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Abstract

Traditional multiple hypothesis testing procedures, such as that of Benjamini and

Hochberg, fix an error rate and determine the corresponding rejection region. In 2002

Storey proposed a fixed rejection region procedure and showed numerically that it can gain

more power than the fixed error rate procedure of Benjamini and Hochberg while control-

ling the same false discovery rate (FDR). In this thesis it is proved that when the number

of alternatives is small compared to the total number of hypotheses, Storey’s method can

be less powerful than that of Benjamini and Hochberg. Moreover, the two procedures are

compared by setting them to produce the same FDR. The difference in power between

Storey’s procedure and that of Benjamini and Hochberg is near zero when the distance

between the null and alternative distributions is large, but Benjamini and Hochberg’s pro-

cedure becomes more powerful as the distance decreases. It is shown that modifying the

Benjamini and Hochberg procedure to incorporate an estimate of the proportion of true

null hypotheses as proposed by Black gives a procedure with superior power.

Multiple hypothesis testing can also be applied to regression diagnostics. In this thesis,

a Bayesian method is proposed to test multiple hypotheses, of which the ith null and alter-

native hypotheses are that the ith observation is not an outlier versus it is, for i = 1, · · · , m.

In the proposed Bayesian model, it is assumed that outliers have a mean shift, where the

proportion of outliers and the mean shift respectively follow a Beta prior distribution and

a normal prior distribution. It is proved in the thesis that for the proposed model, when

there exists more than one outlier, the marginal distributions of the deletion residual of

the ith observation under both null and alternative hypotheses are doubly noncentral t

distributions. The “outlyingness” of the ith observation is measured by the marginal pos-

terior probability that the ith observation is an outlier given its deletion residual. An

importance sampling method is proposed to calculate this probability. This method re-

quires the computation of the density of the doubly noncentral F distribution and this
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is approximated using Patnaik’s approximation. An algorithm is proposed in this thesis

to examine the accuracy of Patnaik’s approximation. The comparison of this algorithm’s

output with Patnaik’s approximation shows that the latter can save massive computation

time without losing much accuracy.

The proposed Bayesian multiple outlier identification procedure is applied to some sim-

ulated data sets. Various simulation and prior parameters are used to study the sensitivity

of the posteriors to the priors. The area under the ROC curves (AUC) is calculated for

each combination of parameters. A factorial design analysis on AUC is carried out by

choosing various simulation and prior parameters as factors. The resulting AUC values

are high for various selected parameters, indicating that the proposed method can identify

the majority of outliers within tolerable errors. The results of the factorial design show

that the priors do not have much effect on the marginal posterior probability as long as

the sample size is not too small.

In this thesis, the proposed Bayesian procedure is also applied to a real data set ob-

tained by Kanduc et al. in 2008. The proteomes of thirty viruses examined by Kanduc et

al. are found to share a high number of pentapeptide overlaps to the human proteome. In

a linear regression analysis of the level of viral overlaps to the human proteome and the

length of viral proteome, it is reported by Kanduc et al. that among the thirty viruses, hu-

man T-lymphotropic virus 1, Rubella virus, and hepatitis C virus, present relatively higher

levels of overlaps with the human proteome than the predicted level of overlaps. The results

obtained using the proposed procedure indicate that the four viruses with extremely large

sizes (Human herpesvirus 4, Human herpesvirus 6, Variola virus, and Human herpesvirus

5) are more likely to be the outliers than the three reported viruses. The results with the

four extreme viruses deleted confirm the claim of Kanduc et al.
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Chapter 1

Introduction

1.1 Motivation

Multiple hypothesis testing , the testing of more than one hypothesis simultaneously, has a

broad range of applications such as factorial design [31, 51, 63, 87], regression diagnostics [1,

33], analyzing DNA microarray data [27, 28, 29, 30, 53, 57, 90, 92, 93, 97, 98], and classifying

regions in image data [42]. Multiple hypothesis testing is a subfield of multiple inference

(or simultaneous inference, multiple comparison), which includes both multiple estimation

and multiple testing. Since the late 1940’s, many statisticians have been interested in this

field. For example, Shaffer [87] lists more than one hundred journal articles and books

about simultaneous inference published before 1995.

Most recently renewed interest in multiple hypothesis testing stems from biological

examples [27, 28, 29, 30, 53, 57, 90, 92, 93, 97, 98]. Modern biological technologies are

growing quickly with the help of computers and result in many large, complex data sets.

For instance, DNA microarrays, a novel biological technology, can be used to measure the

expression levels for thousands to tens-of-thousands of genes simultaneously [29, 30, 90,

92, 93, 98]. A common goal of microarray experiments is to identify the genes that show

changes in expression level across two or more different biological conditions, for example,

the same cell type in a healthy and diseased state. Thus we can assign each gene a null

hypothesis that there is no differential gene expression, versus an alternative hypothesis

that there is a change in gene expression level. For each gene, its expression level data

can be reduced to a test statistic for that gene. But with thousands of genes, we need

to test thousands of hypotheses simultaneously. Although the number of genes is very

large, the number of available arrays is small due to the cost of microarray experiments.

A medium-size microarray study may obtain a hundred arrays with thousands of genes

per sample, while a large clinical study, which is more traditional than the microarray
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study, can collect 100 data items per unit for thousands of units [99]. Hence traditional

multiple testing methods may not be appropriate for analyzing microarray data. Moreover,

the high-dimensional multivariate distributions of associated test statistics involve many

unknown parameters as well as complex and unknown dependence structures among the

statistics. This motivates the rapid development of multiple hypothesis testing techniques.

For many microarrays, the proportion of differentially expressed genes is expected to be

small, yet identification of them is important [29, 30, 92, 93, 97, 98]. Therefore, in order

to identify as many differentially expressed genes as possible, misidentification of a few

identically expressed genes is tolerable [92, 93, 98].

Multiple hypothesis testing can also be applied to regression diagnostics. Regression

is a statistical tool to analyze data generated in many fields of study. There exist many

books introducing regression models and applications, for example, [26, 72, 73, 74]. The

standard results of regression analysis are only valid for “clean” data, which satisfy certain

assumptions. However, real data are usually contaminated and contain observations which

violate the model assumptions. Such observations are called outliers in regression analysis.

They may or may not be observable. Other authors define outliers as observations which

are numerically distant from the rest of the data [7]. Such observations are referred to

as apparent outliers in this thesis. In order to distinguish the outliers from the other

observations, I call an observation atypical if it is an outlier and typical if not in this

thesis. Sometimes, atypical observations are more interesting than typical ones. One

motivating example is a dataset obtained from Kusalik [58] and this dataset was published

in Kanduc et al. [56]. This dataset contains 30 viral proteomes, which are shown to

present a high number of pentapeptide overlaps to the human proteome, and my goal is

to identify viruses that share significantly higher or lower level of pentapeptide overlaps

with human proteome than the predicted level of overlaps from the linear regression model.

The proteome is the full complement of proteins produced by a particular genome. Such

viruses are examples of outliers and are more interesting than the other viruses in genomic

studies. A powerful method for identifying a single outlier is introduced in Cook and

Weisberg [25] and Atkinson [1]. However, when there is more than one outlier, they may

hide the effect of each other and lead to a “masking” problem. The problem of identifying

multiple outliers has been studied in the past. Hadi and Simonoff [44] gave a review of early

works of multi-step methods. Recent works on multiple diagnostics are by Atkinson [2],
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Hadi [44], Hadi and Simonoff [45], and so on. In fact, the multiple deletion diagnostics

problem in regression analysis can be viewed as a problem of multiple hypothesis testing.

Each observation can be assigned a null hypothesis that this observation does follow the

assumed distribution, and an alternative hypothesis that it is an outlier which follows a

distribution different from the null distribution. By assuming appropriate distributions

for typical and atypical observations, I construct a Bayesian multiple hypothesis testing

method for regression diagnostics.

To solve the multiple testing problem, I need to state it mathematically. Hypothesis

testing is naturally a frequentist concept. However, Bayesian methods can also be ap-

plied to solve the problem of hypothesis testing, especially when it is considered from a

decision-theoretic viewpoint. In Section 1.2, I describe the problem of single hypothesis

testing from both frequentist and Bayesian points of view. The statement of the multiple

hypothesis testing problem and definitions of various error measures are given in Section

1.3.1. Multiple hypothesis testing methods based on sequential p-values are introduced

in Section 1.3.3. In Section 1.3.4, some commonly used mixture models are introduced.

In Section 1.4, I introduce the regression diagnostics problem and state it as a multiple

hypothesis testing problem. A review of regression diagnostics methods is also given in

this section. Finally, the scope of the thesis is presented in Section 1.5.

1.2 Single Hypothesis Testing Problem

For the problem of single hypothesis testing, only one test is considered, of which there

is only one null hypothesis versus one alternative hypothesis, respectively denoted by h0

and h1. One wishes to decide whether h0 or h1 is true. The choice lies between only two

decisions: accepting or rejecting h0. A decision procedure for such a problem is called a test

of the hypothesis h0 (Lehmann [59]). The decision is based on a sequence of observations

of a random variable X which has probability distribution Pθ. We assume Pθ belongs to a

distribution class P = {Pθ, θ ∈ Θ}, where Θ is the parameter space of θ. The non-empty

subsets of Θ under h0 and h1 are denoted respectively by Θ0 and Θ1, where Θ0 ∪Θ1 = Θ,

Θ0 ∩ Θ1 = ∅. Then Pθ either belongs to the class of nulls or the class of alternatives. If

Θ0 = {θ0}, P is called simple, otherwise it is said to be composite. Thus the statistical

3



hypothesis testing problem can be written as

h0 : θ ∈ Θ0 vs. h1 : θ ∈ Θ1. (1.1)

In this thesis, we are usually interested in the case that h0 is not true. For example, we

are interested in the genes with different expression levels between control and treatment.

Therefore, sometimes “rejecting h0” is also called “discovering h1”. Let H be an indicator

of the alternative hypothesis, that is H = 0 when the null hypothesis is true and H = 1

when it is false. H is considered as an unknown parameter in frequentist methods, but a

random variable in Bayesian methods. Typically it is assumed that the distribution of X

is known under both null and alternative hypotheses.

To attain a decision, a test statistic Y is defined, which is a function of observations of

X, from which a realization of Y , denoted by y, is obtained. Let the distribution function

of Y be Fθ(y) with associated probability density function fθ(y).

For the special hypothesis testing problem, in which both null and alternative hypothe-

ses are simple, that is,

h0 : θ ∈ Θ0 = {θ0} vs. h1 : θ ∈ Θ1 = {θ1} , (1.2)

it is assumed that

Y | H = 0 ∼ F0 and Y | H = 1 ∼ F 1, (1.3)

where the distribution functions F0 and F1 respectively possess densities f0 and f1.

1.2.1 Frequentist Hypothesis Testing

In a traditional frequentist hypothesis testing procedure, we specify a rejection region Γ

(or critical region). Rejecting or accepting the null hypothesis depends on whether the

observed value y falls into the critical region or not. Since the decision from the hypothesis

test is uncertain, one may attain the correct one, or may commit one of two errors: Type

I error, that is, rejecting the null hypothesis when it is true, or Type II error, that is,

accepting the null hypothesis when it is false. Type I error is also called false rejection,

false discovery or false positive, and type II error is also called false non-rejection, or false

non-discovery, or false negative. It is desirable to minimize the probabilities of the two

types of errors at the same time. Unfortunately, the two probabilities cannot be controlled
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simultaneously for a given y. As the type I error rate Prθ(Y ∈ Γ), θ ∈ Θ0 decreases, type II

error rate Prθ(Y /∈ Γ), θ ∈ Θ1 increases, and then power decreases, where power is defined

to be the probability of correctly rejecting the false null, Prθ(Y ∈ Γ), θ ∈ Θ1, which also

equals 1− type II error rate. (For convenience, in this thesis I use Prθ(Y ∈ Γ |H = 0) and

Prθ(Y /∈ Γ |H = 1) to denote respectively type I error rate and type II error rate, though

H is fixed, i.e. Pr(H = 0) is an element of {0, 1}, for frequentists). A traditional way to

control these errors is to assign an upper bound, called the significance level, to the type I

error rate and to attempt to minimize the type II error rate, or equivalently to maximize

power. Such an upper bound is called the level of significance of a test procedure, which

is a number α between 0 and 1, and the actual probability of a type I error is called the

size of the test procedure. Constraining the type I error rate below a given significance

level is called “controlling” the type I error rate. Therefore, after observing a y, one

could determine whether the hypothesis is accepted or rejected at a given significance

level α. The rejection regions corresponding to the level α are denoted by Γα satisfying

Prθ(Y ∈ Γα |H = 0) ≤ α. A test is said to be conservative if it attains a type I error rate

that is strictly smaller than α (often considerably), and it results in a loss of power.

Suppose that Θ1 = {θ1}. A level α test of h0 : θ ∈ Θ0 versus h1 : θ = θ1 is called a

most powerful test (MPT) at level α if it has the greatest power among all level α tests.

The Neyman-Pearson fundamental lemma, which can be found in [59], provides the most

powerful test for the simple null hypothesis versus simple alternative hypothesis testing

problem.

In the composite alternative hypothesis case, a procedure which maximizes the power

for all θ ∈ Θ1 while controlling the type I error rate at level α is called a uniformly most

powerful test (UMPT). However, UMP tests do not always exist except for a real-parameter

family of densities possessing a monotone likelihood ratio [59]. Generally, UMPT’s do not

usually exist for multidimensional parameters.

In statistical hypothesis testing, a p-value is the probability of obtaining a value of the

test statistic Y at least as extreme as its actual observation y given that the null hypothesis

is true. The p-value is a measure of how strongly the data contradict the null hypothesis.

Therefore, a p-value smaller than or equal to a given significance level indicates rejection

of the null hypothesis. A more precise definition of p-value is given below. This definition

is modified from Lehmann [59].
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Definition 1.2.1 Consider a family of tests of h0 : θ ∈ Θ0, with level α rejection regions

Γα such that (a) Prθ(Y ∈ Γα |H = 0) ≤ α for any α ∈ (0, 1) and for any θ ∈ Θ0, and

(b) Γα ⊆ Γα′ whenever α ≤ α′. The smallest significance level at which the null hypothe-

sis is rejected for the given y is called the p-value of a realization y of the statistic Y , that is

p-value(y) ≡ inf{α : y ∈ Γα} (1.4)

When Y is continuous, the equality holds in the assumption (a) of definition 1.2.1, and

thus we have:

Definition 1.2.2 For a continuous statistic, the p-value of an observation y is

p-value(y) = min
{α:y∈Γα}

Prθ(Y ∈ Γα |H = 0) , (1.5)

i.e. given the set of nested rejection regions, the p-value is the minimum type I error that

can occur when rejecting the null hypothesis with y.

Since a p-value is a function of the statistic Y , it is a statistic as well. Let P denote p-

value(Y ) and p denote an observation of P . The Lemma given below provides the following

important property of the null distribution of a p-value. I also give a proof of this Lemma

which is a modification of the proof of Lemma 1.1 in [60] because this lemma and its proof

are important for the rest of this chapter.

Lemma 1.2.1 For a p-value as defined in 1.2.1, we have for any θ ∈ Θ0

(1).

Prθ(P ≤ u |H = 0) ≤ u, (1.6)

(2).

Prθ(P ≤ u |H = 0) ≥ Prθ(Y ∈ Γu |H = 0) (1.7)

Therefore, if the equality holds for all θ ∈ Θ0 in the assumption (a) of definition 1.2.1,

then P is uniformly distributed on (0, 1) when H = 0.

Proof. [Modified from the proof of Lemma 1.1 in [60].]

(1).

Since p = p-value(y) = inf{α : y ∈ Γα}, then for any ε > 0, there exists an α < p + ε, α ∈
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(0, 1) such that Prθ(Y = y ∈ Γα |H = 0) ≤ α, and Γα ⊆ Γp+ε. Thus the event {P ≤ u}
implies {Y ∈ Γu+ε}, and therefore

Prθ(P ≤ u |H = 0) ≤ Prθ(Y ∈ Γu+ε |H = 0) ≤ u + ε. (1.8)

The second inequality is obtained by the assumption (a) of definition 1.2.1. Then letting

ε → 0, we have 1.6.

(2).

Note that {Y ∈ Γu |H = 0} ⊆ {P ≤ u |H = 0}, and hence 1.7 follows.

Hence, when the simple null hypothesis is true, the p-value of a continuous statistic

is uniformly distributed on (0, 1). The rejection region based on the p-value is simply

{p | p ≤ α} for a given significance level α.

A “good” frequentist method for single hypothesis testing obtains a conclusion satisfy-

ing the given significance level with high power.

Example 1.2.1 Let X1, X2, · · · , Xm be an i.i.d. sample from a normal population N(µ, σ)

with known variance σ2. Suppose one is interested in testing the population mean for

h0 : µ = 0 vs. h1 : µ = µ1 > 0 at the significance level α.

The test statistic is Y = X
σ/

√
m

, which has the standard normal distribution given that

h0 is true. The level α rejection region is Γ = {y | y > Φ−1(1−α)}, where Φ is the standard

normal distribution function. Then if an observation y ∈ Γ , the null hypothesis is rejected.

The power of this test is Φ(Φ−1(1−α)+µ1). Since Prθ0{Y = Φ−1(1−α)} = 0, then by the

Neyman-Pearson fundamental lemma this test is a UMPT for testing h0 : µ = 0 against

h1 : µ = µ1 > 0 at level α.

The p-value of the observation y is calculated as 1−Φ(y). A calculated p-value smaller

than or equal to the target α results in the rejection of the null hypothesis. The p-value has

distribution U(0, 1) under the null hypothesis and distribution function Φ(Φ−1(1− p)+µ1)

under the alternative hypothesis, h1 : µ = µ1.

When connected to decision theory, the problem of hypothesis testing is to find an opti-

mal procedure that minimizes some risk function. Suppose that we want to test hypotheses

(1.2) that satisfy the assumption (1.3). There are only two possible decisions, rejecting or

accepting the null hypothesis, indicated by d = 1 and d = 0, respectively. We first assign

a decision rule δ : Y 7−→ {0, 1}, to each possible value of Y . Let d = δ(y), and d ∈ {0, 1}.
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In order to choose a δ, we must compare the consequences of using different rules. A loss

function, L(θ, d), is employed to indicate the consequence of taking decision d when the

conditional distribution of Y given θ = θi is Fi(y). Then the long-term average loss is

the expectation R(θ, δ) ≡ Eθ [L(θ, δ(Y ))], which is called the risk function. A decision

rule δ is inadmissible if there is another decision rule δ1 such that R(θ, δ1) ≤ R(θ, δ) for

all θ with strict inequality for some θ. If there is no such δ1, then we say δ is admissible

(Lehmann [59]). Here Eθ[·] means E[·| θ]. For simplicity, let E0[·] = Eθ0 [·] when Θ0 = {θ0}
and E1[·] = Eθ1 [·] when Θ1 = {θ1}.

1.2.2 Bayesian Hypothesis Testing

Unlike frequentists, Bayesians postulate prior probabilities, π0 and π1 = 1−π0, respectively,

to the event that a null hypothesis is true and to one that it is false. Thus for simple h0

vs. simple h1 case, the marginal density of Y is

f(y) = π0f0(y) + π1f1(y). (1.9)

The Bayes risk is then defined to be

r(δ) = π0E0 [L(θ0, δ(Y ))] + π1E1 [L(θ1, δ(Y ))] . (1.10)

Thus Bayesians are interested in finding an optimal procedure that minimizes the Bayes

risk, and the optimal procedure is called the Bayes rule of the given decision problem.

A simple example is given below. In this example, the Bayes rule is derived for testing

h0 : θ = θ0 versus h1 : θ = θ1 a simple alternative hypothesis by using a simple loss

function, 0-1 loss.

Example 1.2.2 Consider a simple loss function, 0-1 loss,

L(θ, d) =





1

0

1

0

θ = θ0, d = 1

θ = θ0, d = 0

θ = θ1, d = 0

θ = θ1, d = 1

(1.11)

which makes the Bayes risk equal to an overall probability of an error,

π0Pr(δ(y) = 1 |H = 0) + π1Pr(δ(y) = 0 |H = 1) (1.12)

8



resulting from the use of a decision rule. It can be shown that the Bayes rule minimizing

the above probability is

δ(y) =

{
0

1

f1(y) < π0
π1

f0(y)

f1(y) > π0
π1

f0(y)
. (1.13)

By Bayes’ rule, the posterior probability of H, i.e. the conditional probability of H given

Y = y, is

Pr (H = i|Y = y) =
πifi(y)

π0f0(y) + π1f1(y)
=

πifi(y)

f(y)
, i = 0, 1 (1.14)

and therefore Bayesians would like to accept the null hypothesis if Pr (H = 0 | Y = y) >

Pr (H = 1 | Y = y) (Lehmann [59]).

Consider next the composite alternative hypotheses situation, h0 : θ = θ0 versus h :

θ ∈ Θ1 = Θ − {θ0}, where θ is a parameter (possibly a vector) of interest that belongs

to the parameter space Θ. Suppose the conditional density of Y under the alternative is

f(y | θ), θ ∈ Θ1 and the parameter θ under the alternative has a prior distribution π(θ).

In this case, the marginal density of Y under the alternative is f1(y) =
∫
Θ1

f(y | θ)π(θ)dθ.

If h0 is also composite, then we can assume the parameter θ has a prior distribution π(θ)

for all θ ∈ Θ. One can choose the proper model or proper prior distribution of θ to

find the Bayes rule of the testing problem. The model selection usually depends on one’s

experience and is one of the most important steps in Bayesian testing procedures. The

prior distribution of θ can be determined subjectively. One may attempt to use Bayesian

methods even when the prior information about the parameter θ is unavailable. A prior

that contains no (or minimal) information about θ is called a noninformative prior [12].

In Bayesian analysis, Bayes factors are widely used. For the Bayesian model (1.9) given

above, the Bayes factor is defined to be

B =

∫
Θ1

f(y|θ)π(θ)dθ∫
Θ0

f(y|θ)π(θ)dθ
=

π0f0(y)

π1f1(y)
. (1.15)

Therefore the marginal posterior probability that the null hypothesis is false can be ex-

pressed in term of the Bayes factor Pr (H = 1|Y = y) = 1/(1 + B).

Frequentist single hypothesis testing can also be considered as a special case of the

statistical decision problem. The decision rule is obtained by minimizing the risk function

R(θ, δ) instead of the Bayes risk. Corresponding to the two types of errors, we can consider

two types of loss functions,

L1(θ, d) =

{
1

0

θ ∈ Θ0, d = 1

θ ∈ Θ1, d = 1, or θ ∈ Θ, d = 0
(1.16)
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and

L2(θ, d) =

{
1

0

θ ∈ Θ1, d = 0

θ ∈ Θ0, d = 0, or θ ∈ Θ, d = 1
. (1.17)

Then minimizing Eθ [L2(θ, δ(Y ))] subject to the restriction Eθ [L1(θ, δ(Y ))] ≤ α is equiva-

lent to maximizing the power while controlling the type I error at the level α (Lehmann [59]).

1.3 Multiple Hypothesis Testing Problem

1.3.1 Problem Statement and Definitions of Compound Error Measures

Multiple testing, in which the number of hypotheses plays an important role, is much more

complex than single hypothesis testing. In this case each test has a type I error and a type

II error, and it becomes another problem to measure the overall error rate when we have

a large number of tests simultaneously. First, an appropriate compound error measure

according to the false rejections for multiple testing should be defined. Then, average

power, which is the proportion of the false hypotheses that are correctly rejected (Benjamini

and Hochberg [9]), is commonly employed as a criterion to compare the performance of

two multiple testing procedures.

Consider the problem of testing m null hypotheses h1,0, h2,0, · · · , hm,0 versus m al-

ternative hypotheses h1,1, h2,1, · · · , hm,1 simultaneously, of which m0 is the number of

true nulls. For frequentists, m0 is assumed to be fixed but unknown. Suppose that

Y = (Y1, Y2, · · · , Ym) is the vector of test statistics for m tests, which have joint dis-

tribution indexed by the set of parameters θ = (θ1, θ2, · · · , θm), where the θi’s can be

vectors. Let Θi0 and Θi1 be the non-empty subsets of the parameter spaces Θi for θi under

the ith null and alternative hypotheses. Let Θm = Θ1×Θ2×· · ·×Θm be the sample space

of θ, and the subset Θm
0 = Θ10 × Θ20 × · · · × Θm0 be the sample space when all nulls are

true. Let I = {1, 2, · · · , m} be the set of indices of all nulls and I0 = {i1, i2, · · · , im0} de-

note that of true nulls, and I1 = I −I0. Thus {hi,0 : i ∈ I0} and {hi,1 : i ∈ I1} are the sets

of true and false nulls. Let Hi = 0 when the ith null hypothesis is true and Hi = 1 when

it is false. Let H denote the vector (H1, H2, · · · , Hm)T , and therefore H ∈ {0, 1}m. Hi

is fixed for frequentists but random for Bayesians. Also let di be an indicator of rejecting

hi,0. Table 1.1 categorizes the m tests into all possible outcomes.

In Table 1.1, R and W denote respectively the total number of rejected hypotheses
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# of Accepted nulls # of Rejected nulls Total

# of True Nulls A =
m∑

i=1
(1 − Hi)(1 − di) V =

m∑
i=1

(1 − Hi)di m0 =
m∑

i=1
(1 − Hi)

# of False Nulls T =
m∑

i=1
Hi(1 − di) S =

m∑
i=1

Hidi m1 =
m∑

i=1
Hi

Total W =
m∑

i=1
(1 − di) R =

m∑
i=1

di m = m0 + m1

Table 1.1: All possible outcomes of m hypothesis tests.

and the total number of accepted hypotheses, V and T are respectively the number of

false discoveries and the number of false non-discoveries, and A and S are the number

of correctly accepted true null hypotheses and the number of correctly rejected false null

hypotheses. R is an observed random variable, whereas A, V , S and T are unobserved

random variables.

In multiple hypothesis testing, a well-defined compound error rate plays the role of the

single hypothesis type I error rate. In terms of the random variables in Table 1.1, we can

give the following definitions of error measures according to the number of false rejections

V . Use E[·] to denote expectation taken on the distribution of Y .

(a). Per family error rate:

PFER ≡ E[V ] (1.18)

(Shaffer [87]).

Note that

E[V ] = Eθ[
∑m

i=1(1 − Hi)di]

=
∑m

i=1Eθ[(1 − Hi)di]

=
∑m

i=1Prθ ({di = 1} ∪ {Hi = 0})

=
∑

i∈I0
Prθi

(Yi ∈ Γm |Hi = 0) (1.19)

where Γm is the joint critical region.

(b). Per comparison error rate:

PCER ≡ E

[
V

m

]
=

E [V ]

m
(1.20)

(Shaffer [87]). Miller [63] calls this error rate the expected family error rate when

m = m0.

11



(c). Family-wise error rate:

FWER ≡ Prθ(V ≥ 1) (1.21)

(Shaffer [87]). Miller [63] calls this error rate the probability of a nonzero family error

rate when m = m0. Assuming m = m0, FWER is also called the experimentwise

error rate when it is used in factorial design [31, 51].

It can be shown that FWER≤PCER [43].

(d). k-Family-wise error rate:

k-FWER = Prθ(V ≥ k) (1.22)

for fixed k > 1 (Lehmann and Romano [60]).

(e). False discovery rate (or expected false discovery rate):

FDR ≡ E

[
V

R ∨ 1

]
= Eθ

[
V

R
|R > 0

]
Prθ(R > 0), (1.23)

where R ∨ 1 = max(R, 1) (Storey [90]). FDR is loosely defined by Benjamini and

Hochberg [9] to be E
[

V
R

]
and equal to zero when there is no rejection. In fact, we

are not interested in the case that there is no rejection and thus the definition above

is more precise.

(f). False discovery proportion (or realized false discovery rate):

FDP ≡ V

R
(1.24)

(Lehmann and Romano [60]).

(g). Positive false discovery rate:

pFDR ≡ E

[
V

R
|R > 0

]
(1.25)

(Storey [90]).

(h). Proportion of false discoveries (positives):

PFP ≡ E[V ] � E[R] (1.26)

(Bayarri and Berger [8]). Benjamini and Hochberg [9] briefly discussed pFDR and

PFP as well.
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When the problem of multiple hypothesis testing is viewed as a decision problem, in

order to derive a risk function, a well-defined compound error measure analogous to the

single hypothesis type II error rate is also needed. In this case, definitions of error measure

according to the random number of false non-discoveries T , are given below.

(i). False non-discovery rate (or expected false non-discovery rate):

FNR ≡ E

[
T

W ∨ 1

]
= Eθ

[
T

W
|W > 0

]
Prθ(W > 0), (1.27)

(Storey [90], Genovese and Wasserman [38]). Genovese and Wasserman [38] referred

to FNR as the “dual error rate” to FDR.

(j). False non-discovery proportion (or realized false non-discovery rate):

FNP ≡ T

W
(1.28)

(Genovese and Wasserman [39]). FNP is referred to as the “dual error rate” to FDP.

(k). Positive false non-discovery rate

pFNR ≡ E

[
T

W
|W > 0

]
(1.29)

(Storey [90]). pFNR is referred to as the “dual error rate” to pFDR.

Given a compound error measure according to the number of false rejections V and a

significance level α, the traditional frequentist goal is to determine a multiple hypothesis

procedure (i.e. a set of test statistics and a set of rejection regions) that maximizes the

average power ( S
m1

, using the notation of Table 1.1) subject to controlling the error rate

at α. For example, given a significance level α > 0, a procedure controlling FWER is

one that yields a FWER less than or equal to α. Usually, one desires that a method

controls a certain error rate for all possible combinations of true and false hypotheses

(H ∈ {0, 1}m). Such control is usually called strong control. Procedures that control

a certain error rate only when all the null hypotheses are true are said to exhibit weak

control (Hochberg and Tamhane [51]). For example, given α > 0, if there is a procedure

that yields Pr(V ≥ 1 | H = {0}m) ≤ α, then we say the FWER is weakly controlled by

that procedure; if another procedure guarantees maxPr(V ≥ 1 | H ∈ {0, 1}m) ≤ α, then

this procedure is said to strongly control the FWER. Since weak control is not applicable
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for most real problems, the term “control” in this thesis will refer to strong control, unless

otherwise noted.

On the other hand, from a Bayesian viewpoint, the number of null and alternative

hypotheses are random and there exists prior distributions for the Hi’s. In the microarray

context, we usually have strong prior information about the probability that a null hy-

pothesis is true. This information is that this probability is usually large [88], though the

range of this probability may depend on different microarrays. A Bayesian firstly chooses

an appropriate model and loss function to derive the Bayes risk and the Bayes rule for the

risk function, or equivalently, finds the rejection rule in terms of the posterior probability

of a null hypothesis being false given the observations.

I give a literature review of multiple hypothesis testing methods in the following sec-

tions, but the methods introduced are not all related to my work in the thesis. These

methods can be mainly sorted into frequentist ones and Bayesian ones. However, in the

multiple testing situation there exist procedures that combine both of them. The tra-

ditional multiple comparison procedures for comparing normally distributed means are

reviewed in section 1.3.2. Those methods are famous and widely used in the analysis

of variance. In section 1.3.3, multiple hypothesis testing procedures based on marginal

p-values are introduced. They are easily applied and are distribution-free. A compari-

son of some procedures introduced in this section is given in Chapter 2. In section 1.3.4,

some widely used Bayesian models and multiple hypothesis testing methods under these

models are given. A Bayesian model, which is developed for regression diagnostics and is

introduced in Chapter 3, is motivated by these models.

1.3.2 Multiple Comparison Methods

The traditional frequentist multiple comparison procedures are designed for comparing

homogeneity of the means in the analysis of variance, and hence they are mostly based on

the joint distributions of all normally distributed observations, such as Tukey’s studentized

range test, Scheffé’s F projections and Duncan’s multiple range test [51, 63, 87]. Both

Tukey’s and Scheffé’s tests are single-stage procedures whose rejection thresholds do not

depend on the data and which strongly control the FWER [31, 51]. The former is more

powerful than the latter for pair-wise comparison, and has “generally slightly smaller power

for overall tests” than the latter [31]. Both procedures can be modified to multi-stage
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procedures, in which the rejection threshold is data-dependent, to gain more power [31, 51,

87]. The best known multi-stage multiple testing procedure is the one of Duncan. Duncan’s

method does not control the FWER. Einot and Gabriel [31] modified Duncan’s method to

ensure the control of the FWER. They also modified an approach of Ryan [79, 80], and

showed that their modified Ryan’s procedure is more powerful than the modified Duncan’s

method, when both methods control the FWER at the same level. More extensive reviews

of the traditional frequentist methods for comparing normally distributed means than those

presented here can be found in [51, 63, 87].

1.3.3 Multiple Hypothesis Testing Methods Based on Sequential p-values

There are other frequentist methods only based on the empirical distribution of marginal

p-values (defined in equation 1.4), and hence they are distribution free. Let P1, P2, · · · , Pm

be the p-values corresponding to testing the null hypotheses h1,0, h2,0, · · · , hm,0. Let P(1) ≤
P(2) · · · ≤ P(m) be the ordered p-values, and let the null hypothesis corresponding to P(i) be

denoted by h(i),0. Sequential p-value based methods reject all hypotheses whose p-values

are less than a threshold t, where t could be a constant or could be a function of the

p-values.

The simplest method, referred to as uncorrected testing, rejects hi,0 if Pi ≤ α to

guarantee that the per comparison error rate (PCER) ≤ α (Genovese and Wasserman [38]).

Obviously, this method ignores the multiplicity m. By the definition of PFER in 1.18,

E[V ] = m0α, and hence we expect a large number of false rejections for a large number of

hypotheses.

The most commonly controlled error rate when testing multiple hypotheses is the

family-wise error rate (FWER), which is the probability of committing at least one Type

I error out of all the hypotheses tested (as defined in (1.21)). A multiple testing method

controlling FWER, which was proposed earlier than the term “multiple comparison” was

introduced, is Fisher’s inverse χ2 method [35, p. 99]. This method is based on the fact

that −2 lnPi has a χ2 distribution with 2 degrees of freedom when hi,0 is true. Thus

when all p-values are independent, −2
∑m

i=1 lnPi has a χ2 distribution with 2m degrees of

freedom when all hi,0’s are true. Fisher’s inverse χ2 method can be used to test the null

hypothesis H1 = H2 = · · · = Hm, so it weakly controls the FWER. However, as mentioned

in 1.3.1, weak control is not desirable for applications.
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The most famous procedure controlling FWER in the strong sense is the Bonferroni

procedure (Miller [63]). The Bonferroni procedure rejects hi0 if Pi ≤ α
m guaranteeing that

FWER≤ α. The name “Bonferroni” is used in the famous textbook of Miller (1966)

(the first edition of [63]). The procedure is given the name of an Italian mathemati-

cian, Carlo Emilio Bonferroni, because this method is based on his First-Order Bonferroni

inequality, also known as Boole’s inequality, which states that: given any set of events

A= {A1, A2, · · · , Am},
Pr(
⋃
i
Ai) ≤

∑
i
Pr(Ai). (1.30)

Let Ai = {di = 1} denote rejection of hi,0, and let I0 = {i1, i2, · · · , im0} denote the set of

indices of true nulls. Then

Pr(V ≥ 1) = Pr(
⋃

i∈I0

{di = 1}) (1.31)

≤ ∑
i∈I0

Pr(di = 1) (1.32)

=
∑

i∈I0

Pr(Pi ≤
α

m
) (1.33)

= m0
α

m
≤ α, (1.34)

since Pr(Pi ≤ α
m) = α

m for i ∈ I0 [63, 87]. Obviously the Bonferroni procedure is usually

conservative. If more information of the joint probabilities is given, there are higher order

Bonferroni inequalities giving upper and lower bounds on the probability that k, 1 < k ≤ m,

or more of the m events in A occur simultaneously (see Feller [32, p. 110]). In fact, the

Bonferroni procedure also controls the per family error rate because

E[V ] =
m∑

i=1
E[(1 − Hi)di] =

∑
i∈I0

Pr(di = 1 |Hi = 0) = m0 ·
α

m
≤ α. (1.35)

Holm [52] modified the Bonferroni procedure to a step-down procedure that also con-

trols the FWER with increased average power. The Holm procedure, based on the or-

dered p-values, starts with the most significant p-value and continues rejecting hypotheses

whose p-values are less than a stage-dependent threshold. First, if P(1) ≥ α
m , accept

h(1),0, · · · , h(m),0 and stop. Otherwise, reject h(1),0 and test the remaining m− 1 hypothe-

ses at level α
m−1 . At step i, if P(i) ≥ α

m+1−i , accept h(i),0, · · · , h(m),0 and stop. Otherwise,

reject h(i),0 as well and test the remaining m − i hypotheses at level α
m−i . In other words,

reject h(i),0 when

P(t) ≤
α

m + 1 − t
(1.36)

16



for all 1 ≤ i ≤ t. One advantage that should be mentioned here is that both the Bonfer-

roni procedure and the Holm procedure make no assumptions concerning the dependence

structure of the p-values of the individual tests.

Šidák [85] improved the significance level for each test of the Bonferroni procedure to

1−(1−α)1/m when p-values are independent, although the degree of improvement is slight

for small values of α. Similarly, the Holm procedure can also be improved by replacing

α/(m + 1 − t) in (1.36) with 1 − (1 − α)1/(m+1−t).

There are some stepwise multiple testing procedures that are based on the Simes

equality and are proved to be more powerful than multi-step Bonferroni-type procedures.

Simes [86] proved that if all null hypotheses are true and the associated test statistics are

independent, then

Pr(
⋂m

i=1{P(i) > iα / m}) = 1 − α (1.37)

for any α ∈ (0, 1). Hence the Simes procedure that rejects any h(i),0 when P(i) ≤
iα / m controls the PCER and only weakly controls the FWER. It has been proved that

Pr(
⋂m

i=1{P(i) > iα / m}) > 1 − α for many types of dependence structure of p-values [87].

Hochberg [50] gave a step-up procedure utilizing the Simes result. The Hochberg procedure

finds

t = max
{
1 ≤ i ≤ m : P(i) ≤ α / (m − i + 1)

}
, (1.38)

and rejects all h(i),0’s with i ≤ t. It can also be described as following: If P(m) ≤ α, reject all

h(i),0’s; otherwise, P(m) cannot be rejected, and if P(m−1) ≤ α / 2, reject h(1),0, · · · , h(m−1),0,

etc. This procedure strongly controls the FWER and is more powerful than the Holm

procedure. Other methods controlling FWER are presented in Hochberg and Tamhane [51],

Miller [63] and Shaffer [87].

Although the multi-stage methods can improve the average power, the resulting num-

ber of rejections are still quite small, especially when m is very large. Benjamini and

Hochberg [9] argued that the FWER controlling methods provide a demanding control for

large m. Given α > 0, to ensure that P (V ≥ 1) ≤ α, those methods must test each true

null hypothesis at a very small level assuming that m0 is large, and hence result in a small

average power. In DNA microarray experiments, we usually test thousands of genes at the

same time, where the number of genes having the same expression levels in treatment as

in control is often large [29, 30, 88, 90, 92, 93, 98]. In such a situation, one may prefer to

pay more attention to comparing the number of false discoveries with the total number of
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discoveries rather than paying attention to whether there is one or more type I errors. To

address this, Benjamini and Hochberg [9] introduced the concept of the false discovery rate

(FDR), the expected proportion of false rejections out of the total rejections (as defined

in (1.23)). They also proposed a multi-stage procedure (here referred to as the BH) that

strongly controls FDR. The procedure calculates the data-dependent threshold

t = max

{
1 ≤ i ≤ m : P(i) ≤

i

m
α

}
(1.39)

first and then rejects all the h(i),0’s with i ≤ t. Benjamini and Hochberg proved that

if the p-values corresponding to the true null hypotheses are uniformly distributed and

independent of each other and of the p-values corresponding to the alternative hypotheses,

then BH guarantees that FDR ≤ π0α, where π0 = m0/m is the proportion of true null

hypotheses in the collection. They also use a simulated example to provide evidence that

the average power of this method is uniformly larger than the FWER controlling procedures

of Bonferroni and of Holm in the different configurations of the hypotheses they considered.

This method is based on the assumption of independent p-values. However, when

multiple testing is applied to DNA microarrays, the independence assumption does not

usually apply. It is well known that in a microarray experiment most genes are relevant

to each other, so the independence assumption is not appropriate [92]. Therefore, an

extension to the dependent case is needed. Benjamini and Yekutieli [11] extended the BH

procedure to the case that the test statistics have positive regression dependence on each

of the test statistics corresponding to the true null hypotheses.

Finner and Roters [34] proved under the same assumptions in Benjamini and Hochberg [9]

that indeed FDR = π0α. (For related results, see also Benjamini and Yekutieli [11]; Gen-

ovese and Wasserman [38]; and Sarkar [81].) Therefore, the BH procedure is conservative

when m0 < m. This suggests that the BH procedure can be more efficient by incorporating

an estimate of π0. Benjamini and Hochberg [10] proposed a data-adaptive procedure to

estimate this proportion and modify the BH procedure, but they didn’t show that this

procedure provides strong control of the FDR.

Storey [89] proposed an alternative procedure incorporating an estimate of π0 to over-

come the conservativity of the BH method. He considered the FDR arising from multiple

testing with a fixed significance level and proposed an estimator of the FDR which he

showed to have positive bias. Choosing this significance level to control the estimated

18



FDR will also control the FDR. This fixed significance level method (hereafter called FSL)

is based on a Bayesian model which is introduced in section 1.3.4, though it is mainly a

frequentist method. Storey [89] defined the FDR as in (1.23), where R is the number of

rejections and V is the number of false discoveries. Whereas the rejection threshold t cal-

culated by BH is random, Storey suggested to reject hypotheses hi,0, for which Pi ≤ γ for a

fixed pre-selected rejection threshold γ and then estimating the FDR. Since E(V (γ)) = π0γ

and V (γ) = #{Pi ≤ γ | Hi = 0}, he estimated the FDR by

F̂DRλ(γ) =
π̂0γ

R(γ) ∨ 1
(1.40)

where

π̂0(λ) =
1 − R(λ)

1 − λ
, R(λ) = #{Pi > λ} (1.41)

for some suitably chosen λ. Since FDR = pFDR × Pr{R(γ) > 0}, Storey also gave a

slightly different conservative estimate of pFDR

p̂FDRλ(γ) =
π̂0γ

{R(γ) ∨ 1}{1 − (1 − γ)m} , (1.42)

where 1 − (1 − γ)m is a lower bound for Pr{R(γ) > 0}. Both estimators are based on the

empirical distribution of marginal p-values. The conservativity property of the estimators

are proved under the assumption of independent p-values in [89], and Storey and Tibshirani

[92] modified the estimators and proved that the conservativity is valid under several

dependent cases for the modified estimators. Recently, Sarkar and Liu [84] proposed a

modification of F̂DR, replacing the denominator in (1.40) by
(
R(γ) ∨ 1

m + 1
)
/(m + 1).

This estimator has better small-sample properties. However, their estimator of FDR is

close to (1.40) when m is large.

Storey [89] also proposed a bootstrap approach to estimate the optimal λ which mini-

mizes the mean square error of the estimate. However, Black [18] argued that the bootstrap

method may underestimate π0 and thus results in an underestimate of FDR. My simula-

tion results in Chapter 2 confirm his argument and also show that the bootstrap method

may produce a larger bias than using a fixed λ. Storey and Tibshirani [93] used a spline

method to estimate π0. My simulation results show that this method needs less computing

time and produces a smaller bias compared to the bootstrap one. The simulation esti-

mates of π0 by using a fixed λ = 0.9 and by using the spline method are close. The other

methods estimating π0 include Bickis et al. [17], Bickis [15], Efron et al. [30], Ferreira and

Zwinderman [33], and Tusher et al. [98].
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Storey [89] showed numerically that FSL can gain more power than BH while controlling

the same FDR. In Chapter 2 it is proved that when the number of alternatives (m1) is

small compared to the total number of hypotheses, FSL can be less powerful than BH.

Black [18] proposed an adaptive FDR controlling procedure (hereafter called AFDR) that

adjusts BH for this conservatism using Storey’s estimator of π0. Given a fixed γ, the AFDR

implements BH with the target FDR set to the data-dependent value

α̂ = F̂DRλ(γ)/π̂0(λ). (1.43)

His simulation results showed that the AFDR has power comparable to the fixed rejection

region method of Storey [89]. It is shown in Chapter 2 that AFDR has superior power to

FSL.

Storey et al. [94] investigated picking a data dependent significance level to control the

estimated FDR of Storey [89]. For a given target α, Storey et al. [94] proposed, instead of

FSL, choosing the random significance level Γ by

Γ = sup
{

0 ≤ p ≤ 1 : F̂DRλ(p) ≤ α
}

, (1.44)

which they showed to be equivalent to BH with target level α in the case that π̂0(λ) is

fixed at 1 rather than being an estimator. It is shown in Chapter 2 that this procedure is

equivalent to a procedure that is connected to AFDR. In Chapter 2, a clarification of the

relationships of BH, FSL and AFDR is also given.

Because the rejection threshold of the BH method is data-dependent, it is difficult to

work out an explicit expression for its power function. However, there is some work on the

asymptotic behaviour of the BH method. Genovese and Wasserman [38] gave the asymp-

totic rejection threshold assuming that the p-values are independent and the distribution

function of p-value under alternative is strictly concave. Ferreira and Zwinderman [33]

generalized the results of [38] to the case that the independence and concavity assump-

tions are no longer needed. They also proved that asymptotic FDR of the BH method as

m → ∞ still equal to π0α, even under a dependent structure. However, my simulation

results in chapter 2 show that the empirical power of the BH method is quite different

from the asymptotic power even for m as large as 5000. Chi [22] studied the FDR, pFDR,

and power of the BH procedure asymptotically under a random effect model which is in-

troduced in chapter 1.3.4. Wu [100] generalized Chi’s results to a conditional dependence

model.
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Since the FWER is criticized to be too strict for a multiple testing problem where

one is willing to tolerate a few false discoveries, Lehmann and Romano [60] suggested to

control the k-FWER, the probability of committing at least k false rejections out of all the

hypotheses tested (as defined in (1.22)). Obviously, when k > 1, the control of k-FWER

is less conservative than the control of FWER. It is straightforward to extend the exist-

ing methods controlling FWER to ones controlling k-FWER. Lehmann and Romano [60]

modified the Bonferroni and Holm procedures to obtain both single stage and multi-stage

procedures controlling k-FWER in the strong sense. These two methods do not make any

assumption concerning the dependence structure of the p-values of the individual tests.

Romano and Wolf [77] proposed a more powerful multi-stage procedure by taking account

of the dependence structure of the p-values of the individual tests. Sarkar [83] generalized

Hochberg’s step-up procedure which controls the FWER to strongly control the k-FWER.

The generalized Hochberg’s procedure is more powerful than generalized the Holm proce-

dure of Lehmann and Romano. It is noted that the choice of k value should be seriously

considered.

Similar to generalizing the control of FWER, Gordon et al. [43] suggest to assign an

upper bound for the per family error rate (PFER), the expected number of false rejections

(as defined in (1.18)). The upper bound α can be greater than one when more than one

false rejection is allowed. The Bonferroni multiple testing procedure controls not only the

FWER but also the PFER. Now if the significance level α is interpreted as the upper bound

for PFER, then the power of the Bonferroni procedure can be improved. Their simulation

results show the Bonferroni procedure has smaller variances of both the number of true

rejections and the total number of rejections than the BH. However, experience and caution

is really needed for choosing the upper bound α.

1.3.4 Mixture models for multiple hypothesis testing

In this section, some simple and broadly used mixture models are given, and the multiple

hypothesis testing methods based on these model are discussed.

As mentioned before, a natural Bayesian approach for multiple hypothesis testing as-

sumes the common prior probability Pr(Hi = 0) = π0 and then Pr(Hi = 1) = 1− π0 = π1,

i.e. Hi’s are i.i.d. random variables with distribution Bernoulli(π0). Let Y1, · · ·Ym be

the i.i.d. test statistics of m tests. Suppose Yi are generated from a mixture model: the
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common distribution of Y1, · · ·Ym under the null is F0(y) with density f0(y); Y1, · · ·Ym

under the alternative also have a common distribution F1(y) with density f1(y), that is

Yi | Hi = 0 ∼ F0, Yi | Hi = 1 ∼ F1, and Hi ∼ Bernoulli (π0) . (1.45)

Thus Y1, · · ·Ym marginally follow the mixture distribution

F (y) = π0F0(y) + π1F1(y) (1.46)

with mixture density

f(y) = π0f0(y) + π1f1(y). (1.47)

Under the above model assumptions, Efron et al. [30] introduced a “nonparametric

empirical Bayesian” approach to estimate the marginal posterior probabilities

p0(y) = Pr(Hi = 0 | Yi = y) =
π0f0(y)

f(y)
(1.48)

p1(y) = Pr(Hi = 1 | Yi = y) = 1 − π0f0(y)

f(y)
(1.49)

and used an upper bound estimate of π0. This method only assumes that the parameters

arise from some common population with unknown distribution and thus is nonparamet-

ric. In order to improve the estimation of f0, they employed a permutation method to

generate the values of Y under the null hypotheses. Thus the ratio f0(y)/f(y) can be

estimated directly from the empirical distributions of Y and the null version of Y . A lo-

gistic regression approach was used to estimate this ratio. The proportion of the true null

hypotheses is estimated by an upper bound of it, miny {f(y)/f0(y)}. Both density esti-

mates and the estimate of π0 are based on the empirical distribution of the test statistics

and a permutation method which does not depend on the distribution of the statistics or

any dependence structure of the test statistics. A small value of the estimate results in a

rejection of the associated null hypothesis. The empirical Bayesian method was applied

to an oligonucleotide microarray experiment in [30] as well as a spotted cDNA microarray

experiment in Efron and Tibshirani [29]. Efron and Tibshirani also presented the connec-

tion between the proposed empirical Bayes approach of Efron et al. and the FDR control

of Benjamini and Hochberg [9]. For the rejection region of type Γ = {yi | yi ≤ y}, they

defined the Bayesian FDR as

Fdr (y) ≡ π0F0(y) / F (y) = Pr(Hi = 0 | Yi ≤ y) . (1.50)
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They also proved that Fdr(y) approximates FDR for the rejection region Γ = {yi | yi ≤ y}.
Efron et al. defined local false discovery rate as

fdr (y) ≡ π0f0(y) / f(y) . (1.51)

Both Fdr and fdr are based on partial data and known distributions. The Bayesian FDR

can be defined for general Γ as well. They also showed that there is a relationship between

the local FDR and the Bayesian FDR. The Averaging Theorem in [29] states that “Fdr(Γ) is

the conditional f -average of fdr(y) for y ∈ Γ”, i.e. Fdr(Γ) = Ef {fdr(y) | y ∈ Γ}. Moreover,

neither Efron et al. nor Efron and Tibshirani took into account any loss function to derive

the optimal rule. They made a decision based only on the marginal posterior probability

p1.

Scott and Berger [88] proposed a hierarchical Bayesian approach to multiple testing

motivated by the need for significance analysis of microarrays. In their model, observations

arise independently from normal densities with different means µi and a common but

unknown variance σ2 under the null and alternative hypotheses, where µi = 0 if Hi = 0

but µi 6= 0 if Hi = 0. The goal is to identify genes which have over or under expression

in treatment compared to control, i.e. determine which of the µi’s are nonzero. Then the

nonzero µi’s are modelled as having a common normal distribution with zero mean and

an unknown variance V . Since there is no strong prior information about V and σ2, an

noninformative prior is used. As mentioned before, there is strong prior information about

π0, which is that it is usually expected to be large in the microarray context because most

genes are expected to have the same expression in treatment and control. Therefore, they

chose a Beta distribution with the parameters a and b, and b is fixed to be one. When

a = 1, the hyper-prior of π0 is the uniform prior. Scott and Berger suggested to specify

α by making a “best guess” π̂∗
0 for π0. If π̂∗

0 is interpreted as the median of the prior

distribution, then a = log(0.5)/ log(π̂∗
0). The hierarchical Bayesian model given by Scott

and Berger [88] can be written as

F0 ∼ N(0, σ2), F1 ∼ N(µ, σ2)

µ ∼ N(0, V )

π(V, σ2) = (V + σ2)−2, π0 ∼ Beta(a, 1)

. (1.52)

The Scott and Berger method is a parametric method involving the calculation of high

dimensional integrals, which can only be solved by simulation methods. In this paper,
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the importance sampling method was used to calculate the posterior probabilities of the

parameters. They discussed the appropriate choices of prior distributions and how the

choices affect posterior probabilities. The approach also computes the marginal posterior

probability pi = Pr(Hi = 0 | D), where D denotes the observed dataset, and rejects hi,0

with pi less than or equal to some threshold, which is the optimal decision rule using a loss

function proportional to the distance between null and alternative distributions, i.e.

L(µi, d) =





1

0

c |µi|
0

µi = 0, d = 1

µi = 0, d = 0

µi 6= 0, d = 0

µi 6= 0, d = 1

, (1.53)

where c is a constant. The hyper-prior distribution of π0 used in [88] has a large mass at

1, which means that with high probability there is no gene showing different expression

levels in treatment and control. However, although the distributions of a large proportion

of the genes expression levels are unaltered in treatment and control, there are some genes

showing change in their expression.

Muller et al. [64] introduced a more useful Bayesian version of FDR,

FDR = E(FDP | D) = E(

∑
(1 − Hi)di∑

di
| D) =

∑
(1 − vi)di∑

di
(1.54)

where vi = Pr(Hi = 1 | D) is the marginal posterior probability of the ith null being a true

null. The similar definitions of Bayesian FNR, Bayesian false discoveries, and Bayesian

false non-discoveries can also be derived as following

FD =
∑

(1 − vi)di (1.55)

FN =
∑

vi(1 − di) (1.56)

FNR =
FN

m −∑ di
=

∑
vi(1 − di)

m −∑ di
. (1.57)

They derived the optimal decision rules for several loss functions based on those quantities,

such as LN (d, y) = cFD+ FN, LR(d, y) = cFDR+ FNR.

One may wonder whether the rule defined in Benjamini and Hochberg [9] is optimal

under a certain loss function. Cohen and Sackrowitz [23, 24] showed that the step-up

procedures including BH are inadmissible under a loss function including the combination

of FD and FN.
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The traditional Bayes methods need to specify proper prior distributions for model

parameters under null and alternative hypotheses. Sometimes subjective priors may not

be available for some parameters, and the calculation usually involves computing high di-

mensional integrals. Johnson [54] proposed an approach for calculating Bayes factors from

modelling the sample distributions of test statistics directly rather than those of raw data.

Usually the null distribution of a test statistic does not depend on any unknown param-

eters. When the alternative hypothesis is the negation of the null hypothesis, Johnson

suggested to model the distribution of the test statistic with a minimum number of pa-

rameters under “a reasonable broad class of alternative model” [54]. The examples in [54]

shows that the Bayes factor associated with standard test statistics, such as χ2, F , t and z,

have relatively simple expressions, and the parameters that are implicit to the alternative

hypothesis can be estimated by the marginal maximum likelihood estimate (MMLE). Ji et

al. [53] used the results of Johnson [54] and Muller et al. [64] to proposed a Bayesian ap-

proach for the problem of multiple hypothesis testing arising from the microarray analysis.

In their model, both null and alternative distributions of the test statistics are modelled

as scaled F distributions with different scale parameters. An inverse gamma and a gamma

distribution are used as prior distributions of the scale parameters under alternative and

null hypotheses, and π0 is assumed having the same Beta prior distribution as in Scott and

Berger [88]. The joint posterior probability of all parameters is simpler than that computed

from the Bayesian model in [88], but it still needs to be solved by simulation methods. In

Ji et al. [53], a Markov chain Monte Carlo (MCMC) algorithm is employed to estimate

the joint posterior probability. Then they calculated the optimal rejection threshold that

minimizes FNR subject to fixing FDR at a given level.

In Chapter 3, I propose a Bayesian model for the multiple outlier identification problem

that is often encountered in regression analysis. This model is motivated by the mixture

models introduced in this section. In the next section, an introduction to the problem of

multiple deletion diagnostics is presented.
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1.4 Regression diagnostics

1.4.1 Linear regression model and Least Squares

I start with standard results from least squares for the linear regression model. All the

results in this section can be found in Atkinson [1], Rao [74] or Ravishanker and Dey [73].

In the linear regression model

y = Xβ + ε, (1.58)

where y is the m × 1 vector of responses (also called dependent variable), X is the m × k

full-rank design matrix of k − 1 known vectors of explanatory variables (or independent

variable), with all elements of the first column equal to 1 and ith row xT
i ; β is a vector of k

unknown parameters; and ε = (ε1, · · · , εm) is a vector of m unknown random errors. Note

that in Section 1.2 and 1.3, y denotes a realization of a test statistic Y , and X denotes

data, but in Section 1.4 and Chapter 3, y = (y1, · · · , ym)T and X denote respectively the

vector of responses and the design matrix of explanatory variables. The only test statistic

introduced in this section is called the deletion residual, and is denoted by r∗i for the ith

observation.

If the linear regression model is true, then the following assumption is satisfied:

Assumption 1.4.1 (1) Model: E[yi | xi] = xT
i β.

(2) Independence: the yi’s are conditionally independent, given the xi’s.

(3) Homoscedasticity: Var[yi | xi] = σ2, or equivalently Var[εi] = σ2, where σ2 is un-

known.

(4) Normality: given xi, yi has a normal distribution, or equivalently the εi has a normal

distribution.

Assumptions 1-4 can be equivalently written as: the vector of the observations y has a

multivariate normal distribution (MVN)

y ∼ MVN(Xβ, σ2I) (1.59)

The vector of least square estimates β̂ of the vector of parameters β minimizes the sum

of squares

R(β) = (y − Xβ)T (y − Xβ), (1.60)
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and thus satisfies the normal equation

XT Xβ̂ = XT y. (1.61)

Therefore, the vector of least square estimates is

β̂ = (XT X)−1XT y. (1.62)

With this vector of estimates, the vector of least square residuals is

r = y − ŷ = y − Xβ̂ = (I − G)y (1.63)

and the minimized sum of squares is

R(β̂) = rT r = yT (I − G)y (1.64)

where G = X(XT X)−1XT is the so-called “hat” matrix. The matrix G has diagonal

elements gi = xT
i (XT X)−1xi and off-diagonal elements gij . The ith diagonal element of

G, gii, is abbreviated to gi. In the literature, the hat matrix and its diagonal and off-

diagonal elements are usually respectively denoted by H, hi and hij , but in this thesis

H is used as the indicator for the alternative and hij , j = 0, 1 denotes the ith null and

alternative hypotheses, respectively, among m tests in this thesis. Therefore in this thesis,

G, gi and gij are used instead. The hat matrix has the properties shown in the following

result. The results in the remaining part of this subsection can be found in Rao [74] or

Ravishanker and Dey [73].

Result 1.4.1 (1) G is symmetric and idempotent, that is, GT = G and G2 = G.

(2)
m∑

i=1
gi = trace(G) = trace

{
X(XT X)−1XT

}
= trace

{
(XT X)−1XT X

}
= trace(Ik) =

k = rank(G).

It is easy to show that

E
[
R(β̂)

]
= E

[
yT (I − G)y

]
= trace(I − G)Var(y) = σ2(m − k). (1.65)

Hence an unbiased estimator of σ2 is

s2 = R(β̂) / (m − k). (1.66)

By (1.59), it is easy to show that β̂ is an unbiased vector of estimates for β, and also

has a multivariate normal distribution. Moreover, β and s2 are independent. Hence, we

have the following result.
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Result 1.4.2 Since [
β̂

r

]
=

[
(XT X)−1XT

(I − G)

]
y, (1.67)

then under the Assumption 1.4.1, we have the following results:

(1) The vector of estimates β̂ follows a multivariate normal distribution, i.e.,

β̂ ∼ MVN(β,σ2(XT X)−1). (1.68)

(2) The vector of residuals r has a multivariate normal distribution, i.e.,

r ∼ MVN(0, σ2(I − G)). (1.69)

(3) β̂ and r are jointly MVN and Cov(β̂, r) = 0, so β̂ and r are independent. Since

s2 = 1
m−krT r, then β̂ and s2are also independent.

Note that the residuals ri’s defined in (1.63) do not all have the same variance, and

particularly, V ar(ri) = σ2(1 − gi). The standardized residual r′i is then defined as

r′i =
ri

s
√

1 − gi
. (1.70)

As shown in the First Fundamental Theorem in [74, p. 189], the distribution of R(β̂)

is a central chi-square distribution with m − k.

Theorem 1.4.1 (Rao [74]) Under Assumption 1.4.1, (m−k)s2/σ2 has a chi-square dis-

tribution with m − k degrees of freedom.

In order to prove this theorem, we need a lemma which is given on page 186, part (ii)

in [74]. I also use this lemma to prove the new theorem I propose in Chapter 3.

Lemma 1.4.1 (Rao [74]) Let y1, · · · , yn be i.i.d. random variables from N(µi, 1) , and

let yT = (y1, · · · , yn) and µT = (µ1, · · · , µn). A necessary and sufficient condition that

yT Ay has a chi-square distribution is that A is idempotent, in which case, the degrees of

freedom of χ2 is rank(A) = trace(A), and if µi’s are not all zero, then χ2 is non-central

with centrality parameter µT Aµ.

It is easy to prove Theorem 1.4.1 by using this lemma.
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Proof. [of Theorem 1.4.1]

Since yi/σ2 are i.i.d. N(xT
i β,1) and I−G is idempotent, yT (I−G)y / σ2 has a chi-square

distribution with the degrees of freedom trace(I −G) = m− k and non-central parameter

1
σ2 (Xβ)T (I − G)Xβ = 1

σ2 β
T
XT

{
I − X(XT X)−1XT

}
Xβ = 0.

The theorem 1.4.1 is true when Assumption 1.4.1 is valid. In Chapter 3 I derive the

distribution of s2 when Assumption 1.4.1 is violated.

1.4.2 Identification of one outlier

As mention in Section 1.1, a powerful method of identifying a single outlier is introduced

in Cook and Weisberg [25] and Atkinson [1]. This method is based on the deletion of single

observation [6]. The test statistic calculated from the deletion of a single observation is the

deletion residual (also called studentized residual in some literature). The deletion residual

for the ith observation is the standardized residual for the ith observation using a model

fitted with other observations

In order to identify outliers which are numerically distant from the rest of the data, we

need to compare the regression models with and without some observations. The algebra of

deletion discussed below is taken from Atkinson [1]. Atkinson [1] gave results for deleting

a set of observations. I only list results for deleting a single observation, which is a special

case of Atkinson’s results, and I also present calculations of some results. Let X(i) denote

the design matrix with the ith row xT
i deleted from X, and y(i) denote the vector of

responses with the ith observation yi deleted. Similarly, a notation with a subscript i in

parentheses denotes the quantity obtained with the ith observation yi deleted. The vector

of least square estimates β̂(i) with the ith observation being deleted is therefore

β̂(i) = (XT
(i)X(i))

−1XT
(i)y(i), (1.71)

and the corresponding residuals are

r(i) = y(i) − ŷ(i) = y(i) − x(i)β̂(i) = (I − G(i))y(i), (1.72)

where

G(i) = X(i)(X
T
(i)X(i))

−1XT
(i). (1.73)

The estimate of σ2 is then

s2
(i) = R(β̂(i)) / (m − k − 1) = rT

(i)r(i) / (m − k − 1) = yT
(i)(Im−1 − G(i))y(i), (1.74)
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where Im−1 denotes the (m − 1) × (m − 1) identity matrix. The results for β̂, r, and s in

Section 1.4.1 are still true for β̂(i), r(i) and s(i) provided the model assumptions are valid

for y(i).

In fact, (XT
(i)X(i))

−1 can be calculated from (XT X)−1. To see this, first note that

XT X = [x1, . . . ,xm][xT
1 , . . . ,xT

m]T

= x1x
T
1 + · · · + xix

T
i + xmxT

m

= XT
(i)X(i) + xix

T
i . (1.75)

Let A be a square matrix and let B and CT be matrices with the same dimension and

with the number of rows of B equal to that of A. It is easy to verify that

(A − BC)−1 = A−1 + A−1B(I − CA−1B)−1CA−1. (1.76)

Let A = XT X, and B = CT = xi, then we have

(XT
(i)X(i))

−1 = (XT X − xix
T
i )−1 (1.77)

= (XT X)−1 + (XT X)−1xi(I − xi(X
T X)−1xT

i )−1xT
i (XT X)−1 (1.78)

= (XT X)−1 + (XT X)−1xi(1 − gi)
−1xT

i (XT X)−1 (1.79)

= (XT X)−1

{
I +

1

(1 − gi)
xix

T
i (XT X)−1

}
. (1.80)

Hence, the jkth element of G(i) has the form

g(i)jk = xT
j (XT

(i)X(i))
−1xk (1.81)

= xT
j (XT X)−1xk +

xT
j (XT X)−1xix

T
i (XT X)−1xk

1 − gi
(1.82)

= gjk +
gijgik

1 − gi
, j, k = 1, . . . , i − 1, i + 1, . . .m, j 6= k, (1.83)

and the jth diagonal element of G(i) can be written as

g(i)jj , g(i)j = gj +
g2
j

1 − gi
, j = 1, . . . , i − 1, i + 1, . . .m, (1.84)

where gj is the jth diagonal element of G and gjk is the jkth off-diagonal element of G.

Also β̂(i) and s(i) respectively have the following relationships with β̂ and s.

Result 1.4.3

β̂(i) − β̂ = −(XT X)−1xiri / (1 − gi), (1.85)
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and

(m − k − 1)s2
(i) = (m − k)s2 − r2

i / (1 − gi). (1.86)

Result 1.4.3 can be shown from the following calculations:

β̂(i) − β̂

= (XT
(i)X(i))

−1XT
(i)y(i) − (XT X)−1XT y (1.87)

= (XT
(i)X(i))

−1(XT y − xiyi) − (XT X)−1XT y (1.88)

= (XT X)−1(XT y − xiyi) +
1

(1 − gi)
(XT X)−1xix

T
i (XT X)−1(XT y − xiyi) (1.89)

− (XT X)−1XT y (1.90)

= −(XT X)−1xiyi +
1

(1 − gi)
(XT X)−1xi

{
xT

i (XT X)−1XT y − xT
i (XT X)−1xiyi

}

(1.91)

= −(XT X)−1xiyi +
1

(1 − gi)
(XT X)−1xi {ŷi − giyi} (1.92)

= (XT X)−1xi

{
−yi +

ŷi − giyi

(1 − gi)

}
(1.93)

= (XT X)−1xi
ŷi − yi

(1 − gi)
(1.94)

= −(XT X)−1xiri / (1 − gi), (1.95)

and then

(m − k − 1)s2
(i)

=
(
y(i) − X(i)β̂(i)

)T (
y(i) − X(i)β̂(i)

)
(1.96)

= yT
(i)y(i) − β̂

T
(i)X

T
(i)y(i) (1.97)

= yT y− y2
i − β̂

T
(i)

(
XT y − xiyi

)
(1.98)

= yT y− y2
i − β̂

T (
XT y − xiyi

)
+

1

(1 − gi)

(
(XT X)−1xiri

)T (
XT y − xiyi

)
(1.99)

= yT y − β̂
T
XT y − y2

i + β̂
T
xiyi +

ri

(1 − gi)
(1.100)

(
xT

i (XT X)−1XT y − xT
i (XT X)−1xiyi

)

= (m − k)s2 − yi

(
yi − xT

i β̂
)

+
ri

(1 − gi)

(
xT

i β̂− giyi

)
(1.101)

= (m − k)s2 − yiri +
ri

(1 − gi)
(ŷi − giyi) (1.102)

= (m − k)s2 +
ri

(1 − gi)
(ŷi − giyi − yi + giyi) (1.103)
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= (m − k)s2 − r2
i

(1 − gi)
. (1.104)

The difference between the ith observation and the ith prediction obtained when the

ith observation is excluded in the estimation is used to examine whether the deletion of the

ith observation has a remarkable effect on prediction. This difference yi− ŷ(i) = yi−xT
i β̂(i)

has variance σ2
{

1 + xT
i (XT

(i)X(i))
−1xi

}
, which can be estimated by s2

(i). ŷ(i) and s2
(i) are

both independent of yi. The prediction of the ith observation that is obtained with the

ith observation deleted is ŷ(i)i and it is abbreviated to ŷ(i). The test statistic for testing

whether the ith observation is an outlier is the deletion residual, and it is defined as

r∗i =
yi − xT

i β̂(i)

s(i)

√
1 + xT

i (XT
(i)X(i))−1xi

=
ri

s(i)

√
(1 − gi)

, (1.105)

where the last equality is obtained by observing that

xT
i (XT

(i)X(i))
−1xi = xT

i (XT X)−1xi +
xT

i (XT X)−1xix
T
i (XT X)−1xi

1 − gi
(1.106)

= gi +
g2
i

1 − gi
(1.107)

=
gi

1 − gi
, (1.108)

and

xT
i β̂(i) = xT

i β̂−
xT

i (XT X)−1xiri

1 − gi
(1.109)

= ŷi −
giri

1 − gi
. (1.110)

It follows that

r(i) = yi − xT
i β̂(i) (1.111)

= ri +
giri

1 − gi
(1.112)

=
ri

1 − gi
. (1.113)

Thus it is easy to find the distribution of the deletion residual if there is no outlier, which

is given in the following result. This result is given in Atkinson [1], but the proof of the

result cannot be found in [1]. I give a proof after presenting the result.

Result 1.4.4 When Assumption 1.4.1 is satisfied for all observations, the deletion residual

r∗i has a central t distribution on m − k − 1 degrees of freedom.
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Proof.

Under Assumption 1.4.1, the vector of observations y has a multivariate normal distribution

y ∼ MVN(Xβ, σ2I),

and the vector of observations after deleting yi still has a multivariate normal distribution,

i.e.

y(i) ∼ MVN(X(i)β(i), σ2I). (1.114)

Because all yi’s are independent (Assumption 1.4.1 (2)), yi − xT
i β̂(i) still follows a normal

distribution with a mean

E
[
yi − xT

i β̂(i)

]
= E(yi) − xT

i (XT
(i)X(i))

−1XT
(i) · E(y(i)) (1.115)

= xT
i β − xT

i (XT
(i)X(i))

−1XT
(i)X(i)β(i) (1.116)

= xT
i β − xT

i β(i) = 0, (1.117)

and a variance

Var
[
yi − xT

i β̂(i)

]
= Var(yi) + xT

i (XT
(i)X(i))

−1XT
(i)

(
xT

i (XT
(i)X(i))

−1XT
(i)

)T
Var(y(i))

(1.118)

= σ2 + xT
i (XT

(i)X(i))
−1XT

(i)X(i)(X
T
(i)X(i))

−1xiσ
2Im−1 (1.119)

= σ2 + xT
i (XT

(i)X(i))
−1xiσ

2 (1.120)

= (1 + xT
i (XT

(i)X(i))
−1xi)σ

2. (1.121)

Thus zi =
yi−xT

i β̂(i)

σ
√

1+xT
i (XT X)−1xi

= 1
σ r(i)

√
1 − gi has a standard normal distribution. Then by

the Theorem 1.4.1, (m − p − 1)s2
(i)�σ2 has a central chi-square distribution with degrees

of freedom m − k − 1. Since (yi, β̂(i)) and s2
(i) are independent (Result 1.4.2 (3)), so are

zi and s2
(i). Thus, r∗i = zi

(m−p−1)s2
(i)

�σ2 has a central t distribution on m − k − 1 degrees of

freedom.

The central t distribution of r∗i when there is no outlier is a standard result presented in

many literature (for example [1]). However, if there is more than one outlier, the marginal

distribution of r∗i is not a central t distribution even if the ith observation is not an outlier.

I show this result by giving a proper distribution for outliers in Chapter 3.

The problem of identifying single outlier can be solved as a single hypothesis testing

problem by using the deletion residual as the test statistics.
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1.4.3 Review of methods for identifying multiple outliers in regression

In this subsection, I clarify the methods for identifying multiple outliers in regression

analysis that appears in the literature as “single-step”, “backward-search” and “forward-

search”. A single-step method identifies outliers in one step; a backward search starts

from the set of all the observations, and in each step examines the “outlyingness” of all

observations included and excludes the most extreme one; a forward search starts from a

subset of observations that excludes all outliers and in each step an observation is reincluded

by a certain rule. The word “outlyingness” means the plausibility that an observation is

an outlier and has been used in Atkinson, Riani and Cerioli [6] and Hadi and Simonoff

[45].

The method of identifying a single outlier, which is based on the deletion of a single

observation, is introduced in the previous section. The algebra of the deletion of a single

observation can be generalized to the deletion of a set of observations, and hence the dele-

tion residual calculated from multiple deletions can be used to test multiple outliers. The

multiple deletions is a single-step method which is also introduced in Cook and Weisberg

[25] and Atkinson [1]. When the number of outliers is small, for example two or three, the

number of deletion residuals that need to be calculated is moderate,
(
m
2

)
or
(
m
3

)
. However,

the number of outliers is usually unknown and small in real data sets. When m observa-

tions are included in the dataset, then
∑m′

i=1

(
m
i

)
hypotheses are need to be tested, where

m′ is a moderate number smaller than m. If the number of atypical observations are more

than that of typical observations, then typical observations become atypical. Therefore,

the number of outliers is usually smaller than or equal to m/2. Data coming from two

clusters of equal size is an example for m0 = m1, where m0 and m1 denote respectively

the number of typical observations and that of atypical observations [6]. When m and m1

are both large, it requires massive computation time to test all
∑m′

i=1

(
m
i

)
hypotheses.

Since the single step multiple deletion of Cook and Weisberg [25] and Atkinson [1] is

time consuming, one may consider to use multi-step methods instead. It is straightforward

to use single-case diagnostics backward, that is, include all observations for estimation

and identify potential outliers from most to least extreme (Prescott [70], Tietjen, Moore,

and Beckman [95]). Such methods are backward search methods. Hadi and Simonoff [44]

gave a review of early works of multi-step methods, but they did not distinguish forward
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methods from backwards methods. The methods using single-case diagnostics backward

are criticized for having the “masking” problem [48], that is, multiple outliers may hide

the effect of each other because including other outliers in parameter estimation may lead

to a small residual for one outlier [4, 5, 45]. Hawkins [49] suggested the forward search

that excludes all possible outliers and then tests excluded observations sequentially for

reinclusion. However, the starting data set and the test statistics for reinclusion were not

specified in [49]. On the other hand, the classical least square estimator is criticized for its

lack of robustness since a single outlier can have a large effect on the estimates. Rousseeuw

[78] proposed the least median of squares estimator which minimizes the median of the

squared residual, whereas the least square estimator minimizes the sum of the residual

squares.

Recently Atkinson [2] combined the least median of squares with forward search and

this method is introduced in detail in the books [3] and [6]. This forward search starts

from a small, robustly selected subset of observations which excludes all outliers. Then

the size of the subset used for estimating increases sequentially, and in each step, the

least extreme observation among those excluded is tested for outlyingness before being

reincluded. The search stops if the least extreme observation among those excluded is

declared significant at that step. A drawback of Atkinson’s forward search is the difficulty

in finding the distribution of the test statistic, which is used for testing outlyingness in

each step. Also an adjustment to multiplicity is needed for this step-wise procedure if

all outliers are tested simultaneously. Atkinson and Riani [5] introduced some methods

to approximate this distribution. They also addressed the simultaneous inference of their

methods in this article. There are also other forward search methods such as those of Hadi

[44] and Hadi and Simonoff [45]. All the methods mentioned so far are frequentist methods.

Many graphical methods and influence statistics such as plots of leverage and Cook’s D

are not mentioned in this thesis. These methods are introduced in many standard books,

for example, [1, 25, 26, 72].

Outliers usually have strong effects on parameter estimation and lead to wrong models.

If one is interested in minimizing the effects of outliers, then robustness of estimates need

to be studied. The primary purpose of the thesis is to construct an efficient method to

identify outliers rather than to study the robustness of estimates. The choice of explanatory

variable may also influence the results of deletion diagnostics. Since the main objective of
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the thesis is the identification of outliers, the effects of variable selection are not discussed

in this thesis.

1.4.4 ROC curves and AUC

In Chapter 3, Receiver Operating Characteristic (ROC) curves, which is also called (relative

operating characteristic curves), are used to present the simulation results. I give a brief

introduction of ROC analysis in this section. ROC analysis, which was original developed

in the field of radar signal detection theory in the 1950’s, has recently been used in medicine,

radiology, psychology [62, 69]. It is related to diagnostic decision making and provides tools

to compare the performance of different testing methods. The ROC curve is obtained

by plotting the true positive rate (TPR) versus false positive rate (FPR) for different

thresholds. Multiple testing can be treated as a decision making problem, where each test

is decided to be null or alternative. In the context of multiple testing, TPR is the proportion

of identified false nulls out of all false nulls, i.e. TPR = S
m1

(using symbols in Table 1.1

in Section 1.3.1), which is equal to the average power. TPR is also called sensitivity or

hit rate. In multiple testing, FPR is the proportion of true nulls that is claimed to be

alternative to the total number of true nulls, i.e. FPR = V
m0

(using symbols in Table 1.1 in

Section 1.3.1). FPR is also called false-alarm rate and 1-FPR is also called specificity. A

ROC curve does not depend on a specific selection of a decision threshold, and can describe

the performance of a method. The area under ROC curve (AUC ) can be interpreted as the

probability that the posterior probability of a false null being assigned false is higher than

that of a true null being assigned false, where a high value of the posterior probability of

a null being assigned false favors the decision to call the observation atypical [46, 62, 69].

Clearly if test A is uniformly better than test B in the sense that the ROC curve of A is

above that of B, then AUC of A is higher than that of B [69]. Although the converse is

not necessarily true, AUC can still be used to assess the overall performance of a testing

method.

1.5 Scope of the thesis

So far I have introduced the motivating examples, and stated the problems of multiple

hypothesis testing and the problem of multiple outlier identification. I have also reviewed
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the methods for solving these problems.

In Chapter 2, I discuss the FDR-controlling method of Benjamini and Hochberg [9],

the fixed rejection region method of Storey [89] and the adaptive FDR-controlling method

of Black [18], and carry out a clarifying comparison of the three methods. Simulation

studies involving a wider range of simulation parameters than those used in Storey [89] and

Black [18] are also presented in this chapter. All the computations in this thesis are done

by using the “R” language which can be downloaded from the open source “http://www.r-

project.org/” [71]. I find that the method of Storey [89] is not necessarily more powerful

than the original FDR-controlling method of Benjamini and Hochberg [9], contrary to

Storey’s claim, and the adaptive procedure of Black [18], which modifies the Benjamini

and Hochberg method to incorporate an estimate of the proportion of true nulls, is more

powerful than the method of Storey [89]. I also present a novel simulation study for a fair

comparison of the method of Benjamini and Hochberg [9] and the method of Storey [89] by

setting their parameters such that they both have the same true FDR, and then comparing

the respective powers. The results show that the former has superior power for the majority

of parameter values of my simulation.

In Chapter 3, I propose a Bayesian multiple testing approach, which is based on the

deletion residuals, to identify multiple outliers. I also prove a new result that the marginal

distribution of the deletion residual of an observation is a doubly noncentral t distribution

when there is more than one outlier by assuming a mean shift for outliers. By assuming

prior distributions for the proportion and the mean shift of outliers, I use an importance

sampling method to compute the marginal posterior probability that an observation is an

outlier given its deletion residual. This posterior probability can be used to measure the

outlyingness of an observation. The calculation of the posterior probabilities involves the

computation of the density of the doubly noncentral F distribution, which is approximated

by using the method of Patnaik [68]. In order to examine the accuracy of Patnaik’s

approximation, I also propose an algorithm to compute the density of the doubly noncentral

t distribution and compare the results obtained by using both methods. At the end of

this chapter, the proposed Bayesian method is applied to some simulated datasets. The

simulation parameters vary over a set of values, and various priors are employed to study

the sensitivity of the posteriors to the priors. For each combination of simulation and

prior parameter levels, the area under ROC curves is calculated. Then a factorial design
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study is carried out to compare the AUC for different levels of the simulation parameters

and prior parameters. The resulting AUC values are high for various choices of priors,

indicating that the proposed method can identify the majority of outliers with tolerable

error. The results of the factorial design analysis show that the choices of the priors do

not appreciably affect the marginal posterior probability that the ith observation is an

outlier given the ith deletion residual, as long as the sample size is not too small. Both

Patnaik’s approximation and the proposed algorithm are used to calculate the densities of

the doubly noncentral F distribution for one simulated dataset. The results show that the

densities calculated by the former are not far from those computed by the latter, but the

former is much faster than the latter.

In Chapter 4, one application of the Bayesian multiple outlier identification method

proposed in Chapter 3 is presented. The dataset given in Kanduc et al. [56] is analyzed

by using the proposed Bayesian method. Kanduc et al. [56] examined thirty proteomes

for amino acid sequence similarity to the human proteome. They also carried out a linear

regression analysis to the level of overlaps of the viral proteomes to the human proteome and

the size of viral proteome, and they concluded that three viruses, human T-lymphotropic

virus 1, Rubella virus, and hepatitis C virus, present the relatively highest number of

viral overlaps to the human proteome. Hereafter these three viruses will be referred to as

Kanduc et al. identified (KI) viruses. The goal is to identify the outliers in the levels of viral

overlaps to the human proteome. In order to study how sensitive the posterior distribution

is to the prior distributions, the marginal posterior probabilities that an observation is an

outlier given its deletion residual are calculated for the thirty viruses with several choices

of prior distributions. The results show that the four viruses with extremely large size

(Human herpesvirus 4, Human herpesvirus 6, Variola virus, and Human herpesvirus 5)

are more likely to be the outliers than the KI viruses. Hereafter these four viruses will be

referred to as the four extremely large (FEL) viruses. Among the other 26 viruses, the KI

viruses still cannot be rejected without other viruses being rejected. Then I remove the

FEL viruses and apply the proposed Bayesian method to the reduced dataset. The results

for the reduced dataset confirm the claim of Kanduc et al. [56]. Among the 26 viruses in

the reduced dataset, the FEL viruses and Lake victoria marburgvirus have the four largest

posterior probabilities of being outliers.

The conclusions and the ideas for future work are presented in the last chapter.
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Chapter 2

A clarifying comparison of methods for control-

ling the false discovery rate

2.1 Introduction

The goal of the traditional hypothesis test is to control the type I error rate below a fixed

predetermined level while maintaining high power. In multiple hypothesis testing, a well-

defined compound error rate plays the role of the single hypothesis type I error rate, and

average power is commonly employed as a criterion to compare the performance of two

procedures. The most commonly controlled error rate when testing multiple hypotheses

is the family-wise error rate (FWER), which is the probability of committing at least one

Type I error out of all the hypotheses tested. In some applications, for example, DNA

microarray experiments, one tests a large number of hypotheses simultaneously, while the

proportion of true null hypotheses is often high. In this situation one may tolerate more

than one false rejection, and thus FWER is considered to provide too strict a control.

As mentioned in Section 1.3.3, Benjamini and Hochberg [9] introduced the concept

of the false discovery rate (FDR), which offers a less strict multiple testing criterion

than FWER. They also proposed a step-up procedure (BH) that controls FDR, deter-

mining the rejection region as a function of the FDR. Storey [89] considered the FDR

arising from multiple testing with a fixed significance level and proposed an estimator of

the FDR which he showed to have positive bias. Choosing this significance level to control

the estimated FDR also controls the FDR. By simulation, Storey demonstrated that a

multiple testing procedure (FSL) with a fixed significance level could have higher power

than BH while controlling the FDR at the same level. It was pointed out by Black [18],

however, that the apparent advantage of Storey’s procedure was due to his incorporating

an estimate of π0, the proportion of true nulls. BH with target FDR equal to α actually
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controls the FDR at level π0α, so that it can be extremely conservative if π0 is small. Black

demonstrated that an adaptive procedure (AFDR) that adjusts BH for this conservatism

using Storey’s estimator of π0, π̂0, has power comparable to FSL. Storey et al. [94] inves-

tigated picking a data dependent significance level to control Storey’s [89] estimated FDR,

which is equivalent to BH when the target FDR is inversely proportional to π̂0. More

recently, Storey [91] has proposed an alternative method of dealing with multiplicity which

is based on the joint likelihood.

Readers of Storey [89] and Black [18] could be left with the impression that FSL is

always more powerful than BH and comparable in power to AFDR. In this chapter, I

clarify the relationship between BH and FSL and show analytically and graphically that

when the number of true alternatives is relatively small, then BH can reject more false null

hypotheses than FSL at the same estimated FDR. This observation seems to contradict

a claim made by Storey [89]. Moreover, the adaptive method of Black [18], AFDR, in all

cases rejects at least as many hypotheses as FSL and tends to be more powerful. I also

present simulation results comparing the power of BH and FSL when the actual FDR’s

are the same. Such a “fair” comparison of the procedures has already been published

by us in Yin et al. [101]. The results presented are for finite sample sizes m (not more

than 5000) since it is known in general (although under some mild assumptions) that the

random rejection threshold, Γ, for the BH procedure approaches a fixed rejection threshold

γ (dependent on α and π0) as m → ∞ (Genovese and Wasserman [38]; Storey et al. [94];

and most generally, Ferreira and Zwinderman [33]), that is BH is asymptotically equivalent

to FSL.

In Section 2.2 I present the basic concepts and notation for discussing the methods,

using the empirical distribution function of the p-values. In Section 2.3, I compare BH

and FSL and present simulation studies involving 100 and 1000 hypotheses. Section 2.4

proves that modifying BH to incorporate an estimate of π0 as in AFDR gives a more

powerful procedure than FSL. In Section 2.5, I carry out a simulation study for a fair

comparison of BH and FSL by setting their parameters such that they both have the

same true FDR, and then comparing the respective powers. A summary is presented in

Section 2.6.
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2.2 Concepts and Notation

Consider the problem of testing m null hypotheses h1,0, . . . , hm,0 simultaneously, of which

m0 are true nulls. The proportion of true null hypotheses is denoted by π0 = m0/m. Ben-

jamini and Hochberg [9] used R and V to denote respectively the total number of rejections

and the number of false rejections, and this notation has persisted in the literature. The

notations for all possible outcomes of the m test were given in Table 1.1.

Multiple testing procedures can be described in terms of the empirical distribution

functions of the p-values corresponding to the hypotheses h1,0, . . . , hm,0. As defined in

Section 1.3.1, let Hi be the indicator for the alternative hypothesis, i.e.

Hi = 0 if hi is true

and Hi = 1 if hi is false,
(2.1)

and define

F̂0(p) = m−1
m∑

i=1

(1 − Hi)1[0,p](Pi) (2.2)

F̂1(p) = m−1
m∑

i=1

Hi1[0,p](Pi), (2.3)

where 1[0,p] denotes the indicator function of the interval [0, p]. Define

F̂ = F̂0 + F̂1. (2.4)

Then the number of rejections at a significance level of γ is R = mF̂ (γ), and the number

of false discoveries is V = mF̂0(γ). As mentioned in Section 1.3.1, Storey [89] defined:

FDR = E(V/(R ∨ 1)). (2.5)

Given a fixed target α for an upper bound on the false discovery rate, BH can be described

as rejecting all hypotheses h(1),0, . . . , h(T ),0 where

T = max{1 ≤ t ≤ m : F̂ (P(t)) ≥ α−1P(t)}. (2.6)

Since F̂ is non-decreasing and right-continuous this is equivalent to rejecting all hypothe-

ses hi for which pi ≤ Γ, where the random threshold Γ is defined by

Γ = sup{p ∈ [0, 1] : F̂ (p) ≥ α−1p}. (2.7)
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The right-continuity of F̂ also guarantees that F̂ (p) = α−1p, and it follows that

FDR = αE

(
F̂0(Γ)

Γ

)
. (2.8)

Benjamini and Hochberg [9] proved that if the p-values corresponding to the true null

hypotheses are uniformly distributed and independent of each other and of the p-values

corresponding to the alternative hypotheses, then BH guarantees that FDR ≤ π0α where,

as defined previously, π0 = E(F̂0(1)) = F̂0(1) is the proportion of true null hypotheses

in the collection. Finner and Roters [34] proved under the same assumptions that in-

deed FDR = π0α. (For related results, see also Benjamini and Yekutieli [11]; Genovese

and Wasserman [38]; and Sarkar [81].)

Whereas under BH the rejection threshold Γ is a random variable, Storey [89] proposed

rejecting hypotheses for which Pi ≤ γ for a fixed pre-selected rejection threshold γ and

then estimating the FDR. Since

FDR = E

(
F̂0(γ)

F̂ (γ)

)
and E

(
F̂0(γ)

)
= π0γ (2.9)

for fixed γ, Storey proposed estimating the FDR by

F̂DRλ(γ) =
π̂0γ

F̂ (γ)
(2.10)

where

π̂0(λ) =
1 − F̂ (λ)

1 − λ
(2.11)

for some suitably chosen λ, provided that F̂ (γ) > 0. For the case of no rejections (F̂ (γ) =

0), Storey defined F̂DR = mπ̂0γ. Since 0 ≤ π0 ≤ 1, and 0 ≤ FDR ≤ 1, I truncate their

estimates, π̂0(λ) and F̂DR to one, should the formulas (2.10) and (2.11) result in values

exceeding 1.

The estimator (2.11), which has a positive bias, was proposed as a simple practical

solution by Bickis et al. [17], even though it was shown to have a slightly larger mean

squared error than another estimator used earlier by Bickis and Krewski [16]. Storey [89]

also introduced a bootstrap procedure to facilitate choosing λ. Such a bootstrapped esti-

mator of π0, however, need not have less bias than (2.11) in which λ is a predetermined

constant, as can be seen in Tables 2 and 3 of Black [18]. My own simulations shown in

Table 2.1 confirm that the bias of π̂0 is relatively insensitive to the choice of λ, and is not

reduced by bootstrapping.
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Given a fixed γ, Black [18] proposed, instead of FSL, implementing BH with the target

FDR set to the data-dependent value

α̂ = F̂DRλ(γ)/π̂0(λ) (2.12)

to obtain the adaptive FDR controlling procedure AFDR. This guarantees that

FDR = α̂π0 = F̂DRλ(γ) · π0/π̂0(λ), (2.13)

where I simply reject all the hypotheses should π̂0 = 0.

For a given target α, Storey et al. [94] proposed, instead of FSL, choosing the random

significance level Γ by

Γ = sup
{

0 ≤ p ≤ 1 : F̂DRλ(p) ≤ α
}

, (2.14)

which they show to be equivalent to BH with target level α in the case that π̂0(λ) is fixed

at 1 rather than being an estimator. They also prove (Storey et al. [94], Lemma 2) that

for

T = max{1 ≤ t ≤ m : F̂DRλ(P(t)) ≤ α), (2.15)

Γ as in (2.14) satisfies:

P(T ) ≤ Γ < P(T+1). (2.16)

(One can see this graphically as in Figure 2.1.) Thus a procedure which rejects all null

hypotheses, h(i), corresponding to the P(i) for i ≤ T is equivalent, in terms of the rejection

region, to one which rejects all null hypotheses corresponding to the P(i) ≤ Γ, i = 1, ..., m.

Hence the Storey et al. [94] procedure defined by (2.14) is equivalent to one, referred to

herein as αAFDR, in which the target FDR in BH is set to the data-dependent value

α̂ = α/π̂0(λ). (2.17)

For a fixed target α, αAFDR (and hence the Storey et al. [94] procedure) can be

shown to be equivalent to implementing AFDR with a data-dependent value of γ =

Γ∗. To see this, first note that F̂DRλ(γ) is a discontinuous function of γ, where the

jump discontinuities occur at the ordered p-values. Although the function is continuously

increasing between the jumps, it decreases at the jumps. Hence, if π̂0(λ) ≥ α then there

exists Γ∗ such that F̂DRλ(Γ∗) = α. For any such Γ∗, if γ = Γ∗ in AFDR, then clearly α̂ in

(2.12) and (2.17) are identical. Hence this gives a procedure which is equivalent to αAFDR
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Figure 2.1: Figure (a) shows a simulated example of Storey’s F̂DR (with λ = 0.5) as a
function of the significance level p. For this dataset π̂0 = 0.78. The p-values are shown
as o’s for the null case and x’s for the alternative. Figure (b) shows the magnification of
(a) for small p-values to show the relationship between the Storey et al. [94] procedure
and αAFDR. A target FDR of α = 0.13 corresponds to a significance level p = Γ for the
Storey et al. [94] procedure and a p-value, p = p(T ), for αAFDR. Both procedures reject
the same set of p-values. The vertical line at p = 0.01 corresponds to a fixed significance
level of γ = 0.01 in FSL which gives F̂DR = 0.13.
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and that of Storey et al. [94]. If π̂0(λ) < α then no such Γ∗ may exist. However, in this

case both AFDR and the Storey et al. [94] procedure would reject all hypotheses and in

that sense are equivalent. Similarly, given a fixed γ, AFDR is equivalent to implementing

αAFDR or Storey et al. [94] with a data-dependent α = F̂DRλ(γ).

Thus, there are a variety of proposed procedures and some relationships have been

established between them. However, further clarification of these relationships is possible.

Indeed, in the next section I clarify the relationship between BH and FSL.

2.3 Clarification of the relationship between BH and FSL

Storey explored the connection between the fixed error rate procedure BH and his proposed

fixed rejection region method FSL and concluded that “using the Benjamini and Hochberg

[9] method to control FDR at level α/π0 is equivalent to using the proposed method to

control FDR at level α” (Storey, [89, p. 485]). I find this statement to be inaccurate.

The method proposed in Storey [89] involves a fixed significance level γ followed by an

estimation of the FDR, F̂DRλ(γ), so it is unclear how the “proposed method” controls

the FDR. Storey’s simulations (which I have reproduced in Tables 2.2 and 2.3) compare

his proposed method, FSL, to BH with target level F̂DRλ(γ). However, these two methods

are not equivalent, even in the case π̂0 = 1. In this section, I prove that the two methods

do not agree with each other. Indeed, using the BH to control FDR at target level α/π0

can result in more rejections than using FSL, leading to a greater power.

A consequence of the results of Storey et al. [94] and my discussion of them in Section

2.2 is that BH with target level α is equivalent to αAFDR in the case that π̂0(λ) is fixed

at 1 (or equivalently λ is set to 0). Hence T from (2.6) satisfies

T = max
{

1 ≤ t ≤ m : F̂DR0

(
P(t)

)
≤ α

}
, (2.18)

where

F̂DR0(P(t)) =
π̂0(0) · P(t)

t/m
=

P(t)

t/m
, (2.19)

and I have used (2.10) and the fact that F̂ (P(t)) = t/m.

However, this procedure is not equivalent to FSL because F̂DR0(P(t)) is not a monotone

function of P(t). Suppose that, as prescribed by FSL, one rejects all p-values less than

or equal to a fixed rejection threshold γ, and obtains an estimate F̂DRλ(γ). Then choose
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α = F̂DR0(γ) in (2.18) and use (2.19) to obtain the number of rejections for BH as

T = max

{
1 ≤ t ≤ m :

P(t)

t
≤ γ

r

}
, (2.20)

where

r = max
{
1 ≤ t ≤ m : P(t) ≤ γ

}
(2.21)

is the number of rejections for FSL. Since, by the definition of r, P(r)/r ≤ γ/r, hence

T ≥ r. Indeed it is possible for T to be strictly greater than r and this is illustrated

in Figure 2.2 for a data set that yields, after truncation, π̂0(0.5) = 1 (this data set is the

same as that depicted in Figure (a)). For this example with γ = 0.01, FSL gives r = 2

rejections and one false discovery whereas BH has T = 13 rejections and 8 false discoveries.
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Figure 2.2: Figure (a) shows a simulated example of Storey’s F̂DR (with λ = 0.5) as a
function of the significance level p. This example is the same as that of Figure 2.4(a) and
gives π̂0 = 1.1 which is truncated to 1. The p-values are shown as o’s for the null case and
x’s for the alternative. Figure (b) shows the magnification of (a) for small p-values to show
the relationship between FSL and BH. The vertical line at p = 0.01 corresponds to the
fixed significance level γ for FSL which leads to F̂DR = 0.5. BH at this target level will
reject more hypotheses than FSL. The dashed vertical line labelled BH denotes the line
p = p(T ) where T defines the rejection region for BH.

I have thus proved:

Result 2.3.1 When π̂0 ≥ 1, BH rejects at least as many hypotheses as FSL, and is

therefore at least as powerful while controlling the FDR at the same level.
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Storey [89] performed a numerical study to compare FSL with BH. In this sim-

ulation, m = 1000 data were generated independently from a simple null distribution

N(0, 1) and a simple alternative distribution N(µ, 1), µ = 2 with π0 varying over the range

0.1, 0.2, · · · , 0.9. For each observation zi, the p-value was defined as Pi = 1−Φ(zi), where

Φ denotes the standard normal distribution. Two different rejection thresholds γ = 0.01

and γ = 0.001 for FSL were used in this simulation. The procedure was performed for

each value of π0 and γ over 1000 replications, and the empirical power and F̂DRλ(γ) were

calculated. Throughout this simulation λ was set to a constant 0.5. To make the perfor-

mance of the two procedures comparable, BH was implemented at target level F̂DRλ(γ),

which is a conservative estimate of the true FDR. In this set-up, the two procedures control

the FDR at the same level. The average powers of the two methods over 1000 iterations

were reported, suggesting that FSL may be more powerful than BH over all combinations

of γ and π0.

However, for a better comparison of the two procedures, one should consider the effect

of m, the number of hypotheses. Moreover, the largest π0 considered by Storey is 0.9,

which may be too low for some situations such as those involving microarray data. In such

situations thousands of hypotheses need to be tested, but most of them are expected to be

true nulls. Thus I implemented a simulation study with the same set-up as Storey for two

different sample sizes, m = 100 and m = 1000, but for m = 1000, I also considered more

extreme values of π0, i.e., 0.95 and 0.99. I also performed simulations with µ = 1, and also

with γ = 0.0005 and γ = 0.0001 for both values of µ. In this study I truncated π̂0 at 1 in

the calculation of F̂DRλ(γ).

Storey [89] also proposed a bootstrap approach to estimate the optimal λ which mini-

mizes the mean square error of the estimate. Black [18] argued that the bootstrap method

may underestimate π0 and thus results in an underestimate of FDR. Storey and Tibshi-

rani [93] used a spline method to estimate π0. I firstly compare the estimates of π0 by

using different methods. Table 2.1 presents the simulation estimates of π0 for µ = 2,

m = 1000, γ = 0.01 and selected values of π0 by using different methods to calculate λ. In

the second and third columns, λ is fixed, while in the last two columns, λ is respectively

calculated by using the bootstrap method of Storey [89] and the spline method of Storey

and Tibshirani [93]. The results show that the bootstrap method underestimates π0 and

produces a larger bias than using a fixed λ or the spline method, whereas the estimates of
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π0 by using a fixed λ and by using the spline method are close and are not very different

from the true values. I do not therefore examine the optimal λ further in this thesis, but

rather set λ = 0.5, the value used in Section 5 of Storey [89].

π0 λ = 0.5 λ = 0.9 bootstrap spline

0.99 0.990 0.992 0.916 0.993

0.95 0.952 0.951 0.883 0.951

0.9 0.904 0.901 0.839 0.900

0.8 0.809 0.801 0.750 0.798

Table 2.1: Simulation estimates of π0 by using different estimates of λ for m = 1000,
µ = 2, γ = 0.01 and selected values of π0. The first column list the selected value of π0;
the second and third columns respectively are π̂0 when λ is fixed to be 0.5 and 0.9; the
last two columns present π̂0 when λ is calculated by using the bootstrap method of Storey
[89] and the spline method of Storey and Tibshirani [93].

Tables 2.2 and 2.3 show the simulation results for m = 1000, and m = 100, respectively,

for µ = 2, and γ = 0.01 and γ = 0.001; Tables 2.4 and 2.5 show the simulation results

for m = 1000, and m = 100, respectively, for µ = 2, and γ = 0.0005 and γ = 0.0001;

Tables 2.6 and 2.7 show the simulation results for m = 1000, and m = 100, respectively,

for µ = 1, and γ = 0.01 and γ = 0.001; Tables 2.8 and 2.9 show the simulation results for

m = 1000, and m = 100, respectively, for µ = 1, and γ = 0.0005 and γ = 0.0001.

For π0 varying from 0.1 to 0.9 in Tables 2.2 and 2.3, the results are similar to those

reported by Storey [89], with the average power of FSL being greater than that of BH.

For π0 = 0.95 and 0.99 in Table 2.2 and π0 = 0.9 in Table 2.3, an opposite result appears,

that is, the average power of BH over the 1000 iterations is greater than that of FSL.

This result can also be observed for π0 = 0.9, 0.95, 0.99, µ = 2, m = 1000 and γ = 0.0005

and 0.0001 in Table 2.4, π0 = 0.7, 0.8, 0.9, µ = 2, m = 100 and γ = 0.0005 and 0.0001 in

Table 2.5, π0 = 0.9, γ = 0.01, µ = 1, m = 1000 and π0 = 0.6, 0.7, 0.8, 0.9, γ = 0.001, µ = 1,

m = 1000 in Table 2.6, π0 = 0.5, 0.6, 0.7, 0.8, 0.9, µ = 1, m = 100 and γ = 0.01 and 0.001

in Table 2.7, π0 = 0.5, 0.6, 0.7, 0.8, 0.9, µ = 1, m = 1000 and γ = 0.0005 and 0.0001 in

Table 2.8, and π0 = 0.9, µ = 1, m = 100 and γ = 0.0005 and 0.0001 in Table 2.8. As

the rejection threshold γ becomes smaller or the distance between null and alternative

distributions becomes smaller, the result that the average power of BH over the 1000

iterations is greater than that of FSL occurs for a larger range of π0, except for extreme

small γ and µ = 1 and m = 100. When µ = 1 and m = 100 and γ = 0.0005 and 0.0001,
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FDR Power

BH FSL AFDR BH FSL AFDR #{RFSL < RBH}
π0 γ = 0.01

0.1 0.0004 0.003 0.003 0.073 0.372 0.373 0

0.2 0.001 0.007 0.007 0.121 0.372 0.373 0

0.3 0.004 0.011 0.011 0.164 0.372 0.373 0

0.4 0.008 0.018 0.018 0.202 0.372 0.374 0

0.5 0.013 0.026 0.026 0.236 0.372 0.374 0

0.6 0.024 0.039 0.039 0.267 0.372 0.375 0

0.7 0.041 0.059 0.060 0.295 0.372 0.375 0

0.8 0.077 0.097 0.099 0.321 0.373 0.379 0

0.9 0.175 0.194 0.202 0.347 0.372 0.385 11

0.95 0.334 0.335 0.365 0.376 0.372 0.403 241

0.99 0.827 0.719 0.837 0.599 0.376 0.618 743

π0 γ = 0.001

0.1 0.00005 0.0007 0.0008 0.017 0.138 0.140 0

0.2 0.0004 0.002 0.002 0.031 0.138 0.140 0

0.3 0.001 0.003 0.003 0.045 0.138 0.140 0

0.4 0.002 0.005 0.005 0.059 0.138 0.141 0

0.5 0.004 0.007 0.007 0.073 0.137 0.141 0

0.6 0.007 0.010 0.011 0.086 0.137 0.142 0

0.7 0.011 0.015 0.016 0.099 0.137 0.143 0

0.8 0.022 0.027 0.030 0.112 0.136 0.146 3

0.9 0.058 0.060 0.069 0.135 0.137 0.157 140

0.95 0.142 0.119 0.154 0.171 0.136 0.183 422

0.99 0.64 0.37 0.65 0.48 0.137 0.49 688

Table 2.2: Simulation estimates of FDR and power for BH, FSL, and AFDR for
m = 1000, λ = 0.5, µ = 2 and γ = 0.01, 0.001. The final column gives the number of
simulations (out of 1000) in which FSL rejected fewer hypotheses than BH. Standard
errors are no larger in order of magnitude than the last significant figure reported.
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FDR Power

BH FSL AFDR BH FSL AFDR #{RFSL < RBH}
π0 γ = 0.01

0.1 0.0007 0.003 0.003 0.080 0.372 0.383 0

0.2 0.002 0.007 0.007 0.127 0.372 0.384 0

0.3 0.004 0.012 0.013 0.169 0.372 0.386 0

0.4 0.008 0.018 0.019 0.206 0.372 0.389 0

0.5 0.013 0.026 0.028 0.241 0.373 0.394 0

0.6 0.023 0.039 0.043 0.270 0.373 0.398 0

0.7 0.039 0.058 0.067 0.300 0.374 0.409 6

0.8 0.081 0.095 0.117 0.338 0.372 0.425 90

0.9 0.235 0.189 0.276 0.441 0.372 0.496 350

π0 γ = 0.001

0.1 0 0.001 0.001 0.025 0.138 0.154 0

0.2 0.0006 0.002 0.003 0.040 0.138 0.157 0

0.3 0.0009 0.004 0.005 0.054 0.139 0.160 0

0.4 0.001 0.005 0.007 0.068 0.139 0.164 1

0.5 0.002 0.007 0.010 0.084 0.140 0.170 11

0.6 0.006 0.010 0.015 0.101 0.139 0.178 36

0.7 0.013 0.014 0.024 0.127 0.138 0.193 132

0.8 0.029 0.024 0.040 0.160 0.139 0.209 267

0.9 0.064 0.045 0.073 0.181 0.137 0.203 290

Table 2.3: Simulation estimates of FDR and power for BH, FSL, and AFDR for
m = 100, λ = 0.5, µ = 2 and γ = 0.01, 0.001. The final column gives the number of
simulations (out of 1000) in which FSL rejected fewer hypotheses than BH. Standard
errors are no larger in order of magnitude than the last significant figure reported, the
largest SE being 7 × 10−3.
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FDR Power

BH FSL AFDR BH FSL AFDR #{RFSL < RBH}
π0 γ = 0.0005

0.1 0.0002 0.0005 0.0005 0.011 0.098 0.101 0

0.2 0.0003 0.001 0.001 0.020 0.098 0.101 0

0.3 0.0006 0.002 0.002 0.031 0.098 0.101 0

0.4 0.001 0.003 0.003 0.040 0.098 0.101 0

0.5 0.002 0.005 0.005 0.051 0.098 0.102 0

0.6 0.004 0.007 0.008 0.060 0.097 0.103 0

0.7 0.008 0.011 0.011 0.070 0.097 0.104 0

0.8 0.015 0.018 0.021 0.079 0.097 0.107 12

0.9 0.045 0.042 0.052 0.101 0.097 0.120 208

0.95 0.116 0.085 0.123 0.137 0.097 0.146 472

0.99 0.41 0.250 0.42 0.187 0.096 0.193 516

π0 γ = 0.0001

0.1 0.0002 0.0002 0.0001 0.004 0.043 0.046 0

0.2 0.0004 0.0005 0.0005 0.008 0.043 0.046 0

0.3 0.0002 0.0009 0.0009 0.012 0.043 0.046 0

0.4 0.0007 0.001 0.002 0.016 0.043 0.047 0

0.5 0.001 0.002 0.002 0.021 0.043 0.047 0

0.6 0.002 0.003 0.003 0.026 0.042 0.048 0

0.7 0.003 0.005 0.005 0.030 0.042 0.050 7

0.8 0.008 0.009 0.010 0.038 0.042 0.054 100

0.9 0.028 0.022 0.032 0.058 0.042 0.067 414

0.95 0.056 0.040 0.062 0.067 0.041 0.072 474

0.99 0.092 0.078 0.094 0.053 0.041 0.054 117

Table 2.4: Simulation estimates of FDR and power for BH, FSL, and AFDR for
m = 1000, λ = 0.5, µ = 2 and γ = 0.0005, 0.0001. The final column gives the number
of simulations (out of 1000) in which FSL rejected fewer hypotheses than BH. Standard
errors are no larger in order of magnitude than the last significant figure reported.
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FDR Power

BH FSL AFDR BH FSL AFDR #{RFSL < RBH}
π0 γ = 0.0005

0.1 0 0.0007 0.001 0.018 0.097 0.119 0

0.2 0 0.001 0.002 0.029 0.098 0.122 0

0.3 0.0007 0.002 0.003 0.040 0.098 0.127 2

0.4 0.001 0.003 0.005 0.051 0.098 0.131 10

0.5 0.002 0.003 0.007 0.064 0.099 0.139 28

0.6 0.005 0.005 0.010 0.082 0.098 0.145 94

0.7 0.008 0.007 0.016 0.102 0.097 0.153 182

0.8 0.016 0.012 0.027 0.121 0.097 0.153 280

0.9 0.034 0.025 0.039 0.121 0.095 0.134 208

π0 γ = 0.0001

0.1 0 0.0003 0.0007 0.008 0.043 0.069 0

0.2 0 0.0005 0.0008 0.014 0.043 0.070 0

0.3 0.0001 0.0007 0.001 0.019 0.043 0.071 8

0.4 0.0001 0.001 0.002 0.025 0.043 0.072 33

0.5 0.0001 0.001 0.002 0.032 0.043 0.073 64

0.6 0.0004 0.001 0.002 0.039 0.043 0.070 122

0.7 0.0008 0.002 0.004 0.045 0.042 0.066 151

0.8 0.002 0.003 0.004 0.050 0.043 0.062 139

0.9 0.004 0.006 0.006 0.047 0.042 0.051 59

Table 2.5: Simulation estimates of FDR and power for BH, FSL, and AFDR for
m = 100, λ = 0.5, µ = 2 and γ = 0.0005, 0.0001. The final column gives the number
of simulations (out of 1000) in which FSL rejected fewer hypotheses than BH. Standard
errors are no larger in order of magnitude than the last significant figure reported, the
largest SE being 4 × 10−3.
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FDR Power

BH FSL AFDR BH FSL AFDR #{RFSL < RBH}
π0 γ = 0.01

0.1 0.004 0.012 0.013 0.013 0.092 0.099 0

0.2 0.010 0.026 0.028 0.018 0.092 0.100 0

0.3 0.022 0.044 0.046 0.024 0.092 0.101 0

0.4 0.040 0.068 0.072 0.031 0.092 0.103 0

0.5 0.064 0.099 0.104 0.038 0.092 0.105 0

0.6 0.100 0.141 0.152 0.046 0.091 0.109 1

0.7 0.161 0.204 0.223 0.056 0.091 0.117 13

0.8 0.276 0.306 0.340 0.075 0.091 0.133 98

0.9 0.522 0.496 0.572 0.151 0.091 0.206 484

π0 γ = 0.001

0.1 0.001 0.006 0.007 0.003 0.018 0.028 0

0.2 0.005 0.012 0.014 0.004 0.018 0.029 0

0.3 0.011 0.021 0.026 0.006 0.018 0.031 2

0.4 0.024 0.033 0.040 0.008 0.018 0.034 13

0.5 0.036 0.050 0.062 0.012 0.018 0.037 39

0.6 0.059 0.072 0.094 0.019 0.018 0.045 112

0.7 0.114 0.107 0.155 0.036 0.018 0.064 285

0.8 0.237 0.174 0.277 0.093 0.018 0.126 516

0.9 0.485 0.31 0.518 0.26 0.018 0.30 693

Table 2.6: Simulation estimates of FDR and power for BH, FSL, and AFDR for
m = 1000, λ = 0.5, µ = 1 and γ = 0.01, 0.001. The final column gives the number of
simulations (out of 1000) in which FSL rejected fewer hypotheses than BH. Standard
errors are no larger in order of magnitude than the last significant figure reported.
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FDR Power

BH FSL AFDR BH FSL AFDR #{RFSL < RBH}
π0 γ = 0.01

0.1 0.005 0.012 0.015 0.026 0.092 0.151 6

0.2 0.014 0.026 0.036 0.036 0.092 0.163 18

0.3 0.027 0.047 0.061 0.046 0.093 0.169 31

0.4 0.044 0.068 0.094 0.066 0.093 0.186 73

0.5 0.071 0.097 0.138 0.094 0.093 0.207 151

0.6 0.131 0.142 0.207 0.135 0.092 0.239 265

0.7 0.227 0.201 0.311 0.207 0.092 0.301 397

0.8 0.398 0.29 0.467 0.32 0.092 0.40 533

0.9 0.671 0.43 0.707 0.51 0.090 0.57 694

π0 γ = 0.001

0.1 0.003 0.007 0.010 0.008 0.019 0.052 27

0.2 0.005 0.013 0.020 0.011 0.019 0.049 47

0.3 0.009 0.019 0.030 0.013 0.019 0.046 83

0.4 0.014 0.025 0.037 0.017 0.019 0.043 111

0.5 0.018 0.029 0.046 0.020 0.019 0.039 134

0.6 0.030 0.038 0.060 0.022 0.019 0.035 139

0.7 0.041 0.046 0.064 0.022 0.019 0.031 116

0.8 0.056 0.059 0.075 0.024 0.019 0.028 88

0.9 0.077 0.076 0.085 0.022 0.018 0.023 48

Table 2.7: Simulation estimates of FDR and power for BH, FSL, and AFDR for
m = 100, λ = 0.5, µ = 1 and γ = 0.01, 0.001. The final column gives the number of
simulations (out of 1000) in which FSL rejected fewer hypotheses than BH. Standard
errors are no larger in order of magnitude than the last significant figure reported.
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FDR Power

BH FSL AFDR BH FSL AFDR #{RFSL < RBH}
π0 γ = 0.01

0.1 0.001 0.005 0.006 0.002 0.011 0.024 4

0.2 0.005 0.011 0.014 0.004 0.011 0.026 11

0.3 0.010 0.019 0.024 0.005 0.011 0.029 29

0.4 0.022 0.030 0.039 0.009 0.011 0.035 68

0.5 0.038 0.044 0.060 0.015 0.011 0.041 142

0.6 0.064 0.060 0.093 0.022 0.011 0.049 250

0.7 0.115 0.084 0.152 0.039 0.011 0.067 398

0.8 0.208 0.134 0.246 0.050 0.011 0.077 577

0.9 0.350 0.21 0.381 0.048 0.011 0.059 630

π0 γ = 0.001

0.1 0.001 0.001 0.005 0.002 0.003 0.020 51

0.2 0.004 0.005 0.012 0.002 0.003 0.019 90

0.3 0.008 0.009 0.019 0.003 0.003 0.018 155

0.4 0.016 0.017 0.029 0.004 0.003 0.016 221

0.5 0.023 0.023 0.039 0.005 0.003 0.014 266

0.6 0.032 0.030 0.051 0.006 0.003 0.012 297

0.7 0.045 0.038 0.059 0.005 0.003 0.009 268

0.8 0.063 0.056 0.074 0.005 0.003 0.007 209

0.9 0.079 0.073 0.086 0.004 0.003 0.005 101

Table 2.8: Simulation estimates of FDR and power for BH, FSL, and AFDR for
m = 1000, λ = 0.5, µ = 1 and γ = 0.0005, 0.0001. The final column gives the number
of simulations (out of 1000) in which FSL rejected fewer hypotheses than BH. Standard
errors are no larger in order of magnitude than the last significant figure reported.
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FDR Power

BH FSL AFDR BH FSL AFDR #{RFSL < RBH}
π0 γ = 0.01

0.1 0.001 0.004 0.005 0.005 0.011 0.026 12

0.2 0.002 0.006 0.009 0.006 0.011 0.024 23

0.3 0.003 0.009 0.014 0.007 0.011 0.023 36

0.4 0.007 0.011 0.016 0.009 0.011 0.021 46

0.5 0.009 0.011 0.017 0.010 0.012 0.019 62

0.6 0.015 0.016 0.019 0.011 0.011 0.017 65

0.7 0.020 0.019 0.023 0.012 0.012 0.016 48

0.8 0.022 0.022 0.024 0.013 0.012 0.015 40

0.9 0.037 0.033 0.038 0.012 0.011 0.013 19

π0 γ = 0.001

0.1 0 0.002 0.001 0.001 0.003 0.005 0

0.2 0 0.003 0.001 0.002 0.003 0.004 1

0.3 0 0.003 0.002 0.002 0.003 0.004 3

0.4 0.001 0.004 0.003 0.002 0.003 0.004 6

0.5 0.001 0.004 0.003 0.002 0.003 0.004 8

0.6 0.002 0.004 0.003 0.003 0.003 0.004 7

0.7 0.003 0.005 0.004 0.003 0.003 0.004 2

0.8 0.003 0.005 0.004 0.003 0.003 0.004 3

0.9 0.005 0.007 0.006 0.003 0.002 0.003 3

Table 2.9: Simulation estimates of FDR and power for BH, FSL, and AFDR for
m = 100, λ = 0.5, µ = 1 and γ = 0.0005, 0.0001. The final column gives the number
of simulations (out of 1000) in which FSL rejected fewer hypotheses than BH. Standard
errors are no larger in order of magnitude than the last significant figure reported.
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both power and FDR become very small and are similar for BH and FSL.

The last columns of Tables 2.2 – 2.9 list the numbers of iterations where FSL rejects

fewer hypotheses than BH. Notably, when m = 100, µ = 1, π0 = 0.9, and γ = 0.01,

there are 694 out of 1000 data sets in which there are more rejections by BH than FSL.

Although one might wonder about the practical use of FDR’s as high as the ones found

for π0 = 0.99 in Table 2.2, it should be noted that such large FDR’s are what is required

to achieve appreciable power. In this case especially, the power of BH substantially ex-

ceeds that of FSL. These results refute Storey’s statement “using my approach, I reject a

greater number of hypotheses while controlling the same error rate, which leads to greater

power” (Storey, [89, p. 485]).

Figure 2.3 shows how the significance level γ affects the realized FDR and power for an

extreme value of π0 = 0.99 and various values of m and µ. The sample size and the mean

of the alternative distribution vary in Figure 2.3 as: (a) m = 1000 and µ = 2; (b) m = 100

and µ = 2; (c) m = 1000 and µ = 1; (d) m = 100 and µ = 1. In all plots of Figure 2.3

I see that appreciable power can only be achieved at the cost of a high FDR, and that

for a given γ, BH has both higher FDR and higher power than FSL. For a given FDR,

it can also be seen that BH has higher power than FSL, whereas the behavior of BH

and AFDR are very similar. I explore the relationship between BH and FSL further in

Section 2.5.

Since BH tends to reject more hypotheses than FSL when the relative number of

alternatives is small, I look at two specific data sets in which m = 100 and π0 = 0.9.

Figure 2.4 (a) and (b) show the p-value empirical distribution plots for two simulated data

sets in which π̂0 = 1.1 and π̂0 = 0.76, respectively. I truncated π̂0 if it was greater than

one, and obtained F̂DR0.5(0.01) equal to 0.5 and 0.38, respectively, for the two data sets.

The lower ends of the two plots are magnified in Figures 2.4 (c) and (d), which each shows

the critical value for FSL of γ = 0.01 as well as the BH critical line of slope α−1, where

following Storey [89], α is set to F̂DR0.5(0.01). I see that BH rejects 13 and 16 p-values

for the two data sets, of which 5 and 6 are true alternatives, respectively. However, FSL

rejects only two hypotheses in each data set, of which one and two are true alternatives,

respectively. This demonstrates:

Result 2.3.2 There exist data sets for which BH rejects more hypotheses than FSL, for

both π̂0 ≥ 1 and π̂0 < 1.
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Figure 2.3: Relationship between power and false discovery rate for three methods. (a)
µ = 2, m = 1000, π0 = 0.99; (b) µ = 2, m = 100, π0 = 0.99; (c) µ = 1, m = 1000, π0 = 0.99;
(d) µ = 1, m = 100, π0 = 0.99. The plotted points for each γ are based on 1000 simulated
data sets, each consisting of 1000 p-values.
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Storey [89] stated that the two procedures are equivalent if the most conservative

estimate π̂0 = 1 is taken. If this statement were true, then the two procedures should have

rejected the same number of hypotheses for the two cases, which contradicts my results.

Therefore, the two methods are not equivalent.

Since the advantage of BH over FSL is most notable for large π0, it might be expected

that the data sets in which BH rejects more hypotheses would tend to be those for which

π̂0 ≥ 1. A boxplot of π̂0 (before truncation) of the data sets for which BH rejects more

hypotheses than FSL is shown in Figure 2.5. It is interesting that a large percentage of

values of π̂0 are strictly less than 1.

It is not hard to see that if Pr{P ≤ λ} > λ under the alternative, and the p-values are

independent, then Pr{π̂0 > 1} is an increasing function of π0. Indeed the event

{π̂0 > 1} =

{
m∑

i=0

Xi < mλ

}
(2.22)

where Xi is the indicator of {Pi ≤ λ}. Let us order the Xi’s such that the first m0 are

nulls and the remainder are alternatives, and write

Pr{π̂0 > 1} = Pr



Xm0+1 +

∑

i6=m0+1

Xi < mλ



 . (2.23)

Changing one of the alternatives to a null amounts to changing the distribution of Xm0+1

to the null distribution, which is stochastically smaller than the alternative. It thus follows

that the sum Xm0+1 +
∑

i6=m0+1 Xi also is stochastically smaller and thus Pr{π̂0 > 1} is

increased.

Thus I have shown that:

Result 2.3.3 The higher the true proportion of nulls, the greater the probability that π̂0 > 1.

2.4 The adaptive FDR controlling procedure

In this section I prove that incorporating the estimate π̂0 in BH leads to rejecting at least

as many hypotheses as with the fixed rejection region method FSL while controlling FDR

at the same level.

Given a fixed γ, suppose that r is defined as in (2.21). AFDR, as defined in Section
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Figure 2.4: Empirical distribution plots of p-values calculated from two datasets with
m = 100, of which 90 are simulated from N(0, 1) and 10 are simulated from N(2, 1). The
upper two graphs (a) and (b) show the diagonal lines corresponding to the null distribution.
The lower two graphs (c) and (d) magnify respectively the lower ends of plots (a) and (b)
to show the rejection regions of FSL (solid vertical line) and BH (diagonal line). The
p-values are shown as o’s for the null case and x’s for the alternative. The dashed vertical
line indicates the value of the largest rejected p-value.
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Figure 2.5: Boxplot of untruncated π̂0 for the cases in which BH rejects more hypotheses
than FSL.

2.2 (cf. equation (2.12)), rejects h(1), · · · , h( T ) such that

T = max

{
1 ≤ t ≤ m : P(t) ≤

F̂DRλ(γ) · t
mπ̂0

}
. (2.24)

Since if r = 0, neither AFDR nor FSL rejects any hypotheses, I only consider the cases

where r > 0. Since

F̂DRλ(γ) =
π̂0γ

r/m
, (2.25)

therefore

T = max

{
1 ≤ t ≤ m : P(t) ≤ γ

t

r

}
. (2.26)

Because P(r) ≤ γ = γ( r
r ), then T ≥ r, proving:

Result 2.4.1 At least as many hypotheses are rejected by AFDR as by FSL.

Black [18] reported a discrepancy between his simulations and Storey’s claims, but

attributed these to “various inaccuracies in the estimates of π0 and FDR(γ)” (Black [18,

p. 300]). However, these differences can in fact be explained by Result 2.4.1. Indeed it

is possible for T to be strictly greater than r and this is illustrated in Figure 2.1 (b) for

one data set. For this example m = 100, π0 = 0.9, µ = 2. Figure 2.1 (b) shows that for

γ = 0.01, F̂DR0.5(0.01) = 0.13 and FSL gives r = 6 rejections and 2 false discoveries

whereas AFDR has T = 8 rejections and 3 false discoveries.
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To illustrate this phenomenon further, I also present simulation results to compare

AFDR with FSL by using the same set-up described in Section 2.4. The results are

shown in Table 2.2 - Table 2.9 for two different sample sizes and two different means of

alternative distribution and four different rejection thresholds. Overall, I observed the

adaptive method to be more powerful than FSL for the combinations of simulation pa-

rameters used, with the advantage becoming appreciable for large π0. Closer alternatives

(µ = 1) displayed a greater advantage for AFDR over FSL. The same pattern was seen

for γ = 0.0005 and γ = 0.0001 although all the powers were less than 0.1 with such

small values of γ.

2.5 A fair comparison of BH and FSL

In Section 2.3, I performed a simulation study to compare BH with FSL. I first used

FSL to calculate F̂DRλ(γ), and then performed BH with the target FDR at F̂DRλ(γ).

As shown in Tables 2.2 - 2.9, the actual FDR’s of the two methods differ, making the

comparison unfair. Although π0 and the true FDR are unknown when the procedures are

applied to a real data set, I can calculate them in the case of a simulation. Thus a fair

comparison, in which the two methods produce exactly the same FDR, is possible.

I generated data from a simple null distribution N(0, 1) and a simple alternative dis-

tribution N(µ, 1), with µ ∈ {0.1, 0.5, 1, 1.5, 2, 3, 5}. The proportion of true nulls π0 also

varied over the range 0.1, 0.2, · · · , 0.9. For each case, the sample size m was set to be 100,

1000, or 5000 and different fixed rejection thresholds γ = 0.2, 0.1, 0.05, 0.01, 0.005, 0.001

were used. For each combination of the parameters, I computed the power of FSL as

Φ
(
Φ−1(γ) + µ

)
as well as the true FDR (called SFDR) by

SFDR =

m0∑

v=1

m1∑

s=0

(
m0

v

)(
m1

s

)
v

v + s
γv(1 − γ)m0−vδs(1 − δ)m1−s (2.27)

where δ = Φ
(
Φ−1(γ) + µ

)
. Then BH was performed at target level SFDR/π0 on 1000 repli-

cations of m simulated p-values, giving the same true FDR as that of FSL at significance

level γ. For each simulation, the power was estimated as the proportion of false hypothe-

ses that were rejected, and this power was averaged over the 1000 replications to give

the empirical power of BH. The advantage of BH over FSL was then measured by the

difference

empirical power of BH − power of FSL.
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Figure 2.6 (a) and (b) shows the power difference versus µ when m = 1000 and m = 100,

respectively. In both graphs, the powers of the two procedures are very close when the

distance between the alternative and the null distributions is large. However, when the

distance is small, BH in most cases outperforms FSL, although there are some cases for

which FSL had slightly larger power than BH. The numerical results of m = 100 are

similar to those of m = 1000, but with an even greater power difference in favour of BH.

In Figure 2.7 and 2.8 the power difference and µ are plotted respectively for m = 1000 and

m = 100, and various γ and π0. When γ is small, the performance of the two methods is

almost identical for all µ and π0. However, BH yields greater power than FSL in cases

with large π0, which is, for example, typical of microarray experiments.
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Figure 2.6: The power advantage of BH over FSL when the true FDR is fixed at the
same level, showing how it relates to the separation µ between the null and alternative
distributions. The points represent various choices of γ and π0 as described in the text,
with m fixed at 1000 in (a) and 100 in (b).

To examine the effects of increasing numbers of hypotheses I compared my finite-

sample simulations with the asymptotic results of Ferreira and Zwinderman [33]. Because

more hypotheses require a stronger adjustment for multiplicity, power will decrease with

increasing m. In Figure 2.9 – 2.11 I have plotted the power of BH against the true FDR

for several values of m, µ, and π0. The values of m are indicated as numbers in each plot

of Figure 2.9 – 2.11, the values of µ and π0 are shown in the subtitle of every graph in
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Figure 2.7: The difference between the powers of the two methods versus µ for m = 1000
and a range γ’s. In each graph, the numbers 1, 2, · · · , 9 represent the powers for π0 =
0.1, 0.2, · · · , 0.9, respectively.
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Figure 2.8: The difference between the powers of the two methods versus µ for m = 100
and a range γ’s. In each graph, the numbers 1, 2, · · · , 9 represent the powers for π0 =
0.1, 0.2, · · · , 0.9, respectively.
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Figure 2.9 – 2.11. Note that for close alternatives and large π0, the asymptotic power is

very low, but for a small number of hypotheses (m = 100) the power can be improved if

one is willing to accept a high FDR. At µ = 1.5 and π0 = 0.9 I see that power is roughly

equal to FDR for all values of m. One can also note that not only is the power substantially

higher when π0 is small, but it also depends less on m. As would be expected, the power

increases substantially for large µ, and graphs in Figure 2.11 indicate that in such cases

the power is not much affected by changes in m.

2.6 Discussion

In this chapter I compared the original FDR-controlling method of Benjamini and Hochberg

with the fixed rejection region method of Storey and found that the latter is not necessarily

more powerful than the former, contrary to Storey’s claim. In my simulation study, BH

performed better than FSL when the relative number of alternatives was small (e.g. m1 =

10, m = 100 or m1 = 50, m = 1000). In the case where the estimate of the proportion

of null hypotheses equals one, I have proved that BH rejects at least the same number

of hypotheses as FSL, and therefore has at least the same power. The simulation results

showed that, BH can reject more hypotheses than FSL, and therefore may have greater

power. Indeed, in the fair comparison, my simulations for the majority of parameter values

showed that BH had superior power.

Setting the target FDR level to α in BH yields an actual FDR equal to π0α. Therefore,

this method is quite conservative when the proportion of true null hypotheses is small.

However it could become less conservative by incorporating the estimate π̂0 that is used

by Storey. By setting the target level to F̂DRλ(γ)/π̂0(λ), BH becomes the adaptive FDR

controlling procedure (AFDR), as introduced by Black [18]. I have proved that AFDR

is at least as powerful as BH and FSL, and have shown that it can be substantially more

powerful when π0 is large.

One of the main motivations for recent rapid developments in multiple hypothesis

testing procedures is the need to analyze DNA microarray data. DNA microarray data

can be used to measure the expression levels for thousands of genes simultaneously. It is

interesting to identify the genes that show changes in expression level across two or more

different biological conditions. There may be genes that are differentially expressed, but
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Figure 2.9: Relationship between power and true FDR of BH for different m.
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Figure 2.10: Relationship between power and true FDR of BH for different m.
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Figure 2.11: Relationship between power and true FDR of BH for different m.
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whose distributions are close to those of the reference genes. The capability of detecting

such genes is one criterion for assessing the performance of a multiple hypothesis testing

procedure. In the microarray context, only a few genes are expected to be differentially

expressed, i.e. π0, the proportion of true nulls is close to 1. The fair comparison simulation

results in Section 2.5 imply that in this situation the performance of BH is better than

that of FSL as long as one incorporates a good estimate of π0.

The focus of this chapter has been on the case where the multiple hypothesis tests are

independent. This simplifying assumption is unrealistic in many applications, including

the analysis of microarray data. Indeed, BH has been shown to validly control FDR under

certain types of dependence (Benjamini and Yekutieli [11]).
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Chapter 3

Multiple deletion diagnostics

3.1 Introduction

Regression analysis is a commonly used statistical tool for modelling and analyzing several

variables. The goal of regression analysis is to investigate the relationship between the

response variable and one or more explanatory variables. When certain model assumptions

are valid, regression models are well developed and the standard results of regression models

are introduced in many books, such as [26, 72, 73, 74]. Some useful results of linear

regression models were presented in Chapter 1. However, as mentioned there, the model

assumptions are often violated for real data because of the existence of outliers. For

example, the real dataset given in the next chapter is obtained from Kusalik [58]. This

dataset is also given in Kanduc et al. [56]. As mentioned in Section 1.1, Kanduc et

al. showed that the level of viral overlaps to the human proteome has a strong linear

relationship to the length of viral proteome based on the analysis of thirty viral proteomes

and the human proteomes. One interesting problem is then to identify viruses that show

more amino acid sequence similarity to the human proteome than the others, i.e. identify

outliers (expected to be more than one) when modelling the level of overlaps and the

size of viral proteome. My goal is thus to develop a method to identify multiple atypical

observations of a dataset.

A powerful method of detecting a single outlier, introduced in Cook and Weisberg

[25] and Atkinson [1], is based on the deletion of single observations [6]. This method

was introduced in Section 1.4.2. As discussed there, the algebra of the deletion of single

observation can be generalized to the deletion of multiple observations, but the methods

based on the deletion of multiple observations are time-consuming, when the number of

observations and the number of outliers are large. Hence one may consider to use multi-

step methods instead. I gave a review of multi-step methods in Section 1.4.2. One problem
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of multi-step methods that needs to be emphasized here is the masking problem, especially

with the approaches based on the least square method [4, 5, 45]. The residual of an outlier

may be small due to the existence of the other outliers, and hence its effect on the residual

is said to be masked. The masking problem can be conquered if all observations are tested

simultaneously.

As mentioned in Section 1.1, the multiple outlier identification problem in linear regres-

sion analysis can be viewed as a problem of multiple hypothesis testing. Each observation

can be assigned a null hypothesis that this observation does follow the assumed regression

model, and an alternative hypothesis that it is an outlier. By assuming appropriate distri-

butions for null and outliers and prior distributions for distribution parameters, I propose a

Bayesian multiple testing approach to identify multiple outliers. In the proposed Bayesian

model, it is assumed that outliers have a mean shift, and that the proportion and the mean

shift of outliers respectively follow a Beta prior distribution and a normal prior distribu-

tion. The proposed Bayesian multiple testing approach is based on the deletion residual.

The deletion residual for ith observation is obtained by deleting the ith observation, and

follows a central t distribution under the null hypothesis given that it is the only outlier.

However, when there is more than one outlier, I prove that the null distribution of the

ith deletion residual is no longer a central or noncentral t distribution, and becomes a

doubly noncentral t distribution under the proposed Bayesian model. Consequently, the

square of the deletion residual has a doubly noncentral F distribution under the same

assumptions. The non-central parameters depend on the total number of outliers, which

is usually unknown, and therefore marginal p-values cannot be calculated. Thus the fre-

quentist methods based on marginal p-values, such as that of Benjamini and Hochberg [9],

are not available for testing more than one outlier. The usual Bayesian models for regres-

sion specify prior distributions on the parameters of regression models (coefficients and

variance) [14], but the proposed Bayesian model avoids assuming any prior distribution on

model parameters, since the distribution of the deletion residuals does not depend on these

parameters. In order to find the posterior distribution of the parameters, we need to know

the distribution of the estimates. The distributions of some robust estimates, such as the

least median of squares and the least trimmed squares [78], are hard to calculate. Although

the least square estimates are criticized for lack of robustness, they are still used in the

proposed Bayes model since the effects of other outliers, which appear in the noncentrality
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of the distribution of the deletion residuals, are included in the model.

In order to identify outliers, I need to calculate the marginal posterior probability that

the ith observation is an outlier given all deletion residuals. This requires computing the

joint distribution of all deletion residuals, which is complicated. Since the outlyingness of

an observation depends more on its own deletion residual than the deletion residual of other

observations, the marginal posterior probability that the ith observation is an outlier given

the ith deletion residual can be used to measure the outlyingness of the ith observation.

In this chapter, I also propose an importance sampling method to calculate this marginal

posterior probability. The calculation of the marginal posterior probability requires the

computation of the density of deletion residual squares that is achieved by using Patnaik’s

approximation. Johnson and Kotz [55, p. 139] did not consider Patnaik’s approximation to

be the best approximation to the density of the doubly noncentral F distribution, but they

thought it may be the simplest one. Other approximations to the density of the doubly

noncentral F distribution can be found in [19, 20, 55, 96]. The main purpose of Patnaik

[68] proposing his approximation is not to compute the density of the doubly noncentral F

distribution. The main application of Patnaik’s approximation is calculating the CDF of

doubly noncentral F distribution [20, 55, 96]. The comparison between Patnaik’s method

and other approximations for the CDF is presented in [20, 55, 96]. Since the accuracy

of Patnaik’s approximation to the density of the doubly noncentral F distribution is not

examined elsewhere, I also propose an algorithm to calculate the density, and compare the

results computed by the proposed algorithm and those by Patnaik’s method. The compar-

ison for chosen variable and parameter values shows that using Patnaik’s approximation

can save considerable computing time without losing much accuracy.

Next I carry out a simulation study on the proposed Bayesian outlier identification

method. Simulation parameters vary among a range of values. I also select various prior

distributions for the distribution parameters. The marginal posterior probability that the

ith observation is an outlier given the ith deletion residual is calculated for all observations

in the simulated datasets with various prior parameters. In order to study how sensitive

the posterior is to the different priors, I calculate the area under ROC curves, which

is introduced in Section 1.4.4, for each combination of simulation and prior parameters.

I firstly simulate two single datasets with a fixed number of outliers, different variance

of the mean shift, and the explanatory variable arising from two different distributions,
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and I compare the calculated AUC for various prior parameters for two datasets. Next I

simulate two multiple datasets with a fixed number of outliers, different variances of the

mean shift and different distributions of the explanatory variable, and then compare the

average AUC for various prior parameters. At last, to include more levels of simulation

and prior parameters, I perform a factorial design analysis to compare AUC for a wider

range of the simulation parameters and prior parameters. The resulting AUC values are

high for various parameters, indicating that the proposed method can identify a majority

of the outliers with tolerable error. The results of the factorial design analysis suggest

that the priors do not have much effect on the marginal posterior probability that the ith

observation is an outlier given the ith deletion residual as long as the sample size is not

too small.

The structure of this chapter is described as follows. In Section 3.2, I prove the new

result that the marginal distribution of the ith deletion residual is a doubly noncentral t,

assuming that there is a mean shift for outliers and more than one outlier exists in a dataset.

The proposed Bayesian method is introduced in Section 3.3. In Section 3.4, I propose an

algorithm to calculate the density of doubly noncentral F distribution and compare the

results calculated by this algorithm with those by Patnaik’s method. In Section 3.5, a

simulation study is presented. The conclusions of this chapter is given in the last section.

3.2 Distribution of the deletion residual when there is more

than one outlier

The standard results from least squares for the linear regression model and those of identi-

fying a single outlier are presented in Section 1.4.1 and 1.4.2. In this section, I use Result

1.4.2 and Lemma 1.4.1 to obtain the new result that the marginal distribution of r∗i is a

doubly noncentral t under appropriate assumptions, when there is more than one outlier

in a dataset.

The linear regression model has the form

y = Xβ + ε, (3.1)

where y is the m × 1 vector of responses, X is the m × k full-rank design matrix of k − 1

known vectors explanatory variables, with all elements of the first column equal to 1 and
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ith row xT
i , β is a vector of k unknown parameters, and ε is a vector of m unknown

random errors. When the model assumptions 1.4.1 are valid, the linear regression model

is true for the given dataset.

The deletion residual defined in 1.105 in Section 1.4.2 has the form

r∗i =
yi − xT

i β̂(i)

s(i)

√
1 + xT

i (XT
(i)X(i))−1xi

=
ri

s(i)

√
(1 − gi)

. (3.2)

It is shown in Result 1.4.4 that the distribution of r∗i is a central t on m−k−1 degrees

of freedom if there is no outlier. I prove that however the null distribution of the ith

deletion residual is no longer a central t distribution, and becomes a doubly noncentral

t distribution when there is more than one outlier. To show this result I first make the

following assumptions about the observations when Assumption 1.4.1 is invalid.

Assumption 3.2.1 Assume that H is a fixed unknown vector, and hence the number of

outliers
m∑

i=1
Hi = m1 > 1 is also fixed. Let m0 = m − m1.

Let I = {1, · · · , m} be the set of indices of all observations, I1 = {i1, i2, · · · , im1} be

that of the atypical observations, and I0 = I − I1 be that of the typical observations.

Assumption 3.2.2 Suppose the random errors corresponding to outliers are i.i.d. N(µi, σ
2)

and those of nulls are i.i.d. N(0, σ2), where µi 6= 0, i = i1, i2, · · · , im1. Let µ =

(µ1, · · · , µm), where µi = 0 if Hi = 0. All nulls and alternatives are independent. The null

and alternative hypotheses for the ith observation can be written:

hi,0 :
(
yi − xT

i β | Hi = 0
)
∼ N(0, σ2) v.s. hi,1 :

(
yi − xT

i β | Hi = 1
)
∼ N(µi, σ

2). (3.3)

Remark 1 In Assumption 3.2.2, (1) in Assumption 1.4.1 is violated while (2)-(4) still

hold.

In this section I prove the distribution of r∗i under the null and alternative hypotheses

(3.3) are both doubly noncentral t distributions with different noncentrality parameters.

The central t distribution with ν degrees of freedom is defined as the distribution of the

ratio of a standard normal variable U to the square root of a central χ2 variable, i.e.

U(χ2
ν/ν)−

1
2 . The random variable with the doubly noncentral t distribution t′′ν(ξ, η) with

ν degrees of freedom and noncentrality parameters ζ and η is defined as

U + ξ√
χ2′

ν (η)/ν
, (3.4)
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where χ2′
ν (η) has a noncentral χ2 distribution with degrees of freedom ν and noncentrality

parameter η =
∑ν

i=1τ
2
i , which is defined as the sum of squares of independent standard

normal variables Ui plus some constant deviations τi, i.e.

∑ν
i=1(Ui + τi)

2. (3.5)

When η = 0, the distribution of U+ξ√
χ2′

ν (η)/ν
is called the singly noncentral t distribution with

ν degrees of freedom and noncentrality parameter ξ, and the variable is denoted by t′ν(ξ).

Theorem 3.2.1 Under the Assumptions 3.2.1 and 3.2.2, the distributions of the deletion

residual r∗i are doubly noncentral t distributions t′′m−k−1(ξl, ηl) under both the null (l = 0)

and alternative (l = 1) hypotheses (3.3). When hi,0 is true, ξ0 = − 1
σ
√

1−gi

im1∑
j=i1,j 6=i

gijµj and

η0 = 1
σ2 µT

(i)(I −G(i))µ(i), where µ(i) = µ�{µi} = (µ1, · · · , µi−1, µi+1, · · · , µm). When hi,1

is true, ξ1 = 1
σµi

√
1 − gi − 1

σ
√

1−gi

im1∑
j=i1,j 6=i

gijµj and η1 = 1
σ2 µT

(i)(I −G(i))µ(i). When ηl = 0,

the distribution of r∗i becomes singly noncentral t, while for both ξl = 0 and ηl = 0, r∗i has

the central t distribution.

Remark 2 Note that the values of the parameter ηk under the null hypothesis and the

alternative hypothesis are different. Since the number of outliers is fixed in the assumption,

when hi,0 is true,
m∑

j=1,j 6=i

Hj = m1, while when hi,1 is true
m∑

j=1,j 6=i

Hj = m1−1, and therefore

the number of nonzero elements in µ(i) under the null hypothesis is m1 and that under the

alternative hypothesis is m1 − 1.

Proof. [of Theorem 3.2.1]

Under the above assumptions, the vector of observations y has a multivariate normal

distribution

y ∼ MVN(Xβ + µ, σ2I), (3.6)

and the vector of observations after deleting yi still has a multivariate normal distribution

y(i) ∼ MVN(X(i)β(i) +µ(i) , σ2I), (3.7)

where H(i) denotes the vector of indices of outliers with the ith observation being deleted.

Consider the following two cases.

(a). The null hypothesis hi,0 is true.

Then the numerator in (3.2), yi − xT
i β̂(i) = yi − xT

i (XT
(i)X(i))

−1XT
(i)y(i), still has a normal
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distribution under the null hypothesis since all yi’s are independent normal variables, but

the mean does not equal to 0. It is easy to calculate the mean of r(i) = yi − xT
i β̂(i). Since

r(i) = ri

1−gi
and

E[r] = E [(I − G)y] (3.8)

= (I − G)(Xβ + µ) (3.9)

= (I − X(XT X)−1XT )X β+ (I − G)µ (3.10)

= (I − G)µ, (3.11)

then

E [ri] = µi −
im1∑
j=i1

gijµj , (3.12)

and

E [ri| Hi = 0] = −
im1∑
j=i1

gijµj . (3.13)

Thus

E
[
yi − xT

i β̂(i) | Hi = 0
]

= − 1

1 − gi

im1∑
j=i1,j 6=i

gijµj . (3.14)

Because

Var[r] = Var[(I − G)y] (3.15)

= (I − G)V ar[y] (3.16)

= (I − G)σ2, (3.17)

then

Var[ri] = (1 − gi)σ
2, (3.18)

and hence the variance of yi − xT
i β̂(i) equals

Var[yi − xT
i β̂(i)] = Var

[
ri

1 − gi

]
(3.19)

=
σ2

1 − gi
. (3.20)

Therefore, zi = 1
σ r(i)

√
1 − gi has a normal distribution since

(zi | Hi = 0) ∼ N(ξ0, 1), (3.21)

where ξ0 = − 1
1−gi

im1∑
j=i1,j 6=i

gijµj�
σ√

1−gi
= − 1

σ
√

1−gi

im1∑
j=i1,j 6=i

gijµj . Then we need to calculate

the distribution of s(i). If the ith observation is the only candidate for an outlier, then
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(m−k−1)s2
(i)�σ2 has a central chi-square distribution with degrees of freedom m−k−1.

However, if we assume there is more than one outlier, then we can show under the above

assumptions that (m−k−1)s2
(i)�σ2 has a noncentral chi-square distribution with m−k−1

degrees of freedom. First note that (m − k − 1)s2
(i)�σ2 = yT

(i)(I − G(i))y(i)�σ2, where

G(i) is the hat matrix with the ith observation being deleted. By (3.7), we have y(i)�σ ∼
MV N(X(i)β(i) + µ(i), I). Since G(i) is (m− 1)× (m− 1), idempotent and symmetric, by

Lemma 1.4.1 we have that

{
1

σ2
(m − k − 1)s2

(i) =
1

σ2
yT

(i)(I − G(i))y(i) | Hi = 0

}
∼ χ2

m−k−1(η0) (3.22)

where

η0 =
1

σ2

(
X(i)β(i)+µ(i)

)T (
I − G(i)

) (
X(i)β(i)+µ(i)

)
(3.23)

=
1

σ2

(
X(i)β(i)

)T (
I − G(i)

)
X(i)β(i) +

1

σ2

(
X(i)β(i)

)T (
I − G(i)

)
µ(i) (3.24)

+
1

σ2
µT

(i)

(
I − G(i)

)
X(i)β(i) +

1

σ2

(
µ(i)

)T (
I − G(i)

)
µ(i) (3.25)

=
1

σ2

(
X(i)β(i)

)T (
X(i)β(i) − X(i)(X

T
(i)X(i))

−1XT
(i)X(i)β(i)

)
(3.26)

+
1

σ2

(
βT

(i)X
T
(i) − βT

(i)X
T
(i)X(i)(X

T
(i)X(i))

−1XT
(i)

)
µ(i) (3.27)

+
1

σ2
µT

(i)

(
X(i)β(i) − X(i)(X

T
(i)X(i))

−1XT
(i)X(i)β(i)

)
+

1

σ2
µT

(i)(I − G(i))µ(i) (3.28)

=
1

σ2
µT

(i)(I − G(i))µ(i) (3.29)

and the degrees of freedom is trace(I − G(i)) = m − k − 1. Since the covariance matrix

of y is still σ2I and the least square estimate β̂ has the same form as in Section 1.4.1,

then Result 1.4.2 (3) is true for β̂ and s2
(i). Therefore zi and s2

(i) are independent, and

hence the marginal distribution of r∗i = ziσ
2

(m−k−1)s2
(i)

under the null hypothesis is the doubly

noncentral t with the degrees of freedom equal to m− 1− k and noncentrality parameters

− 1
σ
√

1−gi

im1∑
j=i1,j 6=i

gijµj and 1
σ2 µT

(i)(I − G(i))µ(i).

(b). The alternative hypothesis hi1 is true.

In this case,

E [ri | Hi = 1] = µi −
(

giµi −
im1∑

j=i1,j 6=i

gijµj

)
(3.30)

= (1 − gi)µi −
im1∑

j=i1,j 6=i

gijµj , (3.31)
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and hence the mean of yi − xT
i β̂(i) is

E
[
yi − xT

i β̂(i) | Hi = 1
]

= µi −
1

1 − gi

im1∑
j=i1,j 6=i

gijµj . (3.32)

Hence we have

(zi | Hi = 1) ∼ N(ξ1, 1) (3.33)

where ξ1 =

{
µi − 1

1−gi

im1∑
j=i1,j 6=i

gijµj

}
� σ√

1−gi
= 1

σµi
√

1 − gi − 1
σ
√

1−gi

im1∑
j=i1,j 6=i

gijµj . Simi-

larly, {
1

σ2
(m − k − 1)s2

(i)| Hi = 1

}
∼ χ2

m−k−1(η1) (3.34)

where η1 = 1
σ2 µT

(i)(I − G(i))µ(i). Because Hi = 1, there are only m1 − 1 elements in H(i)

equal to 1. Therefore the marginal distribution of r∗i under hi1 is the doubly noncentral t

with the degrees of freedom equal to m−k−1 and noncentrality parameters 1
σµi

√
1 − gi−

1
σ
√

1−gi

im1∑
j=i1,j 6=i

gijµj and 1
σ2 µT

(i)(I − G(i))µ(i).

3.3 A Bayesian approach for multiple deletion diagnostics

3.3.1 Model description

In this section, I propose a Bayesian approach for identifying outliers in linear models.

Usually the total number of outliers
∑m

i=1 Hi is unknown, but I will assume H is random.

Let h be a realization of H when H is assumed random.

I start with the description of the Bayesian model. Suppose we observe m observa-

tions yT = (y1, · · · , ym), where yi arises independently from a normal density, φyi
(y) with

mean xT
i β + σµi and variance σ2, where xT

i is known, but σ2, β and µi are unknown.

When µi = 0, yi arises from the linear model (1.58) and satisfies the model assumptions in

Assumption 1.4.1, while an outlier with nonzero µi follows a linear model with a different

mean and the same variance as that of the true model. The difference between the mean

of the outliers and that of the other observations is assumed to be proportional to the

unknown constant σ. The reason I choose the difference to be proportional to σ is because

then the distribution parameters of the resulting deletion residuals do not include σ. So

I can avoid specifying a prior distribution for σ and hence the posterior probabilities are

simpler. My goal is to identify which µi are nonzero. The indicators of outliers are

Hi =

{
0 if µi = 0

1 if µi 6= 0
. (3.35)
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Hence we can rewrite the hypotheses as

hi,0 : (yi | Hi = 0) ∼ N(xT
i β, σ2)

hi,1 : (yi | Hi = 1) ∼ N(xT
i β+σµi, σ2)

. (3.36)

Under the model assumptions, the vector of observations y has a multivariate normal

distribution

y ∼ MVN(Xβ + σµ, σ2I), (3.37)

where µ = (µ1, · · · , µm).

Next I investigate the marginal distribution of the deletion residuals under this model.

Using similar arguments as in the proof of Lemma 3.2.1, I can obtain the conditional

distribution of r∗i given the Hi’s.

Corollary 3.3.1 For testing hypotheses (3.36), given µ and H(i), the conditional distri-

butions of the deletion residual r∗i under the null and alternative hypotheses are both doubly

noncentral t distributions, i.e.

(r∗i | Hi = 0, H(i), µ(i)) ∼ t′′m−k−1 (ξ0, η) (3.38)

and

(r∗i | Hi = 0, H(i), µ) ∼ t′′m−k−1 (ξ1, η) , (3.39)

where the noncentrality parameter of the denominator in r∗i is

η = µT
(i)(I − G(i))µ(i), (3.40)

and the noncentrality parameters of the numerator in r∗i for the null and alternative are

respectively

ξ0 = − 1√
1 − gi

m∑
j=1,j 6=i

gijµj (3.41)

and

ξ1 =
√

1 − giµi −
1√

1 − gi

m∑
j=1,j 6=i

gijµj . (3.42)

Here µ(i) denotes the vector µ with the ith observation being deleted. When η = 0, the

distribution of r∗i becomes singly noncentral t, while when both ξi = 0, i = 0, 1 and η = 0,

r∗i has the central t distribution.
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Proof.

By a similar argument to that in the proof of Theorem 3.2.1, the mean of yi−xT
i β̂(i) under

hi0 is

E
[
yi − xT

i β̂(i) | Hi = 0
]

= − σ

(1 − gi)

im1∑

j=i1,j 6=i

gijµj , (3.43)

and under hi1 is

E
[
yi − xT

i β̂(i) | Hi = 1
]

= σµi −
σ

1 − gi

m∑

j=1,j 6=i

gijµj . (3.44)

Therefore the noncentrality parameter of the numerator in r∗i under hi0 is

ξ0 = − σ

(1 − gi)

im1∑

j=i1,j 6=i

gijµj�
σ√

1 − gi
(3.45)

= − 1√
1 − gi

m∑

j=1,j 6=i

gijµj , (3.46)

and under hi1 is

ξ1 =


σµi −

σ

(1 − gi)

im1∑

j=i1,j 6=i

gijµj


�

σ√
1 − gi

(3.47)

=
√

1 − giµi −
1√

1 − gi

m∑

j=1,j 6=i

gijµj . (3.48)

The noncentrality parameter of the denominator in r∗i under hi0 and that under hi1 are

the same and have the form:

η =
(
X(i)β(i) + σµ(i)

)T (
I − G(i)

) (
X(i)β(i) + σµ(i)

)
(3.49)

= µT
(i)(I − G(i))µ(i). (3.50)

Note that the conditional distributions of the square of the deletion residual r∗i under the

null and alternative hypotheses are both doubly noncentral F with the numerator degrees

of freedom 1, the denominator degrees of freedom m−k−1, the denominator noncentrality

parameter η, and the numerator noncentrality parameters ζ0 = ξ2
0 and ζ1 = ξ2

1 , respectively.

That is,

(r∗2i | Hi = 0, H(i), µ(i)) ∼ F ′′
1,m−k−1 (ζ0, η) (3.51)

and

(r∗2i | Hi = 1, H(i), µ) ∼ F ′′
1,m−k−1 (ζ1, η) , (3.52)
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where F ′′
ν1,ν2

(ζ, η) denotes a random variable following the doubly noncentral F distribu-

tion with degrees of freedom ν1 and ν2 and the noncentrality parameter ζ and η. When

either ζi = 0, i = 0, 1 or η = 0, the distribution of r∗2i becomes singly noncentral F, while

for both ζi = 0, i = 0, 1 and η = 0, r∗2i has the central F distribution.

Next I need to choose appropriate priors for the parameters of the distribution of

r∗2i . A common assumption for the indicators Hi is that they are i.i.d. random Bernoulli

variables with probability π1 [29, 88, 89, 90]. As mentioned before, the proportion of

outliers is smaller than or equal to m/2, otherwise the assumed model is not proper for

that dataset. Let π0 = 1− π1 and assume π0 follows a Beta distribution Beta(a, b) with

hyper-parameters a and b, that is

π0 ∼ Beta(a, b). (3.53)

Scott and Berger [88] used a prior of Beta(a, 1) and calculated a by specifying a prior

median. However, the choice of b = 1 makes the Beta prior have the mode equal to 1

and puts a lot of mass near 1, which implies that there is no outlier at all. Usually we

have knowledge of the existence of some outliers before we start a test for outliers, so we

are not interested in the case that there is no outlier. When we think there will be some

outliers, it might be more reasonable to choose a and b such that the mean of the Beta

distribution is close to one and the density of the Beta distribution is maximized around

a value close to 1, for example Beta(8, 2). Beta(8, 2) has mean 0.8 and variance 0.0145.

This prior distribution is appropriate if one believes the mean of the proportion of outliers

is around 0.2. The hyper-parameters of Beta distribution can be chosen according to

the prior information about the mean and variance of π0. For example, if one strongly

believes the mean of π0 is about 0.2, then a stronger prior distribution Beta(80, 20) can

be used, whereas one may choose a weaker prior distribution Beta(0.8, 0.2) if the belief of

E(π0) = 0.2 is weak. The prior on µ is also unknown, and it is convenient to assume those

nonzero µi are i.i.d. normal with density φµi
(u), with mean 0 and known variance V , i.e.

(µi | Hi = 1) ∼ N(0, V ). (3.54)

In Section 3.5, the sensitivity of the marginal posterior distribution of Hi to the Beta prior

of π0 and the normal prior of µi is studied.
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3.3.2 Posterior distributions

As discussed in the previous section, I am interested in identifying nonzero µi, which can be

measured by the marginal posterior probability Pr(Hi = 1 | r∗21 , · · · r∗2m ). The calculation of

this marginal posterior probability involves the computation of the joint distribution of all

deletion residual squares, which is difficult because of the complex dependence structure

of r∗21 , · · · , r∗2m . One may think that whether the ith null hypothesis is true or not depends

more on its own deletion residual square than the others, and hence there might not

be a large difference between the marginal posterior probability of {Hi = 1} given all

deletion residuals and that given only the ith deletion residual. The marginal posterior

probability Pr(Hi = 1 | r∗2i ) depends only on the distribution of the ith deletion residual,

which is given in Theorem 3.3.1. This marginal posterior can be calculated from the joint

posterior distribution of θ = (H, µ,π0), θ ∈ Θ. Let fr∗2i
(r2|H, µ,π0) and fr∗2i

(r2) denote

respectively the doubly noncentral F density function of r∗2i given parameters θ and the

marginal density of r∗2i . Let pπ0(π), φµi
(u) and pH(ω | π0) denote respectively the prior

densities of continuous π0 and µi and discrete H, and p(H,µ,π0)(ω, u, π) denote the joint

density of H, µ,π0. Under the model assumptions given in Section 3.3.1, the joint posterior

density for θ is

p(H,µ,π0)(ω, u, π|r∗2i ) =

fr∗2i
(r2|H, µ,π0) ·

m∏
j=1

φµj
(u) · pH(ω | π0) · pπ0(π)

fr∗2i
(r2)

, (3.55)

where pH(ω | π0) =
∏m

j=1π
(1−ωj)
0 (1−π0)

ωj . The marginal density of r∗2i can be calculated

as

fr∗2i
(r2) = Pr(Hi = 0)fr∗2i

(r2|Hi = 0) + Pr(Hi = 1)fr∗2i
(r2|Hi = 1) (3.56)

=

∞∫
· · ·
∫

−∞

1∫

0

∑

ω(i)∈{0,1}m−1

{Pr(Hi = 0|π0 = π) (3.57)

fr∗2i
(r2|Hi = 0, H(i) = ω(i), µ = u, π0 = π)+

[1 − Pr(Hi = 0|π0 = π)]fr∗2i
(r2|Hi = 1, H(i) = ω(i), µ = u, π0 = π)}

pH(i)
(ω(i)| π0)pπ0(π)

m∏

j=1

φµj
(u)dπdu

=

∞∫
· · ·
∫

−∞

1∫

0

∑

ω(i)∈{0,1}m−1

{πfr∗2i
(r2|Hi = 0, H(i) = ω(i), µ = u, π0 = π)+ (3.58)
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(1 − π)fr∗2i
(r2|Hi = 1, H(i) = ω(i), µ = u, π0 = π)}

pH(i)
(ω(i)| π0)pπ0(π)

m∏

j=1

φµj
(u)dπdu

=

∞∫
· · ·
∫

−∞

1∫

0

∑

ω(i)∈{0,1}m−1

πfr∗2i
(r2|Hi = 0, H(i) = ω(i), µ = u, π0 = π) (3.59)

pH(i)
(ω(i)| π0)dFπ0(π)dFµ(i)

(u(i))

+

∞∫
· · ·
∫

−∞

1∫

0

∑
ω(i)∈{0,1}m−1(1 − π)fr∗2i

(r2|Hi = 1, H(i) = ω(i), µ = u, π0 = π)

pH(i)
(ω(i)| π0)dFπ0(π)dFµ(u),

where
∞∫
· ··
∫

−∞
h(u)du denotes a m-dimensional integral for h(u) with respect to the vector

of variables u, and Fπ0(π) and Fµ(u) denote respectively the distribution functions for π0

and the joint distribution function for µ.

Lemma 3.3.1 The marginal posterior probability that the ith observation is an outlier

given its deletion residual is

Pr(Hi = 0 | r∗2i = r2) =
E(H(i),µ,π0)[h1(r

2, ω(i), u,π)]

E(H(i),µ,π0)[h1(r2, ω(i), u,π)] + E(H(i),µ,π0)[h2(r2, ω(i), u,π)]
,

(3.60)

where E(H(i),µ,π0)[·] represents the expectation with respect to the joint prior distribution

of H(i), µ and π0, and h1(r
2, ω(i), u,π) = πf

F
′′

1,m−k−1(ζ0, η)
(r2) and h2(r

2, ω(i), u,π) =

(1 − π)f
F

′′

1,m−k−1(ζ1, η)
(r2).

Proof.

Pr(Hi = 0 | r∗2i = r2)

=

∞∫
· · ·
∫

−∞

1∫

0

∑

ω(i)∈{0,1}m−1

Pr(Hi = 0|π0 = π) (3.61)

fr∗2i
(r2 |Hi = 0, H(i) = ω(i), µ(i) = u(i), π0 = π)p(H,µ,π0)(ω, u, π|r∗2i )dπdu (3.62)

=

∞∫
·· ·
∫

−∞

1∫
0

∑
ω(i)∈{0,1}m−1

πfr∗2i
(r2 |Hi = 0, H(i) = ω(i), µ(i) = u(i), π0 = π)

p(H,µ,π0)(ω, u, π)dπdu

fr∗2i
(r2)

(3.63)
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=

∞∫
· · ·
∫

−∞

1∫
0

∑
ω(i)

πf
F

′′

1,m−k−1(ζ0, η)
(r2)p(H,µ,π0)(ω, u, π)dπdu

∞∫
· · ·
∫

−∞

1∫
0

∑
ω(i)





πf
F

′′

1,m−k−1(ζ0, η)
(r2)+

(1 − π)f
F

′′

1,m−k−1(ζ1, η)
(r2)



 p(H,µ,π0)(ω, u, π)dπdu

(3.64)

=

∫
· ··
∫ ∑

ω(i)
h1(r

2, ω(i), u,π)p(H,µ,π0)(ω, u, π)dπdu

∞∫
· · ·
∫

−∞

1∫
0

∑
ω(i)

[
h1(r2, ω(i), u,π) + h2(r2, ω(i), u,π)

]
p(H,µ,π0)(ω, u, π)dπdu

(3.65)

=
E(H(i),µ,π0)[h1(r

2, ω(i), u,π)]

E(H(i),µ,π0)[h1(r2, ω(i), u,π)] + E(H(i),µ,π0)[h2(r2, ω(i), u,π)]
. (3.66)

3.3.3 Computational implementation

The computation of the marginal posterior probability Pr(Hi = 0 | r∗2i ) involves evaluating

high dimensional integrals, which can be implemented numerically. Importance sampling

can be used here to calculate this posterior probability. Importance sampling is a Monte

Carlo method to calculate high dimensional integrals, which is introduced in many books,

for example [12, 36, 75]. Let θ = (H, µ,π0). Suppose we can generate a sequence of i.i.d.

random variables {θ1, θ2, · · ·θn} from a density g(θ) > 0 on the parameter space Θ. Then

∫
· · ·
∫

h(θ)f(r∗2i |θ)p(θ)dθ = Eg

[
h(θ)f(r∗2i |θ)p(θ)

g(θ)

]
, (3.67)

and by the strong law of large numbers,

∫
· · ·
∫

h(θ)f(r∗2i |θ)p(θ)dθ = lim
n→∞

1

n

n∑

j=1

[
h(θj)f(r∗2i |θj)p(θj)

g(θj)

]
. (3.68)

Let Eθ|r∗2i
[·] denote the expectation with respect to the posterior distribution of θ =

(H, µ,π0). Hence Eθ|r∗2i
[h(θ)] can be approximated by

Eθ|r∗2i
[h(θ)] =

∫
· ··
∫

h(θ)f(r∗2i |θ)p(θ)dθ

f(r∗2i )
(3.69)

=

∫
· ··
∫

h(θ)f(r∗2i |θ)p(θ)dθ∫
· · ·
∫

f(r∗2i |θ)p(θ)dθ
(3.70)

≃

n∑
j=1

h(θj)w(θj)

n∑
j=1

w(θj)

, (3.71)
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where w(θj) = f(r∗2i |θj)p(θj)/g(θj) are called importance ratios or importance weights

[37] and g(θj) is called the importance function [12]. The choice of an importance function

is the crucial step in the importance sampling method as discussed in Berger [12]. On the

one hand, the importance function g is desirable to be chosen so that the approximation

in (3.71) is accurate for as small a number of random samples n as possible. On the

other hand, we want to choose g so that the generation of the random samples from g is

not time-consuming. The two goals are usually against each other and finding a balance

between them is not easy. One suggestion given by Berger [12] is to choose the importance

function equal to the prior density, so that w(θj) = f(r∗2i |θj), and the calculation of p(θj)

is avoided. Since all priors are proper, sampling from the joint prior density is easy. There

may be problems to choose the joint prior density as the importance function. Importance

sampling works poorly if the importance ratios are small with high probabilities but are

very large with a low probability [37]. If we choose g = p, then w(θj) = f(r∗2i |θj). The

estimates would be poor if the likelihood is strongly informative, that is some f(r∗2i |θj)

are much larger than the others. Gelman et al. [37] suggest to examine the distribution

of sampled importance ratios to detect possible problems. It is helpful to plot a histogram

of the logarithms of the large importance ratios. Such histograms were examined for some

situations and exceedingly large importance ratios were not observed.

The joint prior distribution is

p(H(i), µ,π0) = p(µ|H(i))p(H(i)|π0)p(π0). (3.72)

Thus we can draw n samples (Hj
(i), µ

j,πj
0), j = 1, · · · , n, from p(H(i), µ,π0), and then

approximate the marginal posterior probability Pr(Hi = 0 | r∗i ) as

E(H(i),µ,π0)[h1(r
∗2
i , H(i), µ,π0)]

E(H(i),µ,π0)[h1(r∗2i , H(i), µ,π0)] + E(H(i),µ,π0)[h2(r∗2i , H(i), µ,π0)]

≃
∑n

j=1h1(r
∗2
i , Hj

(i), µ
j,πj

0)∑n
j=1h1(r∗2i , Hj

(i), µ
j,πj

0) +
∑n

j=1h2(r∗2i , Hj
(i), µ

j,πj
0)

(3.73)

=
1

1 +

∑n
j=1h2(r∗2i ,Hj

(i)
,µj,πj

0)∑n
j=1h1(r∗2i ,Hj

(i)
,µj,πj

0)

(3.74)

=
1

1 +

∑n
j=1(1−πj

0)f
F
′′

1,m−k−1
(ζ

j
1i

, η)
(r∗2i )

∑n
j=1πj

0f
F
′′

1,m−k−1
(ζ

j
0i

, η)
(r∗2i )

. (3.75)
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The algorithm for computing all posterior probabilities Pr(Hi = 0 | r∗2i ), i = 1, · · · , m,

is given as follows.

Algorithm 3.3.1 1. For a given set of observations (y1, x1), (y2, x2), · · · , (ym, xm), cal-

culate the hat matrix G and the deletion residuals r∗1, r
∗
2, · · · , r∗m.

2. For j from 1 to n:

2.1 Generate a πj
0 from Beta(a, b);

2.2 Generate Hj
(i) = (H1

1 , H1
2 , · · ·Hi−1, Hi+1, · · ·Hm) from Binomial(m − 1, πj

0);

2.3 If Hj
s = 1, s = 1, · · · , i − 1, i + 1, · · ·m,

then generate µj
s from N(0, V ).

3. For i from 1 to m:

3.1 For j from 1 to n:

3.1.1 Generate µj
i from N(0, V );

3.1.2 Calculate the noncentral parameters ζj
1i =

(
√

1 − giµi − 1√
1−gi

m∑
j=1,j 6=i

gijµj

)2

and ζj
0i =

(
1√

1−gi

m∑
j=1,j 6=i

gijµj

)2

, where gij is the ijth element of G, and η =

µT
(i)(I−G(i))µ(i) with G(i) = X(i)(X

T X)−1
{

I + 1
(1−gi)

xix
T
i (XT X)−1

}
XT

(i);

3.1.3 Calculate f
F

′′

1,m−k−1(ζ
1
0i, η)

(r∗2i ) and f
F

′′

1,m−k−1(ζ
1
1i, η)

(r∗2i ).

3.2 Calculate Pr(Hi = 0 | r∗2i ) = 1�

(
1 +

∑n
j=1(1−πj

0)f
F
′′

1,m−k−1
(ζ

j
1i

, η)
(r∗2i )

∑n
j=1πj

0f
F
′′

1,m−k−1
(ζ

j
0i

, η)
(r∗2i )

)
.

3.4 Computing doubly noncentral F density

Algorithm 3.3.1 in Section 3.3.3 involves calculating the density of a random variable that

follows the doubly noncentral F distribution with ν1, ν2 degrees of freedom and noncen-

trality parameters ζ and η, which is denoted by F ′′
ν1,ν2

(ζ, η). The density of F ′′
ν1,ν2

(ζ, η)

can be expressed as a doubly infinite series. I have not encountered a function which can

calculate the density of F ′′
ν1,ν2

(ζ, η) in any package in “R” [71] so far, so I have written my

own function to do so. In order to calculate the density of F ′′
ν1,ν2

(ζ, η), I need to evaluate
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the double sum until convergence. However, the computation is burdensome, especially

when the sample size n in Algorithm 3.3.1 is very large. Therefore I used an approximation

proposed by Patnaik [68] in my simulation study for computing the density of F ′′
ν1,ν2

(ζ, η).

Patnaik [68] approximated the noncentral χ2 distribution by a scaled central χ2 distri-

bution with degrees of freedom related to the noncentrality parameter. Since the doubly

noncentral F random variable can be written as the ratio of two noncentral χ2 random

variables, Patnaik’s method can also be used to approximate the doubly noncentral F dis-

tribution. In this section, I introduce this approximation and compare the approximated

values with the actual values, which are computed by an algorithm I propose in this sec-

tion. The expressions for the densities of noncentral χ2, noncentral t and noncentral F

distribution can be found in Johnson and Kotz [55].

First note that the doubly noncentral F distribution of F ′′
ν1,ν2

(ζ, η) is defined as the

distribution of the ratio of two noncentral χ2 variables, that is

F ′′
ν1,ν2

(ζ, η) =
χ′2

ν1
(ζ)/ν1

χ′2
ν2

(η)/ν2
. (3.76)

The noncentral χ2 random variable was defined in (3.5) in Section 3.2. The distribution

function of the noncentral χ′2
ν1

(ζ) can be expressed as a weighted infinite sum of central χ2

distributions with weights equal to a Poisson mass having mean ζ/2, i.e.

Pr(χ′2
ν1

(ζ) ≤ x) =
∞∑

i=0

[
(1
2ζ)i

i!
e−

1
2
ζ

]
Pr(χ2

ν1+2i ≤ x). (3.77)

The simplest approximation to the distribution of χ′2
v1

(ζ) is a scaled central χ2 distribution

of cχ2
ν . Patnaik [68] suggested to choose c and ν such that the distribution of χ′2

ν1
(ζ) and

the approximated distribution of cχ2
ν have the same first and second moments, and he

obtained

c =
ν1 + 2ζ

ν1 + ζ
, ν =

(ν1 + ζ)2

ν1 + 2ζ
. (3.78)

It can be shown that, for fixed x and ν, the maximum error of Patnaik’s approxima-

tion to the CDF of χ′2
v1

(ζ), i.e. the maximum difference between the CDF and Patnaik’s

approximation, is O(ζ2) as ζ → 0 and O(ζ−
1
2 ) as ζ → ∞ [55].

Next consider the singly noncentral F distribution where the denominator in (3.76) has

a central χ2 distribution. The singly noncentral F random variable, indicated by F ′
ν1,ν2

(ζ),

has η = 0 but ζ > 0. If instead, ζ = 0 but η > 0, then the doubly noncentral F variable is
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the reciprocal of a singly noncentral F variable

F ′′
ν1,ν2

(0, η) = 1 / F ′
ν1,ν2

(η), (3.79)

and the density function of F ′′
ν1,ν2

(0, η) is

fF ′′

ν1,ν2
(0,η)(x) =

1

x2
fF ′

ν1,ν2
(η)

(
1

x

)
. (3.80)

Although the “R” function “df( )” in package “stats” [71] can be used to compute the den-

sity of F ′
ν1,ν2

(ζ), in order to compute the density of F ′′
ν1,ν2

(ζ, η), I firstly write an algorithm

to calculate the density of F ′
ν1,ν2

(ζ) in order to develop a method to compute the more

complex density of F ′′
ν1,ν2

(ζ, η). The density of F ′
ν1,ν2

(ζ) given in [54] is

fF ′

ν1,ν2
(ζ)(x) =

∞∑

j=0

(
(1
2ζ)j

j!
e−

1
2
ζ

)
1

B(ν1
2 + j, ν2

2 )

(
ν1x

ν2 + ν1x

) ν1
2

+j ( ν2

ν2 + ν1x

) ν2
2

x−1

(3.81)

≡
∞∑

j=0

Sj (3.82)

where B(ν1
2 + j, ν2

2 ) is the Beta function and Sj is defined as the j th term in the sum in

(3.81).

Lemma 3.4.1 There exists a j∗ such that Rj∗ =
Sj∗+1

Sj∗
< 1, and fF ′

ν1,ν2
(ζ)(x) is bounded

by

(
j∗∑

j=0
Sj

)
+

Sj∗

1−Rj∗
=

(
j∗∑

j=0
Sj

)
+

S2
j∗

S∗

j −Sj∗+1
.

Proof.

It is shown next that the term Sj in (3.82) either decreases in j or increases to a maximum

and then decreases in j by showing that the ratio of any two consecutive terms decreases

in j. The ratio of Sj+1 to Sj is

Rj =
Sj+1

Sj
(3.83)

=
1
2η

j + 1

B(ν1
2 + j, ν2

2 )

B(ν1
2 + j + 1, ν2

2 )

ν1x

ν2 + ν1x
(3.84)

=
ην1x

2(j + 1)(ν2 + ν1x)

Γ(ν1
2 + j)Γ(ν2

2 )

Γ(ν1
2 + ν2

2 + j)

Γ(ν1
2 + ν2

2 + j + 1)

Γ(ν1
2 + j + 1)Γ(ν2

2 )
(3.85)

=
ην1x

2(j + 1)(ν2 + ν1x)

Γ(ν1
2 + j)

Γ(ν1
2 + ν2

2 + j)

Γ(ν1
2 + ν2

2 + j)(ν1
2 + ν2

2 + j)

Γ(ν1
2 + j)(ν1

2 + j)
(3.86)

=
ην1x

2(j + 1)(ν2 + ν1x)

ν1
2 + ν2

2 + j
ν1
2 + j

(3.87)
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=
ην1x

2(j + 1)(ν2 + ν1x)

(
1 +

ν2
2

ν1
2 + j

)
, (3.88)

and therefore Rj decreases in j with Rj+1/Rj < 1. If R0 < 1, then Sj decreases in j for

any nonnegative integer j. On the other hand, if R0 > 1, then Rj becomes less than 1

eventually, and Sj increases to a maximum and then decreases. To prove this, note that

Rj < 1 (3.89)

⇔ ην1x

2(j + 1)(ν2 + ν1x)

(
1 +

ν2
2

ν1
2 + j

)
< 1 (3.90)

⇔ j2 +

(
ν1

2
+ 1 − ην1x

2(ν2 + ν1x)

)
j +

ν1

2
− ην1(ν2 + ν1)x

4(ν2 + ν1x)
> 0, (3.91)

and the left hand side of (3.91) is the function of a convex parabola, and hence there exists

some j satisfying the inequality (3.91). Let j∗ be an index of j such that Rj∗ < 1. Then

Sj decreases for j ≥ j∗. Hence

∞∑
j=j∗+1

Sj = Sj∗(Rj∗ + Rj∗Rj∗+1 + Rj∗Rj∗+1Rj∗+2 + · · · ) (3.92)

≤ Sj∗(Rj∗ + R2
j∗ + R3

j∗ + · · · ) (3.93)

=
Sj∗Rj∗

1 − Rj∗
≤ Sj∗

1 − Rj∗
< ∞, (3.94)

so the sum of the infinite series Sj is convergent.

Then we can set an error bound E beforehand, and find k ≥ j∗ such that Sk

1−Rk
< E.

Then
∞∑

j=0
Sj −

k∑
j=0

Sj is also controlled below this error bound.

Algorithm 3.4.1 1. Starting from j = 0, calculate S0, S1 and R0 = S1/S0.

2. If R0 ≤ 1, then

2.1 k = 0;

2.2 while Sk

1−Rk
> E,

2.2.1 calculate Sk and Rk;

2.2.2 k = k + 1̇;

2.3 Calculate
∑k

j=0Sj.

3. If R0 > 1, then

3.1 j∗ = 0;
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3.2 while Rj∗ > 1,

3.2.1 calculate Rj∗ and Sj∗;

3.3.2 j∗ = j∗ + 1;

3.3 k = j∗;

3.4. while Sk

1−Rk
> E,

3.4.1 calculate Sk and Rk;

3.4.2 k = k + 1̇;

3.5 Calculate
∑k

j=0Sj.

Remark 3 The “R” function ”df()” in package ”stats” [71] can be used to compute the

density of F ′
ν1,ν2

(ζ) instead of Algorithm 3.4.1.

We can also use Patnaik’s approximation to calculate the distribution of F ′
ν1,ν2

(ζ) =
χ2

ν1
(ζ)/ν1

χ2
ν2

/ν2
by that of c ν

ν1
Fν,ν2 .

At last I give an algorithm to calculate the density of the doubly noncentral F distri-

bution. The density of F ′′
ν1,ν2

(ζ, η) is given in Johnson and Kotz [55] as

fF
′′

ν1,ν2
(ζ, η)(x) = fFν1,ν2(x)

∞∑

l=0

∞∑

h=0

B(ν1
2 , ν2

2 )

B(ν1
2 + l, ν2

2 + h)
(3.95)

(1
2ζ)le−

1
2
ζ

l!

(1
2η)he−

1
2
η

h!

(
ν1x

ν2 + ν1x

)l ( ν2

ν2 + ν1x

)h

= fFν1,ν2(x)
∞∑

l=0

∞∑

h=0

Wl,h, (3.96)

where Wl,h =
B(

ν1
2

,
ν2
2

)

B(
ν1
2

+l,
ν2
2

+k)

( 1
2
ζ)le−

1
2 ζ

l!

( 1
2
η)he−

1
2 η

h!

(
ν1x

ν2+ν1x

)l (
ν2

ν2+ν1x

)h
.

Consider l and h to be a row and a column indices, respectively. For any fixed h,

let rh(l) be the ratio of any successive terms Wl+1,h to Wl,h on the column h. By the

expression of fF
′′

ν1,ν2
(ζ1, η)(x) in (3.95), this ratio is calculated as:

rh(l) =
Wl+1,h

Wl,h
(3.97)

=
B(ν1

2 + l, ν2
2 + h)

B(ν1
2 + l + 1, ν2

2 + h)

1

l + 1

1
2ζν1x

ν2 + ν1x
(3.98)

=
Γ(ν1

2 + l)Γ(ν2
2 + h)

Γ(ν1
2 + ν2

2 + l + h)

Γ(ν1
2 + ν2

2 + l + h + 1)

Γ(ν1
2 + l + 1)Γ(ν2

2 + h)

1

l + 1

1
2ζν1x

ν2 + ν1x
(3.99)
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=
ν1
2 + ν2

2 + l + h
ν1
2 + l

1
2ζν1x

ν2 + ν1x

1

l + 1
(3.100)

=

(
1 +

ν2
2 + h
ν1
2 + l

)
1

l + 1

1
2ζν1x

ν2 + ν1x
, (3.101)

where the fourth equality is obtained by using Γ(α + 1) = αΓ(α), α ∈ R+. It is easy to

show that rh(l+1) < rh(l) for any fixed h, so the ratio rh(l) decreases in l. Note that rh(l)

increases in h with rh(l) < rh+1(l) for any fixed l.

For any fixed l, let tl(h) be the ratio of any successive terms Wl,h+1 to Wl,h on the row

l. By (3.95), we have

tl(h) =
Wl,h+1

Wl,h
(3.102)

=
B(ν1

2 + l, ν2
2 + h)

B(ν1
2 + l, ν2

2 + h + 1)

1

h + 1

1
2ην2

ν2 + ν1x
(3.103)

=
ν1
2 + ν2

2 + l + h
ν2
2 + h

1

h + 1

1
2ην2

ν2 + ν1x
(3.104)

=

(
1 +

ν1
2 + l

ν2
2 + h

)
1

h + 1

1
2ην2

ν2 + ν1x
. (3.105)

Similarly, the ratio tl(h) decreases in h for any fixed l, with tl(h+1) < tl(h), and increases

in l for any fixed h since tl(h) < tl+1(h).

Let s(l, h) be the ratio of any diagonally successive terms Wl+1,h+1 to Wl,h. By (3.95),

s(l, h) has the following form,

s(l, h) =
Wl+1,h+1

Wl,h
(3.106)

=
B(ν1

2 + l, ν2
2 + h)

B(ν1
2 + l + 1, ν2

2 + h + 1)

1

(l + 1)(h + 1)

λ1λ2ν1ν2x

4(ν2 + ν1x)2
(3.107)

=
λ1λ2ν1ν2x

4(ν2 + ν1x)2
1

(l + 1)(h + 1)

(ν1
2 + ν2

2 + l + h + 1)(ν1
2 + ν2

2 + l + h)

(ν1
2 + l)(ν2

2 + h)
(3.108)

=
λ1λ2ν1ν2x

4(ν2 + ν1x)2
1

l + 1

[
1 +

ν1
2 + l + 1

ν2
2 + h

]
1

h + 1

[
1 +

ν2
2 + h
ν1
2 + l

]
(3.109)

=
λ1λ2ν1ν2x

4(ν2 + ν1x)2

[
1

l + 1
+

1
ν2
2 + h

+
ν1
2

(l + 1)(ν2
2 + h)

]
(3.110)

[
1

h + 1
+

1
ν1
2 + l

+
ν2
2 − 1

(h + 1)(ν1
2 + l)

]
.

It is easy to show that for any fixed l, s(l, h)̇ decreases in h with s(l, h + 1)̇ < s(l, h)̇, and

for any fixed h, s(l, h)̇ decreases in l with s(l + 1, h)̇ < s(l, h)̇. It can be shown that s(l, h)
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decreases in both l and h with s(l + 1, h + 1) < s(l, h) if ν2 = m− k − 1 ≥ 2 ⇔ m ≥ k + 3,

where ν2 is the degrees of freedom of the doubly noncentral t distribution of r∗i . This is

usually true for most datasets encountered.

Note that the ratio s(l, h) has the relationship with rh(l) and tl(h):

s(l, h) =
Wl+1,h+1

Wl,h
(3.111)

=
Wl+1,h+1

Wl+1,h

Wl+1,h

Wl,h
(3.112)

= tl+1(h)rh(l) (3.113)

= tl(h)rh+1(l). (3.114)

The lemma given next show some properties of the ratios defined in (3.101) and (3.105).

Lemma 3.4.2 (1). For any fixed l, there exists some h such that rh(l) < 1.

(2). For any fixed h, there exists some l such that tl(h) < 1.

(3). There exist some l and h such that both rh(l) < 1 and tl(h) < 1.

The proof of this lemma is given in Appendix A.

Remark 4 For a finite h, if rh(0) ≤ 1, then Wl,h decreases in l; if rh(0) > 1, then Wl,h

increases in l until a maximum and then starts decreasing in l once rh(l) becomes less than

one.

For any finite l, if tl(h) ≤ 1, then Wl,h decreases in h; if tl(h) > 1, then Wl,h increases

in h until a maximum and then starts decreasing in l once rh(l) becomes less than one.

By Lemma 3.4.2, there exist l∗ and h∗ such that both rh∗+1(l
∗) < 1 and tl∗(h

∗) < 1.

Since rh∗(l∗) ≤ rh∗+1(l
∗), then rh∗(l∗) < 1 and s(l∗, h∗) = tl∗(h

∗)rh∗+1(l
∗) < 1.

I show next that the infinite double sum
∞∑
l=0

∞∑
h=0

Wl,h is bounded, so I can calculate a

finite double sum of Wl,h until
∞∑
l=0

∞∑
h=0

Wl,h is convergent.

Lemma 3.4.3 (1). For any l∗ and h∗ such that rh∗(l∗) < rh∗+1(l
∗) < 1 and tl∗(h

∗) < 1,

fF
′′

ν1,ν2
(ζ1, η)(x) ≤

fFν1,ν2(x)





l∗∑
l=0

h∗∑
h=0

Wl,h +
l∗∑

l=0

W 2
l,h∗

Wl,h∗−Wl,h∗+1
+

h∗∑
h=0

W 2
l∗,h

Wl∗,h−Wl∗+1,h
+

W 2
l∗,h∗

Wl∗,h∗−Wl∗+1,h∗+1

(
Wl∗,h∗

Wl∗,h∗−Wl∗+1,h∗
+

Wl∗,h∗

Wl∗,h∗−Wl∗,h∗+1

)





. (3.115)
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(2). Given l∗ and h∗ that satisfy rh∗(l∗) < rh∗+1(l
∗) < 1 and tl∗(h

∗) < 1, for any sequence

{hl, l = 0, · · · , l∗} such that tl(hl) < 1, fF
′′

ν1,ν2
(ζ1, η)(x) is bounded by

fFν1,ν2(x)





l∗∑
l=0

hl∑
h=0

Wl,h +
l∗∑

l=0

W 2
l,hl

Wl,hl
−Wl,hl+1

+
h∗∑

h=0

W 2
l∗,h

Wl∗,h−Wl∗+1,h
+

W 2
l∗,h∗

Wl∗,h∗−Wl∗+1,h∗+1

(
Wl∗,h∗

Wl∗,h∗−Wl∗+1,h∗
+

Wl∗,h∗

Wl∗,h∗−Wl∗,h∗+1

)





. (3.116)

(3). Given l∗ and h∗ that satisfy rh∗(l∗) < rh∗+1(l
∗) < 1 and tl∗(h

∗) < 1, for any sequence

{lh, h = 0, · · · , h∗} such that rh∗(lh) < 1, fF
′′

ν1,ν2
(ζ1, η)(x) is bounded by

fFν1,ν2(x)





h∗∑
h=0

lh∑
l=0

Wl,h +
l∗∑

l=0

W 2
l,h∗

Wl,h∗−Wl,h∗+1
+

h∗∑
h=0

W 2
lh,h

Wlh,h−Wlh+1,h
+

W 2
l∗,h∗

Wl∗,h∗−Wl∗+1,h∗+1

(
Wl∗,h∗

Wl∗,h∗−Wl∗+1,h∗
+

Wl∗,h∗

Wl∗,h∗−Wl∗,h∗+1

)





. (3.117)

Proof.

I show first that (1) can be obtained by choosing hl = h∗, ∀ l = 0, · · · , l∗ in (2) or by

choosing lh = l∗, ∀ h = 0, · · · , h∗ in (3).

By Lemma 3.4.2, there exist l∗ and h∗ such that rh∗+1(l
∗) < 1 and tl∗(h

∗) < 1. Fix such l∗

and h∗. Since tl(h) increases in l for any fixed h, then tl(h) < tl∗(h) < 1 for any 0 ≤ l < l∗.

Therefore {hl = h∗, l = 0, · · · , l∗} is a sequence such that tl(hl) < 1. Similarly, since rh(l)

increases in h for any fixed l, then rh(l∗) < rh∗(l∗) < 1 for any 0 ≤ h < h∗. Therefore

{lh = l∗, h = 0, · · · , h∗} is a sequence such that rh(lh) < 1. Hence (1) can be obtained from

(2) or (3).

I show next (2) is true. Note that the double sum
∞∑
l=0

∞∑
h=0

Wl,h can be written as

∞∑

l=0

∞∑

h=0

Wl,h =

l∗∑

l=0

∞∑

h=0

Wl,h +

∞∑

l=l∗+1

∞∑

h=0

Wl,h (3.118)

=
l∗∑

l=0

hl∑

h=0

Wl,h +
l∗∑

l=0




∞∑

h=hl+1

Wl,h


+ (3.119)

h∗∑

h=0

( ∞∑

l=l∗+1

Wl,h

)
+

∞∑

l=l∗+1

∞∑

h=h∗+1

Wl,h.

for any l∗ ≥ 0, h∗ ≥ 0 and hl ≥ 0, ∀ l = 0, · · · , l∗.

In order to find an upper bound of
∞∑
l=0

∞∑
h=0

Wl,h, we need to find upper bounds of
∞∑

l=l∗+1

Wl,h,

∞∑
h=h∗+1

Wl,h, and
∞∑

l=l∗+1

∞∑
h=h∗+1

Wl,h. First, for any fixed h, if lh satisfies rh(lh) < 1, then we

have
∞∑

l=lh+1

Wl,h = Wlh,h {rh(lh) + rh(lh)rh(lh + 1) + rh(lh)rh(lh + 1)rh(lh + 2) + · · · } (3.120)
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≤ Wlh,h

{
rh(lh) + r2

h(lh) + r3
h(lh) + · · ·

}
(3.121)

=
Wlh,hrh(lh)

1 − rh(lh)
≤ Wlh,h

1 − rh(lh)
. (3.122)

Secondly, for any fixed l, if hl satisfies tl(hl) < 1, then we have

∞∑

h=hl+1

Wl,h = Wl,hl
{tl(hl) + tl(hl)tl(hl + 1) + tl(hl)tl(hl + 1)tl(hl + 2) + · · · } (3.123)

≤ Wl,hl

{
tl(hl) + t2l (hl) + t3l (hl) + · · ·

}
(3.124)

=
Wl,hl

tl(hl)

1 − tl(hl)
≤ Wl,hl

1 − tl(hl)
. (3.125)

Thirdly, let l∗ and h∗ be indices such that both rh∗+1(l
∗) < 1 and tl∗(h

∗) < 1. Since

rh∗(l∗) < rh∗+1(l
∗), hence rh∗(l∗) < 1 and s(l∗, h∗) = tl∗(h

∗)rh∗+1(l
∗) < 1. The terms

Wl,h, l ≥ l∗, h ≥ h∗ are

Wl∗,h∗ Wl∗,h∗+1 Wl∗,h∗+2 Wl∗,h∗+3 · · ·
Wl∗+1,h∗ Wl∗+1,h∗+1 Wl∗+1,h∗+2 Wl∗+1,h∗+3 · · ·
Wl∗+2,h∗ Wl∗+2,h∗+1 Wl∗+2,h∗+2 Wl∗+2,h∗+3 · · ·
Wl∗+3,h∗ Wl∗+3,h∗+1 Wl∗+3,h∗+2 Wl∗+3,h∗+3 · · ·

...
...

...
...

. . .

,

and if we add these terms diagonally, then the resulting sum is

∞∑

l=l∗

∞∑

h=h∗

Wl,h = (3.126)

(Wl∗,h∗ + Wl∗+1,h∗+1 + Wl∗+2,h∗+2 + · · · )+ (3.127)

(Wl∗,h∗+1 + Wl∗+1,h∗+2 + Wl∗+2,h∗+3 + · · · )+

(Wl∗,h∗+2 + Wl∗+1,h∗+3 + Wl∗+2,h∗+4 + · · · ) + · · ·+

(Wl∗+1,h∗ + Wl∗+2,h∗+1 + Wl∗+3,h∗+2 + · · · )+

(Wl∗+2,h∗ + Wl∗+3,h∗+1 + Wl∗+4,h∗+2 + · · · ) + · · ·

= Wl∗,h∗ {1 + s(l∗, h∗) + s(l∗, h∗)s(l∗ + 1, h∗ + 1) + · · · }+ (3.128)

Wl∗,h∗+1 {1 + s(l∗, h∗ + 1) + s(l∗, h∗ + 1)s(l∗ + 1, h∗ + 2) + · · · }+

Wl∗,h∗+2 {1 + s(l∗, h∗ + 2) + s(l∗, h∗ + 2)s(l∗ + 1, h∗ + 3) + · · · } + · · ·+

Wl∗+1,h∗ {1 + s(l∗ + 1, h∗) + s(l∗ + 1, h∗)s(l∗ + 2, h∗ + 1) + · · · }+

Wl∗+2,h∗ {1 + s(l∗ + 2, h∗) + s(l∗ + 2, h∗)s(l∗ + 3, h∗ + 1) + · · · } + · · ·

≤ Wl∗,h∗

{
1 + s(l∗, h∗) + s2(l∗, h∗) + s3(l∗, h∗) + · · ·

}
+ (3.129)
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Wl∗,h∗+1

{
1 + s(l∗, h∗) + s2(l∗, h∗) + s3(l∗, h∗) + · · ·

}
+

Wl∗,h∗+2

{
1 + s(l∗, h∗) + s2(l∗, h∗) + s3(l∗, h∗) + · · ·

}
+ · · ·+

Wl∗+1,h∗

{
1 + s(l∗, h∗) + s2(l∗, h∗) + s3(l∗, h∗) + · · ·

}
+

Wl∗+2,h∗

{
1 + s(l∗, h∗) + s2(l∗, h∗) + s3(l∗, h∗) + · · ·

}
+ · · ·

≤ 1

1 − s(l∗, h∗)

{
(Wl∗,h∗ + Wl∗,h∗+1 + Wl∗,h∗+2 + · · · )+

(Wl∗,h∗ + Wl∗+1,h∗ + Wl∗+2,h∗ + · · · )

}
(3.130)

≤ 1

1 − s(l∗, h∗)

{
Wl∗,h∗ [1 + tl∗(h

∗) + tl∗(h
∗)tl∗(h∗ + 1) + · · · ] +

Wl∗,h∗ [1 + rh∗(l∗) + rh∗(l∗)rh∗(l∗ + 1) + · · · ]

}
(3.131)

≤ 1

1 − s(l∗, h∗)

{
Wl∗,h∗

[
1 + tl∗(h

∗) + t2l∗(h
∗) + · · ·

]
+

Wl∗,h∗

[
1 + rh∗(l∗) + r2

h∗(l∗) + · · ·
]
}

(3.132)

=
Wl∗,h∗

1 − s(l∗, h∗)

{
1

1 − tl∗(h∗)
+

1

1 − rh∗(l∗)

}
(3.133)

≤ Wl∗,h∗

{1 − s(l∗, h∗)} {1 − tl∗(h∗)} +
Wl∗,h∗

{1 − s(l∗, h∗)} {1 − rh∗(l∗)} . (3.134)

Since rh(l∗) < rh∗(l∗) < 1 for any 0 ≤ h < h∗ and tl(hl) < 1 for any 0 ≤ l < l∗. Hence
∞∑

l=l∗+1

Wl,h ≤ Wl∗,h

1−rh(l∗) for any 0 ≤ h ≤ h∗ and
∞∑

h=hl+1

Wl,h ≤ Wl,hl

1−tl(hl)
for any 0 ≤ l ≤ l∗, by

(3.122) and (3.125). Therefore by 3.119 and 3.133, we have

∞∑

l=0

∞∑

h=0

Wl,h ≤
l∗∑

l=0

hl∑

h=0

Wl,h +
l∗∑

l=0

Wl,hl

1 − tl(hl)
+

h∗∑

h=0

Wl∗,h

1 − rh(l∗)
+ (3.135)

Wl∗,h∗

1 − s(l∗, h∗)

{
1

1 − tl∗(h∗)
+

1

1 − rh∗(l∗)

}

≤
l∗∑

l=0

hl∑

h=0

Wl,h +

l∗∑

l=0

W 2
l,hl

Wl,hl
− Wl,hl+1

+

h∗∑

h=0

W 2
l∗,h

Wl∗,h − Wl∗+1,h
+ (3.136)

W 2
l∗,h∗

Wl∗,h∗ − Wl∗+1,h∗+1

(
Wl∗,h∗

Wl∗,h∗ − Wl∗+1,h∗

+
Wl∗,h∗

Wl∗,h∗ − Wl∗,h∗+1

)
.

Then (3.115) results from (3.136) with choosing hl = h∗, ∀ l = 0, · · · , l∗.

Similarly, (3) follows by

∞∑

l=0

∞∑

h=0

Wl,h =
h∗∑

h=0

∞∑

l=0

Wl,h +
∞∑

h=h∗+1

∞∑

l=0

Wl,h (3.137)

=
h∗∑

h=0

lh∑

l=0

Wl,h +
h∗∑

h=0




∞∑

l=l∗
h∗+1

Wl,h


+ (3.138)

l∗∑

l=0

( ∞∑

h=h∗+1

Wl,h

)
+

∞∑

l=l∗+1

∞∑

h=h∗+1

Wl,h.
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Remark 5 I chose to use the bound (3.116) instead of (3.115) because most hl are much

smaller than h∗, so the computation time can be saved by using (3.116). Moreover, since

in most cases the denominator noncentral parameter η in (3.40) is much larger than the

numerator noncentral parameters ζ0 (3.41) and ζ1 (3.42), the value of h∗ is much larger

than l∗. Therefore I use the bound (3.116) rather than (3.117).

The last three terms in (3.116) can be bounded below a certain error bound, then I

can calculate the finite sum
l∗∑

l=0

hl∑
h=0

Wl,h. In my algorithm given below, I use another form

of the bound (3.116) as given in (3.135) which has ratios rh(l), tl(h) and s(j, k). The last

three terms
l∗∑

l=0

Wl,hl

1−tl(hl)
,

h∗∑
h=0

Wl∗,h

1−rh(l∗) and
Wl∗,h∗

1−s(l∗,h∗)

{
1

1−tl∗ (h∗) + 1
1−rh∗ (l∗)

}
in (3.135) can be

bounded separately. Given an error bound E, find j ≥ l∗, k ≥ h∗ and kl ≥ hl, l = 0, · · · , j

with kj = k for convenience, such that
Wj,h

1−rh(j) ≤ E, h = 0, · · · , k,
Wl,kl

1−tl(kl)
≤ E, l = 0, · · · , j,

and
Wj,k

1−s(j,k)

{
1

1−tj(k) + 1
1−rk(j)

}
≤ E. Then

∞∑

l=0

∞∑

h=0

Wl,h −
j∑

l=0

kl∑

h=0

Wl,h

≤
j∑

l=0

Wl,kl

1 − tl(kl)
+

k∑

h=0

Wj,h

1 − rh(j)
+ (3.139)

Wj,k

1 − s(j, k)

{
1

1 − tj(k)
+

1

1 − rk(j)

}

≤ (j + 1)E + (k + 1)E + E

= (k + j + 3)E. (3.140)

The algorithm for computing the density of F ′′
ν1,ν2

(ζ, η) is given below.

Algorithm 3.4.2 1. If η = 0,

then use Algorithm 3.4.1 to calculate fF ′

ν1,ν2
(ζ)(x).

2. If ζ = 0,

then use Algorithm 3.4.1 to calculate the density fF ′′

ν1,ν2
(0,η)(x) = x−1fF ′

ν1,ν2
(η)(x

−1).

3. Otherwise, for both ζ, η > 0:

3.1 l = 0
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3.2 Calculate Wl,0 and tl(0).

3.3 modl = 0.

3.4 While tl(modl) > 1:

3.4.1 modl = modl +1.

3.4.2 Calculate Wl,modl
and tl(modl).

3.5 kl = modl.

3.6 While
Wl,kl

1−tl(kl)
> Ė:

3.6.1 kl = kl + 1.

3.6.2 Calculate Wl,kl
and tl(kl).

3.7 Calculate
∑kl

h=0 Wl,h.

3.8 Calculate rmodl +1(l) and s(l, modl).

3.9 While rmodl +1(l) > 1 or s(l, modl) or
Wl,modl

1−s(l,modl)

{
1

1−tl(modl)
+ 1

1−rmodl
(l)

}
> E:

3.9.1 l = l + 1.

3.9.2 modl = 0

3.9.3 Calculate Wl,modl
and tl(modl).

3.9.4 while tl(modl) > 1 :

modl = modl +1.

Calculate Wl,modl
and tl(modl).

3.9.5 kl = modl.

3.9.6 While
Wl,kl

1−tl(kl)
> Ė:

kl = kl + 1.

Calculate Wl,kl
and tl(kl).

3.9.7 Calculate the sum
∑kl

h=0Wl,h.

3.9.8 Calculate rmodl +1(l) and s(l, modl).

3.10 Then j is the value of l which breaks out the condition in the previous step, i.e.

j = l and k = modl.

3.11 Calculate S =
∑j

l=0

(∑kl

h=0Wl,h

)
.

3.12 Calculate fFν1,ν2(x).

3.13 The density of F
′′

ν1,ν2
(ζ, η) for a fixed x is calculated as S · fFν1,ν2(x).
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The density function of the central F distribution with degrees of freedom ν1 and ν2

for a fixed x can be calculated by using “R” function df(x, ν1, ν2) [71].

Using the above algorithm the computational error can be controlled below (j+k+3)E.

Reset E to be E/(j +k +3), the total computational error is then smaller than the desired

error bound E. For example, for x = 10, ν1 = 1, ν2 = 97, ζ = 50, η = 500 and E = 10−10,

the value of j + k + 3 is 333, so the actual error is controlled below 3.33 × 10−8.

The Algorithm 3.4.2 does not converge too slowly for moderate values of x, ν1, ν2, ζ

and η, so the value of j and k are not very large. For example, for x = 10, ν1 = 1, ν2 = 97,

ζ = 50, η = 500 and E = 10−10, it takes 1.98 seconds on a computer with Intel Pentium

D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram. However, the computational

time depends on the value of x, ν1, ν2, ζ and η. Moreover, if computation of one density

takes 1.98 seconds, then it takes at least 1.98mn seconds, where m is the total number of

observations and n is the number of random samples generated by using Algorithm 3.3.1,

to calculate the marginal posterior probabilities Pr(Hi = 0 | r∗2i ).

The Algorithm 3.4.2 is time-consuming for large m or large n. Hence I decided to use

Patnaik’s approximation to calculate the density of doubly noncentral F distribution of

F ′′
ν1,ν2

(ζ, η) by that of
1−ζν−1

1

1−ην−1
2

Fν,ν′ with ν = (ν1 + ζ)2/(ν1 + 2ζ) and ν ′ = (ν2 + η)2/(ν2 +

2η) [54]. However, we need to examine the error of the approximation, that is, compare

the results of the approximation with those of the Algorithm 3.4.2. Since the purpose of

using this algorithm is to compare Patnaik’s approximation to the density of F ′′
ν1,ν2

(ζ, η), I

only need to compute the density of F ′′
ν1,ν2

(ζ, η) with an error below some bound. Though

the error bound of Algorithm 3.4.2 depends on the value of x, ν1, ν2, ζ and η, it still

controls computational error as long as j + k + 3 is not too large, which is true for the

values of parameters used in my simulation study. It could be a future work to develop a

more efficient algorithm or a better approximation to calculate the density of F ′′
ν1,ν2

(ζ, η).

Since the degrees of freedom of the numerator of r∗2 is always 1, only the value of x, ν2, ζ

and η are varied. The quantile x varies from 0.01 to 10. Since the degrees of freedom of the

denominator is ν2 = m−k−1 and in this thesis I only consider the simple linear regression,

then the chosen values of ν2 = 97, 47, 17 correspond to the sample size m = 100, 50, 20.

The noncentrality parameter of the numerator are set to be 0.01, 1, 10 and 50, and the

noncentrality parameter of the denominator are chosen as 0.01, 1, 10, 100 and 500. In

fact, in my simulation results given in the next section, the value of η is usually greater
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than that of ζ. The density of doubly noncentral F random variable F ′′
ν1,ν2

(ζ, η) calculated

by Algorithm 3.4.2 and that computed by Patnaik’s approximation are given in Table 3.1

to Table 3.12. Although there are other methods more accurate than Patnaik’s method

for computing the CDF, I still chose the latter because it is simple and the approximation

to the density of the doubly noncentral F is not bad for the values of the parameters

encountered when Algorithm 3.3.1 is applied.

x = 0.001, ν2 = 97

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 12.51 7.20e-12 7.63 4.39e-12 8.5e-2 7.22e-14 1.79e-10 4.39e-14

1 12.58 6.68e-08 7.67 4.07e-08 8.6e-2 4.73e-10 1.62e-10 1.79e-11

10 13.14 4.94e-06 8.02 3.01e-06 8.9e-2 3.33e-08 1.42e-10 4.70e-11

100 17.84 5.95e-05 10.88 3.62e-05 1.2e-1 3.99e-07 2.51e-10 1.08e-11

500 31.02 3.08e-05 18.97 1.87e-05 2.2e-1 2.02e-07 4.99e-10 2.28e-12

Table 3.1: True value of the density of doubly noncentral F with x = 0.001, ν2 = 97 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).

x = 0.01, ν2 = 97

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 3.94 2.23e-12 2.41 1.39e-12 2.8e-2 5.74e-14 6.88e-11 6.79e-13

1 3.96 2.12e-8 2.43 1.29e-8 2.8e-2 1.48e-10 5.86e-11 1.14e-11

10 4.14 1.57e-6 2.53 9.51e-7 3.0e-2 1.01e-8 5.31e-11 2.15e-11

100 5.59 1.90e-5 3.44 1.14e-5 4.2e-2 1.16e-7 1.16e-10 5.43e-12

500 9.54 1.00e-5 6.00 5.92e-6 8.6e-2 4.99e-8 3.96e-10 1.22e-12

Table 3.2: True value of the density of doubly noncentral F with x = 0.01, ν2 = 97 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).

All the values in these tables are reported to the second significant digit. The columns

named “True” list densities calculated by Algorithm 3.4.2, in which the true error is con-

trolled below 10−10. The columns named “Difference” give the differences between the

densities obtained by using Patnaik’s approximation and those computed from Algorithm
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x = 1, ν2 = 97

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 2.4e-1 3.56e-13 2.3e-1 1.56e-13 2.0e-2 1.69e-15 2.20e-09 5.66e-15

1 2.4e-1 3.39e-09 2.3e-1 1.41e-09 2.0e-2 -1.63e-12 2.28e-09 1.63e-13

10 2.4e-1 2.56e-07 2.3e-1 1.09e-07 2.3e-2 -7.26e-10 3.15e-09 8.27e-13

100 2.1e-1 2.96e-06 2.7e-1 2.25e-06 6.4e-2 -3.13e-07 3.89e-08 2.08e-11

500 4.8e-2 -1.40e-06 1.7e-1 1.58e-06 3.9e-2 -3.58e-06 1.46e-05 5.72e-09

Table 3.3: True value of the density of doubly noncentral F with x = 1, ν2 = 97 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).

x = 10, ν2 = 97

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 1.1e-3 -1.03e-13 6.5e-3 -9.03e-14 6.1e-2 6.43e-14 4.45e-05 1.10e-14

1 1.0e-3 -9.79e-10 6.4e-3 -9.08e-10 6.2e-2 7.95e-10 4.76e-05 1.12e-10

10 7.0e-4 -6.39e-08 4.9e-3 -8.75e-08 6.3e-2 1.80e-07 8.57e-05 1.38e-08

100 1.45e-05 -8.40e-08 2.8e-4 -6.90e-07 3.7e-2 6.35e-06 4.2e-3 2.70e-06

500 2.20e-13 -1.13e-14 7.24e-11 -2.54e-12 6.49e-06 -6.77e-08 1.1e-1 2.92e-05

Table 3.4: True value of the density of doubly noncentral F with x = 10, ν2 = 97 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).

x = 0.001, ν2 = 47

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 12.48 1.22e-10 7.61 7.45e-11 8.5e-2 8.52e-13 1.79e-10 4.56e-14

1 12.61 1.14e-06 7.69 6.93e-07 8.6e-2 7.70e-09 1.62e-10 1.83e-11

10 13.74 6.36e-05 8.38 3.88e-05 9.4e-2 4.28e-07 1.47e-10 5.06e-11

100 22.10 2.40e-04 13.49 1.46e-04 1.5e-1 1.60e-06 3.20e-10 1.36e-11

500 42.54 6.04e-05 26.08 3.66e-05 3.1e-1 3.86e-07 7.73e-10 2.72e-12

Table 3.5: True value of the density of doubly noncentral F with x = 0.001, ν2 = 47 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).
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x = 0.01, ν2 = 47

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 3.93 3.88e-11 2.41 2.36e-11 2.8e-2 2.99e-13 6.88e-11 7.07e-13

1 3.97 3.61e-07 2.43 2.19e-07 2.9e-2 2.33e-09 5.87e-11 1.18e-11

10 4.32 2.02e-05 2.65 1.23e-05 3.1e-2 1.29e-07 5.59e-11 2.41e-11

100 6.89 7.68e-05 4.27 4.61e-05 5.4e-2 4.46e-07 1.76e-10 7.35e-12

500 12.77 2.02e-05 8.24 1.15e-05 1.4e-1 7.65e-08 1.01e-09 1.48e-12

Table 3.6: True value of the density of doubly noncentral F with x = 0.01, ν2 = 47 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).

x = 1, ν2 = 47

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 2.4e-1 6.15e-12 2.2e-1 2.59e-12 2.0e-2 -6.30e-15 2.46e-09 1.76e-14

1 2.4e-1 5.75e-08 2.3e-1 2.43e-08 2.0e-2 -1.02e-10 2.66e-09 2.16e-13

10 2.4e-1 3.32e-06 2.4e-1 1.49e-06 2.7e-2 -2.78e-08 5.12e-09 2.71e-12

100 1.5e-1 6.34e-06 2.7e-1 1.43e-05 1.4e-2 -5.98e-06 3.60e-07 8.67e-10

500 4.7e-3 -2.22e-06 3.9e-2 -4.04e-06 6.5e-1 1.02e-05 9.6e-4 6.14e-07

Table 3.7: True value of the density of doubly noncentral F with x = 1, ν2 = 47 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).

x = 10, ν2 = 47

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 1.3e-3 -1.76e-12 7.0e-3 -1.36e-12 6.0e-2 1.56e-12 6.47e-05 2.48e-13

1 1.2e-3 -1.60e-08 6.6e-3 -1.38e-08 6.0e-2 1.97e-08 7.43e-05 2.59e-09

10 5.8e-4 -7.04e-07 4.0e-3 -1.17e-06 6.2e-2 3.92e-06 2.3e-4 3.59e-07

100 3.51e-07 -1.91e-08 1.23e-05 -3.62e-07 8.1e-3 -1.72e-05 4.1e-2 -3.50e-05

500 1.72e-22 1.56e-22 2.34e-19 4.34e-19 5.84e-12 -7.63e-13 6.1e-4 -7.77e-06

Table 3.8: True value of the density of doubly noncentral F with x = 10, ν2 = 47 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).
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x = 0.001, ν2 = 17

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 12.37 6.51e-09 7.54 3.97e-09 8.4e-2 4.39e-11 1.77e-10 5.17e-14

1 12.72 5.44e-05 7.76 3.32e-05 8.7e-2 3.67e-07 1.63e-10 1.97e-11

10 15.61 1.4e-3 9.52 8.8e-4 1.1e-1 9.71e-06 1.89e-10 3.76e-11

100 32.69 9.0e-4 19.99 5.4e-4 2.3e-1 5.86e-06 5.23e-10 1.56e-11

500 68.12 1.2e-4 42.15 7.41e-05 5.3e-1 7.19e-07 1.77e-09 3.38e-12

Table 3.9: True value of the density of doubly noncentral F with x = 0.001, ν2 = 17 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).

x = 0.01, ν2 = 17

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 3.89 2.07e-09 2.39 1.25e-09 2.8e-2 1.36e-11 6.86e-11 8.05e-13

1 4.00 1.73e-05 2.45 1.05e-05 2.9e-2 1.11e-07 5.91e-11 1.33e-12

10 4.90 4.6e-4 3.01 2.8e-4 3.6e-2 2.89e-06 9.56e-11 3.50e-12

100 10.02 3.0e-4 6.32 1.7e-4 9.3e-2 1.41e-06 4.58e-10 8.97e-12

500 18.80 4.57e-05 13.24 2.30e-05 3.8e-1 9.18e-08 6.57e-09 2.30e-12

Table 3.10: True value of the density of doubly noncentral F with x = 0.01, ν2 = 17 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).

x = 1, ν2 = 17

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 2.4e-1 3.21e-10 2.2e-1 1.41e-10 2.1e-2 -1.58e-12 3.63e-09 1.19e-14

1 2.3e-1 2.71e-06 2.3e-1 1.21e-06 2.3e-2 -1.89e-08 4.55e-09 1.75e-12

10 2.2e-1 7.39e-05 2.5e-1 4.15e-05 4.4e-2 -3.37e-06 2.42e-08 2.36e-10

100 3.9e-2 -4.18e-05 1.4e-1 3.12e-05 4.4e-1 -9.61e-05 4.48e-05 4.38e-07

500 1.35e-06 -1.61e-08 6.84e-05 -4.35e-07 7.7e-2 -3.39e-05 3.4e-1 -3.78e-05

Table 3.11: True value of the density of doubly noncentral F with x = 1, ν2 = 17 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).
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x = 10, ν2 = 17

η\ζ 0.01 1 10 50

True Difference True Difference True Difference True Difference

0.01 2.0e-3 -8.22e-11 8.3e-3 -4.24e-11 5.5e-2 1.20e-10 1.8e-4 2.36e-11

1 1.7e-3 -6.67e-07 7.3e-3 -4.52e-07 5.6e-2 1.45e-06 2.6e-4 2.49e-07

10 3.7e-4 -1.04e-05 2.4e-3 -2.26e-05 5.1e-2 0.00012 2.5e-3 2.45e-05

100 4.41e-11 -2.32e-11 3.27e-09 -1.30e-09 2.25e-05 -3.32e-06 8.0e-2 4.4e-4

500 2.60e-43 -2.49e-43 3.00e-39 -2.68e-39 5.14e-30 -3.38e-30 1.98e-16 -3.83e-17

Table 3.12: True value of the density of doubly noncentral F with x = 10, ν2 = 17 and
various ξ and η, and Difference = (Patnaik’s approximation − true value).

3.4.2. We can see from Table 3.1 – 3.12, Patnaik’s method gives a good approximation

to the density of F ′′
ν1,ν2

(ζ, η). Almost all the absolute differences are smaller in order of

magnitude than the last significant figure of the true densities except some extremely small

differences, though they tend to be larger for small quantiles and small sample size. The

largest difference between the density calculated by Patnaik’s approximation and that com-

puted by Algorithm 3.4.2 is 0.0014 when x = 0.001, ν2 = 17, ζ = 0.01 and η = 10 in Table

3.9. These results confirm the use of Patnaik’s method in computing the density of doubly

noncentral F distribution. I also use both Algorithm 3.4.2 and Patnaik’s approximation

in my simulation results for some chosen parameters and compare the desired posterior

probabilities for the ith observation being an outlier given its deletion residual obtained

by the two methods. The results are given in the next section.

3.5 Simulation study

In this section, I apply the proposed Bayesian approach in Section 3.3 to some simulated

datasets. For simplicity, I only generate datasets for simple linear regression, so I do not

need to consider the problem of variable selection. In this simulation study, datasets are

generated for various simulation parameters, including the total number of observations,

the proportion of outliers and the variance of the mean shift of outliers. The marginal

posterior probabilities P (Hi = 1 | r∗2i ) for each simulated dataset are calculated by Algo-

rithm 3.3.1, which requires generating a number of the importance samples. The hyper-

parameters of importance samples are parameters a and b of the Beta prior for π0 and the

variance of the mean shift. In order to study how sensitive the marginal posterior probabil-
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ity P (Hi = 1 | r∗2i ) is to the different priors, the hyper-prior parameters of the importance

samples also vary over a range of values for each combination of simulation parameters.

Then for each combination of simulation and prior parameter levels, the marginal posterior

probabilities P (Hi = 1 | r∗2i ) are calculated for all observations and the AUC value is also

calculated. In Section 3.5.1, I simulate two single datasets, with m = 100 and π0 = 0.9,

different variances of the mean shift, and the explanatory variable sampled from Bernoulli

or normal distribution. The marginal posterior probability P (Hi = 1 | r∗2i ) is plotted as a

function of the deletion residual r∗2i . The ROC curves are plotted and the AUC values are

calculated for various priors. In Section 3.5.2, two sets of 1000 datasets with m = 100 and

π0 = 0.9 are generated, and the proposed Bayesian method is applied to each dataset with

various priors. The variance of the mean shift and the distribution of explanatory vari-

ables are different for the two sets of 1000 simulated datasets. For each multiple datasets

and various priors, the average TPR and FPR are calculated for selected thresholds, the

average TPR is plotted versus the average FPR, and the average AUC are calculated for

various priors. In Section 3.5.3, more values of the simulation parameters are considered,

and the results for a factorial design analysis with factors equal to simulation and prior

parameters are presented. The ANOVA table and the table of means are also presented

in Section 3.5.3. I first include a small value of 20 for the factor m. The ANOVA table

indicates a significant effect of m, and both the table of means and the residual plot suggest

a large difference between m = 20 and the other values of m. Hence I remove the data

with m = 20 and re-perform the factorial design analysis.

3.5.1 Simulation study of single datasets

I start from the simplest case, binary x. First, m binary x = (x1, · · · , xm)T are generated

from Bernoulli(1/2), that is, x equals 0 or 1 with equal probability 1/2. Secondly, m

random errors ε = (ε1, · · · , εm)T are generated from N(0, σ2). Then m “clean” data y′

are calculated as Xβ + ε with all elements of the first column of X equal to 1 and the

second column of X equal to x. At last, m1 scaled mean shifts µ1, · · · , µm1 are generated

from N(0, V ′), and after being multiplied by σ, they are added to the last m1 elements

of y′ to make a vector of responses y with m1 outliers. In this section, the number of

outliers, m1, is fixed. I use the notation V ′ to denote the variance of the mean shift µi

in the simulated datasets, in order to distinguish it from the prior variance of µi for the
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importance samples, which is denoted by V . I choose the parameters β = (−0.5, 1)T . In

fact, the choice of β does not affect the deletion residuals r∗2i = ri

s(i)

√
(1−gi)

because

r = ( I − G)y (3.141)

=
{
I − X(XT X)−1XT

}
(Xβ + ε + µ) (3.142)

= Xβ + ε + µ−X(XT X)−1XT X β− X(XT X)−1XT (ε + µ) (3.143)

= (I − G)(ε + µ), (3.144)

where µ = (

m0︷ ︸︸ ︷
0, · · · , 0, µ1, · · · , µm1)

T . By choosing m = 100, m1 = 10, σ2 = 1/16 and

V ′ = 16, the scatter plot and the residual versus explanatory variable plot of the first

simulated dataset are shown in Figure 3.1. We can see from the figure that five outliers

are apparent outliers, while the other half are hard to distinguish from the nulls.
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Figure 3.1: The scatter plot and the residual plot of a dataset with 100 points, of which
10 outliers have mean shifts simulated from N(0,1). The observations are shown as dots
(·) for the nulls and stars (*) for the alternatives.

Then I use the proposed method in Algorithm 3.3.1 to calculate the posterior proba-

bility P (Hi = 1 | r∗2i ) for those 100 observation. As pointed out by Scott and Berger [88],

the Bayes inferences may be sensitive to the choice of the priors. In [88], they suggested to

use Beta(a, b) prior with b = 1 on the probability of being a null, and in their simulation

study, they chose a = 1 and a = 11 for their model. The former gives a uniform prior for

π0 that means there is no prior information of any outlier, while the latter has a median

106



of about 0.93. However, those two priors both have a large mass on π0 = 1, which does

not accord with the problem we are dealing with. Although the proportion of outliers may

be small, we expect there to be some outliers. I still use Beta(11, 1) in my simulation as

one selection of the prior distribution of π0. Besides Beta(11, 1), I choose the prior of π0 to

be Beta(0.8, 0.2), Beta(8, 2) and Beta(80, 20) with an equal mean 0.8 and decreasing vari-

ances, and Beta(9.41, 4.03) and Beta(8.09, 8.09) that have the same variance as Beta(8, 2)

but respectively have mean 0.7 and 0.5. The variance of Beta(11, 1) is between that of

Beta(8, 2) and that of Beta(0.8, 0.2). As assumed in the previous section, µi = 0 under

the null hypothesis but follows a N(0, V ) prior distribution under the alternative hypoth-

esis. The alternative µi of the simulated dataset is actually simulated from N(0, V ′) with

V ′ = 16 and random errors ε are generated from N(0, σ2) with σ2 = 1/16. However, we

know neither the value of σ2 nor V ′ in the real data. So I also consider different value of

V in the prior distributions in order to study the sensitivity of the posterior to this prior

choice. The values 9 and 16 of V were used in Scott and Berger [88] as a prior variance

of alternatives. I choose V = 4, 9, 16, 36 to be the prior variances of the sampled µi. For

each observation, n = 1000 random samples (Hj
(i), µ

j,πj
0), j = 1, · · · , n, are generated to

calculate the posterior probability P (Hi = 1 | r∗2i ). The plots of P (Hi = 1 | r∗2i ) versus r∗2

for the first dataset by using various priors on π0 and µ are shown in Figure 3.2 – 3.5. The

prior standard deviation of µi varies from 6 to 2 in Figure 3.2 – 3.5, where (a) – (f) are for

Beta(11, 1), Beta(8, 2), Beta(0.8, 0.2), Beta(80, 20), Beta(9.41, 4.03) and Beta(8.09, 8.09).

First, I compare the different choice of Beta prior. From Figure 3.2, it can be seen

that the posterior probabilities P (Hi = 1 | r∗2) for the five apparent outliers with high

values of r∗2 are greater than those of the other observations for almost all priors. This

result can also be observed in Figure 3.3 – 3.5. The posteriors in Figure 3.2 – Figure

3.5, (a) and (c) have a similar pattern and are lower than those in (b), (d), (e) and (f),

especially for the three extreme outliers with relatively smaller r∗2 than the other two

extreme observations (between 0.2 and 0.6), but the differences between the posteriors of

the two extreme observations with the largest r∗2 and those of other observations in (a)

and (c) are greater than those in (b), (d), (e) and (f). The posteriors in Figure 3.2 – Figure

3.5, (e) and (f) have a similar pattern and are higher than those in (a) – (d). In Figure 3.2

– Figure 3.5 (b) and (d), the curves of posteriors are similar and the five apparent outliers

are separated from the other observations because the posteriors of the apparent outliers
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(e) Prior V = 36, Beta(9.41, 4.03) (f) Prior V = 36, Beta(8.09, 8.09)

Figure 3.2: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 36 and six different Beta priors on π0. The observations are shown as dots (·) for
the nulls and stars (*) for the alternatives. The explanatory variable is generated from
Bernoulli(1/2).
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(a) Prior V = 16, Beta(11, 1) (b) Prior V = 16, Beta(8, 2)
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(c) Prior V = 16, Beta(0.8, 0.2) (d) Prior V = 16, Beta(80, 20)
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(e) Prior V = 16, Beta(9.41, 4.03) (f) Prior V = 16, Beta(8.09, 8.09)

Figure 3.3: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 16 and six different Beta priors on π0. The observations are shown as dots (·) for
the nulls and stars (*) for the alternatives. The explanatory variable is generated from
Bernoulli(1/2).
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(a) Prior V = 9, Beta(11, 1) (b) Prior V = 9, Beta(8, 2)
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(c) Prior V = 9, Beta(0.8, 0.2) (d) Prior V = 9, Beta(80, 20)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

*

*

*

* * **

*

*

*

r∗2i

P
r(

H
i
=

1
|r

∗2 i
)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

*

*

*

* * **
*

*

*

r∗2i

P
r(

H
i
=

1
|r

∗2 i
)

(e) Prior V = 9, Beta(9.41, 4.03) (f) Prior V = 9, Beta(8.09, 8.09)

Figure 3.4: The posterior probabilityP (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 9 and six different Beta priors on π0. The observations are shown as dots (·) for
the nulls and stars (*) for the alternatives. The explanatory variable is generated from
Bernoulli(1/2).
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(a) Prior V = 4, Beta(11, 1) (b) Prior V = 4, Beta(8, 2)
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(c) Prior V = 4, Beta(0.8, 0.2) (d) Prior V = 4, Beta(80, 20)
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(e) Prior V = 4, Beta(9.41, 4.03) (f) Prior V = 4, Beta(8.09, 8.09)

Figure 3.5: The posterior probabilityP (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 4 and six different Beta priors on π0. The observations are shown as dots (·) for
the nulls and stars (*) for the alternatives. The explanatory variable is generated from
Bernoulli(1/2).
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are greater than 0.9 and those of the other observations are below 0.8. The Beta prior of

Figure 3.2 (c), (b) and (d) has the same mean but decreasing variance. Although the Beta

prior with lower variance improves the posteriors of the three extreme observations with

relatively smaller r∗2, it also increases the posterior of some nulls. A similar trend among

(c), (b) and (d) is shown in Figure 3.3 – 3.5. Then I compare Figure 3.2 (b) with (e) and

(f), of which the Beta priors have the same variance but decreasing mean. The three plots

have similar curves, but the Beta prior with smaller mean produces larger posteriors for

all observations. A similar trend of (b), (e) and (f) is shown in Figure 3.3 – 3.5. The Beta

prior with smaller variance gives larger posterior for both null and outliers, so does the

Beta distribution with smaller mean.

By comparing all (a) – all (f) in Figure 3.2 – 3.5, we can see the curves do not change

dramatically across different values of V which indicates that the posterior probability

P (Hi = 1 | r∗2) is not affected much by the value of V . As V decreases, all posteriors

decrease, the variations in the posteriors of the five apparent observations increase, and

the variations in the posteriors of the other observations decrease, though the shape of the

posterior curve is not affected noticeably. Then I compare all (b) and all (d) in Figure 3.2

– 3.5, the shape of the posterior curve does not change much and the five apparent outliers

are well separated from the other observation in the four plots. The posteriors of the

two outliers with the largest deletion residuals change slightly as V varies. Although the

smaller V pulls down the posterior probabilities for those observations with high deletion

residuals, the posterior probabilities of the observations with low r∗2 decrease more sharply

with smaller V , which means the distance between the extreme observations and the non-

extreme observations increases as V decreases. A similar trend can be found for all (e) and

(f) in Figure 3.2 – Figure 3.5.

The plots of the posterior probability P (Hi = 1 | r∗2) suggest that the posterior is

sensitive to the prior distribution of π0 and the prior variance of the mean shift µi, and

the prior of π0 has a stronger effect on the posterior than the prior of µi.

When calculating the posterior probabilities P (Hi = 1 | r∗2i ) above, I used Patnaik’s

approximation to calculate the density of the doubly noncentral F distribution. In Section

3.4, I developed an algorithm, Algorithm 3.4.2, to compute the actual density of doubly

noncentral F distribution. This algorithm is more complicated and time-consuming than

Patnaik’s approximation for selected quantiles and parameter values (see Section 3.4). In
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order to compare Patnaik’s approximation with Algorithm 3.4.2, I also use this algorithm

to compute the posterior probabilities for the simulated dataset in Figure 3.1. The error

bound E in Algorithm 3.4.2 is chosen to be 10−10, but the actual computation error

depends on the values of the noncentrality parameters and deletion residuals. Table 3.13

– 3.16 present the comparison between the results calculated by Patnaik’s approximation

and by Algorithm 3.4.2 for different priors. The values of V are 36, 16, 9, 4 in Table 3.13

– 3.16. The first column lists various Beta priors; the second column shows the maximum

difference between the doubly noncentral F densities calculated by Patnaik’s approximation

and those by Algorithm 3.4.2; the third column presents the maximum difference between

the posterior probabilities computed by Patnaik’s approximation and those by Algorithm

3.4.2; the last column presents the maximum computation error on a computer with Intel

Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram when using Algorithm

3.4.2. The maximum value for each column in Table 3.13 – 3.16 is shown in bold numbers.

V = 36

Beta prior max difference max difference max error

of densities of posteriors bound

Beta(11, 1) 0.0017 2.36×10−5 1.20×10−7

Beta(8, 2) 0.0017 1.30×10−5 1.67×10−7

Beta(0.8, 0.2) 0.0017 6.53×10−6 2.48×10−7

Beta(80, 20) 0.0017 1.68×10−5 1.19×10−7

Beta(9.41, 4.03) 0.00074 6.37×10−6 1.80×10−7

Beta(8.09, 8.09) 0.071 1.42×10−6 1.92×10−7

Table 3.13: Comparison between the results calculated by Patnaik’s approximation and
by Algorithm 3.4.2 for V = 36 and various Beta priors. The second column present the
maximum difference between the doubly noncentral F densities calculated by Patnaik’s
approximation and by Algorithm 3.4.2; the third column show the maximum difference
between the posterior probabilities computed by Patnaik’s approximation and those by
Algorithm 3.4.2; the last column present the maximum computation error on a computer
with Intel Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram when using
Algorithm 3.4.2.

The maximum computation error bound is 2.48×10−7 when Algorithm 3.4.2 is used in

Algorithm 3.3.1 to calculate the posterior probabilities for the simulated dataset in Figure

3.1. The maximum differences of the densities and maximum differences of posteriors in

Table 3.13 – 3.16 are not large, with maximums of 0.071 and 6.22 × 10−5, respectively.
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V = 16

Beta prior max difference max difference max error

of densities of posteriors bound

Beta(11, 1) 0.0017 2.67×10−5 5.66×10−8

Beta(8, 2) 0.0017 2.89×10−5 7.63×10−8

Beta(0.8, 0.2) 0.0017 8.60×10−6 1.13×10−8

Beta(80, 20) 0.0017 2.57×10−5 5.47×10−8

Beta(9.41, 4.03) 0.0017 1.53×10−5 8.21×10−8

Beta(8.09, 8.09) 0.0017 4.49×10−6 8.76×10−8

Table 3.14: Comparison between the results calculated by Patnaik’s approximation and
by Algorithm 3.4.2 for V = 16 and various Beta priors. The second column present the
maximum difference between the doubly noncentral F densities calculated by Patnaik’s
approximation and by Algorithm 3.4.2; the third column show the maximum difference
between the posterior probabilities computed by Patnaik’s approximation and those by
Algorithm 3.4.2; the last column present the maximum computation error on a computer
with Intel Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram when using
Algorithm 3.4.2.

V = 9

Beta prior max difference max difference max error

of densities of posteriors bound

Beta(11, 1) 0.0017 2.38×10−5 3.37×10−8

Beta(8, 2) 0.0017 3.91×10−5 4.42×10−8

Beta(0.8, 0.2) 0.0017 9.06×10−6 6.49×10−8

Beta(80, 20) 0.0017 5.38×10−5 3.18×10−8

Beta(9.41, 4.03) 0.0017 2.52×10−5 4.76×10−8

Beta(8.09, 8.09) 0.0017 9.60×10−6 5.06×10−8

Table 3.15: Comparison between the results calculated by Patnaik’s approximation and
by Algorithm 3.4.2 for V = 9 and various Beta priors. The second column present the
maximum difference between the doubly noncentral F densities calculated by Patnaik’s
approximation and by Algorithm 3.4.2; the third column show the maximum difference
between the posterior probabilities computed by Patnaik’s approximation and those by
Algorithm 3.4.2; the last column present the maximum computation error on a computer
with Intel Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram when using
Algorithm 3.4.2.
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V = 4

Beta prior max difference max difference max error

of densities of posteriors bound

Beta(11, 1) 0.0017 2.79×10−5 1.67×10−9

Beta(8, 2) 0.0017 4.1×10−5 2.09×10−9

Beta(0.8, 0.2) 0.0017 7.84×10−6 3.02×10−8

Beta(80, 20) 0.0017 6.22×10−5 1.50×10−8

Beta(9.41, 4.03) 0.0017 4.73×10−5 2.24×10−8

Beta(8.09, 8.09) 0.0017 2.23×10−5 2.39×10−8

Table 3.16: Comparison between the results calculated by Patnaik’s approximation and
by Algorithm 3.4.2 for V = 4 and various Beta priors. The second column present the
maximum difference between the doubly noncentral F densities calculated by Patnaik’s
approximation and by Algorithm 3.4.2; the third column show the maximum difference
between the posterior probabilities computed by Patnaik’s approximation and those by
Algorithm 3.4.2; the last column present the maximum computation error on a computer
with Intel Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram when using
Algorithm 3.4.2.

Patnaik’s approximation is always faster than Algorithm 3.3.1. The difference between the

CPU time used to calculate the posterior probabilities for the simulated dataset by incor-

porating Patnaik’s approximation with Algorithm 3.3.1 (72.39 seconds) and that by using

Algorithm 3.4.2 in Algorithm 3.3.1 (6261.31 seconds) is minimized when V = 4 and the

Beta prior on π0 is Beta(11, 1). These results suggest that using Patnaik’s approximation

in the proposed Bayesian method is acceptable for accuracy and computing time.

Although different priors may result in the same rejections of the observations by

choosing an appropriate rejection threshold, the farther the observations are from each

other, especially for the extreme observations with high posteriors, the better the decision

that can be made, because the observations with very close posterior values may have to be

rejected at the same time. In this sense Beta(8, 2), Beta(80, 20) seem to be better than the

other Beta priors. In order to compare the performance of the proposed method for different

priors, I plot ROC curves and calculate the areas under ROC curves, rather than control

an error rate below a specific level and compare the average powers for different choices of

priors. In my simulation, the AUC of the proposed Bayes method for simulated datasets

is calculated by using the “R” function “roc.area” in the package “verification” which

is available on the R website at http://www.r-project.org [65]. As mentioned in Section
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1.4.4, AUC can be interpreted as the probability that the posterior probability of a false

null being assigned false is higher than that of a true null being assigned false [46, 62, 69].

Hence, the AUC of the proposed Bayes method is equal to Pr [{p1|Hi = 1} > {p1|Hi = 0}],
where p1 = P (Hi = 1|r2

∗). AUC can be used to assess the overall performance of a testing

method.

The ROC curves for the simulated dataset shown in Figure 3.1 with different values

of V and various Beta priors are obtained by using the “R” function “roc.plot” in the

“verification” package [65] and are given in Figure 3.6 – 3.9. The value of V , Beta prior

and the AUC value for each combination of priors are presented in the subtitles of each

graph.

All ROC curves in Figure 3.6 – 3.9 (a) – (f) are similar. The FPRs are the same for

large cutoffs in Figure 3.6 – 3.9 (a) and (c), which reflects that most observations have

small posterior probabilities as shown in 3.2 – 3.5 (a) and (c), whereas TPRs are similar for

small cutoffs in Figure 3.6 – 3.9 (e) and (f), which indicates that the extreme observations

have extremely large posteriors as shown in Figure 3.2 – 3.5 (e) and (f). The ROC curves in

Figure 3.6 – 3.9 (b) and (d) have less ties than those in the other graphs. As V decreases,

the same cutoff tends to give smaller power which reflects the fact that the posteriors

decrease as V decreases as shown in Figure 3.2 – Figure 3.5.

Next I compare the AUC for this dataset with various priors. It can be shown that

when a method can correctly identify a majority of the typical and atypical observations,

a the area under the ROC curve will exceed 0.5 [62]. All AUC values are greater than

0.7, which indicates that the proposed method can identify a majority of the outliers. All

values of AUC in Figure 3.6 – 3.9 (a) – (f) are similar, from 0.7833 to 0.8033. The AUC

calculated by using Beta(0.8, 0.2) varies from 0.7833 to 0.8033, and has a wider range than

it calculated by using other Beta priors. The posterior is more sensitive to Beta(0.8, 0.2)

because it has the largest variance among all Beta priors. AUC increases as V decreases

in Figure 3.6 – 3.9 except AUC for Beta(8.09, 8.09) decreases from 0.7956 to 0.7933 when

V decreases from 9 to 4.

For the first simulated dataset, there is no large difference among the results obtained

by using the six Beta priors or by using the four different values of V , though smaller V

seems to be slightly better. This may be caused by the error introduced by using Patnaik’s

approximation since large values of V result in large noncentrality of the distribution of r∗i .

116



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.1

0.2

0.5

0.6

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.10.20.3

0.40.5

0.6

0.7

1

(a) V =36, Beta(11,1), AUC=0.7878 (b) V =36, Beta(8,2), AUC=0.7944

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.1

0.2

0.3

0.4

0.5

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.10.20.3

0.40.6

0.70.8

0.9

1

(c) V =36, Beta(0.8,0.2), AUC=0.7833 (d) V =36, Beta(80,20), AUC=0.7944

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.1

0.20.30.40.50.6

0.70.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.2

0.30.40.50.60.70.80.9

1

(e) V =36, Beta(9.41,4.03), AUC=0.7878 (f) V =36, Beta(8.09,8.09), AUC=0.7933

Figure 3.6: True positive rate versus false positive rate for the dataset shown in Figure
3.1 with V = 36 and six different Beta priors on π0. The points are denoted by the
corresponding cutting points if applicable, which are from 0 to 1 with increment 0.1. AUC
is the area under the curve.
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Figure 3.7: True positive rate versus false positive rate for the dataset shown in Figure
3.1 with V = 16 and six different Beta priors on π0. The points are denoted by the
corresponding cutting points if applicable, which are from 0 to 1 with increment 0.1. AUC
is the area under the curve.
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Figure 3.8: True positive rate versus false positive rate for the dataset shown in Figure 3.1
with V = 9 and six different Beta priors on π0. The points are denoted by the corresponding
cutting points if applicable, which are from 0 to 1 with increment 0.1. AUC is the area
under the curve.
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Figure 3.9: True positive rate versus false positive rate for the dataset shown in Figure 3.1
with V = 4 and six different Beta priors on π0. The points are denoted by the corresponding
cutting points if applicable, which are from 0 to 1 with increment 0.1. AUC is the area
under the curve.
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Also note that the true variance of the mean shifts in the simulated sample is σ2V ′ = 1.

The results for one simulated dataset might not be true for another one. So I generate

another dataset and apply Algorithm 3.3.1 to this dataset. The explanatory variable

x = (x1, · · · , x100)
T and random errors ε = (ε1, · · · , ε100)

T are independently generated

from the standard normal distribution, i.e. σ = 1. Then 10 deviants µ91, · · · , µ100 are

generated from N(0, 3), i.e. V ′ = 9. Then 90 typical observations yi = −0.5xi + εi,

i = 1, · · · , 90, and 10 atypical observations yi = −0.5xi + σµi + εi, i = 91, · · · , 100. The

scatter plot and the residual versus explanatory variable plot of this dataset are shown in

Figure 3.10. We can see from the figure that six outliers are apparent outliers, while the

other four are hard to distinguished from the nulls.
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(a) y vs. x (b) Residual vs. x

Figure 3.10: The scatter plot and the residual plot of a dataset with 100 points, of which
10 outliers have mean shifts simulated from N(0,9). The observations are shown as dots
(·) for the nulls and stars (*) for the alternatives.

Next I use the proposed method in Algorithm 3.3.1 to calculate the posterior probability

of being an outlier for those 100 observations. Four values of V = 4, 9, 16, 36 are still used

for the variances of the sampled µ, and six Beta prior Beta(11, 1), Beta(0.8, 0.2), Beta(8, 2),

Beta(80, 20), Beta(9.41, 4.03) and Beta(8.09, 8.09) are used as the prior distributions of π0.

For each observation, n = 1000 random samples (Hj
(i), µ

j,πj
0), j = 1, · · · , n, are generated

to calculate the posterior probability P (Hi = 1 | r∗2i ). The plots of P (Hi = 1 | r∗2) versus

r∗2 for the second dataset by using various priors on π0 and µ are shown in Figure 3.11

– 3.14. The prior standard deviation of µ varies from 6 to 2 in Figure 3.11 – 3.14, where
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(a) – (f) are for Beta(11, 1), Beta(8, 2), Beta(0.8, 0.2), Beta(80, 20), Beta(9.41, 4.03) and

Beta(8.09, 8.09).

Though the explanatory variables of the two datasets have different distributions, and

both σ2 and V ′ differ in the two datasets, the curves of P (Hi = 1 | r∗2) versus r∗2 in

Figure 3.11 – 3.14 and are similar to corresponding ones in Figure 3.2 – 3.5. The plots

of the second dataset have a similar trend to those of the first dataset. Various values

of prior variance V and various Beta priors produce different results, and Beta(8, 2) and

Beta(80, 20) are slightly better than the other four Beta priors.

The ROC curves for the simulated dataset shown in Figure 3.10 with different values

of V and various Beta prior are presented in Figure 3.15 – 3.18 (a) – (f). The value of V ,

Beta prior and the AUC value for each combination of priors are given in the subtitles of

each graph.

All ROC curves in Figure 3.15 – 3.18 (a) – (f) are similar, and the AUC values are

also similar, from 0.8667 to 0.8756. Beta(0.8, 0.2) provides the largest AUC among all

six Beta priors for V varying from 4 to 36. The AUC values for the second dataset are

greater than those of the first dataset because there are more extreme outliers in the

former than in the latter. The trend of AUC of this dataset is different from that of the

first dataset. In Figure 3.6 – 3.9, AUC increases as V decreases from 36 to 4 except AUC

for Beta(8.09, 8.09). However, AUC decreases as V decreases in 3.15 – 3.18 (c) and (e) with

Beta(0.8, 0.2) and Beta(11, 1); AUC of Beta(8, 2) and Beta(80, 20) in (b) and (d) decreases

in V ; AUC of Beta(0.8, 0.2) and Beta(8.09, 8.09) in (e) and (f) is not monotone in V .

The resulting AUC values for the two simulated datasets are high for various simulation

and prior parameters, indicating that the proposed method can identify a majority of the

outliers with tolerable error. The plots of ROC curves and the values of AUC indicates

that the posterior is not very sensitive to the value of prior variance of the mean shift and

the Beta prior of π0, though there are some difference among the plots of the posterior.

3.5.2 Simulation study of multiple datasets

The results given in the previous section are for two single datasets. I also want to know

how sensitive the posterior probability P (Hi = 1 | r∗2) of multiple samples is to the

choice of priors. 1000 binary x with m = 100 were generated from Benoulli(1/2), and

1000 random errors ε were generated from N(0, 1/16). Responses y′ are calculated as
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(e) Prior V = 36, Beta(9.41, 4.03) (f) Prior V = 36, Beta(8.09, 8.09)

Figure 3.11: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 36 and six different Beta priors on π0. The observations are shown as dots (·) for the
nulls and stars (*) for the alternatives. The explanatory variable is generated from N(0,1).
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(a) Prior V = 16, Beta(11, 1) (b) Prior V = 16, Beta(8, 2)
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(c) Prior V = 16, Beta(0.8, 0.2) (d) Prior V = 16, Beta(80, 20)
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(e) Prior V = 16, Beta(9.41, 4.03) (f) Prior V = 16, Beta(8.09, 8.09)

Figure 3.12: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 16 and six different Beta priors on π0. The observations are shown as dots (·) for the
nulls and stars (*) for the alternatives. The explanatory variable is generated from N(0,1).
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(a) Prior V = 9, Beta(11, 1) (b) Prior V = 9, Beta(8, 2)
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(c) Prior V = 9, Beta(0.8, 0.2) (d) Prior V = 9, Beta(80, 20)
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(e) Prior V = 9, Beta(9.41, 4.03) (f) Prior V = 9, Beta(8.09, 8.09)

Figure 3.13: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 9 and six different Beta priors on π0. The observations are shown as dots (·) for the
nulls and stars (*) for the alternatives. The explanatory variable is generated from N(0,1).
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(a) Prior V = 4, Beta(11, 1) (b) Prior V = 4, Beta(8, 2)
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(e) Prior V = 4, Beta(9.41, 4.03) (f) Prior V = 4, Beta(8.09, 8.09)

Figure 3.14: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 4 and six different Beta priors on π0. The observations are shown as dots (·) for the
nulls and stars (*) for the alternatives. The explanatory variable is generated from N(0,1).
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.1

0.2

0.3

0.7

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.1

0.2

0.30.40.60.70.9

1
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Figure 3.15: True positive rate versus false positive rate for the dataset shown in Figure
3.10 with V = 36 and six different Beta priors on π0. The points are denoted by the
corresponding cutting points if applicable, which are from 0 to 1 with increment 0.1. AUC
is the area under the curve.
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(e) V =16, Beta(9.41,4.03), AUC=0.8889 (f) V =16, Beta(8.09,8.09), AUC=0.8922

Figure 3.16: True positive rate versus false positive rate for the dataset shown in Figure
3.10 with V = 16 and six different Beta priors on π0. The points are denoted by the
corresponding cutting points if applicable, which are from 0 to 1 with increment 0.1. AUC
is the area under the curve.
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Figure 3.17: True positive rate versus false positive rate for the dataset shown in Figure
3.10 with V = 9 and six different Beta priors on π0. The points are denoted by the
corresponding cutting points if applicable, which are from 0 to 1 with increment 0.1. AUC
is the area under the curve.
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Figure 3.18: True positive rate versus false positive rate for the dataset shown in Figure
3.10 with V = 4 and six different Beta priors on π0. The points are denoted by the
corresponding cutting points if applicable, which are from 0 to 1 with increment 0.1. AUC
is the area under the curve.
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Xβ + ε with β = (−0.5, 1) and all elements of the first column of X equal to 1 and the

second column of X equal to x. Next 1000 vectors H are generated from Binomial(m, π0)

with π0 = 0.9. At last, 1000 sets of scaled mean shifts µ1, · · · , µm1 are generated from

N(0, V ′), where m1 is the number of nonzero elements in H and V ′ = 16, and after

being multiplied by σ = 1/4, each set of deviants is added to the elements of each y′

with the corresponding index Hi equal to 1 to generate a vector of responses y with m1

outliers. Then Algorithm 3.3.1 is applied to these 1000 datasets with n = 1000 random

sample (Hj
(i), µ

j,πj
0), j = 1, · · · , n, generated for one observation and one combination of

priors. The prior of π0 is chosen to be Beta(11, 1), Beta(0.8, 0.2), Beta(8, 2), Beta(80, 20),

Beta(9.41, 4.03) and Beta(8.09, 8.09). The prior variance of µi varies from 4, 9, 16 to 36.

In my simulation, a ROC curve is drawn for each Beta prior and each V , and selected

cutting points 0, 0.1, 0.2, · · · , 1. For each combination of priors and each cutting points,

the average of the true positive rate and the average of the false positive rate over 1000

iteration are calculated and plotted. The plots of the true positive rate averaged over 1000

datasets versus the false positive rate averaged over 1000 datasets for various priors on π0

and µ are presented in Figure 3.19 – 3.22 (a) to (f). The prior variance of µ varies from 36

to 4 in Figure 3.19 – 3.22, where plots (a) – (f) are for six different Beta priors on π0. The

average area under the ROC curve over 1000 iterations for each combination of priors on

π0 and µ is calculated, with AUC for each iteration computed by using the “R” package

“verification” [65], and the average AUC is given in the caption of each plot in Figure 3.21.

All Beta priors result in close values of AUC, which are greater than 0.8, in Figure 3.19

– 3.22. For each value of V , the AUC values of all Beta priors are close to each other.

There is no one Beta prior that provides a uniformly larger AUC than the other Beta

priors for all values of V . As V increases, AUC increases, except for the AUC values of

Beta(0.8, 0.2), Beta(80, 20) and Beta(9.41, 4.03) which decrease slightly (about 0.0001) as

V increase from 16 to 36 in Figure 3.19 – 3.20, (c)–(e). Moreover, AUC increases slower as

V become larger. The AUC of Beta(0.8, 0.2), which has smallest variation among all Beta

priors, increases faster than that of other Beta priors. This observation indicates that the

weakest Beta prior is more sensitive to the prior variance of the outliers. The AUC values

of (b), (e), (d), (f) in Figure 3.19 and Figure 3.20 are almost the same, which indicates

that V does not need to be greater than 36.

The ROC curves are similar in (b) and (d) of Figure 3.19 – 3.22, where the true positive
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(a) V =36, Beta(11,1), AUC=0.8444 (b) V =36, Beta(8,2), AUC=0.8459
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(c) V =36, Beta(0.8,0.2), AUC=0.8473 (d) V =36, Beta(80,20), AUC=0.8461
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Figure 3.19: True positive rate averaged over 1000 datasets versus false positive rate av-
eraged over 1000 datasets for V = 36 and six different Beta priors on π0. The points are
denoted by the corresponding cutting points, which are from 0 to 1 with increment 0.1.
AUC is the area under the curve.
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(c) V =16, Beta(0.8,0.2), AUC=0.8474 (d) V =16, Beta(80,20), AUC=0.8462
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Figure 3.20: True positive rate averaged over 1000 datasets versus false positive rate av-
eraged over 1000 datasets for V = 16 and six different Beta priors on π0. The points are
denoted by the corresponding cutting points, which are from 0 to 1 with increment 0.1.
AUC is the area under the curve.
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(a) V =9, Beta(11,1), AUC=0.8430 (b) V =9, Beta(8,2), AUC=0.8451
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Figure 3.21: True positive rate averaged over 1000 datasets versus false positive rate av-
eraged over 1000 datasets for V = 9 and six different Beta priors on π0. The points are
denoted by the corresponding cutting points, which are from 0 to 1 with increment 0.1.
AUC is the area under the curve.
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(c) V =4, Beta(0.8,0.2), AUC=0.8261 (d) V =4, Beta(80,20), AUC=0.8460
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(e) V =4, Beta(9.41,4.03), AUC=0.8403 (f) V =4, Beta(8.09,8.09), AUC=0.8438

Figure 3.22: True positive rate averaged over 1000 datasets versus false positive rate av-
eraged over 1000 datasets for V = 4 and six different Beta priors on π0. The points are
denoted by the corresponding cutting points, which are from 0 to 1 with increment 0.1.
AUC is the area under the curve.
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rate increases faster than the false positive rate as cutting points decreases from 0.9 to 0.3,

though the true positive rate is more sensitive to the cutting points in (b) than in (d).

The ROC curves are similar in (a) and (c) of Figure 3.19 – 3.22, where the false positive

rate are close to 0 for large cutting points. The ROC curves in (e) and (f) of Figure

3.19 – 3.22 are similar, where the false positive rate increases faster than the true positive

rate as the cutting points decrease from 0.9 to 0.2, though the true positive rate is more

sensitive to the cutting points in (e) than in (f). The mean of the Beta prior in (b), (e),

(f) is decreasing. Although the Beta prior with smaller mean leads to a greater TPR, it

also results in a greater FPR. The variance of the Beta prior in (c), (b), (d) is decreasing.

Although the Beta prior with larger variance leads to a greater TPR, it also results in a

greater FPR. However, both AUC and the approximated ROC curves suggest that there is

no remarkable difference using priors Beta(11, 1), Beta(0.8, 0.2), Beta(8, 2), Beta(80, 20),

Beta(9.41, 4.03) or Beta(8.09, 8.09) on π0 and using prior variance V = 4, 9, 16 or 36 for

m = 100, π0 = 0.9, σ = 1/4 and V ′ = 16.

Next I generate another 1000 datasets from different distribution with different param-

eters to study the effects of different priors on the posterior probability P (Hi = 1 | r∗2).

First 1000 vectors x with m = 100 are generated from N(0, 1), and 1000 random errors ε

are also generated independently from N(0, 1). Then 1000 vectors H are generated from

Binomial(m, π0) with π0 = 0.9. At last, 1000 sets of deviants µ1, · · · , µm1 are generated

from N(0, V ′), where m1 = 10 is the number of nonzero elements in H and V ′ = 3. Note

that, in this simulation, the variance of the mean shift is 3 times larger than the variance

of the random errors, while the former is 4 times larger than the latter in the previous

simulation. If Hi = 0, then yi = −0.5xi + εi, otherwise yi = −0.5xi + σµi + εi. Then

Algorithm 3.3.1 is applied to these 1000 datasets with n = 1000 importance samples gen-

erated for one observation and one choice of priors. The prior of π0 is still chosen to be

Beta(11, 1), Beta(0.8, 0.2), Beta(8, 2), Beta(80, 20), Beta(9.41, 4.03) and Beta(8.09, 8.09).

The prior variance of µi varies from 4, 9, 16 to 36. By using cutting points from 0 to 1 with

an increment of 0.1, a ROC curve of average TPR versus average FPR is drawn for each

Beta prior and each V , where average TPR and FPR are calculated over 1000 iterations.

The plots of the ROC curve for various priors on π0 and µ are given in Figure 3.23 – 3.26

(a) to (f).

The results in Figure 3.23 – 3.26 are similar to those in Figure 3.19 – 3.22. All the
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(a) V =36, Beta(11,1), AUC=0.8006 (b) V =36, Beta(8,2), AUC=0.8063
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(c) V =36, Beta(0.8,0.2), AUC=0.7995 (d) V =36, Beta(80,20), AUC=0.8059
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(e) V =36, Beta(9.41,4.03), AUC=0.8058 (f) V =36, Beta(8.09,8.09), AUC=0.8010

Figure 3.23: True positive rate averaged over 1000 datasets versus false positive rate av-
eraged over 1000 datasets for V = 36 and six different Beta priors on π0. The points are
denoted by the corresponding cutting points, which are from 0 to 1 with increment 0.1.
AUC is the area under the curve.
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(a) V =16, Beta(11,1), AUC=0.8005 (b) V =16, Beta(8,2), AUC=0.8063
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(c) V =16, Beta(0.8,0.2), AUC=0.7995 (d) V =16, Beta(80,20), AUC=0.8061
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(e) V =16, Beta(9.41,4.03), AUC=0.8058 (f) V =16, Beta(8.09,8.09), AUC=0.8012

Figure 3.24: True positive rate averaged over 1000 datasets versus false positive rate av-
eraged over 1000 datasets for V = 16 and six different Beta priors on π0. The points are
denoted by the corresponding cutting points, which are from 0 to 1 with increment 0.1.
AUC is the area under the curve.
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(a) V =9, Beta(11,1), AUC=0.8004 (b) V =9, Beta(8,2), AUC=0.8064
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(c) V =9, Beta(0.8,0.2), AUC=0.7996 (d) V =9, Beta(80,20), AUC=0.8062
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(e) V =9, Beta(9.41,4.03), AUC=0.8057 (f) V =9, Beta(8.09,8.09), AUC=0.8012

Figure 3.25: True positive rate averaged over 1000 datasets versus false positive rate av-
eraged over 1000 datasets for V = 9 and six different Beta priors on π0. The points are
denoted by the corresponding cutting points, which are from 0 to 1 with increment 0.1.
AUC is the area under the curve.
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(a) V =4, Beta(11,1), AUC=0.8002 (b) V =4, Beta(8,2), AUC=0.8063

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

0
0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e 0.2

0.3
0.4

0.5
0.6
0.7
0.8
0.9

1

0
0.1

(c) V =4, Beta(0.8,0.2), AUC=0.7994 (d) V =4, Beta(80,20), AUC=0.8061
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(e) V =4, Beta(9.41,4.03), AUC=0.8058 (f) V =4, Beta(8.09,8.09), AUC=0.8013

Figure 3.26: True positive rate averaged over 1000 datasets versus false positive rate av-
eraged over 1000 datasets for V = 4 and six different Beta priors on π0. The points are
denoted by the corresponding cutting points, which are from 0 to 1 with increment 0.1.
AUC is the area under the curve.
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AUC values of the first multiple datasets are smaller than those of the second multiple

datasets because the distance between the null and alternative hypotheses is smaller in

the latter. The AUC values in Figure 3.23 – 3.26 are not smaller and are closer to each

other (form 0.7994 to 0.8064) compared to those in Figure 3.19 – 3.22. Both AUC and

the approximated ROC curves indicate that Beta(0.8, 0.2) and Beta(11, 1) are slightly

worse than the other Beta priors. However, all AUC values and the approximated ROC

curves are similar, indicating that there is no remarkable difference using priors Beta(8, 2),

Beta(80, 20), Beta(9.41, 4.03) or Beta(8.09, 8.09) on π0 and using prior variance V = 4, 9, 16

or 36 for datasets with m = 100, π0 = 0.9, σ = 1 and V ′ = 9. Moreover, unlike the results

in Figure 3.19 – 3.22, AUC in Figure 3.23 – 3.26 is not monotone in V .

All the average AUC values for the two multiple datasets are high with various simula-

tion and prior parameters, indicating that the proposed method can identify a majority of

the outliers with tolerable error. All the average AUC and the approximated ROC curves

are similar for various prior parameters, indicating that the posterior is not very sensitive

to the value of prior variance of the mean shift and the Beta prior of π0.

3.5.3 Study of factorial design

The results given in Section 3.5.2 are for specific values of simulation parameters, and are

therefore limited. However, the calculation of the average AUC of 1000 simulated datasets

each with m = 100 observations, of which each with n = 1000 importance samples, takes

about 18 hours on a PC with Intel Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB

of Ram. So I perform a factorial design analysis to study the sensitivity of the proposed

method to various simulation parameters, and the sensitivity of posteriors to priors for

various values of simulation parameters. As indicated by the results of Section 3.5.1 and

Section 3.5.2, the distribution of the explanatory variable does not seem to affect the

posteriors, so I generate x from Benoulli(1/2) for a value of m. Since the mean shifts of

outliers in the simulated datasets are generated from N(0, σ2V ′), the value of σ2V ′ rather

than σ affects the posterior. So I fix σ to be 1/4, and vary V ′ from 4, 16 to 36. Then a

vector of indicators H is generated from Binomial(m, π0) for each dataset. Note that in

the factorial design study, the vector of indicators H is random, whereas for simplicity, it

is fixed in the simulation studies of single and multiple datasets. In this design, the sample

size m is chosen to be 20, 50, 100 and 200, and the proportion of typical observations
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π0 = 0.7, 0.8, 0.9. Random errors ε are generated independently from N(0, 1/16). Let

m1 be the number of nonzero elements in H. Then m1 values of µi are generated from

N(0, V ′) for each dataset. If Hi = 0, then yi = −0.5xi+εi, otherwise yi = −0.5xi+σµi+εi.

For one simulated dataset, 1000 importance samples are taken by choosing a Beta prior

Beta(a, b) on π0 and a prior variance V of µi. Since Beta(11, 1) seems to work similar

to Beta(0.8, 0.2) in Section 3.5.1 and Section 3.5.2 and it does not have the same mean

or variance as any other Beta prior used in the simulation, I exclude this choice in the

factorial design study in this section. The prior of π0 is still chosen to be Beta(0.8, 0.2),

Beta(8, 2), Beta(80, 20), Beta(9.41, 4.03) and Beta(8.09, 8.09), where the first three have

the same mean and decreasing variance, whereas Beta(8, 2) and the last two have the same

variance but decreasing mean. The prior variance of µi varies from 4, 9, 16 to 36. Then

five parameters m, π0, σ
2V ′, V, a are chosen as five factors. Note that a and b are paired, so

only one of them needs to be chosen as a factor. Since the simulated observations depend

on σ but the importance samples are irrelevant to σ, two factors σ2V ′ and V are distinct

by scaling V ′ with σ. For each combination of the five factors, six datasets are generated.

This factorial design is referred to as “Factorial Design 1” in the remaining part of this

chapter. The factors and the levels of Factorial Design 1 are summarized in Table 3.17.

Factors Description of Factors Levels

m Total number of observations 20, 50, 100, 200

π0 Proportion of typical observations 0.7, 0.8, 0.9

σ2V ′ Variance of σµi of the simulated dataset 4/16, 16/16, 36/16

V Variance of µi of the importance samples 4, 9, 16, 36

(a, b) Beta Prior on π0 (0.8, 0.2), (8, 2), (80, 20)

(9.41, 4.03), (8.09, 8.09)

Table 3.17: Factorial Design 1 on the AUC values calculated from simulated data sets with
k = 6 datasets generated for each level of the five factors.

Then the AUC of each dataset is calculated for each combination of prior parame-

ters by using the “R” package “verification” [65] if m1 > 0. If m1 = 0, then TPR is

undefined. As discussed before, when a method has some skill the area under the ROC

curve will exceed 0.5 [62]. So I set AUC to be 0.5 if m1 = 0, where AUC = 0.5 means

Pr [{p1|Hi = 1} > {p1|Hi = 0}] = Pr [{p1|Hi = 1} < {p1|Hi = 0}], where p1 = P (Hi =

1|r2
∗). Hence totally 4× 3× 3× 4× 5× 6 = 4320 AUC values are obtained and used for the
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factorial design. The ANOVA table of Factorial Design 1 is given in Table 3.18. The means

of the five main effects are given in Table 3.19 and the means of two-way interactions are

given in Table 3.20 and Table 3.21. The tables of the means of interactions higher than

the two-way are not given here.

From the ANOVA table in Table 3.18, we can see that the three main effects of simu-

lation parameters, m, π0 and σ2V ′, but not the two main effects of priors, are significant,

which are smaller than 0.005. These results indicate that the proposed methods works dif-

ferently for simulated samples with different sample size or different proportion of outliers

and different variance of the mean shift. Among all two-way interactions, only the p-value

of m × π0, which are simulation parameters, is small (5.25 × 10−8). Although the main

effects of the Beta prior is not significant, the p-value of the four-way interaction among

m × π0 × σ2V ′ × a, which is 0.00022 and equals 0.0067 for the most conservative multiple

test, Bonferroni test. Thus the Beta prior may affect the posteriors. The p-values of the

other two-way to five-way interactions are not small. Moreover, the grand mean in Table

3.19 is 0.81 and all the means in Table 3.19 – 3.21 are greater than 0.7, which indicates

the proposed method does identify a majority of the outliers with tolerable error.

By comparing the means in Table 3.19 – 3.21, I find the means of m = 20 are different

from those of other values of m. So I plot residual versus fitted value for the full model

and denote the residuals for m = 20 by different symbols from the other residuals. This

grouped residual vs. fitted value plot is given in Figure 3.27 (b). An un-grouped residual

vs. fitted value plot is given in Figure 3.27 (a) in order to compare with that in (b). Note

that the residuals are obtained from the factorial design model but not from the regression

model.

The residual plots in Figure 3.27 show some serious heteroscedasticity, and we can

see most extreme residuals come from datasets with m = 20. So I redesign the factors

and exclude m = 20. This new factorial design is referred to as “Factorial Design 2” in

the remaining part of this chapter. The factors and the levels for Factorial Design 2 are

summarized in Table 3.22.

The ANOVA table of Factorial Design 2 is given in Table 3.23, the means of the main

effects is given in Table 3.24. Then in order to compare Factorial Design 1 and Factorial
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Df Sum of Square Mean Square F value p-value

m 3 1.920 0.640 48.75 < 2.2e-16

π0 2 0.144 0.072 5.49 0.0042

σ2V ′ 2 17.505 8.753 666.63 < 2.2e-16

V 3 0.114 0.038 2.90 0.034

a 4 0.034 0.009 0.65 0.63

m × π0 6 0.591 0.098 7.50 5.251e-08

m × σ2V ′ 6 0.139 0.023 1.77 0.10

π0 × σ2V ′ 4 0.025 0.006 0.48 0.75

m × V 9 0.111 0.012 0.94 0.49

π0 × V 6 0.046 0.008 0.59 0.74

σ2V ′ × V 6 0.087 0.015 1.11 0.35

m × a 12 0.069 0.006 0.44 0.95

π0 × a 8 0.214 0.027 2.04 0.039

σ2V ′ × a 8 0.062 0.008 0.59 0.79

V × a 12 0.098 0.008 0.62 0.82

m × π0 × σ2V ′ 12 0.046 0.004 0.29 0.99

m × π0 × V 18 0.191 0.011 0.81 0.69

m × σ2V ′ × V 18 0.236 0.013 1.00 0.46

π0 × σ2V ′ × V 12 0.087 0.007 0.55 0.88

m × π0 × a 24 0.384 0.016 1.22 0.21

m × σ2V ′ × a 24 0.211 0.009 0.67 0.89

π0 × σ2V ′ × a 16 0.401 0.025 1.91 0.016

m × V × a 36 0.418 0.012 0.89 0.67

π0 × V × a 24 0.289 0.012 0.92 0.58

σ2V ′ × V × a 24 0.157 0.007 0.50 0.98

m × π0 × σ2V ′ × V 36 0.402 0.011 0.85 0.72

m × π0 × σ2V ′ × a 48 1.192 0.025 1.89 0.00022

m × π0 × V × a 72 0.959 0.013 1.01 0.44

m × σ2V ′ × V × a 72 0.872 0.012 0.92 0.66

π0 × σ2V ′ × V × a 48 0.468 0.010 0.74 0.90

m × π0 × σ2V ′ × V × a 144 1.593 0.011 0.84 0.91

Residuals 3600 47.266 0.013

Table 3.18: ANOVA table for Factorial Design 1 in Table 3.17.
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Grand mean 0.81

m 20 50 100 200 SE

mean 0.77 0.82 0.82 0.82 0.0049

π0 0.7 0.8 0.9 SE

mean 0.81 0.81 0.80 0.0043

σ2V ′ 4/16 16/16 36/16 SE

mean 0.72 0.83 0.87 0.0043

V 4 9 16 36 SE

mean 0.80 0.80 0.81 0.82 0.0049

(a, b) (0.8, 0.2) (8, 2) (80, 20) (9.41, 3.01) (8.09, 8.09) SE

mean 0.80 0.81 0.81 0.81 0.81 0.0055

Table 3.19: Table of the means of main effects for Factorial Design 1 in Table 3.17.

π0\m 20 50 100 200 SE

0.7 0.79 0.81 0.82 0.82

0.8 0.79 0.82 0.82 0.82

0.9 0.73 0.82 0.82 0.82 0.0085

σ2V ′\m 20 50 100 200 SE

4/16 0.70 0.73 0.73 0.73

16/16 0.78 0.83 0.84 0.84

36/16 0.83 0.89 0.88 0.89 0.0085

V \m 20 50 100 200 SE

4 0.76 0.82 0.82 0.82

9 0.76 0.81 0.81 0.82

16 0.77 0.82 0.82 0.82

36 0.79 0.82 0.82 0.82 0.0099

π0\σ2V ′ 4/16 16/16 36/16 SE

0.7 0.72 0.83 0.88

0.8 0.73 0.83 0.88

0.9 0.71 0.82 0.87 0.0074

π0\V 4 9 16 36 SE

0.7 0.81 0.80 0.81 0.82

0.8 0.81 0.81 0.81 0.82

0.9 0.79 0.79 0.80 0.81 0.0085

Table 3.20: Part I of the table of the means of two-way interactions for Factorial Design 1
in Table 3.17.
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σ2V ′\V 4 9 16 36 SE

4/16 0.73 0.71 0.72 0.73

16/16 0.82 0.83 0.83 0.83

36/16 0.78 0.82 0.83 0.86 0.0085

m\(a, b) (0.8, 0.2) (8, 2) (80, 20) (9.41, 3.01) (8.09, 8.09) SE

20 0.76 0.78 0.77 0.77 0.77

50 0.81 0.82 0.83 0.82 0.81

100 0.82 0.82 0.82 0.82 0.82

200 0.82 0.83 0.82 0.82 0.82 0.011

π0\(a, b) (0.8, 0.2) (8, 2) (80, 20) (9.41, 3.01) (8.09, 8.09) SE

0.7 0.80 0.81 0.81 0.81 0.82

0.8 0.82 0.81 0.81 0.81 0.82

0.9 0.79 0.81 0.82 0.80 0.79 0.0095

σ2V ′\(a, b) (0.8, 0.2) (8, 2) (80, 20) (9.41, 3.01) (8.09, 8.09) SE

4/16 0.71 0.73 0.73 0.72 0.72

16/16 0.83 0.83 0.83 0.83 0.82

36/16 0.87 0.88 0.88 0.87 0.87 0.0095

V \(a, b) (0.8, 0.2) (8, 2) (80, 20) (9.41, 3.01) (8.09, 8.09) SE

4 0.80 0.80 0.82 0.80 0.81

9 0.80 0.80 0.81 0.80 0.80

16 0.81 0.82 0.81 0.80 0.81

36 0.81 0.82 0.81 0.82 0.81 0.011

Table 3.21: Part II of the table of the means of two-way interactions for Factorial Design
1 in Table 3.17.

Factors Description of Factors Levels

m Total number of observations 50, 100, 200

π0 Proportion of typical observations 0.7, 0.8, 0.9

σ2V ′ Variance of σµi of the simulated dataset 4/16, 16/16, 36/16

V Variance of µi of the importance samples 4, 9, 16, 36

(a, b) Beta Prior on π0 (0.8, 0.2), (8, 2), (80, 20)

(9.41, 4.03), (8.09, 8.09)

Table 3.22: Factorial Design 2 on the AUC values calculated from simulated data sets with
k = 6 datasets generated for each level of the five factors and without m = 20.
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(a) Residual vs. fitted value plot (b) Residual vs. fitted value plot with groups

Figure 3.27: Residual vs. fitted value plots for the factorial design in Table 3.17.
(a)Ungrouped residual vs. fitted value plot. (b) Grouped residual vs. fitted value plot, in
which circles (◦) denote the residuals for observations with m = 20 and dots (·) denote the
residuals for observations with m = 50, 100, 200.

Design 2, the residual vs. fitted value plots and the normal QQ plots of the residuals for

the two models are shown in Figure 3.28.

The new results in Table 3.23 indicate that there is only one significant main effect

of σ2V ′, which is the variance of outlier in the simulated dataset and is irrelevant to the

hyper-parameters. Note that a boundary appears in the residual vs. fitted value plots

in Figure 3.28 (a) and (b). This boundary is corresponding to the line residual + fitted

value = 1 because AUC ≤ 1. The range of the residuals is (−0.72, 0.51) for the full

model as shown in Figure 3.28 (a), and it is reduced to the (−0.39, 0.28) for the model

excluded m = 20 as shown in Figure 3.28 (b). We can see that Figure 3.28 (b) is more

homoscedastic than Figure 3.28 (a), and the residual in the QQ plot in Figure 3.28 (c)

has a heavier tail than that in (d). However there are still some heteroscedasticity in the

residual plot in Figure 3.28 (b), and the distribution of the residual in the QQ plot in

Figure 3.28 (d) still has a heavier tail than the normal distribution. These indicate that

the distribution of AUC may not be normal, but the analysis of variance is robust for

nonnormality and heteroscedasticity more seriously violate the model than nonnormality.
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Df Sum of Square Mean Square F value p-value

m 2 0.0210 0.0105 1.75 0.17

π0 2 0.0076 0.0038 0.64 0.53

σ2V ′ 2 14.3182 7.1591 1193.27 <2e-16

V 3 0.0210 0.0070 1.17 0.32

a 4 0.0163 0.0041 0.68 0.61

m × π0 4 0.0080 0.0020 0.33 0.86

m × σ2V ′ 4 0.0258 0.0065 1.076 0.37

π0 × σ2V ′ 4 0.0077 0.0019 0.32 0.86

m × V 6 0.0088 0.0015 0.25 0.96

π0 × V 6 0.0249 0.0041 0.69 0.66

σ2V ′ × V 6 0.0431 0.0072 1.20 0.31

m × a 8 0.0586 0.0073 1.22 0.28

π0 × a 8 0.0247 0.0031 0.51 0.85

σ2V ′ × a 8 0.0462 0.0058 0.96 0.46

V × a 12 0.1061 0.0088 1.47 0.13

m × π0 × σ2V ′ 8 0.0270 0.0034 0.56 0.81

m × π0 × V 12 0.0747 0.0062 1.038 0.41

m × σ2V ′ × V 12 0.0988 0.0082 1.37 0.17

π0 × σ2V ′ × V 12 0.0934 0.0078 1.30 0.21

m × π0 × a 16 0.0896 0.0056 0.93 0.53

m × σ2V ′ × a 16 0.0966 0.0060 1.0068 0.45

π0 × σ2V ′ × a 16 0.0944 0.0059 0.98 0.47

m × V × a 24 0.1165 0.0049 0.81 0.73

π0 × V × a 24 0.1504 0.0063 1.044 0.40

σ2V ′ × V × a 24 0.1419 0.0059 0.99 0.48

m × π0 × σ2V ′ × V 24 0.0796 0.0033 0.55 0.96

m × π0 × σ2V ′ × a 32 0.1840 0.0057 0.96 0.53

m × π0 × V × a 48 0.2562 0.0053 0.89 0.69

m × σ2V ′ × V × a 48 0.2700 0.0056 0.94 0.60

π0 × σ2V ′ × V × a 48 0.2141 0.0045 0.74 0.90

m × π0 × σ2V ′ × V × a 96 0.5661 0.0059 0.98 0.53

Residuals 2700 16.1987 0.0060

Table 3.23: ANOVA table for Factorial Design 2 in Table 3.22.
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(a) Residual vs. fitted value plot (b) Residual vs. fitted value plot

for the model with m = 20 for the model without m = 20
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(c) Normal QQ plot of the residuals (d) Normal QQ plot of the residuals

for the model with m = 20 for the model without m = 20

Figure 3.28: Residual vs. fitted value plots and normal QQ plots of Factorial Design 1 and
2 in Table 3.17 and 3.22.
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Grand mean 0.82

m 50 100 200 SE

mean 0.82 0.82 0.82 0.0033

π0 0.7 0.8 0.9 SE

mean 0.82 0.82 0.82 0.0033

σ2V ′ 4/16 16/16 36/16 SE

mean 0.73 0.84 0.89 0.0033

V 4 9 16 36 SE

mean 0.82 0.82 0.82 0.82 0.0038

(a, b) (0.8, 0.2) (8, 2) (80, 20) (9.41, 3.01) (8.09, 8.09) SE

mean 0.82 0.82 0.82 0.82 0.82 0.0043

Table 3.24: Table of the means of the main effects for Factorial Design 2 in Table 3.22.

A more sensitive analysis needs a transformation of AUC. We can conclude that the Beta

priors Beta(8, 2), Beta(80, 20), Beta(9.41, 4.03) and Beta(8.09, 8.09) and the prior variance

of µ do not appreciably affect the posterior probability P (Hi = 1|r∗2i ) as long as the sample

size is not too small.

3.6 Summary

Linear regression models are used in analyzing data from many fields of study. These

data are usually contaminated and contain outliers. In some cases, these outliers are more

interesting than the other data. The main purpose of this chapter is to identify outliers in

linear regression models. The methods based on deletion residuals are powerful methods

to identify single outliers. The distribution of the deletion residual of an observation under

the null hypothesis is shown to be a student t distribution when this observation is the

only suspicious outlier in a given data set. However, there is usually more than one outlier

in a real dataset, and multiple outliers may hide the effect of each other which is called

“masking” problem. Hence, simply deleting observations sequentially is not suitable and

the effect of all observations needs to be taken into account simultaneously. When there

is more than one outlier and the distribution of outliers is assumed to have a mean shift, I

have proved the marginal distribution of the deletion residual of an observation is a doubly

noncentral t distribution. Hence, the marginal distribution of the squares of deletion
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residuals is a doubly noncentral F distribution.

The outlier identification problem can be viewed as a multiple testing problem. In

this chapter, a multiple testing method to identify outliers was proposed. The proposed

method is a Bayesian method with the test statistics being deletion residuals and the prior

distributions of π0 and µi being Beta and normal, respectively. An importance sampling

method was used to compute the marginal posterior probability that an observation is an

outlier given its own deletion residual. This posterior probability was used to measure the

outlyingness of an observation. Then decisions can be made cooperating certain decision

rules.

In the last section of this chapter, the proposed Bayesian method was applied to some

simulated datasets. The simulation parameters were varied over a set of values and various

priors were employed to study how the priors affect the posterior. First, the proposed

Bayesian method was applied to two single datasets, and the ROC curve was plotted

and the area under ROC curve was calculated for each dataset and each combination of

parameters. Secondly, the proposed Bayesian method was applied to two sets of data, each

including 1000 datasets, and the ROC curve for average TPR versus FPR was plotted and

the average AUC over 1000 replicates was calculated for each set of data and different

priors. In the two simulation studies, the resulting AUC values are high for various choices

of priors, indicating that the proposed method can identify a majority of the outliers with

tolerable error. Both ROC curves and AUC values obtained by using different priors are

similar, indicating that the posterior probability is not sensitive to the chosen priors. At

last, a factorial design analysis was used to compare the AUC using a wider range of

simulation and prior parameters. The results of the factorial design analysis show that

the priors do not affect the marginal posterior probability P (Hi = 1 | r∗2i ) as long as the

sample size is not too small.

When calculating the posterior probabilities P (Hi = 1 | r∗2i ), I used Patnaik’s approx-

imation to calculate the density of the doubly noncentral F distribution. To examine the

accuracy of Patnaik’s approximation, I also proposed an algorithm and used it to calculate

the density of the doubly noncentral F distribution, and compared the results obtained

by using the two methods. For the first simulated dataset, the maximum differences of

densities by using the two methods are not larger than 0.071, and the maximum differences

of posteriors calculated by using the two methods are smaller than 6.22 × 10−5. The Pat-
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naik’s approximation is also faster than the proposed algorithm. The results show that the

doubly noncentral F density calculated by Patnaik’s approximation is not too far from the

true density, and the computation time can be saved by using Patnaik’s approximation.

I used an importance sampling method to calculate the marginal posterior probability

P (Hi = 1 | r∗2i ), where I chose the joint prior to be the importance function. As mentioned

in Section 3.3.3, the choice may be problematic. The estimates would be poor if some

importance ratios are much larger than the others. Gelman et al. [37] suggest to examine

the distribution of sampled importance ratios to detect possible problems. I plotted the

histogram of the logarithms of the importance ratios for some simulated datasets and did

not find any exceedingly large ratio. Other importance functions may be considered and

a comparison of different importance functions could be done in the future. For example,

we can use Gibbs sampling methods to approximate the joint posterior distribution of

parameters.

The proposed method measures the outlyingness of the ith observation by the marginal

posterior probability that the ith observation is an outlier given its own deletion residual,

and hence the information of the other observations is not included in this marginal pos-

terior and the outlyingness of all observation are not tested simultaneously. A future

work could be calculating the joint posterior probabilities P (H = h | r∗21 · · · , r∗2m ), where

h ∈ {0, 1}m, or to calculate the marginal posterior probability P (Hi = 1 | r∗21 · · · , r∗2m ),

rather than the marginal posterior probability P (Hi = 1 | r∗2i ). Computing either P (H =

h | r∗21 · · · , r∗2m ) or P (Hi = 1 | r∗21 · · · , r∗2m ) requires the calculation of the joint distribution

of all the deletion residuals r∗21 · · · , r∗2m , which marginally have doubly noncentral t distri-

butions. The joint distribution describes the dependence structure of r∗21 · · · , r∗2m , and thus

the two posteriors given all the deletion residuals contain more information of data than

P (Hi = 1 | r∗2i ). So the proposed method is expected to be improved by measuring the

outlyingness of all observations simultaneously with P (H = h | r∗21 · · · , r∗2m ).
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Chapter 4

Amino acid sequence similarity of viral to hu-

man proteomes (An application of the Bayesian

method proposed in Chapter 3)

4.1 Introduction

An immune system protects its host against disease by identifying and killing pathogens.

Meanwhile an autoimmune disease may cause an immune system to fail to kill pathogens

and attack normal cells. It is proposed that some autoimmune reactions are related to

similarities in proteins between a virus and a host [66]. It is possible to study the amino

acid sequence similarity of viral proteomes to the human proteome since protein sequences

of the human proteome and those of a number of viral proteomes are available in databanks

[56]. Kanduc et al. [56] examined thirty proteomes for amino acid sequence similarity to

the human proteome and revealed “a massive, indiscriminate, unexpected pentapeptide

overlapping between viral and human proteomes”, where a pentapeptide is a peptide having

five amino acids. They also performed a linear regression analysis to determine whether a

linear relationship exists between the level of viral overlaps to the human proteome and the

length of viral proteomes. Their results show that the level of overlaps does have a strong

linear correlation with the viral proteome length (with a coefficient of determination, R2 =

0.9497). They also reported that “among the examined viruses, human T-lymphotropic

virus 1, Rubella virus, and hepatitis C virus present the highest number of viral overlaps

to the human proteome” [56, p.1755]. Recall from Section 1.5 the short form of these three

viruses, the Kanduc et al. identified (KI) viruses. One interesting question that arises from

this linear regression analysis is if there exist some viral proteomes sharing significantly

higher or lower levels of overlaps with the human proteome than the predicted level of

overlaps by the linear regression model, i.e. the outliers in the level of viral overlaps to the
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human proteome. Are KI viruses the interesting viruses?

The Bayesian method proposed in Chapter 3 is used to identify outliers in this dataset.

I received the data that was published in Kanduc et al. [56] from Kusalik [58]. The

results confirm the report given in Kanduc et al. [56] in the case that only the viruses

with not too large proteome size (less than 10, 000 pentapeptides) are analyzed. However,

the full dataset, which are used in [56], has four viruses (Human herpesvirus 4, Human

herpesvirus 6, Variola virus, and Human herpesvirus 5) with extremely large size (greater

than 32, 009 pentapeptides), and these four viruses, if included, are more likely to be the

outliers. Recall from Section 1.5 the short form of these four viruses, the four extremely

large (FEL) viruses. Among the other 26 viruses, KI viruses still do not have greater

posterior probability of being an outlier given its deletion residual than the other viruses,

when all thirty viral proteomes are analyzed.

The description of the dataset examined in [56] is given in Section 4.2. The results

from the analysis of the full dataset are presented in Section 4.3.1, and the results for the

analysis of the dataset excluding the FEL viruses are shown in 4.3.2. The conclusion is

given in the last section.

4.2 Description of the dataset

The thirty viral proteomes used for amino acid sequence similarity analysis in Kanduc et al.

[56] were downloaded from www.ebi.ac.uk/genomes/virus.html and the human proteome

was obtained from UniProtKB (www.ebi.ac.uk/integr8). After being filtered by certain

rules, the human proteome analyzed in [56] consists of 36, 103 unique proteins. The 30 viral

proteomes are made up of 717 proteins that is equal to 302, 667 amino acids. As described in

Section 3 of Kanduc et al. [56], the 30 viruses were chosen by the five criteria: (1) “known

to be pathogenic to human”; (2) “of significant health impact”; (3) “phylogenetically

different”; (4) “proteomes established to a significant degree of completeness”; (5) the

viral proteomes “span a range of proteome sizes”. The proteome sizes of the 30 viruses

varies from 1, 613 to 65, 280 amino acids and the total number of amino acids of all viral

proteomes is equal to 302, 667. The description of the 30 viral proteomes including the

numbers of their amino acids are given in Table 1 in [56], which is reproduced here as Table

4.1. This table is the same as Table 1 in [56].
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Tax ID Virus description and abbreviation Accession # of # of

Proteins Amino Acids

10407 Hepatitis B virus (HBV) X51970 4 1,613

10632 JC polyomavirus (JCV) J02226 5 1,629

10798 Human parvovirus B19 AF162273 3 2,006

12131 Human rhinovirus 14 (HRV-14) K02121 1 2,179

12080 Human poliovirus 1 (HPV-1) AJ132961 1 2,209

434309 Saffold virus(SAF-V) EF165067 1 2,296

333760 Human papillomavirus type 16 (HPV16) K02718 8 2,452

11908 Human T-cell leukemia virus 1 (HTLV-I) U19949 6 2,589

11103 Hepatitis C virus (HCV) AJ132997 1 3,010

11041 Rubella virus AF188704 2 3,179

11089 Yellow fever virus (YFV) X03700 1 3,411

307044 West Nile virus (WNV) AY842931 1 3,433

11676 Human immunodeficiency virus 1 (HIV-1) X01762 9 3,571

11292 Rabies virus M31046 5 3,600

11029 Ross River virus M20162 2 3,733

11709 Human immunodeficiency virus 2 (HIV-2) X05291 9 3,759

162145 Human metapneumovirus (hMPV) AF371337 9 4,163

93838 Influenza A virus (H5N1) AF144300 10 4,467

11250 Human respiratory syncytial virus (HRSV) AF013254 11 4,540

11216 Human parainfluenza virus 3 (HPIV3) AB012132 6 4,842

11269 Lake Victoria marburgvirus Z12132 7 4,846

11161 Mumps virus AB040874 8 4,977

70149 Measles virus AY486084 8 5,205

186538 Zaire virus AF086833 9 5,493

63330 Hendra virus AF017149 9 6,056

321149 SARS coronavirus (SARS-CoV) AY864806 13 14,209

10376 Human herpesvirus 4 (HHV-4) AY961628 69 34,911

10368 Human herpesvirus 6 (HHV-6) X83413 112 44,720

10255 Variola virus X69198 197 54,289

10359 Human herpesvirus 5 (HHV-5) X17403 190 65,280

Total 717 302,667

Table 4.1: Description of the viral proteomes analyzed for similarity to human proteins [58].
The first two columns are respectively the taxonomic ID of the virus, and the description
and abbreviation of the virus. The last two columns present respectively the number of
proteins of the virus, and the number of the amino acids of the virus.
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Each of the 30 viral proteomes was analyzed by Kanduc et al. [56] for pentapeptide

overlapping with the human proteome since “pentapeptides are minimal structural units

critically involved in biological/pathological interaction such as peptide-protein interaction

and (auto)immune recognition” [56]. First, each viral proteome was decomposed into a

set of pentapeptides that includes some duplicates. Secondly, the duplicates were removed

to create a set of unique pentapeptides for each viral proteome. Then for each pentapep-

tide of one viral proteome, the human proteome was scanned for the same pentapeptide,

and the number of unique pentapeptides and the number of duplicates occurring in the

human proteome were recorded. Their results of pentapeptide overlapping between viral

proteomes and human proteome are given in Table 4 in [56]. Column 1 and 4 of this table

is reproduced here as Table 4.2. In this table, the first column is the name or the abbre-

viation of the virus, which is given in Table 4.1; the second column is the number of the

unique pentapeptides in the viral proteome; the third column presents the total number

of viral pentapeptide overlaps including duplicates in the human proteome. The last row

is obtained by combining 30 viral proteomes into one viral proteome and searching for the

pentapeptide overlap in the entire human proteome.

Table 4.2 shows that all the 30 viral proteomes analyzed in the study of Kanduc et al.

[56] have high pentapeptide overlapping with the human proteome. In order to determine

whether the level of viral proteome overlaps to the human proteome depends on the size of

the viral proteome, Kanduc et al. also performed a linear regression analysis on the data

in Table 4.2. I perform the same regression analysis and obtain the same results as in [56].

The scatter plot of the total number of viral pentapeptide overlaps including duplicates

in the human proteome versus the unique pentapeptides in the viral proteome with the

linear regression line is given in Figure 4.1. The plot in Figure 4.1 is on a log-log scale.

The linear regression equation in Figure 4.1 is y = 12.636x−269.01, where y is the level of

pentapeptide overlaps between the viral and human proteomes and x is the viral proteome

length, and the coefficient of determination, R2 = 0.9497.

Then Kanduc et al. [56] concluded that there is a strong linear relationship between

the level of viral overlaps to the human proteome and the length of the viral proteome, and

“HTLV-1, Rubella virus and HCV present a number of overlaps to the human proteome

above the expected number of overlaps predicted by the linear regression line” [56, p. 1761].
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Virus 1 2

HBV 1,589 21,852

JCV 1,531 22,482

Human parvovirus B19 1,443 21,488

HRV-14 2,173 23,761

HPV-1 2,203 23,431

SAF-V 2,283 23,995

HPV16 2,419 28,948

HTLV-I 2,563 44,042

HCV 3,002 46,731

Rubella virus 3,154 51,859

YFV 3,400 43,245

WNV 3,424 42,670

HIV-1 3,082 35,568

Rabies virus 3,575 42,643

RRV 3,622 42,422

HIV-2 3,285 45,724

hMPV 4,120 52,915

H5N1 4,412 45,599

HRSV 4,483 46,540

HPIV3 4,807 52,934

Lake Victoria marburgvirus 4,808 67,051

Mumps virus 4,786 61,013

Measles virus 4,934 60,638

Zaire virus 4,865 56,577

Hendra virus 5,210 57,646

SARS-CoV 9,739 108,632

HHV-4 32,009 531,946

HHV-6 41,834 467,206

Variola virus 52,017 498,970

HHV-5 61,001 883,952

All 257,035 2,907,096

Table 4.2: Pentapeptide overlap between viral and human proteomes [58]. Column numbers
1-2 refer to: (1) number of unique pentapeptides in the viral proteome; (2) total number
of viral pentapeptide overlap including duplicates in the human proteome.
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Figure 4.1: The scatter plot of the viral pentapeptide overlap including duplicates in the
human proteome versus the number of unique pentapeptides in the viral proteome (see
data in Table 4.2). The symbols refer to: (∗), HTLV-1; (�), Rubella virus; (�), HCV;
(◦), Lake victoria marburgvirus; (•), HHV-4; (N), HHV-6; (♦), Variola virus; (△), HHV-5;
(+), other viral data point. The regression line (—) has an equation of y = 12.64x−269.01
with a coefficient of determination, R2 = 0.9497. Both x- and y-axis are log scale.
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In order to examine their claim, I apply the Bayesian method proposed in Chapter 3 to

the data in Table 4.2. The results of the analysis are presented in the next section.

4.3 Analysis of the dataset

My goal is to identify viral proteomes sharing more pentapeptide overlapping with the

human proteome than the other viral proteomes. So I need to test for outliers in the

regression model of the level of overlaps and the size of viral proteomes. In this section,

the Bayesian model proposed in Chapter 3 is applied to the data in Table 4.2.

4.3.1 Analysis of the full dataset

I apply Algorithm 3.3.1 proposed in Chapter 3 to the dataset to calculate the posterior

probability that an observation is an outlier given its deletion residual, in which Pat-

naik’s approximation is used to calculate the density of the doubly noncentral F distribu-

tion. I still use various priors to study how the posterior relies on the priors. The Beta

prior on π0, the proportion of typical observations, is chosen to be Beta(11, 1), Beta(8, 2),

Beta(0.8, 0.2), Beta(80, 20), Beta(9.41, 4.03) and Beta(8.09, 8.09). The prior distribution

Beta(11, 1) is used in Scott and Berger [88]. The priors Beta(0.8, 0.2), Beta(8, 2) and

Beta(80, 20) have the same mean equal to 0.8 but decreasing variances, and Beta(9.41, 4.03)

and Beta(8.09, 8.09) have the same variance as Beta(8, 2) but respectively have mean 0.7

and 0.5. I do not know the value of σ2, but I assume it to be 1 so that σ2V = V . I choose

V = 4, 9, 16, 36 to be the variances of sampled µi. For each observation, n = 1000 random

samples (Hj
(i), µ

j,πj
0), j = 1, · · · , n, are generated to calculate the posterior probability

P (Hi = 1 | r∗2i ). Then I plot P (Hi = 1 | r∗2i ) as a function of r∗2 for various priors on π0

and µi, and the results are shown in Figure 4.2 - Figure 4.5. The prior standard deviation

of µ varies from 6 to 2 in Figure 4.2 - 4.5, where (a) - (f) are for Beta(11, 1), Beta(8, 2),

Beta(0.8, 0.2), Beta(80, 20), Beta(9.41, 4.03) and Beta(8.09, 8.09).

It can be seen from all 24 graphs in Figure 4.2 - 4.5 that the posteriors P (Hi =

1 | r∗2i ) of the FEL viruses, which have much larger proteome size (from 32, 009 to 61, 000

pentapeptides) than the other 26 viruses (from 1, 589 to 9, 739 pentapeptides), are much

greater than the posteriors of the other viruses, whereas the other 26 viruses have very

close value of P (Hi = 1 | r∗2i ). According to the posteriors, the FEL viruses are more
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(e) Prior V = 36, Beta(9.41, 4.03) (f) Prior V = 36, Beta(8.09, 8.09)

Figure 4.2: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 36 and six different Beta priors on π0. The symbols refer to: (•), HHV-4; (N), HHV-6;
(♦), Variola virus; (△), HHV-5; (+), other viral data point. The data under analysis is
shown in Table 4.2.
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(e) Prior V = 16, Beta(9.41, 4.03) (f) Prior V = 16, Beta(8.09, 8.09)

Figure 4.3: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 16 and six different Beta priors on π0. The symbols refer to: (•), HHV-4; (N), HHV-6;
(♦), Variola virus; (△), HHV-5; (+), other viral data point. The data under analysis is
shown in Table 4.2.
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(a) Prior V = 9, Beta(11, 1) (b) Prior V = 9, Beta(8, 2)

++++++++++++++++++++++++++

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r∗2i

P
r(

H
i
=

1
|r

∗2 i
)

++++++++++++++++++++++++++

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r∗2i

P
r(

H
i
=

1
|r

∗2 i
)
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(e) Prior V = 9, Beta(9.41, 4.03) (f) Prior V = 9, Beta(8.09, 8.09)

Figure 4.4: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 9 and six different Beta priors on π0. The symbols refer to: (•), HHV-4; (N), HHV-6;
(♦), Variola virus; (△), HHV-5; (+), other viral data point. The data under analysis is
shown in Table 4.2.
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(e) Prior V = 4, Beta(9.41, 4.03) (f) Prior V = 4, Beta(8.09, 8.09)

Figure 4.5: The posterior probability P (Hi = 1 | r∗2i ) is plotted as a function of r∗2i for
V = 4 and six different Beta priors on π0. The symbols refer to: (•), HHV-4; (N), HHV-6;
(♦), Variola virus; (△), HHV-5; (+), other viral data point. The data under analysis is
shown in Table 4.2.
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likely to be outliers than the other viruses. The FEL viruses are influential observations,

of which the explanatory variable x has much greater value than the others. In fact, even

on the log-log scale of Figure 4.1, the FEL viruses are far from the other observation. Note

that among the FEL viruses with large posteriors, only HHV-4 and HHV-5 are above the

regression line in Figure 4.1, which means among the examined viruses, HHV-4 and HHV-5

share more pentapeptides with human proteome than the others, but HHV-6 and Variola

virus represent fewer viral overlaps to the human proteome.

Although the FEL viruses are separated from the other data points in all graphs in

Figure 4.2 – 4.5, there are still some differences among the results obtained by using

different priors. The results of Beta(11, 1) in Figure 4.2 – 4.5 (a) are similar to the results

of Beta(0.8, 0.2) in (b), though the distance between the FEL viruses and the other viruses

is greater but the 26 viruses with smaller proteome size are closer for Beta(11, 1). By

comparing the results for Beta(0.8, 0.2), Beta(8, 2) and Beta(80, 20) in Figure 4.2 – 4.5 (b)

– (d), we can see as the variance of the Beta prior increases, the distance between the

extreme observations and the others decreases but the variation among the non-extreme

observations increases. In Figure 4.2 – 4.5 (b), (e), and (f), it can be observed that the

extreme observations are closer to the others and the variation among the non-extreme

observations becomes smaller as the mean of the Beta prior becomes larger. These results

mean that the prior with smaller mean or greater variance is more sensitive to the data,

and the extreme observations are more extreme by using the prior with greater mean or

smaller variance.

Then I compare Figure 4.2 – 4.5 for the results of different V . As V decreases, it can

be observed that the posteriors of the FEL observations decrease but the posteriors of the

other 26 observations increase. The 26 non-extreme observations have smaller variation

when V is smaller. However, the orders of the posteriors P (Hi = 1 | r∗2i ) of the FEL are

almost the same for various choices of Beta priors and V , and all Beta priors and all prior

variances of the mean shift could result in the same rejections of the viruses if appropriate

thresholds are chosen for them. For example, if the same rejection threshold 0.1 is used

for the posteriors, then the FEL viruses are identified as outliers for all 24 cases.

Since the 26 viruses with small proteome size are gathered together and are hard to

read in Figure 4.2 – 4.5, the lower ends of all plots are magnified and shown in Figure 4.6

– Figure 4.9.
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(c) Prior V = 36, Beta(0.8, 0.2) (d) Prior V = 36, Beta(80, 20)
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(e) Prior V = 36, Beta(9.41, 4.03) (f) Prior V = 36, Beta(8.09, 8.09)

Figure 4.6: The graphs (a) - (f) magnify, respectively, the lower ends of plots (a) - (f) of
Figure 4.2. The symbols refer to: (∗), HTLV-1; (�), Rubella virus; (�), HCV; (◦), Lake
victoria marburgvirus; (+), other viral data point.
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(c) Prior V = 16, Beta(0.8, 0.2) (d) Prior V = 16, Beta(80, 20)
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Figure 4.7: The graphs (a) - (f) magnify, respectively, the lower ends of plots (a) - (f) of
Figure 4.3. The symbols refer to: (∗), HTLV-1; (�), Rubella virus; (�), HCV; (◦), Lake
victoria marburgvirus; (+), other viral data point.
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(a) Prior V = 9, Beta(11, 1) (b) Prior V = 9, Beta(8, 2)
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(c) Prior V = 9, Beta(0.8, 0.2) (d) Prior V = 9, Beta(80, 20)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

0.00 0.02 0.04 0.06 0.08 0.10

0.
12

5
0.

13
0

0.
13

5
0.

14
0

0.
14

5
0.

15
0

r∗2i

P
r(

H
i
=

1
|r

∗2 i
)

+

+

++
+

+

+

+

+

++
+ +

+

+
+

+
+

+

+

+

+

0.00 0.02 0.04 0.06 0.08 0.10

0.
24

0.
26

0.
28

0.
30

0.
32

r∗2i

P
r(

H
i
=

1
|r

∗2 i
)

(e) Prior V = 9, Beta(9.41, 4.03) (f) Prior V = 9, Beta(8.09, 8.09)

Figure 4.8: The graphs (a) - (f) magnify, respectively, the lower ends of plots (a) - (f) of
Figure 4.4. The symbols refer to: (∗), HTLV-1; (�), Rubella virus; (�), HCV; (◦), Lake
victoria marburgvirus; (+), other viral data point.
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(e) Prior V = 4, Beta(9.41, 4.03) (f) Prior V = 4, Beta(8.09, 8.09)

Figure 4.9: The graphs (a) - (f) magnify, respectively, the lower ends of plots (a) - (f) of
Figure 4.5. The symbols refer to: (∗), HTLV-1; (�), Rubella virus; (�), HCV; (◦), Lake
victoria marburgvirus; (+), other viral data point.
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In Figure 4.6 – 4.9, the KI viruses do not have the three highest values of the posterior.

The only exception occurs for HTLV-1 when V = 9 and the prior of π0 is chosen to be

Beta(9.41, 4.03) (Figure 4.8, (e)). This observation suggests that the three viruses may still

fail to be rejected even if a small rejection threshold is used for the posteriors. Moreover,

the orders of the posteriors change dramatically for the different Beta priors, but not much

for the same Beta prior and different V , indicating that when influential points exist, the

posterior probability P (Hi = 1 | r∗2i ) for non-extreme observations is more sensitive to the

prior of π0 than to the prior of µi.

In Section 3.5.1, I compared results obtained by using both Patnaik’s approximation

and Algorithm 3.4.2 proposed in Section 3.4 for a simulated dataset with 100 observations,

of which 10 are outliers. Since the number of observation and that of outliers are different

from the simulated dataset, I also make the same comparison by applying both methods

to the dataset in Figure 4.1. The results are included in Appendix B. There is not much

difference between the results obtained by using Patnaik’s approximation and those by

using Algorithm 3.4.2.

4.3.2 Analysis of the reduced dataset

Since the FEL viruses are influential observations as indicated by the results given in

Section 4.3.1, and they have much larger proteome size than the other viruses as shown

in Figure 4.1, I remove these four viruses from the dataset in Table 4.2 and recompute

the regression model for the reduced dataset. The length of viruses in the reduced dataset

varies from 1, 589 to 9, 739. The scatter plot with the regression line for the reduced dataset

is given in Figure 4.10, and this plot is not on a log-log scale.

The linear regression equation for the reduced dataset is y = 10.60x + 6325.91 and the

coefficient of determination for the regression model is R2 = 0.9132. The slope does not

change much but the intercept increases remarkably compared to the regression equation

for the full dataset. The coefficient of determination for the reduced dataset is actually

smaller than that for the full dataset. This is a typical situation discussed in most textbooks

where outliers increase the linear correlation between response and explanatory variables.

It can be observed from Figure 4.10 that four viruses, the three KI viruses, and Lake

victoria marburgvirus have larger distance to the regression lines than the other points, so

they seem to be apparent outliers. In order to identify outliers in this reduced dataset, I
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Figure 4.10: The scatter plot of the viral pentapeptide overlap including duplicates in the
human proteome versus the unique pentapeptides in the viral proteome. The data under
analyzing come from Table 4.2, columns 1 and 4 with HHV-4, HHV-6, Variola virus and
HHV-5 deleted. The symbols refer to: (∗), HTLV-1; (�), Rubella virus; (�), HCV; (◦),
Lake victoria marburgvirus; (+), other viral data point. The regression line (—) has an
equation of y = 10.60x + 6325.91 with a coefficient of determination, R2 = 0.9132.
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redo the computation in Section 4.3.1 by using Algorithm 3.3.1 combined with Patnaik’s

approximation. Figures 4.11 – 4.14 present the plots of P (Hi = 1 | r∗2i ) as a function of

r∗2 for various priors on π0 and µ,. The prior standard deviation of µ varies from 6, 4, 3

to 2 in Figure 4.11 – 4.14, and the prior on π0 is Beta(11, 1), Beta(8, 2), Beta(0.8, 0.2),

Beta(80, 20), Beta(9.41, 4.03) and Beta(8.09, 8.09) in the graphs (a) – (f).

In Figures 4.11 – 4.14, the four viruses with the four largest posterior probabilities

P (Hi = 1 | r∗2i ) are HTLV-1, Rubella virus, HCV, and Lake victoria marburgvirus, of

which three viruses are the KI viruses.

After deleting the FEL viruses, the posterior curves are more smooth and the points

become dispersed. The relationship between the posterior and priors is similar to what

was obtained in Section 3.5.1. The orders of the four extreme observations are almost the

same in all 24 plots with different priors. By comparing the results of different Beta priors

in Figures 4.11 – 4.14, we can see the values of the posterior are closer for Beta(11, 1) and

Beta(0.8, 0.2) in graphs (a) and (c), but spread more widely for Beta(8, 2) and Beta(80, 20)

in plots (b) and (d). It can be observed from the results for Beta(0.8, 0.2), Beta(8, 2) and

Beta(80, 20) in Figures 4.11 – 4.14 (b) – (d) that the four extreme observations are closer

to the other non-extreme observations and they are also closer to each other, and the

variation among the non-extreme observations becomes smaller, as the variance of the

Beta prior becomes larger. In Figures 4.11 – 4.14 (b), (e), and (f), it can be observed that

as the mean of the Beta prior becomes larger, the extreme observations are father from

the other observations, and the variation among the non-extreme observations becomes

smaller. That means, when the Beta prior becomes stronger, i.e., the variance of the

Beta prior becomes smaller, or its mean becomes larger, the posteriors of the extreme

observations are more extreme but the posteriors of the non-extreme observations become

less extreme.

Next I compare Figures 4.11 – 4.14 for the results of different V . As V decreases,

the posteriors of all observations are closer, i.e., the maximum posterior decreases but

the minimum posterior increases. However, the posterior curves are almost the same for

V = 36 in Figure 4.11 and V = 16 in Figure 4.12, indicating that V need not to be greater

than 36. Moreover, the order of the four extreme values does not change for different V .

Although different priors may result in the same rejections of the viruses by choosing an

appropriate rejection threshold, the farther the observations are from each other, especially
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Figure 4.11: The posterior probability P (Hi = 1 | r∗2i ) as a function of r∗2i for V = 36
and six different Beta priors on π0. The data under analysis comes from Table 4.2 with
HHV-4, HHV-6, Variola virus and HHV-5 deleted. The symbols refer to: (∗), HTLV-1;
(�), Rubella virus; (�), HCV; (◦), Lake victoria marburgvirus; (+), other viral data point.
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(c) Prior V = 16, Beta(0.8, 0.2) (d) Prior V = 16, Beta(80, 20)
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(e) Prior V = 16, Beta(9.41, 4.03) (f) Prior V = 16, Beta(8.09, 8.09)

Figure 4.12: The posterior probability P (Hi = 1 | r∗2i ) as a function of r∗2i for V = 16
and six different Beta priors on π0. The data under analysis comes from Table 4.2 with
HHV-4, HHV-6, Variola virus and HHV-5 deleted. The symbols refer to: (∗), HTLV-1;
(�), Rubella virus; (�), HCV; (◦), Lake victoria marburgvirus; (+), other viral data point.
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(c) Prior V = 9, Beta(0.8, 0.2) (d) Prior V = 9, Beta(80, 20)
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(e) Prior V = 9, Beta(9.41, 4.03) (f) Prior V = 9, Beta(8.09, 8.09)

Figure 4.13: The posterior probability P (Hi = 1 | r∗2i ) as a function of r∗2i for V = 9
and six different Beta priors on π0. The data under analysis comes from Table 4.2 with
HHV-4, HHV-6, Variola virus and HHV-5 deleted. The symbols refer to: (∗), HTLV-1;
(�), Rubella virus; (�), HCV; (◦), Lake victoria marburgvirus; (+), other viral data point.
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(e) Prior V = 4, Beta(9.41, 4.03) (f) Prior V = 4, Beta(8.09, 8.09)

Figure 4.14: The posterior probability P (Hi = 1 | r∗2i ) as a function of r∗2i for V = 4
and six different Beta priors on π0. The data under analysis comes from Table 4.2 with
HHV-4, HHV-6, Variola virus and HHV-5 deleted. The symbols refer to: (∗), HTLV-1;
(�), Rubella virus; (�), HCV; (◦), Lake victoria marburgvirus; (+), other viral data point.
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for the observations with high posteriors, the better the decision that can be made, because

the observations with very close posterior values may have to be rejected at the same time.

In this sense, Beta(8, 2) with V = 16 or 36 may be better than the other priors.

Although the results after deleting the FEL viruses confirm the results reported by

Kanduc et al. [56], the KI viruses do not have the fifth to seventh largest posterior when

the FEL viruses are included in the analysis, which means the KI viruses cannot be iden-

tified without excluding the four extreme observations. In other words, some outliers may

be “masked” by extreme outliers by using this method. The proposed method may be

improved by calculating the joint posterior probabilities P (H = h | r∗21 · · · , r∗2m ), where

h ∈ {0, 1}m instead of marginal posterior P (Hi = 1 | r∗2i ).

4.4 Conclusion

The sequence similarity analysis for viral proteomes to the human proteome is important

for studying diseases, especially autoimmune diseases. Kanduc et al. [56] examined thirty

proteomes for amino acid sequence similarity to the human proteome, and they found all

the viral proteomes share a high number of pentapeptide overlaps to the human proteome.

They also carried out a linear regression analysis to the level of overlap and the size of

viral proteomes, and concluded that there is a strong linear relationship between the level

of overlap and the size of viral proteomes. They also reported that three viruses, HTV-1,

Rubella virus, and HCV, present the relatively highest number of viral overlaps to the

human proteome.

With the purpose of identifying outliers in the dataset given in [56] and determining

whether the three viruses reported by Kanduc et al. [56] are outliers, I applied the Bayesian

method proposed in Chapter 3 to this dataset. The results show that the four viruses with

extremely large size are more likely to be the outliers, and among the other 26 viruses, the

KI viruses cannot be rejected without other viruses being rejected. Then I removed the

FEL viruses and used the proposed Bayesian method to compute the posterior probability

P (Hi = 1 | r∗2i ) for the reduced dataset. Among the 26 viruses in the reduced dataset,

the KI viruses and Lake victoria marburgvirus have the four largest posterior probabilities

of being outliers. The KI viruses and Lake victoria marburgvirus seem to present higher

sequence similarity to the human proteome than the other viruses in the reduced dataset.
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The results for the reduced dataset are different than for the full dataset. The reason

may be that the proposed method measures the outlyingness of the ith observation by the

marginal posterior P (Hi = 1 | r∗2i ), but the ith observation being an outlier may depend on

the outlyingness of the other observations and the deletion residuals are actually dependent.

Therefore, the method could be improved, if the joint distribution of all deletion residuals

can be worked out, and then the joint posterior probabilities P (H = h | r∗21 · · · , r∗2m )

can be approximated by a MCMC method and used to measure the outlyingness of all

observations simultaneously in the future.

In this chapter, I am interested in the distribution of the posterior probability P (Hi =

1 | r∗2i ) and the sensitivity of the posterior to various priors of π0 and µ, rather than

deciding which observations should be rejected. Decisions can be made by combining the

calculated posterior probabilities P (Hi = 1 | r∗2i ) with a proper decision rule. For example,

one may use the decision rules combining Bayesian FDR and FNR proposed by Muller et

al. [64] or rules with information about the cost of two types of errors.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Research on multiple hypothesis testing started in the 1940’s. Many methods were devel-

oped to test more than one hypothesis simultaneously. In recent years, the fast development

of computer technology introduced many large and complex datasets. For example, the

analysis of DNA microarray data requires testing thousands or millions of gene expression

levels simultaneously. Compared to the large number of genes, the size of available samples

is small. The methods introduced to test a small number of hypotheses were shown too

conservative to analyze such datasets. This motivates the development of new multiple

hypothesis testing techniques. Benjamini and Hochberg [9] proposed a procedure BH that

controls FDR and then determines the rejection region as a function of FDR. Storey [89]

introduced another procedure FSL that fixes significance level and then estimates the cor-

responding FDR. Black [18] considered an adaptive FDR-controlling procedure AFDR

that incorporates an estimate of the proportion of true null hypotheses into BH. One

objective of this thesis is to analyze these multiple hypothesis testing methods and clarify

the relationship among them.

In Chapter 2, a simulation study similar to that in Storey [89] was performed to compare

the FDR-controlling method of Benjamini and Hochberg with the fixed rejection region

method of Storey. This simulation study used a wider range of simulation parameters,

including the sample size, the proportion of true null hypotheses and the mean of the

alternative distribution, than that used by Storey. The simulation results revealed that

contrary to Storey’s claim, FSL does not necessarily have more power than BH. In my

simulation study, BH performed better than FSL when the relative number of alternatives

was small. Moreover, I have proved that BH rejects at least the same number of hypotheses

as FSL, and hence has at least the same power as FSL, when the estimate of the proportion
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of true nulls is equal to one. The simulation results showed that BH can reject more

hypotheses than FSL, and therefore may be more powerful than FSL when the number of

true alternative hypotheses is relatively small. In fact, in a fair comparison, my simulations

for the majority of the parameter values showed that BH had superior power.

BH has been shown in several papers to be conservative when the proportion of true

null hypotheses is small, because the actual FDR of BH is proportional to the target

FDR level by a factor equal to the proportion of true nulls. Black showed the FDR-

controlling method of Benjamini and Hochberg could be less conservative by incorporating

the estimate of the proportion of true nulls that is used by Storey. In Chapter 2, I proved

that the AFDR procedure introduced by Black is at least as powerful as FSL. Then I

implemented a simulation study similar to that in Black [18] but including a wider range of

simulation parameters. The simulation results confirmed my result and also showed that

AFDR can have substantially greater power than FSL when the proportion of true nulls

is large.

At the end of Chapter 2 I presented a simulation study comparing the power of BH and

FSL when their actual FDR values are set to be the same. Such a fair comparison of the

two procedures has not been found in previous works. The simulation results showed that

the difference in power between BH and FSL is near zero when the distance between the

null and alternative distributions is large, but the former gains more power as the distance

decreases. When the distance between the null and alternative distributions is small, the

greater the proportion of true null hypotheses, the larger the difference in power between

BH and FSL. The identification of differentially expressed genes in DNA microarray data

is a motivating problem of this chapter. A feature of DNA microarray data is that most

genes are not expected to be differentially expressed, i.e. the proportion of true nulls is

close to 1. Furthermore, there may be genes that are differentially expressed, but whose

distributions are close to those of the reference genes. The simulation results of the fair

comparison implied that in this situation BH performs better than FSL as long as one

incorporates a good estimate of the proportion of true nulls. The fair comparison results

were presented for finite sample sizes (no more than 5000) since it is known that BH is

asymptotically equivalent to FSL, under some mild assumptions. The simulation results

for various sample sizes indicated that the power of BH decreases to that of FSL as the

sample size increases to infinity.
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The focus of Chapter 2 has been on the case where the multiple hypothesis tests

are independent. This simplified assumption is usually invalid for real data, including

microarray data. Multiple hypothesis testing can also be applied to regression diagnostics,

where the p-values are dependent. In regression models, data usually contain multiple

outliers and the number of outliers is unknown. Another objective of this thesis is to

develop a new method to identify multiple outliers in linear regression models. In fact, the

problem of identifying multiple outliers in regression analysis can be viewed as a problem

of multiple hypothesis testing. Each observation can be assigned a null hypothesis that

this observation does follow the assumed distribution, and an alternative hypothesis that

it is an outlier and follows a distribution different from the null distribution. A powerful

method to identify single outliers is based on deletion residuals. The null distribution of

the deletion residual of an observation is shown to be a student t distribution when this

observation is the only outlier in a given data set.

In Chapter 3, I assumed that the random error of an atypical observation follows a

normal distribution with a mean shift, whereas that of a typical observation follows a

normal distribution with mean equal to zero. Then I have proved a new result that for

the proposed model, the marginal distribution of the deletion residual of an observation

under both null and alternative hypotheses are doubly noncentral t distributions, when

there exists more than one outlier. The non-central parameters of the doubly noncen-

tral t distributions depend on the number of outliers in the dataset. Consequently, the

marginal distributions of the square of the deletion residual are the doubly noncentral F

distributions under both null and alternative hypotheses. Then I proposed a Bayes method

assuming that the proportion of typical observations follows a Beta prior distribution, and

the mean shift of outliers has a normal prior distribution. The outlyingness of an obser-

vation can be measured by the marginal posterior probability that the ith observation is

an outlier given its own deletion residual. In this chapter, I have also proposed an impor-

tance sampling method to calculate this marginal posterior probability. This algorithm

involves the computation of the density of the doubly noncentral F distribution, which is

achieved by using Patnaik’s approximation. In order to examine the accuracy of Patnaik’s

approximation to the density of the doubly noncentral F distribution, I have proposed

an algorithm to compute this density. Both methods were applied to various noncentral

parameters and quantiles with the sample size fixed to 100. The largest difference between
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the density calculated by Patnaik’s approximation and that by the proposed algorithm is

0.0014. I also incorporated both Patnaik’s approximation and the proposed algorithm with

the proposed importance sampling method, to calculate the required marginal posterior

probability, for a simulated dataset. The maximum difference of densities computed by

the two methods is no larger than 0.071, and the maximum difference of the posteriors

is smaller than 6.22 × 10−5. The shortest CPU time used, by incorporating the proposed

algorithm to calculate the posteriors of the given dataset with certain priors, is 6261.31

seconds, whereas that by incorporating Patnaik’s approximation is 72.39 seconds. The

results showed that using Patnaik’s approximation to calculate the doubly noncentral F

density can save massive computation time without losing much accuracy.

In the last section of Chapter 3, the proposed Bayesian method was applied to some

simulated datasets. Various simulation parameters, including the total number of obser-

vations, the proportion of outliers and the variance of the mean shift, were used for the

simulation study. In order to study the sensitivity of the posteriors to the priors, I se-

lected several Beta priors of the proportion of typical observations and various variances

of the normal prior of the mean shift. Then the Bayes samples, described in the proposed

importance sampling, were generated from various prior distributions for each simulated

dataset. I firstly implemented the proposed procedure to two single datasets. Each dataset

was generated with the same sample size and the same proportion of outliers but different

variance of the mean shift. Although the explanatory variable is not random in a linear

regression model, it was assumed to follow a Bernoulli distribution for one dataset and the

standard normal distribution for the other. For each combination of priors, the marginal

posterior probability P (Hi = 1 | r∗2i ) was plotted as a function of the deletion residual

r∗2i , the ROC curves were also plotted, and the AUC values were calculated. Although the

plots of the posteriors are different for various priors, the AUC values are close for selected

priors and the smallest AUC is 0.7678. The high AUC values indicate that the proposed

method can identify the majority of outliers with tolerable error. The similar AUC values

for various choices of priors indicate that the posterior probability is not very sensitive to

the chosen priors. However, the results for certain datasets may not be true for another

dataset. Therefore, the proposed Bayesian method was secondly applied to two sets of

data, each including 1000 iterations. The simulation and the prior parameters were the

same as those used for the two single datasets. The ROC curves of the average TPR versus
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FPR for selected thresholds were plotted and the average AUC over 1000 replicates were

calculated for different priors. The average AUC values are close for selected priors and

the smallest AUC is 0.7994. The results also showed that the proposed Bayesian multiple

outlier identification method performs well, and there is not much effect of the priors on

the posterior. It took a long time to calculate the average AUC for 1000 iterations for each

combination of simulation parameters. Hence I thirdly employed a factorial design analysis

to compare AUC by choosing various simulation and priors parameters as factors. This

simulation study included a much wider range of simulation and priors parameters. All the

AUC values for the simulated datasets are greater than 0.7 and the grand mean is equal to

0.8, indicating the proposed method can identify a majority of the outliers. When a small

value of 20 for the factor sample size was included in the analysis, the resulting ANOVA

table indicated a significant four-way interaction among m× π0 × σ2V ′ × a, where σ2V ′ is

the prior variance of the mean shift and a is the hyper-parameter of the Beta prior of π0.

This result showed that the priors may affect the posterior. There is also a significant main

effect of m in the ANOVA table, and both the table of means and the residual plot suggest

a large difference between 20 and the other values of the sample size. Hence I removed the

data with m = 20 and performed the factorial design analysis again, and there is no longer

any significant effect involving the factors of the prior parameters. These results showed

that the priors do not affect the marginal posterior probability P (Hi = 1|r∗2i ) as long as

the sample size is not too small.

In Chapter 4, the Bayesian method proposed in Chapter 3 was applied to a dataset

given in Kanduc et al. [56]. Kanduc et al. compared the amino acid sequences of thirty

proteomes to those of the human proteome, and they found all the viral proteomes share

a high number of pentapeptide overlaps to the human proteome. They also performed

a linear regression analysis to the level of overlap and the size of viral proteomes and

concluded that three viruses, human T-lymphotropic virus 1, Rubella virus, and hepatitis

C virus, present the highest relative number of viral overlaps to the human proteome. With

the purpose of identifying outliers in the dataset given in [56] and determining whether

the three viruses reported by Kanduc et al. are outliers, I implemented the Bayesian

approach to this dataset. To examine how sensitive the posterior distribution is to the

prior distributions, various prior distributions of the proportion of typical observations

and various prior variances of the mean shift were used when generating Bayes samples.
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The marginal posterior probability P (Hi = 1 | r∗2i ) was plotted as a function of the deletion

residual r∗2i for various choices of priors. All plots of the marginal posterior indicated that

the four viruses with extremely large sizes, which do not include the three viruses reported

by Kanduc et al., are more likely to be the outliers. The magnified lower ends of the plots

of the marginal posterior are distinct for various priors, and among the other 26 viruses,

the three reported viruses still do not have a larger size than the others. The results showed

that the three reported viruses cannot be rejected without other viruses being rejected,

even if the four extreme viruses are rejected .

Then I removed the four viruses with extremely large size and used the proposed

Bayesian method to compute the posterior probability P (Hi = 1 | r∗2i ) for the reduced

dataset. The prior distributions were also varied among the same range as for the full

dataset. The results for the reduced dataset confirmed the claim of Kanduc et al. [56].

Among the 26 viruses in the reduced dataset, three viruses and another virus have the four

largest posterior probabilities of being outliers. The three viruses reported by Kanduc et

al. [56] and Lake victoria marburgvirus seem to present higher sequence similarity to the

human proteome than the other viruses.

5.2 Future Work

It is shown in Chapter 2 that modifying the BH to incorporate an estimate of the propor-

tion of true null hypotheses as proposed by Black gives a procedure AFDR with superior

power than FSL. However, to implement this, an estimate of π0 is needed. My future

investigations will examine the effects of using alternative methods for estimating π0, such

as those proposed by Benjamini and Hochberg [10], Efron et al [30], Storey and Tibshi-

rani [93], and Bickis [15].

In Chapter 3, an importance sampling method was used to calculate the marginal

posterior probability P (Hi = 1 | r∗2i ), where the importance function was chosen to be the

joint prior density. The performance of the importance sampling would be poor if some

importance ratios are much larger than the others. I plotted the histogram of the logarithms

of the importance ratios for some simulated datasets and the concerned problems did not

occur. The distributions of sampled importance ratios for all simulated datasets need to be

examined in the future. My future work is to use other importance functions and compare
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the results of using different importance functions. For example, we can use Gibbs sampling

methods to approximate the joint posterior distribution of parameters.

In Chapter 3 and 4, no decision rule was developed. The calculated marginal posterior

probabilities need to be combined with a proper decision rule to decide which observations

are going to be rejected. Different decision rules can be considered, for instance, the

decision rules combining Bayesian FDR and FNR proposed by Muller et al. [64].

Atkinson [2] recently proposed a forward search to identify multiple outliers and this

method is introduced in detail in the books [3] and [6]. The “R” package “forward” is

available to fulfill the forward search of Atkinson [67]. I also plan to compare the proposed

Bayesian multiple outlier identification procedure with the forward search of Atkinson.

When the Bayesian multiple outlier identification procedure proposed in Chapter 3 is

applied to the dataset given in Kanduc et al. [56], the results for the reduced dataset are

different from those for the full dataset. This indicates that the proposed procedure has

some limitations. Addressing them leads to my future work.

First the outlyingness of the ith observation is measured by its marginal posterior and

the correlation between deletion residuals is ignored. Indeed, the ith observation being an

outlier may also depend on the outlyingness of the other observations, and the deletion

residuals are actually dependent. The joint posterior probabilities P (H = h | r∗21 · · · , r∗2m )

can provide a measurement of outlyingness for all observations simultaneously. These joint

posterior probabilities can be approximated by MCMC methods, for example, the Gibbs

sampling method [75]. The posterior distribution of the indicators H can be estimated from

a large number of random samples generated from the joint posterior distribution of H, µ

and π0 which is proportional to fr∗1 ,···r∗m(r1, · · · , rm | H, µ, π0)pµ(u | H)pH(ω | π0)pπ0(π).

Hence the joint density of m deletion residuals needs to be computed. The joint distribu-

tion of all the deletion residuals is the joint distribution of m doubly non-central t random

variables. The explicit expression for this joint distribution may not have a simple ex-

pression, but MCMC methods, for example, the Gibbs sampling method, may be used to

approximate it. This is part of the future work.

Secondly, in the proposed Bayesian approach, the posterior distribution of H is con-

ditional on the deletion residuals. This approach has the advantage that the distribution

of r∗i is independent of the regression coefficient β and noise variance σ2. Therefore, when

computing the posterior probabilities, the dimension of the integral can be reduced for
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the proposed method. However, it also introduces a complex dependence structure among

deletion residuals. Although the deletion residuals are ancillary for the model parame-

ters, they are not ancillary for the outlier parameters (H and µ), since the distribution

of the fitted values β̂(i) also depends on those parameters. I intend to examine the loss of

information from basing the inference on the deletion residuals in my future research.

Thirdly, in the proposed Bayes model, the prior for the mean shift µi has a point

mass at 0 when Hi = 0, which is subject to the problem identified in Lindley’s Paradox

[61]. Lindley’s Paradox states that the posterior probability of Hi = 0 can be arbitrarily

large if the prior variance of µi is chosen to be sufficiently large. Therefore, the posterior

distribution of H is very sensitive to the prior variance of µi. This limitation can be

conquered by assuming that the prior variance of mean shifts is case-specific and follows

a inverse gamma distribution with parameters ν/2 and νs0/2, and then the prior distri-

bution of µi is a heavy-tailed t distribution with small degrees of freedom ν and scale

parameter s0. Such a prior is appropriate since most of µi are expected to be very close

to 0 (but may be different from 0), while a few of them are extraordinarily large. The

proposed Bayes model can be modified to allow a normal and Inverse-Gamma distribution

on the regression coefficients and the variance, respectively. Since the observations given

corresponding values of explanatory variables are assumed to be independent, the joint

distribution of m observations is equal to the product of m marginal distributions. Then

the joint posterior distribution of µ, β and σ2 can be sampled, by using Gibbs sampling

method, from the distribution proportional to the joint distribution of data and param-

eters
∏m

i=1

[
φyi

(y | β, µi, σ
2) tµi

(u | ν, s0)
]
pβ(B)pσ2(τ), where φyi

(·| µi, σ
2) is the normal

density function of yi with the mean xT
i β+µi and the variance σ2, tµi

(·| ν, s0) is the scaled

t density function of µi with ν degrees of freedom and scale parameter s0, and pβ and pσ2

are the prior densities of β and σ2. For computational reasons, this model can also be

expressed by
∏n

i=1

[
φyi

(y | β, µi, σ
2)φµi

(u| si) IGsi
(s | ν/2, νs0/2)

]
pβ(B)pσ2(τ), where si

is the prior variance of µi and IGsi
(·| ν/2, νs0/2) denotes the Inverse-Gamma density func-

tion of si with parameters ν/2 and νs0/2. Then all the conditional distributions can be

sampled directly with standard methods in Gibbs sampling framework. The outlyingness

of an observation can be measured by the posterior distribution of si or by that of µi.
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Appendix A

Proof

The proof of Lemma 3.4.2 is given below.
Proof. [of Lemma 3.4.2]
(1).
For a finite h, the ratio rh(l) becomes less than 1 in a finite number of terms because

rh(l) < 1 (A.1)

⇔
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and setting the left hand side of (A.3) equal to 0 gives the equation for the roots of a
convex parabola. Hence there exists some l satisfying the inequality (A.1).
(2).
For a finite l, the ratio tl(h) becomes less than 1 in a finite number of terms because

tl(h) < 1 (A.4)
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then there exists some h satisfying the inequality (A.6), and hence satisfying (A.4). For
any finite l, if tl(h) ≤ 1, then Wl,h decreases in h; if tl(h) > 1, then Wl,h increases in h
until a maximum and then starts decreasing in l once rh(l) becomes less than one.
(3).
I show next that there exist h and l such that both rh(l) < 1 and tl(h) < 1, which is
equivalent to solving
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(A.9)

If both inequalities in (A.9) are replaced by equalities, then two equalities denote two
parabolas, of which one opens upwards and the other opens to the right. The y-coordinate
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of the vertex of the first parabola is negative and the sign of its x -coordinate is indefinite,
while the x -coordinate of the vertex of the second parabola is negative and the sign of
its y-coordinate is indefinite. Then there are intersections between the two areas denoted
by the two inequalities (A.9), no matter whether there is an intersection or not of the
two parabolas. Figure A.1 gives two examples of the two cases, in which the shaded
areas denotes the solutions to (A.9). The case that there are two intersections of the two
parabolas is similar to that in Figure A.1 (a).
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(a) Two parabolas have an intersection. (b) Two parabolas have no intersection.

Figure A.1: Two examples for inequality system A.9, of which the solution sets are indi-
cated by shaded area.
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Appendix B

Tables

In Section 4.3.1, the Bayesian procedure proposed in Chapter 3 was applied to the
dataset given in Kanduc et al. [56]. Both Patnaik’s approximation and Algorithm 3.4.2
were used to calculate the density of doubly noncentral F distribution for this dataset.
The tables given below present the difference between the results obtained by using two
methods.

V = 36

Beta prior max difference max difference max error
of densities of posteriors bound

Beta(11, 1) 0.0035 0.00080 5.16×10−8

Beta(8, 2) 0.0035 0.00031 5.59×10−8

Beta(0.8, 0.2) 0.0035 0.00048 7.86×10−8

Beta(80, 20) 0.0035 0.00022 7.08×10−8

Beta(9.41, 4.03) 0.0035 0.00027 6.13×10−8

Beta(8.09, 8.09) 0.0035 2.78×10−5 8.63×10−8

Table B.1: Comparison between the results calculated by Patnaik’s approximation and by
Algorithm 3.4.2 for V = 36 and various Beta priors. The data under analyzing are shown
in Table 4.2, columns 1 and 4. The error bound E in Algorithm 3.4.2 is chosen to be
10−10. The column named ”max difference of densities” present the maximum difference
between the doubly noncentral F densities calculated by Patnaik’s approximation and by
Algorithm 3.4.2; the column named ”max difference of posteriors ” show the maximum
difference between the posterior probabilities computed by Patnaik’s approximation and
those by Algorithm 3.4.2; the last column present the maximum computation error on a
computer with Intel Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram when
using Algorithm 3.4.2.
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V = 16

Beta prior max difference max difference max error
of densities of posteriors bound

Beta(11, 1) 0.0035 0.00088 2.51×10−8

Beta(8, 2) 0.0035 0.00045 2.79×10−8

Beta(0.8, 0.2) 0.0035 0.00047 3.99×10−8

Beta(80, 20) 0.0035 0.00056 3.32×10−8

Beta(9.41, 4.03) 0.0035 0.00033 3.01×10−8

Beta(8.09, 8.09) 0.0035 0.00016 4.04×10−8

Table B.2: Comparison between the results calculated by Patnaik’s approximation and by
Algorithm 3.4.2 for V = 16 and various Beta priors. The data under analyzing are shown
in Table 4.2, columns 1 and 4. The error bound E in Algorithm 3.4.2 is chosen to be
10−10. The column named ”max difference of densities” present the maximum difference
between the doubly noncentral F densities calculated by Patnaik’s approximation and by
Algorithm 3.4.2; the column named ”max difference of posteriors ” show the maximum
difference between the posterior probabilities computed by Patnaik’s approximation and
those by Algorithm 3.4.2; the last column present the maximum computation error on a
computer with Intel Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram when
using Algorithm 3.4.2.

V = 9

Beta prior max difference max difference max error
of densities of posteriors bound

Beta(11, 1) 0.0035 0.00085 1.52×10−8

Beta(8, 2) 0.0035 0.00063 1.76×10−8

Beta(0.8, 0.2) 0.0035 0.00029 2.47×10−8

Beta(80, 20) 0.0035 0.00079 1.97×10−8

Beta(9.41, 4.03) 0.0035 0.00050 1.91×10−8

Beta(8.09, 8.09) 0.0035 0.00041 2.41×10−8

Table B.3: Comparison between the results calculated by Patnaik’s approximation and by
Algorithm 3.4.2 for V = 9 and various Beta priors. The data under analyzing are shown
in Table 4.2, columns 1 and 4. The error bound E in Algorithm 3.4.2 is chosen to be
10−10. The column named ”max difference of densities” present the maximum difference
between the doubly noncentral F densities calculated by Patnaik’s approximation and by
Algorithm 3.4.2; the column named ”max difference of posteriors ” show the maximum
difference between the posterior probabilities computed by Patnaik’s approximation and
those by Algorithm 3.4.2; the last column present the maximum computation error on a
computer with Intel Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram when
using Algorithm 3.4.2.
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V = 4

Beta prior max difference max difference max error
of densities of posteriors bound

Beta(11, 1) 0.0035 0.00075 8.2×10−9

Beta(8, 2) 0.0035 0.00093 9.5×10−9

Beta(0.8, 0.2) 0.0035 8.44×10−5 1.28×10−8

Beta(80, 20) 0.0035 0.0011 1×10−8

Beta(9.41, 4.03) 0.0035 0.00091 1.07×10−8

Beta(8.09, 8.09) 0.0035 0.00087 1.18×10−8

Table B.4: Comparison between the results calculated by Patnaik’s approximation and by
Algorithm 3.4.2 for V = 4 and various Beta priors. The data under analyzing are shown
in Table 4.2, columns 1 and 4. The error bound E in Algorithm 3.4.2 is chosen to be
10−10. The column named ”max difference of densities” present the maximum difference
between the doubly noncentral F densities calculated by Patnaik’s approximation and by
Algorithm 3.4.2; the column named ”max difference of posteriors ” show the maximum
difference between the posterior probabilities computed by Patnaik’s approximation and
those by Algorithm 3.4.2; the last column present the maximum computation error on a
computer with Intel Pentium D Dual processor of 2.8GHz and 2.79GHz, 2GB of Ram when
using Algorithm 3.4.2.
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Appendix C

Code

Appendix B include the program code written in ”R” for the two main algorithms of
this thesis.

C.1 Code for Algorithm 3.3.1

The code given below with notes starting by “#”.

# The main function to compute the marginal posterior probability,

# P(Hi=1|r*ˆ2) is “posterior”.

# This is the function to generate binary array for input uniform random variables x

# with probability=prob.

equalbinary=function(x,prob)

{
if (x<=prob)

{
index=0

}
else

{
index=1

}
return(index)

}
# approximate the density of the double noncentral F distribution,

# by Patnaik’s approximation.

# x = the quantile.

# dgf1 = the numerator degrees of freedom.

# dgf2 = the denominator degrees of freedom.

# ncp1 = the numerator noncentrality parameter.

# ncp2 = the denominator noncentrality parameter.

approxdoublef=function(x,dgf1,dgf2,ncp1,ncp2)

{
if(ncp2==0)

{
density=df(x,dgf1,dgf2,ncp1)

}
else

{
if(ncp1==0)

{
density=1/(xˆ2)*df(1/x,dgf1,dgf2,ncp2)

}
else
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{
scaler=1/(1+ncp2/dgf2)
newdf2=(dgf2+ncp2)ˆ2/(dgf2+2*ncp2)
density=(1/scaler)*df(x/scaler, dgf1, newdf2, ncp1, log = FALSE)

}
}
return(density)

}
# This is the function computing the marginal posterior probability P(Hi=1|r*ˆ2).
# x1 is the input vector of values of the explanatory variable.
# sig is the standard deviation of the prior distribution of mu,
#which is deviation of the mean of outliers.
# a,b are the parameters of beta prior for pi0.
# n is the number of generated Bayes samples.
posterior<-function(x1,y,sig,a,b,n)
{

m=length(x1)
p=2
x0=rep(1,m)
X=cbind(x0,x1)
lr model=lm(y˜x1)
deletion r=rstudent(lr model)
deletion f=deletion rˆ2
#calculate hat matrix.
invX=solve(t(X)%*%X)
hatmatrix=X%*%invX%*%t(X)
# use R function hatvalues() to calculate the diagonal elements of the hatmatrix.
diaghat=hatvalues(lr model)
# generate n random probabilities of a point not being an outlier from,
# Beta distribution Beta (a,b).
rpi0=rbeta(n,a,b)
# generate n vectors of indices of alternative.
rH=matrix(0,nrow=n,ncol=m-1)
rmu=matrix(0,nrow=n,ncol=m-1)
for (i in 1:n)
{

uniform2=runif(m-1)
rH[i,]=sapply(uniform2,equalbinary,prob=rpi0[i])
rmu[i,]=rH[i,]
# generate k=#{the elements of the i-th row of rH = 1} mu,
# from normal(0,sd=sig),
# where {the elements of rH = 1} represents alternatives.
nonzeromu=rnorm(sum(rH[i,]),sd=sig)
# replace all 1’s in the i-th row of rH by generated mu’s.
rmu[i,which(rmu[i,]==1)]=nonzeromu

}
# the noncentral parameter of the numerator under the null.
nlambdasq=matrix(0,0,nrow=n,ncol=m)
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# the noncentral parameter of the numerator under the alternative.
nlambdasq a=matrix(0,0,nrow=n,ncol=m)
# the noncentral parameter of the denominator.
ndelta=matrix(0,0,nrow=n,ncol=m)
# function h1 in (3.60).
nullden=matrix(0,0,nrow=n,ncol=m)
# function h2 in (3.60).
alterden=matrix(0,0,nrow=n,ncol=m)
p i=numeric(m)
I=diag(1,(m-1),(m-1))
for (i in 1:m)
{

x i=X[-i,]
nume=0
denom=0
# calculate inverse of (t(x i)%*%x i).
invX i=invX+invX%*%X[i,]%*%t(X[i,])%*%invX/(1-diaghat[i])
# calculate the hat matrix after deleting the ith observation.
P=x i%*%invX i%*%t(x i)
IP=I-P
for (k in 1:n)
{

mui=rnorm(1,sd=sig)
# use the formula 3.41 given in Chapter 3 of my thesis to calculate
# the numerator noncentral parameter of the doubly noncentral
# F distribution under the null hypothesis
indexH=which(rH[k,]==1)
newhat=hatmatrix[,-i]
offdiaghat=newhat[i,indexH]
lambda=-sum(offdiaghat*rmu[k,indexH])/sqrt(1-diaghat[i])
# use the formula 3.40 to calculate the denominator,
# noncentral parameter of the doubly noncentral F distribution.
delta=t(rmu[k,])%*%IP%*%rmu[k,]
lambdasq=lambdaˆ2
nlambdasq[k,i]=lambdasq
ndelta[k,i]=delta
# use the formula 3.42 to calculate the numerator noncentral
# parameter of the doubly noncentral F distribution under the althernative
nlambdasq a[k,i]=(lamda+mui*sqrt(1-diaghat[i]))ˆ2
# use the function “approxdoublef” to calculate the density of,
# the doubly noncentral F distribution.
nullden[k,i]=approxdoublef(deletion f[i],1,m-p-1,lamdasq,delta)
alterden[k,i]=approxdoublef(deletion f[i],1,m-p-1,nlamdasq a[k,i],delta)
denom=denom+nullden[k,i]*rpi0[k]
nume=nume+alterden[k,i]*(1-rpi0[k])

}
p i[i]=1/(1+nume/denom)

}
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p1 i=1-p i

return(list(p1=p1 i,nlamdasq,nlamdasq a,ndelta,nullden,alterden,rpi0,rH))

}

C.2 Code for Algorithm 3.4.2

The code given below with notes starting by “#”.

# The main function to compute the density of doubly noncentral F,

# distribution is “doublef”.

# This is the function computing the terms of the infinite sums,

# of the density of double noncentral F.

# x = the quantile.

# df1 = the numerator degrees of freedom.

# df2 = the denominator degrees of freedom.

# ncp1 = the numerator noncentrality parameter.

# ncp2 = the denominator noncentrality parameter.

# l = the index associated with ncp1.

# h = the index associated with ncp2.

termdoublef<-function(x,df1,df2,ncp1,ncp2,l,h)

{
term=dpois(l, lambda=ncp1/2)*dpois(h, lambda=ncp2/2)*(df1*x/(df2+df1*x))ˆl*

(df2/(df2+df1*x))ˆh*beta(df1/2,df2/2)/beta((df1/2+l),(df2/2+h))

return(term)

}
# This is the function computing the ratio of two adjacent terms of the infinite sums,

# (S(l,h+1)/S(l,h)) when l is fixed.

termratioh<-function(x,df1,df2,ncp1,ncp2,l,h)

{
termra=ncp2*df2/(2*(df2+df1*x)*(h+1))*(1+(df1/2+l)/(df2/2+h))

return(termra)

}
# This isthe function computing the ratio of two adjacent terms of the infinite sums,

# (S(l+1,h)/S(l,h)) when h is fixed.

termratiol<-function(x,df1,df2,ncp1,ncp2,l,h)

{
termra=ncp1*df1*x/(2*(df2+df1*x)*(l+1))*(1+(df2/2+h)/(df1/2+l))

return(termra)

}
# This is the function computing theratio of two adjacent terms of the infinite sums,

# (S(l+1,k+1)/S(l,k)).

termratio<-function(x,df1,df2,ncp1,ncp2,l,h)

{
termra=ncp1*ncp2*df1*df2*x/(4*(df2+df1*x)ˆ2*(h+1)*(l+1))*

(1+(df1/2+l)/(df2/2+h))*(2+(df2/2+h)/(df1/2+l))

return(termra)

}
# This is the function to computing the density of the double noncentral F distribution,
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# which equals infinite sum of index l and h.
# when the noncentral parameter in the numeritor=0,
# the function df in R can calculate the density of noncentral F.
# when the noncentral parameter in the denominator=0,
# density of the density of noncentral F=1/fˆ2*df(1/f).
# f = the quantile.
# dgf1 = the numerator degrees of freedom.
# dgf2 = the denominator degrees of freedom.
# ncpa1 = the numerator noncentrality parameter.
# ncpa2 = the denominator noncentrality parameter.
doublef<-function(f,dgf1,dgf2,ncpa1,ncpa2,errorbound)
{

if(ncpa2==0)
{

dens=df(f,dgf1,dgf2,ncpa1)
return(list(density=dens,sigterm=0,bound=0))

}
else

{
if(ncpa1==0)
{

dens=1/fˆ2*df(1/f,dgf1,dgf2,ncpa2)
return(list(density=dens,sigterm=0,bound=0))

}
else
{

# start index l, the first sum in the density,
# of double noncentral F, from 0.
ind1=0
ind2=0
term=termdoublef(x=f,df1=dgf1,df2=dgf2,

ncp1=ncpa1,ncp2=ncpa2,l=ind1,h=ind2)
termsum=term
ratioh=termratioh(x=f,df1=dgf1,df2=dgf2,

ncp1=ncpa1,ncp2=ncpa2,l=ind1,h=ind2)
allind2=numeric()
rowerror=numeric()
while (ratioh>1)
{

ind2=ind2+1
term=termdoublef(x=f,df1=dgf1,df2=dgf2,

ncp1=ncpa1,ncp2=ncpa2,l=ind1,h=ind2)
ratioh=termratioh(x=f,df1=dgf1,df2=dgf2,

ncp1=ncpa1,ncp2=ncpa2,l=ind1,h=ind2)
termsum=termsum+term

}
modh=ind2
termmodh=term

204



ratiohmodh=ratioh
while (term/(1-ratioh)>errorbound)
{

ind2=ind2+1
term=termdoublef(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=ind2)
ratioh=termratioh(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=ind2)
termsum=termsum+term

}
rowerror[1]=term/(1-ratioh)
allind2[1]=modh
term=termmodh
ratioh=ratiohmodh
ratiol=termratiol(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=modh)
ratiol 2=termratiol(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=modh+1)
ratio=ratioh*ratiol 2
s=1
while (ratiol 2>1|ratio>1|(term/(1-ratio)*((1-ratioh)ˆ(-1)+

(1-ratiol)ˆ(-1)))>errorbound)
{

ind1=ind1+1
s=s+1
ind2=0
term=termdoublef(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=ind2)
ratioh=termratioh(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=ind2)
termsum=termsum+term
while(ratioh>1)
{

ind2=ind2+1
term=termdoublef(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=ind2)
ratioh=termratioh(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=ind2)
termsum=termsum+term

}
modh=ind2
termmodh=term
ratiohmodh=ratioh
while (term/(1-ratioh)>errorbound)
{

ind2=ind2+1
term=termdoublef(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=ind2)
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ratioh=termratioh(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,
ncp2=ncpa2,l=ind1,h=ind2)

termsum=termsum+term
}
allind2[s]=modh
rowerror[s]=term/(1-ratioh)
term=termmodh
ratioh=ratiohmodh
ratiol=termratiol(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=modh)
ratiol 2=termratiol(x=f,df1=dgf1,df2=dgf2,ncp1=ncpa1,

ncp2=ncpa2,l=ind1,h=modh+1)
ratio=ratioh*ratiol 2

}
lasterror=term/(1-ratio)*((1-ratioh)ˆ(-1)+(1-ratiol)ˆ(-1))
lastind1=ind1
dens=df(f,dgf1,dgf2)*termsum
return(list(density=dens,sigterm=lastind1+allind2[s]+1,

bound=sum(rowerror)+sum(colerror)+lasterror))
}

}
}
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Index

(central) t distribution, 75

adaptive FDR controlling procedure, 20
admissible decision rule, 8
apparent outliers, 2
area under ROC curve, 36
atypical observations, 2

Bayes factor, 9
Bayes risk, 8
Bayes rule, 8

for 0-1 loss, 8
Bayesian FDR of Efron et al. 2001, 22
Bayesian FDR of Muller et al. 2006, 24
Bayesian FNR of Muller et al. 2006, 24
Benjamini and Hochberg procedure, 18
Bonferroni procedure, 16

deletion residual, 32
doubly noncentral F distribution, 88

density of, 89
doubly noncentral t distribution, 75

explanatory variable, 26

false discovery, 4
false discovery proportion, 12
false discovery rate, 12
false negative, 4
false non-discovery, 4
false non-discovery proportion, 13
false non-discovery rate, 13
false positive, 4
false positive rate, 36
false-alarm rate, 36
family-wise error rate, 12
first-order Bonferroni inequality, 16
Fisher’s inverse χ2 method, 15
fixed significance level procedure, 19

hat matrix, 27
hit rate, 36
Hochberg procedure, 17
Holm procedure, 16

importance function, 86
importance ratios, 86
importance sampling method, 85

inadmissible, 8
influential observation, 164

k-Family-wise error rate, 12

least median of squares estimator, 35
least square estimator, 26
linear regression model, 26
local false discovery rate, 23
loss function, 8

masking problem, 35
multi-stage multiple testing procedures, 15
multiple comparison, 1
multiple hypothesis testing, 1

average power, 10
multiple inference, 1
multiple outlier identification methods

backward-search, 34
single- step, 34

multiple outliers identification methods
forward-search, 34

noncentrol χ2 distribution, 76
noninformative prior, 9
normal equation, 27

outlier, 2
outlyingness, 34

p-value, 5
of a continuous statistic, 6
properties of, 6

Patnaik’s approximation, 88
pentapeptide, 153
per comparison error rate, 11
per family error rate, 11
positive false discovery rate, 12
positive false non-discovery rate, 13
proportion of false discovery rate, 12
proteome, 2

receiver operating characteristic curve, 36
response , 26
risk function, 8

sensitivity, 36
Simes equality, 17
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single hypothesis testing, 3
power , 5
Type I error , 4
Type II error , 4

single-stage multiple testing procedures, 14
singly noncentral F distribution, 88
singly noncentral t distribution, 76
specificity, 36
strong control, 13

test, 3
conservative, 5
most powerful, 5
rejection region, 4
size, 5
the level of significance, 5
uniformly most powerful, 5

test statistic, 4
true positive rate, 36
Type I error, 4

controlling, 5
Type II error, 4
typical observations, 2

uncorrected testing, 15

weak control, 13
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