation of the gustatory stimuli. Within the visual 

modality, lean participants rated the negative stimuli as more negative compared to obese 

participants (main effect for group: F(1,54)=4.817, p=0.032; Table 4.4.3). 

 

Table 4.4.3 Priming stimuli ratings for lean and obese groups. Lean participants rated the 

negative visual stimuli as more negative than the obese participants. 

Condition 
Mean Standard deviation F value 

(1,54) 
p value Effect 

size |d| 
Lean Obese Lean Obese 

Gustatory positive 76.53 79.62 22.12 20.07 0.294 0.590 0.148 

Gustatory neutral 62.50 56.00 22.96 20.65 1.225 0.273 0.302 

Gustatory negative 19.4 16.73 21.58 16.76 0.261 0.611 0.139 

Visual positive 76.47 73.10 11.74 15.71 0.840 0.363 0.250 

Visual neutral 48.27 53.21 13.67 8.87 2.491 0.120 0.431 

Visual negative 12.82 21.31 12.08 16.76 4.817 0.032 0.599 

 

4.4.3.2.2 Within modality and valence differences 

As expected, significant differences were observed across participants for the rating of the 

stimuli in relation to both valence and modality. Positive, negative and neutral stimuli were 

evaluated differently, and visual and gustatory stimuli were evaluated differently (main 

effects: Modality: F(1,55)=8.372, p=0.005, Valence: F(2,1)=260.003, p<0.001; for further 

details see Table 4.4.4). 
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Table 4.4.4 Ratings for stimuli of different valences and modalities across participants. Table 

represents results of a repeated measures ANOVA with modality and valence of stimuli as 

dependent variables 

Modality Valence Mean 
Standard 
deviation 

Modality Valence 

F value 
(1,55) 

p 
value 

Partial 
η2 

F value 
(2,54) 

p value Partial η2 

Gustatory 

Positive 77.96 21.06 

8.372 0.005 0.132 260.003 <0.001 0.861 

Neutral 59.48 21.96 

Negative 18.16 19.36 

Visual 

Positive 74.90 13.70 

Neutral 50.56 11.85 

Negative 16.76 14.93 

 

4.4.3.3 Sensitivity to reward and punishment, eating behaviour and subjective time 

perception  

We observed significant group differences between lean and obese participants for the 

disinhibition and cognitive restraint subscales of the TFEQ questionnaire. These results 

show that obese participants had higher scores on both of those subscales. There were no 

significant group differences for other questionnaires (cognitive restraint: t(43.195)=-2.864, 

p=0.006, disinhibition: t(39.688)=-2.191, p=0.034, for further details see Table 4.4.5). 

Further, we did not observe any significant correlations between subscales of the TFEQ and 

delay discounting parameters (Obese: CR/β: r=0.116, p-0.542; DI/β: r=0.167, p=0.378; H/β: 

r=0.186, p=0.324; CR/δ: r=0.115, p=0.544, DI/δ: r=0.207, p=0.273, H/δ: r=0.230, p=0.221; 

Lean: CR/β: r=0.375, p=0.059; DI/β: r=-0.236, p=0.247; H/β: r=-0.188, p=0.358; CR/δ: 

r=0.039, p=0.849, DI/ δ: r=0.-272, p=0.179, H/δ: r=-0.012, p=0.952;). 

 

Table 4.4.5 Group differences in questionnaire outcomes. Significant differences between 

groups were observed in the disinhibition and cognitive restraint subscales of the TFEQ. 
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Questionnaire Subscale 
Mean 

Standard 
deviation t value p value 

Effect 
size |d| 

Lean Obese Lean Obese 

TFEQ 

Cognitive 
restraint 5.93 8.65 2.79 4.09 

t(43.195)=-
2.864 

0.006 0.872 

Disinhibition 3.93 5.62 2.05 3.42 
t(39.688)=-
2.191 

0.034 0.599 

Hunger 5.03 4.46 2.05 3.46 t(48.081)=0.667 0.508 0.2 

BIS/BAS 

BAS drive 12.07 12.08 1.68 2.26 t(45.638)=-0.19 0.985 0.005 

BAS fun 
seeking 11.37 12.19 1.85 2.58 t(44.599)=-1.359 0.181 0.365 

BAS reward 
responsivity 15.83 16.27 1.93 2.03 t(52.005)=-0.819 0.416 0.222 

BIS 19.27 18.12 2.02 2.37 t(49.408)=1.941 0.058 0.522 

ZTPS 

2 months 45.77 43.96 32.06 26.73 t(53.931)=0.230 0.819 0.061 

4 months 61.87 61.85 36.26 27.33 t(53.041)=0.002 0.998 0.001 

12 months 88.20 82.50 30.28 30.48 t(52.778)=0.700 0.487 0.188 

TFEQ – Three Factor Eating Questionnaire, BIS/BAS – Behavioural Inhibition/Behavioural 

Activation System, ZTPS – Zauberman Time Perception Scale (subjective time perception 

rated on a scale 0-100 corresponding to ‘not long at all - very long’).  

 

4.4.3.4 Baseline delay discounting and group differences 

Using a general linear model we investigated whether there were group differences 

regarding delay discounting parameters for the random choice task. We included weight 

status and gender as between group factors, β and δ parameters as dependent variables, and 

obtained professional degree as a covariate (since we found significant group differences in 

this aspect). Our analysis revealed a significant main effect of weight status on the β 

parameter (delay-independent bias towards immediate rewards), showing that obese 

participants had higher delay-independent delay discounting (Figure 4.4.2). Moreover, we 

found a significant weight status by gender interaction for the δ parameter, which is the 

delay-dependent discount factor (β: weight status main effect: F(1,51)=4.140, p=0.047; δ: 



 

 

 
109 

weight status * gender interaction: F(1,51)=5.736, p=0.020, for further details see Table 

4.4.6). This indicates that differences in delay-dependent delay discounting between lean 

and obese participants were gender-specific (Table 4.4.6). Obese females showed higher 

delay-dependent delay discounting than lean females, while an inverse relationship was 

observed for males.  

 

Figure 4.4.2 Delay discounting parameters β (delay-independent) and δ (delay-dependent) 

plotted separately for lean and obese group (n=56). We found a significant group difference 

between lean and obese participants in the beta parameter of delay discounting representing 

the present bias (p=0.047). 
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Table 4.4.6 Group and gender differences for the DD parameters. This analysis revealed significant group differences for the β 

(delay-independent) factor for the pooled sample, and β and δ (delay-dependent) parameters differences between obese and 

lean group for females only. DD – Delay Discounting, β – present bias, δ – discount factor 

 

 Descriptive Statistical analysis 

DD 
param
eter 

Weight 
status 

Mean 
Standard 
deviation 

Gender Mean 
Standard 
deviation 

Weight status Gender Weight status * gender 

t value 
p 
value 

Partial 
η2 

t value 
p 
value 

Partial 
η2 

t value 
p 
value 

Partial 
η2 

β 

Lean 0.86 0.21 
Male 0.79 0.26 

F(1, 
51)=4.
140 

0.047 0.075 
F(1,51)
= 0.560 

0.458 0.011 
F(1,51)
= 2.097 

0.154 0.039 
Female 0.93 0.12 

Obese 0.72 0.23 
Male 0.74 0.29 

Female 0.70 0.14 

δ 

Lean 0.94 0.06 
Male 0.92 0.07 

F(1,51)
=0.964 

0.331 0.019 
F(1,51)
= 0.798 

0.376 0.015 
F(1,51
) = 
5.736 

0.020 0.101 
Female 0.97 0.03 

Obese 0.93 0.05 
Male 0.94 0.06 

Female 0.92 0.04 
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4.4.3.5 Primed delay discounting  

We observed a significant priming effect dependent on the r parameter (indexing choice 

difficulty) in the Gneg condition only (Main effect of group within the Gneg condition: 

F(11,19)=2.222, p=0.048; Table 4.4.7). This result points to the fact that choice difficulty 

(difference between SIR and LDR) is a factor influencing priming effects within the Gneg 

condition. Moreover, the cumulative effect of priming was different from zero only for the 

obese group in the Gneg condition (t(16)=2.263, p=0.038; Table 4.4.8, Figure 4.4.3). This 

indicates that the obese group was primed towards more delayed choices during this 

condition relative to Gneu condition. Further, there was a significant difference in the priming 

effect in the Gneg condition between the lean and obese groups (t(34)=2.080, p=0.045; Table 

4.4.8). Following up on this, we tested for a direct relationship between BMI and the 

cumulative priming effect in the Gneg condition. Previous studies showed quadratic 

associations of responsivity to reward and the physiology of the reward system with BMI 

(Davis and Fox, 2008; Dietrich et al., 2014; Horstmann et al., 2015; Dietrich et al., 2016b; 

Verdejo-Román et al., 2017). Hence, we additionally tested for a quadratic relationship 

between the priming effect and BMI. Indeed, there was a quadratic relationship between BMI 

and the cumulative priming effect (R2=0.208, p=0.021, see supplementary Figure S1 for 

details). Due to this, we added BMI2 as a covariate in the fMRI analyses involving priming 

effects in the Gneg condition (GLM4-7). Additionally, to mimic our neuroimaging analysis, we 

performed a post hoc repeated measures ANOVA with r-dependent priming effect values 

within the gustatory negative conditions as dependent variables and BMI and BMI2 as 

covariates. This analysis showed that BMI and BMI2 are significant predictors of choice 

difficulty-dependent priming in the full sample, including both lean and obese participants, 

in the Gneg condition (BMI: F(11, 23)=3.035, p=0.012, BMI2: F(11, 23)=4.254, p=0.002). 
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Figure 4.4.3 Condition dependent priming effects plotted separately for lean and obese 

group (n=36). We found that the cumulative priming effect in the gustatory negative 

condition was significantly different from zero in the obese group (p=0.038), which means 

that here participants chose more delayed options than in the gustatory neutral condition; 

additionally, we observed group differences in the gustatory negative condition (p=0.045), 

indicating that obese people were primed more towards delayed choices than lean people. 

 

Table 4.4.7 Multivariate statistics showing differences in priming effect depending on the r 

parameter. 

Condition F value p value Partial η2 

Gustatory positive F(11,19)=1.648 0.146 0.420 

Gustatory negative F(11,19)=2.222 0.048 0.494 

Visual positive F(11,19)=1.065 0.425 0.319 

Visual negative F(11,19)=1.188 0.344 0.343 

Gustatory negative with BMI and BMI2 
as covariates 

BMI: F(11, 
23)=3.035 

BMI2: 
F(11,23)=4.254 

BMI: 
p=0.012 

BMI2: 
p=0.002 

BMI: 
0.592 

BMI2: 
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0.670 
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Table 4.4.8 Cumulative effect of priming (independent of r). One-sample t-test against zero and two sample t-test for group 

comparison. The cumulative effect of priming was different from zero within the gustatory negative condition for the obese 

group. Obese participants showed more delayed choices than lean participants in the Gneg condition. 

 

Condition 

Lean 

t(18) 
value 

p 
value 

Effect 
size  
|d| 

Obese 

t(16) 
value 

p 
value 

Effect 
size  
|d| 

Lean vs. Obese 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

t(34) 
value 

P 
value 

Effect 
size  
|d| 

Gustatory 
positive 

-0.21 0.76 
-
1.186 

0.251 0.276 0.08 0.47 0.730 0.476 0.170 -1.357 0.184 0.453 

Gustatory 
negative 

-0.13 0.63 
-
0.921 

0.369 0.206 0.25 0.46 2.263 0.038 0.544 
-
2.080 

0.045 0.683 

Visual 
positive 

0.09 0.62 0.635 0.534 0.145 0.01 0.66 0.119 0.907 0.015 0.333 0.741 0.125 

Visual 
negative 

-0.03 0.61 
-
0.205 

0.840 0.049 -0.09 0.52 -0.205 0.493 0.173 0.314 0.755 0.105 
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4.4.3.6 Neuroimaging results 

4.4.3.6.1 Brain activity related to perceptual processing 

To assess differential perceptual brain activity we contrasted gustatory stimulation versus 

visual stimulation. For the gustatory stimulation > visual stimulation contrast, we observed 

higher activity in five clusters: the bilateral Rolandic operculum and insula, the 

supplementary motor area, and the superior frontal and cingulate gyri (Figure 4.4.4). The 

visual stimulation > gustatory stimulation contrast elicited higher brain activity in three 

clusters over the bilateral fusiform gyri and calcarine fissure (Figure 4.4.5).  

We then contrasted negative and positive stimulation, regardless of modality, versus neutral 

stimulation. We found that negative stimulation elicited higher activation in four distinct 

clusters, including the superior and middle frontal gyri, thalamus, amygdala, insula, cingulate 

gyrus and the bilateral inferior occipital gyri. Positive stimulation elicited higher brain 

activation in five distinct clusters, including the bilateral inferior occipital gyrus, bilateral 

insula and amygdala, bilateral inferior orbital frontal gyrus, and the midbrain, including the 

ventral tegmental area. Clusters surviving a more stringent voxel-wise threshold of 0.001 

are denoted in Table 4.4.9. Additionally, we directly contrasted positive and negative 

stimulation-related brain activity against each other. This analysis revealed that brain 

activity in the postcentral gyrus and left dorsolateral prefrontal and orbitofrontal cortex was 

higher for negative than for positive stimulation. We found no significant brain activations 

for the opposite contrast (Table 4.4.9). 

4.4.3.6.2 Choice value-related brain activity 

This analysis aimed at identifying brain regions, which tracked monetary values chosen in 

the DD task. For this, we investigated how brain activity was parametrically modulated by 

this chosen value on a trial-by-trial basis. In line with previous findings, the value of the 

chosen reward was reflected in brain activity in a single cluster with its maximum in the left 

medial frontal gyrus (Table 4.4.10, Figure 4.4.6). 
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4.4.3.6.3 Task-related brain activity 

We investigated which brain regions were activated during performance of the delay 

discounting task in general, irrespective of the priming conditions. To control for possible 

perceptual confounds related to priming stimulation, we contrasted DD trials with P trials. 

We found a number of significant clusters, including the bilateral visual cortex, left middle 

and superior frontal gyri, right precentral gyrus, and right superior parietal lobule. Further, 

we investigated whether brain activity differed for immediate and delayed choices. We 

identified significant clusters for the immediate > delayed choices contrast only. These 

included the bilateral visual cortices along with parts of the cerebellum, the right middle 

frontal gyrus, and the precuneus (Table 4.4.11). Clusters surviving a more stringent voxel-

wise threshold of 0.001 are denoted in Table 4.4.11. 

4.4.3.6.4 Priming-related brain changes 

This analysis was aimed at investigating how brain activity differed during priming. Since 

the behavioural differences were found only for the Gneg condition and in the obese group, 

we only investigated group differences in this condition. Using a two sample t-test we found 

that brain activity (DD trials > P trials) in the left superior frontal gyrus was lower for obese 

than for lean participants in the Gneg condition in relation to all other conditions (Table 

4.4.12, Figure 4.4.7). Specifically, we computed single subject contrasts by assigning a 

positive weight to the GNeg condition and negative weights to other conditions. Here, our 

findings imply a role for this region in mediating the priming effect. 

4.4.3.6.5 Trial-by-trial priming effect modulation of brain activity 

In this analysis we investigated whether brain activity in the gustatory negative condition 

was parametrically modulated by the priming effect. For this analysis we did not find any 

statistically significant results. 

4.4.3.6.6 Priming-related PPI connectivity changes 

While the general analysis for trial-by-trial priming effects was not significant, another 

possibility was that not the average activation but functional connectivity of priming related 

regions was modulated by the priming effect. We further hypothesised that such connectivity 
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changes might additionally be modulated by BMI. This logic is in line with our behavioural 

results, where priming effect in the GNeg condition is related to different BMI values. Our PPI 

analysis confirmed this hypothesis and showed a negative correlation of BMI with 

connectivity modulated by the trial-wise priming effect between the left superior frontal 

gyrus (as the seed region) and regions of the left middle and superior frontal gyri, precuneus 

and medial frontal gyrus (Table 4.4.13, Figure 4.4.8, supplementary Figures S2-S7). Clusters 

surviving a more stringent voxel-wise threshold of 0.001 are denoted in Table 4.4.13. These 

results imply that for the Gneg condition higher BMI and higher priming effects were related 

to lower connectivity between left superior frontal gyrus and these regions. They are also in 

line with our behavioural results showing that BMI is a predictor of r-dependent priming 

effect. 

We observed no general group differences in PPI analysis of Gneg and Gneu conditions (GLM 

7). 

Figures depicting contrast estimates and 95% confidence intervals for peak voxels in each 

fMRI analysis can be found in supplementary Figure S8. 

 

 

Figure 4.4.4 Brain regions showing higher activity for trials using gustatory stimulation 

(priming phase, independent of DD or P trial type) compared to trials using visual 

stimulation. L – left, R – right. T-values are plotted on a standard brain 
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Figure 4.4.5 Brain regions showing higher activity for trials using visual stimulation (priming 

phase, independent of DD or P trial type) compared to trials using gustatory stimulation. L – 

left, R – right. T-values are plotted on a standard brain 

 

 

Figure 4.4.6 Brain regions where the trial-wise choice value parametrically modulated brain 

activity during DD trials. L – left, R – right. T-values are plotted on a standard brain 
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Figure 4.4.7 Brain region where brain activity during gustatory negative priming is higher 

for lean than for obese participants. L – left, R – right. T-values are plotted on a standard 

brain 

 

 

Figure 4.4.8 Brain regions where PPI connectivity from the dlPFC modulated by the trial-

wise priming effect correlates negatively with BMI. L – left, R – right. T-values are plotted on 

a standard brain 
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Table 4.4.9 Brain regions showing significant effects for the perceptual analysis. 

Contrast Region of the 
peak voxel 

Cluster size 
[voxels] 

Coordinates 
(MNI) 

Peak z 
score 

Peak t 
score 

Gustatory>Visual** Postcentral 
gyrus L 

4443 -62 -16 16 - 8.92 

Precentral gyrus 
R 

3260 60 4 24 7.67 8.16 

Medial frontal 
gyrus R 

1457 2 -2 60 6.15 6.40 

Cingulate gyrus 
R 

568 6 12 36 5.65 5.84 

Superior frontal 
gyrus R 

265 28 44 12 5.32 5.47 

Visual>Gustatory** Fusiform gyrus R 1046 34 -50 -18 7.18 7.57 

Calcarine Fissure 
R 

626 18 -98 2 6.86 7.20 

Fusiform gyrus L 746 -30 -50 -16 6.74 7.07 

Negative>Neutral Insula L* 25940 -36 8 -10 6.96 7.32 

Middle occipital 
gyrus L* 

1730 -48 -82 -12 6.73 7.05 

Inferior occipital 
gyrus R* 

987 50 -80 -12 5.52 5.69 

Precuneus* 931 0 -74 40 4.21 4.29 

Positive>Neutral Middle occipital 
gyrus L* 

2922 -48 -82 -12 7.28 7.69 

Insula L* 3779 -36 6 -10 6.64 6.95 

Insula R* 2805 38 4 -10 6.02 6.25 

Middle occipital 
gyrus R* 

2208 52 -78 -12 5.87 6.08 

Superior frontal 
gyrus R 

832 16 10 72 3.79 3.84 

Negative>Positive Middle frontal 
gyrus L 

3616 -36 56 2 4.59 4.13 
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R – right, L – left; * denotes clusters surviving 0.001 voxel-wise threshold and further FWE 

correction (0.007); ** this analysis was performed using an FWE-corrected voxel-wise 

threshold of 0.05 

Table 4.4.10 Brain region modulated by the single trial monetary choice value on the delay 

discounting task. 

Contrast Region of the 
peak voxel 

Cluster size 
[voxels] 

Coordinates 
(MNI) 

Peak z 
score 

Peak t 
score 

Parametric 
modulation choice 
value 

Medial frontal 
gyrus L 

1056 -4 62 10 3.37 3.61 

R – right, L - left  

 

Table 4.4.11 Brain regions showing higher activity for the delay discounting task conditions 

vs. perception only conditions and for the immediate vs. delayed choices.  

Contrast Region of the 
peak voxel 

Cluster size 
[voxels] 

Coordinates 
(MNI) 

Peak z 
score 

Peak t 
score 

DD>P** Calcarine 
fissure L 

8108 -16 -96 -6 - 12.42 

Middle occipital 
gyrus R 

2017 32 -98 -4 - 12.38 

Medial frontal 
gyrus L 

2321 -6 -2 58 6.21 7.78 

Precentral 
gyrus R 

1573 30 -24 62 6.21 7.78 

Inferior frontal 
gyrus L 

809 -46 10 30 5.83 7.11 

Precuneus L 815 -26 -64 38 5.65 6.81 

Superior 
parietal lobule 
R 

615 34 -54 50 5.48 6.53 

Immediate 
choices > Delayed 
choices 

Middle frontal 
gyrus R*  

4889 26 70 10 5.01 6.25 

Cerebellum R* 12183 2 -86 -20 4.54 5.43 
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Cingulate Gyrus 
L 

1200 -6 -8 28 3.97 4.56 

Medial frontal 
gyrus R 

1079 6 18 48 3.89 4.44 

DD – delay discounting, P – perception only, L – left, R – right; * denotes clusters surviving 

0.001 voxel-wise threshold and further FWE correction (0.007); ** this analysis was 

performed using an FWE-corrected voxel-wise threshold of 0.05 

  

Table 4.4.12 Brain region associated with priming effects in the gustatory negative condition 

Contrast Region of the 
peak voxel 

Cluster size 
[voxels] 

Coordinates 
(MNI) 

Peak z 
score 

Peak t 
score 

Obese < lean for Gneg 

condition versus all other 
conditions 

Superior 
frontal gyrus 
L 

738 -20 28 38 3.70 4.21 

R – right, L - left  

 

Table 4.4.13 Brain regions whose connectivity to the left superior frontal gyrus correlates 

negatively with BMI and is modulated by the trial-wise priming effect within the gustatory 

negative condition 

Contrast Region of the 
peak voxel 

Cluster 
size 
[voxels] 

Coordinates 
(MNI) 

Peak z 
score 

Peak t 
score 

BMI correlation with 
connectivity modulated by 
the trial-wise priming 
effect 

Middle frontal 
gyrus L* 

4023 -
24 

22 44 4.50 5.40 

Cerebellum R 1315 42 -
76 

-
32 

4.14 4.85 

Occipital lobe 
L* 

5580 -
36 

-
66 

-2 4.08 4.74 

Medial frontal 
gyrus L* 

939 -6 40 -
14 

3.97 4.57 

Postcentral 
gyrus L 

688 -
54 

-
22 

56 3.89 4.46 
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R – right, L – left; * denotes clusters surviving 0.001 voxel-wise threshold and further FWE 

correction (0.007) 

4.4.4 Discussion 

In this study we investigated whether 1) obese participants showed higher delay discounting 

than lean participants, and 2) whether they were more susceptible to incidental priming on 

the delay discounting paradigm than lean people. In a second step, we then investigated the 

neural correlates of any significant behavioural effects. We hypothesised that participants 

with obesity would show higher DD, and that they would also show higher susceptibility to 

priming. We further hypothesised that this higher susceptibility to priming would be 

reflected in differences in brain regions involved in valuation (vmPFC), cognitive control 

(dlPFC), and reward perception (striatum). We showed higher baseline delay discounting 

for obese compared to lean individuals independent of delay. Moreover, group differences 

in delay-dependent discounting differed by gender. We also demonstrated a higher 

susceptibility to incidental priming on the delay-discounting task in obese participants 

(albeit only for one group of negative stimuli). Thus, our findings are in line with the most 

important findings regarding intertemporal decision-making in obese people. In addition, 

the priming effect was associated with modulation of brain activity in the left dorsolateral 

prefrontal cortex (dlPFC) and, indirectly, its connectivity to the medial prefrontal cortex 

(mPFC).  

Here, we replicated previous results showing higher delay discounting in obese compared to 

lean participants (for a meta-analysis and review see: Amlung et al., 2016; McClelland et al., 

2016). We showed this for males and females by using a delay-independent discounting 

parameter δ. For a delay-dependent parameter, resembling the widely used k parameter of 

the hyperbolic discounting model, we found a significant interaction between weight status 

and gender. This differential effect of gender is in line with some previous studies showing 

changed DD only for females (Weller et al., 2008; Rasmussen et al., 2010), and in contrast to 

others (Bickel et al., 2009; Jarmolowicz et al., 2014; Lawyer et al., 2015; Simmank et al., 2015; 

Amlung et al., 2016; Price et al., 2016b). Here, we used a quasi-hyperbolic delay discounting 

model which is different to most of the previous studies. It is conceivable that differences in 
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parameter estimations between these models explain why others mostly did not find gender 

differences in their studies. Differences between individuals might also contribute to these 

finer differences in effects. There is no homogenous population of “obese people”, and hence 

fluctuations in variables not measured here, such as impulsivity, genotype or obesity 

duration, might have contributed to discrepancies in results between studies. However, 

given the diversity of findings so far, a systematic investigation focused on gender with large 

sample sizes would constitute a valuable future research program. 

Taken together, our behavioural results provide evidence that obese people were more 

impulsive in their financial decisions than their lean control counterparts, but when primed 

by a negative food-related gustatory stimulus, this effect reversed. Simmank and colleagues 

(2015) interpreted their findings as evidence that obese people would be, more than others, 

biased in their general decision-making by different types of tempting, positive stimuli. As 

the decisions were not related to food, and the priming stimuli not related to the financial 

decisions, this could indeed point toward a general impulse control deficit in decision 

systems. Our results add to this view as we again show an effect of incidental stimuli on 

decisions in obese people, but this time reversed: While negatively valenced gustatory 

stimuli could be expected to delay the desire to consume food, these stimuli again had a 

transfer effect to delaying the desire to receive monetary rewards. Hence, our findings 

complement previous reports by showing that effects of incidental cues on decision-making 

might generalise, even for aversive stimuli.  

The second important finding in our study was that obese people were more susceptible to 

priming by incidental cues than lean controls. Incidental cues have previously been shown 

to be an effective way of influencing decision making processes in the context of delay 

discounting (Murawski et al., 2012; van der Wal et al., 2013; Luo et al., 2014). Our results are 

in line with the general findings by Simmank et al. (2015). Unexpectedly, however, in our 

experiment this phenomenon occurred in the gustatory negative condition only, in which 

obese people showed stronger priming effects towards delayed choices. The direction of the 

effect is in line with the results of Luo et al. 2014.  Simmank and colleagues (2015), on the 

other hand, showed a more diverse profile of obesity-gender interactions for a variety of 

visual stimuli. It should be noted, however, that there were several important differences 
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between these studies. First, Simmank and colleagues (2015) did not use gustatory stimuli, 

hence our results are not in conflict with their findings. Second, food-related cues were the 

only theme of all visual and gustatory stimuli in the present study while in the previous study 

a variety of positive visual stimuli, including social images, status symbols, and only a subset 

of food-related images, was used. This might have created strong framing and expectation 

effects. Third, in order to include all necessary control conditions and to maximise the 

number of delay discounting trials, we used only one temporal delay of two months, while 

Simmank and colleagues (2015) used several delays. This might have enabled participants 

to form expectations in our study and, in consequence, form rather stable indifference points. 

The resulting rather consistent choice patterns work against any potential priming effects. 

Supporting this conclusion, it should be noted that several participants, who had to be 

excluded from the analyses, exclusively chose delayed or immediate options in at least one 

condition, even though we initially adjusted choice options to individual indifference points. 

Finally, a possible explanation for observing priming effects only in the gustatory negative 

condition is that our design was not optimised to detect priming effects and that only the 

strongest primes could impact on behaviour. Therefore, it is important to note that even 

under these suboptimal circumstances, obese participants were primed by gustatory 

negative cues. Although subjective valence assessments were not statistically different, these 

cues had nominally the most negative values for obese participants, which might offer an 

explanation for why this particular condition elicited effects on delay discounting behaviour. 

Another difference to previous work (Simmank et al., 2015) could be that our positive stimuli 

were not perceived as positive as intended. We did not find brain regions responding more 

strongly to positive than to negative stimuli, and the positive stimuli were also rated as being 

closer to neutral than the negative stimuli. The absence of effects for the positive stimuli 

should therefore be interpreted with care.  

We further investigated how the behavioural priming effect in the gustatory negative 

condition was reflected in brain activity. Firstly, in the parametric modulation analysis of the 

Gneg condition by priming effect we found no significant results. The effects of Gneg condition 

on a trial-by-trial basis were very small, and our analysis might not have been sensitive 

enough to detect changes in brain activity related to these behavioural effects. It is also 
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conceivable that that trial-by-trial effect on the neural level was only reflected in connectivity 

changes, not in changes of brain activity. Further, generally during priming with negative 

gustatory stimuli, activity in the left dlPFC was significantly lower for obese than for lean 

participants. Activity in the lateral prefrontal cortex (lPFC) has been shown to be related to 

more difficult choices, but also to choosing delayed rewards and exerting context-dependent 

control over behaviour (Monterosso et al., 2007; Shamosh et al., 2008; Weber and Huettel, 

2008; Hare et al., 2009; Figner et al., 2010; Hare et al., 2011). However, opposing activation 

patterns (Pizzagalli et al., 2005; Boettiger et al., 2007; Cho et al., 2010; Hecht et al., 2013) or 

no activation patterns (Kable and Glimcher, 2007; Kable and Glimcher, 2010) have also been 

reported. A theory posed by Weber et al. might offer a possible explanation for these 

discrepancies (Weber et al., 2007). They suggested that differences in reward discounting 

might be related to query theory which posits that individual preferences, also in value-

based decision making, are determined by sequentially answering a number of internal 

queries regarding choice and order thereof (Weber and Kirsner, 1997; Fischer et al., 1999; 

Johnson et al., 2007). Put simply, factors such as the order of reward evaluation, shift of 

attention to the reward’s magnitude or delay, and internal goals (answers to internal 

queries) influence delay discounting rates (Weber et al., 2007). Applied to our results, this 

would mean that obese and lean participants might have differed concerning their initial 

internal goals, and therefore made different choices. It follows that neural mechanisms of 

maintaining these goals could then produce different response patterns. Different implicit 

goals of participants might explain differential engagement of the dlPFC in reward-related 

decision making. Therefore, the dlPFC might not only act as an inhibitory brain structure, 

constantly promoting less impulsive decision-making, but it could also promote more 

impulsive decision-making, provided that this is congruent with internal goals. In our study, 

obese compared to lean people generally gravitated towards more immediate rewards, 

which could reflect intrinsic differences in internal goal structures. In consequence, priming 

towards delayed options in obese people was related to the observed decrease in dlPFC 

activity.  

The results of our connectivity analysis point to a potential mechanism for how this goal-

dependent activity of the dlPFC could influence behaviour. In our behavioural analysis we 
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showed that BMI was a significant predictor of choice difficulty-dependent priming within 

gustatory negative condition. This means that, depending on how different the monetary 

values of available rewards were, participants were primed to a different degree depending 

on their BMI. We showed a similar effect in our PPI connectivity analysis. This indicated that 

during the gustatory negative condition connectivity of the dlPFC with the vmPFC, posterior 

cingulate cortex and parietal cortex was modulated by the trial-by-trial choice difficulty-

dependent priming effect which, in turn, correlated negatively with BMI. These regions are 

discussed to be part of the default mode network (DMN) (Raichle et al., 2001). The DMN has 

previously been shown to be engaged in delay discounting. More specifically, in lean samples, 

activity within these brain structures has been shown to increase with choices of delayed 

rewards (McClure et al., 2004; Kable and Glimcher, 2007; Kable, 2014; Chen et al., 2017). The 

vmPFC has also been shown to track trial-by-trial subjective value of chosen rewards (e.g. 

Kable and Glimcher, 2007), an effect corroborated by our results. Thus, a modulation of the 

connectivity between the aforementioned brain regions might be necessary to alter decision 

making processes. Indeed, two studies investigating neural correlates of primed 

intertemporal choices showed that the mPFC was directly related to the effects of priming 

with incidental cues (Murawski et al., 2012; Luo et al., 2014). Hare and colleagues further 

showed that dlPFC increased its connectivity to the vmPFC at the time of intertemporal 

choice, especially in trials in which participants chose LDRs (Hare et al., 2014). Surprisingly, 

our findings suggest an opposite pattern for participants with higher BMI. This, however, 

might again be expected if one assumes that dlPFC activity depends on current individual 

goals. The increased connectivity in obese participants then again suggests that, by default, 

the dlPFC inhibits brain regions related to delayed choices and thus promotes immediate 

choices in obese individuals. During priming with negative gustatory cues, the brain regions 

promoting delayed choices may be disinhibited by means of inhibiting the dlPFC. However, 

it is important to note that the present PPI analysis does not include any information about 

the directionality of the connectivity effects between any of those brain regions. Therefore, 

this interpretation is speculative and warrants replication using different studies, 

methodology and analyses (e.g., using non-invasive brain stimulation approach).  
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Some potential limitations of the present study should be mentioned. Firstly, the proportion 

of excluded participants, in particular for some of the neuroimaging analyses, was relatively 

large. Some of these exclusions were necessary as we aimed to establish individual 

indifference points in the DD task, and for this choosing different options (as opposed to 

settling for one option only early in the experiment, as some people did) was necessary. As 

in many other decision tasks, this task feature always comes with the risk that participants 

do not behave as expected. "Correcting" their behaviour by using additional instructions 

would bias the results and render them non-interpretable and had to be avoided by all 

means. Hence, while we recommend using an online adjustment of indifference points using 

a staircase function as a potential strategy for future studies, for our study excluding 

participants was the only option. We note that as a consequence, our sample size was lower 

than initially hoped, which is a limitation of this study and has to be taken into account when 

interpreting the results. Further, behavioural results in the priming section of our study were 

obtained by performing four independent tests. Correcting p-values for multiple testing 

(Bonferroni correction) results in nonsignificant findings. However, our overall sample size 

used in the priming analysis is sufficient, as we conclude from previous reports (Murawski 

et al., 2012; Luo et al., 2014), thus suggesting that the results are not just due to type I error. 

Generally, the behavioural effects we aimed to investigate in our study are quite small. Given 

the presence of the aforementioned limitations and the fact that we used a very ambitious 

design, the fact that we were still able to find a behavioural effect in one of the conditions 

(before correcting for multiple comparisons) is encouraging. Finding a neural correlate of 

this effect (with correction for multiple comparisons – which in the case of neural data is 

conducted for a multitude of tests and therefore extremely strict) provides a second step of 

validation for this finding.  

Our neuroimaging results have been thresholded on a voxel-level of 0.005, and corrected for 

multiple comparisons on the cluster-level. Further, most of the results have survived a more 

stringent voxel-wise threshold of 0.001. Clusters found in remaining analyses, related to 

priming, but also to reward-valuation, are highly congruent with current literature. The 

vmPFC, which we found to correlate with trial-by-trail choice value, has been widely 

implicated in reflecting values of potential rewards (Kable and Glimcher, 2007). Further, we 
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hypothesised that the dlPFC and its connectivity to other brain areas will be related to 

priming. Thus, while we are aware of studies showing that the voxel-wise threshold of 0.005 

might result in a higher rate of false positives (Woo et al., 2014) we believe that the presented 

results are not merely due to type I error. Additionally, fMRI studies on special participant 

groups, such as healthy obese participants, should also be concerned with false negative 

results, and may therefore apply more liberal thresholding techniques, especially while 

having strong a priori hypotheses concerning locations of potential clusters (Carter et al., 

2016). Altogether, we believe that our results show true effects, both on the behavioural and 

neuroimaging levels. We note, however, that independent replications would be desirable to 

confirm and expand on our results.  

In conclusion, our study highlights important differences in intertemporal decision 

behaviour and related brain functions of obese and lean people. We hypothesised that people 

with obesity were more susceptible to environmental cues and that this susceptibility would 

be reflected in regions of the prefrontal cortex. Our results showed that priming with 

negative gustatory cues increased the ratio of decisions for delayed financial rewards in 

obese people. This was accompanied by decreased activity in the dlPFC. This region, in turn, 

showed a connectivity pattern with vmPFC and other regions that was negatively correlated 

with BMI. This pattern of results suggests that negative food-related cues can inhibit obese 

people’s behaviour of choosing more immediate rewards. This is reflected by a 

disengagement of the dlPFC, which might be implicated in maintaining default internal goals. 

Such effects could propagate through the brain’s reward system, as shown in our 

connectivity analysis, with increasing effects depending on BMI.  

Our results also have broader implications for impulse control in obesity because they show 

that decision making processes, beyond dietary decisions, are more easily influenced by 

food-related cues in obese people as compared to people without obesity. Importantly, 

observing such susceptibility to environmental cues on economical choices suggests that 

food cues may influence general decision making processes in obesity. Economic decisions 

are a substantial part of everyday life, ranging from smaller purchase decisions to decisions 

with potentially long-term consequences, e.g., whether to overspend and to accumulate debt, 

which is an increasing problem in our society. Priming susceptibility is especially important 
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in light of today’s obesogenic environment, where food cues are ubiquitous, and might 

strongly influence all kinds of decisions in susceptible individuals. We contribute to already 

existing literature on priming and delay discounting, which suggests that positive primes 

change behaviours towards less beneficial routines (i.e. less rational choices), while negative 

primes are said to have an opposite effect (Wilson and Daly, 2004; Murawski et al., 2012; van 

der Wal et al., 2013; Luo et al., 2014; Simmank et al., 2015). While it might be premature to 

draw strong conclusions from the limited number of studies showing enhanced priming 

effects in obesity about which primes have the strongest effects, our study nevertheless 

confirms the view that there is a general enhanced susceptibility to environmental cues in 

obese people. This finding has implications for systematically targeting obese people (or 

potentially even people who might be at risk) with specifically designed cues. For example, 

a previous study using health warnings showed that negatively framed graphic warnings 

promoted higher self-control in dietary decisions compared to all other warning messages, 

including positive messages (Rosenblatt et al., 2018b). In addition, the same cues designed 

to prevent unhealthy eating behaviour were also demonstrated to lead to altered brain 

signals associated with self-control when subsequently processing food items (Rosenblatt et 

al., 2018a). At this stage, it is important to further understand how eating behaviour can be 

altered to address the obesity epidemic, and by showing that negative gustatory priming has 

a positive influence on general decision behaviour in obesity, our study might inspire 

research into alternative cueing interventions in the future. However, our findings should 

also not be over-interpreted, as we neither know the specific drivers for the observed effects 

nor whether the effects would occur in all possible context situations. Potentially, the results 

of our study are also a basis for further brain stimulation studies investigating the role of the 

dlPFC and its connections in obesity. In light of our imaging findings, we show that current 

intentions of participants (e.g., dieting, stronger desire for immediate gratification), should 

always be taken into consideration when conducting studies concerning decision-making 

and cognitive control. 
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4.4.5 Supplementary materials 

The following 7 figures depict scatter plots of relationships of BMI with other measures for 

all analyses where BMI was included as a continuous predictor: 

 

Figure S 1 Scatter plot of the relationship between BMI and the cumulative priming effect in 

the gustatory negative condition (R2=0.208, p=0.021, for details see section 4.4.3.5) 



 

132 

 

 

Figure S 2 Scatter plot of the relationship between BMI and the PPI connectivity (GLM 6) to 

the medial prefrontal cortex (mPFC) – Figure presented for illustration purposes; for details 

see section 4.4.3.6.6. 
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Figure S 3 Scatter plot of the relationship between BMI and the PPI connectivity (GLM 6) to 

the middle frontal gyrus (MFG) – Figure presented for illustration purposes; for details see 

section 4.4.3.6.6.. 
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Figure S 4 Scatter plot of the relationship between BMI and the PPI connectivity (GLM 6) to 

the superior temporal gyrus (STG) – Figure presented for illustration purposes; for details 

see section 4.4.3.6.6.  
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Figure S 5 Scatter plot of the relationship between BMI and the PPI connectivity (GLM 6) to 

the superior frontal gyrus (SFG) – Figure presented for illustration purposes; for details see 

section 4.4.3.6.6. 
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Figure S 6 Scatter plot of the relationship between BMI and the PPI connectivity (GLM 6) to 

the cerebellum – Figure presented for illustration purposes; for details see section 4.4.3.6.6. 
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Figure S 7 Scatter plot of the relationship between BMI and the PPI connectivity (GLM 6) to 

the occipital lobe – Figure presented for illustration purposes; for details see section 

4.4.3.6.6. 
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Figure S 8 Figure depicting contrast estimates and 95% confidence intervals for peak voxels 

of each of the fMRI analyses. A analysis contrasting gustatory and visual stimulation; B 

analysis contrasting visual and gustatory stimulation; C analysis contrasting negative and 

neutral stimulation; D analysis contrasting positive and neutral stimulation; E analysis 

contrasting negative and positive stimulation; F analysis investigating modulation of brain 

activity by choice value during the delay discounting task; G analysis contrasting delay 

discounting trials with perception only trials; H analysis contrasting immediate choices with 

delayed choices on delay discounting trials; I analysis contrasting brain activity during the 

gustatory negative condition in the obese and in the lean group; J PPI analysis. Please note 

different y-axis scales for each subplot. 
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5 General discussion and outlook 

Discussed in this thesis are: 1) behavioural maladaptive tendencies related to obesity and 

their underlying neural correlates, and 2) possible ways to alter these tendencies, along with 

their mechanisms. An extended summary of findings can be found in chapter 6 of this thesis. 

Briefly, in study 1 we showed that approach/avoidance behaviour is indeed associated with 

hemispheric asymmetry, which can be measured using EEG and fMRI. This asymmetry, 

however, was not associated with increased BMI or altered self-reported eating behaviour. 

Study 2 showed that obese participants show approach tendencies towards both healthy and 

unhealthy foods. Further, we showed that food avoidance is a potentially conflicting process, 

which activates the right angular gyrus – a brain region related to stimulus-conflict 

resolution and cognitive control. We also found that the approach bias towards unhealthy 

foods can be decreased by means of cognitive bias modification using an approach-avoidance 

task. This is related to decreases in the right angular gyrus and changes in task-related and 

task-unrelated connectivity within brain’s inhibitory regions, such as the middle frontal 

gyrus or insula. This suggests that short-term CBM in obesity is related to improving 

executive functions (response inhibition) rather than changing the value of unhealthy foods 

within the reward system. Study 3 confirmed previous findings that increased BMI is related 

to higher delay discounting, which is a proxy for executive functioning. A new finding in this 

study allows to better interpret previous results showing gender differences in delay 

discounting and obesity, as we found those only for the delay-independent delay discounting 

parameter. Finally, study 4 confirmed our hypothesis that participants with obesity are more 

susceptible to environmental cues and that those cues can influence choices within a food 

unrelated decision-making paradigm – delay discounting in monetary context. This influence 

was related to decreased activity in the dlPFC, the brain’s cognitive control hub, which 

suggests that altering maladaptive decisions requires disconnection of this structure, 

because normally it drives behaviour towards more impulsive choices. This was also related 

to decreased connectivity to the brain’s valuation regions, such as the vmPFC or the ventral 

striatum. This shows that priming might work by disengaging the dlPFC from valuation 

structures, which in turn allows participants to make choices that are incongruent with their 

current goals.  



 

140 

 

In general, we show that obesity is indeed related to a number of maladaptive behaviours 

that constitute potential targets for future interventions. This is line with Marteau’s claims 

who suggests to use those kind of interventions instead of the ones targeting explicit 

knowledge, such as food education, or general lifestyle interventions, e.g. increasing amounts 

of physical activity (Marteau et al., 2012). These traditional interventions usually have short-

term effects and relatively small reductions in BMI (Jeffery et al., 2000; Curioni and Lourenço, 

2005; Franz et al., 2007; Barte et al., 2010; Kirk et al., 2012). Studies presented in this thesis 

show that maladaptive tendencies related to obesity are rather automatic – such as implicitly 

approaching unhealthy foods – or are related to decreased inhibitory abilities – such as 

choosing immediate gratification, instead of waiting for a more rewarding one in the future. 

Our findings are in line with previous literature showing relationships between temporal 

impulsivity and obesity (Weller et al., 2008; Amlung et al., 2016; McClelland et al., 2016), as 

well as approach bias and obesity (Mehl et al., 2018).  

Neural systems implicated in those maladaptive tendencies include two systems of the 

appetitive network, namely the reward/motivational system, and the executive system 

(Dagher, 2012). Contrary to what the right-brain theory of obesity posits (Alonso-Alonso and 

Pascual-Leone, 2007), alterations in those systems in our samples are not related to 

hemispheric asymmetries. Behavioural interventions that we used to target maladaptive 

tendencies alter brain activity within the two systems. Benefits of investigating neural 

underpinnings of those interventions are twofold. Firstly, this approach gives us insight into 

mechanisms thereof – such as CBM working by means of increasing inhibitory abilities. This 

can be further used to inform obesity therapies that could potentially focus on increasing 

inhibitory tendencies in participants. Secondly, it provides information for future potential 

non-invasive brain stimulation studies, which could focus on specific structures identified 

by our studies. This is a possible way of supporting behavioural therapies and increasing 

their effectiveness. 

In the obesogenic environment, priming can be a negative process. But our study shows that 

it can also be used to obese people’s advantage in the context of temporal impulsivity. This 

has important implications for future obesity therapies, as environmental stimuli might be 

used to alter behaviour towards more advantageous routines. This could potentially be used 
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in two ways – preventing food companies from advertising campaigns that increase 

unhealthy food intake (Kemps et al., 2014a), but also increasing the number of 

environmental stimuli that could potentially decrease food intake. For example, a previous 

study showed that negative health warnings promoted higher self-control in dietary 

decisions compared to remaining warning messages, including positive messages 

(Rosenblatt et al., 2018b). In addition, the same cues designed to prevent unhealthy eating 

behaviour were also demonstrated to lead to altered brain signals associated with self-

control when subsequently processing food items (Rosenblatt et al., 2018a). Altogether, 

using incidental priming, possibly in the form of health warnings, is a promising tool and 

might be used as prevention, but also intervention, in obesity. 

Our findings regarding CBM in the context of approach bias are a very promising glimpse 

into to its potential use in obesity. This type of easy training can be implemented in all kinds 

of settings, from kindergartens, schools, using smartphones or online and web-based 

applications. It can also target participants in a variety of demographic groups, such as 

children, adolescents and adults. CBM has a lot of potential in the context of obesity, as 

certain adjustments can be made to make it even more effective. They could include 

identifying individual problematic foods and targeting the training specifically towards 

those foods. It might also be used as a preventive measure for people at risk of obesity. Those 

ideas, however, need to be tested in a laboratory context first. 

A general limitation to the studies performed as parts of this thesis concerns their ecological 

validity. None of the studies have been performed in a natural context, therefore more 

research is needed to state whether these can also be effective in natural settings. One idea 

concerning CBM is to create a smartphone application that could be used by people easily 

during the day for a prolonged period of time. With this it would be possible to test whether 

CBM has long-term effects and if longer exposure to it results in more pronounced effects. 

Concerning the incidental priming findings, as mentioned before, it can be used to investigate 

in depth whether health warnings are an effective tool for changing behaviour, especially in 

obesity. 

An additional and important limitation is the fact that we did not investigate how the two 

interventions influence actual food intake. This should be the ultimate goal of all 
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interventions, as obesity is most often related to increased food intake. Decreasing it is a 

long-term aim that all the interventions should pursue. Hence, with our promising results, 

the next step would be to try and translate the findings into an everyday context and 

investigate, whether they can alter eating behaviour.  

Altogether, results presented in this thesis constitute a basis for future research concerning 

altering disadvantageous behaviours and tendencies in obesity, as well as a guide for 

possible directions of future studies in similar contexts.  
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Investigating neural mechanisms of certain disadvantageous behaviours and tendencies in 

obesity provides an opportunity to understand how and why those behaviours come about. 

Furthermore, investigation of possible strategies to alter these behaviours and mechanisms 

by which those strategies work might give an exciting opportunity for new obesity 

interventions. This is what research in this thesis focuses on. In general, maladaptive 

behaviours in obesity are mainly constrained to the domains of executive functions and 

responsivity to food cues/food motivation (Vainik et al., 2013). Executive functions regulate 

behaviour based on abstract goals and include inhibitory abilities, working memory and 

behavioural flexibility (Diamond, 2013). Food motivation describes people’s behaviour in 

the food context (e.g. food choice). For this reason we focused our main research on two 

tasks tackling behaviours in the domain of executive functioning (i.e. behavioural inhibition 

and impulsivity), and food motivation (i.e. unhealthy food approach bias). In this framework, 

a subdomain of impulsivity – temporal impulsivity – can be described by a preference 

towards small immediate rewards in the presence of larger delayed rewards. Temporal 

impulsivity is consistently shown to be associated with obesity (Amlung et al., 2016; 

McClelland et al., 2016). Unhealthy food approach bias, on the other hand, is a tendency to 
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approach unhealthy foods, rather than avoid them. Both of these behaviours, impulsivity and 

unhealthy food approach, could lead to increased food consumption and therefore to obesity.  

These problematic behaviours are driven by specific brain mechanisms. Generally, the 

appetitive brain network regulates actions related to food intake (Dagher, 2012). Previous 

studies show that approach bias as well as temporal impulsivity are steered by interactions 

of the executive system and the motivational system that both belong to the appetitive 

network (McClure et al., 2004; Kable and Glimcher, 2007; Cousijn et al., 2012; Wiers et al., 

2014). The executive system comprises frontal areas, such as the dorsolateral prefrontal 

cortex and the anterior cingulate cortex. The motivational system, on the other hand, is 

related to the brain’s dopaminergic system (including the ventral tegmental area, ventral 

striatum and the medial prefrontal cortex), but also to the insula, and the orbitofrontal 

cortex. Further underlining the interactions of the executive and motivational system is the 

right-brain theory of obesity, which posits that obesity, seen as a disorder of increased 

approach, is related to underactivation of right anterior brain areas, relative to left (Alonso-

Alonso and Pascual-Leone, 2007).  

To expand current knowledge on these topics, we designed four studies focusing on 1) 

relationships between right and left hemispheric activity with measures of 

approach/avoidance behaviours, eating behaviours and obesity, 2) food motivation 

behaviours, namely food approach bias, alterations of this bias and its neural correlates 3) 

measures of executive functioning, namely temporal impulsivity, and 4) alteration of 

temporal impulsivity and neural correlates of this process.  

In study 1, we investigated how approach/avoidance behaviours, self-reported eating 

behaviours and BMI are related to hemispheric asymmetries. We additionally aimed to 

expand previous knowledge constrained to the EEG imaging domain to functional magnetic 

resonance imaging (fMRI). To this end, we investigated three independent samples of 

participants. Sample 1 included predominantly lean participants and comprised EEG and 

fMRI measurements. Samples 2 and 3, on the other hand, consisted of lean, overweight and 

obese participants, and included fMRI measurements. In sample 1, using EEG data we were 

able to show that higher left versus right hemispheric activity was related to approach 

behaviour. Using fMRI in the same sample, we showed that higher right vs. left hemispheric 
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activity was related to approach behaviour. This means that hemispheric asymmetries can 

be meaningfully measured using fMRI. We were not able to show a similar asymmetry 

finding in the second sample using fMRI data. Further, we found no relationships between 

body mass index (BMI) or self-reported eating behaviour and hemispheric asymmetries in 

samples 1, 2 and 3. With this study, we supported previous findings that approach 

behaviours are indeed related to hemispheric asymmetries. We were, however, not able to 

show correlations of obesity measures or eating behaviour measures with hemispheric 

asymmetries, and therefore could not provide support for the right-brain theory of obesity. 

This lack of support, however, might be related to methodological differences between 

studies – previous reports only used EEG measures, while we mostly used fMRI measures.  

In study 2, we first investigated food approach bias and its correlates in obese participants, 

and second, we trained these participants to avoid unhealthy foods and approach healthy 

foods. This was done using the approach-avoidance task (AAT), which requires participants 

to respond to a number of healthy and unhealthy food pictures by pushing (avoidance) or 

pulling (approach) a joystick. Participants were asked to react to the format of the picture 

(horizontal vs. vertical), not to the content (healthy vs. unhealthy foods), which allowed us 

to measure implicit reactions to food cues. Further, by implementing the cognitive bias 

modification (CBM) into the AAT we trained participants to avoid unhealthy and approach 

healthy foods. 

In study 2, obese participants showed higher approach bias towards both healthy and 

unhealthy foods. Avoiding food, was related to an increased brain activity in the right angular 

gyrus (rAG), a brain structure that is often related to stimulus-response conflict resolution, 

attentional reorientation and response inhibition (Rushworth et al., 2001; Schiff et al., 2011; 

Seghier, 2013; Cieslik et al., 2015; Kolodny et al., 2017). It therefore seems that approaching 

food in obese participants is an intuitive reaction, while its avoidance is a conflict, which 

activates an appropriate brain structure. The CBM in our study proved to be an effective way 

to decrease implicit approach towards unhealthy foods in obese participants. Compared to 

a sham condition group, training group significantly decreased approach bias towards 

unhealthy foods. This was related to a decrease in activity of the rAG, implying that avoiding 

food after CBM is less of a conflict. The CBM was additionally related to increased coupling 
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of the rAG with the right dorsal striatum, which is related to executive attention and exerting 

cognitive control, but also to stimulus-response learning (Balleine et al., 2007; Jankowski et 

al., 2009; Liljeholm and O'Doherty, 2012; Mestres-Missé et al., 2012; Robertson et al., 2015). 

The dorsal striatum might facilitate avoidance of unhealthy foods after CBM, which is 

reflected in its higher connectivity with the rAG. In addition to these task-related results, we 

observed resting-state changes in brain connectivity after the training. Namely, there was an 

increased connectivity between the left and right middle frontal gyrus (MFG), and the left 

anterior insula, but also between the left nucleus accumbens and the left inferior frontal 

gyrus (IFG). The MFG, IFG, and anterior insula are inhibitory structures (Garavan et al., 1999; 

Simmonds et al., 2008; Boehler et al., 2010; Cai et al., 2014), hence increased connectivity 

between them possibly relates to increased inhibitory abilities in the training group, which 

facilitates food avoidance during the AAT. 

Study 2 showed that approach bias and its modification involve the executive brain system 

with a number of inhibitory structures involved. Previous studies in alcohol-dependent 

patients additionally showed engagement of the reward and motivational system. We did 

not find such an effect in our study. It might mean that 1) both unhealthy and healthy foods 

are similarly rewarding, hence there is no difference in brain activity between these 

reinforcers in the motivational system, and 2) our training was too short to influence 

valuation of food rewards, instead targeting inhibitory abilities and brain areas. However, 

uncovering the mechanisms by which CBM works in obesity is a promising step into applying 

it more effectively in the clinical context. Additionally, showing neural correlates of CBM 

might provide information for future non-invasive brain stimulation studies aiming at 

decreasing approach bias in obesity.  

In study 3, we focused on temporal impulsivity in a large sample of lean, overweight and 

obese participants. We replicated previous findings showing that higher temporal 

impulsivity is related to increased BMI (Weller et al., 2008; Amlung et al., 2016). In this study 

we used a new model of delay discounting, which gave us more insight into the relationship 

between BMI and delay discounting. Namely, we showed that just the fact that a reward is 

delayed – independent of the actual delay – results in opposite relationships between BMI 

and discounting rates depending on the gender. Specifically, this means that women with 
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higher BMI discount future rewards more than women with lower BMI just because the 

rewards are delayed, while an opposite pattern was observed for men. Further, a delay 

discounting parameter that is dependent on the delay was related to BMI in a gender-

independent way – increased BMI was related to increased delay discounting. This study 

additionally provided a methodological framework for study 4, where we used similar delay 

discounting paradigm. 

In study 4, we investigated general temporal impulsivity in the monetary context in groups 

of lean and obese participants. Further, we aimed at altering behaviours in obesity relating 

to choosing more immediate rewards by incidental priming – priming with cues unrelated 

to the discounting process. Here, we used gustatory (proximal) and visual (distal) food cues 

of positive, neutral and negative valence. This was done to investigate how food cues, readily 

available in the environment, affect general executive processes in people with obesity.   

Results of study 4 show that, consistent with previous literature, obese participants indeed 

have higher temporal impulsivity than lean participants. Furthermore, we were able to show 

that priming with gustatory negative cues decreases temporal impulsivity in obese 

participants, but not in lean participants. This finding has two important implications – 

firstly, it shows that obese participants are more susceptible to environmental cues, and 

secondly, it shows that maladaptive decisions can be altered. 

This increased susceptibility to negative gustatory cues was related to a decreased activity 

in the dorsolateral prefrontal cortex (dlPFC) in obese participants. Again, this structure is a 

part of the executive system of the appetitive network and is often related to exerting 

cognitive control over behaviour (McClure et al., 2004; Hare et al., 2009; Dietrich et al., 

2016b). The finding that its activity is decreased might therefore be surprising, since it was 

related to lower impulsivity. However, it is possible that the dlPFC steers behaviours 

according to current goals. In case of obese participants, the implicit goal is to choose 

immediate rewards, and it is promoted by higher activity in the dlPFC. It follows that altering 

the behaviour and acting not in sync with the internal goal requires deactivation of the dlPFC. 

The behavioural priming effect was found to correlate with the connectivity of the dlPFC and 

other brain structures, such as the ventral striatum, ventromedial prefrontal cortex (vmPFC; 

motivational system) and parietal areas (executive system). Here, participants with higher 
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BMI showed decreased connectivity of the dlPFC with these brain regions. This decrease 

might be necessary to overcome current internal goals and alter behaviour.  

Altogether, the findings presented in this thesis do not support the right-brain theory of 

obesity. However, they provide evidence of altered executive functioning and food 

motivational behaviours in obesity, along with brain mechanisms of those alterations. 

Moreover, results show that targeting these maladaptive tendencies is effective and involves 

alterations of executive and motivational brain networks. These promising findings are in 

line with Marteau and colleagues (Marteau et al., 2012) who claim that interventions should 

tackle implicit behaviours instead of explicit knowledge.   
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