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ABSTRACT 

This study explores the potential of VSP data in reservoir studies and particularly 

in separating the effects of CO2 pore pressure and saturation after fluid injection into the 

reservoir. It helps establishing robust and reliable links between physical properties of 

hydrocarbon reservoirs and seismic data. It also reduces the uncertainties of the AVA 

analysis through constructing a detailed model of first-arrival amplitude decay combining 

geometric spreading, scattering, and inelastic dissipation. The inversion of seismic data 

reveals anisotropic variations of geometric attenuation (wavefront curvatures and 

scattering, denoted γ) and the effective attenuation parameter (κ) with depth. Statistical 

analysis of model uncertainties quantitatively measures the significance of these results. 

This model correctly predicts the observed frequency-dependent first-arrival amplitudes 

at all frequencies and can be used for reflected waves.  

Scattering and geometric spreading (focusing and defocusing of wave fronts) 

significantly affect seismic amplitudes at lower frequencies and shallower depths. Using 

of complete well logs, a model of P- and S-wave scattering is derived from direct-wave 

attenuation observations by numerical and analytical methods. Both approaches reveal 

fluctuations in the transmitted-energy flux within different depth intervals, and 

particularly at frequencies above 60 Hz. A randomization of well logs suggests that the 

upper envelope of the transmitted energy flux (corresponding to strongest transmission) 

is a reasonable estimate for random scattering. The lower envelope corresponding to the 

strongest reflectivity appears to be a useful characteristic of the fluctuations in the 

scattered wavefields. Once these ‘random’ and ‘fluctuation’ attenuations are modeled, 

they can be isolated from the intrinsic and geometric effects.  
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Finally, three amplitude-based methods are used to separate the effects of CO2 

pressure and saturation in the Weyburn reservoir. Based on these results, an area close to 

an injection well within the southern part of the study area is interpreted as having the 

highest pressure, and the area between the northern and eastern wells show the highest 

CO2 saturation. Near the center of the study area, the effects of CO2 saturation and 

pressure appear to be the weakest. 
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1. CHAPTER 1: INTRODUCTION 

 

Hydrocarbon reservoirs often occur in challenging geological setting with variable 

lithologies, thicknesses, and heterogeneous physical properties. Knowledge of this heterogeneity 

and properties of the in situ reservoir rock and fluids is essential for predicting future production, 

planning further oil-field development, and evaluating alternative reservoir management 

scenarios.  

Conventional seismic interpretation mostly focuses on interpolation of seismic reflectors 

for mapping geologic structures, and assessing the stratigraphy and reservoir architecture. The 

ultimate goal of this structural analysis is to detect hydrocarbon accumulations, delineate their 

extents, and calculate their volumes (Avseth et al, 2005). However, traditional seismic methods 

still put little emphasis on physical understanding of seismic amplitudes. 

In recent decades, seismic methods have become increasingly used for the 

characterization and assessment of petrophysical properties of reservoirs. Seismic data analysis is 

able to establish a link between petrophysical rock properties and elastic and inelastic properties 

of the rock. Seismic reservoir characterization can provide understanding of the reservoir’s 

internal architecture and physical properties. Quantitative techniques for seismic interpretation 

are used to validate hydrocarbon anomalies and give additional information during prospect 

evaluation and reservoir characterization (Avseth et al, 2005). The most important groups of 

such techniques include post-stack amplitude analysis (bright-spot and dim-spot analysis), 

amplitude variations with angle and offset (AVA and AVO analysis), acoustic and elastic 

impedance inversion, forward seismic modeling (Avseth et al., 2005), and time-lapse reflection 
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seismic data analysis. Studies of seismic attenuation such as inversion and modeling of the 

quality factor (Q) and its compensation are also important for recovering the true petrophysical 

properties. Several of these advanced methods, such as vertical seismic profile (VSP) imaging, 

AVO, and new approaches to seismic attenuation were investigated in this Dissertation in 

application to time-lapse seismic datasets acquired during CO2 flooding of Weyburn oil reservoir 

in southern Saskatchewan. 

1.1  Motivation and Objectives 

The motivation of this Dissertation is in measuring the physical properties of 

hydrocarbon reservoirs effectively and precisely. This includes establishing a robust and reliable 

link between these properties and seismic data in the study area. This can be very crucial for 

monitoring producing reservoirs and specifically the reservoirs undergoing fluid injection. My 

general objective in this Dissertation consists in developing improved seismic methods that can 

help measuring the more subtle physical properties of reservoir rock, such as its seismic 

attenuation and scattering, and the relations of these properties to fluid content. Knowledge of 

such properties is important for understanding production history, performing monitoring and 

making reservoir development plans.  

The specific objectives of this study are as follows: 

1) Improve time-lapse seismic monitoring with a focus on the physical parameters of 

the reservoir. This task requires accurate processing of the time-lapse, three 

component (3-C) three-dimensional (3-D) VSP datasets of this project. This VSP 

processing also requires extracting the reflected P and SV waves from the VSP 

data, which can provide valuable information about fluid-content variations 

within the subsurface.  
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2) Calibration of the time-lapse VSP datasets to ensure comparable information in 

the two years of acquisition.  After such calibration, any differences between the 

time-lapse datasets can be attributed to changes in reservoir conditions occurring 

between the times of the surveys.   

3) In order to extract accurate seismic amplitudes, it is necessary to accurately model 

and invert for the geometrical spreading, scattering and attenuation of seismic 

waves. A realistic model for seismic attenuation reaching beyond the usual Q-

factor allows me to improve the true-amplitude recovery, which is further used in 

AVO analysis. This objective is reached through constructing a detailed and 

anisotropic model combining the geometric spreading, scattering and intrinsic 

attenuation.  

4) The ultimate practical objective is in utilizing the above seismic techniques to 

improve the understanding of the flows of enhanced oil recovery (EOR) fluids, 

such as the CO2 injected into Weyburn reservoir. The improved seismic methods 

also reveal the detailed structure of the reservoir and also help estimating the 

accuracy of pre-stack, time-lapse seismic VSP measurements. 

1.2  Enhanced Oil Recovery at Weyburn Reservoir  

Enhanced oil recovery (EOR) is a general term for multiple oilfield engineering 

techniques aiming to increase the production of an oilfield. In recent years, injection of CO2 has 

become broadly used for EOR purposes worldwide. In addition to the beneficial effects of 

increasing reservoir pressure, reducing the viscosity of oil, and increasing the life of the 

reservoir, CO2 injection helps in a net reduction of CO2 in atmospheric greenhouse gases.  At the 

time of its start in 1999, the International Energy Agency Greenhouse Gas (IEAGHG) Weyburn-
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Midale CO2 Monitoring and Storage Project was among the largest CO2 injection projects in the 

world. 

1.2.1 Geology of Weyburn Reservoir  

The Weyburn field is located in the northern part of the Williston Basin in south-eastern 

Saskatchewan, Canada (Figure  1.1). The Williston Basin contains sediments of shallow marine 

origin and Cambrian to Tertiary age. In the Weyburn reservoir, crude oil is produced from the 

Midale beds of the Mississippian Charles formation. The Midale reservoir beds were deposited 

in a shallow carbonate shelf environment and are sub-divided into three main units. These units 

are, starting from the stratigraphically lowest to highest: the Frobisher Evaporite, the Midale 

Vuggy, and the Midale Marly (Pendrigh, 2004). The Midale Marly is overlain by the Midale 

Evaporite, which forms the basal unit of the Ratcliffe Beds (Figure  1.2). These units make a 

carbonate sequence deposited in progressively shallower water. The sequence of deposition from 

bottom to top is: sub tidal shoal and inter shoal, intertidal inner shelf deposits, and supratidal 

evaporitic deposits on top (Churcher and Edmunds, 1994).  

Reservoir beds range from 16 to 28 m in thickness and contain two litho-stratigraphic 

units: the lower Vuggy limestone (8~22 m thick) and the upper Marly dolostone (2~12 m). The 

porosity of the Marly zone is high (29%); however, its permeability is low, with an average of 

about 10 mD. Within the Vuggy zone, the porosity is near 10%, and the average permeability is 

higher (~50 mD) (Brown, 2002; White et al., 2004). 
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Figure  1.1: Location of the Williston basin (brown) in central North America. The small red 
rectangle indicates the Weyburn oilfield. 

 

Figure  1.2: Schematic reservoir geology of Weyburn oilfield (modified after White et al., 2004).  
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1.2.2 CO2 injection  

The Weyburn oilfield was discovered in 1954. Water-flooding process was initiated 

in 1964 in order to increase production. After waterflooding, the production peaked at about 

46,000 barrels/day and has been decreasing since then. In 1991, drilling of horizontal wells was 

initiated to increase production, targeting in particular the less permeable Marly layer. It is 

estimated that prior to CO2 injection, 25% of the original oil in place had been recovered 

(Verdon, 2012). In October 2000, EOR using CO2 started with initial injection rate of 5000 

tonnes/day (equivalent to 95 MMSCFD1) by Apache Canada, and continued by EnCana 

(presently Cenovus Energy). CO2 flooding was performed concurrently with the IEAGHG 

Weyburn-Midale CO2 Monitoring and Storage Project. The CO2 is sourced from a coal 

gasification plant in North Dakota, and is transported through a pipeline to the field. CO2 is 

injected through horizontal wells, while water continues to be injected through vertical wells.  

More than 15 million tonnes of CO2 have been stored at Weyburn since 2000 to 2011, 

with total field injection rates (new and recycled CO2) of 13,000 tonnes per day (White et 

al, 2011). By the end of the production life of the Weyburn and Midale oil fields, 

approximately 40 million tonnes of CO2 will have been stored in the two reservoirs (The 

Petroleum Technology Research Centre website, 2015). 

1.3  Seismic methods 

 A variety of techniques are used to monitor the injected CO2 flood in Weyburn reservoir: 

geochemical analyses, geophysical methods, well-head pressure tests and soil gas sampling 

1 Million standard cubic feet per day, a unit of measurement for gases commonly used in the United States. 
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(White et al., 2004). Among these techniques, seismic methods provide by far the greatest 

continuity of subsurface sampling. These methods are applicable in a variety of geological 

settings and sensitive to changes in the reservoir pressure and CO2 saturation. Seismic techniques 

have demonstrated the ability to detect anomalies in the reservoir induced by CO2 invasion at 

Weyburn and other similar projects (White, 2004).  

The injection of CO2 into the reservoir affects its seismic properties through a number of 

mechanisms. In saturated porous rock, seismic characteristics are largely controlled by the 

stiffness, density, and porosity of the rock matrix, the nature of the fluid occupying the pore 

space, and the confining and pore pressures. Apart from chemical alteration of the rock matrix, 

the physical effects of CO2 injection consist in modification of the pore fluid and changing pore 

pressure within the rock.  

1.3.1 Time Lapse 3-D VSP  

This Dissertation is mostly based on the analysis and modeling of vertical seismic profile 

(VSP) data. VSPs are intermediate-scale geophysical surveys providing information between the 

large lateral scales of surface seismic datasets (kilometers) and the much smaller vertical scales 

of well logs (meters to centimeters). Compared with surface seismic surveys, the principal 

advantage of a VSP is in recording with receivers traversing the target zone, which allows close 

correlation of the results with geological information and geophysical logging. Because of 

recording below the surface, VSP records have generally broader frequency bandwidths and 

higher resolution and overall quality, which helps calibrating and interpreting surface seismic 

results. Taken together, surface seismic and VSP surveys provide the best combination of lateral 

coverage of the study area, high resolution in depth near the observation wells, and close 

connections to well-log measurements. Therefore, in the dataset of this study, VSP data analysis 
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helps measuring the relatively weak effects of CO2 injection and also for understanding the 

larger-scale surface 3-C 3-D measurements.  

Prior to most of the analysis of this Dissertation and also in order to achieve best results, 

VSP data need to be subjected to extensive processing. This processing is described in Chapter 2. 

The procedure is relatively standard for VSP data processing but contains several steps critical 

for retaining the relative amplitudes required for AVA time-lapse analysis and also for taking 

advantage of the 3-C recording. The two time-lapse datasets were processed through a common 

processing sequence and with common parameters. The data were further calibrated by 

correlating the reflections with key geologic horizons at known depths, isolating the up-going P-

wave and SV reflections from the total wavefields.  

1.3.2 Variation of Reflection Amplitudes with Angle and Offset 

Seismic techniques called Amplitude Variation with Angle (AVA) and Offset (AVO) 

measure reflected seismic amplitude variations from the target layer. AVA analysis has the 

potential of discriminating between pore-fluid and pressure effects in time-lapse seismic 

monitoring (Tura and Lumley, 1999; Landro, 2001; Ma and Morozov, 2010). AVA time-lapse 

monitoring should be more sensitive to changes in reservoir fluid than the traditional reflection 

monitoring due to the fact that it incorporates the shear-wave effects (Castagna et al., 1985). For 

Weyburn time-lapse datasets, the AVA technique was selected as the principal method for 

detecting the shear-wave effects, discriminating the presence of CO2 within the reservoir and 

separating the CO2 saturation and pressure effects (Baharvand Ahmadi et al, 2011). 

1.3.3 Attenuation 

The Weyburn VSP dataset reveals a very important observation from its pre-stack 

amplitudes. Figure  1.3 shows the raw amplitudes picked from the vertical components of the first 
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arrivals from the dataset W1 (1999), from a near-offset FFID #276. Because of the shot being 

located near the borehole, the depth-amplitude dependence is close to a power law, which can be 

observed from this log-log plot. However, the exponent of this power law appears to be quite 

high for geometric spreading: A ∝ Z-1.9 (Figure  1.3). For near-spherical wavefronts, a dependence 

close to A ∝ Z-1 should be expected, and considering rays slightly bending upward, the actual 

exponent should be somewhat below 1.0.  

A detailed investigation of this observation shows that the fast amplitude decay is caused 

by back-scattering and attenuation of downgoing seismic waves (Chapter 3). As shown in 

Chapter 3, the conventional quality factor (Q) model of attenuation fails to represent the accurate 

model of attenuation and therefore, the Q-factor may have a limited physical meaning. In my 

approach, the attenuation of seismic waves is measured together with geometric spreading and 

scattering, and reveals a new view on these important phenomena.  

1.3.4 Geometrical Spreading and Scattering  

Accurate models for geometric spreading and scattering of body waves are important for 

many seismic methods relying on accurate amplitudes, such as true-amplitude reflection 

imaging, inversion, attenuation measurements, Q-compensation, or AVA/AVO analysis. The 

geometric spreading is particularly strong in the VSP case, in which the receivers are located at 

progressively increasing distances from the source. The geometric spreading has the dominant 

effect on the VSP AVA, and this effect needs to be corrected before interpreting the 

dependencies of reflection amplitudes on incidence angles. Due to the variations within the 

subsurface, the geometric spreading and scattering can also be highly variable and anisotropic 

(Chapter 3). These effects cannot be assumed from theoretical considerations and need to be 

measured from the data.  
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In this Dissertation, I propose two empirical approaches to the measurement of geometric 

spreading. Both of these approaches use the amplitudes of direct waves to create anisotropic 

models of amplitude decay within the subsurface. The first model is the traditional, empirical 

model for geometric spreading using the straight-ray approximation. This model optimizes a 

simple parametric form for the geometric spreading based on the angle of reflection and the total 

travel distance between the source and receiver. In the second method, a layered model of the 

subsurface combining the geometric spreading, scattering, and inelastic dissipation is inverted 

from the VSP dataset. In contrast to the traditional approaches, this frequency-dependent model 

is formulated in terms of path integrals over the rays without reliance on a Q-factor. 

 

 

 

Figure  1.3. Amplitudes of the vertical components of first arrivals in the raw dataset W1 
(triangles). The dashed grey line shows an empirical trend of A ∝ z-1.9. 
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1.4  Contributions 

The key contributions of this Dissertation can be summarized as follows:  

1) I develop a combined model of geometric spreading, scattering and intrinsic attenuation. 

This approach is related to the conventional relations based on the Q factor but also 

represents a major innovation offering two important advantages. First, this model 

recognizes that geometric spreading and scattering occurs locally and is therefore 

variable and measureable concurrently with the Q. Second, in contrast to most 

conventional models, it is not assumed that the geometric spreading can be modeled 

accurately and/or that the scattering is absent. Without being restricted to some specific 

(inevitably limited) models for the geometric spreading, internal friction, or scattering, I 

directly model the variations of the frequency spectrum of the signal as it travels through 

the medium. This model accurately predicts the amplitudes and attenuation properties of 

direct waves traveling at any angles, and therefore it is useful for true-amplitude studies 

such as AVA analysis.  

2) The most challenging part of the attenuation problem is in the separation of the 

geometric, scattering, and intrinsic attenuation, and also the Q resulting from fluctuations 

of the background structure (Morozov and Baharvand Ahmadi, 2015). To analyse these 

effects in VSP data, I develop a numerical model of scattered seismic wavefields in 

realistic short-scale layering observed in Weyburn area. This modeling approach can be 

related to the conventional methods used for reservoir characterization using seismic 

attenuation. The modeling yields a more complete characterization of the observable 

macroscopic attenuation parameters associated with the subsurface structure. For 

example, the internal friction is related to the presence of mobile pore fluids, moving 
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dislocations, or grain-boundary sliding should lead to effects similar to solid and fluid 

viscosity (Biot, 1956; Landau and Lifshitz, 1986). Such parameters should be very useful 

for petrophysical characterization of the reservoir. 

3) I process and calibrate the time-lapse 3-C 3-D VSP data in a way that preserves the 

amplitude information and allows comparisons of the two years of acquisition. I also 

separate reflected P and SV waves and calibrate VSP data to 3-D surface seismic data. 

The resulting VSP records show an improved resolution, especially around the relatively 

thin reservoir. 

4) Accurate amplitude-spreading and scattering models allow a more accurate time-lapse 

AVA analysis of Weyburn VSP data. AVA attributes are derived and used for separating 

the pressure and saturation effects caused by CO2 injection in the reservoir. Time-lapse 

AVA analysis reveals distinct trends around the CO2 injection wells in VSP area. I argue 

that these trends may be due to CO2 movement within the reservoir.  

In summary, in this study, I develop two key approaches for analyzing the propagation 

properties of the wavefield, apply them to time-lapse and derive modified AVA attributes 

suitable for petrophysical analysis of the reservoir. These subjects have not been addressed in 

other studies before. The key results of this Dissertation are given in Baharvand Ahmadi et 

al. (2011), Baharvand Ahmadi and Morozov (2013 and 2014), and also Morozov and Baharvand 

Ahmadi (2015).  

1.5  Organization of this Dissertation 

This Dissertation is organized as follows. Chapter 2 introduces the time-lapse, 3-D 3-C 

VSP and other types of data used in this study. It also describes the processing and calibration of 
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VSP data and the procedures for extracting the upgoing P and SV waves, deconvolution and VSP 

to CMP transformation. 

Chapter 3 presents an amplitude-decay model for direct waves and reflections observed 

in VSP data. This problem is addressed by two different methods using the same frequency-

dependent direct-wave VSP arrivals. The first model follows a conventional, frequency-

independent approach. In the second method, a more sophisticated frequency-dependent model is 

considered, in which the entire amplitude-decay problem is treated together, and inverting for 

both the variations of geometric spreading and Q.  

Chapter 4 further develops the combined (second) model of Chapter 3 by separating the 

contributions of geometric spreading, intrinsic Q, scattering, and spectral fluctuations. This 

analysis is performed by numerical modeling of “random” and “non-random” scattering effects, 

so that the geometric spreading, scattering, and attenuation effects are separated.  

In Chapter 5, I perform an AVA analysis and apply it to fluid-substitution and AVO 

models of pressure-saturation effects in Weyburn CO2 earlier proposed by Morozov and 

Ma (2010). I correct spreading effects for the reflected amplitude from the reservoir by 

employing proposed frequency dependent spreading model and perform AVA analysis for the 

time-lapse VSP data. Several sets of seismic attributes sensitive to the presence of CO2 are 

measured, and using AVA cross plot, general trends related to CO2 injection in the area are 

detected.  

Finally, Chapter 6 presents the conclusions and makes some recommendation for future 

studies. Appendices A and B illustrate Matlab codes used during key steps of data analysis in 

Chapters 4 and 5. 
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2 CHAPTER 2: WEYBURN 3-D 3-C VSP DATA AND PROCESSING 

 

In this Chapter, I describe the seismic and well-log datasets used in this study and 

summarize the data processing and calibration applied to them in order to minimize the 

acquisition differences and to reveal the variations of reflectivity (potentially) related to the flow 

of CO2 within the reservoir.  

The presentation in this Chapter is based on the following paper and a section from 

University of Saskatchewan Weyburn report by the University of Saskatchewan: 

Baharvand Ahmadi, A., and I. Morozov, 2011a, Time-lapse VSP data analysis from 

Weyburn CO2 project: 2011 CSPG/CSEG/CWLS Convention, p. 1-4, 

http://cseg.ca/assets/files/resources/abstracts/2011/096-Time-

Lapse_VSP_Data_Analysis_from_Weyburn_CO2_Project.pdf, last accessed Oct 22, 

2016. 

Copyright of this publication belongs to the Society of Exploration Geophysicists, which allows 

using these materials for student theses. Parts of these results were also published in Baharvand 

Ahmadi and Morozov (2011b). 

Baharvand Ahmadi, A., L. Gao, J. Ma and I. Morozov, 2011, CO2 Saturation vs. 

Pressure Effects from time-lapse 3-D P-S surface and VSP seismic data: Final report 

as part of IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project, 

http://seisweb.usask.ca/Reports/Weyburn_USask_Report_Apr2011.pdf, last accessed 

October 22, 2016 
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This is a multi-year final report for a major project conducted at the University of Saskatchewan. 

My placement as the first author of this report was incidental and resulted from alphabetic listing 

of the authors. However, the section of the report on VSP data processing and analysis is entirely 

my work under the supervision of Prof. I. Morozov. In this Chapter, I include parts of this report 

related to initial VSP data processing. The same Weyburn IEA GHG report was co-authored by 

Le Gao, who is another PhD student in our group at the University of Saskatchewan. It is 

anticipated that she will also use parts of this report in her Ph.D. thesis. We used different 

datasets, and there is no overlap between the work by Le Gao and my work presented in this 

Dissertation. The focus of Le Gao's research was on analyzing 3-D/3-C surface seismic data, and 

my research used the VSP datasets. 

Copyright of the above report belongs to the authors, which allows using these materials 

for student theses. Parts of the above materials were modified and reformatted for inclusion in 

this Dissertation. Figures were re-plotted and modified in order to meet the requirements of the 

University of Saskatchewan. The contribution by my supervisor (Professor Igor Morozov) 

consisted in setting the problem, general guidance and advice, help with his own seismic 

processing software, many discussions of the results and supervision of this work.  

2.1 Data 

Three types of data from Phase I of Weyburn project were used in this study: 1) time-

lapse 3-C 3-D VSP, 2) time-lapse 3-C 3-D surface seismic and 3) well-log data. These data were 

provided by Encana Corporation (currently Cenovus Energy) and completely reprocessed by 

myself (VSP data) and Jinfeng Ma and Le Gao (surface reflection data) at the University of 
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Saskatchewan for the present and other projects. In the following subsections, I describe these 

datasets and their contributions to the present study.   

2.1.1 Vertical Seismic Profile Data 

Analysis of 3-D VSP data provides important information for time-lapse reservoir 

imaging. Downhole recording used in VSP surveying provides higher quality and frequency 

content resulting in usually superior images in the vicinity of the borehole. Although the VSP 

covers a relatively small area, the improved detail should help constraining the injected fluids 

better than it would be possible by using surface recordings alone. In areas with very thin 

reservoir layers similar to those in Weyburn oilfield, VSP’s role in providing complementary 

data is particularly significant. 

In this study, I analyze two 80-level, 3-D 3-C VSP surveys acquired in the same well 

#191121200614 (Figure  2.1). The baseline dataset was acquired in 1999, prior to CO2 injection, 

and it is hereafter denoted W1. The second, monitor dataset was acquired in 2001 and is 

denoted W2. Dynamite sources were fired at depths of 10–12 m, from all azimuths around the 

borehole and at surface offsets from the top of the borehole ranging from ~30 to 1500 m. 

Figure  2.1 shows the shot locations for both VSP datasets, and Figure  2.2 shows their relation to 

the surface seismic study (described later in Section  2.4).  

These data were acquired by using borehole receivers placed at 15-m intervals at depths 

ranging from 190 m to 1390 m with no cable movement. At each depth level, two geophones 

were oriented horizontally perpendicular to each other and denoted X for the orientation toward 

the east and Y toward the north Figure  2.3). The third geophone was orientated downward 
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vertically and designated Z. The VSP acquisition parameters for baseline and monitoring VSP 

surveys are summarized in Table  2.1. Sample records from raw Z-, Y-, and X-components of the 

VSP data from a near-offset shot are shown in Figure  2.4. 

Table  2.1: VSP acquisition parameters. 

VSP Acquisition Parameters Baseline (1999) Monitor (2001) 
Number of Components 3 3 

Number of Channels per shot 240 240 
Receiver Interval 15 m 15 m 

Number of Source points 247 253 
Offsets 31-1510.39 m 128-1503 m 

Shot depths 10-12 m 10-12 m 
File Numbers 6-568 37-503 

Receiver Elevations (from  sea level) 390.3-(-811.8) m 391.8-(-812.07) m 
Depths of Receivers 189-1393 m 188-1391 m 

Total number of records  59280 60720 
 

 

Figure  2.1: VSP shot locations in baseline (a) and monitor (b) datasets.. Blue dashed lines are the 
profiles of the cross-sections shown in Figure  2.18 and Figure  2.19.  
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Figure  2.2. Base maps of baseline CDP and VSP surveys. Blue dots are time-lapse VSP shot 
positions compared to surface reflection shot points (red). VSP well (black circle), and 
other wells used in this study for generating VSP synthetic (green circle). The well in 
northwest edge of the survey used for fluid substitution and AVO model (red circle).  

 

 
Figure  2.3: Schematic view of the VSP component rotation (modified from Hinds et al., 1996). 

The first rotation transforms the horizontal-component records (X and Y) into projections 
onto the direction of maximum horizontal-component energy within the first arrival 
(Hmax) and the direction orthogonal to it (Hmin). b) The second rotation maximizes the 
energy in the maxH ′ .  
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Figure  2.4: Raw records from the near-offset VSP shot (FFID 276). From top to bottom: Z- , Y-, 
and X components. Green lines show the first-arrival travel times. Only Automatic Gain 
Control (AGC) was applied to these sections. The header DEPRCV is the depth of each 
borehole receiver (in meters) from the surface. 
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2.1.2 Surface 3-C 3-D data  

Starting from a baseline survey in 1999, surface 3-D datasets were acquired for CO2 

monitoring in Weyburn project almost annually. Three-component (3-C) surface datasets were 

also acquired in order to evaluate the ability to constrain the pressure-saturation effects by using 

S wave information. Three of these 3-C, 3-D datasets were included Phase I of Weyburn project 

and were available to the present study: the baseline 1999, and monitoring 2001 and 2002 

vintages.  

Basic parameters of Weyburn 3-C, 3-D data acquisition are given in Table  2.2, and the 

positions of shots for the baseline dataset are shown in Figure  2.1a. These data were re-processed 

by Jinfeng Ma and Le Gao at the University of Saskatchewan (Morozov and Gao, 2009; Gao and 

Morozov, 2010, 2014).  

Compared to VSP, surface reflection seismic data provide broader and more spatially-

uniform coverage. These properties make the time-laps surface reflection dataset the principal 

tool for seismic monitoring the processes of EOR and CO2 sequestration. At the same time, VSP 

contributes a higher-quality coverage of the area of the well, and allows performing a detailed 

seismic analysis of the kind carried out in this Dissertation.  

2.1.3 Well log data 

Well logs provide detailed information about the physical properties of the geologic 

formations in depth. Well logs and cores are used to measure the depths of formation tops, their 

thicknesses, porosities, water saturation, temperature, lithologies, presence of oil, brine and/or 
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gas, estimated permeability, reservoir pressures and formation dips.  Many of these types of 

information are useful for calibration and analysis of surface seismic and VSP data. 

In this study, geophysical logs from two wells are used. The first well #102042300614 is 

located in the northwestern part of the Phase I Weyburn project area (red circle in Figure  2.2). 

This well contains the most complete logs, including the P and S-wave velocities and is used for 

constructing the fluid substitution and AVA models (Chapter 5). The second well 

#111071300614 is located within the VSP survey area (green circle in Figure  2.2). The P-wave 

velocity and density logs from this well are used for calibration of VSP data processing, as 

described in the following section.  

Table  2.2: Weyburn surface 3C-3D acquisition parameters. 

Parameters\Year Baseline (1999) Monitor (2001) Monitor (2002) 

Shot number 630 882 630 
Receiver station 986 986 986 

Sample rate 2 ms 2 ms 1 ms 
Maximum offset 2152.87 m 3445.84 m 2105.627 m 
Maximum fold 77 132 78 

Source type Dynamite,1 kg, 
12 m 

Dynamite, 1kg, 
12 m 

Dynamite,1 kg, 
12 m 

Receiver type 
Mitcham, 3C 

10Hz 
Damping 70% 

OYO, 3C 
10Hz 

Damping 1% 

I/O, VectorSeis, 
3C, MEMS 

 
Source interval 160 m 160 m 160 m 

Receiver interval 160 m 160 m 160 m 

Swath 19 lines × 
39 stations 

19 lines × 
39 stations 

19 lines × 
39 stations 
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2.2 Processing of VSP data 

Corridor stacks, VSP to CDP transforms and/or migrations usually represent the final 

products of VSP data processing. However, in this study, I use VSP data for direct AVA/AVO 

analysis, which poses much more stringent requirements on the basic VSP data processing. 

These requirements are generally due to comparatively narrow angular apertures in VSP surveys, 

by the presence of both downgoing and upward-reflected waves, and by the lack of redundancy 

in reflection-point coverage.  

The general processing of Weyburn VSP data in this Dissertation was performed by 

using a combination of the available seismic processing software: ProMax VSP (by Landmark 

Geophysical/Haliburton), VISTA (Gedco, currently Schlumberger) and our in-house package 

called IGeoS2. The more specialized analysis and inversion of the data was performed by using 

custom codes written in MATLAB (by MathWorks).  

Similar to surface seismic data, 3-D VSP processing begins with applying the geometry 

(creating the geometry database and assigning trace header values), trace editing, first-break 

picking and component rotation. Because the first-arrival times are unique to 3-C seismograms, 

the first breaks were picked in the vertical-component records (as having the highest signal to 

noise ratios) and transferred to other components. Further, a number of additional steps are 

required to process the VSP data (Table  2.3). In the following subsections, I summarize these 

steps for the Weyburn datasets. 

2 Integrated GeoScience data analysis (Morozov, 2008). 
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2.2.1 Three-component rotation 

Three-component VSP data contain the reflected P and SV wavefield, which deliver the 

most information about the subsurface. The P and SV waves were approximately separated by 3-

C component rotations of the seismograms, implemented as a horizontal rotation followed by a 

rotation in the vertical plane. Both of these rotations were based on analysing the particle motion 

diagrams (hodograms) of the first arrivals (Figure  2.5). The first rotation transformed the 

horizontal-component records (X and Y) into projections onto the direction of maximum 

horizontal-component energy within the first arrival (denoted Hmax) and the direction orthogonal 

to it (Hmin). In the absence of horizontal anisotropy, Hmax points toward the seismic source 

(Figure  2.3; Hinds et al., 1996). Figure  2.6 illustrates the results of Hmax and Hmin after the first 

rotation of horizontal components.  

 

Table  2.3: General processing steps applied to Weyburn VSP datasets. 

Weyburn VSP processing steps 
Data Loading 
Trace Editing 

Geometry Loading 
First Break Picking 
Hodogram Analysis 

Wave field Separation 
VSP Deconvolution 

Velocity Picking 
VSP CDP Transform 

Binning to 3-D surface seismic Data 
Calibration of VSP data to Surface data 

3-D Stacking 

23 

 



 

 

The second rotation was performed in the vertical plane containing the direction Hmax 

(Figure  2.5). This procedure maximizes the energy in the primary rotated component (designated

maxH ′ ), which is interpreted as the polarization direction of the downgoing P wave. The direction 

orthogonal to it (Z′) contains predominately upgoing P and downgoing SV waves (Figure  2.5). 

Figure  2.7 illustrates the results of this second rotation, which will be used later for separating 

the upgoing P and SV waves (section  2.2.3). 

 

Figure  2.5: Horizontal-component polarization analysis in VISTA software for a far-offset VSP 
shot (FFID 340). Left panel: The bearing and rotation angles (black arrow) calculated for 
a 100-ms first-arrival window. Right panel, top to bottom: a) Input Y-component signal, 
b) Input X-component signal; c) hodogram maximum (Hmax) signal, d) hodogram 
minimum (Hmin) signal.  
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2.2.2 Velocity analysis 

Similar to processing of surface seismic data, velocity analysis is critical for VSP data 

analysis. However, in addition to reflection moveouts, velocity analysis in a VSP can be 

conducted by using first arrivals. The geometry of vertical seismic profiling allows determining 

 

 

Figure  2.6: a) Hmax and b) Hmin sections resulted from the first rotation of horizontal components 
after hodogram analysis in Figure  2.5.  

a) 

b) 
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the interval velocity directly as a function of depth instead of travel time. This depth model can 

be useful for tying log records to seismic data, giving a precise relation between the two-way 

time and the corresponding depth in the area, and also in other processing and inversion 

applications.  

The travel times picked from the first arrivals times, tSR, can be viewed as a function of 

the geophone depth, z, or of the source-receiver distance, DSR. Two important velocity measures 

 

 

Figure  2.7:  a) maxH ′  and b) Z’ sections resulted from rotation of the vertical component (Z) and 
rotated horizontal component toward source (Hmax). 

a) 

b) 
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are derived directly from these functions: 1) the interval velocity at depth z near the well, 

int SRV dz dt≡ , and 2) the average velocity SR SR SRV D t≡  between the source and receiver. Some 

VSP processing operations, such as the spherical-divergence correction also require a root-mean 

square (r.m.s.) velocity function, Vrms. This function was also obtained as a function of depth by 

transforming the Vint and VSR. The resulting Vrms(z) approximates the stacking velocity in an 

equivalent surface refection survey recorded in the same area. Figure  2.8 shows a comparison of 

the average and interval velocities generated from a near-offset and far-offset VSP shots.  

By using the inverted interval or r.m.s. velocity profiles, ray tracing generates a set of 

direct and reflected rays to generate arrival times and incident angles for each VSP receiver. 

Figure  2.9 shows an example of ray tracing of a far-offset shot in Weyburn VSP. 

The r.m.s. velocity derived from the interval velocities for first arrivals may still not be 

 

Figure  2.8: Average and interval velocities calculated from the first-arrival times of a near-offset 
and far-offset VSP shots. Left panel: the first breaks times picked for a near offset (blue) 
and far offset (green) VSP shots. Right panel: average and interval velocity in depth for 
near and far offset VSP. 
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sufficiently accurate for focusing the reflections. In this study, in addition to the inverted r.m.s. 

velocity, I determined another, detailed stacking velocity from the reservoir reflection times 

measured in shot records. This allowed achieving higher accuracy near the reservoir while 

mitigating the low data redundancy inherent in VSP recording. To perform this stacking velocity 

analysis, I:  

1) Using an initial model derived from the well logs, modeled the times of 

reflections from the reservoir caprock level, 

2)  Superimposing these modeled times on the shot records, identified and picked the 

actual reflection from the caprock, and 

3) Inverted these reflection travel times for the stacking velocity Vstack above the 

caprock by using the hyperbolic travel-time equation:  

4) are predicted reservoir times using equation (2.1). 

5) ( ) ( )22

stack

2 cx z z
t x

V
+ −

= ,                                             (2.1) 

6) where z is the depth of the geophone, zc is the depth to the caprock known from 

the borehole, x is the horizontal source distance from the top of the well.  

Figure  2.10 illustrates the travel-time data fit in relation (2.1) for four shots. Some 

systematic deviations seen in the misfits are likely due to ray bending and anisotropy, which are 

not included in equation (2.1).  
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Figure  2.9: Incident (white) and reflected (black) rays from a far-offset VSP shot at a 480-m 
offset from the borehole. The velocities of the layers are illustrated by colors (color bar 
on the left). The receiver array is shown by green on the left. 
 

 

Figure  2.10: Stacking velocity at reservoir level in VSP area derived from four shots by using 
equation (2.1). The red dots are observed travel times from the reservoir and the blue dots  
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Using equation (2.1), stacking velocities for all VSP shots were calculated and assigned 

to midpoints between each shot and borehole. Figure  2.11 shows the stacking velocity variation 

around the borehole at the reservoir level for the baseline dataset W1. This velocity complements 

the r.m.s. velocity inverted from the first breaks and used for producing more accurate seismic 

images around the well (subsection  2.2.6). 

2.2.3 Wavefield separation 

The VSP wavefield consists of a superposition of the downgoing and upgoing waves, 

which need to be separated and interpreted differently. The reflected P-wave field is useful for 

 

Figure  2.11: Stacking velocity variation at reservoir level in VSP area from the baseline dataset. 
Black dot is the VSP well location and orange lines are horizontal CO2 injection wells. 

30 

 



 

constructing corridor stacks for calibration of surface seismic data, producing pseudo-CMP 

sections by using the VSP to CMP transform. The reflected field is also required for performing 

the reflection AVA analysis of this study. The downgoing wavefield is useful for analyzing the 

velocities, attenuation, source signatures and constructing deconvolution operators.  

There exist several approaches to separating the downgoing and upgoing wavefields from 

a VSP wave field. All of these approaches utilize the differences in the signs of the moveouts for 

the downgoing and upgoing wavefields. The most common techniques use the median, f-k and 

eigenvector (Karhunen–Loève, or KLT) filters. The first of these methods was utilized in this 

study. 

The median filter, when applied along the appropriate moveout, is very effective in 

estimating the flattened event amplitudes despite the interfering events with different moveouts. 

If the input records can be flattened and the waveforms are stable, then the median filter 

performs well in upward-downward wavefield separation. Typically, the amplitudes of consistent 

downward-directed events are estimated and then subtracted from the input, leaving the upgoing 

wavefield. I applied a median filter with a 13-trace window to compute the downgoing P wave 

field from the maxH ′  component (section  2.2.1) flattened on the first arrivals. Figure  2.12 shows 

the separated downgoing P wave from a far-offset VSP shot using the median filter. Figure  2.13 

shows the separated Z and maxH ′  upgoing waves from the same shot. These Figures show that the 

median filter is very effective for separating the downgoing and upgoing waves in Weyburn VSP 

data. These results are used in the next subsection to separate the P and SV waves in the upgoing 

wavefield.  
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Figure  2.12: Downgoing P wave separated from a far offset VSP shot (FFID 340) using a median 

filter with 13 points (traces).  

 

 
Figure  2.13: a) Upgoing waves separated from vertical component (Z) and b) from horizontal 

component of a VSP shot (FFID 340). Only AGC applied to above sections for display 
purposes. 

a) 

b) 
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2.2.4 Separation of upgoing P and SV waves 

Separation of P and SV waves was first introduced by Dankbaar (1985) and applied to 

both 3-component surface (Dankbaar, 1985) and VSP data (Dankbaar, 1987). In his method, the 

horizontal and vertical geophone records are expressed in terms of receiver characteristics and 

incident P- and S-waves. To derive a P/S-mode separation filter, the data are decomposed into 

plane waves, i.e. transformed into the f-k-domain. The Fourier components of the incident P- and 

incident S-waves (Pin and Sin, respectively) can be expressed as linear combinations of the radial- 

(UH) and vertical-component records (Uz): 

( , ) ( , ) ( , ) ( , ) ( , )P P
in Z Z H HP k f F k f U k f F k f U k f= + ,                                             (2.2) 

( , ) ( , ) ( , ) ( , ) ( , )S S
in V Z H HS k f F k f U k f F k f U k f= + .                                             (2.3) 

The coefficients F represent the plane-wave P/S-separation/filter coefficients (Dankbaar, 1985). 

The above method can also be used for separating reflected P and SV waves. 

If the input wavefields UV and UH are separated into  the up- and downgoing fields, then a 

transformation analogous to (2.2) and (2.3) can be performed in the time domain for depth-

dependent velocities (Miong et al., 2008). I used the time-variant component rotation method by 

Miong et al. (2008) to separate P and SV wave in the upgoing Z and Hmax datasets (section  2.2.1) 

by using arrival times and incident angles calculated by ray tracing from each shot. Figure  2.14 

illustrates the resulting upgoing P and SV waves extracted from a far-offset VSP shot.  

2.2.5 VSP corridor stack 

Corridor stacks are commonly produced from VSP data processing in zero- (or near-) 

offset surveys. These stacks are tied to surface seismic stacked sections to help interpreting the 
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key geologic horizons and reflections seen in seismic sections. In seismic-while-drilling 

monitoring, corridor stacks also can help the drillers to anticipate what is coming up deeper in 

the borehole (Poletto, et al, 2004).  

A corridor stack for near-offset Weyburn VSP data was created by travel-time shifting 

the upgoing-wave field from a near-offset shot by using the times of the first arrivals. This 

operation is known as the “VSP static shift” and results in VSP reflections aligned horizontally. 

 

 

Figure  2.14: a) Upgoing P and b) SV waves separated from a VSP shot (FFID 340) using the 
time-variant component rotation by Miong et al., (2008).  

a) 

b) 
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By summing these records, a corridor stack was produced, which was equivalent to a normal-

incidence reflection record in the vicinity of the borehole (Figure  2.15). This stack was further 

compared to synthetics generated from well logs. As in usual seismic interpretation, to adjust for 

the uncertainties of the static time shifts and velocities, the geophysical and lithological logs 

were shifted and stretched vertically, so that the reflection synthetics created from such logs 

match the observed reflection sequence (Stewart and DiSiena, 1989) (Figure  2.16). 

 

Figure  2.15: Near-offset VSP shot from dataset W1: a) upgoing wavefield after an application of 
“VSP statics”, b) corridor stack. Red bar indicates the reservoir interval (Marly + Vuggy). 
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Figure  2.16: Weyburn VSP corridor stack with interpreted reflections from lithological 
boundaries. Red line is the P-wave velocity well log and blue line shows the density log. 
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2.2.6 VSP to CMP transformation 

In contrast to surface reflection seismic data, VSP data are recorded in the time-depth- 

rather than time-distance domain. Therefore, in order to compare 3-D VSP images to reflection 

seismic volumes recorded from the surface, data transformation of the VSP into the form of a 

surface reflection image is required. One way of performing this transformation is by using the 

VSP-to-CMP transform (Figure  2.17; Wyatt and Wyatt, 1981). In this approach, surface and 

VSP reflection travel times are computed by ray tracing through the stacking velocity model, and 

the VSP reflection times increased by the times required for the reflections to reach the surface 

(dashed line in Figure  2.17). Note that for near offsets (near-vertical rays in Figure  2.17), the 

additional reflection time is nearly equal the direct-wave time (purple arrow labeled D in 

Figure  2.17), giving the “VSP static shift” procedure described in the preceding section. 

Figure  2.18-Figure  2.19 show an example of VSP-to-CMP transformed upgoing VSP field 

stacked along blue dashed line in Figure  2.1 for baseline and monitoring surveys.  

Although the VSP-to-CMP mapping is a convenient tool for presenting VSP data in a 

form directly comparable to surface CMP record sections, it is only used for illustration purposes 

in this dissertation. A major drawback of this procedure is in inaccurate handling of amplitudes 

and in modifying the reflection angles. Both of these factors are not acceptable for AVA 

measurements. Therefore, in the AVA analysis (Chapter 5), I do not use the VSP-to-CMP 

transform and rely on direct measurements of the amplitudes from raw shots. Geometrical 

spreading combined with attenuation and effects of anisotropy will be discussed in Chapter 3 and 

is applied to the data prior to the AVA analysis.   
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Figure  2.17: Offset-VSP geometry. The VSP-to CMP transform consists in adding to the VSP 
reflection time (pink ray) the time corresponding to the extension of this ray to the 
surface (dashed line). Labels also indicate the notation in equation (2.1). Purple ray 
corresponds to the first arrival, and D is the source-receiver distance. R(φ) is the angle 
(AVA) dependence of the reflection amplitude measured later in this Dissertation. 

 

Figure  2.18: VSP-to-CMP transformed upgoing VSP field from dataset W1 stacked along the 
blue dashed line in Figure  2.1.  
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2.3 Calibration of time-lapse VSP data 

Calibration of seismic datasets is the most critical part of time-lapse seismic monitoring. 

In term of acquisition, calibration requires maintaining constant positions of the sources and 

receivers, consistent charge types and sizes, and similar recording conditions. During seismic 

processing, calibration also requires common binning, identical processing steps and parameters, 

and also consistent statics and velocity models that can be rigorously correlated between the 

baseline and monitor versions of the dataset.  

To improve the consistency of the amplitudes in datasets W1 and W2 used in AVA 

analysis, I used pre-stack spectral balancing of these datasets. Fast Fourier transforms were used 

to compute the averaged amplitude spectra for each pair of closely-located, raw shots from the 

datasets W1 and W2. As shown in Figure  2.20, the amplitudes and spectra of the shots recorded 

in the different years of acquisition were significantly different. By smoothing these spectra and 

 

Figure  2.19: VSP-to-CMP transformed upgoing VSP field from dataset W2 stacked along the 
same line as in Figure  2.1. 
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taking their ratios, a simple zero-phase matching filter was calculated (green line in Figure  2.20). 

These filters were further applied to the data from dataset W1, making their average amplitudes 

and spectral responses close to those in dataset W2. 

2.4 Calibration of the VSP with surface seismic data 

In order to correlate and calibrate the NMO-corrected VSP to the surface seismic records, 

the VSP to CMP transformation was conducted by using the same CMP binning as in the surface 

seismic study (Gao and Morozov, 2011). Further, any differences in timing and stacking 

velocities between the VSP and surface datasets were removed by applying depth-variant time 

 

Figure  2.20: Amplitude balancing for a pair of collocated VSP shots. Blue line indicates the 
amplitude spectrum for FFID 17 in dataset W1, red line is the amplitude spectrum of the 
closely-located FFID 460 from W2. Green line shows the response of the calculated 
matching filter. 
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shifts similar to the well-log “stretching” commonly used during reflection seismic 

interpretation. As a result, the calibrated pre-stack VSP dataset became directly comparable to 

the surface one in terms of both reflection-point locations and reflection times (Figure  2.21). 

Note that after such calibration, VSP data show good quality and better resolution, particularly 

around the reservoir level (red bar in Figure  2.21). 

 

 

Figure  2.21: Comparison of reflection sections from the stacked surface baseline dataset and the 
two vintages of VSP datasets transformed into CMP form. Red bars indicate the reservoir 
range (Marly +Vuggy). 
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3. CHAPTER 3: ANISOTROPIC FREQUENCY-DEPENDENT SPREADING 
OF SEISMIC WAVES  

 

Attenuation of seismic-wave amplitudes is a complex phenomenon that is important to 

understand for many applications such as true-amplitude imaging, inversion, Q-compensation, 

and analysis of amplitude variations with offset (AVO). Accurate accounting for wave 

attenuation helps in understanding the lithology, physical state, fracturing, fluid and gas content 

of reservoir rock.  

The process of energy dissipation in wave propagation is time- (space-) and frequency-

dependent. Physically, energy dissipation is caused by a combination of three factors: (1) local 

variations of geometric spreading, (2) scattering (such as transmission losses and reflectivity), 

and (3) internal friction within the material (transformation of the mechanical energy of seismic 

waves into heat), usually described by its intrinsic Q. 

In this Chapter, I derive an amplitude-spreading model from the spectra of first arrivals of 

a 3-D vertical seismic profile (VSP). A conceptually new model parameterization is based on 

combining the observable variations of geometric spreading, intrinsic attenuation, and small-

scale scattering. The model is formulated in terms of two empirical physical parameters and path 

integrals along the rays. A model of depth-dependent and anisotropic parameters γ and κ is 

derived, which will be used for both direct arrivals and reflections in the study area (Chapter 6). 

Application of the resulting model to seismic records allows predicting the amplitudes of the first 

arrivals. The modeled frequency-dependent amplitudes can be used for accurate Q-compensation 

as well as for corrections for scattering and focusing/defocusing. Similarly, the model can likely 

be used for other waves, for example, to correct the geometric spreading and attenuation effects 
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for reflected and converted waves. The resulting empirical, frequency-dependent, anisotropic 

model of amplitudes should be useful for many true-amplitude studies, including inversion and 

AVA analysis. Model parameters can also be used to constrain petrophysical properties and for 

constructing frequency-dependent Q values suitable for synthetic modeling and inverse Q 

filtering.  

The presentation in this Chapter is based on the following paper: 

Baharvand Ahmadi, A., and I. Morozov, 2013a, Anisotropic frequency-dependent 

spreading of seismic waves from first-arrival vertical seismic profile data analysis: 

Geophysics, 78, no. 6, C41–C52.  

Copyright of this publication belongs to the Society of Exploration Geophysicists, which allows 

using these materials for student theses. This paper was modified and reformatted for inclusion 

in this Dissertation. Figures were re-plotted and modified in order to meet the requirements of 

the University of Saskatchewan. The contribution by my supervisor (Professor Igor Morozov) 

consisted in setting the problem, general guidance and advice, help with his own seismic 

processing software, many discussions of the results and supervision of this work. Preliminary 

results of this work were also published in Baharvand Ahmadi and Morozov (2012). 

3.1  Descriptions of seismic attenuation 

Amplitude decay is time- (space-) and frequency-dependent, and physically, it is due to 

combination of three factors: 1) geometric spreading, 2) elastic scattering, and 3) internal friction 

within the material, usually described by its intrinsic Q. Models for seismic amplitudes often rely 

on separation of the geometric spreading and Q-type contributions by using empirical relations, 

such as: 
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 ( ) ( ) ( ) ( ) ( )* 1, exp exp ,aP f G ft G Q ftπ π −Π = Π − ≡ Π −                       (3.1) 

where Π denotes the ray path, P is the path effect on the amplitude,  G is the geometric 

spreading, t is the travel time, f is the frequency, t* is a parameter responsible for the cumulative 

frequency dependence of the amplitude, and *
aQ t t≡  is the path-averaged (apparent) quality 

factor. For traveling waves, quantity t* is accumulated along the ray (e.g., Der and Lees, 1985):  

  * 1t Q dt−

Π

= ∫ ,                                                                      (3.2) 

where Q is the local quality factor. This Q is believed to be related to the physical properties and 

microstructure (pores, fractures, fluids, heterogeneity) of the material, although the rigorous 

relation may be difficult to establish. In this study, I understand the Q as an empirical property 

attributed to a point of the medium and show how this property can be measured in combination 

with the spatially-variable geometric spreading in equation (3.1). 

Many approaches to measuring the Q and t* from body-wave arrivals were developed 

based on corrections for G(Π), amplitude ratios, pulse rise time, dispersion, and instantaneous 

frequency (Tonn, 1991). Broadly, all of these methods are based on the difference in the 

functional dependence on f and t expected from the geometric spreading and Q-related factors in 

equation (3.1). The geometric spreading is usually considered as frequency-independent and for 

simplicity, often expressed as ( )G R α−Π ∝  or ( ) ( )G G t t α−Π ≈ ∝ , where R = Vt is the source-

receiver distance, V is the average velocity, and α is an empirical exponent (Frankel et al., 1990). 

This model is independent of ray azimuths and implies straight rays, but allows the path effect 

P(f,Π) to empirically deviate from the theoretical limit (which is α = 1 for body waves). 

44 

 



 

3.1.1 Trade-off between intrinsic attenuation, scattering, and geometric spreading  

In many practical cases, amplitude decays disagree with the ray-based relation (3.1), and 

particularly with the simple time-dependent model G(t). Empirically-determined exponent α in 

the approximation ( )G R α−Π ∝ are often large and may reach or even exceed two 

(Hardage, 1985). Fast frequency-independent amplitude decays are likely caused by ray bending 

and back-scattering (reflections predominantly directed upward or downward in exploration and 

earthquake cases, respectively). In both of these cases, the geometric spreading is anisotropic, 

depth-dependent and no longer consistent with the simple power-law form of R-α. Improved, 

broadly used approaches to geometric spreading account for bending rays in layered structures 

(Newman, 1973) and for offset dependences (for example, Ursin, 1990). Most importantly, the 

geometric spreading is variable within the structure, and no theoretical model should likely 

predict it reliably with accuracy necessary to measure the detail in Q (i.e., with relative accuracy 

of 1/Q ~ 10-2; Morozov, 2010a). In addition, in structures with pronounced layering and 

refractions (common in exploration problems), geometric spreading can be frequency dependent 

(Yang et al., 2007). 

The exponential frequency-dependent amplitude factor in equations (3.1) and (3.2) can be 

similarly limited for accurately describing the data, with errors related to anisotropy (e.g., 

Carcione, 1992; Zhu et al., 2007; Behura and Tsvankin, 2009) or the assumption of a frequency-

independent Q. Frequency dependence of Q is broadly accepted in global seismic studies and 

viewed as the key property of Earth materials (for example, Aki and Richards, 2002). Frequency-

dependent Q and the associated velocity dispersion were also studied in exploration (VSP) 

seismic records (Harris et al., 1997; Sun et al., 2009). However, frequency-dependent Q strongly 

trades off with the choice for G(t) (e.g., Kinoshita, 1994), which increases the difficulty of 
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finding a suitable approximation for geometric spreading. Recently, Morozov (2008, 2010a) 

pointed out that in many seismic measurements, the trade-off with the geometric spreading is so 

large that it does not allow constraining the frequency-dependent Q reliably. For example, in 

earthquake coda studies, scattering Q-1 is often found to be nearly proportional to the frequency 

(Aki, 1980; Wu, 1985), which can be written as ( )1Q fγ π− = , where γ  is some constant whose 

meaning will be revealed in the next subsection. However, in this case, the exponential factor in 

equation (3.1) equals simply ( )exp tγ− , showing that this amplitude decay is only a frequency-

independent variation in the geometric spreading. In several case studies, small variations in γ 

were shown to cause as large as 20–30-fold variations in the interpreted values of Q at 1 Hz 

(Morozov, 2008). Parameters α and γ can also be spatially variable, leading to spurious 

frequency dependences in Q. Scattering on small-scale structures, in its turn, is also conceptually 

difficult to separate from the empirical geometric spreading and Q. When measured from the 

data, scattering strongly trades off with both geometric spreading and Q, and particularly with 

the frequency-dependent Q (Dainty, 1981). Such uncertainties present significant difficulties for 

modeling and interpretation.  

3.1.2 Attenuation-coefficient formulation 

The solution to the rather complicated time-frequency trade-off above, as suggested by 

Morozov (2008, 2010a), consists in a simple generalization of the t* method (equation (3.2)). 

Instead of assuming that the exponent in relation (3.1) is automatically proportional to f, I treat 

the entire amplitude-decay problem together and without attempting to subdivide it into a 

geometric spreading, “intrinsic Q,” or scattering. In this way, I focus on forward modeling of the 

amplitudes by using minimal assumptions and postpone the separation between the geometric 
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spreading, scattering, and Q effects to the interpretation (see Discussion). Equations (3.1) 

and (3.2) can be generalized to describing the observed wave amplitude u by frequency-

dependent attenuation coefficients accumulated along the rays:   

( ) ( ) ( ) ( ) ( )*
0, exp ,R Su f A f A f G fχ Π = Π − Π  ,                                      (3.3) 

where AS and AR are the source and receiver factors, G0(Π) is some “background” geometric 

spreading (some theoretical approximation in a known structure), the ray end time equals t, and 

the perturbation amount χ*is accumulated along the ray: 

( ) ( )* , ,f t f t dtχ χ
Π

′ ′= ∫ ,                                                              (3.4) 

where χ is the differential, temporal “intrinsic attenuation coefficient” (Morozov, 2010b). This 

attenuation coefficient includes variations of wavefront curvatures, small-scale reflectivity and 

scattering, as well as differences of the real structure from the one approximated by the selected 

background model. Its difference from the product πfQ-1 ratio used in t*-type relations (3.1) and 

(3.2) is in removing the assumption of proportionality to f. The only assumption made in the 

spreading law (3.3) is that the total deviation of the amplitude from G0(Π) is accumulated along 

the ray path and relatively small. This is the perturbation-theory approximation for P(f,Π) 

(Chernov, 1960). In geophysical literature, this approximation was also referred to as the 

localization theory (van der Baan, 2002). 

The attenuation coefficient χ in equation (3.3) is generally frequency-dependent, which 

can be written as: 

( )f fχ γ κ= + ,                                                             (3.5) 
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where γ is the zero-frequency (f → 0) limit of χ, and κ represents the remaining frequency 

dependence of χ. Note that parameters χ and γ in this equation are measured in frequency units, 

whereas κ is dimensionless. Parameter γ contains the cumulative effects of geometric spreading 

(relative to the background model G0) and/or scattering, in which we can further recognize back-

scattering (predominantly upward-directed reflectivity in a finely-layered structure) and forward 

scattering (transmission). For comparisons with the conventional Q-based approach, parameter κ 

can be transformed into an “effective” Qe of the medium as eQκ π= (Morozov, 2008). Quantity 

κ is empirical and includes the frequency-dependent part of scattering, geometric spreading (if a 

background geometric spreading model is considered), and internal friction (energy dissipation 

into heat), which may caused by a broad variety of mechanisms. Some of these mechanisms are 

described in chapter 4. 

In general, parameter κ in relation (3.5) can be frequency-dependent, but from many case 

studies, a constant-κ  approximation appears sufficient (Morozov, 2008, 2010a, b). In addition to 

the dependence on frequency (equation (3.5)), χ should generally depend on the propagation 

direction in equation (3.3). Thus, similarly to Q (Červený and Pšenčík, 2008), both γ and κ 

should be anisotropic.  

The approach in equations (3.3) and (3.5) is similar to the conventional relations (3.1) 

and (3.2) but offers two important advantages. First, expression (3.3) recognizes that the 

geometric spreading and scattering occur locally and can be measured concurrently with 

attenuation. Second, this model does not assume that the geometric spreading model can be 

modeled accurately and/or that scattering can be considered absent. Without restricting ourselves 

to some specific (inevitably limited) models for the geometric spreading, internal friction, or 
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scattering, expression (3.3) directly models the variations of the frequency spectrum of the signal 

as it travels through the medium. As a result, this approach is free from the uncertainties of the 

material-Q model.  

The frequency-independent quantity κ in equation (3.5) is analogous but not equivalent to 

the frequency-independent 1Q− commonly used in exploration seismology. If spectral ratios 

canceling the source and receiver effects can be formed, κ can be measured from their slopes 

(dχ/df) while bypassing the inversion for γ. For example, Reine et al. (2012) used spectral ratios 

to measure the Q between reflectors in pre-stack surface seismic records, and Behura and 

Tsvankin (2009) proposed a similar method for anisotropic media. These spectral-ratio Q’s are 

comparable to our Qe model below, in the sense of including the averaged effects of frequency-

dependent part of scattering (reflectivity) and intrinsic attenuation but omitting the frequency-

independent small-scale (“white”) reflectivity represented by the intercept values in the spectral 

ratios.  Rickett (2006) used a method similar to the one in this Chapter to measure the Q and a 

spatial analog of our zero-frequency attenuation coefficient γ (denoted β in that paper) from log-

amplitude spectra for a vertically-propagating VSP wavelet. He also gave a notable discussion of 

the possibility of negative Q (i.e., κ < 0 in equation (3.5)) and an approach to inversion ensuring 

κ > 0. Recently, Blias (2012) used an amplitude model similar to equations (3.3) and (3.5), in 

which the constant term (γ) was inverted for implicitly and used to derive weights for more 

accurate determination of the spectral-ratio Q factors.  Comparisons to the above methods show 

that measurement of γ  is generally required for accurate measurement of Q-1∝ κ.  The principal 

contribution of the present approach consists in treating the γ and κ completely similarly, as parts 

of the frequency-dependent χ(f), and always interpreting these quantities together. 
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3.2  Wave Spreading and Attenuation model for Weyburn VSP 

3.2.1 Model 

First-arrival waveforms from 35 Weyburn VSP shots with offsets 30 to 500 m and all 

azimuths around the borehole were used in this attenuation study (Figure  3.1). Using an 

interpreted well-log data in the VSP area and a geologic model of Weyburn oilfield 

(Whittaker, 2005), I constructed an initial interval-velocity model consisting of six horizontal 

layers (Figure  3.2). 

In this model, rays were traced by using straight segments within each layer 

(Figure  3.2c), and the velocities were adjusted by fitting the observed first-arrival travel times in 

the sense of the L1 norm (i.e., the mean absolute value of the travel-time residuals). Each layer is 

 

Figure  3.1: Base map showing 35 VSP shots (grey dots) used in inverting for first-arrival 
attenuation in this study. Black diamond is the VSP borehole position, and circles 
indicate shots used in further illustrations (Figure  3.5 and Figure  3.14). Shot coordinates 
are relative to the borehole. 
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further assigned a pair of anisotropic attenuation parameters γ and κ, and the forward and inverse 

problems formulated as described in the following sections. 

3.2.2 Velocity anisotropy 

Anisotropy represents a significant factor in broad-offset seismic observations in sedimentary 

environments. As shown below, the attenuation structure in Weyburn area shows an about 3% 

VTI anisotropy (transverse isotropy with a vertical axis of symmetry). Nevertheless, for 

simplicity, I use an isotropic background model G0(Π) (equation (3.3)) for deriving the 

 

Figure  3.2: Depth model: a) geologic section, b) density and acoustic velocity well logs, c) model 
layers. Thick black and dashed lines show rays traced from a shot to the geophones at the 
smallest and largest depths. Gray arrows indicate pairs of geophones used for measuring 
the attenuation parameters of each layer. 
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attenuation, and consequently the velocity anisotropy becomes included in the empirical 

geometric-spreading parameters γ  (equation (3.5)). However, before proceeding with this using 

an isotropic background velocity model, let us estimate the velocity anisotropy in the study area 

from the first-arrival travel-time data. 

To estimate the inaccuracy introduced by the approximation of velocity isotropy, I 

considered the relative deviations of the first-arrival travel times from the times predicted in the 

layered model (Figure  3.2) and selected for rays predominantly oriented in the northeast, 

southeast, southwest, and northwest directions (Figure  3.3). In all azimuthal directions, the far-

offset shots show systematically smaller travel-time deviations compared to the near-offset shots, 

with differences increasing to ~4% at shallow receiver depths (Figure  3.3). The azimuthal travel-

time variations are smaller (for example, 2% between the NW and SW directions in Figure  3.3), 

suggesting a weaker HTI anisotropy. Thus, the velocity anisotropy is by over an order of 

magnitude weaker than the resulting VTI anisotropy for attenuation (see section  3.3 ), and the 

isotropic velocity model is acceptable for making first-order observation considered here. 

I also measured an anisotropic velocity model from travel-time deviations calculated 

above. Thomsen (1986) listed the characteristic anisotropy parameters for a number of 

sedimentary rocks. For the case of anisotropic rock with a vertical axis of symmetry (VTI), these 

data were interpreted by using five elastic moduli and recast in terms of the P and S-wave 

velocities in the vertical direction (denoted 0α , and 0β , respectively), and the three parameters of 

anisotropyε , δ andγ . Thomsen (1986) showed that for weak anisotropy, the dependence of P-

wave phase velocity VP on the ray angle ϕ can be approximated as: 

                                             
2 2 4

0( ) (1 sin cos sin )pV ϕ α δ ϕ ϕ ε ϕ= + + .  (3.6) 
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I rewrite this equation as: 

                                         2 2 4
0( ) (1 sin (1 sin ) sin ),pV ϕ α δ ϕ ϕ ε ϕ= + − +   (3.7)  

and express from it the relative variations of the travel-time fitting calculated above and by 

using: 

 

2 4model 0 model 0 0

model model model model

( ) sin ( )sinPt V V V
t V V V V

δ ϕ α α αδ ϕ ε δ ϕ− −
− = = + + − ,

                   
(3.8) 

 

Figure  3.3: Relative deviations of the first-arrival travel times from those modeled by ray tracing 
(Figure  3.2) for source-receiver azimuths oriented close in the NE, SE, SW and NW 
directions (labels). Symbol colors indicate the source offsets from the VSP borehole 
(Figure  3.1).  
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where Vmodel as the average isotropic velocity. By ignoring the small fourth-order term 4sin ( )ϕ  

and plotting (–δt/t) versus 2sin ϕ , the vertical-direction velocity 0α  can be found from the 

intercept and anisotropy δ from the slope of this dependence. Figure  3.4 shows the anisotropic 

velocity variation (equation (3.7)) measured in in four azimuthal bins. By setting Vmodel equal the 

average model velocity (2659 m/s) and interpretively fitting straight lines to these dependences, 

the VTI anisotropy δ calculated in the four azimuth directions and provided in Table  3.1. The 

anisotropic parameter δ is variable from 0.007 in SW direction to 0.03 in NW direction.  

As shown in Table  3.1, the resulting anisotropic parameters δ  for velocity in the area of 

Weyburn VSP are relatively small, as discussed above.  The velocity anisotropy is much weaker 

than the anisotropy of attenuation parameters considered below. 

3.2.3 Attenuation anisotropy 

In the strongly and finely layered sedimentary sequence in the study area (Figure  3.2b) 

parameters γi and κi should also depend on the plunge angle of a seismic ray, similarly, for 

example, to the Q factor in Zhu et al. (2007). Therefore, I use a simple two-parameter VTI model 

similar to the first two terms in model (3.6) to describe the anisotropic character of γ and κ   

Table  3.1: Anisotropic parameter δ in four main azimuthal directions. 

Direction Azimuth 
(deg) ( )PV ϕ  δ  

NE 0-90 2640 0.023 
SE 90-180 2672 0.01 

SW 180-270 2652 0.007 
NW 270-360 2633 0.03 
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2
1 3( ) sin ,γ ϕ γ γ ϕ= + and 2

1 3( ) sin ,κ ϕ κ κ ϕ= +                                    (3.9) 

where ϕ us the ray angle relative to the downward vertical direction, γ1 and κ1 are the attenuation 

parameters in the vertical direction (ϕ = 0), and γ3 and κ3 are the corresponding anisotropy 

parameters, selected so that for horizontal propagation (at ϕ = 90°), the attenuation parameters 

equal 2 1 3γ γ γ= +  and 2 1 3κ κ κ= + , respectively.  

 

Figure  3.4: Relative anisotropic velocity errors for source-receiver azimuths plotted versus Sine-
squared of incidence angle and oriented close in the NE, SE, SW and NW directions 
(labels). Symbol colors indicate the source offsets from the VSP borehole (Figure  3.1). 
Black lines indicate anisotropy parameter δ  measured using eye fitting in equation (3.8) 
for different azimuthal directions. 
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3.2.4 Forward problem for γ and κ 

When applied to a piecewise-straight ray (source/geophone pair) number j in a stack of 

uniform layers, the forward model for body P-wave amplitudes (equations (3.3)–(3.5)) becomes:  

( ) ( ) ( ) ( ) ( )*
0, expj Rj S j ju f t A f A f G χ= Π − ,                                            (3.10) 

where: 

( ) ( ) ( ) ( ) ( )*
1 1 3 3

1Ray 

,
layersN

j j
j i i i i i i

ij

f t dt f t f tχ χ γ κ γ κ
=

 ′ ′≡ = + + + ∑∫ ,                          (3.11) 

where ( )j
it  is the travel time of the jth ray in ith layer, ( ) ( ) ( )2sinj j j

i i it t ϕ=  is the “horizontal” travel 

time,  and ( )j
iϕ  is the angle of the corresponding ray segment relative to the vertical direction, 

and the summation is over all layers in the model, (Figure  3.2c). The geophone response is 

further factored as ( ) ( )Rj j j GA f R A f= Ω , where Ωj is the directional factor (cosine of its 

orientation angle relative to the direction of wave propagation), AR(f) is the frequency response 

assumed to be the same for all geophones,  and Rj is the scalar approximating the variation of 

geophone coupling within the VSP spread. 

To remove the effects of AS(f) and AG(f) and emphasize those of the ray paths, I further 

correct the recorded amplitudes for G0(t) and Ω and form logarithms of spectral ratios for pairs 

of rays (j,l) within each shot: 

( )
( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )0

1 1 3 3
10

ln ln
layersN

j j l j lj j
jl i i i i i i i i

il ll

u G R
A f f t t f t t

u G R
γ κ γ κ

=

Ω 
 ≡ = − + − + + −   Ω  

∑ .  (3.12) 

To form these receiver pairs, I used receivers located near the bottom of each layer and a 

common reference receiver at the top of the downhole receiver spread (for example, the rays 
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shown in thick black and dashed lines in Figure  3.2c). 

To evaluate the amplitude ratios ( )jlA f , I used the first-arrival amplitudes measured in raw 

records from the selected 35 shots (Figure  3.1). The wavefield was not separated into down- and 

upward-propagating waves, because in the first arrivals, the upgoing waves consist of back-

scattering (reflectivity) which is expected to be included in the attenuation coefficient, χ(f). For 

measuring the P-wave amplitudes (ratios u/Ω in equation (3.1)), I tried two approaches 

(Figure  3.5). By rotating the 3-C records into the principal directions of particle motion, 3-C P-

wave amplitudes uP were obtained directly (and thus Ω = 1; Figure  3.5c). The same amplitudes 

can also be inferred from the vertical-component records, as uP = uz/Ω with Ω = cosϕ 

(Figure  3.5a and d). To measure these amplitudes from first-arrival waveforms, I used time 

windows from 10−  to 50 ms relative to the picked first-arrival travel times (Figure  3.5a and c) 

and calculated the RMS amplitudes across three peaks or troughs adjacent to the largest peak 

within this window. This amplitude measure is (relatively) insensitive to the selection of the time 

windows and also to dispersion and variations of wavelet shape during propagation. The 

resulting two measures of uP were found close to each other (black and gray lines in 

Figure  3.5d), and the second of them was used for producing the dataset of spectral ratios 

( )jlA f  in equations (3.1). 

Figure  3.6 shows the logarithms of power spectra of several traces from a near-offset 

shot, which suggest that frequency bands from about 10 to 150 Hz are suitable for attenuation 

analysis. To produce frequency-dependent amplitudes and ( )jlA f , I used the time-domain RMS 
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amplitude measurement described above (Figure  3.5) and applied to waveforms filtered within 

overlapping frequency bands centered from 10 to 150 Hz. Band-pass frequency bands were 

 

Figure  3.5: 3-C amplitudes for a shot at 258-m offset (C in Figure  3.1): a) vertical component, 
b) rotated radial component, c) P-wave amplitude obtained by projecting the 3-C records 
onto the principal direction of first-arrival motion. d) Graphs of measured first-arrival 
amplitudes. Solid black line is the total P-wave amplitude uP, dashed black line is the 
vertical-component amplitude, uz, and gray line is the total amplitude derived from the 
vertical-component by uP = uz/cos(ϕ). 
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selected of the form [0.5f0/0.8 f0/1.2f0/ 2f0], where f0 varied from 10 to 150 Hz in 2-Hz 

increments. The selected broadening of the filter bands with increasing f0 also helps reducing the 

ringiness of the filtered wavelets, as generally recommended in seismic processing. This 

broadening should also increase the signal to noise ratio at the expense of reducing the frequency 

resolution. Finally, the selected uniform increments in f0 produce a redundant time-frequency 

sampling of amplitudes which, however, favours the statistical inversion procedure below. 

To invert the resulting frequency-dependent ( )jlA f  for model parameters γ1, κ1, γ3 

and κ3, I used a layer-stripping procedure, starting from the uppermost layer and progressively 

moving to the deeper layers. This method also allows a layer-by-layer, visual control of the 

results. In the following, I first disregard the receiver coupling variations, i.e., drop the first term 

in the right-hand side of equation (3.1) and then return to this term later in subsection 3.3. 

 

Figure  3.6: Logarithm of averaged power spectra for near-offset VSP shots. The labels in the 
picture representing the depth of corresponding receiver in meter.  
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3.2.5 Inversion 

Relations (3.1) represent a linear inverse problem that can be solved in various ways. My 

approach is motivated by two principles: 1) observation that the anisotropic parameters γ3 and 

κ3 are generally constrained much poorer than the isotropic γ1 and κ1, and 2) the desire to 

perform some visual quality control and interpretation of the solution. Therefore, I use an 

iterative layer-stripping procedure. In the iteration for layer k, I assume the anisotropy 

parameters γ3,k and κ3,k in it to be fixed and all parameters of the overlaying layers i = 1…k–1 

known. Equation (3.1) can then be written as: 

( ) 1, 1,jl k kA f fγ κ= +  ,                                                       (3.13) 

where: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
1

2
1 1 3 3 3, 3,

1

1 sin
k

j l j l
jl jl i i i i i i i i k kl j

ii i

A A f t t f t t f
t t

γ κ γ κ γ κ ϕ
−

=

  ≡ − + − + + − − +  −  
∑  (3.14) 

is the spectral ratio corrected for the cumulative effects the background geometric spreading and 

all attenuation parameters (γ1,γ3, κ1, and κ3) within the overlaying layers and for the travel time 

differences within the layers. This spectral ratio is also corrected for the effect of anisotropy 

within the kth layer (the last term containing γ3,k and κ3,k). After these corrections, equation (3.1) 

predicts a linear dependence of 12A
 

on frequency, with intercept γ1,k and slope κ1,k. This 

dependence can be observed visually (principally for quality control and for deciding whether 

κ1,k may be frequency-dependent) and inverted for by various methods. Because of the outliers 

and oscillations in the data, I performed the inversion by using the following statistical 

procedure, which was a modification of the “robust” fitting method by Walden (1991). 
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The optimal values of anisotropy parameters γ3, and κ3 for each layer of the model were 

determined by grid search. The grid search was employed because: 1) it is the simplest procedure 

(albeit computationally intensive) for finding the minimum of a complex function which is 

nonlinear with respect to parameters γ3,k and κ3,k, and 2) most importantly, it gives the most 

complete picture of the trade-off between the resulting parameters. For each trial combination of 

(γ3,k, κ3,k), the total misfit is measured using the L1 norm:  

( ) ( )
rays frequences

1, 1, 3, 3, 1, 1,
1 1

, | ,
N N

k k k k k n k jl n
j n

f A fγ κ γ κ γ κ
= =

Φ = + −∑ ∑   .                                 (3.15) 

This misfit is minimized with respect to parameters γ1,k and κ1,k as described in the next 

paragraph. The optimum value of this misfit is further treated as the cost function, C (γ3,k, κ3,k), 

minimized by grid search (Figure  3.7). Once the optimal anisotropy parameters are found, the 

corresponding values of γ1,k and κ1,k  become also known and can be checked visually by using 

relation (3.1).  

In order to determine the values of γ1,k and κ1,k from equation (3.13) (for fixed trial γ3,k 

and κ3,k), similarly to Walden (1991), I divide the frequency-amplitude data into two parts 

corresponding to low- and high-frequency halves of the frequency band. After this, for each 

candidate pair (γ1,k, κ1,k), I calculate the probability for a data point in the low- and high-

frequency ranges to fall below the fitting line given by equation (3.13) in the ( ),f A  plane. 

These sample probabilities are denoted FL and FH, respectively:  

                                              L

L
L N

nF =  and 
H

H
H N

nF =  ,  (3.16) 
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where nL , nH, are the numbers of points below the trial solution line, and NL and NH are the total 

numbers of points in the low- and high-frequency halves of the dataset. In terms of these 

probability functions, the “robust” solution is the one passing through the medians of both 

distributions, for which FL = FH = 0.5. Therefore, by contouring the values of FL and FH on the 

same plot, the optimal solution is found as the intersection of the 50% contours (black dot in 

Figure  3.8.  

3.3  Results 

Figure  3.9 illustrates the importance of anisotropic attenuation parameters in equation 

(3.5) for layer #2 within the model. If evaluated with no attenuation anisotropy, the corrected  

 

 

 

Figure  3.7: Grid search for anisotropy parameters for model layer 2. Gray shading shows L1 error 
values and symbol ‘X’ indicates the optimal anisotropy parameters for this layer.   
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Figure  3.8: Inversion method for layer 2. Contours of low- and high-frequency probability 

functions (FL and FH) shown in gray and black. Black dot shows parameters γ1 and κ1 
obtained by our solution using intersection of contours FL and FH equal 0.5.  

 

Figure  3.9: Effect of anisotropy: a) Fitting expression 3.1 for layer 2 by using γ3 = κ3 = 0, b) The 
same using optimal anisotropic parameters. Note the significant systematic variations of 
amplitudes with source-borehole offsets in plot a.  
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spectral ratios in this layer show systematic variations with source-borehole offsets (Figure  3.9a). 

In particular, the intercepts of the spectral-ratio trends tend to decrease with increasing offsets, 

suggesting that oblique rays encounter lower levels of γ. These variations are reduced, and the 

distribution of spectral ratios becomes less scattered by using non-zero values for γ3 and κ3 

(Figure  3.9b). Data fits using the layer-stripping procedure are shown in Figure  3.10 for six 

layers of the model (Figure  3.2c). Note that despite some residual misfits, the values of γ1 and κ1 

can be reliably constrained from these plots (black lines in Figure  3.10).  

3.3.1 Model for γ and κ 

The resulting attenuation model is shown in Figure  3.11 and Table  3.2. In addition to the 

anisotropic attenuation parameters in equations (3.5) and (3.9), Table  3.2 also shows the 

effective Q for vertical propagation within the medium, defined as Qe = π/κ1, and the “cross-over 

frequency” fc = |γ/κ1| (Morozov, 2008). The meaning of fc is the frequency below which the 

geometric spreading and/or scattering effects dominate the wave attenuation (ibid). Table  3.2 

also shows the possible ranges of Qe extracted from the error bounds on κ1. 

 

Table  3.2: Resulting anisotropic attenuation model. 

Layer 
Depth to 
bottom 

(m) 

Velocity 
(m/s) γ1 (s-1) κ1 γ3 κ3 Qe=π/κ 

Qe 
range 

fc=|γ/κ| 
(Hz) 

1 295 2185 -2 0.12 0* 0* 26 10–45 17 
2 431 2230 -0.35 0.135 -13 0.05 23 17–33 3 
3 690 2330 1.23 0.0473 -16 0.2 66 37–141 26 
4 918 2405 -0.24 0.0163 -13 0.25 192 61–∞ 15 
5 1162 2970 3.92 0.0255 -34 0.5 123 45–∞ 154 
6 1390 3834 2.76 0.1437 -35 0.004 22 12–37 19 

* Not measured for layer 1. 
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Figure  3.10: Corrected spectral ratios used to measure 
1,kγ  and 

1,kκ  by layer stripping. Black 
lines indicate the inverted model parameters 

1,kγ  and 
1,kκ . 
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The resulting model shows negative values of γ1 (i.e., wavefront focusing relative to the 

selected background geometric-spreading model G0) down to 430-m depths which gradually 

increase and become positive (defocusing and backscattering) below layer 5 and to the depth 

of 1390 m. Overall, the frequency-dependent effect (products fκ) on seismic amplitudes is 

 

Figure  3.11: Inverted attenuation model parameters and uncertainty estimates for the resulting 
model (black lines): a) scattering and geometric spreading parameter γ1; b) anisotropy 
parameters γ3; c) attenuation parameter κ1; d) anisotropy parameters κ3, and e) velocity 
log. Black dots are the inverted parameters for the different layers. Dashed lines show an 
alternate anisotropy model for bottom layer. Black and gray dashed error bars in a) and c) 
are estimated as shown in Figure  3.13.  
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significantly stronger than that of the “geometric attenuation” and scattering (γ). This can be seen 

from the values of fc ≈ 3–26 Hz located closer to the lower end of the frequency band and below 

the dominant frequency of f ≈ 40 Hz (Table  3.2). However, in the fifth layer (918–1160 m), the 

geometric attenuation is stronger than effective attenuation (fc ≈ 150 Hz). Thus, fc lies within the 

observation frequency band for most layers, and everywhere in the model, geometric attenuation 

is much stronger than γ ≈ 0.01 s-1 observed for the deep crust (Morozov, 2008, 2010a, 2010b, 

and 2011a). Generally, the values of optimal anisotropy in γ (γ3) decrease from –13 to –35 s-1 to 

the top of the reservoir cap rock (1390 m). These values show significant variations of 

anisotropy, with predominantly horizontal refraction and forward-scattering (focusing, γ2 < 0) in 

the structure. Parameters of anisotropy in κ  (and Qe),  κ3, increase from 0.05 to 0.5 to 1160 m 

and then decrease to almost zero near 1390 m (Figure  3.11d; Table  3.2). This shows that the 

attenuation is somewhat stronger for near-horizontal propagation. The effective “quality 

factors” Qe equal 23–26 near the surface, increase to 192 near 920-m depths, and further 

decrease to 22 at 1390 m (Table  3.2). A comparison of well-log data with the depth trend of κ 

(or 1
eQ− ) suggest two trends:  

1) the variations of the velocity and density log values generally increase with depth 

(Figure  3.11e), while  

2) κ1 decreases to 800 m and again increases below this depth (Figure  3.11c).  

The reasons for such correlation still need to be examined by modeling. Tentatively, note that the 

zone of positive correlation below 800 m also corresponds to very strong layering and strong 

anisotropy γ3 (Figure  3.11b and e). Consequently, the increase in κ could be caused by high 

reflectivity below this depth. 
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The bottom layer in the model (#6; Table  3.2) suggests an anomaly in the anisotropic part 

of κ (κ3) dropping to near-zero below 1160-m depth (Figure  3.11d). However, parameters κ3 and 

γ3 are not very tightly constrained and exhibit significant trade-off (Figure  3.7). Therefore, I tried 

exploiting this trade-off by selecting a different pair of κ3 and γ3 for this layer (dashed lines in 

Figure  3.11d). This solution gives only a 2% increase in the objective function (3.15), but shows 

no anomalous trends in κ3 and γ3. Thus, it is likely that the magnitudes of both anisotropies in γ 

and κ continuously increase with depth, particularly below the level of 918 m, below which the 

reflectivity also increases (Figure  3.11b, d, and e). 

3.3.2 Receiver coupling 

Having inverted for propagation parameters, I consider in this subsection the variations of 

receiver coupling, Rl in equation (3.1). For one shot, taking the coupling of the reference 

geophone equal one (R1 = 1), this equation gives the coupling for any other borehole geophone 

number l: 

                     ( ) ( ) ( ) ( ) ( )1 1
1 3, 3,

1 1
ln ( )( ) ( )

k k
l l

l l i i i i k k i i
i i

R A f t t f t tγ κ γ κ
= =

= − + + − + + −∑ ∑ .   (3.17)  

This quantity is evaluated for all shots, and its average at each depth level gives an estimate of 

geophone coupling, and the standard deviation measures the residual amplitude fitting error 

(Figure  3.12). With several exceptions, the results show consistent and uniform coupling for 

borehole receivers, with values of Rl ranging from ~0.75 to 1.25. The residual frequency-

dependent amplitude variations are substantially larger than coupling variations (Figure  3.12). 

These variations are likely caused by tuning within the layered structure, i.e. by χ(f) variations 

different from our simple model (equation 3.5).  
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3.3.3 Error analysis 

In inversion, it is important to measure the uncertainties of the resulting model.  Because 

of the nature of the problem and limited angular aperture of VSP data, a significant trade-off 

exists between parameters γ, κ and the corresponding anisotropy parameters. This trade-off can 

be seen in the (κ3,γ3) cross-plot (Figure  3.7).  The estimation of parameters κ3 and γ3 is relatively 

loose, although it is supported by visual inspection (Figure  3.9 and Figure  3.10) and non-zero 

values are clearly required in most cases. I tried two methods for estimating the ranges of 

possible errors in the parameters shown in Table  3.2. The first method used the conventional χ2 

criterion, and the second directly utilized the statistical nature of our inversion method.  

 

Figure  3.12: Geophone coupling values for VSP borehole geophones (black dots; equation 3.17) 
and their error bars. 

69 

 



 

Considering the χ2 criterion, note that for each layer, two (np = 2) parameters γ1 and κ1  

were derived by using N = 2485 amplitude readings in equation (3.13). By assuming statistically 

independent data points, the number of degrees of freedom of the problem equals ndf = N –

 np = 2483. From the residual amplitude misfits, one can estimate the data variance for k-th layer 

as: 

                                    
( )

22
12

1

1 N

k i k k
idf

A f
n

σ γ κ
=

= − +∑   .                                              (3.18) 

which is evaluated for the best-fit solution (Shearer, 1999, p. 84–89). To measure the associated 

uncertainty of the solution, the χ2 error criterion is then: 

                                             ( )
22

122
1

1 N

k i k k
ik

A fχ γ κ
σ =

= − +∑   .                                                 (3.19) 

To determine the confidence interval, we need to find the contour in 𝜒𝑘2 (𝛾𝑘, 𝜅𝑘) corresponding to 

95% percentage points of the distribution (that is, 5% probability of random error). Figure  3.13 

shows such 95% and 70% contours for layer 2.  

Unfortunately, the above assumption of statistically independent data made for 

calculating ndf does not hold for the first-arrival, filtered-amplitude data. For example, 

Figure  3.10 shows that the data points belonging to the same shot follow smooth curves with 

varying frequencies, and consequently they are correlated. Therefore, the true number of degrees 

of freedom in the data is much smaller than ndf above. This bias results in unrealistically small χ2 

error ellipses (dashed contours in Figure  3.13).  

To produce a more consistent error estimate, I utilized the statistical distributions of data 

misfits in equation (3.1). By using empirical probability functions for the high- and low-
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frequency halves of the dataset, FH and FL defined in equation (3.16), I further defined F1 as the 

probability of at least one of these points being located below the fitting line: 

                                1 1 (1 )(1 )L H L H L HF F F F F F F= − − − = + −  .                                  (3.20) 

Therefore, 1 – F1 is the probability that both amplitudes drawn from the low- and high-frequency 

parts of the distribution are above the fitting line. In another statistical test, let us draw two more 

random data points and define F2 as the probability of at least one of these points being above the 

fitting line: 

                                                             2 1 L HF F F= −  .                                                         (3.21) 

 

Figure  3.13: Error analysis for the result of model layer 2: dashed contours show confidence 
levels of 70% and 95% using the 𝜒2 method. Contours of function F (equation 3.2) are 
shown in black, labeled with the corresponding levels of FH and FL.  Inset shows a zoom–
in in the area of optimal solution. Bold contour is the selected 70% confidence level. 
Gray and black dashed arrows show two ways of calculating error bars in Figure  3.11.  
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With such definition, 1 – F2 equals the probability for both of these points being below the fitting 

line. Finally, the following combination of F1 and F2: 

                                                       1 2 1 2F F F F F= + −                                                     (3.22) 

will have the meaning of probability for both of these pairs of points straddling the fitting line. 

For the solution for model layer 2, this function is contoured in Figure  3.13. 

Because the values of FL and FH equal 0.5 for the optimal solution (Figure  3.13; 

equation 3.16), the range of variation of F is from approximately 0.93 to 1.0. In order to interpret 

the values of F, let us choose a certainty level of 70% for both FH and FL, i.e., take FL = FH = 0.7. 

In the amplitude-frequency plots (Figure  3.10), this level corresponds to no more than 70% of 

the data points being located on one side of the fitting line. For such levels of FH and FL, the 

value of F is approximately 0.95. Thus, I used this level as a measure of 70% certainty for 

selecting the γ1 and κ1 values (bold line in Figure  3.13).  

In order to characterize the trade-off between parameters γ1 and κ1 (Figure  3.11a and c), 

two types of error bars were obtained from the contoured function F. For one of these 

parameters, the first error estimate (larger; gray dashed lines in these Figures) is the maximum 

range of the 70% contour irrespective of the other parameter. The second estimate (smaller, 

shown by black lines in Figure  3.13) is the error measured for the other parameter being fixed at 

its optimal value.  

3.3.4 Amplitude-decay model 

By using equations (3.5) and (3.9), the layered velocity and attenuation model derived 

from the first-arrival inversion (Figure  3.11; Table  3.2) becomes able to predict the travel times 

and frequency-dependent amplitudes for any shot in the study area. I tested this model on several 
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VSP shot records by predicting the amplitudes of first arrivals at 0-, 100- and 40-Hz frequencies 

(Figure  3.14). Note that (somewhat counter-intuitively with respect to the ray theory), pure 

“geometric spreading” γ corresponds to the zero-frequency limit of χ(f).  

Interestingly, the amplitudes observed from the 400-m offset shot B (Figure  3.14) support 

my estimation of low attenuation anisotropy for the uppermost layer, which was set equal zero 

because of poor resolution of these parameters (Figure  3.11; Table  3.2). The amplitudes are 

nearly flat at depth s above 400 m, with a suggestion of a decrease toward the surface 

(Figure  3.14, lower-right panel). The modeled curve (gray line) also suggests an amplitude peak 

near 400-m depth, due to increased negative γ3 at this depth (Figure  3.11b). At zero frequency, 

this effect is stronger and extends to 400–500-m depth range (black line in Figure  3.14, lower-

right).  

The low- and high-frequency curves in Figure  3.14 show the range of amplitude-decay 

variations with frequency. As expected, the lowest attenuation is observed at zero frequency, and 

the amplitude decay rate increases with frequency. For the dominant frequency of the record 

(40 Hz), the first-arrival amplitude is predicted correctly. Within the definition of our six-layer 

structure, this model accurately predicts the amplitudes and attenuation properties of direct 

waves traveling at any angles, and therefore it should be useful for true-amplitude studies. 

Computationally, this model (Figure  3.14) is still relatively simple, and it offers a definite 

advantage of empirical accuracy and agreement with the first arrivals within the entire frequency 

band. In addition, it incorporates the general properties of scattering and attenuation within the 

structure, including their VTI anisotropy. This model can also be readily extended to 2-D and 3-

D structures and other types of anisotropy. 
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Figure  3.14: Combined geometric spreading/scattering and frequency-dependent attenuation 
predicted by the model (Figure  3.11 and Table  3.2) for shots A and B indicated in 
Figure  3.1. Upper panels show the angles of incidence on the VSP spread. For reference, 
dotted lines indicate the angle of 30° commonly used in AVO analysis. Lower panels 
show the amplitudes predicted at frequencies 0, 100 and 40 Hz (lines) and observed in the 
data (black dots). All amplitudes are normalized to equal one at 260-m depth. Black dots 
indicate the first-arrival amplitudes from a shot at 106-m offset from the borehole. Note 
how the change of the sign of γ near 930-m depth affects the shape of the zero-frequency 
amplitudes from shot A (black line). Also note the reversal of the amplitude trend at zero 
frequency and 40 Hz at shallow depths for shot B. 
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4. CHAPTER 4: SEPARATION OF GEOMETRIC SPREADING, 
SCATTERING AND INTRINSIC ATTENUATION EFFECTS IN 

WEYBURN VSP  

 

In Chapter 3, I derived an amplitude-spreading model from the spectra of first arrivals of 

3-D VSP data in Weyburn oilfield. This model includes combined variations of geometric 

spreading, intrinsic attenuation, and small-scale scattering parameters. Three key questions 

should be addressed in interpreting this model: 1) how to describe the contribution of spectral 

fluctuations in the ”scattering attenuation”, 2) how to characterize the ”random” and ”non-

random” parts of scattering for a specific zone of interest, and 3) how to separate the effects of 

intrinsic attenuation, scattering on small-scale layering, and the variations of geometric 

spreading?   

In this Chapter, I address the above questions by modeling the geometric spreading, 

scattering, statistical fluctuations, and effects of intrinsic attenuation on body seismic waves 

propagating through a layered reflection sequence. This numerical model is formulated to study 

the normal and oblique-incidence P and S waves in a finely layered medium. This model 

includes forward scattering (transmission), back scattering (reflectivity) and multiples, which 

predict the transmitted P and S energy-flux spectra. In combination with the geometric 

spreading, scattering and frequency-dependent attenuation parameters measured in the preceding 

Chapter, this model completes my geologic model of Weyburn oilfield.  

This Chapter is based on the following paper: 
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Baharvand Ahmadi A., and I. Morozov, 2014b, Separation of geometric spreading, 

scattering and intrinsic attenuation effects in a VSP: Canadian Journal of 

Exploration Geophysics, 38, 1, P21-29. 

Copyright of this publication belongs to the Canadian Journal of Exploration Geophysics, which 

allows using these materials for student theses. This paper was modified, expanded and 

reformatted for inclusion in this Dissertation. Figures were re-plotted and modified in order to 

meet the requirement of the University of Saskatchewan. The contribution by my supervisor 

(Professor Igor Morozov) consisted in setting the problem, general guidance and advice, many 

discussions of the results and supervise development of the work. Earlier results of this study 

were also published in Baharvand Ahmadi and Morozov (2012, 2013b, and 2014a). 

In addition, the classification of Q types and the theory of fluctuation Q in this Chapter is 

based on the following paper:  

Morozov, I., and A. Baharvand Ahmadi, 2015, Taxonomy of Q: Geophysics, 80, no. 

1, T41–T49.  

Copyright of this publication belongs to the Society of Exploration Geophysicists, which allows 

using these materials for student theses. My contribution to this paper consisted in developing 

the examples of scattering of transmitted waves and analysis of VSP data (sections of ‘properties 

and types of Q’, and ‘Scattering Q’). This part of the paper was directly related to the research of 

this Dissertation. I estimate my contribution to this paper as 30%. 

4.1  Descriptions of seismic scattering 

The process of energy dissipation within a seismic wave is time- (space-) and frequency-

dependent. Physically, energy dissipation is caused by a combination of three factors: (1) local 
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variations of geometric spreading (focusing and defocusing of wavefronts), (2) scattering (such 

as transmission losses and reflectivity), and (3) internal friction within the material, usually 

described by its intrinsic Q. Separation of these three factors is important for the analysis of 

physical properties of the reservoir and its surroundings. Scattering represents the elastic part of 

attenuation, which means that it reduces the recorded amplitudes of seismic arrivals and makes 

the waveforms dispersive while keeping the total energy of the wavefield constant 

(Shearer, 1999). By isolating the effects of scattering, small-scale layering can be quantitatively 

characterized, which is important for stratigraphic interpretation. The geometric spreading 

similarly preserves the total energy, but in addition to this, the energy is associated with a 

continuously spreading geometrical wavefront. This effect needs to be removed when estimating 

the petrophysical parameters, and it also needs to be carefully corrected for during AVO 

analysis. Finally, the intrinsic attenuation is a most valuable indicator of the physical state of the 

rock.  

Many studies have attempted separating the scattering and intrinsic attenuation by using 

different theoretical approaches, models, and types of waves. Aki (1980) measured the 

amplitudes of body S and coda waves within different frequency bands to test whether the 

attenuation of S waves was caused by the loss of energy by scattering due to small-scale 

heterogeneities. Using a model consisting of small and randomly distributed spheres, Dainty 

(1981) modeled S-waves within the lithosphere. Frankel and Wennerberg (1987) introduced an 

energy-flux model of seismic coda based on the balance between the energy scattered from the 

direct wave and the energy contained in the seismic coda. This model led to a simple formula for 

the amplitude and time decay of the seismic coda, which allowed differentiation between the 

scattering and intrinsic attenuation of the medium. Wu and Aki (1988) applied the radiative 
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transfer theory to determining the relative contributions of scattering and intrinsic absorption to 

total attenuation. Modeling of seismic-wave scattering was also used in many studies, such as 

seismic coda measurements by Mayeda et al. (1991), theoretical studies of seismic wave 

propagation in random heterogeneous media (Sato and Fehler, 1998), wavefield modeling using 

matrix propagator methods (Stovas and Ursin, 2007), and separation of scattering from intrinsic 

attenuation in the near surface (Mangriotis et al, 2013). In all of these approaches, both the 

intrinsic and scattering effects were represented by the corresponding intrinsic and scattering Q-

factors of the medium. However, all of these approaches also rely in simplified models for 

geometric spreading (such as 1/r for body waves), which may be inaccurate in most practical 

cases (Morozov, 2008, 2010). 

In Chapter 3, I utilized an extension of the Q-based paradigm and performed modeling of 

seismic amplitude decays by treating the geometric-spreading, “intrinsic Q,” and scattering 

parameters jointly (Morozov, 2008, 2010a). Forward modeling of the amplitudes was performed 

by using minimal assumptions, and in particular, without assuming any accurately known 

geometrical spreading model or a frequency-independent Q. The observed wave amplitude u was 

written as (equation 3.3): 

( ) ( ) [ ]0, ( ) ( ) exp *( , ) ,R Su f A f A f G f tχΠ = Π −                                    (4.1) 

where AS and AR are the source and receiver factors, G0(Π) is some “background” geometric 

spreading (some theoretical approximation for a known structure), t is the travel time, and the 

logarithmic perturbation of the amplitude χ∗ is accumulated along the ray:  

( ) ( )* , ,
Ray

f t f t dtχ χ ′ ′= ∫ .                                                         (4.2) 
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In this expression, χ is the usual (temporal) differential attenuation coefficient, which is 

generally frequency dependent. For the frequency band typically used in seismic observations 

(from about 0.002 to 100 Hz), this attenuation coefficient can be written as (Morozov, 2010b): 

( )f fχ γ κ= + ,                                                                     (4.3) 

where γ is the limit of χ at f → 0. Parameters χ and γ  in this equation are measured in frequency 

units, whereas κ is dimensionless  and can be transformed into an “effective” Qe of the medium 

by: eQκ π=  (Morozov, 2008). This quantity is empirical and includes the internal friction 

(energy dissipation into heat) and frequency-dependent part of scattering (as in the conventional 

interpretations of Q). In some cases, χ also contains the frequency-dependent part of the 

geometric spreading (Yang, 2007). Parameter γ contains the cumulative effects of geometric 

spreading (relative to the background model G0) and/or scattering. Within the scattering part of γ, 

several contributions can further be recognized: 1) back-scattering (predominantly backward-

directed reflectivity in a layered structure) and 2) forward scattering (transmission).  As shown in 

Chapter 3, anisotropic values can be measured for γ and κ in a layered model by inverting the 

spectra of downgoing direct arrivals in a VSP survey.  

An intriguing question is whether the three key contributions to wave attenuation 

(variations of geometric spreading, scattering, and internal friction) can be separated in the 

observed γ and κ. Separation of the “intrinsic” and “scattering” quality factors is often performed 

in earthquake coda studies (e.g., Wu, 1985), where it is based on correcting for the geometric-

spreading effects predicted by modeling. In exploration environments (and in fact, in coda 

studies as well; see Morozov, 2010a), geometric spreading can be difficult to model and/or 

constrain from the data with sufficient accuracy. At the same time, scattering on fine-scale 
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layering can be studied effectively by using real well-log information. Such scattering 

contributes to both γ and κ, and consequently, models of scattering could help of the three 

physical attenuation effects. 

Modeling of scattered wavefield conducted below suggests that two types of processes 

can be differentiated within the “scattering attenuation”. The first type represents scattering on 

random, small-scale layering, which is often associated with the scattering Q (Aki, 1980). This 

small-scale heterogeneity is presumed to be randomly distributed, and therefore statistical 

properties of random scattered waves are related to the statistical properties of this heterogeneity 

(Matsushima, 2012). At larger scales, the heterogeneities cause fluctuations of the transmitted 

and reflected seismic waves, which I hereafter call “fluctuation attenuation” or “fluctuation Q”. 

If the scales of heterogeneity are comparable to the seismic wavelengths, complicated 

waveforms often appear. These fluctuations manifest themselves in amplitude and travel time 

fluctuations of direct or reflected waves. Quantifying these fluctuations can be useful in an 

investigation of the localized stratigraphy of layering. 

In this Chapter, I attempt to separate the effects of geometrical spreading, small-scale 

random scattering, fluctuations, and intrinsic attenuation in the anisotropic attenuation χ derived 

from direct-wave VSP records in Chapter 3. Using well logs collected in the study area, I derive 

models of oblique-angle P- and S- wave scattering by numerical and analytical methods. The 

effects of fluctuations are derived by characterizing the “random” and “non-random” parts of the 

scattered-wave spectra. Finally, the modeled effects of scattering and fluctuations yield 

constraints on the intrinsic-attenuation and geometric-spreading effects.  
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4.2  Data and method 

In Chapter 3, first arrival waveforms from 35 80-level VSP shots acquired in 1999 as part 

of the Weyburn-Midale CO2 Monitoring and Storage Project were used for inverting for the 

layered attenuation model. Table  4.1 shows parameters of this model including the inverted 

values of γ and κ in equation (4.3), which are denoted γ1 and κ1 for vertical propagation. These 

values contain contributions from scattering on small-scale layering, which are modeled by using 

well-log data. A set of P- and S-wave velocity and density logs acquired in a borehole in the VSP 

area are used for this modeling. The logs are sampled at 10-cm intervals in the range of depths 

from ~150 m to ~1390 m.  

4.3  Numerical model of P and S-wave scattering  

In order to correctly model wave scattering, one must consider the combined effects of 

forward scattering (transmission), back-scattering (reflectivity) and all multiples in the 

wavefield. This can be achieved by utilizing the propagator method, which was used by Richards 

Table  4.1: Layered Attenuation model for a VSP from Chapter 3* 

Layer 
Depth to 
bottom 

(m) 

Velocity 
(m/s) γ1 (s-1) κ1 Qe=π/κ 

1 295 2185 -2 0.12 26 
2 431 2230 -0.35 0.135 23 
3 690 2330 1.23 0.0473 66 
4 918 2405 -0.24 0.0163 192 
5 1162 2970 3.92 0.0255 123 
6 1390 3834 2.76 0.1437 22 

*) γ1 and κ1 are attenuation parameters in equation (4.1) for vertical rays. 
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and Menke (1983) and Morozov (2011) to study the scattering of a P wave at normal incidence. 

The propagator method is briefly summarized below, where I also extend it to oblique incidence 

and P- and S-wave conversions.  

Consider two layers having a common horizontal welded boundary, and represent the 

combination of plane P- and SV-waves in each layer number l =1,2 by vector 

( )Tl l l l
l p s p su u u u+ + − −≡v ,  where uP and uS denote the wave amplitudes, and subscripts '+' 

and ‘-‘ denote the waves traveling downward and upward, respectively (Figure  4.1). For any 

layer l, we can express the two components of displacement and traction on the boundary as (Aki 

and Richards, 2002): 

x

z
l l

xx

xz

u
u

σ
σ

 
 
  =
 
 
 

N v ,                                                          (4.4) 

where the matrix Nl is: 

2 2 2 2 2 2

2 2 2 2 2 2

sin cos sin cos
cos sin cos sin

2 cos (1 2 ) 2 cos (1 2 )
(1 2 ) 2 cos (1 2 ) 2 cos

l l l l

l l l l
l

l l l l l l l l l l l l

l l l l l l l l l l l l

i j i j
i j i j

p i p p i p
p p j p p j

ρ β ρ β β ρ β ρ β β
ρ α β ρ β ρ α β ρ β

 
 − − =
 − − − −
 

− − − − 

N  ,    (4.5) 

where i and j are P and S wave incidence angles measured from the vertical direction, α and β 

are velocities of P and S waves, ρ is density, and p is the horizontal slowness of the wave. 

The continuity of displacement and traction relate the amplitudes within the two layers 

as: 
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2 2 1 1=N v N v ,                                                     (4.6) 

and consequently the transmission matrix relating the amplitudes v2 to v1 equals: 

1
2,1 2 1

−=T N N .                                                      (4.7) 

For n layers (Figure  4.2), a similar relation is obtained by applying relation (4.7) recursively: 

,1 1n n=v T v  ,                                                        (4.8) 

where: 

                                ,1 , 1
2

0 0 0
0 0 0

,
0 0 0
0 0 0

lP

lS

lP

lS

i

in

n l l i
l

i

e
e

e
e

ϕ

ϕ

ϕ

ϕ

∆

∆

− − ∆
=

− ∆

 
 
 =  
  
 

∏T T                                (4.9) 

and l pϕ∆ and l Sϕ∆  are the phase shifts of the downward-traveling P- and S waves across layer l. 

By recursively evaluating expressions (4.8), one can construct “well-logs” of transmission 

matrices T. 

 

Figure  4.1: One-dimensional scattering model on a single boundary: a) Incident P wave, b) 
Incident SV wave. Arrows indicate the convention for positive amplitudes up and us. 
Subscripts '+' and ‘-‘denote the waves traveling downward and upward, respectively. 
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In order to evaluate the net transmission and reflection responses for a stack of n layers, it 

is convenient to express the relation (4.8) in the form of block matrices corresponding to 

downward- and upward-propagating P and S waves: 

1

1

n

n

++ +−
+ +

−+ −−
− −

    
=     

    

v vT T
v vT T

 ,                                           (4.10) 

where the subscripts ‘n,1’ in T are dropped for brevity. The upward-propagating field below the 

stack of layers must equal zero (Figure  4.2): vn- = 0, and the transmitted and reflected field can 

be expressed through the downgoing incident field ( 1+v ), the transmission matrix T  and 

reflection matrix R , respectively: 1n+ +=v Tv  and 1 1− +=v Rv . Consequently, from equation 

(4.10), the matrices describing the total P- and S- wave reflection, transmission, and all mode 

conversions equal: 

( ) 1−−− −+= −R T T  , and ++ +−= +T T T R  .                                  (4.11) 

In the following analysis, I consider a P- or S-wave of unit amplitude incident from the top of the 

 

Figure  4.2: One-dimensional scattering model on a sequence of N-1 boundaries, a) incident 
P wave, b) incident SV wave. 
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stack of layers, which is given by ( )1 1 0 T
+ ≡v  or ( )1 0 1 T

+ ≡v , respectively. For such an 

incident wave, the resulting amplitudes and phases of the transmitted P- and S-wave fields equal: 

1

n
p

nn
s

u
u

+
+ +

+

 
≡ = 

 
v Tv .                                                  (4.12) 

By using these amplitudes, the upward- and downward- directed energy fluxes can be calculated 

at any angular frequency of the wave ω: 

( )
flux-P+

2
cos

2
n n

n n p nE u iω α ρ += , and ( )2
cos

2
n n

n n s nE u jω β ρ
+ +=

flux-S
 .                        (4.13)  

These are the final quantities used in subsequent numerical modeling. 

In modeling and data analysis, the frequency bands are selected by using the power 

spectra of the first arrivals in several VSP shots. For each depth interval, the highest used 

frequency was where the noise amplitude is half of the signal. These upper-band frequencies 

start from 150 Hz for the uppermost layer and decrease to 100 Hz for layer 6 (~1160–1390 m) 

(Table  4.1). The ray parameter, p, (the horizontal component of the wave slowness) varied from 

zero to 1.8⋅10-4 s/m, which corresponded to incidence angles from zero to about 35°. The 

reflection coefficient across the different depth intervals (equation (4.10)) generally increases 

with frequency, with some fluctuations present (Figure  4.3).  

The resulting energy-flux spectra computed across each of the six layer of our model are 

shown in Figure  4.4 (for P waves) and Figure  4.5 (S waves). Figure  4.4 shows strong fluctuations 

in the transmitted P-wave energy flux within different depth intervals. The weakest fluctuations 

are observed within layer 4 (approximately 690–918 m), whereas layer 6 (approximately1160–

1390-m depths) shows the strongest fluctuations. This can be explained by the relatively 
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smoothly increasing reflection coefficient spectrum within layer 4 compared to highly variable 

variations in layer 6 (Figure  4.3). The scattering model predicts similar results for different 

incidence angles. Therefore, it appears that an increase in the angle of incidence from zero to 

about 30° causes no considerable systematic effect on the transmitted P-wave energy flux.  

The transmitted S-wave energy fluxes across the different depth intervals attenuate 

almost four times faster than for a P wave, which means that the S-wave amplitude attenuates 

approximately twice faster than the P wave (Figure  4.5). Since the S-wave velocity is also about 

two times slower than the P-wave velocity, this observation suggests that the S-wave ”scattering 

Q” is approximately equal that for P waves. The transmitted S-wave energy flux also shows 

systematic variations with the angle of incidence. It appears that S waves scatter with a similar 

frequency dependence for different angles, but the scattering attenuation at near-vertical 

incidence angle is stronger than at oblique angles (Figure  4.5).  

4.4  Analysis of scattering using localization theory 

O’Doherty and Anstey (1971) suggested a simple relation between the power spectrum of a one-

dimensional reflection-coefficient series, R(ω), and the amplitude spectrum of the pulse 

transmitted through it, E(ω): 

( ) ( )R tE e ωω −∝  ,                                                     (4.14) 

where t is the two-way travel time, and multiple scattering is considered. In this study, I use my 

numerical experiment (equations (4.7)–(4.12)) to differentiate the multiple scattering effects of 

thin layers from the intrinsic attenuation. Shapiro et al. (1993, 1994) extended relation (4.14) to 

the angle-dependent fluctuations of plane-wave transmissivity of an acoustic (pressure) wave in a  
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Figure  4.3: Reflection coefficient power spectra (thin lines) for different depth intervals. Thick 
black lines show the smoothed power spectra. Note the strong fluctuations within layer 6. 
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Figure  4.4: Transmitted P-wave energy flux across the different layers of the model. Colours 
correspond to different incidence angles relative to the vertical direction. Note that the 
scattering attenuation in layer 6 is almost 4 times higher than in the other layers.  
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random, finely layered, medium with variable velocity and density. Here, I refer to this approach 

the localization theory for fluctuations. These authors assumed that the variations of the velocity 

and density with depth represent realizations of a stationary random process. The fluctuations of 

 

Figure  4.5: Transmitted S-wave energy flux across different layers of the model in Chapter 3. 
Colours show different incidence angles relative to the vertical direction.  
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both velocity and density were considered as relatively small compared to their mean values, 

which were also taken constant within the depth interval of interest. Shapiro et al. (1993, 1994) 

combined the perturbation theory with the localization and self-averaging theory to obtain the 

amplitude decay and the variations of the phase of the time-harmonic transmissivity. They 

separated the density (ρtrue) and the square of the slowness ( 2
true1 c ) into the corresponding 

constant mean and dimensionless fluctuating contributions µ(z) and ρ(z): 

[ ]2 2
true 0

1 1 1 ( )z
c c

µ= +  ,                                                           (4.15) 

[ ]true 0 1 ( )zρ ρ ρ= + .                                                           (4.16) 

Figure  4.6 shows the velocity fluctuations calculated from equation (4.15) and its 

spectrum for layer 3 (~430 to 690 m). In the case of large layer thickness (L), the time-harmonic 

transmissivity ptrue (ω,ϕ, x, L, t) of the pressure relates to the pressure ptrue(ω,ϕ, x, 0, t) of the 

incident wave by: 

( ) ( ) ( )true true, , ,  ,    , , ,  0,  expp w x L t p w x t i L Lϕ ϕ α= Φ −  ,                      (4.17) 

where ϕ is the angle of incidence, Φ and α are the angle- and frequency-dependent (vertical) 

phase increment  and attenuation coefficient are given by: 

2

0

( )sin(2 ) ,
2 4
K KK C K dξ ξ ξ

∞

Φ = + Σ − ∫   and                                            (4.18) 

2

0

( ) cos(2 ) ,
4

K C K dα ξ ξ ξ
∞

= ∫                                                       (4.19) 

where K = kcosϕ, and k is the wavenumber:
0k cω≡ . The quantities C and Σ are linear 
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combinations of the variances of fluctuations ρ and µ: 

2 4

4
4 ,

cos cos
C C

C C ρµ µµ
ρρ ϕ ϕ

= − +                                                   (4.20) 

2

(0)
(0) ,

cos
C

C ρµ
ρρ ϕ

Σ = −                                                         (4.21) 

where ( ) ( ) ( ) ,C z zρρ ξ ρ ρ ξ=< + > ( ) ( ) ( ,)cC z c zρ ξ ρ ξ=< + > and ( ) ( ) ( )ccC c z c zξ ξ=< + >  are the 

cross-correlation functions, and the brackets denote statistical (ensemble) averages.  

Similar to the numerical method, I analyzed the transmitted energy flux at the bottom of 

each of the layers in my VSP depth model (Table  4.1 and Chapter 3) by using equation (4.17) for 

normal incidence (Figure  4.7). It can be seen that the localization-theory results are in good 

agreement with the exact numerical computations (Figure  4.7).  

 

 

Figure  4.6: a) Relative velocity fluctuation (µ(z) in equation (4.15)) calculated for layer 3. b) 
Power spectrum of velocity fluctuations in layer 3 in log-log scale.  
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This shows that the observed strong fluctuations in the transmitted-energy flux, and 

particularly at frequencies above 60 Hz, are due to the autocorrelation of the velocity/density 

series, i.e. to the locally-predominant layering within the structure. 

Although indicating the physical cause of scattering attenuation, the localization theory is 

limited to the case of thick layers, near uniform background velocities and densities, and small 

perturbations from this background (Shapiro et al, 1994). In practice, fluctuation variances are 

sometimes too large for this approximation, such as in layer 6 in our model (Figure  4.3). 

However, numerical modeling described in the preceding section produces accurate results for 

all values of parameters of the subsurface.  

 

Figure  4.7: Transmitted P-wave energy flux across layer 3 estimated by the numerical method 
(red) and estimated by using the localization theory (blue). Note the good agreement 
between the two models. Green line is the average response of 100 permutations of 
velocity and density logs. 
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4.5  Randomization of the well log 

Up to this point, I investigated the transmitted energy flux in a layered medium 

represented by the actual well log. Let us now hypothesize that the spectral amplitude decays 

observed within the depth ranges of interest (Figure  4.4 and Figure  4.5) contain contributions 

from two statistical phenomena: 1) random heterogeneity (distribution of densities and seismic 

velocities), and 2) fluctuations caused by spatial correlations between these random values, as 

discussed in the preceding section. The first of these contributions would correspond to the 

traditional “scattering Q” (Aki, 1980), whereas the second could perhaps be called 

“fluctuation Q” (Morozov and Baharvand Ahmadi, 2015).  

The difference between the two statistical types of scattering defined above can be 

examined by performing layer permutations within different depth intervals. The permutations 

destroy the spatial correlations within the log and thereby isolate the “scattering Q”. While 

performing the permutations, I keep the reflection-coefficient spectrum matching that of the true 

well log. This assures preservation of the observed reflectivity spectrum within each depth 

interval, and therefore the transmission and reflectivity from the randomized medium can be 

good estimation of the “random-scattering” properties of the medium. I performed 100 random 

permutations of each layer, after each of which the analysis described above was repeated, and 

the resulting transmitted P-wave energy flux spectra were averaged. Figure  4.8 shows the 

transmitted vertical and after such averaging of layer 3 (from approximately 431 to 690 m). A 

comparison of Figure  4.8 to Figure  4.4 shows that replacing the geologic medium with such an 

”equivalent” random medium causes a significantly smaller attenuation of the transmitted  

energy.   
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4.6  Separation of geometric spreading, scattering, fluctuations, and intrinsic attenuation 

As shown in the preceding sections, the attenuation coefficient χ in equation (4.3) can be 

subdivided into contributions from geometrical spreading, intrinsic attenuation, and elastic 

scattering, of which the latter also contains statistical fluctuations. Each of these contributions to 

the attenuation coefficient can also be subdivided into the zero-frequency (γ) and frequency-

dependent parts (κf). In cases of practical interest for seismic exploration, the geometric 

spreading can be taken as frequency-independent and therefore not contributing to κ (Morozov, 

2008). Conversely, the intrinsic dissipation within subsurface rocks does not contribute to γ 

(Morozov, 2008). Scattering and fluctuations contribute to both γ and κ, and consequently by 

using the models of these effects in the preceding sections. Therefore, in order to separate the 

 

Figure  4.8: Transmitted P-wave energy flux across layer 3 after 100 permutations of velocity and 
density logs. Colours represent the incidence angles. 
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scattering effects from intrinsic attenuation, I can use the above model of wave scattering in a 

finely layered medium.  

The decrease in the transmitted energy flux caused by scattering can be treated similar to 

the general amplitude-decay equation (4.1). All of the above models of scattering show generally 

exponential decreases of the energy flux with frequency, which can be described as:  

( ) ( )exp 2 sE f f tχ∝ −    ,                                                    (4.22) 

where, as above, χs(f) is given by: 

( )s s sf fχ γ κ= + ,                                                          (4.23) 

and γs and κs are responsible for the frequency-independent and dependent parts of scattering 

attenuation.  

Both numerical and localization approaches reveal strong fluctuations in the transmitted-

energy flux within different depth intervals, and particularly at frequencies above 60 Hz 

(Figure  4.4, Figure  4.5 and Figure  4.7). The key challenge is how to treat these fluctuations when 

measuring the average ”scattering attenuation” observed in a particular sequence of reflectors by 

using equation (4.22). It appears reasonable to subdivide scattering (γs and κs) into “random-

scattering” (γs-random and κs-random) and “non-random scattering”, or fluctuations (γs-fluctuations and κs-

fluctuations). Randomization of the well log (Figure  4.8) suggests that such differentiation can be 

achieved by taking the upper envelope of the transmitted energy flux (the envelope 

corresponding to the weakest scattering) as an estimate for the attenuation caused by random 

scattering (Figure  4.7). The lower, linear envelope (strongest reflectivity and scattering) might 

then be a useful characteristic of the fluctuations in the scattered wavefields (Figure  4.7; 

Morozov and Baharvand Ahmadi, 2015). Therefore, random-scattering attenuation (γs-random and 
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κs-random) and fluctuation-attenuation (γs-fluctuations and κs-fluctuations) can be estimated by fitting 

straight lines (equation (4.23)) to the upper and lower spectral-power envelopes, respectively 

(Figure  4.4 and Figure  4.5). Once the “random-scattering” and “fluctuation” attenuations are 

quantified, the intrinsic and geometric parameters can be extracted from the observed attenuation 

frequency-dependent coefficient, χ. 

4.7  Results 

Table  4.2 shows the “vertical” part of the attenuation model in Chapter 3 with geometric 

spreading, random-scattering, fluctuation, and internal-friction contributions. This is the case 

where geometric spreading, intrinsic attenuations and only “random” or “fluctuation” part of 

scattering contribute to the total observed decay of propagating amplitude. I also show the 

effective quality factors estimated for both random-scattering attenuation ( s-random s-randomQ π κ≡ ) 

and internal friction ( intrinsicQ π κ≡ ) and similar parameters for the fluctuation part of scattering. 

From Table  4.2, it appears that frequency-independent scattering (γs-random and γs-fluctuations) is 

weak ( 1
s 0.3 sγ −<< ), but γs-fluctuations is approximately 3–7 times stronger than γs-random 

(Figure  4.9b). The geometric spreading has generally stronger effects than both types of 

scattering from the surface to the depths of ~1160m:
s_ random s_fluctuations GSγ γ γ<< << .  However, γs-

fluctuations is stronger than the geometric spreading in layer 6 (approximately 1160–1390 m 

depths). This layer also has the strongest scattering fluctuations when compared to other layers 

(Figure  4.9a). This is in agreement with high reflection coefficient fluctuations within this depth 

interval (Figure  4.9e).  

Figure  4.9c compares two cases of separation of the intrinsic attenuation and scattering: 

(1) assuming that scattering is purely random (κintrinsic-random), and (2) assuming that scattering is 
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entirely due to fluctuations (κintrinsic-fluctuations).  In both cases, the attenuation measured in the data 

is predominantly intrinsic within all depth intervals: intrinsic sκ κ<< , except within layer 6, in which 

the fluctuation-attenuation is about 1.3 times stronger than the intrinsic one (Figure  4.9c). In all 

depth intervals, scattering fluctuation dominates over random scattering, with

( )s-fluctuations s-random3 7κ κ≈ −  (Figure  4.9d).  

In summary, the results of this Chapter show that the geometric spreading and internal 

friction are primarily responsible for the observed amplitude decays above about 1160 m in the 

area of Weyburn study. However, fluctuation-type scattering is important at depths of ~1160 to 

~1390 m, where scattering effects exceed both the geometric spreading and intrinsic attenuation. 

This trend can also be noticed from the well-log data, in which the reflectivity generally 

increases with depth and reaches the highest level within this depth interval.  
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Table  4.2: Resulting separated geometric-spreading, random scattering, fluctuations and intrinsic-attenuation model* 

Layer γs-random 
γs-

fluctuation

s 

κs- 

random 

κs- 

fluctuatio

ns 

Qs-random 

=π/κs- 

random 

Qse= 
π/κs- 

fluctuatio

ns 

γGS-

random  
(s-1) 

γGS-

fluctuatio

ns  
(s-1) 

κintrinsic-

random 

κintrinsic-

fluctuations 

Qintrinsic-

random=π
/κv 

Qintrinsic-

fluctuations

=π/κv 

1 0.06 0.07 0.002 0.013 1570 241 -2.06 -2.07 0.118 0.107 27 29 
2 0.05 -0.05 0.002 0.014 1570 224 -0.4 -0.3 0.133 0.121 24 25 
3 0.01 0.106 0.003 0.009 1047 349 1.22 1.12 0.0443 0.039 71 82 
4 0.06 0.05 0.0003 0.002 10047 1570 -0.3 -0.29 0.016 0.014 196 224 
5 0.13 0.26 0.003 0.011 1047 285 3.79 3.66 0.0225 0.014 140 224 
6 0.28 1.43 0.02 0.08 157 39 2.48 1.33 0.1237 0.064 25 49 

*) γs-random and κs-random are the corresponding parameters for random scattering, γGS-random is the estimated geometric spreading, κintrinsic-

random is the internal friction, Qs-random and Qintrinsic-random are the effective quality factors for random scattering and internal friction in 
the case that only random-scattering component contributing to the scattering model. γs–fluctuations, κs-fluctuations,         γGS-fluctuations, κintrinsic-

fluctuations, Qs-fluctuations and Qintrinsic-fluctuations are the corresponding parameters for the fluctuations in the case that only fluctuation 
scattering component contributing to the scattering model.  
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Figure  4.9: Model of geometric spreading, scattering and intrinsic attenuation: (a) Frequency-independent γv (black), GSs-random  (red), 
and GSs-fluctuations (green), (b) Frequency-independent random scattering  γs-random (red), and fluctuation scattering γs-fluctuations 
(green), (c) Attenuation parameter κv (black) κintrinsic-random (red) and κintrinsic-fluctuations (green), (d) Random scattering attenuation, 
κs-random (red), fluctuation scattering attenuation  κs-fluctuations (green); (e) velocity log for comparison.  

                                     

 



 

5. CHAPTER 5: MODELING OF AVO AND PRESSURE-SATURATION 
EFFECTS IN WEYBURN CO2 SEQUESTRATION 

 

The use of normal-incidence reflection-coefficient anomalies combined with some other 

indictors of hydrocarbon accumulations, particularly gas, has a long history in oil and gas 

industry. Ostrander (1982) proposed a method, which potentially distinguishes between gas-

related, and non-gas related amplitude anomalies by analysing the reflection-amplitude 

variations with angle (AVA) or offset (AVO). He showed that the Poisson’s ratio has a strong 

influence on the variations of the reflection coefficient as a function of angle of incidence. This 

pivotal work initiated the AVO methodology (Castagna, 1993). Since then, AVO and AVA 

analysis has become the standard tool for hydrocarbon detection in the petroleum industry 

(Rutherford and Williams, 1989).  

This Chapter starts with a brief summary of the AVO method (section 5.1) and fluid-

substitution modeling of Weyburn reservoir (sections 5.2 and 5.3), based on the approaches by 

Morozov and Ma (2010) and Baharvand Ahmadi et al. (2011). In sections 5.4 – 5.8, I introduce 

the AVA attributes that should be useful for distinguishing between pore-pressure and CO2-

saturation effects in this reservoir. In sections 5.9 to 5.11, I derive the AVA models from 

Weyburn VSP data, and in sections 5.12 to 5.15, I perform their qualitative and quantitative 

interpretation and discuss the results.  

The first part of this chapter (sections 5.2 to 5.4) is a modification and expansion of the 

following published report: 

Baharvand Ahmadi, A., L. Gao, J. Ma and I. Morozov, 2011, CO2 Saturation vs. 

Pressure Effects from time-lapse 3-D P-S surface and VSP seismic data: Final report 
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as part of IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project, 

http://seisweb.usask.ca/Reports/Weyburn_USask_Report_Apr2011.pdf, last accessed 

October 22, 2016  

My contributions to this report were explained at the beginning of Chapter 2. In this Chapter, I 

include parts of its sections about AVA modeling (led by Drs. Morozov and Ma in the report) 

which provide the general background for the AVA work. I further include sections about VSP 

data processing, modeling and analysis, which were done completely by myself with guidance 

by Professor Morozov. Copyright of this report belongs to the authors, which allows using these 

materials for student theses. Parts of this report were shortened and modified, and some parts 

were expanded and reformatted for inclusion in this Dissertation. Figures were re-plotted and 

modified in order to meet the requirements of the University of Saskatchewan.  

Sections 5.5 through 5.16 are also based on two papers that I am currently preparing for 

publication: 

Baharvand Ahmadi A., and I. Morozov, VSP AVA analysis of Weyburn reservoir in 

Southern Saskatchewan: in preparation for Interpretation Journal by American 

Association of Petroleum Geologists (AAPG) 

Baharvand Ahmadi A., and I. Morozov, Qualitative and quantitative interpretation 

of AVA attributes from a Vertical Seismic Profile: in preparation for Interpretation 

Journal by American Association of Petroleum Geologists (AAPG) 

These papers contain the completion of the analysis of VSP datasets after the publication of the 

final report for Weyburn GHG project. The contributions by my supervisor (Professor Igor 

Morozov) consist in general guidance and advice, discussions of the results and supervise 
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development of the work. These topics are directly relevant to the subject of this Dissertation and 

represent the main content of this Chapter. 

5.1  Amplitude Variation with Offset (AVO) 

Zoeppritz (1919) presented set of formulas, which described the partitioning of seismic 

wave energy at an interface, mainly a boundary between two geologic layers.  The Zoeppritz 

equations are derived for an idealized welded contact of two elastic half-spaces. If we consider 

an incident P-wave striking the boundary between two elastic half-spaces at an angleϕ, as shown 

in Figure  5.1, mode conversion results in reflected and transmitted P and SV-waves (Aki and 

Richards, 2002). As illustrated in Chapter 4, by using the continuity of stress and displacement 

across the boundary, the amplitudes of reflected and transmitted waves can be derived (equations 

(4.4)-(4.12)). These equations are the basis of the AVO analysis technique, which was initially 

proposed by Ostrander (1982, 1984) as a technique for detecting low velocity gas sands based on 

increasing reflected P wave energy with angle of incidence.  

Although the original Zoeppritz equations give the plane-wave amplitudes of different 

waves as a function of angle, they provide little intuitive understanding of relationship between 

these amplitudes to various physical parameters. Several authors rearranged the Zoeppritz 

equations and provided approximations emphasizing the effects of relative variations of densities 

and Poisson’s ratios. In the following section, I briefly describe some of these important 

approximations. 

5.1.1 Approximations for P-wave reflection amplitudes   

A broadly used rearrangement of Zoeppritz formulas for weak contrasts of material 

properties across the boundary was made by Bortfield (1961). Later, these expressions were 
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revisited by Richards and Frasier (1976) by Aki and Richards (2002). The Aki, Richards and 

Frasier approximation represents the angle-dependent P-wave reflectivity as a linear combination 

of (small) relative contrasts in the P-wave velocity (VP), density (ρ) and S wave velocity (VS): 

 ( )
2 2

2 2 2
2 2

1 1 1( ) 4 2 sin tan sin ,
2 2 2

S S SP P P

P P P S P P

V V VV V VR
V V V V V V

ρρϕ ϕ ϕ ϕ
ρ ρ

   ∆ ∆∆ ∆ ∆∆
= + + − − + −  

   
(5.1) 

where ϕ is reflection angle and ∆  denotes the contrasts in the respective parameters across the 

reflecting boundary. This approximation is most useful when inverting for the contrasts in all 

three rock properties, ∆VP, ∆VS, and ∆ρ, or further inverting them for contrasts in the elastic 

moduli of the medium, λ and µ,.  

The most commonly used approximation for P-wave reflectivity emphasizing the effect 

of the Poisson’s ratio (σ) was given by Shuey (1985): 

2 2 2
0 0 0 2( ) sin (tan sin )

(1 ) 2
P

P

VR R R A
V

σϕ ϕ ϕ ϕ
σ

  ∆∆
= + + + − − 

 ,                            (5.2) 

in which the third term (“curvature”) is often dropped. In this expression, 0
1
2

P

P

VR
V

ρ
ρ

 ∆ ∆
= + 

 
 is 

the normal-incidence reflection amplitude is commonly called the AVO intercept, and the factor 

in square brackets is called the AVO gradient. The two constants in expression (5.2) equal:  

                                             0 0 0
1 22(1 )
1

A B B σ
σ

−
= − +

−
, (5.2a)

 

                                               0
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∆
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Hilterman (1990) simplified Shuey’s equation further by only using the first two terms and 

setting A0 equal to zero. For angles of incidence below about 30°, the amplitude is approximately 

linear with respect to sin2ϕ , and equation (5.2) can be simplified as: 

2
0 0

9( ) sin ,4R R Rϕ σ ϕ = + ∆ −   or                                      (5.3) 

2( ) sinR I Gϕ ϕ= +                                       (5.4) 

where I and G are the AVO intercept and gradient.  

Note that the AVO intercept R0 = I gives a more accurate determination of RP(0) than the 

conventional P-wave stack, which represents an average of RP over the recorded range of offsets. 

By combining the values of I and G, several additional useful attribute volumes can also be 

constructed. In particular, by approximating the “background” velocity ratio as VP/VS = 2, the S-

wave reflectivity at normal incidence becomes (Rutherford and Williams, 1989): 

( ) ( )10
2SR I G≈ − ,                                                           (5.5) 

 

Figure  5.1: One-dimensional scattering model on a single boundary: a) Incident P wave, b) 
Incident SV wave. Arrows indicate the convention for positive amplitudes up and us. 
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Thus, the S-wave reflectivity can be extracted from the AVA patterns of the primary P-wave 

reflections. 

5.1.2 AVO Classification 

The AVO/AVA method is usually combined with a useful cross-plotting technique 

(Rutherford and Williams, 1989; Castagna et al., 1998) which helps to identify the anomalies 

that might be related, for example, to CO2 flooding. The Rutherford-Williams classification 

subdivides the various pairs of (I,G) observations into four regions, or classes (Figure  5.2): 

Class 1: High-impedance contrast with decreasing AVA (positive I and negative G); 

Class 2: Near-zero impedance; 

Class 2p: Same as class 2, but with reflection polarity change; 

Class 3: Low impedance with increasing AVA (negative I and negative G); 

Class 4: Low impedance with decreasing AVA (negative I and positive G). 

The above classification is based on the notion of a linear, background “wet trend”, or 

“mudrock line” in the (I, G) plane: 

( )
( )2

4 9 1 ,
5

P S

G I I
V V

 
= − − 

  
                                            (5.6) 

Deviations from this trend are usually viewed as “anomalies” and represent the primary tool of 

AVA interpretation. 

5.2  AVA modeling of Pressure and Saturation effects 

Time-lapse seismic response in Weyburn field can be considered as the result of a 

combination of changes in CO2 saturation and pore pressures. Therefore, it is important to 
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understand the effects of pressure and saturation changes on rock properties to be able to 

separate these effects from each other.  

5.3  AVA modeling of Pressure and Saturation effects 

Time-lapse seismic response in Weyburn field can be considered as the result of a 

combination of changes in CO2 saturation and pore pressures. Therefore, it is important to 

understand the effects of pressure and saturation changes on rock properties to be able to 

separate these effects from each other.  

Conventionally, reservoir responses are interpreted based on simple two-layer models. 

However, such models are clearly inapplicable to Weyburn, where the AVA response represents 

an interference of reflections from the two units (Marly and Vuggy), and at lower frequencies 

 
Figure  5.2. AVA (AVO) classification from Castagna et al. (1998). 
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from the base of the reservoir. Thus, quantitative seismic interpretation of this reservoir should 

be carried out with an account for its small thickness and complex reflectivity profile.  

As a basis for AVA modeling, well 102042300614 was used. This well was drilled in 

conjunction with the Weyburn CO2 sequestration project, located near the southwest border of 

Phase 1A area and about 15 m away from a water injection well (red dot in Figure  5.3), and 

logged in August 2000. This well contains the most complete sets of geophysical logs available 

to this study, and it is suitable for AVA modeling and can be considered as representative of the 

reservoir. Rock-physics properties of this well were studied by Brown (2002). Pressure, oil 

saturation and other reservoir parameters in this well were measured prior to and during the CO2 

injection are listed in Table  5.1. Note that water saturation for the Marly and Vuggy zones in this 

well was recalculated by using Archie’s equation and calibrated by MnCl2-doping analysis. 

Water saturation was found to be higher than previously estimated (Table  5.1; Brown, 2002).  

Brown (2002) developed a fluid-substitution model and normal-incidence synthetic seismograms 

for the Weyburn reservoir by using reservoir fluid parameters similar to our baseline (Table  5.1). 

Later, this analysis was extended to oblique incidence by Morozov and Ma (2010) and focused 

on the fluid-substitution effects on AVA attributes during CO2 flooding. The main question they 

addressed was whether and how pressure and CO2 saturation effects can be separated in AVA 

intercept-gradient measurements. In the following, by using fluid substitution model, an AVA 

model of Weyburn reservoir is proposed for discriminating between the CO2 pressure and 

saturation effects at Weyburn. In chapter 6, this model will be used as guidance for an AVA 

study of time-lapse VSP data. 
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Figure  5.3. Weyburn seismic monitoring project area: a) 3C-3D survey layout and location of the 
wells used for VSP (blue) and for generating synthetics and AVO analysis (red); b) 
Location map in south-eastern Saskatchewan.  

 

Table  5.1 Reservoir parameters used in modeling.  

Parameters Baseline Monitor 
Temperature 630C 560C (52~580C) 
Oil API gravity 29 (25~34) 29 (25~34) 
Gas gravity 1.22 Unchanged 
CO2 gravity 1.5249 Unchanged 
Gas/Oil ratio (GOR) 30 L/L Unchanged 
Salinity 85,000 ppm NaCl 79,000 ppm NaCl 
Water resistivity 0.149 ± 0.023 (ohm m) 0.104 ± 0.014 (ohm m) 
Oil saturation in Marly zone Average 53% Average 30% 
Oil saturation in Vuggy 
zone 

Average 35% Average 28% 

Pore pressure 15 MPa 23 MPa near injector 
8 MPa near producer 

Confining pressure 32~33 MPa Unchanged 
Mineral bulk modulus 
(Brown, 2002) 

83 GPa (Marly zone) 
72 GPa (Vuggy zone) 

Unchanged 

Mineral shear bulk modulus 
(Brown, 2002) 

48 GPa (Marly zone) 
33.5 GPa (Vuggy zone) 

Unchanged 

Clay (shale) moduli 21 GPa (bulk) 
7 GPa (shear) 

Unchanged 
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5.4  Fluid substitution model 

Fluid substitution modeling is a key tool in reservoir characterization. In this project, 

fluid substitution modeling was used to predict rock physic properties of the Weyburn reservoirs 

after CO2 injection. Following Wang et al. (1998), Gassmann’s equation was used to estimate the 

effects of CO2 saturation on the elastic moduli within and near the reservoir. This equation 

relates the bulk modulus of fluid-saturated porous rock (Ksat) to the dry (Kdry) and matrix (Kmatr) 

moduli as: 

2

2

1
,

(1 )

dry

matr
sat dry

dry

f matr matr

K
K

K K K
K K K

φφ

 
− 

 = +
−+ −

                                  (5.7) 

where φ is the porosity, Kf is the bulk modulus of the reservoir fluid, and all parameters are taken 

at depth z.  The difference between Kmatr and Kdry is that Kmatr represents the bulk modulus of the 

material of the rock matrix, whereas Kdry is the bulk modulus of a dry rock, which also contains 

pores and consequently Kdry ≤ Kmatr. Pore fluids generally consist of water, oil, gas, and CO2, and 

the bulk modulus of their mixture (Kf) is a function of their relative saturations, temperature, 

salinity, pore pressure, etc. In this fluid substitution model, we assume that the volumes of fluids 

are simply added together, and the effects of dissolution of CO2 in the oil-gas mixture are not 

considered. At the same time, the portion of gas dissolved in oil is accounted for by using a 

pressure-dependent gas-oil ratio equation. 

The shear modulus μsat = µdry is considered to be independent of fluid saturation. 

Assuming that Kmatr is constant within the Marly and Vuggy zones, I inverted equation (5.7) to 

obtain the value of Kdry at the current reservoir pressure.  
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Further, pressure-dependence of the dry bulk and shear moduli of the Midale zones was 

approximated from the results of ultrasonic lab testing. Brown (2002) measured the differential-

pressure related trends Kdry(p) and μdry(p) under confining pressure 23 MPa and pore pressure 15 

MPa. This confining pressure of 23 MPa was taken as the average of the vertical stress of 32–33 

MPa and horizontal stress of 18–22 MPa. Brown (2002) also derived a polynomial formula 

describing the increase of Kdry with differential pressure, which we denote KB(p), and a similar 

dependence for µdry. Denoting the in situ differential pressure at baseline conditions by p0, the 

pressure-corrected dry bulk modulus becomes: 

dry B B 0(z, ) ( ) ( ) ( ),dryK p K z K p K p= + −                                   (5.8) 

and a similar equation for the shear modulus. Here, Kdry is estimated from equation (5.7), and p is 

the differential pressure. In our calculations, we took the vertical stress of 32.5 MPa as the 

confining pressure, which allowed relating the differential pressure in equation (5.8) to pore 

pressure in subsequent fluid-substitution estimates. 

The quality of Gassmann’s prediction for fluid substitution is highly dependent on the 

accuracy of fluid parameters and physical parameters of reservoir rocks. Several selections of the 

most appropriate models should be made in order to construct an adequate fluid-substitution 

model. These selections are briefly reviewed below. 

5.4.1 Constitutive equation for CO2  

Previously, Brown (2002) calculated the bulk modulus and density of CO2 by using the 

equation by Batzle and Wang (1992). However, recently, Xu (2006) modified these equations to 

provide more accurate estimates of the CO2 properties (Figure  5.4). Note the significant 
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difference in the bulk moduli predicted by these methods, and also the broader minimum in VP 

shifted to higher pore pressures in Xu’s (2006) model. 

5.4.2 Effective porosity in Gassmann’s equation  

Total rock porosity includes isolated pores and the volume occupied by clay-bound 

water. These volumes cannot be filled by the injected CO2 and water. By contrast, effective 

porosity represents the interconnected pore volume into which fluid substitution can occur, and 

therefore it (and not the total porosity) should be used as parameter φ in equation (5.7). The 

effective porosity is lower than total porosity, its use leads to smaller changes in the elastic 

parameters. Therefore, time-lapse velocity, travel-time, and reflectivity variations estimated by 

using the effective porosity should be smaller than those derived from total porosity. 

5.4.3 Shale corrections to matrix modulus of Marly dolomite zone 

 Although the porosity of Marly dolomite zone is high, its permeability is quite low, 

 

Figure  5.4. CO2 properties calculated by using Xu’s equations (dashed lines), and by using 
Batzle-Wang’s equation (B-W; solid lines). Red lines are for temperature 56°C, black – 
for 63°C. Note that these curves are close to those predicted by program SUPERTRAPP 
(Don White, personal communication).  
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which is mainly caused by high shale content within its pores. Shale present within the pores (Vsh 

in Figure  5.5) effectively reduces the bulk modulus of the reservoir rock matrix (Figure  5.5). On 

the other hand, shale content is low within Vuggy zone, and it is ignored in our model. 

Fluid-substituted logs were calculated by using pore pressure of 15 MPa and mixed fluids 

(40% CO2, 48% brine and 12% oil). Kf of mixed fluids (green) is assumed constant, whereas Kf 

of in situ fluids (black) is variable. 

Following Dvorkin et al. (2007), Morozov and Ma (2010) replaced the single-mineral Km 

of dolostone within the Marly zone (equation 5.7) with the effective matrix bulk modulus 

calculated from a mixture of dolostone and shale by using shale parameters given in Table  5.1. 

Note that the use of shale corrections reduced the matrix bulk modulus Km within Marly zone, 

which was assumed constant in previous studies (Brown, 2002) (Figure  5.5). Finally, in addition 

to the described elastic moduli and densities, other measured fluid and reservoir parameters (such 

as temperature, salinity, etc.; Table  5.1) were considered constant during the modeling described 

below.  

The key part of the model is in using the Gassmann’s equation to estimate the matrix 

(Kmatr) and dry (Kdry) moduli of the reservoir and the surrounding host rocks. To achieve a stable 

and meaningful solution, we first assumed that Kmatr was constant within each unit, and then 

applied corrections for volume fractions of clay in it. Further, the observed K was derived at each 

depth level from the seismic logs and density as 2 24
3P SK V Vρ  = − 

 
 , and Kdry was inverted 

from this value by using the Gassmann’s equation (5.7). Several constraints were imposed to 

guarantee physically meaningful results (such as positive porosity, Kdry < Kmatr, and other). 
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Further, because the values of the in situ Kmatr are poorly known, we tried improving their 

estimates by using an optimization procedure. In each of the two units, Kmatr was adjusted so that 

the dependence of compressibility Kdry
-1 on the effective porosity was the closest to being linear 

(Figure  5.6). Finally, to adjust the log to any point within the study area, we stretched and shifted 

the obtained synthetic logs so that the reflections from the top of Marly and bottom of Vuggy 

corresponded to the markers observed in the stacked seismic sections. 

From the edited and inverted logs (Figure  5.5), it now became possible to simulate realistic 

seismic AVA responses from Weyburn reservoir. Using the exact expression for reflection and 

mode conversion amplitude (Aki and Richards, 2002), oblique-incidence reflectivities derived 

for each ray parameter of incidence wave calculated. This resulted in “logs” of reflection 

amplitudes. Next, these “logs” were converted into the two-way reflection travel-time domain 

and convolved with the selected wavelet. Finally, three-term AVA analysis was performed on 

these synthetics, producing additional “logs” of I, G, and “AVA curvature” values. As expected, 

curvature values were insignificant within the offset (ray parameter) range of this study. 

Figure  5.7 shows such a wavelet-filtered AVA synthetic for the same (unstretched) well.  

 

 

 

 

 

 

   113 

 



 

114 

 

 

 

 

 

Figure  5.5. Fluid-substituted VP, VS and density logs (green) and original logs (black) combined with several other logs in well 
102042300614. Vsh is the shale content estimated from the gamma-ray log, and Sw is water saturation. The total and effective 
porosities are shown by blue and black lines, respectively. Fluid substitution is performed using extended Gassmann’s 
equations, as described in section Modeling of pressure-saturation effects on AVA below. 

             

 



 

5.5  AVA Attributes 

In this Dissertation, the AVA approach is selected as the primary method for separation 

of CO2 pressure and saturation effects. The principle of using AVA attributes for interpreting the 

seismic effects of pressure- and CO2-saturation variations is similar to what illustrated in 

Figure  5.2. As shown below (section  5.5.6 ), pore-pressure variations make the (I,G) values to  

 
 
Figure  5.6. Cross-plots of 106/Kdry in optimal model versus the total and effective porosity for 

Marly (blue) and Vuggy (red) units. Dashed lines indicate the optimized trends of Kdry
-

1(effective porosity). 
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move generally along a similar “wet-trend” line, whereas variations in the CO2 saturation cause 

shifting across this trend line. Thus, the principal efforts in AVA data analysis is directed onto 

measuring the variations in the (I,G) attributes and identifying the regions in which the 

anomalies in I and G are correlated (as related to pressure variations) or anti-correlated (when 

 
 
Figure  5.7: Three-term 40-Hz Ricker AVA synthetics derived from logs in Figure  5.5. A is the 

intercept (denoted I in this Dissertation), B is the gradient (G), and C is the third AVA 
term (curvature), plotted using comparable amplitude scales. Black curve corresponds to 
brine only, and red curve – to brine with 20% CO2 within the reservoir. Note that the 
absolute values of G are about twice those of I, and that the curvature effect is small. 
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caused by variations in saturation). Generally, pressure variations most strongly affect the 

combination I - G, and CO2-saturation variations control combination I + G. The second of these 

attributes is also approximately proportional to the S-wave reflection amplitude, RS(0), whereas 

the pressure indicator can be written as ( ) ( )2 0 0S PI G R R − ≈ −  . The principal expected 

seismic responses to variations or pore pressure and CO2 saturation within the reservoir are 

summarized in the Table  5.2. 

Unfortunately, as the modeling below shows, seismic attributes exhibit an acute 

sensitivity to small amounts of CO2, and the slope of the above “trend” line varies with CO2 

saturation. Therefore, the effective discriminator attributes that we are seeking have a more 

general form of: 

pressureA I aG= + , and 1
saturationA I a G−= − .                                  (5.9) 

where parameter a also depends on CO2 saturation. Further, in practical measurements, it only 

appears possible to use a proxy value for parameter a, which is the empirical slope of the trend 

line observed in the plane of measured (I, G) attributes. These attributes are less instructive when 

expressed in terms of the normal-incidence reflectivities, RP(0) and RS(0) (Morozov and 

Ma, 2010; Baharvand Ahmadi et al., 2011). 

5.6  AVA Modeling for Weyburn reservoir 

Traditionally, AVA interpretation is based on two-layer or blocked-log models and small-

contrast approximations. The most commonly used approximation for P-wave reflectivity was 

given by Shuey (1985) (equation (5.4)). Shuey’s parameterization emphasizes the sensitivity of 
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the AVA gradient on the contrast in the Poisson’s ratio across the boundary:
 

( )0 0 2
,

1
G A R σ

σ
∆

= +
−

 

Our fluid-substitution model incorporated computations derived from well-log 

measurements made at about 15-cm intervals throughout the entire zone of interest. This allowed 

detailed calculation of the reservoir response to the finite-bandwidth seismic wavelet. At the 

same time, while the exact expressions (4.7) used for modeling reflection responses, the 

traditional intercept (I) and gradient (G) attributes are extracted from these responses and utilized 

for interpreting the results. 

The AVA intercept and gradient values were measured from ray-tracing synthetics over 

the 0–30° range of incidence angles. An exact ray-theoretical solution for reflection amplitudes 

Table  5.2: Summary of expected seismic responses of reflection from the top of Marly to 
pressure and CO2 saturation 

Attribute Effect of pore pressure 
increase 

CO2 saturation increase 

P-wave reflectivity 
(RP = I; negative-

polarity) 

decrease Decrease 

AVA gradient, G 
(positive) 

increase Decrease 

S-wave reflectivity (eq. 
(5.5)) 

decrease no effect 

I + G no effect Decrease 

P-wave impedance small decrease (due to 
density change) 

Decrease 

S-wave impedance small decrease no effect 

   118 

 



 

and a zero-phase Ricker wavelet were used to generate the synthetic seismograms. Depth-to-time 

conversion of well logs was performed at all individual depth log readings, which allowed 

bypassing typical problems related to log and seismic record resampling. In the following, AVA 

attributes and CO2 discriminator are estimated and a simple CO2-saturation – pore-pressure 

discriminator is proposed and tested. 

5.7  Pore Pressure and Saturation  

Pore pressure, also known as formation pressure, is the in-situ pressure of the fluids in the 

pores within the rock. The pore pressure equals the hydrostatic pressure when the pore fluids 

support the weight of only the overlying pore fluids. The lithostatic, or confining pressure results 

from the weight of the overlying sediments, including pore fluids (Carcione, 2003).  

Knowledge and prediction of the pore pressure in the area is critical at different stages in 

the exploration and development process. In the exploration phase, prediction of pore pressure 

can facilitate evaluating the seal effectiveness and mapping hydrocarbon migration pathways. In 

the drilling phase, it can be vital for safe and economic drilling. The casing program also can be 

optimized and run safely using estimates of proper pore pressure and fracture pressure and well 

control problems, such as blowouts can be prevented (Dutta, 2002).  

5.8  AVA effects of CO2 Pressure and Saturation  

In addition to conventional two-layer model, small contrast blocked-log model was also 

examined in this study. The first of these models (Table  5.3) represents an anhydrite/Marly 

interface, which is the upper boundary of the reservoir. Considering that the Marly zone is 

relatively thin (Figure  5.5) compared to the dominant wavelength, the second end-member model 

is constructed by removing the Marly zone and placing the anhydrite layer directly above the 
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Vuggy zone (Table  5.3). AVA attributes of models with realistic depth variations of reflectivity 

are quite different from those of the conventional two-layered models (Figure  5.8). Interestingly, 

in the AVA cross-plots, the (I,G) points computed by using the realistic depth-dependent 

parameters are located between those of the anhydrite/Marly and anhydrite/Vuggy end-member 

models (Figure  5.8a). This effect occurs because of the half-length of the incident wavelet (~50 

m at 40 Hz) exceeding the thickness of the reservoir, and particularly of its Marly zone. When 

the dominant frequency of the wavelet is increased, a separate reflection from the 

anhydrite/Marly contact becomes observed, and therefore the (I,G) values approach those of the 

anhydrite/Marly model. Conversely, when the dominant frequency of the wavelet is decreased, 

the reflectivity from Marly zone becomes relatively insignificant, and the (I,G) response 

approaches that of the anhydrite/Vuggy model (Figure  5.8a). 

By using well-log based models, fluid saturations were simulated ranging from 100% 

water to 100% oil and to 100% CO2. In the example presented here (Figure  5.9), the saturation of 

CO2 (denoted SCO2) in the mixture was varied from 0 to 100%, and the relative saturations of oil 

and water were maintained at the ratio of 1:4. This allowed examining the effect of CO2, which 

is dominant compared to the relative composition of the liquid oil/water mixture. Pore pressures 

were varied from 7 to 23 MPa, which corresponded to the estimated variation of the pressure 

from the production to injection wells (Figure  5.8).   

Table  5.3. Parameters of two-layer models (Figure  5.8a) 

Type of Rock VP (m/s) VS (m/s) Density 
(g/cc) 

Total 
porosity 

Effective porosity 

Anhydrite 5900.0 3250.0 2.90 0 0 

Marly dolomite 3600.0 2000.0 2.31 0.29 0.20 

Vuggy limestone 5100.0 2900.0 2.56 0.10 0.10 
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Figure  5.8. Modelled AVA cross-plots: a) from two-layered models and well-log based models; b) detail of the well-log model. 
40-Hz Ricker wavelet was used. Solid and dashed arrows indicate the pore pressure increasing from 7 to 23 MPa, and 
CO2 saturation increasing from 0 to 100%, respectively. Yellow ellipse indicates the area of (I,G) values converging at 
low pore pressure. Pink lines and large dot show the CO2 discriminator (see text). 

      

 



 

When fluids contain even small amounts of CO2, their bulk moduli are strongly affected 

by the pore pressure. For relatively low pore pressures (~7 MPa) and SCO2 changing from 0 to 

1%, the (I,G) values of the reservoir rapidly move into the area indicated by the yellow ellipse in 

Figure  5.8b. Note that the amount of this shift is comparable to the total distance between the 

100%-oil an 100%-water cases (Figure  5.8b). From this area, (I,G) values move with increasing 

pressure in a fan-like pattern, generally opposite to the general CO2-saturation trend for SCO2 ≈ 1– 

5% (i.e., to the dashed arrow in Figure  5.8b) and in the direction of the oil/water pore-pressure 

trend when SCO2 ≈ 10–100% (solid arrow). By contrast, changes in the oil/water mixture cause 

sub-parallel (I,G) trends that are consistently different from those caused by pore-pressure 

variations (brown and blue circles in Figure  5.8b). 

Further, the above synthetics are used to investigate the possibility of discrimination 

between pressure and CO2 saturation effects in seismic AVA data. As AVA cross-plots show, 

pore-pressure variations and CO2 saturation effects cause contrasting shifts of reflections in the 

 

Figure  5.9. Principle of CO2 discriminator: a) two zones in the (I,G) cross-plot (compare to 
Figure  5.8b); b) the same zones in the pressure-saturation domain. 
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intercept-gradient plane (Figure  5.8). Based on this difference, their separation should be feasible 

in principle.  

Pink line in Figure  5.8b illustrates the approach to AVA classification with respect to the 

studied pressure-saturation variations proposed by Morozov and Ma (2010) and Baharvand 

Ahmadi et al. (2011). This “discriminator” line represents the lower bound of the CO2-free 

distributions and subdivides the (I,G) plane into two zones denoted A and B (Figure  5.8b). In 

terms of the pressure-saturation parameters, these zones are separated by a pressure threshold 

whose shape can be described by specifying the cut-off saturation level Sc and pore pressure pc 

(Figure  5.9). By checking the pore pressure values at which the (I,G) trends modeled for 

different SCO2 values cross the discriminator line (Figure  5.8b), we estimated Sc ≈ 2% and pc ≈ 

18–20 MPa. 

For each of the models (log-based or two-layer), such discriminator lines can be 

represented by their central points (I0,G0) (pink dot in Figure  5.8b) and slopes (dG/dI). If not 

seeking a precise discrimination of pore pressures (i.e., allowing some vertical position 

uncertainty in Figure  5.9b), then a range of slopes can be selected for a fixed central point. This 

range was picked by eyeball-fitting different straight lines separating the “CO2-free” and “CO2-

containing” distributions (black and blue lines in Figure  5.10a). This allowed estimating the 

uncertainty in (I0, G0, dG/dI) parameters. Further, both (I0,G0) and dG/dI depend on the dominant 

frequency of the wavelet. By measuring dG/dI from models with different frequencies of the 

incident Ricker wavelet, we estimated its dependence on the frequency (Figure  5.10a). Finally, 

by using the uncertainty bounds, a simplified empirical dependence was selected, giving the 

slope of the discriminator line (red line in Figure  5.10a). Note that for frequencies above 45 Hz, 

this slope is constant and approximately equal -1.4. 
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5.9  Implications for model observations 

From Figure  5.8, the effects of pressure and saturation on AVA attributes are somewhat 

similar to the AVA classification in Figure  5.2. The pressure-related trend resembles the 

“mudrock line”, i.e., the background variability of (I,G) parameters. Along this line a 

combination of AVA attributes (a-1G–I), with a > 0, increases in the direction of increasing 

pressure (Figure  5.8). Note that for a = 1, this combination is proportional to the S-wave 

reflectivity RS = (I–G)/2. In an orthogonal direction, another derived attribute, –(I+aG) increases 

in the direction of increasing CO2 saturation. Such combinations of I and G will be used for 

mapping the variations of pressure and (low) CO2 saturation below. 

Interestingly, the slope dG/dI of the discriminator line can also be represented as a 

function of the ratio G0/I0 (Figure  5.10b). This relation is independent of both the frequency and 

 
 

Figure  5.10. Dependence of the slope dG/dI of the discriminator line (Figure  5.8b) on: a) the 
wavelet frequency, and b) G0/I0 ratio. Blue and black dashed lines give two possible 
selections for such discriminators picked from the synthetics, and red line is the 
interpreted optimal discriminator. Note that the discrimination can be performed 
independently of the absolute amplitudes I0 and G0.  
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the amplitude of the incident wavelet. Therefore, it should be insensitive to the seismic amplitude 

scaling and could be directly applicable to reflection AVA data. In this type of AVA cross-plot, 

the cases with “some CO2” should be located below the modeled red curve in Figure  5.10b. 

Further in this Chapter, this model will be used for interpreting AVA effects in time-lapse 

3-D VSP data for separation of CO2 pressure and saturation effect. Further modeling and 

application to real seismic data in the future should provide additional insights into the utility and 

stability of this discriminator. 

5.10  Preparation of time-lapse VSP data for AVA analysis 

Time-lapse VSP data need to be carefully pre-conditioned for AVA analysis. The goal of 

this preconditioning is to attenuate the unwanted amplitude variations and noise that can distort 

the AVA behaviour. At the same time, we need to preserve the seismic amplitude variations 

related to variable angles of incidence, rock physics and reservoir properties. Chapter 2 

summarized the processing steps applied to time-lapse VSP datasets. The purpose was to apply 

consistent and identical processing to the baseline and monitoring surveys and avoid any 

processing which might distort the AVA responses. One of the key processing steps consists in 

correcting for the geometrical spreading of VSP data. This step appears to be the most important 

for obtaining accurate AVA results. In this section, I consider two different models for 

geometrical spreading and try gaining a deeper insight into the effects of geometrical spreading.  

5.10.1 Geometrical spreading correction 

Geometrical spreading (GS) is the key factor determining the variation of both first 

arrivals and reflected seismic amplitudes. The GS is particularly strong in the VSP case, in which 

all receivers are located at progressively increasing distances from the source. As a result, the GS 
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has the leading effect on the AVA, and this effect needs to be corrected for before interpreting 

the dependencies of reflection amplitudes on incidence angles. When working with real data, the 

GS can also be highly variable (Chapter 3). It cannot be assumed from theoretical considerations 

and needs to be measured from the data. 

In this Dissertation, I propose two empirical approaches to such GS measurement. Both 

of these approaches use the amplitudes of direct waves to create anisotropic models of amplitude 

decay within the subsurface. The first model is purely empirical, frequency-independent and 

assumes straight rays. This model optimizes a simple parametric form for the geometric 

spreading based on the angle of reflection and the total travel distance. In the second method, a 

layered model of the subsurface combining the GS, scattering, and inelastic dissipation is 

employed. This model was described in detail in Chapter 3. 

5.10.2 Empirical Geometrical Spreading 

To derive an empirical geometric spreading function for the study area, I used the 

amplitudes of the direct waves. After experimenting with several functional dependences on time 

and spatial coordinates, the following geometrical-spreading function was selected: 

( ) ( )2

1,
1 sin

F D
D

νϕ
β ϕ

=
+

.                                                    (5.10)  

where D is the travel distance measured along a straight line connecting the source and receiver, 

and ϕ is the ray take-off angle measured relative to the downward vertical direction. Generally, 

because of the rays bending upward in the layered structure with velocities increasing with 

depth, and also because of the effects of backscattering and attenuation, we expected the 

exponent ν to slightly exceed one. Similarly, bending rays should lead to the angle correction 

parameter being negative, β < 0. The specific form of term sin2ϕ selected in the denominator of 
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expression 5.10 was relatively arbitrary and based on considerations of: 1) symmetry with 

respect to the vertical direction and to the free surface and 2) similarity to the angle dependence 

of reflection amplitude.   

With the geometrical spreading (5.10) and a simple offset VSP geometry with straight 

rays, the amplitude of the first arrival (purple ray in Figure  5.11) recorded on the vertical 

component equals: 

( ) ( )12 2

1 cos
1 sin 1 sin

zu S S
D D

ν νϕ
β ϕ β ϕ

+= =
+ +

,                                     (5.11)  

where S is the source amplitude, z is the receiver depth, and D is the source-receiver distance. By 

fitting this law to the first-arrival amplitude data for the range of angles ϕ = 0–45° in all shots, I 

estimated ν ≈ 1.2 and β ≈ -0.8 (Figure  5.12). These values are further used for both the baseline 

and monitor datasets below. 

Further, for a reflection from a near-horizontal reflector, the recorded vertical-component 

response to a reflected P-wave (green arrow and pink rays in Figure  5.11) is: 

( )cosu SFR ϕ ϕ= ,                                                           (5.12)  

where R(ϕ) is the reflection AVA response, and the geometrical spreading factor equals: 

( ) ( ) 22
1 2

1 1
sin 1 sin1 sin

xF
d d

ν

ν ϕ β ϕβ ϕ

−
 

= =   ++ +  
.                                   (5.13)  

Here, I also generalize the traditional geometrical-spreading formula for spherical 

wavefronts 1/D to 1/Dν, and use the values of ν ≈ 1.2 and β ≈ -0.8 estimated from the 

measurements of first-arrival amplitudes above. Consequently, the total “geometrical” factor for 

reflections is independent of the reflection time and medium velocity: 
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Figure  5.11. Modeled offset-VSP geometry. The VSP-to-CMP transform consists in adding to 
the VSP reflection time (pink ray) the time corresponding to the extension of this ray to 
the surface (dashed line). Labels also indicate the notation in equation 5.13. Purple ray 
corresponds to the first arrival, and D is the source-receiver distance. 

 

Figure  5.12: Example of first-arrival amplitudes (blue crosses) from one shot from dataset W1 
and their fitting by eq. (5.11) (red). 
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and the recorded pre-stack reflection amplitude can be modelled as:  

 

( )reflu SF R ϕ= .                                                             (5.15) 
 

5.10.3 Combined model of Geometric Spreading, Scattering and Intrinsic Attenuation 

The empirical GS method described in the preceding sections relies on a simple and 

frequency-independent straight-ray approximation. This method was used at the preliminary 

stages of VSP data analysis and the CDP-to CMP transform. In the AVA analysis, I used a more 

detailed GS model derived as part of the attenuation analysis in Chapter 3. This analysis resulted 

in a layered model of the subsurface combining the geometric spreading, scattering, and inelastic 

dissipation inverted from the first-arrival VSP amplitudes.  In this Chapter, I assume that this 

model is also valid for reflected waves and extend the spreading model in Chapter 3 to 

downgoing and reflected rays in order to isolate the effects of the true reflected amplitude from 

the reservoir ( 5.11.1). 

5.11  AVA analysis of time-lapse 3D VSP data: 

In this Dissertation, I use the AVA as the primary effect from which the fluid-related 

variations near the reservoir can be detected in the VSP data. However, analysis of AVA effects 

is very challenging within the limited data coverage afforded by VSP acquisition, in which most 

subsurface locations are covered by only a single shot. At the same time, the spatial extent of 

VSP reflection-point coverage is also relatively limited. Therefore, I focused on measuring the 

AVA effects averaged over the entire area. 
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The VSP-to-CDP transform intermixes the recorded amplitudes, and consequently they 

affect the AVA. Therefore, I performed an AVA analysis by using raw, vertical-component VSP 

records from the individual shots. In each of these shots, I predicted the expected travel-times of 

target reflections, and used them as a guidance for picking. The corresponding reflected arrivals 

were then carefully picked by using the modelled travel times (Figure  5.13). Along each of the 

picked reflection-moveout curves, I measured the peak-RMS (RMS between the zero crossings 

adjacent to the peak) amplitudes and tabulated them versus the incidence angles predicted by ray 

tracing for the corresponding depths and reflection times (Figure  5.13). 

In addition to the reflected signal (5.15), random as well as coherent noise is present in 

the data. We can only account for the random part of the noise, by assuming that it is added to 

the signal incoherently, and consequently its energy is additive to the signal. It is convenient to 

denote the squared noise amplitude by ( )2Sn , where n is the noise-to-signal ratio. From the 

additive powers of the signal and noise, I obtain the following model for the recorded power u2: 

 
 
Figure  5.13. Picked travel-times of the top of Marly (green line) from an upgoing VSP shot 

(FFID 340) with 480 m offset from the VSP well.  
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( ) 22 2 2
2

1 sinreflu n F I G
S

ϕ = + +  ,                                              (5.16)  

where Frefl is the modelled geometrical spreading, intrinsic attenuation and scattering. The linear 

AVA expression (5.4) was also substituted for R(ϕ). The factor 1/S2 in the left-hand side of this 

expression is specific to the entire shot, and it can be removed by normalizing the input values of 

u prior to the inversion. Thus, equation (5.16) gives an inverse problem for each shot, by solving 

which the values of n2, I and G can be estimated.  

The most important component of the above formula is Frefl which accounts for all 

geometric spreading, scattering and intrinsic attenuation for each ray travelling from the shot 

down to the reservoir and reflecting beck to each receiver level in the borehole. In order to 

accurately estimate Frefl, I use equation (3.3) describing the frequency-dependent attenuation 

coefficients accumulated along the rays for rays reflected from the reservoir (Figure  5.14). 

5.11.1 AVA analysis model 

I use the same six horizontal layers velocity model in Chapter 3 for performing ray 

tracing (Figure 3.2). In this model, rays were traced by using straight segments within each layer, 

and ray parameters were calculated by minimizing the errors between the observed and estimated 

travel times for reflections from Marly reservoir. Each layer is assigned a pair of anisotropic 

attenuation parameters γ and κ, after extended inversion provided earlier in details in Chapter 3. I 

performed the ray tracing for each shot reflected from Marly reservoir to each borehole receiver 

in order to calculate the reflected angle (φ) and the time spend in each layer ( ( )
'
j

it  ) (Figure  5.14).   

To obtain Frefl, I extended equation (3.11) to include the rays reflecting back from the 

Marly reservoir to each VSP receiver level: 

( ) ( ) ( ) ( )*
0 exp ,refl R SF A f A f G fχ = Π − Π  ,                                      (5.17) 
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where AS and AR are the source and receiver factors, G0(Π) is some “background” geometric 

spreading, the ray end time equals t, and the perturbation amount χ* is accumulated along the 

ray: 

( )* *

Ray 

( , ) ,
j

f f t dtχ χ χ ′ ′Π = ≡ ∫ ,                                              (5.18) 

where χ is the differential “intrinsic attenuation coefficient” (Morozov, 2010b). For a ray 

reflected from the layer mth and reaching each level of VSP geophones (Nlayer) χ* can be written 

as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )*
1 1 3 3 1 ' 1 ' ' 3 ' 3 ' '

1 '

Nlayersm
j j j j

j i i i i i i i i i i i i
i i m

f t f t f t f tχ γ κ γ κ γ κ γ κ
= =

   ≡ + + + + + + +   ∑ ∑ (5.19) 

where j is the number of the ray, ( )j
it  is the travel time of the downgoing jth ray in ith layer, 

( ) ( ) ( )2sinj j j
i i it t ϕ=  is the “horizontal” travel time, and ( )j

iϕ  is the angle of the corresponding ray 

 

Figure  5.14. An example of ray tracing of a VSP shot at 1200 m offset from the VSP well.  
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segment relative to the vertical direction, and the summation is over all layers in the model. The 

same symbols marked with prime signs correspond to the upgoing (reflected) ray. The geophone 

response is factored as ( ) ( )Rj j j GA f R A f= Ω , where Ωj is the directional factor (cosine of its 

orientation angle relative to the direction of wave propagation), AR(f) is the frequency response 

assumed to be the same for all geophones,  and Rj is the scalar approximating the variation of 

geophone coupling within the VSP spread which obtained in Chapter 3. The receiver coupling 

obtained from equation (3.17) and source factor will be eliminated in AVA inversion process. 

Figure  5.15 and Figure  5.16 show examples of such solutions for reflections from the top of 

Marly in datasets W1 and W2. Such solutions were derived for every shot, and only solutions 

with consistent AVA responses (correlation coefficients exceeding 0.8 in Figure  5.15 and 

Figure  5.16) were used in further analysis. 

5.11.2 Robust fitting method 

For each VSP shot, the times of the reservoir reflection predicted in the layered velocity 

model. By superimposing these modeled times on the raw shot records, the actual reflection 

times from the reservoir are identified and picked. I use equation (5.16) for correcting the effects 

of spherical divergence, intrinsic attenuation and scattering. A modified “robust” fitting method 

(Walden,1991) similar to the method used for inverting the first-arrival travel times in Chapter 3, 

was employed for fitting the Shuey’s equation (equation (5.4)) to the corrected amplitudes. This 

method is superior to the least-squares method, because it is much less vulnerable to data outliers 

(Walden, 1991). The AVA inversion was performed in shot domain and the intercept, gradient 

and random noise factors we obtained by using equation (5.16).  
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Figure  5.15: VSP AVA analysis measured on the reflector from Marly for four shots in baseline 
survey (W1) compared to monitoring survey (W2). Red dots show the picked amplitudes 
and blue dots are the amplitudes predicted by eq. (5.16).   

W1 

W2 
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Figure  5.16: VSP AVA analysis measured on the reflector from Marly for four shots in baseline 
survey (W1) compared to monitoring survey (W2). Red dots show the picked amplitudes 
and blue dots are the amplitudes predicted by eq. (5.16).  

W2 

W1 
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5.12  AVA Results 

Figure  5.15 and Figure  5.16 show examples of the amplitudes picked from Marly reservoir and 

corrected for geometrical spreading, scattering and intrinsic attenuation effects by using equation 

(5.16). These corrected amplitudes plotted versus angles up to 30° angles. The results show a 

linear dependence of the amplitudes on sin2(incidence angle). Therefore the two-term Shuey 

(equation (5.4)) should be suitable as the primary method for interpreting the results. The AVA 

attributes (intercept I and gradient G) can be assigned to reflection points located half-way 

between the surface positions of the shots and borehole receivers. Using the obtained intercepts 

and gradient, different attributes can be obtained which are important for estimating pressure and 

saturation changes of injected CO2 in the reservoir. Table  5.2 summarizes some of these 

attributes and expected seismic response from the top of Marly to pressure and CO2 saturation 

changes. In the following section, I propose several techniques for detecting CO2 pressure and 

saturation effects from VSP AVA observations.  

5.12.1 AVO cross-plots 

Cross-plotting AVO/AVA attributes can provide valuable assessment of the AVA 

anomalies related to a background trend. My principal goal in this analysis is to measure the 

variations in the (I,G) attributes and identify the regions in which the anomalies of I and G are 

correlated (as related to pressure variations) or anti-correlated (when caused by variations in 

saturation; Section 5.4).  

Plotting the AVA intercepts and gradients in the form of a cross-plot helps identifying the 

anomalous values that might be related to CO2 flooding. In the AVA model (Figure  5.8), I 

showed that effects of CO2 injection can be seen as separation of AVA response of monitoring 

survey from the baseline in AVA cross plot. Figure  5.17 shows an AVA cross plot for the 
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baseline and monitoring surveys. Two distinct trends in AVA response can be observed in this 

cross-plot, which are also correlated to the locations of AVA reflection sampling (Figure  5.17). 

The first trend (designated as “trend 1” hereafter; Figure  5.17) matches better with the area 

between two injection well patterns, while the second trend (“trend 2”) mostly correlates with the 

areas close to the injection well patterns (Figure  5.18). Furthermore, we subdivide the VSP area 

into four areas illustrated by letters A, B, C, and D in Figure  5.18. These areas are located in the 

southeast, southwest, northwest and centre area of the reflection coverage area, respectively 

(Figure  5.18).  

 
 

 

Figure  5.17: AVA Cross-plot of Weyburn VSP datasets at Marly reservoir level. Black dots 
represent the baseline VSP survey (1999) and red dots show the monitoring dataset 
(2001) containing CO2. Two trends detected in the cross-plot are marked by ellipses 
labeled 1 and 2. 
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5.12.2 AVO attributes 

In this subsection, I discuss how the variations of (I,G) attributes observed in Figure  5.17 

could be related to the variations of CO2 pressure and saturation within the reservoir. 

AVO intercept (I) 

AVO Intercept (I) is one of the key attributes in AVA interpretation. The intercept gives a 

more accurate determination of RP(0) than the conventional P-wave stack, which represents an 

average of RP over the recorded range of offsets. In Weyburn reservoir, a general decrease in the 

intercept values is expected as the result of CO2 pore pressure and saturation increase (Table 

5.2). This prediction agrees with what is observed from the intercept map at Marly reservoir 

level before and after CO2 injection (Figure  5.19). Figure  5.19 shows a general decrease of 

intercept trend for the monitoring survey, with stronger differences between W2 and W1 

occurring around the injection wells (trend 1) and negligible differences between two well 

 

Figure  5.18: Areal extension of trend 1 (blue) and trend 2 (back) in the AVA cross-plot in 
Figure  5.17. For interpreting the pressure and saturation effects, the area of VSP 
reflections is subdivided to four zones labeled A, B, C and D.  
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patterns (trend 2). However, interpreting based on only one attribute (I) may not be very 

accurate, and we need to consider the attribute G. 

AVO gradient (G) 

Another useful AVA attribute which is also sensitive to the fluid content within the 

reservoir, is the gradient G. In Weyburn reservoir, gradient values are expected to increase in 

response to increasing pore pressure but to drop as the result of CO2 saturation increase. My 

results for G (Figure  5.20) show both increasing and decreasing values at different locations 

within the trend 1 area (close to the injection wells). The AVA gradients decrease in the 

southeast corner of trend 1 area (A) but increase in the area close to C. The gradients also show a 

slight increase in area B, and no visible changes in the central area (D). 

 

 

 

 

Figure  5.19: AVA intercept (I) at Marly reservor level for baseline (left) and monitoring (right) 
VSP data. Note that except for the central area, the values of I decreases after CO2 
injection. 
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S-wave reflectivity (S) 

An increasing CO2 saturation should not have any effect on the S-wave reflectivity, but 

increasing CO2 pore pressure will decrease S-wave reflectivity (Section 5.5). Figure  5.21 shows 

the S-wave reflectivity estimated by equation (5.5) for the baseline and monitoring surveys. It 

appears that the S-wave reflectivity decreases in areas A and B in patterns parallel to the 

injection wells. This increase could be due to pore pressure increasing in these zones. However, 

no major changes are observed in other parts of the study area. This may suggest an increase in 

the CO2 pore pressure close to the injection wells within the southern part of the coverage area. 

 

I+G Attribute 

In contrast to the S-wave reflectivity, an increase in the CO2 pore pressure should have no 

effect on the attribute (I+G), but increasing CO2 saturation would decrease this attribute 

(Sections 5.4 and 5.5). Figure  5.22 shows the (I+G) attribute before and after CO2 injection. Note  

 

Figure  5.20: Gradient attribute (G) at Marly reservor level for baseline (left) and monitoring VSP 
survey (right). It can be noticed gradiant attriute changes after CO2 injection in most 
areas around the well pattern.  
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Figure  5.21: S-wave reflectivity attribute (S) at Marly reservor level for baseline (left) and 
monitoring VSP data (right). The decreasing S wave reflectivities between W1 and W2 
may indicate increasing pore pressure.  

 

 

Figure  5.22: (I+G) attribute at Marly reservor level for baseline (left) and monitoring (right) VSP 
data. Note that area C and a part of area A show a decrease of the (I+G) attribute after 
CO2 injection (W2). No significant changes can be observed in other areas. These 
variatuions suggest an  increase in CO2 saturation changes in the northwestern and 
eastern parts of of the survey.  
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that area C and a part of area A show a decrease of the (I+G) attribute after CO2 injection, while  

no major changes are observed in other areas.  This observation may indicate an increasing in 

CO2 saturation within the northwestern and eastern parts of the survey. 

5.13  Qualitative AVA interpretation in Weyburn VSP area 

The qualitative interpretation is based on the general patters of the variations of the 

different AVA attributes from the baseline to monitoring surveys. Based on Table  5.2, the 

combination of changes in intercept, gradient, S wave reflectivity and (I+G) attributes suggest 

distinct areas affected by CO2 pressure or saturation changes. Figure  5.23-Figure  5.26 show the 

changes in above attributes from baseline to monitoring surveys. In the following, I investigate 

the changes in AVA attributes in four different zones (A, B, C and D) in VSP area in order to 

draw a conclusion over changes in CO2 pressure and saturation.  

 

 

Figure  5.23: Differences in intercept attribute I from the baseline to monitoring survey (W2-W1). 
The attribute I decrease in most zones close to the injection well patterns. 

   142 

 



 

 

 
 

Figure  5.24: Differences in gradient attribute G from baseline to monitoring survey (W2-W1). 
This attribute is expected to increase with increasing pore pressure and decrease as a 
result of CO2 saturation. 

 

Figure  5.25: Differences in (I+G) attribute from baseline to monitoring survey (W2-W1). The 
(I+G) attribute decreases in areas A and C, which may suggest an increase in CO2 
saturation in these areas. 
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5.13.1 Area A: (Southeast) 

The area A is located close to the eastern injection well pattern. The gradient (G) and 

(I+G) attributes decrease in this area (Figure  5.24 and Figure  5.25). However, S-wave reflectivity 

shows no considerable changes in this region (Figure  5.26). As shown in Table  5.2, all of this 

evidence may indicate that in this area, saturation effects are dominant over the pore pressure 

effects. 

 

5.13.2 Area B (Southwest) 

This area is close to the southwestern injection well and extends parallel to the southern 

well pattern to the east. The gradient increases in this area (Figure  5.24), while the intercept 

decreases (Figure  5.23). The (I+G) attribute does not change between the surveys W1 and W2 

 

Figure  5.26: Differences in the S wave reflectivity from baseline to monitoring survey (W2-W1). 
The S wave reflectivity decreases in area B, close to the southwestern injection well 
pattern. This increase may be an indicator of pore pressure increasing in this area.  
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over this area (Figure  5.25), while the S wave reflectivity shows small decrease (Figure  5.26). 

All of these changes indicate pore pressure increasing effects as the result of CO2 injection.  

5.13.3 Area C (Northwest) 

This area is close to the injection well located in the northwestern part of the study area. 

The gradient and (I+G) attribute decreases in this area (Figure  5.24 and Figure  5.25). However, 

S-wave reflectivity shows no considerable changes in this area (Figure  5.26). All of these 

observations suggest that the CO2 saturation effects dominate the pore pressure effects in this 

area. 

5.13.4 Area D (Centre Area) 

In the central area, generally very small changes in intercept and gradient attributes are 

observed. Therefore, all resulting attributes (I+G, and S wave reflectivity) show almost no 

changes due to CO2 injection. It seems that these areas are the least affected by CO2 injection. 

However, some changes in neighbouring area can still be noticed. For example, the S-wave 

reflectivity decreases in this area in the vicinity of the injection well in the northeastern part of 

the survey. 

5.14  Quantitative AVA Interpretation of Weyburn VSP 

In this Section, I attempt further quantitative analysis of the anomalies described in 

Section 5.12. Figure  5.27 shows the directions of CO2 pore pressure and saturation effects on a 

cross-plot display (ΔI, ΔG) in Marly reservoir based on the AVA model in Section 5.5 

(Figure  5.8a). Based on this model, increasing pore pressure decreases AVA intercept and 

increases gradient. However, increasing CO2 saturation decreases both intercept and gradient. 
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Figure  5.28 shows a cross-plot display of intercept and gradient values for Marly 

reservoir for the baseline and monitoring surveys. Negative intercepts and positive gradients 

values in it agree with the model shown in Figure  5.8. The important question is how to estimate 

a CO2 discriminator line (pink in Figure  5.8) for Weyburn dataset.  

Figure  5.10a shows the dependence of the slope of CO2 discriminator line (dG/dI ) on the 

different frequencies of the modeled Ricker wavelet. The wavelet of VSP Weyburn data can be 

best approximated by a 40-Hz Ricker wavelet, and therefore, G/I ratio of the discriminator line 

can be estimated as ~1.74 (Figure  5.10a). 

For this G/I ratio, Figure  5.10b gives a ratio of (G0C/I0C) equal to -0.8. Using these values, 

I draw several lines with different I0C and G0C (Figure  5.28). Based on the AVA cross-plots for 

the baseline and monitoring datasets, it seems that the thick pink line in Figure  5.28 can be a 

good choice for this discriminator. There are some uncertainties in determining the values of 

IC,GC, as shown by the dashed lines in Figure  5.28. Once a CO2 discriminator line is determined, 

 

 

Figure  5.27:  Schematic plot of the AVA intercept and gradient anomalies expected from CO2 
pore pressure and saturation variations.    
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the next question to consider is how to separate the effects of CO2 pore pressure and saturation 

quantitatively.  

To construct an attribute differentiating between the pore-pressure and saturation effects, 

I define a new “CO2 proxy” attribute, which illustrated as in Figure  5.29 (Baharvand Ahmadi et 

al., 2011). 

Starting from the CO2 discriminator, I construct a pair of deviations (“principal 

components”) of (I,G) along and across its trend line: 

                                 1 0 CP G Gδ = − , and 2 0P I Iδ = − ,  (5.20) 

where (IC,GC) is the centre of the distribution of all (I,G) values, and (I0,G0) is the projection of 

point (I,G) onto the trend line (Figure  5.29). Figure  5.30 shows AVA cross-plots of intercept and 

gradient for baseline and monitoring surveys with the empirical CO2 discriminator trend and an  

 

Figure  5.28: Cross-plot of the intercept and gradient for baseline (black dots) and monitoring 
(red dots). The possible CO2 discriminator line is drawn as a pink line. Dashed lines show 
a rough estimate of the uncertainties of the discriminator line. 
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orthogonal direction used as a proxy CO2-saturation attribute. Positive values (red colours in the 

plots below) of δP1 and δP2 correspond to the directions of increasing pressure and decreasing 

CO2 saturation, respectively, as shown in Figure  5.31-Figure  5.32. The desired “CO2 proxy” is 

therefore implemented by the new attribute (–δP2). A differential attribute comparing the values 

of δP1 and δP2 in the monitor to baseline dataset is shown in Figure  5.33-Figure  5.34.  

In these images, we are principally looking for negative values (purple), which would be related 

to increasing CO2 saturation.  Such areas are found along the southern CO2 injector wells 

(Figure  5.34). 

 
 
 

 

Figure  5.29. Construction of empirical proxy attributes emphasizing the deviations of AVA 
parameters along (δP1) and across the trend line (δP2). (I,G) is the measured AVA point, 
(I0,G0) is its projection onto the trend, and (IC,GC) is the centre of the distribution of all 
(I,G) points. 
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Figure  5.30: Cross-plots of AVA parameters I and G for Marly reflectors within the study area. 
Pink line indicate the empirical trend and an orthogonal direction used as a proxy CO2-
saturation attribute.  

 

Figure  5.31: Attribute δP1 for Marly reflection, for baseline (left) and monitoring survey (right). 
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Figure  5.32 Attribute δP2 for Marly reflection, for baseline (left) and monitoring survey (right).  

 

Figure  5.33: Differential attribute comparing the values of δP1 (colour bar) for the monitor to 
baseline dataset. Positive values representing increasing CO2 pressure.  
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5.15  Separating CO2 pressure and saturation effects  

In subsection 5.13, I proposed a CO2 discriminator line using a cross-plot of the measured 

AVA responses. The ultimate goal of this project is to quantify the CO2 pressure and saturation 

in VSP area. To achieve this goal, I use a similar approach similar to Landrø (2001). Let us start 

from the same two-layer model as in the beginning of this Chapter (Table  5.3). This model 

represents an anhydrite/Marly interface, which is the upper boundary of the reservoir. I will 

consider two cases: 1) when the pressure is constant within Marly reservoir and the CO2 

saturation changes, and 2) when the CO2 saturation is considered constant and pore pressure 

changes. I will also assume that the P and S wave velocities and density (VP1, VS1 and  ρ1) within 

 

Figure  5.34: Differential attribute comparing the values of δP2 in the monitor to baseline dataset. 
Negative values representing increasing CO2 saturation in the injected area.  
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the cap rock are unchanged after CO2 injection. Within the reservoir, these parameters become 

VP2
’, ρ2

' and VS2
’ after CO2 injection. Therefore, the change in P wave velocity as a result of CO2 

saturation in the reservoir is: 

                                               2 2' ,F
P P PV V V∆ = −  (5.21) 

From Smith and Gidlow (1987) the reflection coefficient for the baseline survey can be estimated 

as: 

            
2

2 2
0 2

2 21( ) sin tan ,
2 2

S SP P

P P S P

V VV VR
V V V V

ρ ρθ θ θ
ρ ρ

   ∆∆ ∆∆ ∆
= + − + +  

   
    (5.22) 

where VP, VS and ρ are the average parameters of P wave, S wave and density for layer 1 and 

layer 2. The reflection coefficient after CO2 injection in layer 2 becomes: 

2
2 2

1 2

2 21( ) sin tan ,
2 2

S SP P

P P S P

V VV VR
V V V V

ρ ρθ θ θ
ρ ρ

   ′ ′′ ′′ ′ ∆∆ ∆∆ ∆
= + −  +  + 

   ′ ′′ ′ ′ ′              
(5.23) 

where  

                         2 1 2 1 1 ,F F
P P P P P P P PV V V V V V V V′ ′∆ = − = + ∆ − = ∆ + ∆

  
(5.24) 

The above equation (5.24) can be similarly written for Fρ∆ . Assuming 1,P

P

V
V
∆

  and 

1,
F

P

P

V
V

∆
  and also ignoring higher-order terms in either P

P

V
V
∆

or 
F

P

P

V
V

∆
, or combinations of 

them, equation (5.24) can be written as (Landrø, 2001): 

            
2

2 2
1 2

2 21 1( ) sin tan
2 2 2
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S SP P P

P P S P P

V VV V VR
V V V V V

ρ ρ ρθ θ θ
ρ ρ ρ

    ∆∆ ∆ ∆∆ ∆ ∆
= + − + + + +    
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2 2
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2 2 sin tan ,
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F FF
S S P

P S P

V V V
V V V

ρ θ θ
ρ

 ∆ ∆∆
− + + 

 
              (5.25) 

where the ratio of shear wave velocity to P-wave velocity is: 
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,                (5.26) 

where we also ignore all the second-order terms. If the term proportional to sin2θ  in 

equation (5.2) does not change because of fluid substitution, the shear modulus can be assumed 

constant, which leads to the following equation for fluid substitution (Landrø, 2001): 

                                           
2 0

FF
S

S

V
V

ρ
ρ

∆∆
+ =               (5.27) 

Therefore, for fluid substitution, the equation (5.22), becomes: 

                  2
1 0

1( ) ( ) tan ,
2 2

F FF
P P

P P

V VR R
V V

ρθ θ θ
ρ

 ∆ ∆∆
≈ + + + 

 
         (5.28) 

and the change in P wave reflectivity in first-order is: 

                            21( ) tan
2 2

F FF
F P P

P P

V VR
V V

ρθ θ
ρ

 ∆ ∆∆
∆ ≈ + + 

 
       (5.29) 

In the second case, when pressure increases in the reservoir, the density increases. 

Figure  5.35 shows the changes in density as the result of pressure variations in Marly reservoir. 

This graph suggests that the pressure-related changes in the density are only about 2% over a 20-

MPa pressure increase in the reservoir. This density variation is relatively small and can be 

ignored. Therefore, the corresponding equation for the pressure changes in the reservoir will be: 

                       
2

2 2
2

2 21( ) sin tan ,
2 2

P P
P S SP P

P P S P

V VV VR
V V V V

θ θ θ∆∆ ∆
∆ = − +          (5.30) 

Similarly, the reflectivity changes because of the pressure changes equal: 

                2 2
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   (5.31) 
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Once we obtain the relative variation of seismic parameters with respect to fluid-

saturation and pore-pressure changes, we can determine the relationship between AVA attributes 

and CO2 saturation and pore pressure. These parameters can be extracted from ultrasonic 

measurements on core samples. I use simplified relations between P-, S wave velocity and 

density parameters to CO2 pore pressure and saturation changes based on the study by Brown 

(2002) on rock samples from Weyburn reservoir (Figure  5.36-Figure  5.38).  

Based on these observations, I use a linear approximation with respect to the saturation 

changes and second-order approximation with respect to pressure: 

2 ,P
P P P

P

V A S B P C P
V
∆

≈ ∆ + ∆ + ∆                                            (5.32) 

2 ,S
S S S

S

V A S B P C P
V
∆

≈ ∆ + ∆ + ∆                                             (5.33) 

,A Sρ
ρ

ρ
∆

≈ ∆                                                           (5.34) 

 

Figure  5.35: Relative changes in density as the result of pressure changes. 
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Figure  5.36: Relative changes of P wave velocity versus pressure changes (modified from 
Brown, 2002). It appears that the relationship between P-wave velocity and pressure can 
be described by a second-order relationship. 

 
Figure  5.37: Relative variations of P-wave velocity as a function of CO2 saturation (modified 

from Brown, 2002).  I approximate this relation by a first-order expression. 
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where ΔS and ΔP denote the changes in CO2 saturation and net pressure, respectively, and A, B 

and C are empirical parameters for the sensitivities of the relative P wave, S wave and density 

variations to pressure and CO2 saturation, as estimated from  Figure  5.36 to Figure  5.38. 

Therefore, the combined effect of fluid and pressure changes on the angle-dependent reflectivity 

can be written as: 

                 2 2 2
P

1 1( ) (A ) tan
2 2P S P P P PR A S A S B P C P S B P C P θ∆ ≈ ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆  

2
2 2

2

4 ( )sinS
S S

P

V B P C P
V

θ− ∆ + ∆       .                              (5.35) 

Using the Shuey’s equation (5.4) for the AVA analysis and assuming sin2θ≅tan2θ for 

below 30°, we can rewrite the above equation in terms of the variations of the AVA intercept and 

gradient: 

 
 

Figure  5.38: Relative changes of density versus CO2 saturation (extracted and modified from 
Brown, 2002). It appears that the relationship between density and CO2 saturation can be 
estimated by a near-linear dependence.  
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By solving the above equations, we have: 
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and the changes in CO2 saturation become (Landrø ,2001): 
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+

.      (5.39) 

 
 

The above equations can be solved by setting Vp/Vs = 2 and using the results for I and G 

from equation (5.16). Figure  5.39-and Figure  5.40 show the CO2 pressure and saturation map for 

Weyburn VSP area from equation (5.3) and (5.3).  
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Figure  5.39: CO2 saturation values estimated from equation (5.39). The maximum CO2 
saturation observed from these data is ~5%, which can be related to limitation of 
Weyburn seismic data for detecting CO2 saturation for Weyburn area.  

 
 

Figure  5.40: CO2 pressure estimated from equation (5.38). The maximum CO2 pressure 
estimated from VSP data is located close to the southern injection well. .CO2 pressure 
variation is very small at the centre of the VSP area and is increases near injection wells.  
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5.16  Discussion 

Several factors may affect the validity and accuracy of the above quantitative results. 

First, these results depend on the coefficients controlling the relations between density, P and S 

wave velocity with saturation and pressure. Additional rock-physics studies are likely required in 

order to test and substantiate these dependences, and to examine their variability within and 

around the reservoir. Significant assumptions were also made in equations (5.38) and (5.39), 

which may also affect the results. For example, I assumed that the CO2 pressure affects the S 

wave velocity in a way similar to P wave. I also considered the empirical coefficients extracted 

for the well location as representative of the entire VSP area. The quality and consistency of 

these approximations still need to be studied. 

Another interesting point for future studies relates to the above results on CO2 saturation. 

As discussed by Morozov and Ma (2010), above this CO2 saturation level, the AVA response 

“saturates” itself and does not allow further differentiation of the CO2 saturation levels. Weyburn 

seismic data are capable of discriminating CO2 saturations of up to 5%. My estimate of CO2 

saturation also reaches to maximum of ~5%, which appears to agree with this limitation for 

seismic data. Thus, in reality, the CO2 saturation may actually be higher in areas where it is 

shown as near 5% in Figure  5.39. 

Another important point relates to the sign of CO2 saturation in equation (5.39). If 

pressure increase is large enough in (~15 MPa), the CO2 saturation calculated from equation 

(5.39) becomes negative. This might be an indicator of reduced CO2 saturation within the 

reservoir. Such negative values were dropped from Figure  5.39, which only shows the locations 

of increasing CO2 saturation. For example, the area close to the southeast injection well shows an 

increase in pressure whereas the saturation changes only slightly in this area. However, in the 
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northern area, I observe an increase in CO2 saturation with only a slight increase in pressure. The 

central area shows small changes in pressure and saturation, as it is expected and observed by 

other techniques (section  5.13 ). 

Finally, the CO2 pressure results indicate pressure increases occurring mostly along the 

southern injection wells, while saturation increases particularly in north-eastern area. It appears 

that the average pressure increase in the area is ~15-20 MPa and saturation changes by about 4% 

in the area. These values are comparable to typical reservoir simulation results. 

   160 

 



 

6 CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

This study set out to explore the potential of VSP data in reservoir studies and 

particularly in separation of effects of CO2 pore pressure and saturation after injection into the 

reservoir. It establishes a robust and reliable link between physical properties of hydrocarbon 

reservoirs and seismic data. It also reduces the uncertainties of the AVA analysis through 

construction of a detailed anisotropic model combining the geometric spreading, scattering and 

intrinsic attenuation. Finally, it provides different techniques to separate effects of CO2 pressure 

and saturation in the reservoir based on corrected amplitude.  

In the following sections, I summarize the conclusions of the different aspects of this 

study and discuss the applications and limitations of the proposed methods.  In the last section, I 

outline some directions and areas of future research arising from this Dissertation. 

6.1  AVA-compliant VSP processing 

Using VSP data for AVA analysis is still not a common practice in reservoir studies. VSP 

data mostly are used to tie seismic data to well data through constructing corridor stacks. There 

is still no standard flow for AVA-compliant processing of 3D VSP data. In this Dissertation, I 

processed VSP data in a way to preserve the amplitude to offset/angle relationships. Another 

challenge in processing of VSP data is transferring VSP data to surface midpoint locations 

(CMP) while maintaining the true amplitudes. Instead of using the VSP-to-CMP mapping, I 

recommend a processing flow based on calculation the VSP reflection angles from ray tracing. 
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6.2  Anisotropic (γ,κ) model for seismic attenuation 

To resolve the rather complicated trade-off between the geometric spreading, 

“intrinsic Q,” and scattering in VSP first-arrival waveforms, an integrated approach was 

developed, based on the scattering-theory approximation by Morozov (2008). For limited 

frequency bands, such dependences can be approximated as fχ γ κ≈ + . This approach can be 

applied to many other studies (e.g., direct waves, reflection, or microseismic), and it has also 

been used in a variety of earthquake studies (Morozov, 2008, 2010a, 2010b). The approach 

offers two important advantages over conventional methods. First, it recognizes that the 

geometric spreading and scattering occur locally and can be measured concurrently with 

attenuation. Second, this model does not assume that the geometric spreading model can be 

modeled accurately and/or that scattering can be considered absent. The approach is also free 

from the uncertainties of material-Q models. The resulting values of both γ and κ measured from 

the Weyburn VSP survey were found to be anisotropic, i.e. dependent on the directions of wave 

propagation. 

The inversion approach in this Dissertation focused on extracting complete and reliable 

empirical information about wave attenuation without considering any physical mechanisms. 

This approach can also be connected to conventional methods used for reservoir characterization 

by using seismic attenuation. The potential of this method is in complete characterization of the 

observable macroscopic attenuation parameters (spatially-variable, anisotropic γ and κ), which 

belong to the subsurface. These parameters should be further related to the four physical causes 

of wave-energy dissipation: 1) local variations of geometric spreading, 2) internal friction, 3) 

scattering (transmission losses and reflectivity), and 4) many types of internal dissipation of 
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mechanical energy into heat. Such mechanisms are usually described by the “intrinsic Q” of the 

material.  

The fundamental criterion by which the γ- and κ- types of seismic wave attenuation are 

differentiated in this Dissertation consists in their frequency dependences. This criterion may 

provide important guidance for interpreting the petrophysical causes of seismic-wave 

attenuation. For example, the internal friction related to the presence of mobile pore fluids, 

moving dislocations, or grain-boundary sliding should lead to effects similar to solid and fluid 

viscosity (Biot, 1956; Landau and Lifshitz, 1986). For viscosity, the internal friction vanishes at 

zero frequencies, and consequently, viscosity should be entirely contained in κ. For such 

mechanisms, a frequency-dependent κ ∝ f is expected (ibid). Thermoelasticity is another key 

attenuation mechanism which might be included in κ or also in γ. Depending on the grain sizes 

and thermal properties of the material, its frequency dependence can range from about fχ ∝  

to χ ∝ f 2 (i.e., κ ∝ f; Landau and Lifshitz, 1986).  

6.3  Separation of geometric spreading, scattering and intrinsic attenuation effects 

By interpreting the resulting values of γ and κ, three key questions are addressed in this 

Dissertation: 1) how to characterize the contribution of spectral fluctuations in the “scattering 

attenuation”, 2) how to characterize the “random” and “non-random” parts of scattering for a 

specific zone of interest, and 3) how to separate the effects of intrinsic attenuation, scattering on 

fine layering, and the variations of geometric spreading.   

To answer these questions, a numerical model was formulated to study normal and 

oblique-incidence P and S wave propagation in a finely layered medium. Numerical modeling 
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allowed interpretation of the measured spreading effects and differentiation between random- 

and statistical-fluctuation effects inherent in scattering. “Fluctuation Q” was studied and shown 

to be significant in the observed seismic amplitudes.  The results of statistical analysis are in 

good agreement with those obtained from the approach by O’Doherty and Anstey’s (1971) and 

from the localization theory. By contrast, this type of Q is omitted in the traditional empirical 

types of analysis and potentially included in “scattering Q” (Morozov and Baharvand 

Ahmadi, 2015).  

Several limitations of the localization theory (such as large layer thicknesses, small-

perturbation approximation, etc.) were overcome in this Dissertation by using the numerical 

propagator approach (section  4.3 ). Implementation of the method by using matrix time series is 

only slightly more complex than any other processing of well logs and production of waveform 

synthetics. This matrix approach can be used in many other applications, and it can be readily 

implemented in many programming packages, such as Matlab (as in this study), Octave, 

Mathematica, and it can also be compactly and efficiently coded in high-level computer 

languages such as C++. 

6.4  AVA analysis and separation of CO2 pressure and saturation effects 

Separation of CO2 pressure and saturation effects is the ultimate goal of this Dissertation. 

Three amplitude-based methods were proposed, all of which rely on the AVA measurements of 

VSP data: 1) time-lapse comparisons of AVA attributes, 2) AVA cross-plotting, and 3) 

quantitative estimation of the variations in CO2 pressure and saturation. 

From the first of the above methods, it was found that AVA attributes showed more 

sensitivity to pressure variations compared to saturation. Based on the changes in the AVA 
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intercept, gradient and shear wave reflectivity attributes, the area close to the southeastern well 

within the Weyburn VSP area (area B) showed the greatest changes in saturation.  

The second method took advantage of the AVA intercept and gradient cross- plotting 

combined with an existing AVA model already calculated based on seismic and well-log data. 

By using a CO2 discriminator line determined for the VSP and introducing two new AVA 

attributes (δP1 and δP2), I suggested a separation between the CO2 pressure and saturation 

effects. These results are consistent with CO2 pressure and saturation changes inferred from the 

AVA attributes.  

Finally, by using the values of the AVA intercept and gradient quantitatively, I estimated 

the pressure and saturation variations within the area of injection. These results were obtained in 

units of pressure and saturation and are therefore easy to understand and should be comparable to 

other measurements performed during injection and geotechnical reservoir studies. The results 

from three techniques agree with each other and lead to similar conclusions. Based on a 

combination of these results, the area close to the southern well should have the highest pressure 

and the area between the northern and eastern wells show the maximum CO2 saturation. 

However, the area in the center has the minimum effects of CO2 saturation and pressure. The 

VSP dataset does not provide enough coverage for the North-western injection wells and make 

the interpretation in this area difficult.  

6.5  Recommendations for further research 

The (γ,κ) attenuation model used in this study is very general and can be used in 

numerous applications in exploration and global seismology (Morozov, 2008a, 2010a). A 

potentially very useful future application of it could be in forward and inverse modeling of 
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attenuation effects. The existing forward and inverse Q-filtering algorithms are based on the 

concept of the frequency-dependent Q of the medium (Wang, 2008). This concept uses the same 

relations (3.3) and (3.4) as our method, with the only difference being the restriction of the 

attenuation coefficient to the form of ( ) ( )f f Q fχ π= . Therefore, if γ and κ are determined 

(as, for example, in Chapter 3), the conventional frequency-dependent Q of the medium becomes 

(see equation (3.5) and also Morozov, 2008a): 

( ) fQ f
f

π
γ κ

=
+

.                                                                (6.1) 

Similarly to γ and κ, this Q(f) would be anisotropic. 

Thus, by using relation (6.1), the (γ,κ) attenuation models can be used in new types of 

forward and inverse Q filtering and other Q-related analysis.  Note that in areas of wave focusing 

(i.e., where γ < 0) and sufficiently low κ, Q(f) can be negative at low frequencies f < fc, which 

may cause problems for the conventional model of attenuation (Rickett, 2006). Generally, the 

geometric spreading and frequency-independent scattering (as measured by γ) are not “Q-type” 

phenomena, and values of Q(f) < 0 are possible. Mathematical models and algorithms extending 

beyond the viscoelastic Q(f) model and directly utilizing the geometric, scattering and other 

physical mechanisms of wave attenuation are therefore required. 

The statistical models of scattering developed in this Dissertation are also very general 

and can be combined with many attenuation-based methods for reservoir characterization. The 

potential of this approach is in a more complete characterization of the macroscopic attenuation 

parameters (spatially variable, anisotropic γ and κ), which are associated with the subsurface 

structure. The fundamental criterion by which I differentiate between these effects consists in 
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their frequency dependences, which may provide an important guidance for precise interpretation 

of the petrophysical causes of attenuation. For example, the internal friction related to mobile 

dislocations or grain-boundary sliding should lead to effects similar to solid and fluid viscosity 

(Landau and Lifshitz, 1986) whereas mobile pore fluids and “mesoscopic” heterogeneities 

should lead to dissipation by means of Darcy flows and slow “fluid waves” (Biot, 1956). 

Finally, several practical recommendations and specific observations arise from the 

application of the different methods of VSP data processing and interpretation in this study: 

1) In designing seismic studies for CO2 injection monitoring, it is important to emphasize the 

following factors: 

a) It is recommended that seismic data acquisition is conducted with an AVA analysis in 

mind. This means that the surveys should use identical (preferably permanently 

buried) receiver spreads with identical shot patterns and types. Very wide-aperture 

VSP surveys are likely not particularly useful. 

b) For precise calibration of seismic data, it is critical to use as close to raw dataset 

parameters (such as the source and receiver positions and types) as possible. This 

would ensure good repeatability of the data in the “pre-stack” domain. 

c) If feasible, multiple VSP recording (i.e., recording the same shots in adjacent wells) 

could greatly improve the illumination of the subsurface and improve imaging. 

d) For datasets with high pre-stack repeatability of data acquisition, seismic processing 

should also employ time, amplitude, and wavelet calibration at the pre-stack stage. 
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e) VSP should be conducted as a calibration and aid to the surface 3-D recording. At the 

same time, methods for VSP processing and data analysis still need to be improved in 

order to confidently constrain the AVA effects observed from surface recording.  

2) In surface-seismic and particularly VSP true-amplitude and AVA studies, the entire 

amplitude-decay should be modeled without subdividing it into a geometric spreading, 

“intrinsic Q,” or scattering. This study may provide an important guidance for interpretation 

of the petrophysical causes of attenuation.  

3) In terms of seismic attributes that can help distinguish the CO2 saturation from pressure-

related effects, combinations of the AVA intercept (I) and gradient (G) can be used. The 

monitoring procedure could be similar to the identification of Class III AVA anomalies: 

a) An increase in pore pressure generally decreases I and increases G, i.e., it 

decreases (aG–I), with some a > 0. The same variation affects the S-wave reflectivity. 

b) An increase in CO2 saturation decreases both I and G, i.e., it should be sensitive to 

combinations like (I+aG). 

4)  This study shows the importance of well logs, core analysis, and lab measurements, 

which relate reservoir physical properties to the seismic parameters. In areas with better well 

coverage, the quantitative model for separating the CO2 pore-pressure and saturation effects 

would be more reliable. 

5) CO2 produces the strongest effect on seismic properties when its saturation is low (below 

about 3%). This means that seismic monitoring should be conducted at the early stages of 

injection. Perhaps it would be advisable to conduct two “baseline” surveys prior to CO2 

injection, so that the variability outside of the CO2 effects can be studied. This could be 
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particularly important if CO2 injection is started after a history of water injection, as with the 

Weyburn reservoir. 
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 APPENDIX A 

MATLAB CODES FOR MODELING WAVEFIELD FLUCTUATIONS  

In the Appendices, I provide the most important part of Matlab source codes of the two 

key data analysis steps discussed in sections  4.3  and  5.11 .  

The code in this Appendix A reads in and edits the well logs and blocks them into layers. 

It shuffles the values in each layer, and after balancing spectrum of refection coefficient finds the 

transmission response of that layer. The process repeated 100 times and the result compared to 

O’Doherty and Anstey (1971).  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%THIS CODE IS SUPPOSED TO READ THE WHOLE LOG, BREAK IT INTO SIX 
%%%%%%%%%%%LAYERS, SHUFFLE THE VALUES OF LOG IN EACH LAYER, THEN TRY TO 
BALANCE SPECTRUM of REFLECTION COEFFICIENT, THEN FIND THE 
%%%%%%%%%%%TRANSMISSION RESPONSE OF THAT. IF WE DO IT LIKE 100 TIMES, IT 
%%%%%%%%%%%SHOULD SMOOTH OUT THE TRANSMISSION CURVE.In the end we compare to 
Doherty and Anstey Formula 
%%%%%x=[2 4 6 5 1]    idx = randperm(length(x));  xperm = x(idx); 
clc 
clear 
tic 
close all 
figure 
set_current_layer=5; 
% % % setting:frequency increment, layer no,number of relization, number of 
angles, 
for layer_no=5:5  %%%%%%So far it is only working for layers with same 
frequency bands 
     
    depth_interval=0.1; 
    step_blocking=1;%%%%%%1 means 10cm 
    load LOGS_INTERPOLATED.mat; 
    IMPORT_LOG_TEMP=LOGS_INTERPOLATED; 
    process_window=500;%%%%%%%%window size in length of samples for log 
processing 
    VELOCITY=[2185;2230;2330;2405;2970;3834]; 
    numer_of_realizations=100; 
    frequencies=[150;150;130;130;110;100]; 
    boundaries=[1;1463;2823;5413;7693;10133;12383];%%%%%Boundaries of layer 
corresponding to cell number 
    frequency_band=frequencies(layer_no,1); 
    frequecy_real=[0.5:4:frequency_band]; 

   181 

 



 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Processing of Log (log editing) 
    %%%%%500 sample windows, getting mean and std. if the value minus mean is 
    %%%%%bigger than 3.*std ==> it was replaced with local mean in that 
window 
    IMPORT_LOG_temp2=IMPORT_LOG_TEMP; 
    IMPORT_LOG_temp2(:,3)=0; 
    IMPORT_LOG_temp2(:,4)=0; 
    IMPORT_LOG_temp2(:,5)=0; 
    count=0; 
    t=0;ss=0; 
     
    for tts=3:5   %%%%VP RHO  VS 
        for i=1:process_window:length(IMPORT_LOG_TEMP(:,1)) 
            if i+process_window<length(IMPORT_LOG_TEMP(:,1)) 
                for j=i:i+process_window 
                    count=count+1; 
                    DATA(count,1)=IMPORT_LOG_TEMP(j,tts);%%%%VP or VS or RHO 
                end 
                mean_local=mean(DATA(:,1)); 
                stad_local=std(DATA(:,1)); 
                ss=ss+1; 
                for k=i:i+process_window 
                    if abs(IMPORT_LOG_TEMP(k,tts)-mean_local)>3*stad_local 
                        IMPORT_LOG_temp2(k,tts)=mean_local; 
                        t=t+1; 
                    end 
                     
                    if abs(IMPORT_LOG_TEMP(k,tts)-mean_local)<3*stad_local 
                        IMPORT_LOG_temp2(k,tts)=IMPORT_LOG_TEMP(k,tts); 
                    end 
                     
                    if 
(k==10508)||(k==10509)||(k==10510)||(k==10711)||(k==10756)||(k==11527)||(k==1
1528)||(k==11529)||(k==11533)||(k==11534)||(k==11620) 
                        IMPORT_LOG_temp2(k,tts)=mean_local; 
                    end 
                end 
            end 
            count=0; 
        end 
         
        for i=13002:length(IMPORT_LOG_TEMP(:,tts)) 
            count=count+1; 
            DATA(count,1)=IMPORT_LOG_TEMP(i,tts); 
        end 
         
        mean_local=mean(DATA(:,1)); 
        stad_local=std(DATA(:,1)); 
         
        for k=13002:length(IMPORT_LOG_TEMP(:,1)) 
            if abs(IMPORT_LOG_TEMP(k,tts)-mean_local)>2.5.*stad_local 
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                IMPORT_LOG_temp2(k,tts)=mean_local; 
            end 
             
            if abs(IMPORT_LOG_TEMP(k,tts)-mean_local)<2.5.*stad_local 
                IMPORT_LOG_temp2(k,tts)=IMPORT_LOG_TEMP(k,tts); 
            end 
        end 
    end 
    IMPORT_LOG_temp2(:,1)=IMPORT_LOG_TEMP(:,1); 
    IMPORT_LOG_temp2(:,2)=IMPORT_LOG_TEMP(:,2); 
    clear IMPORT_LOG; 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%Blocking the log process 
    %%%%%%%%%% 
    count=0; 
    t=0;ss=0; 
     
    clear DATA; 
    start_blocking=1;%%%%%% 
    for tts=1:7   %%%%VP RHO  VS 
        t=0; 
        for i=start_blocking:step_blocking:length(IMPORT_LOG_temp2(:,1))-
step_blocking 
            t=t+1; 
            if t<length(IMPORT_LOG_temp2(:,1))-step_blocking-1 
                for j=i:i+step_blocking-1 
                    count=count+1; 
                    DATA(count,1)=IMPORT_LOG_temp2(j,tts);%%%%VP or VS or RHO 
                end 
                mean_local=mean(DATA(:,1)); 
                 
                 
                IMPORT_LOG_temp3(t,tts)=mean_local; 
                 
                count=0; 
            end 
        end 
    end 
     
    for i=1:start_blocking+length(IMPORT_LOG_temp3(:,1))-1 
        if i<start_blocking 
            IMPORT_LOG_temp4(i,:)=IMPORT_LOG_temp2(i,:); 
        end 
        if i>=start_blocking 
            IMPORT_LOG_temp4(i,:)=IMPORT_LOG_temp3(i-start_blocking+1,:); 
        end 
    end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%Start shuffling the log and make a new log 
     
    for r=1:numer_of_realizations    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Realization number 
         
        frequency_band=frequencies(layer_no,1); 
        RESULT_ONE_LAYER=zeros(length(frequecy_real(1,:)));% 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%level selection 
        counter=boundaries(layer_no,1); 
        counter2=boundaries(layer_no+1,1); 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        t=0;%%%%%%%%%%%%%%%t is level of cut 
        for i=counter:counter2 
            t=t+1; 
            IMPORT_LOG_temp(t,:)=IMPORT_LOG_temp4(i,:); 
        end 
         
        for i=1:length(IMPORT_LOG_temp(:,1))-1 
            
IMPORT_LOG_temp(i,7)=(IMPORT_LOG_temp(i+1,4).*IMPORT_LOG_temp(i+1,3)-
IMPORT_LOG_temp(i,4).*IMPORT_LOG_temp(i,3))./(IMPORT_LOG_temp(i+1,4).*IMPORT_
LOG_temp(i+1,3)+IMPORT_LOG_temp(i,4).*IMPORT_LOG_temp(i,3)); 
        end 
         
         
        clear x 
        clear idx 
        clear xperm 
        x= IMPORT_LOG_temp(:,1); 
        idx = randperm(length(x)); 
         
        for kk=1:length(IMPORT_LOG_temp(:,1)) 
            IMPORT_LOG_temp5(kk,1)=IMPORT_LOG_temp(kk,1); 
            IMPORT_LOG_temp5(kk,2)=IMPORT_LOG_temp(kk,2); 
            IMPORT_LOG_temp5(kk,3)=IMPORT_LOG_temp(idx(1,kk),3); 
            IMPORT_LOG_temp5(kk,4)=IMPORT_LOG_temp(idx(1,kk),4); 
            IMPORT_LOG_temp5(kk,5)=IMPORT_LOG_temp(idx(1,kk),5); 
             
        end 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
        IMPORT_LOG=IMPORT_LOG_temp5; 
        t=length(IMPORT_LOG(:,1));%%%%%%%%%%%%%%%t is level of cut 
         
        countt=0; 
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Ray Number 
Selection 
         
        for i=1:-0.25:0 
            countt=countt+1; 
            ray_number(countt,1)=1.7815e-004-(i.*1.7815e-004); 
        end 
        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        temp_random_series=IMPORT_LOG(:,1);%%%%Z; 
        temp_random_series(:,2)=IMPORT_LOG(:,2);%%%%%TIME 
        temp_random_series(:,3)=IMPORT_LOG(:,3);%%%VP 
        temp_random_series(:,4)=IMPORT_LOG(:,4);%%%%RHO 
        temp_random_series(:,5)=temp_random_series(:,3).* 
temp_random_series(:,4); 
        temp_random_series(:,6)=IMPORT_LOG(:,5);%%%%VS 
         
        for i=1:length(temp_random_series(:,1))-1 
            
temp_random_series(i,7)=(temp_random_series(i+1,4).*temp_random_series(i+1,3)
-
temp_random_series(i,4).*temp_random_series(i,3))./(temp_random_series(i+1,4)
.*temp_random_series(i+1,3)+temp_random_series(i,4).*temp_random_series(i,3))
; 
        end 
         
        for i=1:length(temp_random_series(:,1))-1 
            
temp_random_series(i,8)=(temp_random_series(i+1,4).*temp_random_series(i+1,5)
-
temp_random_series(i,4).*temp_random_series(i,5))./(temp_random_series(i+1,4)
.*temp_random_series(i+1,5)+temp_random_series(i,4).*temp_random_series(i,5))
; 
        end 
        %%%%%%%%%%%%%%%% 
        %%%%%%%%%%%TRY TO BALANCE SPECTRUM OF RANDOM RC AND REAL RC, THEN BY 
ASSUMING FIXED DENSITY, CALCULATE VELOCITY. 
         
        W1_random=fft(temp_random_series(:,7));%%%%%fft RC random log 
        W2_real_log=fft(IMPORT_LOG_temp(:,7));%%%%%%FFT RC REAL LOG 
         
        W1_spectrum_random=abs(W1_random); 
        W2_spectrum_real_log=abs(W2_real_log); 
        FILTER=W2_spectrum_real_log(:,1)./W1_spectrum_random(:,1); 
         
        W1_random_shaped=W1_random.*FILTER; 
         
        W1_random_RC_shaped_depth=ifft(W1_random_shaped); 
         
        
LOG_SERIES=zeros(length(temp_random_series(:,1)),length(temp_random_series(1,
:))); 
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        LOG_SERIES(:,1)=temp_random_series(:,1);%%%%%Z 
        LOG_SERIES(:,2)=temp_random_series(:,2);%%%%%TIME 
        LOG_SERIES(:,4)=temp_random_series(:,4);%%%%%DENSITY 
        LOG_SERIES(1,:)=temp_random_series(1,:); 
        for i=2:length(temp_random_series(:,1))%%%%%%%%calculating V from RC 
            LOG_SERIES(i,3)=((LOG_SERIES(i-1,3).*LOG_SERIES(i-
1,4)).*(W1_random_RC_shaped_depth(i-1,1)+1))./(LOG_SERIES(i,4).*(1-
W1_random_RC_shaped_depth(i-1,1))); 
        end 
         
         
        LOG_SERIES(:,5)=LOG_SERIES(:,3).* LOG_SERIES(:,4); 
         
        %%%%%%%%%We have to estimate Vs from VP, SO WE USED A FIXED EQUATION 
THAT WAS ALREADY BETWEEN VP AND VS FROM REAL LOG 
        for kj=1:length(LOG_SERIES(:,6)) 
            LOG_SERIES(kj,6)=(LOG_SERIES(kj,3).*0.594)-260.54;%%%%VS  
%%%%%%%%what about VS?!!!! 
        end 
         
        for i=1:length(LOG_SERIES(:,1))-1 
            LOG_SERIES(i,7)=(LOG_SERIES(i+1,4).*LOG_SERIES(i+1,3)-
LOG_SERIES(i,4).*LOG_SERIES(i,3))./(LOG_SERIES(i+1,4).*LOG_SERIES(i+1,3)+LOG_
SERIES(i,4).*LOG_SERIES(i,3)); 
        end 
         
        for i=1:length(LOG_SERIES(:,1))-1 
            LOG_SERIES(i,8)=(LOG_SERIES(i+1,4).*LOG_SERIES(i+1,5)-
LOG_SERIES(i,4).*LOG_SERIES(i,5))./(LOG_SERIES(i+1,4).*LOG_SERIES(i+1,5)+LOG_
SERIES(i,4).*LOG_SERIES(i,5)); 
        end 
         
        for i=1:length(LOG_SERIES(:,1)) 
            if LOG_SERIES(i,1)>counter2 
                LOG_SERIES(i,3)=LOG_SERIES(counter,3);%%%%VP 
                LOG_SERIES(i,4)=LOG_SERIES(counter,4);%%%%RHO 
                LOG_SERIES(i,5)=LOG_SERIES(i,3).* 
LOG_SERIES(i,4);%%%%%IMPEDANCE 
                %%%%%%%%%%%for S wave 
                for kj=1:length(LOG_SERIES(:,6)) 
                    LOG_SERIES(kj,6)=(LOG_SERIES(kj,3).*0.594)-260.54;%%%%VS  
%%%%%%%%what about VS?!!!! 
                end 
                 
                 
            end 
        end 
         
        Z=LOG_SERIES(:,1);%%%%Depth 
        VP=LOG_SERIES(:,3); 
        VS=LOG_SERIES(:,6); 
        RHO=LOG_SERIES(:,4); 
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        TN_1=eye(4); 
         
         
        for ray_number_counteri=1:length(ray_number(:,1)) 
            P=ray_number(ray_number_counteri,1); 
            transmit_p_angle(1,ray_number_counteri)=asin(P.*VP(1,1)); 
            reflected_p_angle(1,ray_number_counteri)=asin(P.*VP(1,1)); 
            
reflected_s_angle(1,ray_number_counteri)=asin(VS(1,1).*P);%%%%%%%%%%%reflecte
d angle of s in layer 1 
            transmit_s_angle(1,ray_number_counteri)=asin(VS(2,1).*P);%%%%%%%% 
            for i=2:length(VP(:,1)) 
                
transmit_p_angle(i,ray_number_counteri)=asin(VP(i,1).*P);%%%%%%%%%%%reflected 
angle of p in layer i 
                
transmit_s_angle(i,ray_number_counteri)=asin(VS(i,1).*P);%%%%%%%%transmited 
angle of s in layer i 
                
reflected_s_angle(i,ray_number_counteri)=transmit_s_angle(i,ray_number_counte
ri); 
                
reflected_p_angle(i,ray_number_counteri)=transmit_p_angle(i,ray_number_counte
ri); 
            end 
             
            for kp=1:length(frequecy_real(1,:)) 
                frequency=frequecy_real(1,kp); 
                clear i; 
                TN_1=eye(4); 
                TL_NUMBER(1,1)=1; TL_NUMBER(1,2)=1;  TL_NUMBER(1,3)=1;  
TL_NUMBER(1,4)=1;TL_NUMBER(1,5)=1; TL_NUMBER(1,6)=1;  TL_NUMBER(1,7)=1;  
TL_NUMBER(1,8)=1;TL_NUMBER(1,9)=1; TL_NUMBER(1,10)=1;  TL_NUMBER(1,11)=1;  
TL_NUMBER(1,12)=1;TL_NUMBER(1,13)=1; TL_NUMBER(1,14)=1;  TL_NUMBER(1,15)=1;  
TL_NUMBER(1,16)=1; 
                 
                for k=1:t-1  %%%%%%%%%%%I only do that to level of cut 
                    if t>=start_blocking 
                        depth_interval=0.1.*step_blocking; 
                    end 
                    
N_MATRIX(1,1)=sin(transmit_p_angle(k,ray_number_counteri));%%%%%%%% 
                    
N_MATRIX(1,2)=cos(transmit_s_angle(k,ray_number_counteri));%%%%%%%% 
                    
N_MATRIX(1,3)=sin(transmit_p_angle(k,ray_number_counteri)); 
                    
N_MATRIX(1,4)=cos(transmit_s_angle(k,ray_number_counteri)); 
                    
N_MATRIX(2,1)=cos(transmit_p_angle(k,ray_number_counteri)); 
                    N_MATRIX(2,2)=-
sin(transmit_s_angle(k,ray_number_counteri)); 
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                    N_MATRIX(2,3)=-
cos(transmit_p_angle(k,ray_number_counteri)); 
                    
N_MATRIX(2,4)=sin(transmit_s_angle(k,ray_number_counteri)); 
                    
N_MATRIX(3,1)=2.*LOG_SERIES(k,4).*(LOG_SERIES(k,6).^2).*P.*cos(transmit_p_ang
le(k,ray_number_counteri)); 
                    N_MATRIX(3,2)=LOG_SERIES(k,4).*LOG_SERIES(k,6).*(1-
(2.*(LOG_SERIES(k,6).^2).*(P.^2))); 
                    N_MATRIX(3,3)=-
2.*LOG_SERIES(k,4).*(LOG_SERIES(k,6).^2).*P.*cos(transmit_p_angle(k,ray_numbe
r_counteri)); 
                    N_MATRIX(3,4)=-LOG_SERIES(k,4).*LOG_SERIES(k,6).*(1-
(2.*(LOG_SERIES(k,6).^2).*(P.^2))); 
                    N_MATRIX(4,1)=LOG_SERIES(k,4).*LOG_SERIES(k,3).*(1-
(2.*(LOG_SERIES(k,6).^2).*(P.^2))); 
                    N_MATRIX(4,2)=-
2.*LOG_SERIES(k,4).*(LOG_SERIES(k,6).^2).*P.*cos(transmit_s_angle(k,ray_numbe
r_counteri)); 
                    N_MATRIX(4,3)=LOG_SERIES(k,4).*LOG_SERIES(k,3).*(1-
(2.*(LOG_SERIES(k,6).^2).*(P.^2))); 
                    N_MATRIX(4,4)=-
2.*LOG_SERIES(k,4).*(LOG_SERIES(k,6).^2).*P.*cos(transmit_s_angle(k,ray_numbe
r_counteri)); 
                     
                    
M_MATRIX(1,1)=sin(transmit_p_angle(k+1,ray_number_counteri));%%%%%%%% 
                    
M_MATRIX(1,2)=cos(transmit_s_angle(k+1,ray_number_counteri));%%%%%%%% 
                    
M_MATRIX(1,3)=sin(transmit_p_angle(k+1,ray_number_counteri)); 
                    
M_MATRIX(1,4)=cos(transmit_s_angle(k+1,ray_number_counteri)); 
                    
M_MATRIX(2,1)=cos(transmit_p_angle(k+1,ray_number_counteri)); 
                    M_MATRIX(2,2)=-
sin(transmit_s_angle(k+1,ray_number_counteri)); 
                    M_MATRIX(2,3)=-
cos(transmit_p_angle(k+1,ray_number_counteri)); 
                    
M_MATRIX(2,4)=sin(transmit_s_angle(k+1,ray_number_counteri)); 
                    
M_MATRIX(3,1)=2.*LOG_SERIES(k+1,4).*(LOG_SERIES(k+1,6).^2).*P.*cos(transmit_p
_angle(k+1,ray_number_counteri)); 
                    M_MATRIX(3,2)=LOG_SERIES(k+1,4).*LOG_SERIES(k+1,6).*(1-
(2.*(LOG_SERIES(k+1,6).^2).*(P.^2))); 
                    M_MATRIX(3,3)=-
2.*LOG_SERIES(k+1,4).*(LOG_SERIES(k+1,6).^2).*P.*cos(transmit_p_angle(k+1,ray
_number_counteri)); 
                    M_MATRIX(3,4)=-LOG_SERIES(k+1,4).*LOG_SERIES(k+1,6).*(1-
(2.*(LOG_SERIES(k+1,6).^2).*(P.^2))); 
                    M_MATRIX(4,1)=LOG_SERIES(k+1,4).*LOG_SERIES(k+1,3).*(1-
(2.*(LOG_SERIES(k+1,6).^2).*(P.^2))); 
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                    M_MATRIX(4,2)=-
2.*LOG_SERIES(k+1,4).*(LOG_SERIES(k+1,6).^2).*P.*cos(transmit_s_angle(k+1,ray
_number_counteri)); 
                    M_MATRIX(4,3)=LOG_SERIES(k+1,4).*LOG_SERIES(k+1,3).*(1-
(2.*(LOG_SERIES(k+1,6).^2).*(P.^2))); 
                    M_MATRIX(4,4)=-
2.*LOG_SERIES(k+1,4).*(LOG_SERIES(k+1,6).^2).*P.*cos(transmit_s_angle(k+1,ray
_number_counteri)); 
                     
                     
                    Ti_i_1=pinv(M_MATRIX)*N_MATRIX; %%%%inv(M)*N 
                     
                    Omega=2.*pi.*frequency; 
                    Kx=Omega.*P; %%%%%Kx=w*P (Omega*P)and constant   
%%%%%sqrt(Kx^2+Kz^2=K^2)=W/V 
                     
                    kzp=sqrt(((Omega.^2)./(LOG_SERIES(k,3).^2))-(Kx.^2)); 
                    kzs=sqrt(((Omega.^2)./(LOG_SERIES(k,6).^2))-(Kx.^2)); 
                     
                     
                     
                    if isreal(kzp)==1 
                        delta_phi_p=kzp.*depth_interval; 
                    end 
                     
                    if isreal(kzs)==1 
                        delta_phi_s=kzs.*depth_interval; 
                    end 
                     
                    if k==1 
                        delta_phi_p=0; 
                        delta_phi_s=0; 
                    end 
                     
                    TL_NUMBER(1,21)=LOG_SERIES(1,3).* 
LOG_SERIES(1,4).*cos(transmit_p_angle(1,ray_number_counteri));%%%%%RHO*VP*COS
(i)=RHO*VP*(Kzp*VP/Omega) 
                    TL_NUMBER(1,22)=LOG_SERIES(1,6).* 
LOG_SERIES(1,4).*cos(transmit_s_angle(1,ray_number_counteri));%%%%%%RHO*VS*Co
s(i) 
                     
                     
                     
                    TN_1=TN_1*Ti_i_1*[exp(1i.*delta_phi_p) 0 0 0;0  
exp(1i.*delta_phi_s) 0 0; 0 0 exp(-1i.*delta_phi_p) 0; 0 0 0 exp(-
1i.*delta_phi_s)]; 
                     
                     
                    TL_NUMBER(k+1,1)=TN_1(1,1);%%%%G1 
                    TL_NUMBER(k+1,2)=TN_1(1,2);%%%%G2 
                    TL_NUMBER(k+1,3)=TN_1(1,3);%%%%G3 
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                    TL_NUMBER(k+1,4)=TN_1(1,4);%%%%G4 
                    TL_NUMBER(k+1,5)=TN_1(2,1);%%%%G5 
                    TL_NUMBER(k+1,6)=TN_1(2,2);%%%%G6 
                    TL_NUMBER(k+1,7)=TN_1(2,3);%%%%G7 
                    TL_NUMBER(k+1,8)=TN_1(2,4);%%%%G8 
                    TL_NUMBER(k+1,9)=TN_1(3,1);%%%%G9 
                    TL_NUMBER(k+1,10)=TN_1(3,2);%%%%G10 
                    TL_NUMBER(k+1,11)=TN_1(3,3);%%%%G11 
                    TL_NUMBER(k+1,12)=TN_1(3,4);%%%%G12 
                    TL_NUMBER(k+1,13)=TN_1(4,1);%%%%G13 
                    TL_NUMBER(k+1,14)=TN_1(4,2);%%%%G14 
                    TL_NUMBER(k+1,15)=TN_1(4,3);%%%%G15 
                    TL_NUMBER(k+1,16)=TN_1(4,4);%%%%G16 
                    TL_NUMBER(k+1,21)=LOG_SERIES(k+1,3).* 
LOG_SERIES(k+1,4).*cos(transmit_p_angle(k+1,ray_number_counteri));%%%%%RHO*VP
*COS(i) 
                    TL_NUMBER(k+1,22)=LOG_SERIES(k+1,6).* 
LOG_SERIES(k+1,4).*cos(transmit_s_angle(k+1,ray_number_counteri));%%%%%RHO*VP
*COS(i) 
                     
                     
                    if k+1==t 
                        TN_1_set=TN_1; 
                    end 
                     
                end 
                 
                u_transmited_p_1=1; 
                u_transmited_s_1=0; 
                u_reflected_s_1=(((TN_1_set(3,3).*TN_1_set(4,1))-
(TN_1_set(4,3).*TN_1_set(3,1))).*u_transmited_p_1)./((TN_1_set(4,3).*TN_1_set
(3,4))-(TN_1_set(3,3).*TN_1_set(4,4))); 
                u_reflected_p_1=-
(TN_1_set(4,1).*u_transmited_p_1+TN_1_set(4,4).*u_reflected_s_1)./TN_1_set(4,
3); 
                
u_transmited_s_N=TN_1_set(2,1).*u_transmited_p_1+TN_1_set(2,3).*u_reflected_p
_1+TN_1_set(2,4).*u_reflected_s_1; 
                
u_transmited_p_N=TN_1_set(1,1).*u_transmited_p_1+TN_1_set(1,3).*u_reflected_p
_1+TN_1_set(1,4).*u_reflected_s_1; 
                 
                TL_NUMBER(1,17)=u_transmited_p_1;%%%%%%P1+ 
                TL_NUMBER(1,18)=u_transmited_s_1;%%%%%%%S1+ 
                TL_NUMBER(1,19)=u_reflected_p_1;%%%%%%P1- 
                TL_NUMBER(1,20)=u_reflected_s_1;%%%%%%S1- 
                u_reflected_p_N=0; 
                 
                for kk=2:length(TL_NUMBER(:,1)) 
                    matrix_temp=[TL_NUMBER(kk,1) TL_NUMBER(kk,2) 
TL_NUMBER(kk,3) TL_NUMBER(kk,4);TL_NUMBER(kk,5) TL_NUMBER(kk,6) 
TL_NUMBER(kk,7) TL_NUMBER(kk,8); TL_NUMBER(kk,9) TL_NUMBER(kk,10) 
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TL_NUMBER(kk,11) TL_NUMBER(kk,12);TL_NUMBER(kk,13) TL_NUMBER(kk,14) 
TL_NUMBER(kk,15) TL_NUMBER(kk,16)]; 
                    
TL=matrix_temp*[u_transmited_p_1;u_transmited_s_1;u_reflected_p_1;u_reflected
_s_1]; 
                    TL_NUMBER(kk,17)=TL(1,1);%%%%%PN+ 
                    TL_NUMBER(kk,18)=TL(2,1);%%%%%SN+ 
                    TL_NUMBER(kk,19)=TL(3,1);%%%%%PN- 
                    TL_NUMBER(kk,20)=TL(4,1);%%%%%%SN- 
                end 
                 
                for k=1:length(TL_NUMBER(:,1)) 
                    
TL_NUMBER(k,23)=0.5.*TL_NUMBER(k,21).*(abs(TL_NUMBER(k,17)).^2).*((Omega).^2)
;%%%%%%%%TRANSMITED FLUX ENERGY PN+ 
                    
TL_NUMBER(k,24)=0.5.*TL_NUMBER(k,22).*(abs(TL_NUMBER(k,18)).^2).*((Omega).^2)
;%%%%%%%%TRANSMITED FLUX ENERGY SN+ 
                    
TL_NUMBER(k,25)=0.5.*TL_NUMBER(k,21).*(abs(TL_NUMBER(k,19)).^2).*((Omega).^2)
;%%%%%%%%REFLECTED FLUX ENERGY PN- 
                    
TL_NUMBER(k,26)=0.5.*TL_NUMBER(k,22).*(abs(TL_NUMBER(k,20)).^2).*((Omega).^2)
;%%%%%%%%REFLECTED  FLUX ENERGY PS 
                     
                     
                    TL_NUMBER(k,27)=TL_NUMBER(k,23)+TL_NUMBER(k,24)-
TL_NUMBER(k,25)-TL_NUMBER(k,26);%%%%%%%CONSERVATION 
                    
TL_NUMBER(k,28)=TL_NUMBER(k,27)./(0.5.*(TL_NUMBER(1,21)).*(abs(TL_NUMBER(1,17
)).^2).*((Omega).^2));%%%%%%Tranimted Energy PN+ + SN+ 
                    
TL_NUMBER(k,29)=TL_NUMBER(k,24)./(0.5.*(TL_NUMBER(1,21)).*(abs(TL_NUMBER(1,17
)).^2).*((Omega).^2));%%%%%Transmited Energy SN+ Only 
                    
TL_NUMBER(k,30)=TL_NUMBER(k,23)./(0.5.*(TL_NUMBER(1,21)).*(abs(TL_NUMBER(1,17
)).^2).*((Omega).^2)); 
                end 
                RESULT(kp,1)=frequency;%%%%%%%% 
                 
                RESULT(kp,2)=TL_NUMBER(k,28); 
                 
                if RESULT(kp,2)>1 
                    RESULT(kp,2)=TL_NUMBER(1,28);%%%%%%%%%%We consider last 
layer, but if energy biger than one---No way, we use first layer 
                end 
                 
            end 
             
            y=log(smooth(RESULT(:,1),RESULT(:,2),0.05)); 
            [Robust_model] = ROBUST(RESULT(:,1),y(:,1)); 
            %         figure 
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            plot(RESULT(:,1),log(smooth(RESULT(:,1),RESULT(:,2),0.05))) 
            hold on 
            %         
plot(RESULT(:,1),Robust_model(1,1)+Robust_model(2,1).*RESULT(:,1),'k') 
            %             ylim([-5 1]) 
             
            %%%%%%%%% 
            kapa_s=-
2.*Robust_model(2,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)))%%%%%if slop in A=1 then in A^2 is 
equal 2---if TWT==>divide by two, if OWT divide by 1 
            gama_s=-
2.*Robust_model(1,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001))) 
             
            ray_number(ray_number_counteri,2)=gama_s; 
            ray_number(ray_number_counteri,3)=kapa_s; 
            
ray_number(ray_number_counteri,4)=Robust_model(1,1);%%%%%%%INTERCEPT 
            ray_number(ray_number_counteri,5)=Robust_model(2,1);%%%%%%%SLOP 
            
ray_number(ray_number_counteri,6)=asin(VELOCITY(layer_no,1).*P).*180./pi;%%%%
%%angle in each layer 
            
RESULT_ONE_LAYER(:,ray_number_counteri)=RESULT(:,2);%%%%%%%Putting the result 
of layer here 
             
            if ray_number_counteri==1 
                RESULT_ALL_REALIZATION(:,r)=RESULT(:,2);%%%%%%%%%%%NO SMOOTH 
                
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
                
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
                %%%%%%%%%%%%%%%%%%%%%%%%%%%%Add Odoherty and Anstey estimate 
                TIME_interval=0.5; 
                REAL_LOG(:,1)=LOG_SERIES(:,1); 
                REAL_LOG(:,2)=LOG_SERIES(:,2); 
                REAL_LOG(:,3)=LOG_SERIES(:,3); 
                REAL_LOG(:,4)=LOG_SERIES(:,4); 
                REAL_LOG(:,5)=LOG_SERIES(:,3).*LOG_SERIES(:,4); 
                [T_LOGS_INTERPOLATED] = 
LOG_INTERPOLATION_TIME_CONST(REAL_LOG,TIME_interval); 
                 
                %%%%%RC AND Z define FOR TIME INTERPOLATED FUNCTION 
                f_nyquist=1./(2.*TIME_interval.*0.001); 
                sample_f=2.*f_nyquist./(length(T_LOGS_INTERPOLATED(:,1))); 
                 
                for i=1:length(T_LOGS_INTERPOLATED(:,5))-1 
                    
T_LOGS_INTERPOLATED(i,5)=((T_LOGS_INTERPOLATED(i+1,3).*T_LOGS_INTERPOLATED(i+
1,4))-

   192 

 



 

(T_LOGS_INTERPOLATED(i,3).*T_LOGS_INTERPOLATED(i,4)))./((T_LOGS_INTERPOLATED(
i+1,3).*T_LOGS_INTERPOLATED(i+1,4))+(T_LOGS_INTERPOLATED(i,3).*T_LOGS_INTERPO
LATED(i,4))); 
                    T_LOGS_INTERPOLATED(i+1,6)=i.*sample_f; 
                end 
                 
                
T_LOGS_INTERPOLATED(length(T_LOGS_INTERPOLATED(:,5)),5)=T_LOGS_INTERPOLATED(l
ength(T_LOGS_INTERPOLATED(:,5))-1,5); 
                T_LOGS_INTERPOLATED(:,7)=fft(T_LOGS_INTERPOLATED(:,5)); 
                 
                 
                for i=1:length(T_LOGS_INTERPOLATED(:,1)) 
                    if T_LOGS_INTERPOLATED(i,6)<=frequency_band 
                        R_W(i,1)=T_LOGS_INTERPOLATED(i,6);%%%%%%FREQ 
                        R_W(i,2)=abs(T_LOGS_INTERPOLATED(i,7)).^2;%%%%%%Power 
Spectrum of RC 
                    end 
                end 
                 
                RESULT_ALL_ANSTEY(:,r)=R_W(:,2); 
                 
            end 
             
            if ray_number_counteri==2 
                RESULT_ALL_REALIZATION_2(:,r)=RESULT(:,2); 
            end 
             
            if ray_number_counteri==3 
                RESULT_ALL_REALIZATION_3(:,r)=RESULT(:,2); 
            end 
             
            if ray_number_counteri==4 
                RESULT_ALL_REALIZATION_4(:,r)=RESULT(:,2); 
            end 
             
            if ray_number_counteri==5 
                RESULT_ALL_REALIZATION_5(:,r)=RESULT(:,2); 
            end 
             
            RESULT_ALL_idx(:,r)=LOG_SERIES(:,3); 
        end 
        for i=1:length(TL_NUMBER(:,1)) 
            TL_NUMBER(i,31)=TL_NUMBER(i,27)./TL_NUMBER(1,27);%%%%%%%ENERGY 
CONSERVATION PERCENTAGE CHANGES 
        end 
        r 
    end 
     
    for i=1:length(RESULT_ALL_REALIZATION(:,1)) 
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SMOOTH_AVERAGE_RESPONSE(i,layer_no)=mean(RESULT_ALL_REALIZATION(i,:)); 
    end 
     
    for i=1:length(RESULT_ALL_REALIZATION(:,1)) 
        
SMOOTH_AVERAGE_RESPONSE_2(i,layer_no)=mean(RESULT_ALL_REALIZATION_2(i,:)); 
    end 
     
    for i=1:length(RESULT_ALL_REALIZATION(:,1)) 
        
SMOOTH_AVERAGE_RESPONSE_3(i,layer_no)=mean(RESULT_ALL_REALIZATION_3(i,:)); 
    end 
     
    for i=1:length(RESULT_ALL_REALIZATION(:,1)) 
        
SMOOTH_AVERAGE_RESPONSE_4(i,layer_no)=mean(RESULT_ALL_REALIZATION_4(i,:)); 
    end 
     
    for i=1:length(RESULT_ALL_REALIZATION(:,1)) 
        
SMOOTH_AVERAGE_RESPONSE_5(i,layer_no)=mean(RESULT_ALL_REALIZATION_5(i,:)); 
    end 
     
    for i=1:length(RESULT_ALL_ANSTEY(:,1)) 
        
SMOOTH_AVERAGE_ANSTEY(i,layer_no)=mean(RESULT_ALL_ANSTEY(i,:));%%%%%%%%%%%%%%
%ANSTEY 
    end 
     
    y=log(smooth(RESULT(:,1),SMOOTH_AVERAGE_RESPONSE(:,layer_no),0.05)); 
     
    [Robust_model_REALIZATION] = ROBUST(RESULT(:,1),y(:,1)); 
    kapa_s=-
2.*Robust_model_REALIZATION(2,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)))%%%%%if slop in A=1 then in A^2 is 
equal 2---if TWT==>divide by two, if OWT divide by 1 
    gama_s=-
2.*Robust_model_REALIZATION(1,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001))) 
    %     figure 
    
plot(RESULT(:,1),log(smooth(RESULT(:,1),SMOOTH_AVERAGE_RESPONSE(:,layer_no),0
.05)),'k') 
    hold on 
    %     
plot(RESULT(:,1),Robust_model_REALIZATION(1,1)+Robust_model_REALIZATION(2,1).
*RESULT(:,1),'k') 
    RESULT_GAMA_KAPA(1,layer_no)=gama_s; 
    RESULT_GAMA_KAPA(2,layer_no)=kapa_s; 
     
end 
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toc 
  
%%%%%%%Complimentary: 
  
figure 
  
  
plot(RESULT(:,1),log(SMOOTH_AVERAGE_RESPONSE(:,layer_no)),'r') 
hold on 
plot(RESULT(:,1),log(SMOOTH_AVERAGE_RESPONSE_2(:,layer_no)),'g') 
hold on 
plot(RESULT(:,1),log(SMOOTH_AVERAGE_RESPONSE_3(:,layer_no)),'y') 
hold on 
plot(RESULT(:,1),log(SMOOTH_AVERAGE_RESPONSE_4(:,layer_no)),'b') 
hold on 
plot(RESULT(:,1),log(SMOOTH_AVERAGE_RESPONSE_5(:,layer_no)),'k') 
title('Layer 3: P wave RC Balance 100 realization response of layer 1Hz :r:0, 
g=2 y=3 b=4 black=5') 
xlabel('frequency (Hz)') 
  
for i=1:length(RESULT_ALL_REALIZATION(:,1)) 
    
SMOOTH_AVERAGE_RESPONSE_ALL(i,layer_no)=(SMOOTH_AVERAGE_RESPONSE(i,layer_no)+
SMOOTH_AVERAGE_RESPONSE_2(i,layer_no)+SMOOTH_AVERAGE_RESPONSE_3(i,layer_no)+S
MOOTH_AVERAGE_RESPONSE_4(i,layer_no)+SMOOTH_AVERAGE_RESPONSE_5(i,layer_no))./
5; 
end 
hold on 
if layer_no==1 
    SMOOTH_AVERAGE_RESPONSE_temp=SMOOTH_AVERAGE_RESPONSE_ALL; 
    RESULT_temp=RESULT(:,1); 
    clear SMOOTH_AVERAGE_RESPONSE_ALL; 
    clear RESULT; 
     
    for i=1:length(SMOOTH_AVERAGE_RESPONSE_temp(:,1)) 
        if RESULT_temp(i,1)<130 
            
SMOOTH_AVERAGE_RESPONSE_ALL(i,layer_no)=SMOOTH_AVERAGE_RESPONSE_temp(i,layer_
no); 
            RESULT(i,1)=RESULT_temp(i,1); 
        end 
    end 
end 
if (layer_no==5)||(layer_no==6) 
    for i=1:length(RESULT_ALL_REALIZATION(:,1)) 
        
SMOOTH_AVERAGE_RESPONSE_ALL(i,layer_no)=(SMOOTH_AVERAGE_RESPONSE(i,layer_no)+
SMOOTH_AVERAGE_RESPONSE_2(i,layer_no)+SMOOTH_AVERAGE_RESPONSE_3(i,layer_no)).
/3; 
    end 
end 
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[Robust_model_REALIZATION] = 
ROBUST(RESULT(:,1),log(SMOOTH_AVERAGE_RESPONSE_ALL(:,layer_no))); 
kapa_s=-
2.*Robust_model_REALIZATION(2,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)))%%%%%if slop in A=1 then in A^2 is 
equal 2---if TWT==>divide by two, if OWT divide by 1 
gama_s=-
2.*Robust_model_REALIZATION(1,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001))) 
  
plot(RESULT(:,1),Robust_model_REALIZATION(1,1)+RESULT(:,1).*Robust_model_REAL
IZATION(2,1),'k') 
hold on 
  
RESULT_GAMA_KAPA(1,layer_no)=gama_s; 
RESULT_GAMA_KAPA(2,layer_no)=kapa_s; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Add Odoherty and Anstey estimate 
TIME_interval=0.5; 
REAL_LOG(:,1)=IMPORT_LOG_temp(:,1); 
REAL_LOG(:,2)=IMPORT_LOG_temp(:,2); 
REAL_LOG(:,3)=IMPORT_LOG_temp(:,3); 
REAL_LOG(:,4)=IMPORT_LOG_temp(:,4); 
REAL_LOG(:,5)=IMPORT_LOG_temp(:,3).*IMPORT_LOG_temp(:,4); 
[T_LOGS_INTERPOLATED] = LOG_INTERPOLATION_TIME_CONST(REAL_LOG,TIME_interval); 
  
%%%%%RC AND Z define FOR TIME INTERPOLATED FUNCTION 
f_nyquist=1./(2.*TIME_interval.*0.001); 
sample_f=2.*f_nyquist./(length(T_LOGS_INTERPOLATED(:,1))); 
  
for i=1:length(T_LOGS_INTERPOLATED(:,5))-1 
    
T_LOGS_INTERPOLATED(i,5)=((T_LOGS_INTERPOLATED(i+1,3).*T_LOGS_INTERPOLATED(i+
1,4))-
(T_LOGS_INTERPOLATED(i,3).*T_LOGS_INTERPOLATED(i,4)))./((T_LOGS_INTERPOLATED(
i+1,3).*T_LOGS_INTERPOLATED(i+1,4))+(T_LOGS_INTERPOLATED(i,3).*T_LOGS_INTERPO
LATED(i,4))); 
    T_LOGS_INTERPOLATED(i+1,6)=i.*sample_f; 
     
end 
  
T_LOGS_INTERPOLATED(length(T_LOGS_INTERPOLATED(:,5)),5)=T_LOGS_INTERPOLATED(l
ength(T_LOGS_INTERPOLATED(:,5))-1,5); 
T_LOGS_INTERPOLATED(:,7)=fft(T_LOGS_INTERPOLATED(:,5)); 
  
  
%%%%%%%%%%%% 
for i=1:length(T_LOGS_INTERPOLATED(:,1)) 
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    if T_LOGS_INTERPOLATED(i,6)<=frequency_band 
        R_W(i,1)=T_LOGS_INTERPOLATED(i,6);%%%%%%FREQ 
        R_W(i,2)=abs(T_LOGS_INTERPOLATED(i,7)).^2;%%%%%%Power Spectrum of RC 
         
    end 
end 
  
T=((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)); 
  
T_w(:,1)=R_W(:,1);%%%%%%%%FREQ 
T_w(:,2)=exp(-R_W(:,2).*T); 
  
plot(T_w(:,1),smooth(T_w(:,1),2.*log(T_w(:,2)),0.05),'r-.')%%%%%%energy 
multiplies by 2 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
%%%%%%%CROSS PLOT RESULT GAMA AND KAPA 
for i=1:numer_of_realizations 
    if i<=numer_of_realizations 
        [Robust_model_REALIZATION] = 
ROBUST(RESULT(:,1),log(RESULT_ALL_REALIZATION(:,i))); 
        kapa_s=-
2.*Robust_model_REALIZATION(2,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)))%%%%%if slop in A=1 then in A^2 is 
equal 2---if TWT==>divide by two, if OWT divide by 1 
        gama_s=-
2.*Robust_model_REALIZATION(1,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001))) 
        RESULT_GAMA_KAPA_FINAL(i,1)=gama_s; 
        RESULT_GAMA_KAPA_FINAL(i,2)=kapa_s; 
    end 
     
    if (i>100)&&(i<=200) 
        [Robust_model_REALIZATION] = 
ROBUST(RESULT(:,1),log(RESULT_ALL_REALIZATION_2(:,i-100))); 
        kapa_s=-
2.*Robust_model_REALIZATION(2,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)))%%%%%if slop in A=1 then in A^2 is 
equal 2---if TWT==>divide by two, if OWT divide by 1 
        gama_s=-
2.*Robust_model_REALIZATION(1,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001))) 
        RESULT_GAMA_KAPA_FINAL(i,1)=gama_s; 
        RESULT_GAMA_KAPA_FINAL(i,2)=kapa_s; 
    end 
     
    if (i>200)&&(i<=300) 
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        [Robust_model_REALIZATION] = 
ROBUST(RESULT(:,1),log(RESULT_ALL_REALIZATION_3(:,i-200))); 
        kapa_s=-
2.*Robust_model_REALIZATION(2,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)))%%%%%if slop in A=1 then in A^2 is 
equal 2---if TWT==>divide by two, if OWT divide by 1 
        gama_s=-
2.*Robust_model_REALIZATION(1,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001))) 
        RESULT_GAMA_KAPA_FINAL(i,1)=gama_s; 
        RESULT_GAMA_KAPA_FINAL(i,2)=kapa_s; 
    end 
     
    if (i>300)&&(i<=400) 
        [Robust_model_REALIZATION] = 
ROBUST(RESULT(:,1),log(RESULT_ALL_REALIZATION_4(:,i-300))); 
        kapa_s=-
2.*Robust_model_REALIZATION(2,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)))%%%%%if slop in A=1 then in A^2 is 
equal 2---if TWT==>divide by two, if OWT divide by 1 
        gama_s=-
2.*Robust_model_REALIZATION(1,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001))) 
        RESULT_GAMA_KAPA_FINAL(i,1)=gama_s; 
        RESULT_GAMA_KAPA_FINAL(i,2)=kapa_s; 
    end 
     
    if (i>400)&&(i<=500) 
        [Robust_model_REALIZATION] = 
ROBUST(RESULT(:,1),log(RESULT_ALL_REALIZATION_5(:,i-400))); 
        kapa_s=-
2.*Robust_model_REALIZATION(2,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)))%%%%%if slop in A=1 then in A^2 is 
equal 2---if TWT==>divide by two, if OWT divide by 1 
        gama_s=-
2.*Robust_model_REALIZATION(1,1)./(2.*((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001))) 
        RESULT_GAMA_KAPA_FINAL(i,1)=gama_s; 
        RESULT_GAMA_KAPA_FINAL(i,2)=kapa_s; 
    end 
end 
figure 
plot(RESULT_GAMA_KAPA_FINAL(:,1),RESULT_GAMA_KAPA_FINAL(:,2),'b*') 
title('Layer 3 gama kapa result') 
xlabel(' gama s') 
ylabel('ylebel') 
T=((IMPORT_LOG_temp4(counter2,2).*0.001)-
(IMPORT_LOG_temp4(counter,2).*0.001)); 
T_w(:,1)=R_W(:,1);%%%%%%%%FREQ 
T_w(:,2)=exp(-SMOOTH_AVERAGE_ANSTEY(:,layer_no).*T); 
  
plot(T_w(:,1),smooth(T_w(:,1),2.*log(T_w(:,2)),0.05),'r-.')%%%%%%energy 
multiplies by 2
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APPENDIX B 

MATLAB CODES FOR AVA ANALYSIS 

The following code perform AVA analysis on baseline and monitoring VSP surveys after 

correcting geometrical spreading, intrinsic attenuation and scattering ( 5.11 ).  

 

%%%%%This MATLAB code intended to perform AVA analysis of baseline VSP 
%%%%%survey. I correct the effect of geometrical spreading, intrinsic 
%%%%%attenuation and scattering. 
clc 
clear 
load RUN_P_REAL_REAL.mat;  %%%%% 
load W1_SHOT_COORDINATE.dat;%%%%% 
load W1_VSP_MARLY_TG_AFT_ALIGNMENT_14JULY.dat; 
load W1_shift_step1_14JULY.dat; 
  
close all 
  
  
%%%%%Setup 
  
span2=0.10; 
ANGLE_SWITCH=2; %%%%1 for angle and 2 for sin^2theta display 
YMIN=-0.55;%%% 
YMAX=0;%%%% 
XMIN=0;%%%% 
XMAX=80;%%%% 
  
  
W_TIME_GATE=W1_VSP_MARLY_TG_AFT_ALIGNMENT_14JULY; 
W_TIME_SHIFT=W1_shift_step1_14JULY; 
  
for i=1:length(W_TIME_GATE(:,1)) 
    for j=1:length(W_TIME_SHIFT(:,1)) 
        if 
(W_TIME_GATE(i,1)==W_TIME_SHIFT(j,1))&&(W_TIME_GATE(i,2)==W_TIME_SHIFT(j,2)) 
            W_TIME_GATE(i,4)=W_TIME_GATE(i,3)+(W_TIME_SHIFT(j,3)); 
        end 
    end 
end 
  
for i=1:length(W_TIME_GATE(:,1)) 
    if W_TIME_GATE(i,4)==0 
        W_TIME_GATE(i,4)=W_TIME_GATE(i,3); 
    end 
end 

   199 

 



 

  
N_selected_shots=[1:1:119]';%%%%Sequence of shots to read 
span=0.10; 
NO_PANEL=4;%Number of OF PANEL TO DISPLAY AVA RESULTS 
  
%%%%%ATTENUATION MODEL 
GAMA1=[-2;-0.35;1.23;-0.24;3.92;2.76]; 
KAPA1=[0.12;0.135;0.0473;0.0163;0.0255;0.1437]; 
GAMA3=[0;-13;-16;-13;-34;-35]; 
KAPA3=[0;0.05;0.2;0.25;0.5;0.004]; 
  
R_DISTANCE=zeros(1,length(SEGP(:,1))); 
SIN_SQUARE_INCIDENCE_MATRIX=zeros(6,length(SEGP(:,1)));%%%SIN^theta INCIDENCE 
SIN_SQUARE_REFLECTION_MATRIX=zeros(6,length(SEGP(:,1)));%SIN^theta REFLECTION 
COS_THETA_DIRECTIVITY=zeros(1,length(SEGP(:,1)));%%%%%%%%%%%%%%%DIRECTIVITY 
R_Distance=zeros(1,length(SEGP(:,1))); 
GAMA_INCIDENCE=0; 
KAPA_INCIDENCE=0; 
GAMA3_INCIDENCE=0; 
KAPA3_INCIDENCE=0; 
GAMA_REFLECTION=0; 
KAPA_REFLECTION=0; 
GAMA3_REFLECTION=0; 
KAPA3_REFLECTION=0; 
frequency=40; 
METHOD_NUM=1;%%%%%%%%%%%%%%%%%%%%%%%%%%%1 For random noise consideration 
PLOT_NUM=2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:length(SEGP(:,1)) 
    for j=1:6 
        if THICKNESS_MATRIX_REFLECTION(j,i)~=0 
            SIN_SQUARE_REFLECTION_MATRIX(j,i)=1-
((THICKNESS_MATRIX_REFLECTION(j,i)./LENGTH_MATRIX_REFLECTION(j,i)).^2); 
%%%%%%SIN^2 theta REFLECTION 
        end 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for i=1:length(SEGP(:,1)) 
    SIN_SQUARE_INCIDENCE_MATRIX(:,i)=1-
((LAYERS(:,4)./LENGTH_MATRIX_INCIDENCE(:,i)).^2); %%%%%%SIN^2 theta INCIDENCE 
    
R_Distance(1,i)=sum(LENGTH_MATRIX_INCIDENCE(:,i))+sum(LENGTH_MATRIX_REFLECTIO
N(:,i));%%%%%%TOTAL_DISTANCE 
    
TT_RESERV_CALC_TOTAL(1,i)=sum(TIME_MATRIX_INCIDENCE(:,i))+sum(TIME_MATRIX_REF
LECTION(:,i));%%%% 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%MODEL GEOMETRICAL SPREADING, SCATTERING AND INTRINSIC ATTENUATION 
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    for layer=1:6 
        
GAMA_INCIDENCE=GAMA_INCIDENCE+(GAMA1(layer,1).*TIME_MATRIX_INCIDENCE(layer,i)
.*0.001); 
        
KAPA_INCIDENCE=KAPA_INCIDENCE+(KAPA1(layer,1).*TIME_MATRIX_INCIDENCE(layer,i)
.*0.001); 
        
GAMA3_INCIDENCE=GAMA3_INCIDENCE+(GAMA3(layer,1).*TIME_MATRIX_INCIDENCE(layer,
i).*0.001.*SIN_SQUARE_INCIDENCE_MATRIX(layer,i)); 
        
KAPA3_INCIDENCE=KAPA3_INCIDENCE+(KAPA3(layer,1).*TIME_MATRIX_INCIDENCE(layer,
i).*0.001.*SIN_SQUARE_INCIDENCE_MATRIX(layer,i)); 
    end 
     
    for layer=6:-1:SEGP(i,15) 
        
GAMA_REFLECTION=GAMA_REFLECTION+(GAMA1(layer,1).*TIME_MATRIX_REFLECTION(layer
,i).*0.001); 
        KAPA_REFLECTION= 
KAPA_REFLECTION+(KAPA1(layer,1).*TIME_MATRIX_REFLECTION(layer,i).*0.001); 
        
GAMA3_REFLECTION=GAMA3_REFLECTION+(GAMA3(layer,1).*TIME_MATRIX_REFLECTION(lay
er,i).*0.001.* SIN_SQUARE_REFLECTION_MATRIX(layer,i)); 
        
KAPA3_REFLECTION=KAPA3_REFLECTION+(KAPA3(layer,1).*TIME_MATRIX_REFLECTION(lay
er,i).*0.001.* SIN_SQUARE_REFLECTION_MATRIX(layer,i)); 
    end 
     
    ATTAUATION_TOTAL(1,i)=exp(-
((GAMA_INCIDENCE+frequency.*KAPA_INCIDENCE)+(GAMA3_INCIDENCE+frequency.*KAPA3
_INCIDENCE)+(GAMA_REFLECTION+KAPA_REFLECTION.*frequency)+(GAMA3_REFLECTION+KA
PA3_REFLECTION.*frequency)));%%%%%%%%ALL ATTENUATION 
    GAMA_INCIDENCE=0; 
    KAPA_INCIDENCE=0; 
    GAMA3_INCIDENCE=0; 
    KAPA3_INCIDENCE=0; 
    GAMA_REFLECTION=0; 
    KAPA_REFLECTION=0; 
    GAMA3_REFLECTION=0; 
    KAPA3_REFLECTION=0; 
    INCIDENCE_SIN_SQUARE_RESERVOIR(1,i)=SIN_SQUARE_INCIDENCE_MATRIX(6,i); 
    COS_THETA_DIRECTIVITY(1,i)=sqrt(1-
(SIN_SQUARE_REFLECTION_MATRIX(SEGP(i,15),i))); 
end 
  
  
for i=1:length(SEGP(:,1)) 
    X_TOTAL(i,1)=INCIDENCE_SIN_SQUARE_RESERVOIR(1,i);%%%%%%%%%SIN^2 THETA 
INCIDENCE RESERVOIR 
    Y_TOTAL(i,1)=-SEGP(i,2); %%%%%%%AMPLITUDE PICKED 
    REC_DEPTH_TOTAL(i,1)=SEGP(i,14);%%%%%%%%%DEPTH RECEIVER 
    FFID_TOTAL(i,1)=SEGP(i,7); 
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    FFID(i,1)=SEGP(i,7); 
    SOURCE_TOTAL(i,1)=SEGP(i,4); 
    SOURCE(i,1)=SEGP(i,4); 
    OFFSET_TOTAL(i,1)=SEGP(i,5); 
    R_TOTAL(i,1)=R_Distance(1,i);%%%%%%%%DISTANCE 
    TIME_RESER_PICKED(i,1)=SEGP(i,8);%%%%%%%%%%%TIME OF PICKED RESERVOIR 
    ATTENUATION(i,1)=ATTAUATION_TOTAL(1,i);%%%%%%%%%%ATTENUATION SUM OF 
GT+F*KAPA*T +GAMA3*T+F*KAPA3*T 
    COS_THETA_DIRECTIVITY_TOTAL(i,1)=COS_THETA_DIRECTIVITY(1,i); 
end 
s=0; 
  
SOURCE_SORTED=sort(SOURCE); 
N = histc(SOURCE,SOURCE_SORTED);%Counting number of traces per FFID 
SOURCE_SORTED(N==0) = []; 
N(N==0) = [];%Counting number of traces per FFID 
kk_count=1;  count_g=1; 
count=1; legendtext =''; 
  
for ii=1:length(N(:,1)) 
    X=zeros(N(ii,1),1);%%%%%SIN SQUARE INCIDENCE TO RESERVOIR 
    Y=zeros(N(ii,1),1);%%%%%raw AMP 
    REC_DEPTH=zeros(N(ii,1),1); 
    OFFSET=zeros(N(ii,1),1); 
    SOURCE=zeros(N(ii,1),1); 
    yy2=zeros(N(ii,1),1); 
    yyp1=zeros(N(ii,1),1); 
    yEst=zeros(N(ii,1),1); 
    yEst_ROBUST=zeros(N(ii,1),1); 
    ANGLE_RECIEVED_RES=zeros(N(ii,1),1); 
    ANGLE_RECIEVED_REC=zeros(N(ii,1),1); 
    R=zeros(N(ii,1),1); 
    TIME=zeros(N(ii,1),1); 
    ATTEN=zeros(N(ii,1),1);%%%%%% 
    TT_ERROR=zeros(N(ii,1),1); 
     
    for j=1:N(ii,1) 
        X(j,1)=X_TOTAL(j+s,1);%X=Sin^2theta 
        Y(j,1)=Y_TOTAL(j+s,1);%%%%%% AMP 
        REC_DEPTH(j,1)=REC_DEPTH_TOTAL(j+s,1); 
        OFFSET(j,1)=OFFSET_TOTAL(j+s,1); 
        FFID(j,1)=FFID_TOTAL(j+s,1); 
        SOURCE(j,1)=SOURCE_TOTAL(j+s,1); 
        ANGLE_RECIEVED_RES(j,1)=asin(sqrt(X_TOTAL(j+s,1)));%%%%RAD 
        
ANGLE_RECIEVED_REC(j,1)=acos(COS_THETA_DIRECTIVITY_TOTAL(j+s,1));%%%%RAD 
        R(j,1)=R_TOTAL(j+s,1);%%%%%%R 
        TIME(j,1)=TIME_RESER_PICKED(j+s,1);%TIME 
        ATTEN(j,1)=ATTAUATION_TOTAL(1,j+s);%%%%ATTENUATION SUM OF GT+F*KAPA*T 
+GAMA3*T+F*KAPA3*T 
    end 
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    yy2 = smooth(REC_DEPTH,Y,span,'moving');% 
     
    %%%%%--------------------------------------------------------------------
-- 
     
    h2=floor(count/4); 
    if mod(count,4)==0 
        h2=h2-1; 
        pa=count-(h2*4); 
    elseif h2==0 
         
        pa=count; 
    elseif  h2>=1 
        pa=count-(h2*4); 
    end 
     
    %%%%%%%%%%%%% 
     
    %%%%% PERFORMING AVA 
     
    
[n_squared,index_A,index_B,scaling_factor,TOTAL_DECAY]=AVO_MIN_ERROR_NOISE_AT
TENUATION1(X,yy2,OFFSET,SOURCE,R,ATTEN,ANGLE_RECIEVED_REC); 
     
     
    alpha (1,ii)=index_A;%Intercept 
    alpha (2,ii)=index_B;%Gradiient 
    alpha (3,ii)=n_squared;%Noise 
    alpha (5,ii)=SOURCE(1,1); 
    alpha (6,ii)=max(OFFSET(:,1)); 
    for ff=1:length(W1_Source_FFID(:,1)) 
        if SOURCE(1,1)== W1_Source_FFID(ff,2) 
            ffid=W1_Source_FFID(ff,3); 
            for sst=1:length(W1_SHOT_COORDINATE(:,3)) 
                if ffid==W1_SHOT_COORDINATE(sst,2) 
                    alpha (7,ii)=W1_SHOT_COORDINATE(sst,3);%%%%X COORDINATE 
                    alpha (8,ii)=W1_SHOT_COORDINATE(sst,4);%%%%Y COORDINATE 
                end 
            end 
        end 
    end 
     
    yEst=zeros(length(yyp1(:,1)),1); 
     
    h1=floor(count/NO_PANEL); 
     
    if mod(count,NO_PANEL)==0 
        h1=h1-1; 
        p=count-(h1*NO_PANEL); 
    elseif h1==0 
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        p=count; 
    elseif  h1>=1 
        p=count-(h1*NO_PANEL); 
    end 
     
    for pp=1:length(yy2(:,1)) 
        yEst(pp,1) = n_squared + 
(1./R(pp,1)).*cos(ANGLE_RECIEVED_REC(pp,1)).*ATTEN(pp,1).*((index_A+(index_B.
*X(pp,1)))); 
    end 
       
    r = corr2(yy2,yEst);%%%%%%%CORRELAION COEFF 
        
    alpha (4,ii)=r; 
     
    count_g=count_g+1; 
     
    %--------------------------- 
    %%%PLOTTING THE RESULTS 
    figure(h1+3) 
     
    subplot(2,2,p) 
     
    plot(asin(sqrt(X)).*180./3.1415,((yy2.*scaling_factor)./TOTAL_DECAY)-
n_squared,'r+',asin(sqrt(X)).*180./3.1415,index_A+index_B.*X,'b*') 
     
    ylabel('Amplitude') 
    xlabel('Sin^2 theta') 
    tex4=text(max(X)-((max(X)-min(X))/2),((max(yy2).*(scaling_factor)-
((max(yy2).*(scaling_factor)-
min(yy2).*(scaling_factor))/5)).*0.3)./median(TOTAL_DECAY),[sprintf('SOURCE=%
2i',SOURCE(1,1))]); 
    tex=text(max(X)-((max(X)-min(X))/2),((max(yy2).*(scaling_factor)-
((max(yy2).*(scaling_factor)-
min(yy2).*(scaling_factor))/5)).*0.2)./median(TOTAL_DECAY),[sprintf('I=%2f',i
ndex_A)]); 
    tex1=text(max(X)-((max(X)-min(X))/2),(((max(yy2).*(scaling_factor)-
((max(yy2).*(scaling_factor)-
min(yy2).*(scaling_factor))/5)).*0.1))./median(TOTAL_DECAY),[sprintf('G=%2f',
index_B)]); 
    tex2=text(max(X)-((max(X)-min(X))/2),(((max(yy2).*(scaling_factor)-
((max(yy2).*(scaling_factor)-
min(yy2).*(scaling_factor))/5)).*0.05))./median(TOTAL_DECAY),[sprintf('r=%2f'
,r)]); 
    s=s+ N(ii,1); 
    count=count+1; 
    %%%%Output AVA Results     
       
    X_total(:,ii)=X(:,1); 
    yy2_total(:,ii)=yy2(:,1); 
    scaling_factor_total(1,ii)=scaling_factor; 
    TOTAL_DECAY_total(:,ii)=TOTAL_DECAY(:,1); 
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yy2_tatal_scaled(:,ii)=(scaling_factor.*yy2_total(:,ii))./(TOTAL_DECAY_total(
:,ii));%%%%% 
    n_squared_total(1,ii)=n_squared(1,1); 
    index_A_total(1,ii)=index_A(1,1);%Intercept 
    index_B_total(1,ii)=index_B(1,1);%Gradient 
    source_total(1,ii)=SOURCE(1,1); 
    R_total(:,ii)=R(:,1); 
    ATTEN_total(:,ii)=ATTEN(:,1); 
    ANGLE_RECIEVED_REC_total(:,ii)=ANGLE_RECIEVED_REC(:,1); 
    OFFSET_total(:,ii)=OFFSET(:,1); 
    TT_ERROR_total(:,ii)=TT_ERROR(:,1); 
end 
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