
MICROTUBULE INVOLVEMENT IN THE PLANT LOW TEMPERATURE 

RESPONSE  

 

 
 

A Thesis  

Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements  

for the Degree of Master of Science 

In the Department of Biology 

University of Saskatchewan 

Saskatoon 

 

By 

Kerry Sproule 
 
 

 Copyright Kerry Sproule, July 2008. All rights reserved. 
  



 i

PERMISSION TO USE 

In presenting this thesis in partial fulfilment of the requirements for a 

Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of 

this University may make it freely available for inspection.  I further agree that 

permission for copying of this thesis in any manner, in whole or in part, for scholarly 

purposes may be granted by the professor or professors who supervised my thesis work 

or, in their absence, by the Head of the Department or the Dean of the College in which 

my thesis work was done.  It is understood that any copying or publication or use of this 

thesis or parts thereof for financial gain shall not be allowed without my written 

permission.  It is also understood that due recognition shall be given to me and to the 

University of Saskatchewan in any scholarly use which may be made of any material in 

my thesis. 

 

Requests for permission to copy or to make other use of material in this thesis in 

whole or part should be addressed to: 

 

 

Head of the Department of Biology 

University of Saskatchewan 

Saskatoon, Saskatchewan, Canada  S7N 5E2 

 

 

 

 

 

 

 



 ii

ABSTRACT 

Cold acclimation is a complex process where plants acquire increased freezing 

tolerance following exposure to low, non-freezing temperatures. Microtubules are 

dynamic components of the cytoskeleton that are essential for plant growth and 

development, and there are multiple lines of evidence indicating microtubules are 

involved in the acquisition of freezing tolerance.  

The organization of microtubules (MTs) was tracked over the course of a cold 

acclimation period using GFP:TUB6 and fluorescent imaging tools. Experiments found 

that MTs undergo incomplete, transient disassembly following exposure to acclimating 

temperatures, which is accompanied by intranuclear tubulin accumulation and followed 

by MT reassembly. The importance of the observed changes to MT organization was 

examined with MT disrupting chemicals that caused reduced MT dynamics or induced 

transient MT disassembly similar to that of cold acclimation. Results of these 

experiments suggest that MT reorganization is important for cold acclimation, but the 

disassembly and reassembly do not directly control cold acclimation. 

MT binding proteins are likely to play a key role in the low temperature response 

because they control MT activity and organization, participate in low temperature signal 

transduction pathways, and mediate interactions between various elements of this 

pathway. By employing a number of proteomics techniques we were able to identify 96 

tubulin-binding proteins from untreated and short term cold acclimated Arabidopsis 

plants. Proteins both known to and predicted to bind to MTs and unexpected MT binding 

proteins were identified. The identified tubulin binding proteins have a range of cellular 

functions, including RNA transport and protein translation, stress responses, and 

functions related to various metabolic pathways, and cell growth and organization.  

Exposure to low temperatures affected the binding of some of these proteins to 

MTs with the identified tubulin binding proteins potentially involved in the cold 

acclimation process and stress response through a number of possible pathways. 

This study represents the first live cell imaging of MT reorganization in response 

to low temperatures and the first time microtubule binding proteins from whole plant 

protein extracts were identified using 1D gel LC-MS/MS analysis.  
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CHAPTER 1 
LITERATURE REVIEW 

 
1.1 The Plant Cytoskeleton 

The cytoskeleton is a key structure contributing to the organization of all eukaryotic cells. 

Microtubules (MTs) are the largest component of the plant cytoskeleton network, and are critical 

elements for all cellular functioning, from cell morphogenesis, cell division, cell wall formation, 

to the intercellular transportation of vesicles and nucleotides (mRNA and DNA-chromosomes) 

(Fosket and Morejohn 1992; Moore et al. 1997; Nick 2000). The term cytoskeleton is 

misleading, as it implies that the elements are rigid and only function to maintain structure, when 

they are in fact very dynamic elements that continually reorganize into different forms and are 

involved in complex activity, interactions, and regulation (Wasteneys and Galway 2003). 

Although MTs are comprised primarily of groups of the same small protein subunits, these 

subunits are encoded by many genes, which create proteins with unique features that can be 

modified in various ways. An additional diverse array of proteins associate with MTs and 

function to not only control the activity and organization of the MTs but also facilitate 

interactions with other cellular components and potentially regulate signalling pathways. 

1.1.1 Microtubule Organization and Dynamics  

1.1.1.1 Plant microtubule structure and arrays 

The major component of MTs is the dimeric protein tubulin. Tubulin most often exists in 

the form of non-covalently linked 50,000 dalton α- and β-tubulin polypeptides (Fosket and 

Morejohn 1992). The structure of a MT and tubulin dimer is shown in Figure 1.1. Alpha- and β- 

tubulin dimers bind end to end to form linear protofilaments, which interact laterally to form the 

wall of a hollow MT (Figure 1.1C). Typically, thirteen protofilaments join to form a hollow, 25 

nm diameter MT (Figure 1.1). Contact between protofilaments is mediated by interactions 

between the N and M loops of laterally adjacent subunits (Morrissette et al. 2004). In addition to 

α- and β-tubulin, MTs contain a relatively small amount of the protein γ-tubulin, which acts in 

conjunction with guanosine triphosphate (GTP) to facilitate MT nucleation (Cyr 1994; Drykova 

et al. 2003). 
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Figure 1.1. MT and tubulin structure. (A and B) Tubulin heterodimer comprised of tightly linked 
α- and β-tubulin monomers. (A) View from the outside of the MT. (B) View from the M-loop 
side of a protofilament where protofilaments interact with each other laterally. GTP molecules 
within the proteins are shown in red and dark blue. The yellow circles highlight amino-acid side 
chains which differ between α-tubulin isoforms in yeast. Most of the variation occurs at the 
exterior protein surface. (C) Diagram of a tubulin dimer, single protofilament and MT. Each 
protofilament consists of adjacent tubulin subunits with the same orientation, and a MT consists 
of 13 protofilaments aligned in parallel around the lumen. (D) A segment of a MT viewed in an 
electron microscope with a cross section of a MT showing a ring of 13 protofilaments. Images   
A - B courtesy Bode et al. (2003); images C - D courtesy Molecular Biology of the Cell, 4th 
Edition. 
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Plants are distinguished by the presence of a cell wall and chloroplasts, and 

accompanying the evolution of these unique structures was the evolution of unique cytoskeletal 

arrays. Plant MT arrays include the preprophase band and phragmoplast in addition to the 

flexible cortical array and spindle array that are present in all eukaryotes (Wasteneys 2002). The 

dispersed cortical MTs are important for regulating the direction of cell expansion, controlling 

cell wall growth, directing Golgi vesicles to the developing wall, and aligning new cellulose 

microfibrils (MFs) on the wall, among other functions (Wasteneys and Yang 2004).  The other 

three MT arrays are primarily responsible for different aspects of cell division, including the 

separation of sister chromatids and proper formation and alignment of the cell plate (Cowling et 

al. 2003).  

1.1.1.2 Microtubule dynamics 

MTs are very dynamic polymers that continually reorganize and undergo cycles of 

growing, pausing, and shortening. Individual MTs alternate between growing and shrinking by 

the rapid attachment and detachment of the subunits at their ends (Stoppin-Mellet et al. 2003). 

Treadmilling and dynamic instability are two forms of MT dynamics characteristic of plant MTs. 

Treadmilling occurs when tubulin dimers add preferentially to one end of the MT, while being 

slowly lost from the other end. Treadmilling is a form of directional growth; the rapidly growing 

end is considered the plus end and the slow growing end is called the minus end (Bisgrove et al. 

2004). The term ‘dynamic instability’ describes the variable nature of MT plus end dynamics, 

where some of the MTs in the population undergo continual slow growth, while others 

disassemble very rapidly (Sedbrook 2004). When MTs ‘move,’ the individual tubulin dimers of 

the MT do not slide or move in relation to the cell. Instead, movement is caused by the dynamic 

loss and addition of tubulin dimers at the MT ends (Shaw et al. 2003; Van Damme et al. 2004). 

Plant MT dynamics are different from animal MT dynamics. Plant MTs are almost 

always moving, the relatively ‘static’ interphase MTs are only in a pause state about 10% of the 

time (Shaw et al. 2003). Individual plant MT plus ends polymerize at an average rate of 3–5 

µm/min and depolymerise at approximately 5–9 µm/min, which is three times slower than 

animal MTs (Vos et al. 2004). Animal MT dynamics are reduced overall because MT minus 

ends generally remain stably attached to their nucleation sites (see below), resulting in reduced 

overall dynamicity and states of pause that occupy 60% of the MT lifetime (Ehrhardt and Shaw 

2006). 
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1.1.1.3 Tubulin dimer assembly and microtubule nucleation 

The cell tightly regulates all aspects of tubulin production, from the production of tubulin 

mRNA to protein translation and dimer formation. The α- and β-tubulin polypeptides are 

modified by a sequence of chaperonins and tubulin folding cofactors before they are assembled 

into dimers (Dhonukshe et al. 2006). This step in MT assembly is one of many important 

mechanisms of MT regulation that controls both the ratio of α- to β-tubulin monomers and the 

ratio of free tubulin dimers to MTs (Dhonukshe et al. 2006). The proper balance between each 

element is maintained in part by complex feedback mechanisms that control the production and 

degradation of tubulin transcripts and polymers (Giani et al. 2002). High ratios of free tubulin 

dimers to MTs generally result in increased rates of MT polymerization, but if an increased 

polymerization does not significantly reduce free tubulin levels, mechanisms of protein and/or 

transcript degradation will be initiated. Imbalances between α- and β-tubulin are known to 

decrease MT numbers, and the introduction of artificially high levels of either α- or β-tubulin 

without the counterpart has been shown to be toxic in some cells because of their inability to 

properly correct the imbalance (Weinstein and Solomon 1990; Anthony et al. 1998; Dhonukshe 

et al. 2006). 

 MT nucleation, the initial formation of a MT, occurs when the ring shaped γ-tubulin ring 

complex, consisting of γ-tubulin and a few other elements, forms around one or two tubulin 

dimers (Erhardt et al. 2002). This structure is called a MT initial, and its presence encourages the 

binding of more dimers (Hashimoto and Kato 2006). The growth of this initial into a MT 

involves the addition of GTP-bound tubulin dimers onto the MT plus end, producing a GTP cap 

(Vassileva et al. 2005). The presence of the GTP cap promotes the addition of more GTP bound 

tubulin dimers. Shortly after the polymerization of the new tubulin dimers, the GTP is 

hydrolyzed by β-tubulin, inducing a conformational change in the MT that favours MT 

shortening by the loss of tubulin dimers (Bisgrove et al. 2004). The MT minus end can be capped 

and stabilized by a group of nucleating proteins that prevent the addition of new tubulin dimers 

while still permitting depolymerization (Shaw et al. 2003). 

MT nucleation does not occur at a defined nucleating site in plant cells, unlike the 

specific microtubule organizing center (MTOC) of yeast and animal cells. Instead, new MTs 

originate off of the loose MTOC or the nuclear envelope and as branches off of pre-existing 

MTs. The MT-dependent nucleation that forms cortical MTs occurs when γ-tubulin is recruited 
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to the pre-existing MTs (Murata and Hasebe 2007). From the site of nucleation, MTs can grow in 

any direction within the two-dimensional plane around the cell cortex. In land plants new cortical 

microtubules usually form at an approximate 40° angle to the original microtubule (Murata and 

Hasebe 2007). MTs can grow in slightly curved or straight lines, and when a growing MT 

intersects a pre-existing MT it either crosses over the MT (if intersecting at angles above 30–40°) 

or changes its direction and becomes aligned and often bundled with the contacted MT (if 

intersecting at angles below 30–40°) (Ehrhardt and Shaw 2006). Because of minus end 

dynamics, the part of the MT not forming into the bundle is less stable than the bundled MTs and 

usually depolymerises, leaving only the parallel, bundle-stabilized MTs (Shaw et al. 2003). 

These characteristics are responsible for the self-organization of cortical MTs into the relatively 

parallel, organized MT arrays commonly found in plant cells (Ehrhardt and Shaw 2006). 

1.1.2 Tubulin Genetics and Microtubule Heterogeneity 

1.1.2.1 Tubulin genes and post translational modifications 

In plants, the α- and β-tubulins are encoded by two small gene families. These gene 

families are well characterized in the small model plant Arabidopsis thaliana (hereafter referred 

to as Arabidopsis), with six expressed α-tubulin genes (Kopczak et al. 1992), nine expressed β-

tubulin genes (Snustad et al. 1992), and two expressed γ-tubulin genes (Drykova et al. 2003). 

Excluding a highly variable carboxyl-terminal domain, all α- and β-tubulin isoforms exhibit a 

high degree of sequence identity. Plant tubulin amino acid sequences share at least 87% identity 

amongst the β-tubulins, and at least 89% identity between the α-tubulins (Fosket and Morejohn 

1992). Plant tubulins are also highly conserved with tubulins from other organisms; angiosperm 

and vertebrate tubulins share at least 79% identity (Fosket and Morejohn 1992). Tubulin proteins 

from all organisms maintain the same basic and specific activity within the MT, including MT 

assembly and disassembly, α- and β-tubulin interaction, and GTP hydrolysis. The high degree of 

tubulin isotype similarity across all organisms relates to this highly conserved tubulin activity. 

Protein sequence variation that is found in different tubulin proteins is largely localized to 

residues present at the exterior protein surface (Figure 1.1A and B). 

There are more tubulin genes present in plants than any other organism, with 17 

expressed tubulin genes in the small (1.3 x 108 bp) genome of Arabidopsis compared to only 15 

expressed tubulin genes in the human genome (3 x 109 bp) (Goddard et al. 1994). In addition to 

the large number of tubulin isoforms, tubulin heterogeneity is also produced by posttranslational 
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modifications (PTMs). In plant systems detyrosinated/tyrosinated, acetylated/deacetylated, 

polyglutamylated and phosphorylated tubulin have been found (Koontz and Choi 1993; 

Smertenko 1997; Wang et al. 2004). 

1.1.2.2 Possible functional effects of tubulin heterogeneity 

It is believed that the large number of plant tubulin genes are present to help the plant 

better adapt to their environment, but the actual functional significance of the apparent gene 

redundancy is not well understood (Goddard et al. 1994). Three explanations have been 

proposed; i) different tubulin isoforms are required to perform particular functions, ii) different 

tubulin isoforms are functionally interchangeable, and the presence or prominence of a specific 

isoform is caused by preferential expression driven by different promoters, and iii) tubulin 

isoforms coevolved along with microtubule-associated proteins that interact with microtubules, 

and specific isoforms are selected based on their interaction with a particular set of these proteins 

(Goddard et al. 1994; Breviario and Nick 2000). Tubulin composition varies both spatially and 

temporally by both differential transcription of tubulin genes and regulated modifications of α- 

and β-tubulin by PTMs. Some tubulin genes are constitutively expressed while others have 

specific patterns of expression and regulation, based on both developmental stage and 

environmental conditions (Goddard et al. 1994; Cheng et al. 2001; Abdrakhamanova et al. 2003). 

For example, in Arabidopsis, the TubA2 gene is expressed in nearly all tissues at all times, 

whereas TubA1, TubB1, and TubB9 are preferentially expressed in root cortical cells, leaf tissues, 

and mature pollen and stamens, respectively (Nick 2000; Cheng et al. 2001). External factors 

including light and temperature also affect tubulin isotype expression. In Arabidopsis, light 

decreases the levels of TubB1, while low temperature decreases transcript levels of TubB2, 

TubB3, TubB6, and TubB8, and increases levels of TubB9 (Chu et al. 1993). Low temperature 

causes complex cyclic patterns of tubulin gene expression in wheat (Farajalla and Gulick 2007).  

Modified plant tubulins have been observed, but relatively little information is available 

on tubulin PTMs. Plant tubulin PTMs seem to occur in a highly specific manner, only to 

particular tubulin isoforms and in specific tissue types (Wang et al. 2004). Acetylated α-tubulin 

in MT arrays is associated with stable MT structures in animal systems and may mark less 

dynamic MTs in plant systems as well, while the presence of tyrosinated tubulin in MTs usually 

indicates that the MT is quite new (Åström 1992; Smertenko 1997). Phosphorylation of tubulin 
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has been associated with cell cycle progression and programmed cell death in plants (Yemets et 

al. 2005).  

Although the functional importance of post-translational modifications is not obvious, 

one proposed function is the creation of tubulin/MT subpopulations that are ‘targeted’ for 

specific functions (Wang et al. 2004). At least some of the modifications (e.g. acetylation and 

polyglutamylation) act to regulate the binding of MAPs to MTs (Westermann and Weber 2003). 

Hormone activity also affects PTMs, and some PTMs can be triggered by signals that control 

plant growth (Duckett and Lloyd 1994; Wiesler et al. 2002).  

Differential expression and modification of tubulin genes and proteins under different 

conditions suggests that stress may be better managed/tolerated because of these protein 

alterations. For example, MT stability during chilling appears to be determined by features of β-

tubulin C-termini. Antarctic fishes contain MTs that are extremely tolerant to low temperatures 

and can polymerize at very low temperatures (Detrich and Parker 1993). Low temperature 

tolerant fish contain β-tubulin proteins with short C-termini that are less glutamylated than other 

β-tubulin isoforms (Redeker et al. 2004). These MTs are typically much less dynamic than 

homeotherm MTs at all temperatures (Detrich et al. 2000). Maize microtubules displayed 

increased cold tolerance and more closely resembled low temperature stable fish β-tubulins when 

the β-tubulin C-terminus was shortened (Bokros et al. 1996). In Arabidopsis, transcript levels of 

Tub9 are increased and Tub2, Tub3, Tub6 are decreased after approximately 6 hour (h) exposure 

to 4°C (Chu et al. 1993). TUB9 is the Arabidopsis tubulin protein with the shortest C-terminus 

(which by inference is most likely to be low temperature stable) while TUB2, TUB3 and TUB6 

are larger proteins with longer C-termini.   

Different features of the tubulin C-terminus may increase MT cold stability. The 

additional length of the protein ends may itself make MTs more prone to disassembly. The 

increased cold tolerance of the shorter tubulin isoforms could also be related to the decreased 

PTMs, as all PTMs except acetylation occur in the highly variable C-terminal protein end. 

Tubulin heterogeneity in plant MTs also appears to increase the rate of microtubule shortening, 

as MTs comprised of only one tubulin isoform (tubulin homopolymers) have much slower 

depolymerization rates than tubulin heteropolymers, which may have an evolutionary and 

functional significance (Moore et al. 1997). 
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1.1.3 Microtubule Associated Proteins (MAPs) 

Microtubule associated proteins (MAPs) are important components of MTs. They 

regulate nearly all aspects of tubulin biochemistry and control everything from polymer stability, 

formation and elongation, to MT bundling and linkage to other cellular structures (Maiato et al. 

2004). Traditionally MAPs referred only to proteins that bound directly to MTs, and a lot of 

recent debate and controversy has surrounded the defining of a MAP (Morejohn 1994; Sedbrook 

2004). In this and other reports the definition of MAPs is considered to include proteins that 

indirectly or transiently interact with MTs, colocalize with MTs, or influence MT growth 

dynamics in some way (Hamada 2007). 

A variety of MAPs have been identified in plants and a number of these have been 

characterized. Some characterized plant MAPs have structures and functions not found in other 

eukaryotic MAPs, while many of the major animal cytoskeletal proteins are absent from plants 

(Hussey et al. 2002; Wasteneys and Galway 2003). The plant cytoskeleton is quite unique, and 

the presence of the cell wall and lytic vacuoles, in combination with the lower levels of MTs in 

plant tissues have made the study of plant MTs challenging. Plant MAPs have been identified 

through a variety of approaches; including mutant screens, biochemical purifications, and 

identification of plant homologues to the much better characterized animal MAPs via database 

searching and antibody cross reactivity (Whittington et al. 2001; Chuong et al. 2004; Hamada 

2007). Recently a large number of tubulin binding proteins were identified by a large-scale study 

employing tubulin affinity chromatography and mass spectrometry proteomic techniques 

(Chuong et al. 2004).  

In general, plant MAPs can be grouped into two major functional categories, those that 

regulate MT assembly/disassembly, and those that organize MT structure and function (Hamada 

2007). However, proteins associate with MTs that do not necessarily fit into these categories. 

The cytoskeleton filaments form a large, near continuous connection between nearly all cellular 

structures and provide a large surface area on which proteins can bind, and possibly carry out 

functions unrelated to cytoskeleton activity (Janmey 1998).  

1.1.3.1 Microtubule disassembling and assembling MAPs 

There are two different ways plant MTs are depolymerised: by low temperature induced 

depolymerization and by MT-severing proteins (Sedbrook 2004). Katanin is the only 

depolymerizing MAP that has been reported in plants, and it severs MTs through an ATP-
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dependent mechanism (Burk et al. 2001). In animal systems, katanin functions as a heterodimer, 

with the p80 subunit bringing the heterodimer to the MT and regulating the p60 that severs the 

MT. Homologues of genes for both subunits exist in Arabidopsis but it seems that the p60 

subunit acts alone; no p80 activity has been described to date (Stoppin-Mellet et al. 2003). 

In plants, katanin is required for normal cell wall formation, cell elongation, cell 

expansion, and progression through the cell cycle where it breaks down MT arrays after their 

role in the cell cycle is fulfilled (Burk et al. 2001). MT depolymerizing MAPs are abundant in 

animals where they are responsible for detaching MT minus ends from stable MT nucleation 

sites, which is important for MT organization and function (Hamada 2007). It is possible that 

plants have more depolymerizing MAPs than just katanin, however, MT minus ends in plants are 

inherently more dynamic than in animals, making depolymerizing proteins much less important 

for plant MT array dynamics and organization.  

 MT nucleation requires γ-tubulin and a complex of other proteins, and because plant 

MTs are primarily nucleated on the surface of pre-existing MTs, the proteins in this complex are 

therefore also classified as MAPs. Unfortunately, the identity of proteins in this complex is not 

known (Pastuglia and Bouchez 2007). Spc98p is a MAP essential for MT nucleation in animals 

and its homologue has been examined in plants. However, although in plants Spc98p colocalizes 

with γ-tubulin at MT nucleation sites at the surface of the nucleus where it functions in MT 

nucleation, it does not localize along cortical MTs and is therefore unlikely to be involved in 

MT-dependent MT nucleation of cortical MTs (Erhardt et al. 2002). 

MAP215 is a large, highly conserved MAP family present in all examined eukaryotes 

that control MT length by promoting both the attachment and detachment of tubulin dimers into 

MTs (Kawamura et al. 2006; Hamada 2007). MOR1 (microtubule organization 1) is an 

Arabidopsis member of the MAP215 family. MOR1 localizes in small patches along the entire 

length of MTs, resembling, and possibly correlating to MT nucleation sites (Hamada 2007). 

MOR1 stabilizes the growing ends of newly forming MTs where it is controls MT length 

throughout the cell cycle (Kawamura et al. 2006). MT organizational defects in mor1 mutants 

caused aberrant cell plates, defective chromosomal arrangements and multinucleate cells 

revealing the importance of MOR1 and regulated MT length for proper MT array organization 

and function (Kawamura et al. 2006). 
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1.1.3.2 Microtubule organizing MAPs 

1.1.3.2.1 Microtubule binding motor proteins. There are two groups of motor proteins 

that act on MTs, dyneins and kinesins. Dyneins organize the Golgi apparatus, establish spindle 

poles, and move nuclei, vesicles, and chromosomes in those organisms where they are found 

(Lawrence et al. 2001). However, only a single light chain dynein sequence has been identified 

in plants, and this protein does not appear to have any motor protein function (Reddy and Day 

2001). 

Kinesins are a superfamily of MT binding motor proteins that participate in diverse 

functions, generally related to organelle transport and the organization of MT structures. All 

eukaryotic organisms have kinesin proteins, which share a conserved motor domain and use 

energy from ATP hydrolysis to walk along MTs (Reddy and Day 2001). These motor proteins 

can translocate to both the plus and minus end of the MT, and can transport cargo to their 

respective target sites. Flowering plants have the most kinesin genes of any organism, and with 

61 kinesins and kinesin-like genes Arabidopsis contains the most kinesins of all eukaryotic 

genomes sequenced (Reddy and Day 2001; Dagenbach and Endow 2004). There are 14 groups 

of kinesins grouped based on conserved motor domain structure (Dagenbach and Endow 2004). 

Two of these groups consist solely of plant kinesins, and many of the plant kinesins classified 

into the other families, particularly the kinesin 14 family, are quite divergent from the rest of 

their respective groups (Reddy and Day 2001; Dagenbach and Endow 2004).  

The kinesin 14 C-terminal motor group is the most divergent of all the kinesin 

subfamilies and appears to function quite differently than other plant and animal kinesins (Reddy 

and Day 2001). Plants do not contain dynein motor proteins, and the divergent plant kinesin 14 

proteins may perform functions carried out by these proteins in other organisms (Dagenbach and 

Endow 2004). Members of the kinesin 14 group are proposed to organize spindle MTs and can 

move MTs in relation to one another (Ambrose et al. 2005). A kinesin 14 protein from cotton, 

GhKCH2, appears to be involved in MT functioning during cell wall formation, by participating 

in microtubule dynamics and organization, or transporting materials during cell wall formation 

(Xu et al. 2007). Members of the kinesin 14 subfamily include kinesins with actin and 

calmodulin binding domains (Preuss et al. 2004). 

TANGLED 1 (TAN1) is a MAP originally identified in maize that functions to control 

the position of cell division (Smith et al. 1996). TAN1 is present around the plane of cell division 
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throughout mitosis and cytokinesis, first with the preprophase band (PPB) and then alone at the 

cell periphery after the PPB disassembles, where it appears to continuously direct the expansion 

of the phragmoplast in the proper division plane (Walker et al. 2007). Two kinesins associate 

with TAN1, and mutations to any of these three proteins results in abnormal orientation of the 

cell plate, indicating that the function of these two kinesins is directly linked to the function of 

TAN1 (Smith et al. 2001; Hamada 2007). 

1.1.3.2.2 MT plus-end-tracking proteins (+TIPs). MT plus-end-tracking proteins 

(+TIPs) are a diverse group of proteins that locate preferentially at MT plus ends, usually 

promoting the formation of longer and more active MTs (Bisgrove et al. 2004). The presence of 

these proteins generally increase MT dynamics thereby increasing the probability that a growing 

MT will interact with other MTs or proteins, becoming stabilized and retained for a specific 

function (Bisgrove et al. 2004). In this way +TIPs help bind MTs to localized cell sites, and 

orient them for proper polarized growth, spindle positioning, directional migration and plane of 

cell division (Bisgrove et al. 2004). 

+TIPs are characterized by the formation of a “comet” that tracks the plus end of MTs 

when the +TIP is expressed as a green fluorescent protein (GFP) fusion protein. +TIPs 

continually hop on and off the MT plus end as it grows (Bisgrove et al. 2004). There are three 

distinct ways +TIPs are targeted to the MT ends; motor driven transport, treadmilling, and 

hitchhiking. Motor driven transport depends on kinesin motor proteins that essentially walk 

along MTs carrying +TIPs with them towards the plus end, where they unload their cargo. 

Treadmilling +TIP transport is based on unique chemical and/or structural properties of the tip, 

such as the GTP cap or copolymerization with tubulin dimers, which facilitates selective protein 

binding at the MT end. Hitchhiking +TIPs locate to the MT end by indirectly binding to MTs 

through a treadmilling protein intermediary.  

End binding 1 (EB1), the first +TIP found in plants, is characteristic of direct binding, 

treadmilling +TIPs (Chan et al. 2003). Two EB1 proteins in Arabidopsis, AtEB1a and AtEB1b, 

regulate MT dynamics and promote the attachment of MT ends to different cellular sites. They 

localize at the MT plus end and can bind MT minus ends and nucleation sites where they appear 

to promote MT stabilization by helping anchor MTs to the cortex (Chan et al. 2003). 

AtEB1b also binds to internal membranes, including the endoplasmic reticulum (ER), 

chloroplasts, mitochondria, and nuclei, facilitating organelle movement throughout the cell, as 
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well as being essential for organizing membranes and maintaining polar growth in higher plant 

cells (Mathur et al. 2003; Bisgrove et al. 2004). AtEB1 +TIPs can also act as an intermediary 

protein for other hitchhiking +TIPs. A number of EB1 associated proteins have been 

characterized in both plant (e.g. TAN1, MOR1 and the formins) and non-plant systems (Bisgrove 

et al. 2004). 

CLASPs (CLIP170-associated proteins) are evolutionary conserved +TIPs with essential 

roles in mitosis and morphogenesis (Kirik et al. 2007). Although plants do not contain CLIP170 

proteins, CLASP homologues have been identified in plants, and AtCLASP appears to function 

as a +TIP that localizes along cortical MTs, enriched at the MT plus end (Kirik et al. 2007). 

AtCLASP appears to be involved primarily in regulating cortical microtubule organization and 

cell form and expansion (Kirik et al. 2007). 

SPIRAL 1 (SPR1) and SPIRAL 2 (SPR2) are plant specific MAPs involved in 

controlling the direction of cell elongation by interacting with cortical MTs (Ishida et al. 2007). 

Mutations in either SPR1 or SPR2 cause right handed helical growth in Arabidopsis seedlings 

and it is believed that both proteins act to control MT organization via separate pathways (Shoji 

et al. 2004). SPR1 is a very small (12 kD) +TIP protein that is localized at growing ends of MTs 

of the cortical array, spindle, phragmoplast and preprophase band through either direct binding to 

MTs or binding to other MAPs (Sedbrook et al. 2004). However, SPR2 is not a +TIP, and 

directly binds MT in discrete patterns along the length of the MTs (Shoji et al. 2004). 

1.1.3.2.3 Microtubule bundling proteins: MAP65 and other candidates. In plants, the 

best-studied structural MAPs are cross bridging MAPs that belong to the MAP65 protein family. 

MAP65s are a broad grouping of proteins 54 to 80 kDa in size that appear to be unique to plants 

(Wasteneys 2002). Arabidopsis contains nine MAP65 genes, and the structure and function of 

many of these have been analyzed (Hussey et al. 2002). MAP65s have been shown to localize to 

cortical MTs during interphase, but MAP65 binding is cell cycle specific and different family 

members differentially localize to the preprophase band, phragmoplast and the midzone 

(Hamada 2007). MAP65 proteins form homodimers, and each protein of the dimer binds to the 

C-terminal region of tubulin in MTs to form a 10 – 30 nm crossbridge between two MTs 

(Smertenko et al. 2004). The binding of these proteins helps keep MTs parallel and properly 

spaced, and suppresses cold-induced MT disassembly (Smertenko et al. 2004; Wicker-Planquart 

et al. 2004). At least one MAP65 family member, AtMAP65-1, is regulated by phosphorylation, 
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as its phosphorylation is essential for its MT binding activity (Smertenko et al. 2004). atmap65-1 

mutants expand irregularly, produce a distorted phragmoplast and undergo unsuccessful 

cytokinesis (Muller et al. 2004). WAVE-DAMPENED 2 (WVD2), AUXIN-INDUCED ROOT 

CULTURE 9 (AIR9), and AtMAP70 are three recently characterized plant MAPs with limited to 

no identity to MAPs of other organisms (Kaloriti et al. 2007). WVD2 is a novel MAP in 

Arabidopsis that controls cortical MT bundling and array organization in elongating cells (Perrin 

et al. 2007). AIR9 binds to MTs in complex patterns, and appears to function in controlling the 

maturation of cell plates into cell walls (Kaloriti et al. 2007). Arabidopsis MAP70-1 binds to 

MTs in all MT arrays, but its function is unknown. It shares no similarity to other MAPs, and has 

no homologs in non-plant species (Kaloriti et al. 2007). 

1.1.3.2.4 Actin-binding and membrane binding MAPs. Plasma membrane (PM) and 

MTs are closely linked, with cross bridges connecting cortical MTs to the PM having been 

observed by electron microscopy in protoplasts, roots, and other expanding tissue from a range 

of lower and higher plant species (Hardham and Gunning 1978; Dugas et al. 1989; Shibaoka 

1994). Phospholipase D (PLD) is one PM protein that may be responsible for linking cortical 

MTs to the PM (Gardiner et al. 2001). The activation of PLD by n-butanol, osmotic stress and 

xylanase all have been shown to stimulate MT reorganization and the release of MTs from the 

PM (Gardiner et al. 2001; Dhonukshe et al. 2003). However, it is possible that phospholipase 

activators themselves promote MT depolymerization in the absence of PLD (Hamada 2007). 

Other PM - MT binding proteins have been found in tobacco (Cai et al. 2005), and a novel MAP 

recently identified from Solanum berthaultii pollen, SB401, may function to mediate interactions 

between MTs and membrane organelles (Huang et al. 2007). 

The function and localization of MTs and actin microfilaments (AF) have often been 

found to overlap (Shibaoka 1994; Sonesson and Widell 1998; Wasteneys and Galway 2003). 

There are more than 10 types of proteins that cross-bridge MTs and AFs in animal and yeast 

cells. Such cross-bridging proteins have not yet been clearly identified in plants, only two 

proteins with the potential to crosslink these structures have been described. Tobacco MAP190 

binds to both MTs and actin filaments in vitro, and the cotton kinesin, GhKCH2, colocalizes with 

both AFs and MTs in cotton fibres (Preuss et al. 2004; Hamada 2007). The SB401 protein also 

binds to and bundles AFs, and could connect them to MTs (Huang et al. 2007). 
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1.1.3.2.5 Other MAPs. It has been demonstrated that numerous proteins involved in a 

diverse array of cellular functions bind to MTs and it is unlikely that all of these proteins act as 

typical MAPs involved in controlling MT function/organization (Janmey 1998). Rather, some of 

these proteins may bind to MTs because of their association with other MAPS, or because the 

MT provides a relatively stable ‘docking place’ for the protein to carry out its function (e.g. 

machinery involved in translation) (Janmey 1998). Glycolytic enzymes, kinases, and GTPases 

are some examples that localize to MTs in animal and plant cells (Janmey 1998). MTs appear to 

be important for intracellular trafficking and can transport organelles (Muench and Mullen 2003; 

Romagnoli et al. 2003). One well-studied example of this is the peroxisomal multifunctional 

protein (MFP), which localizes along MTs to carry out its peroxisome function and help regulate 

mRNA localization and/or translation (Chuong et al. 2002; Muench and Mullen 2003).  

Ribosomes, RNA and RNA-related proteins localize to the cytoskeleton, and mRNA 

transportation, translation and nuclear RNA export may be controlled in part by these 

interactions (possibly via MAPs) (Mandelkow and Mandelkow 1995; Jansen 1999). The 

translation elongation factor 1α  (eEF1α) is a well studied MAP capable of binding and bundling 

actin filaments as well as its functions in protein synthesis and other activities (Durso and Cyr 

1994; Moore and Cyr, 2000). Research in animals suggests that the binding of eEF1α to actin 

filaments inhibits the translational activity of eEF1α (Lopez-Valenzuela et al. 2003). 

Very few large-scale analyses of proteins that bind to MTs and tubulin have been 

performed. Forgacs et al. (2004) performed an analysis of data from two independent large-scale 

yeast two-hybrid screens to identify and characterize the cytoskeleton proteome of S. cerevisiae. 

Actin, tubulin, proteins that bind actin or tubulin, and proteins that bind to a protein that binds 

actin or tubulin were all considered to be cytoskeleton proteins. Using this criterion, the authors 

identified 125 proteins that comprise the cytoskeleton proteome, representing 2.2% of the total 

yeast proteome. 

A recent large scale analysis of plant tubulin binding proteins identified 122 proteins 

capable of binding tubulin, of which only 6% were previously known to either directly bind to or 

modify MTs, while just over 50% were related to proteins previously found to associate with 

MTs (Chuong et al. 2004). For many of these proteins, further analysis is required to confirm 

these interactions in vivo, and to determine if these interactions are important to the functioning 

of either MTs or the protein. The proteins identified in this study as MAPs confirms the 
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cytoskeleton as an important element in metabolic channelling, intracellular trafficking and 

signalling in plant cells.  

1.1.4 Microtubule Disrupting Chemicals  

The dynamic nature of MTs is susceptible to pharmacological agents, which are generally 

considered either MT-disrupting or MT-stabilizing chemicals. Taxol™ (paclitaxel) is a MT 

stabilizer that lowers the critical concentration of tubulin required for MT assembly and makes 

MTs more resistant to disassembly (Schiff et al. 1979; Nakamura et al. 2004). Taxol stabilizes 

MTs by binding to β-tubulin subunits on the internal surface of the MT protofilament, changing 

the tubulin conformation and interfering with protofilament disassociation (Xiao et al. 2006). 

Oryzalin is a dinitroaniline class chemical that binds to α-tubulin (Morrissette et al. 

2004). It can bind to both α-tubulin present in dimer form and α-tubulin in microtubules. This 

occurs in a polymer mass- and number-dependent manner, although polymerised tubulin has a 

much lower oryzalin-binding capacity than unpolymerised tubulin (Hugdahl and Morejohn 

1993). Oryzalin binds to an area of α-tubulin close to the site of lateral protofilament interaction 

(e.g. below the N loop, Figure 1.1B). When it binds to free tubulin, oryzalin slows MT assembly 

by interfering with protofilament-protofilament binding, and when it binds to polymerised MTs, 

oryzalin destabilizes protofilament-protofilament interactions thus promoting MT disassembly 

(Hugdahl and Morejohn 1993; Morrissette et al. 2004). 

Pronamide (also known as propyzamide), like oryzalin, is a powerful antimicrotubular 

chemical that interferes with MT polymerization. Pronamide belongs to the benzamide class of 

anti-MT chemicals, some of which bind to β-tubulin and are structurally distinct from 

dinitroanilines (Young and Lewandowski 2000; Robinson et al. 2004). There is relatively little 

known about how pronamide and other benzamides bind to β-tubulin to promote net MT 

depolymerization. However, pronamide is unable to depolymerise intact MTs but it appears to 

act in a manner similar to other MT disrupting chemicals in preventing MT polymerization by 

interfering with tubulin dimer formation or addition to the MT end (Akashi et al. 1988; Young 

and Lewandowski 2000; Robinson et al. 2004). 

Low concentrations of taxol, pronamide, or oryzalin all have the same overall effect: 

reduced MT dynamics. MT disrupting chemicals present in low concentrations (e.g. 1 µM - 2 

µM pronamide, 50 nM - 100 nM oryzalin) result in little net MT disassembly, but significantly 

lower MT growth and shrinkage rates with overall decreased MT dynamics (Nakamura et al. 
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2004). Low concentrations of taxol (e.g. 100 nM - 1 µM) also inhibit the growth and shortening 

of MT ends, resulting in increased MT stability without significantly affecting overall MT length 

(Derry et al. 1995).  

When the concentration of these chemicals exceeds certain threshold levels, the effects 

are quite different. Taxol present in high concentrations (>1 µM) stops nearly all MT 

polymerization/depolymerization, significantly increasing overall MT mass and MT bundling 

(Derry et al. 1995). High concentrations of oryzalin and pronamide cause cortical MT arrays to 

become disorganized, fragmented, and overall much thinner (Morejohn et al. 1987; Baskin et al. 

1994). When present in sufficiently high concentrations, oryzalin and pronamide can cause the 

complete loss of intact plant MT arrays.  

 

1.2 Low Temperature Stress 

1.2.1 Low Temperature Stress in Plants 

Low temperature stress is a major environmental stress that affects many aspects of plant 

biology. Low temperature limits everything from plant distribution to crop yield and product 

quality, and even the best crop varieties are restricted by short growing seasons and cold. All 

plants are susceptible to low temperature injury, but the mechanisms of injury and the 

temperature that causes these injuries vary considerably.  

There are two distinct levels of low temperature stress, chilling and freezing stress. 

Chilling stress occurs when plants are exposed to low or non-freezing temperatures and is 

particularly common in plants of tropical and subtropical origin (Lyons 1973; Nick 2000). 

Biochemical reactions proceed at reduced rates at low temperatures and chilling sensitive plants 

are damaged by physiological dysfunctions caused by slower metabolic activity and metabolic 

imbalances (Lyons 1973). Chilling reduces membrane permeability and fluidity, and most 

chilling injuries are attributed to various types of membrane damage (Raison 1973; Sangwan et 

al. 2002). Chilling has also been shown to cause depolymerization of microtubules and actin 

microfilaments (Bartolo and Carter 1991; Wang and Nick 2001). 

Freezing stress can take many forms in the plant and the degree of freezing injury a plant 

experiences is dependent on both the freezing tolerance of an individual plant as well as the 

characteristics of the freeze itself. The age, developmental stage and genotype of a plant, as well 

as the temperature of ice nucleation, cooling rate, minimum temperature reached, period of ice 
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exposure, thawing rate and post thaw conditions all affect the extent of injury that results from 

freezing (Palta et al. 1998). 

At temperatures just below freezing, some plants survive through their ability to avoid 

water freezing in their tissues. In the absence of ice nucleators (substances that catalyse ice 

formation) some plants can supercool to temperatures below zero without freezing of the cell 

fluid. Once nucleation cannot be avoided, ice crystals form within the plant. Ice crystals form 

within the cell (e.g. in the cytosol) when plants are freezing sensitive or if the cooling rate is very 

rapid (e.g. 5oC/min), and this intercellular ice formation causes irreversible damage to internal 

and external membranes, resulting in cell death (Burke et al. 1976; Levitt 1980). 

Cold hardy plants and plants cooled at slow rates are able to avoid intercellular ice 

formation in a variety of ways. Because of a lower solute concentration outside the cell, 

compared to within the cell, ice formation usually begins in the extracellular water. The 

formation of ice is further prevented by the accumulation of anti-freeze proteins and stable, 

soluble, non-reacting, low molecular weight organic compounds called compatible solutes (e.g. 

proline and glycinebetaine) (Guy 1990; Pihakaski-Maunsbach et al. 2001). These compounds 

increase the internal osmotic pressure and lower the freezing point of the cellular solution to 

prevent and/or control ice formation within the cell (Burke et al. 1976; Xin et al. 2007). 

Ice can be limited to the extracellular space by the cell wall and PM. The cell wall can act 

as a barrier to reduce the propagation of extracellular ice while the PM prevents ice entry into the 

cell. PM disruption leads to ice entry into the cell causing lethal cellular disruption (Yamada et 

al. 2002). In some cases, ice accumulation can cause mechanical damage from adhesions 

forming between membranes and cell walls and intercellular ice (Levitt 1980; Steponkus et al. 

1993).  

Although extracellular ice itself rarely causes cell damage, freezing eventually results in 

cell damage due to freeze induced cellular dehydration. Formation of extracellular ice changes 

the cellular water potential and causes water to move down the chemical potential gradient and 

out of the cell, until a balance is reached between the external and internal water potential (Levitt 

1980; Steponkus et al. 1993). Although the removal of water reduces the likelihood of cell 

freezing plants can loose up to 90% of active cellular water at -10oC and can generally only 

survive this extreme dehydration for short periods (Thomashow 1999). The severe dehydration 

within frozen cells results in other harmful cellular changes, such as protein denaturation, 
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increased reactive oxygen species and impaired membrane folding (Steponkus et al. 1993; 

Thomashow 1999; Wisniewski et al. 2003). Membrane dysfunctions caused by freeze-induced 

cellular dehydration are considered the primary cause of freezing injury in plants (Steponkus 

1984). Membranes can be damaged by the formation of endocytic vesicles and expansion-

induced lysis, or more severe dehydration can damage membranes because of irreversible 

interactions between membranes, loss of osmotic responsiveness, membrane lesions, and phase 

transitions (Browse and Xin 2001). 

1.2.2 Cold Acclimation  

Because plants are sessile organisms it is very important for them to be able to quickly 

adjust their biology to deal with changing environmental stresses. Various mechanisms have 

evolved to enable organisms to sense their external environment and eventually turn on the 

appropriate response. One of the best-studied plant stress responses and a key factor in 

determining the degree of freezing injury a plant incurs is cold acclimation (Levitt 1980; 

Thomashow 1999). Cold acclimation is a process through which plants acquire increased 

freezing tolerance upon exposure to low, non-freezing temperatures, usually between 0oC - 6oC. 

Low temperature causes significant changes in the cell biophysics, and the acclimation process 

facilitates changes to plant cell structure, metabolism, and biochemistry that help a plant to 

efficiently operate under the new, colder conditions. The acclimation process is capable of 

increasing freezing tolerance significantly, for example, freezing at -5oC can kill non-acclimated 

rye while acclimated rye can survive temperatures down to about -30oC (Uemura et al. 1995). 

Most cellular processes are affected by cold acclimation, and although some of these processes 

are required for increasing plant freezing tolerance, others may merely change in response to the 

low temperature. A number of genes and cell processes that respond to cold acclimation have 

been described, yet there are many aspects of the cold acclimation process that have yet to be 

explained (Hannah et al. 2005). 

1.2.2.1 Cold acclimation induced genetic and cellular changes 

Studies have demonstrated that transcript levels of 45% of the Arabidopsis gene 

complement can change in response to low temperature (Chinnusamy et al. 2003; Zarka et al. 

2003). Some of those genes that are responsible for affecting important changes in plant freezing 

tolerance during the acclimation process have been characterized. The C-repeat Binding Factor 

(CBF) dependent signalling pathway is a well characterized pathway containing many genes 
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important for cold acclimation and other stress responses (Figure 1.2B). Low temperature is 

believed to activate INDUCER OF CBF EXPRESSION (ICE) transcription factors, which 

stimulate the transcription of the CBF (a.k.a. DEHYDRATION-RESPONSIVE ELEMENT-

BINDING (DREB1)) genes (Chinnusamy et al. 2003). CBF genes encode transcription factors 

that bind to the dehydration-responsive element/C-repeat (DRE/CRT) regulatory elements 

present in the promoter region of COLD-RESPONSIVE (COR) (a.k.a. LOW TEMPERATURE 

INDUCIBLE (LTI); COLD INDUCIBLE (KIN); RESPONSIVE TO DESICCATION (RD) and 

EARLY DEHYDRATION INDUCIBLE (ERD)) genes (Warren et al. 1996; Knight et al. 1999). 

Binding of CBF/DREB to the regulatory region promotes transcription of COR genes containing 

these elements. Inositol polyphosphates (InsP) and calcium ion (Ca2+) levels increase following 

exposure to low temperatures and act as secondary messengers to promote the activity and 

expression of the other elements. Other genes involved in the pathway include FIERY1 (FRY1) 

and HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE 1 (HOS1) genes, which reduce 

stress signalling by negatively regulating InsP and ICE or upstream signalling elements, 

respectively (Figure 1.2B). 

Other genes involved in the freezing process have been identified by mutational analysis. 

The SENSITIVE TO FREEZING (SFR) genes were identified due to a decreased ability of 

mutants to acclimate (Xin and Browse 1998). The ESKIMO 1 (ESK1) gene was identified in a 

mutant that possessed constitutive freezing tolerance under both acclimated and non-acclimated 

conditions (Guy 1990; Browse and Xin 2001; Thomashow 2001; Livingston et al. 2007). ESK1 

gene product controls transcription of a set of stress responsive genes, largely independent of 

genes regulated by cold acclimation and CBF, with more overlap with salt, osmotic stress and 

abscisic acid (ABA) induced genes (Xin et al. 2007). 

Although many cold responsive genes have been identified, the biochemical activities of 

their products are poorly understood. However, the general function of these genes can be 

predicted, with cold responsive genes classified into groups that represent the variety of 

biochemical and physiological processes that are affected by the acclimation process. Growth 

cessation, enhanced antioxidative mechanisms, increased ABA concentration, changed 

membrane lipid composition, accumulation of soluble sugars, amino acids, cryoprotective and 

antifreeze proteins, and increased or decreased expression of other genes all help contribute to  
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Figure 1.2. Abiotic stress signalling pathways. (A) Overview of general stress response pathway. 
Signal transduction begins when signals are perceived by receptors, which is followed by the 
generation of Ca2+ and secondary messengers. These signalling elements instigate 
phosphoprotein signalling cascades, leading to the activation of transcription factors and 
transcription of stress responsive genes which encode elements that ultimately increase the stress 
tolerance of the organism. (B) Pathways that activate DRE/CRT cis element containing genes. 
Cold, drought, salt stress, and ABA can activate DRE/CRT containing COR genes through stress 
and ABA inducible transcription factors (CBF/DREB1 and DREB2). The transcription factor 
ICE promotes CBF3 expression. Ca2+ and InsP are secondary messengers with multiple 
activators and effects on the signalling cascade. FRY1 negatively regulates InsP levels and stress 
signalling, and HOS1 appears to negatively regulate cold signalling by targeting ICE or upstream 
signalling components for degradation. Dashed arrows indicate the method of activation is 
unknown. Abbreviations are given in text. Image modified from Xiong et al. (2002). 
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increased freezing tolerance during cold acclimation (Guy 1990; Griffith et al. 1992; Pihakaski-

Maunsbach et al. 2001; Uemura and Steponkus 2003). 

Both acclimated and non-acclimated esk1 mutants are characterized by high levels of 

proline and sugars, which may be wholly or partially responsible for the constitutive freezing 

tolerance of the mutant (Xin et al. 2007). sfr4 mutants are overly sensitive to freezing, and have 

low levels of sugars and 18:1 and 18:2 fatty acids levels (Uemura et al. 2003). Overexpression of 

Arabidopsis CBF3 elevates proline and total sugars levels, indicating that COR genes may also 

be involved in regulating solute levels (Gilmour et al. 2000). ERD14 is a COR protein that 

protects the cell from damage incurred during rapid cooling, possibly by minimizing ice 

penetration from the extracellular space into the cell (Uemura et al. 2006). Extensin and EARLI1 

are two types of low temperature responsive cell wall proteins that are important in protecting 

the cell during freezing stress via currently unknown mechanisms (Yamada et al. 2002; Zhang 

2007). 

Dehydrins are low temperature responsive hydrophilic proteins that can act as emulsifiers 

or chaperones to protect membranes and proteins from low temperature and dehydration induced 

damage (Close 1997). Many of the COR genes encode low temperature induced dehydrins (e.g. 

COR47, LTI30, RAB18, ERD10, and ERD14) which stabilize macromolecules during 

desiccation (Thomashow 1999; Kawamura and Uemura 2003). The expression of the RAB18 

dehydrin seems to be downregulated by ESK1, which may partially contribute to the increased 

freezing tolerance of esk1 mutants (Kawamura and Uemura 2003). 

Membrane changes occurring during acclimation help prevent or reduce freezing injury. 

In addition to the membrane protecting dehydrins, fatty acid desaturases, lipid transfer proteins, 

and a variety of membrane associated proteins act during the acclimation process to increase 

membrane cryostability (Kawamura and Uemura 2003). During the acclimation period the levels 

of proteins that control proteolysis, protect membranes against osmotic stress, enhance CO2 

fixation, and participate in other membrane repair mechanisms all increase within days (Uemura 

et al. 2006). There are many changes in lipid composition during cold acclimation: higher 

proportions of phospholipids, primarily unsaturated phospholipids, and relatively low levels of 

saturated phospholipids and sterols help increase membrane fluidity and lower the critical 

temperature of low temperature induced phase transitions (Nakayama et al. 2007). The best 

characterized COR protein, COR15, is important in preventing membrane freezing injury by 
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preventing chloroplast-PM associations and membrane phase transitions (Fowler and 

Thomashow 2002; Chinnusamy et al. 2003; Xin et al. 2007). 

Abiotic stress stimuli are complex, however, different types of stresses activate similar 

responses and signalling pathways (Figure 1.2). Similar changes to gene expression and 

metabolism are induced by exposure to alternative dehydrative conditions that trigger common 

abiotic stress response pathways, including ABA stress signalling, mitogen-activated protein 

kinase (MAPK) cascades, and Ca2+ responses (Xiong et al. 2002). There are multiple pathways 

that contribute to increased plant freezing tolerance, and it is likely that single aspects of the 

stress condition can initiate multiple branches of signalling cascades. It is currently unclear 

whether any cold stress response pathways acts completely independently of others. There does 

appear to be both ABA dependent and ABA independent cold acclimation pathways in plants 

that regulate general and low temperature specific stress response pathways, respectively. Cross 

talk does occur between elements of these two pathways (e.g. both generate the same secondary 

messengers) (Xiong et al. 2002; Figure 1.2B). 

1.2.2.2 General stress sensing 

Before any stress-response pathway can be activated, the plant must somehow sense it is 

being exposed to the stress. All living organisms use various receptors exposed on the cell 

surface to perceive and process information about their environment, and plant cells should not 

be different. However, the elements responsible for sensing various stresses have not yet been 

clearly identified in plants, and identification of these sensors and receptors is made difficult by 

the genetic redundancy and complicated feedback and compensation mechanisms of plants 

(Kacperska 2004; Humphrey et al. 2007) 

In plants, the cell wall (extracellular matrix) is the most external surface of the cell, and is 

therefore the first element to receive the stress signal and begin the signal transmission to the cell 

interior (Baluska et al. 2003). The cell wall is intimately associated with both the PM and 

cytoskeleton, and the close association between these elements is an essential feature that enables 

plant cells to effectively respond to extracellular signals (Cyr 1994; Sonesson and Widell 1998; 

Baluska et al. 2003). Communication across the cell wall-plasma membrane-cytoskeleton 

continuum is a characteristic feature of plant cellular mechanics, and this relationship facilitates 

the transmission of cell wall and PM modifications to MTs (Akashi et al. 1990; Nguema-Ona et 

al. 2007). The cell wall affects the stability of the underlying MTs, demonstrated by the 
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disassembly of MTs following disruption of the cell wall, and the existence of certain cell wall 

proteins (e.g. extensin, AGPs) that increase the cold stability of cortical MTs while other cell 

wall proteins (e.g. xyloglucan) causes MT disassembly and reorganization (Akashi et al. 1990; 

Takeda et al. 2002). MT integrity can affect properties of the PM; in animals and maize 

protoplasts MT depolymerization has been shown to increase PM fluidity (Dugas et al. 1989). 

The continuum between MTs, the PM, and the cell wall is maintained under various 

stressful conditions. Even when the cell wall-PM connection appears to be disrupted when the 

membrane shrinks away from the cell wall during plasmolysis, the continuum is maintained. 

During plasmolysis, Hechtian strands, composed of plasmalemma, actin filaments and 

microtubules, link the cell wall to the PM (Buer et al. 2000). Hechtian strands are believed to be 

important in cell-to-cell communication and signal transduction from the cell wall, and 

interestingly, cold acclimation appears to increase their strength and flexibility (Buer et al. 2000). 

While the close association between cell wall, PM, and MTs is essential for responding to 

extracellular signals, this close association and the convolution of this relationship also makes it 

difficult to identify which cellular element(s) is responsible for sensing low temperature and 

complicates the study of early events involved in the low temperature signalling pathway (Xiong 

and Zhu 2001; Baluska et al. 2003). 

1.2.2.3 Low temperature sensing and signalling elements 

All abiotic stresses are thought to follow the same basic signal transduction pathway 

(Figure 1.2A). After signal receptors are stimulated by the stress there is a transient increase in 

levels of signalling molecules and cytosolic calcium (Ca2+). Ca2+ levels rise because of the 

opening voltage-gated, receptor operated, and ligand messenger-sensitive Ca2+ channels (Xiong 

et al. 2002). Inositol phosphates (InsP) and reactive oxygen species (ROS) are secondary 

messengers activated by cold and other stresses that can also modulate their own levels and 

stress-induced Ca2+ influx (Xiong et al. 2002). The increased Ca2+ levels and other secondary 

messengers initiate protein phosphorylation cascades (kinase cascades), which signal the 

activation of transcription factors that control specific groups of stress-regulated genes. These 

stress-regulated gene products may also be involved in generating regulatory molecules 

themselves, like the plant hormone abscisic acid (ABA), which in turn can initiate a second 

round of signalling (Nick 2000). The transduction of these intracellular signals may involve 
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physical and/or chemical changes that occur to the signalling intermediates, ranging from 

phosphorylation to movement of the elements throughout the cell. 

The low temperature response pathway involves these same elements. Although the 

cellular element(s) that sense low temperature and initiate the first stages of low temperature 

signalling are not known, two of the earliest described low temperature responses are decreased 

membrane fluidity and remodelled cytoskeleton (Sangwan et al. 2002). It has been proposed that 

the opening of Ca2+ channels and Ca2+ influx occurs immediately following membrane and 

cytoskeleton changes, which in turn triggers protein kinases and cold-specific MAPK cascades, 

leading to the activation of cold-induced genes and the acquisition of freezing tolerance  (Murata 

and Los 1997; Sangwan et al. 2002; Wasteneys and Galway 2003). Multiple pathways leading to 

expression of the same stress-activated transcription factors complicates the pathway, as shown 

in Figure 1.2. 

As mentioned, the cellular element responsible for sensing low temperature is not known, 

and details of the early low temperature-signalling pathway are missing. However, much of the 

later pathway is known and/or can be pieced together, and a few elements with the potential to 

mediate linkages between the cell wall-PM-MTs and participate in the process of sensing and 

responding to low temperature signals have been suggested. 

1.2.2.3.1 Plasma membrane. Because of its position on the outer cell periphery and the 

structural changes observed after short term exposure to low temperatures, the PM was long 

believed to be the primary site of temperature change perception in plants (Murata and Los 

1997). Temperature change rapidly and reversibly affects the fluidity or viscosity of membranes: 

high temperature increases membrane fluidity and low temperature increases membrane 

viscosity. Membrane rigidification is one of the first visible responses to low temperatures and 

reports indicate that it is a necessary element of the low temperature signal transduction pathway 

(Örvar et al. 2000; Sangwan et al. 2001). Artificially reducing membrane fluidity in Medicago 

sativa cells and Brassica napus plants caused a modest increase in levels of cold-induced gene 

transcripts as well as a moderate increase in the cells freezing tolerance, while artificially 

increasing membrane fluidity reduced expression of cold-induced genes and obstructed cold 

acclimation (Murata and Los 1997; Sangwan et al. 2002). Because there are so many changes 

that occur to the PM during low temperature exposure, even if the membrane rigidification is the 
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primary means of sensing low temperatures, the specific membrane component that is 

responsible for transmitting these changes as a low temperature signal is not known 

1.2.2.3.2 Calcium channels. Transient increases in cytosolic calcium (Ca2+) levels are an 

important activity involved in many signal transduction pathways. Ca2+ influx is essential to low 

temperature signalling in plants, and it occurs very rapidly upon low temperature exposure in all 

plants studied (including Arabidopsis and alfalfa) (Sangwan et al. 2002). Artificially inducing 

Ca2+ influx activates cold-inducible genes in the absence of cold while preventing Ca2+ influx 

using calcium chelators or calcium channel blockers prevents the accumulation of cold-induced 

gene transcripts, interrupts the ability of the plant to cold acclimate, and inhibits cold-induced 

protein phosphorylation (Knight et al. 1996; Sangwan et al. 2001; Xiong and Zhu 2001). There 

are different sources of Ca2+ influx following temperature stress, but the primary source of cold-

induced Ca2+ influx appears to be cell wall calcium stores (Sangwan et al. 2001). 

It was recently shown that the primary sensor of mechanical stimulation is a stretch-

activated Ca2+-permeable membrane channel that also controls the entry of Ca2+ into the cell 

(Nakagawa et al. 2007). It is possible that there are similar Ca2+ ion channels that directly 

respond to other stresses.  

1.2.2.3.3 Kinase cascades. Phosphorylation/dephosphorylation is the most common form 

of rapid signal transduction, and kinase cascades are thought to be central to cold acclimation 

pathways (Monroy et al. 1993; Monroy et al. 1998; Sangwan et al. 2001). Protein 

phosphorylation can lead to expression of cold-induced genes while treatment with kinase 

inhibitors decreases cold-induced gene expression (Kawczynski and Dhindsa 1996; Monroy et 

al. 1998; Sangwan et al. 2001). Kinases are important in sensing various stresses; kinase sensor 

and receptor systems are the most common stress sensing systems found from prokaryotes to 

fungi and primitive animals (Urao et al. 1999; Novikova et al. 2007). Similar systems of stress 

sensing and signalling appear to occur in plants, for example, Arabidopsis salt and osmotic stress 

sensing appears to involve a salt stress responsive receptor histidine kinase (AtHK1) (Urao et al. 

1999; Humphrey et al. 2007).  

There are multiple types of kinases found in plants. One well-characterized group of 

kinases that are activated during cold acclimation are the mitogen activated protein kinases 

(MAPKs) (Samaj et al. 2004). Other kinases proposed to be involved in initiating low 

temperature stress signalling include lectin receptor kinases, wall-associated kinases (WAKs) 
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and proline-rich extensin-like receptor kinases (PERKs) (Humphrey et al. 2007). These proteins 

are located at the PM with an external domain embedded within the cell wall and an intracellular 

kinase domain, making them ideally localized for sensing and signalling, and quickly and 

directly transmitting phosphorylation signals through the plant (Humphrey et al. 2007).  

1.2.2.3.4 Microtubules. Previous reports suggest that the cytoskeleton may act as a low 

temperature sensor in plants (Thion et al. 1996; Abdrakhamanova et al. 2003). As previously 

mentioned, changes to the cell wall and plasma membrane (including the rigidification of 

membranes that is important to the cold acclimation process), cause subsequent changes to MTs. 

MT disassembly has been connected to cold induced gene expression and elements of the low 

temperature signalling pathway, with disassembly possibly required for efficient cold 

acclimation (Kerr and Carter 1990; Bartolo and Carter 1991; Örvar et al. 2000).  

MT activity can mediate Ca2+ channel opening since disassembly of MTs results in 

increased activity of voltage-dependent Ca2+ channels (6-10 fold increases) (Thion et al. 1996). 

The relationship is more complex, however, as Ca2+ influx has also been shown to induce the 

depolymerization of MTs (Breviario and Nick 2000). It is thought that Ca2+ may regulate MT 

dynamics by calmodulin dependent MT-MAP interactions or by acting on tubulin C-termini. In 

maize, cleavage of this end-domain renders MTs resistant to both Ca2+ and cold induced 

disassembly (Bokros et al. 1996; Nick 2000). It has been proposed that in response to low 

temperatures, MTs disassemble, Ca2+ channels activate, and intracellular Ca2+ levels transiently 

rise and proceed to trigger downstream events in the cold acclimation process (Nick 2000). 

 Phosphorylation is also linked to MT stability. Activation and inhibition of kinases and 

phosphatases affect MT organization (Baskin and Wilson 1997; Naoi and Hashimoto 2004). 

MAPKs associate with MTs in many cell types; some plant MAPs (the kinesins) are able to 

activate MAPKs, and either tubulin or MAPs are phosphorylated by MAPKs affecting cortical 

MT organization and dynamics (Koontz and Choi 1993; Cyr 1994; Samaj et al. 2004). 

The relationship between low temperature stress and MTs is more complex than 

described here, and these interactions will be described in more detail in Chapter 3 of this text. 

1.2.2.3.5 Cell wall proteins. Some structural cell wall proteins have been proposed to be 

involved in sensing low temperature. Besides the cell wall kinases previously mentioned, two 

other protein types, the extensins and arabinogalactan proteins (AGPs), are good candidates for 

linking the extracellular matrix to the inside of the cell and MTs and mediating stress responses. 
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Extensins are a group of well studied hydroxyproline-rich glycoproteins implicated in nearly all 

elements of plant growth and development, including cell division and differentiation, cell 

elongation cessation, and biotic and abiotic stress responses (Showalter 1993; Yoshiba et al. 

2001; Roberts and Shirsat 2006). Both the presence and cross-linking of extensins obstruct cell 

elongation. Extensin proteins are cross-linked in response to wounding to strengthen the cell wall 

in what is believed to be a rapid defence response (Roberts and Shirsat 2006). The activity of 

extensin proteins causes increased cold stability of cortical MTs, while disruption of extensins 

causes MT disorganization (Akashi et al. 1990). It has been speculated that cortical MTs are 

cross-linked to the cell wall via a cross-bridge-transmembrane protein-extensin system and this 

cross-linking is enhanced by stress responsive elements such as hydrogen peroxide (Akashi and 

Shibaoka 1991). Another stress responsive proline-rich cell wall protein, EARLI1, behaves 

similar to extensin proteins. It contains a putative signal peptide and plasma membrane 

interacting domain and is known to be important for freezing survival, possibly through a similar 

mechanism as extensins (Zhang 2007). 

Arabinogalactan proteins (AGPs) are cell wall proteoglycans that are involved in linking 

the cell wall - PM and MTs, and participate in controlling the flow of information between these 

elements (Nguema-Ona et al. 2007). These wall proteins can be anchored in the plasma 

membrane by means of a glycosyl phosphatidylinositol (GPI) anchor, which is added to the C-

terminal end of certain classes of AGPs (Borner et al. 2002). AGP disruption/precipitation causes 

cortical MTs to become disorganized and separate from the plasma membrane, and induces gaps 

between the cell wall and membrane, suggesting that AGPs may be important elements in 

connecting these structures (Nguema-Ona et al. 2007). AGP can be induced by ionic changes and 

mechanical stimulation, and may be involved in stress sensing or signalling cascades (Humphrey 

et al. 2007). Disruption of MTs via the disruption of AGPs causes Ca2+ influx. While this Ca2+ 

influx does not cause the MT disassembly, it is unclear if the AGP disruption itself or the 

subsequent MT disassembly is responsible for the Ca2+ influx (Nguema-Ona et al. 2007). 

The GPI anchor on AGPs can be cleaved by phospholipase C (PLC) or phospholipase D 

(PLD), changing the AGPs from PM anchored to extracellular proteins (Borner et al. 2003). PLD 

has been shown to link cortical MTs to the plasma membrane (Hong et al. 2008), and PLD 

controls cytoskeleton stability and linkage to the plasma membrane in a Ca2+dependent and 

stress (including oleic acid and H2O2) activated manner (Gardiner et al. 2001; Dhonukshe et al. 
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2003; Zhang et al. 2003; Sedbrook 2004; Cai et al. 2005). PLD is important in stress signalling 

cascades: it promotes drought stress tolerance by promoting stomatal closure at early stages of 

exposure, but after prolonged drought stress it causes membrane disruption (Hong et al. 2008). 

These effects resemble changes that occur to other cellular elements that appear to be important 

to signal sensing, but cause cell damage if not discontinued after a short period (e.g. ROS 

signalling and cell damage).  

 

1.3 Confocal Microscopy for Microtubule Analysis 

Green fluorescent protein (GFP) was originally derived from the jellyfish Aequorea 

victoria. When exposed to blue light, GFP fluoresces green, but the original jellyfish GFP has 

been modified in various ways to create fluorescent proteins (FPs) that can emit bright 

fluorescent signals at various well defined light spectrums, ranging from red to cyan (Stauber et 

al. 1998). A number of enhanced FP variants have been created that are optimized for plant 

studies (Davis and Vierstra 1998; Stauber et al. 1998). GFP can be used as an in vivo tag, when 

fused to other proteins it becomes possible to observe them within living cells. GFP fusion 

proteins have revolutionized fluorescence microscopy and our understanding of the structure and 

function of living cells (Brandizzi et al. 2002; Yuste 2005), and fluorescent microscopy gave us 

our first understanding of cytoskeleton dynamics and organization (Lloyd 1987).  

Microtubule-binding proteins, tubulin, and plus-end-tracking proteins are all suitable for 

labelling microtubules in plant cells, and many types of cytoskeleton fluorescent labelling exist 

(reviewed in Yoneda 2007). While each type of reporter protein partner has their own advantages 

and disadvantages, FP-tubulin fusion proteins appear to be the best way to label entire cellular 

MT arrays. There are some side effects that can accompany transgenic FP labelled tubulins, such 

as the potential for increased MT polymerization and suppressed endogenous tubulin synthesis 

when expressed at high levels. When FPs are added to the α-tubulin N-terminus or β-tubulin C-

terminus MT polymerization is affected significantly (Ueda and Matsuyama 2000; Abe and 

Hashimoto 2005; Yoneda et al. 2007).  

These problems seem to be avoided in the transgenic Arabidopsis line GFP:TUB6 (Abe 

and Hashimoto 2005). This line contains a soluble-modified red-shifted version of GFP (smRS-

GFP) (Davis and Vierstra 1998) fused to the N-terminus of β-tubulin TUB6 expressed under the 

control of the constitutive Cauliflower Mosaic Virus 35S promoter. GFP:TUB6 proteins are 
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present in this line at 20-30% of endogenous tubulin levels, and fluorescently label the MTs in 

aerial tissues, with the best expression observed in cells of the hypocotyl region. In this line the 

fluorescent protein is constitutively expressed, yet the plants are indistinguishable from wild type 

plants in development and morphology (Abe and Hashimoto 2005). This is in contrast to other 

GFP-tubulin lines, including TUA6:GFP, where constitutive expression affects MT assembly 

and causes helical twisting of plant tissues (Abe and Hashimoto 2005).  

One disadvantage of tubulin labelling that is not avoided in GFP:TUB6 is the difficulty 

differentiating individual MTs and determining the thickness of MT bundles. Unfortunately, the 

resolution capabilities of fluorescence microscopy do not permit precise resolution of individual 

MTs within bundles, and the number of MTs cannot be precisely counted using these techniques. 

MT bundles must be differentiated from singletons and thinner MT bundles by the increased 

brightness and thickness of large MT bundles (Mouriño-Pérez et al. 2006).  

 

1.4 Objectives 

 The main objective of this thesis was to increase our understanding of how MTs may be 

involved in the cold stress response in Arabidopsis. This involved visualizing how various low 

temperature conditions affect MT organization in Arabidopsis, examining the importance of MT 

dynamics in cold acclimation, and examining if MT disassembly is able to increase freezing 

tolerance in the absence of the low temperature signal. This thesis also included a study aimed to 

identify Arabidopsis microtubule associated proteins that are likely to be involved in the plant 

cold acclimation process. 
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CHAPTER 2 
LOW TEMPERATURE STRESS, COLD ACCLIMATION AND MICROTUBULE 

ORGANIZATION 
 

2.1 Introduction 

Low temperature is a major constraint to crop productivity in plants around the world, 

particularly in temperate regions. There are two distinct levels of low temperature stress that 

affect plants, chilling stress occurs at low but non-freezing temperatures and freezing stress 

occurs after exposure to sub-zero temperatures. Plants which are tolerant to chilling temperatures 

are able to avoid damage caused by the low temperature induced slowed metabolism and growth 

rate and reduced membrane permeability and fluidity (Raison 1973; Sangwan et al. 2002). 

Freezing damage occurs as a result of ice formation within a plant, and plants that are able to 

survive freezing temperatures do so by avoiding or tolerating this ice formation. Freezing can 

damage plants by direct membrane disruption, damaged protein structure, increased levels of 

harmful reactive oxygen species (ROS) or impaired membrane function caused by the cellular 

dehydration that accompanies the ice formation (Steponkus et al. 1993; Thomashow 1999; 

Wisniewski et al. 2003). 

In many species, there is a close correlation between chilling sensitivity and the critical 

temperature that induces MT disassembly (Bartolo and Carter 1991; Wang and Nick 2001). For 

example, in chilling sensitive species, such as tobacco and cucumber, MTs disassemble at 

temperatures between 0-4°C, which causes significant damage to the plant (Nick 2000). 

Antimicrotubular drugs applied during chilling significantly accelerate and enhance this tissue 

damage (Rikin et al. 1980). Treatments that decrease general plant cold hardiness, such as the 

hormone gibberellic acid (GA), also increase MT chilling sensitivity (e.g. MTs depolymerise 

more readily in response to low temperatures) (Rikin et al. 1980; Akashi and Shibaoka 1987). In 

plants that can tolerate chilling stress, MT arrays can be maintained at sub-zero temperatures, 

and intact MTs have even been observed in plants subjected to temperatures that cause damage 

to the plant. For example, in non-acclimated winter rye that has an approximate freezing 
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tolerance of -5oC, intact MTs were observed at -10°C (Pihakaski-Maunsbach and Puhakainen 

1995).  

Cold acclimation is a process by which plants increase their freezing tolerance following 

exposure to low but non-freezing temperatures. For this process to occur, plants must first sense 

the reduction in temperature and turn on stress induced signalling cascades (such as kinase 

cascades and Ca2+ signalling). The cellular element(s) responsible for sensing low temperatures 

and initiating the signalling are unknown. Signalling cascades activate transcription factors and 

changes to low-temperature gene expression occur that ultimately enable plants to adapt to the 

stress and withstand or prevent freeze-induced damage (Thomashow 1999). Accumulation of 

compatible osmolytes and altered membrane lipid composition are two ways that acclimation 

decreases freezing damage, thus increasing plant cold hardiness (Browse and Xin, 2001).  

Because of the apparent close correlation between MT stability and plant cold hardiness 

in a number of species, it seems reasonable to expect that cold acclimation brings about 

increased freezing tolerance in part by increasing MT stability. This is supported by the fact that 

acclimating temperatures cause changes in tubulin gene expression, and tubulin isotypes that 

appear to be more resistant to cold-induced depolymerization are expressed at higher levels 

during low temperature exposure (Abdrakhimova et al. 2003; Chu et al. 1993). However, 

increasing MT stability using the MT stabilizer taxol consistently lowers the acclimating ability 

of plants (e.g. rye, spinach, and canola), and this has been interpreted to mean that acclimation 

requires MT depolymerization (Bartolo and Carter 1991; Kerr and Carter 1990; Örvar et al. 

2000).  

The involvement of MT disassembly in the acclimation process is currently unclear. 

There are many elements of the general plant stress response associated with MT activity. 

Decreased membrane fluidity and the influx of Ca2+ from the cell wall into the cytosol are two of 

the earliest responses to low temperature stress, and MT disassembly is linked to both of these 

activities (Dugas et al. 1989; Thion et al. 1998). Cell wall disruption and plasma membrane 

rigidification both promote MT disassembly, while MT disassembly can increase membrane 

fluidity (Dugas et al. 1989; Akashi et al. 1990; Örvar et al. 2000). Some have proposed that the 

increased diffusion of membrane lipids and proteins caused by MT destabilization contributes to 

increased low temperature tolerance (Dugas et al. 1989; Mizuno K 1992). MT 

polymerization/depolymerization appears to control the activity of Ca2+ channels (Thion et al. 
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1998) while Ca2+ influx has also been shown to induce MT depolymerization (Breviario and 

Nick, 2000; Nick, 2000). Phospholipase D (PLD) may physically link cortical MTs and the 

plasma membrane, and PLD activity is linked to stress signal transduction, cytoskeleton 

rearrangement, and detachment of MTs from the plasma membrane (Gardiner et al. 2001; 

Dhonukshe et al. 2003; Sedbrook 2004; Cai et al. 2005). Additional links include 

kinase/phosphatase activity influencing the cold stability of MTs (Sangwan et al. 2001), abscisic 

acid (ABA) influencing cortical MT organization (Shibaoka 1994) and ROS promoting MT 

fragmentation in vitro (Xu et al. 2006). 

Two studies have recently attempted to decipher how MT disassembly and/or reassembly 

are involved in the plant cold acclimation process via this obviously very complex relationship. 

The first study found that stabilizing MTs using taxol prevented cold induced gene transcript 

accumulation, while depolymerizing MTs with oryzalin induced expression of cold tolerance 

genes without affecting plant cold hardness (Sangwan et al. 2001). The authors proposed that 

MTs must disassemble to initiate the cold acclimation process but reassembly is needed for 

plants to actually become tolerant to the cold.  

The second study examined the relationship between MT disassembly and cold hardiness 

in roots of three winter wheat cultivars (Abdrakhamanova et al. 2003). In the cold tolerant wheat 

cultivars, acclimation treatments caused rapid (< 1 d) and transient MT disassembly followed by 

re-forming, but no MT reorganization occurred in the cold sensitive cultivar. When 

Abdrakhamanova et al. (2003) treated these same cultivars with high concentrations of the MT 

depolymerizing chemical pronamide; root growth and cold tolerance were affected in a similar 

manner to an acclimation treatment. Based on these results the authors concluded, “partial MT 

disassembly was sufficient for efficient induction of cold hardiness.” 

Because of the large difference in MT response to low temperature stress, it is 

unexpected that all of the wheat cultivars examined acclimate to similar extents. Freezing 

tolerance (as measured by LT50, the lethal temperature for 50% of plants) was -18.6°C for the 

less tolerant cultivar (Bezostaya 1) cold acclimated for 3 weeks, while the ‘moderately’ freezing 

tolerant cultivar (Mironovskaya 808) had a freezing tolerance of -20.8°C under the same 

conditions (Vitamvas 2007). If such a significant difference in MT response is observed among 

different cultivars of the same species that differ in freezing tolerance by less than a few degrees 
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Celsius, it would be interesting to examine the effect of acclimating temperatures on MTs from 

different species that vary significantly in their ability to acclimate.  

The model plant Arabidopsis is widely used for studying cold acclimation and freezing 

injury and is able to cold acclimate to a maximum LT50 of approximately -10°C after 1 wk at 

optimum conditions (Thomashow 1999, 2001; Kawamura and Uemura 2003). In the present 

work we examined the changes that occur to MT organization in Arabidopsis during cold 

acclimation and other low temperature treatments, and aimed to determine the relationship 

between MT dynamics and organization and cold hardiness in this model plant capable of a 

moderate degree of cold hardiness. 

 

2.2 Materials and Methods 

2.2.1 Plant Material and Growth Conditions 

Arabidopsis thaliana (ecotype Columbia) seeds were surface sterilized with 70% ethanol 

followed by 30% bleach and plated on ½ MS medium (Murashige and Skoog 1962) (pH 5.7) 

containing 1% sucrose and 0.8 or 1.5% Phytagar (Gibco Invitrogen, California) on round 140 

mm diameter Petri dishes. Seedlings were grown at 22°C with a 16 h photoperiod, 80 µmol/m-2s-

1 light intensity. After 2 weeks (wk) of growth, test plates were transferred to a cold chamber 

(4°C, 12 h photoperiod) for acclimation treatment. Cold shocks were administered either as 

treatment at -6°C for 4 h, or treatment directly on ice (0°C) for time periods ranging from 0.25 h 

- 24 h. 

The transgenic Arabidopsis (ecotype Columbia) line expressing GFP:TUB6, kindly 

provided by Takashi Hashimoto (Nara Institute of Science and Technology, Japan), was used in 

Confocal microscopy experiments. GFP:TUB6 seedlings were sterilized and grown as per 

conditions described above, but sterilized seeds were plated on vertically oriented 120 x 75 x 15 

mm plates.  

2.2.2 Chemical Treatments 

Stock solutions of Taxol™ (paclitaxel, Sigma), pronamide (propyzamide, Supelco) and 

oryzalin (Supelco) were prepared by dissolving the chemicals in dimethyl sulfoxide (DMSO, 

Sigma) at concentrations to ensure the final DMSO concentration in the culture medium 

remained below 0.1%. For long term, low concentration chemical treatments, wild type (WT) 

and GFP:TUB6 Arabidopsis seeds were plated and grown for 2 wk on MS media (as described 
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previously) supplemented with taxol (0.3 - 6 µM), pronamide (1 - 6 µM), oryzalin (0.05 - 0.5 

µM), or DMSO (<0.1%, control).  

To observe the effects of short term treatment with high concentrations of MT disrupting 

chemicals WT and GFP:TUB6 seedlings sown on standard ½ MS medium were transferred to 

media containing pronamide or oryzalin (6 - 20 µM) for time periods ranging from 0.25 h - 24 h, 

with some treatments followed by a 12 - 24 h recovery period on standard MS medium. GFP-

TUB6 seedlings were transferred to chemical containing media after 3 - 5 days of growth, while 

WT seedlings were transferred after 3 wk of growth. 

2.2.3 Confocal Microscopy 

Confocal imaging was performed using a Zeiss META 510 laser scanning Confocal 

microscope (www.zeiss.com) with either a Zeiss 25x Plan-Neofluor NA 0.8 multi-immersion or 

a 40x Plan Apochromat NA 1.4 water immersion objective lens. GFP was excited with the 488 

nm wavelength of an argon laser (at 8% power output) with emission collected by the ChS1 518-

561 nm filter.  

Four-six day old GFP-TUB6 seedlings were subjected to chemical treatments or 

acclimating temperatures (4°C) for time periods ranging from 0.25 h to 2 wk. Immediately 

following treatments the seedlings were carefully transferred to slides, a coverslip was gently 

overlaid and epidermal cells from the hypocotyl region of the plant were scanned to observe MT 

organization. For observations of low temperature treated plants, slides were pre-cooled and 

images recorded within a short time (10 min) of transfer to the microscope. For quantitative 

estimation of the effect of acclimation temperature on MTs at least 70 cells from 30 different 

plants were analyzed for each time point. The effects of chemical treatments and cold shock 

treatments on MTs were much less variable, and approximately 40 cells from 10 plants were 

examined for each of these treatments. Each set of treatments and observations were preformed 

in at least two experiments.  

2.2.4 Electrolyte Leakage Freezing Tests 

The aerial tissue from chemically treated or WT two-week-old Arabidopsis plants were 

used for freezing tests. Immediately after dividing the plants at the lower hypocotyl the green 

tissue was carefully placed on top of moistened filter paper discs horizontally positioned in 40 ml 

glass tubes; tissue from three plants was added to each tube to represent one replicate. Six – nine 

replicates were used per treatment type. The tubes were placed in an ethylene glycol bath 
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programmed to hold the temperature at -2°C before lowering the temperature 1°C per h. After 1 

h at -2°C the tubes were ice nucleated by quickly touching the filter paper disc with a dry ice 

cooled spatula.  

At each test temperature three treatment tubes were removed from the bath and allowed 

to thaw overnight at 4°C. The test temperatures were chosen to span from 0 to 100% injury, 

which ranged from -2°C to -6°C in non-acclimated plants and -2°C to -12°C in cold acclimated 

plants. 

Thawed tissues were transferred to 40 ml tubes containing 15 ml distilled water and 

0.05% Tween-20 and shaken at room temperature for 4 h to facilitate leakage of electrolytes out 

of the cells. Electrical conductivity (EC) was measured using a conductance meter (Orion 150A, 

Thermo). The leaf samples were then frozen at -20°C overnight to release total electrolytes, and 

were thawed and again shaken at room temperature for 4 h to release electrolytes. The % EC was 

calculated as electrical conductivity after freezing treatment / total electrical conductivity x 100. 

The temperature at which 50% EC occurred was determined to be the freezing tolerance (LT50) 

(e.g. the temperature which 50% of the cells were killed) (Griffith and McLntyre 1993) (Ueda 

and Matsuyama 2000). The calculated LT50 values were expressed as means of three independent 

experiments. Two sided student's t-tests were performed to determine if any of the observed 

variations were significant (p < 0.05). 

 

2.3 Results 

2.3.1 Microtubule Response to Low Temperatures  

MTs were observed as green-fluorescent fibres detectable beneath the cell walls of living 

cells in GFP:TUB6 Arabidopsis seedlings. The length and organization of these MTs was 

examined in cells throughout the plants, and a large amount of variability was seen with regards 

to MT orientation, which appeared to relate partially to cell shape and state of elongation. Much 

of this variability was removed when only plants of the same maturity (~5 days post germination 

with approximately 4 mm long hypocotyls) and cells from the same region of the hypocotyl were 

examined. In general, control cells contained MTs that were long, usually extended across the 

external cell cortex primarily in parallel to each other in transverse or oblique orientation (Figure 

2.1A and 2.2). 
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Figure 2.1. Response of non-acclimated Arabidopsis GFP:TUB6 MTs to freezing shock. 
(A and E) Cells of untreated control plants showing (A) long, organized MTs and (E) few 
cytoplasmic strands of tubulin. Disassembled MTs and intranuclear tubulin fluorescence 
after exposure to (B-C) 4 h freeze shock at -6°C, and (F-G) 24 h exposure to 0°C. 
Reassembly of MTs and loss of intranuclear fluorescence after a 4 h period at 25°C 
following (D) 4 h freeze shock at -6°C and (H) 24 h exposure to 0°C. A, B, D, and F, Z-
stacked images of the region of cortical MTs at cell surface; C, E, G and H interior section 
of hypocotyl cells through region of nucleus. Arrows indicate disk-like structures and 
fluorescent granules, arrowheads indicate nuclei. Images are representative of 
approximately 40 cells observed for each treatment. Scale bars = 10 µm.
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Figure 2.2. Distribution of cortical MT array organization in GFP:TUB6 Arabidopsis seedlings subjected to cold acclimation at 4°C 
for the shown periods of time. The cortical MT arrangement of individual cells was determined to be organized into either highly 
parallel, mostly parallel or disorganized arrays, and the predominant length of MTs in the cells were determined to be either long 
(primarily extending fully across the cell), short (primarily <5 µm) or mid-length . The category bundled long or short indicates that 
the cell contained an approximately equal proportion of long, thick MTs and thin, fragmented MTs. Over 70 cells from over 30 
seedlings were examined to generate data for each treatment point.
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Plants subjected to a cold shock at temperatures at or below zero degrees Celsius 

underwent dramatic changes to MT organization (Figure 2.1). Short periods (<2 h) at freezing 

temperatures caused MTs from most cells to become significantly shortened and disorganized, 

and completely lose their organized array structure (Figure 2.1B). After prolonged periods of 

exposure (>1 day (d)) to freezing temperatures (when the plants were able to cool to the external 

temperature) intact MT arrays were abolished (Figure 2.1F). Under freezing conditions some 

cells were able to maintain their MT arrays, and these apparently cold stable MTs were often 

organized in parallel, oblique or transverse arrays (Figure 2.1B). However, more commonly the 

fine strands of MTs were replaced with fluorescent accumulation in diffuse and bright patches of 

different shapes and sizes throughout the cytoplasm (Figure 2.1B and F). 

Tubulin fluorescence also collected in the plant nucleus (but not nucleolus) of many cells 

in cold shocked plants (Figure 2.1C and G). This passage of tubulin through the nuclear 

membrane occurred in cold shocked plants whether or not the cold shock was sufficient to cause 

plant death. However, longer and more severe low temperature treatments resulted in a higher 

proportion of cells with intranuclear tubulin. Both the MT disassembly and intranuclear tubulin 

fluorescence were reversible in plants able to recover from the cold shock; upon plant rewarming 

MTs reformed and tubulin rapidly (within 30 min) dissipated out of the nucleus (Figure 2.1D and 

H). 

2.3.2 Microtubule Response to Acclimating Temperatures 

Because acclimation temperature treatments do not affect all cells and all plants equally, 

the MT organization of multiple cells and plants were examined and classified based on the MT 

length and general order. The effect of acclimating temperatures on cortical MT organization 

was examined in WT Arabidopsis seedlings subjected to acclimating temperatures (4°C) for time 

periods ranging from 0.5 h to 1 wk, and Figure 2.2 gives an overview of MT organization 

throughout the period of low temperature treatment. 

Following short periods at acclimating temperatures the cortical MT array tended to 

break up into shorter lengths and undergo a general disorganization. After just thirty minutes at 

4°C the proportion of cells containing long MTs was reduced to half that of control cells (Figure 

2.2 and 2.3B). Approximately 30% of cells from short-term (0.5 - 1 h) low temperature treated 

plants were characterized by thin and fragmented MTs (Figure 2.3C). However, half of these  
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Figure 2.3. Confocal micrographs of cortical MTs from the hypocotyl region of GFP:TUB6 
Arabidopsis seedlings. MTs from (A) control seedlings, and seedlings subjected to 4°C for (B) 
0.5 h, (C) 1 h, (D) 24 h, or (E) 1 week. Images are Z stacked images of cortical MTs at cell 
surface, representative of approximately 70 cells observed for each treatment. Arrows indicate 
tubulin globules. Scale bars = 10 µm.

A               B                     C                       D   E 
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cells contained a combination of thickly bundled MTs and short MT fragments and tubulin 

globules (Figure 2.3B). 

The appearance of diffuse fluorescence surrounding existing MTs and bright fluorescent 

patches in vesicular structures and small granules in the cell cortex often attached to MTs (Figure 

2.3 arrows) supports the observation of MT shortening in cold acclimated cells. Tubulin granules 

appear to be formed when free GFP labelled tubulin proteins become saturating following 

cortical MT disorganization (Ueda and Matsuyama 2000). Similar tubulin patches in vesicle-like 

structures and diffuse formations have been described following MTs disorganization resulting 

from osmotic stress (Blancaflor and Hasenstein 1995) and low temperature stress (Ahad et al. 

2003). Diffuse patches of tubulin fluorescence have also been observed when actin filaments are 

disrupted (Ueda and Matsuyama 2000). It is possible that the observed disk-like tubulin 

structures are attributable to plasma membrane disruptions, because similar disk-like structures 

have been observed in membranes when they appear to fold into the extracellular space 

following low temperature stress and mechanical damage (Yamazaki et al. 2005). 

Mid-length MTs in both disorganized and partially parallel arrays dominated 1 day 

acclimated plants (Figure 2.3D). Following acclimating treatments in excess of one day, the MTs 

appear to transition from cold induced disorganization and shortening to reformation and 

lengthening. As the period of acclimation increased MTs regained both length and parallel 

organization, until after approximately one wk at 4°C the cortical MT arrays are 

indistinguishable from those of untreated plants (Figure 2.3E). 

Acclimating temperatures also affected the presence and organization of tubulin beneath 

the cortical arrays. Untreated cells usually contained only individual MTs and relatively thin MT 

bundles in transvacuolar strands and cortical MTs that remained attached to the plasma 

membrane and rarely separated from the outer edge of the cell cortex (Schulz 1988; Mandelkow 

and Mandelkow 1995; Figure 2.4A). After only short periods (30 min - 1 hr) at 4°C tubulin was 

seen at greater distances from the edge of the cell and occupied more cellular space than in 

untreated cells (Figure 2.4B). The number and thickness of MT bundles protruding into the 

cellular space and in cytoplasmic strands crossing the cell also increased in proportion to the 

increased time of exposure to acclimating temperatures, and many thick bundles of MTs 

transversed the lumen of long term acclimated plants (Figure 2.4C and D). Tubulin also was 

found in the nucleus of some acclimated plants (Figure 2.4B and C). Generally, short term  
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Figure 2.4. Confocal micrographs of tubulin accumulation beneath cortical MTs of 
GFP:TUB6 Arabidopsis seedlings. Tubulin fluorescence from cross-section of epidermal 
cells through the region of the nucleus from (A) untreated Arabidopsis seedlings and 
seedlings subject to 4°C for (B) 1 h, (C) 3 d, and (D) 1 week. Arrowheads indicate nuclei, 
arrows indicate interior cytoplasmic MT bundles. Scale bars = 10 µm.  

A           B                    C                  D
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acclimated plants only contained nuclear tubulin in a few cells, with the proportion of cells with 

intranuclear tubulin increasing with the duration of cold acclimation treatment. 

2.3.3 Microtubule Disrupting Chemicals and Acclimation 

2.3.3.1 Effect of microtubule disrupting chemicals on microtubule organization 

WT and GFP:TUB6 plants were grown on low concentrations of MT disrupting 

chemicals to examine the effect of reduced MT assembly and disassembly on Arabidopsis 

growth orientation, MT organization and low temperature tolerance. 

Roots of WT and GFP:TUB6 Arabidopsis seedlings grown vertically on ½ MS medium 

grew in a loosely waving helical arrangement skewed slightly to the left side of vertical hard agar 

plates (Figure 2.5D). Growth on 1 µM - 2 µM pronamide or 50 nM - 100 nM oryzalin 

substantially reduced the root waving and on occasion slightly stunted the root growth while the 

leftward growth angle was maintained (Figure 2.5E). The cotyledons and rosette leaves of some 

plants grown on 1 µM - 2 µM pronamide became slightly twisted in a clockwise manner (Figure 

2.5B). The leaf phenotype of oryzalin treated seedlings did not visibly differ from control plants 

(Figure 2.5A). Treatment with 100 nM - 300 nM concentrations of taxol did not visibly affect 

root growth but promoted clockwise twisting of cotyledons and rosette leaves (Figure 2.5C). 

MT arrays of plants treated with low concentrations of pronamide and oryzalin appeared 

more dense and organized than those of non-treated plants (Figure 2.6A - C). When grown on 

300 nM taxol the plant MT arrays were more parallel with longer MTs than untreated MT arrays, 

and sometimes formed long swirling patterns across the cell (Figure 2.6D).  

Concentrations of oryzalin and pronamide between 10 and 20 µM caused considerable 

visible MT disassembly and disorganization (Figure 2.6E and H). Arabidopsis plants subjected to 

12- 24 h treatments on the chemicals contained cortical MT arrays with relatively short MTs and 

non-MT tubulin fluorescence primarily in the form of vesicular patches (Figure 2.6E and H). 

Intranuclear tubulin also accumulated following the chemically induced MT disassembly (Figure 

2.6F and I) at a frequency similar to 2-4 day acclimated plants (Figure 2.4C). Contrary to low 

temperature affects however, no significant inward movement of tubulin or increase in MT 

bundles transversing the cell accompanied the chemical treatments. Long MT arrays reformed in 

plants returned to control medium for 12 - 24 h following a short chemical treatment (Figure 

2.6G and J). 
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Figure 2.5. Effect of low concentrations of MT disrupting chemicals on seedling growth 
phenotype. Rosette leaf growth of seedlings grown for 10 days on (A) standard ½ MS medium, 
(B) MS medium containing 2 µM pronamide, or (C) MS medium with 300 nM taxol. Arrows 
indicate direction of leaf twisting. Root growth of seedlings grown for 7 days on (D) standard ½ 
MS medium or (E) MS medium containing 100 nM oryzalin. Scale bar = 5 mm.
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Figure 2.6.  Confocal micrographs showing the effect of MT disrupting chemicals on MT 
organization in GFP:TUB6 Arabidopsis seedlings. (A) MTs of untreated control seedlings. 
(B-D) Seedlings with highly organized MTs after continuous treatment with (B) 0.5 µM 
oryzalin, (C) 3 µM pronamide, and (D) 3 µM taxol. (E-J) MT disassembly and reorganization 
induced by treatment with high concentrations of MT disrupting chemicals. MT 
fragmentation and disorganization following 12 h treatment with (E-F) 20 µM pronamide or 
(H-I) 10 µM oryzalin. MT reformation after 24 h recovery periods after 10 µM pronamide 
treatment or (J) 10 µM oryzalin treatment. Images F and I are cross-sections taken through 
epidermal cells at nuclear plane, remaining imges are Z stacked images of cortical MTs at 
cell surface. Arrowheads indicate nuclei, arrows indicate vesicular patches. Images are 
representative of approximately 40 cells observed for each treatment. Scale bars = 10 µm. 
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2.3.3.2 Effect of microtubule disrupting chemicals on freezing tolerance 

The effect of MT disrupting chemicals on plant freezing tolerance was measured by 

electrolyte leakage freezing tests. The freezing tolerance of Arabidopsis seedlings grown on low 

concentrations of pronamide, oryzalin and taxol was compared with the freezing tolerance of 

untreated WT seedlings under both acclimating and non-acclimating conditions. There was no 

significant difference in freezing tolerance observed between any of the non-acclimated plants, 

nor between control and oryzalin-treated one wk acclimated plants. However, freezing tolerance 

of 1 wk acclimated pronamide- and taxol-treated plants was reduced significantly, from an LT50 

of -7.5°C in WT to -5.8°C following pronamide treatment and -4.8°C after taxol treatment 

(Figure 2.7).  

The freezing tolerance of plants treated for 24 h with 10 µM oryzalin both with and 

without a recovery period did not differ significantly from control plant freezing tolerance 

 (Figure 2.8). Treatment with 20 µM pronamide for 24 h caused a slight decrease in freezing 

tolerance, but when this treatment was coupled with a 24 h post treatment recovery period 

without pronamide, freezing tolerance was increased by over 0.5°C (Figure 2.8). Other chemical 

concentrations and time period combinations were carried out, but no oryzalin treatment resulted 

in any increase in freezing tolerance, while 12 and 24 h pronamide treatments had the most 

significant effect on freezing tolerance. 

 
2.4 Discussion 

2.4.1 Low Temperature Causes Different Levels of Microtubule Disassembly 

In this study, MTs were consistently observed undergoing disassembly in Arabidopsis 

plants exposed to low temperatures. The degree of MT disassembly was dependent on the 

duration and severity of the low temperature treatment. 

 MTs were either entirely or almost entirely disassembled when exposed to severe 

temperature stress (e.g. long term (24 h) at 0°C or short term (4 h) at -6°C), and did not 

resassemble while exposed to these temperatures. Acclimation at 4°C caused MTs to initially 

partially disassemble and disorganize during the first day of low temperature exposure before 

gradually reforming into arrays that resembled those of control cells after one week of treatment.  

The MT disassembly that occured during cold acclimation was much less severe than that caused 

by cold shock. Although different levels of MT disassembly may be directly related to the  
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Figure 2.7. Freezing tolerance of WT Arabidopsis grown on media containing low 
concentrations of MT disrupting chemicals (0.3 µM taxol, 3 µM pronamide, or 0.1 µM oryzalin). 
Freezing tolerance was determined by electrolyte leakage tests measured before and after 1 week 
of cold acclimation at 4°C. Error bars represent standard errors of means (n=3). * Indicates 
significant difference from control (p <0.05), determined by Student’s t-test. 
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Figure 2.8. Freezing tolerance of WT Arabidopsis grown on control MS media transferred to 20 
µM pronamide or 10 µM oryzalin medium for 24 h. Freezing tolerance was determined by 
electrolyte leakage tests measured immediately following chemical treatment (chemical treatment 
only) or 24 h after treatment (chemical treatment with recovery period). Error bars represent 
standard errors of means (n=3). * Indicates significant difference from control (p <0.05), 
determined by Student’s t-test. 
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severity of the stress, the ability of MTs to repolymerise and reform into long and highly 

organized MTs while in the presence of a low temperature stress indicates that there are 

important differences between 0°C and 4°C temperature treatments on MTs. The persistence of 

some MTs throughout the cold acclimation process, and the ability of MTs to polymerise while 

being exposed to low temperature suggest that the condition or signal that induces MT 

depolymerization is removed following a short period at chilling temperatures. 

MT disassembly following various low temperature exposures could occur by different 

means. Low temperature causes both in vitro and in vivo MT disassembly by internal MT 

severing and the loss of MT dimers at the MT ends (Mandelkow and Mandelkow 1995). 

However, MT disassembly induced by cold shock is probably a result of direct depolymerization 

by the cold. MTs are also known to depolymerise in response to signals other than temperature 

including plasma membrane rigidification and the binding of Ca2+ ions; signals known to occur 

during the early cold acclimation process (Bokros et al. 1996; Breviario and Nick 2000; 

Sangwan et al. 2001). Cold acclimation temperatures may directly promote MT disassembly, or 

any individual signal or combination of other signals may be responsible for causing MTs to 

undergo the incomplete and transient MT disassembly that occurs during cold acclimation.  

Differences in disassembly and polymerization of MTs following the initial 

depolymerization may be related to changes in the MT itself. Inherently cold stable MTs have 

been described in plant and animal species that survive and grow in low temperature 

environments, and subsets of MTs resistant to temperature-induced depolymerization have been 

described in Arabidopsis (Smertenko et al. 2004; Muller et al. 2007). The long MTs observed in 

cells containing otherwise short and disassembled MTs, and the continued presence of relatively 

long and parallel MTs in some cold shocked cells supports the existence of a population of cold 

stable MTs in non-acclimated Arabidopsis. The partial MT disassembly followed by MT 

polymerization that occurs during cold acclimation may represent the depolymerization of MTs 

containing cold sensitive tubulin proteins, followed by the repolymerization of MTs with tubulin 

proteins that are less sensitive to cold-induced destabilization. Cold acclimation may give the 

plant an opportunity to remove cold sensitive tubulin proteins and make MTs uniformly cold 

tolerant. The binding of different populations of MAPs, different tubulin PTMs, and/or changes 

to tubulin gene expression may be responsible for the tubulin/MT cold stability (Nick 2000). 
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2.4.2 Microtubule Involvement in Cold Acclimation 

In order to determine if MT reorganization that occurs in cold acclimated Arabidopsis 

plants is important to the cold acclimation process or if it is occurring merely as a consequence 

of low temperature stress, MT disrupting chemicals were used to manipulate the ability of MTs 

to polymerise and depolymerise. 

Some organisms contain MTs with reduced dynamics and slow polymerization rates that 

are inherently cold stable, and the reduced MT dynamics were proposed to increase cold-

tolerance (Detrich et al. 2000). The importance of MT dynamics to cold tolerance was examined 

using treatments with low concentrations of pronamide, oryzalin and taxol, which are known to 

reduce MT dynamics (Derry et al. 1995; Nakamura et al. 2004). The reduction of MT dynamics 

was demonstrated by the slight twisting phenotype and highly organized patterns of thick MT 

arrays observed in this study (Figure 2.5 and 2.6A-C) that correspond to reports in the literature 

describing the effect of reduced MT growth and shrinkage rates (Nakamura et al. 2004; Ishida et 

al. 2007). Long-term treatment with low concentrations of these chemicals did not affect the cold 

tolerance of non-acclimated plants; plants survived to approximately -3°C whether or not they 

were treated with MT disrupting chemicals (Figure 2.7). Although slow moving MTs may still 

be more cold stable than dynamic MTs, in Arabidopsis their presence did not affect plant cold 

tolerance. 

When plants were treated with pronamide or taxol during the acclimation treatment, their 

ability to reach their maximum level of freezing tolerance was inhibited, supporting the belief 

that MT dynamics are required for efficient/effective cold acclimation (Kerr and Carter 1990; 

Bartolo and Carter 1991; Örvar et al., 2000). However, oryzalin treatment did not significantly 

affect the ability to acclimate, and plants were still capable of acclimating to a relatively high 

level when MT dynamics were suppressed with pronamide (Figure 2.7). Although MT dynamics 

may be a part of cold acclimation, rapid depolymerization or repolymerization of MTs is not an 

absolute requirement for cold acclimation in Arabidopsis.  

The three chemicals used in this experiment decrease MT dynamics by different 

mechanisms. Pronamide binds to β-tubulin to interfere with MT polymerization. When present in 

low concentrations it reduces overall MT dynamics while in high concentrations it promotes 

overall MT depolymerization (Akashi et al. 1988; Young and Lewandowski 2000). Oryzalin 

primarily binds to free α-tubulin to destabilize the binding of lateral protofilaments (Hugdahl and 
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Morejohn 1993). Oryzalin can also bind to polymerised tubulin to cause MT destabilization, but 

this effect is less pronounced than its effect on unpolymerised tubulin (Xiao et al. 2006). As well 

as its primary action in preventing MT depolymerization, taxol also bundles MTs when present 

in low concentrations (Elie-Caille et al. 2007). The ability of each of these chemicals to prevent 

MT depolymerization is reflected in their inhibitory effects on plant acclimation. This indicates 

that low temperature induced transient MT disassembly may still be involved in the early low 

temperature signalling pathway. 

The effect these chemicals have on MAP binding is likely different for each chemical. 

Taxol causes the most dramatic changes to MT structure; it causes MT bundling and binds 

continuously to the MT afecting MAP binding to MTs (Chu et al. 1993; Rhee et al. 2003). The 

presence of taxol had the most severe effect on the ability of plants to acclimate; therefore the 

differences between taxol and oryzalin stabilized MTs could be good indicators of the MT 

characteristics important for cold acclimation. 

It is possible that the changes in MT polymerization/depolymerization that occured 

during cold acclimation were directly related to changes in isoform composition of the MTs. The 

tubulin protein C-terminus, particularly the C-terminal end of β-tubulins, appears to be the target 

of low temperatures. β-tubulin proteins with long C-terminal ends are cold sensitive while 

tubulin proteins with short C-termini are more tolerant to low temperatures (Bokros et al. 1996; 

Redeker et al. 2004). Genes encoding tubulin proteins with long C-termini have low expression 

during low temperature exposure while cold exposure causes genes coding for tubulin proteins 

with short C-termini to be upregulated (Chu et al. 1993). Possibly the transient partial MT 

disassembly that accompanies cold acclimation occurs to remove cold sensitive tubulin proteins 

from MTs and replace them with cold tolerant tubulin proteins. Tubulin gene expression and 

protein degradation are regulated by complex mechanisms: excess tubulin proteins bind to their 

encoding mRNA to prevent the production of additional tubulin proteins of the same form and 

unpolymerized tubulin proteins that are properly sequestered and folded are degraded (Giani et 

al. 2002). The abundance of unpolymerized, cold-sensitive tubulin dimers would account for an 

altered level of gene expression and transient MT disassembly.   

The presence of pronamide and oryzalin may similarly affect the population of tubulin 

isoforms being incorporated into the MTs. When pronamide and oryzalin are present in low 

concentrations MTs are able to slowly polymerise, and the tubulin isoforms that will incorporate 
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into the MT will be isoforms with the most resistance to chemically induced depolymerization. 

In some organisms, a single amino acid change contributes to both increased cold hardiness and 

resistance to MT disrupting benzimidazole chemicals (Redeker et al. 2004; Robinson et al. 

2004). Although it is possible that tubulin proteins with cross resistance to cold and chemically 

induced depolymerization exist in Arabidopsis, this is unlikely because prolonged exposure to 

low concentrations of chemicals had no effect on freezing tolerance of non-acclimated 

Arabidopsis plants (Figure 2.7). 

In order to determine if MT disassembly alone (in the absence of a low temperature 

signal) could induce changes in freezing tolerance cortical MT rearrangements observed in 

GFP:TUB6 plants (Figure 2.3 and 2.4) during the cold acclimation process were mimiked using 

the microtubule disrupting chemicals, pronamide and oryzalin. These treatments (when followed 

by a MT recovery period) were capable of causing similar visible changes in cortical MT 

organization to those observed during the early (Figure 2.6E, F, H and I) and later stages of 

acclimation (Figure 2.6G and J). 

When the initial stages of low temperature treatment were mimicked by treatment with 

high concentrations of pronamide there were slight decreases in plant freezing tolerance, while 

oryzalin-induced MT disassembly had no effect (Figure 2.8). Similar to results obtained in 

previous studies (Örvar et al. 2000) when MTs were disassembled, plants did not have 

significant cold tolerance because intact MTs are required for plant growth and functioning. 

When pronamide-induced MT disassembly was combined with a MT recovery period to 

better mimic the changes that occur during cold acclimation, plants showed increased freezing 

tolerance of nearly 20% over controls and nearly 30% over pronamide-treated plants without the 

recovery period (Figure 2.8). However, again freezing tolerance was not significantly changed 

by a treatment with oryzalin followed by the recovery period (Figure 2.8). The pronamide 

induced increases were significant, but the inability of oryzalin to induce similar changes and the 

increase of only -0.5°C following pronamide treatment compared to increases of >-4°C caused 

by cold acclimation suggest that there are elements of the cold acclimation process that can not 

be induced by simple manipulation of MTs. 

The inability of chemically induced transient MT depolymerization to induce cold 

acclimation and large increases in freezing tolerance may be related to the inability of these 

chemicals to induce required changes to isoform composition, protein PTMs and MAP binding. 
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Chemical treatments are capable of inducing MT reorganization, but do not necessarily induce 

similar changes to the MAP population and PTMs that occur during cold acclimation. It is also 

possible that residual chemical remained within the plant during the freeze test, making MTs 

more prone to disassembly. 

Disruption of MTs by chemicals and low temperatures affects interactions between the 

MTs and membranes. Previous studies have described the relationship between the plasma 

membrane and MTs and have hypothesized that low temperatures disrupt these interactions 

(Akashi and Shibaoka 1991). When exposed to low temperature stress membranes change their 

properties and become very rigid. Possibly the requirement of MT disassembly is related to a 

need for MTs to dissociate from the plasma membrane, thereby preventing MT breakage and a 

spread of structural damage to the rest of the cell. The effects of oryzalin and taxol on the ability 

of plants to cold acclimate support this idea. MTs treated with oryzalin can be severed 

throughout their length, and this severing may help reduce MT membrane interactions and 

reduce structural damage. Taxol affects MT structure and MAP binding more than MT 

destabilizers and therefore it is more likely to affect interactions between MTs and cellular 

elements such as membranes. This effect on membrane interactions may be responsible for the 

larger effect taxol had on cold acclimation. 

In this study both low temperature and chemically induced MT disassembly promoted 

intranuclear tubulin accumulation. Interphase nuclei normally exclude tubulin from the nucleus 

and tubulin does not appear to contain import signals (Schwarzerová et al. 2006). However, the 

significant levels of intranuclear tubulin occur against the concentration gradient and nuclear 

pores are smaller than tubulin dimers, therefore simple diffusion across damaged membranes 

cannot explain the presence of intranuclear tubulin.  

Although animal and plant cells undergo open mitosis, some components of the spindle 

regulation machinery (e.g. γ-tubulin) are imported into the nucleus before mitosis, and tubulin 

must be removed from the nucleus when daughter nuclei form new nuclear membranes 

(Schwarzerová et al. 2006). It is unclear precisely how the tubulin is excluded from the nucleus 

but five putative NES exist in α- and β- tubulins. It has been suggested that tubulin enters the 

nucleus following low temperature stress because the low temperatures either damage the 

nuclear envelope or overload the nuclear pore complexes (NPCs) to cause the normally active 

tubulin export mechanisms to fail (Schwarzerová et al. 2006). Because chemicals also cause 
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intranuclear tubulin accumulation, it is probable that the machinery that removes tubulin at the 

end of mitosis acts continuously during interphase, and these export mechanisms fail when the 

cell contains high levels of free tubulin. 

The presence of intranuclear tubulin does not necessarily require membrane or machinery 

damage. NPCs and nucleocytoplasmic trafficking are important to many functional regulation 

pathways, including cold tolerance, disease resistance, hormone signalling, and development 

(Dong et al. 2006; Xu and Meier 2008). Large proteins and complexes (e.g. ribosome subunits) 

that are much larger than nuclear pores are regularly transported across the NPC (Schäfer et al. 

2003). The presence of tubulin and MAPs within the nucleus is normally carefully regulated and 

the association of tubulin with chromatin is essential for cell cycle regulation. The consequence 

of intranuclear tubulin on gene expression and cell cycle regulation during low temperature 

stress has yet to be examined, but it is possible that nuclear tubulin affects cold induced gene 

expression (Schwarzerová et al. 2006).  

This study examined the relationship between low temperature stress, cold acclimation 

and microtubule organization. The effects of low temperatures on MT organization were 

observed and the potential importance of this reorganization was examined. This study 

confirmed that low temperatures affect MT organization and that MTs are involved in plant cold 

acclimation, and was the first to visualize MTs in a live plant system. This was the first report of 

intranuclear tubulin accumulation occurring as a result of chemically induced MT disassembly, 

and challenged the idea that MT disassembly is responsible for triggering the cold acclimation 

pathway. Instead, this study indicates that a variety of changes to tubulin and MTs occur during 

low temperature exposure to facilitate the complex role MTs play in the acquisition of freezing 

tolerance in Arabidopsis. 
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CHAPTER 3 
PROTEOMIC STUDY OF COLD INDUCED CHANGES IN ARABIDOPSIS TUBULIN 

BINDING PROTEINS 
 

3.1 Introduction 

MTs are essential cytoskeletal elements involved in mitosis, cytokinesis, cell polarity, 

intracellular trafficking and other fundamental processes. The various functions of MTs are 

dependent on MT growth and shrinkage dynamics and the distribution and arrangement of MTs 

throughout the cell. MAPs are responsible for determining MT structure, dynamics, organization 

and interaction with other cellular elements, and thus control MT functioning (Wasteneys and 

Galway 2003; Sedbrook 2004). Recent progress in the identification and characterization of new 

MAPs has been incremental (Hamada 2007; Kaloriti et al. 2007). 

Some proteins bind to MTs without affecting MT activity. The association of these 

proteins with MTs may be important in a variety of ways, such as regulating protein activity and 

localization, or interaction with other proteins and cellular elements (Chuong et al. 2004). The 

relatively recent discovery that MTs are involved in modulating plant responses to changes in 

their environment most probably involves the activity of proteins that associate with but do not 

regulate MTs, such as signalling proteins that interact transiently with MTs. Unfortunately the 

association of such proteins with MTs in plants is currently poorly understood. 

The ability of plants to respond to their external environment requires the activity of 

sensors and receptors at the cell surface. The identity of the cellular element(s) involved in 

sensing low temperatures in plants is not known. MTs are known to respond to various external 

stimuli, and disassemble very rapidly in response to low temperatures. Preventing MT 

disassembly impedes the ability of plants to tolerate low temperature, leading some to propose 

that MTs are the low temperature sensors in plants (Abdrakhamanova et al. 2003). However, MT 

disassembly has very different effects on low temperature tolerance when induced by chemicals 

in different plant species. For example, pronamide induced MT disassembly followed by MT 

reassembly caused significant increases in freezing tolerance of winter wheat roots 

(Abdrakhamanova et al. 2003) while the same process increased freezing tolerance only slightly 
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in Arabidopsis plants (Chapter 2). When antimicrotubular drugs were applied to chilling 

sensitive plants during chilling, however, it increased damage (Rikin et al. 1980). Treatment with 

low concentrations of taxol, pronamide and oryzalin all reduce MT dynamics to very similar 

levels, but affect a plants’ ability to cold acclimate to very different extents (Chapter 2). Because 

these chemicals affect the interactions between MTs and MAPs differently, and because MAPs 

control MT activity and therefore many other cellular functions, MAPs are therefore better 

candidate low temperature sensors and signal transmitters than other MT components. 

Changes in MAPs in control vs. low temperature exposed plants may occur for a variety 

of reasons that would affect the low temperature response of a plant in a range of ways. A 

decrease or increase in binding of MT stabilizing or destabilizing MAPs could facilitate MT 

disassembly. Changes in MAP binding may be important for MT repolymerisation during the 

cold acclimation process. Altered gene/protein expression or altered protein-MT binding affinity 

could cause the different MT-MAP binding. Additionally, MAPs have functions beyond MT 

binding, such as triggering kinase cascades and other responses related to different biochemical 

pathways, therefore they may participate in the cold signalling process by both affecting MT 

stability and participating in signalling cascades important to the plant’s cold response (Ahad et 

al. 2003; Chuong et al. 2004; Nakamura et al. 2004). Low temperatures could affect MAPs that 

mediate the relationship between MTs and the plasma membrane and extracellular matrix, thus 

influencing stress sensing and signalling. Additionally, the association of proteins with MTs 

could control the localization and/or biological activity of the protein and various aspects of the 

stress response. 

MAPs with a variety of cellular functions have been identified using different techniques. 

MAPs involved in controlling MT functions such as cell division and morphology have been 

identified by screening mutant populations for plants with altered morphology and flawed cell 

division (Smith et al. 1996; Furutani et al. 2000). In silico searches for orthologues to animal 

MAPs have identified proteins involved in controlling MT structures and dynamic instability that 

are conserved among these organisms (Whittington et al. 2001). The identification of proteins 

that bind to MTs regardless of their impact on MT activity can be identified by tubulin affinity 

chromatography (Durso and Cyr 1994; Chuong et al. 2002; Chuong et al. 2004). MAPs involved 

in stress signalling will probably interact transiently with the cytoskeleton rather than directly 
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binding to controlling MT activity. Tubulin affinity chromatography is therefore the most useful 

technique to identify MAPs involved in stress responses. 

Chuong et al. (2004) used tubulin affinity chromatography to identify many tubulin/MT 

interacting proteins, some (e.g. signalling proteins) with the potential to be involved in the low 

temperature stress response. However, this and other studies investigating MAPs used cell 

suspension cultures or protoplasts which do not necessarily represent the structure and 

interactions that occur in cells within the whole plant environment (Zilkah and Gressel 1977). 

Cell suspension cultures have both advantages and disadvantages over whole plant studies. They 

are relatively easy to generate and provide an easily manipulated homogeneous tissue that 

simplifies the proteome and the examination of cellular responses. However, it is also impossible 

for cell cultures to properly demonstrate whole plant responses, and tissue from whole plants and 

cell suspension cultures have different protein and transcript responses to low temperature stress 

(Chen et al. 1983).  

In this study, tubulin binding proteins from Arabidopsis whole plant protein extracts were 

identified. Tissue from whole plants was chosen over cell suspension cultures to better 

demonstrate actual protein-MT interactions occurring in nature. Combining results of this study 

with the results of Chuong et al. (2004) will provide a more comprehensive view of proteins that 

bind tubulin in Arabidopsis and will recognize differences between proteins identified from 

whole plant versus cell suspension cultures.  

Protein samples from both untreated and short term cold-acclimated Arabidopsis plants 

were examined in order to identify tubulin binding proteins potentially involved in the cold 

acclimation process and the acquisition of freezing tolerance. Low temperature exposure has 

been shown to affect MT binding of some MAPs, but this has not been examined in detail. No 

large scale study of the effect of different conditions on protein tubulin binding has been 

performed. The early stages of cold acclimation cause the most dramatic changes in MT 

organization (Chapter 2), and therefore should present a MAP population with significant 

variation from control. Identifying tubulin binding proteins and their changing affinity for 

tubulin during the early stages of cold acclimation will help us understand why MTs change their 

organization during cold acclimation, and may indicate how MTs are involved in the cold 

acclimation process. 
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3.2 Materials and Methods 

3.2.1 Plant Materials and Low Temperature Treatments 

 Arabidopsis (ecotype Columbia) seeds were sown in Coco soil-less mix and grown at 

22°C with a 16 h photoperiod, 200 µmol/m-2s-1 light intensity. After four weeks of growth 

(before bolting, approximately 12 leaves), some plants were transferred to a cold chamber (4°C, 

150 µmol/ m-2s-1 light intensity) for 1 hour (h) or 1 day (d) low temperature treated (LT) 

treatment. Leaf samples were harvested and immediately frozen in liquid nitrogen and stored at 

-80°C until protein extraction. 

3.2.2 Preparation of Protein Extract 

 The protein extract was prepared essentially as described previously (Chuong et al. 

2002). Approximately 50 g of aerial tissue from 1 h and 1 d LT and untreated Arabidopsis plants 

was ground to a fine powder in liquid nitrogen and 30 ml of cold extraction buffer (100 mM 

HEPES adjusted to pH 7.5 with 3 mM KOH, 5 mM MgSO4, 5 mM EGTA) containing complete 

protease inhibitor cocktail tablets (Roche Applied Science). The crude protein extract was 

filtered through one layer of Miracloth, centrifuged for 0.5 h at 50 000 x g, and the supernatant 

re-centrifuged at 100 000 x g at 4°C to remove cellular debris and insoluble proteins. Protein 

concentrations were determined by the Bradford method (Bradford 1976) using bovine serum 

albumin (BSA) as standard. Plant material  

3.2.3 Preparation of Protein Coupled Columns 

Bovine brain tubulin affinity columns were prepared essentially as described previously 

(Chuong et al. 2002) at 4°C. CNBR-activated CH-Sepharose 4B (Amersham Biosciences) was 

swollen and washed on a sintered glass filter with ice cold 1 mM HCl for 0.25 h, followed by 

equilibration of the matrix in column wash buffer (100 mM HEPES adjusted to pH 7.5 with 3 

mM KOH, 5 mM MgSO4, 5 mM EGTA, 50 mM KCl). Two ml of swollen Sepharose and 10 mg 

(>99%) pure bovine brain tubulin (Cytoskeleton, Inc) were coupled overnight at 4°C while 

rotating end-over-end. The mixture was gently loaded onto an empty PD-10 column (Amersham 

Biosciences) and washed with approximately 40 ml coupling buffer to remove unbound tubulin. 

The remaining active groups were blocked by washing the column with 0.1 M Tris-HCl buffer, 

pH 8.0, and the column was incubated in this buffer overnight. The column medium was washed 

with three cycles of alternating high and low pH buffers (high pH buffer: 0.1 M Tris-HCl (pH 

8.3) containing 0.5 M NaCl; low pH buffer: 0.1 M sodium acetate (pH 4.0) containing 0.5 M 
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NaCl). Columns were prepared for sample loading by washing with elution buffer, to ensure no 

unbound proteins remain within the columns, followed by equilibration in protein extraction 

buffer. BSA control columns were also prepared with an equivalent amount of protein and the 

same procedure as the tubulin column.  

3.2.4 Tubulin Affinity Chromatography 

Seventy-five mg of purified Arabidopsis proteins were applied to the bovine brain tubulin 

columns by drip loading at an approximate rate of 4 mg per h. Unbound proteins were removed 

by washing the columns with 50 column volumes (100 ml) wash buffer containing protease 

inhibitor tablets. Proteins that bound to the affinity column were eluted from the column using 

wash buffer containing a total of 500 mM KCl, and eluate was collected in 18 x 0.5 ml fractions. 

Column loading and elution were performed at 4°C. For each replicate, control columns were 

prepared and run alongside treatment columns using plant material grown concurrently. 

3.2.5 Gel Electrophoresis - SDS-PAGE  

Eluates from the tubulin-Sepharose columns were loaded on a one dimension (1D) 

sodium dodecyl sulfate (SDS) polyacrylamide gel consisting of a 1.5 x 15 x 3-cm 5% stacking 

gel over a 12% (1.5 x 15 x 10-cm) resolving gel. After 1D SDS polyacrylamide gel 

electrophoresis (PAGE) separation proteins were visualized by Bio-Safe Coomassie G250 stain 

(Bio-Rad) or by silver staining (Silver Stain Plus, Bio-Rad). 

3.2.6 Mass Spectrometry 

Tubulin binding proteins from control, 1 h and 1 d LT plants were loaded onto a 1D SDS-

PAGE gel and resolved within a 5 mm section of the resolving gel in order to maximize the 

amount of protein in a small volume of gel. Gel segments containing each protein sample were 

divided into two segments to improve protein isolation during mass spectrometry analysis. 

Liquid chromatography- tandem mass spectrometry (LC-MS/MS) analysis was performed on an 

ESI-Quad-TOF QStar XL or an Agilent MSD Ion Trap XCT interfaced with an Agilent 1100 

series Nano LC system at the Southern Alberta Mass Spectrometry (SAMS) Centre for 

Proteomics. MS/MS spectra were processed and searched against the Mass Spectrometry protein 

sequence DataBase (MSDB) and the TAIR database using the MASCOT algorithm (Perkins et 

al. 1999; Rhee et al. 2003). Only significant protein hits (as defined by the MASCOT probability 

analysis, identified with a confidence of p<0.05) in at least two of the three independent 

biological and technical replicates were included in the results. Functional categorization and 
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subcellular localization of identified proteins was performed using the TAIR database 

(www.arabidopsis.org; Rhee el al. 2003). 

3.3 Results 

3.3.1 Purification of Tubulin Binding Proteins 

Tubulin affinity chromatography was used to separate tubulin-binding proteins from plant 

protein extracts. A comparative analysis of protein binding to bovine and plant microtubule- and 

tubulin-affinity chromatography columns indicated that the protein fractions isolated by each of 

the column types are very similar, differing primarily with respect to protein abundance (Durso 

and Cyr 1994; Chuong et al. 2002; Chuong et al. 2004). Although there are likely to be some 

differences in the binding of proteins to bovine brain tubulin compared to tubulin and MTs in 

plants, the difficulties in obtaining pure plant tubulin in the required quantities to perform this 

study dictated the use of bovine brain tubulin rather than plant tubulin to isolate plant MT and 

tubulin binding proteins. 

BSA shares many features with tubulin including a similar isoelectric point and 

molecular mass, and were therefore used as a control to identify any non-specific protein 

binding. A small number of proteins were observed in the BSA column eluate (Figure 3.1B) 

while numerous Arabidopsis proteins were eluted from the tubulin column (Figure 3.1A). 

Analysis of the proteins present in the BSA elutions found two potential contaminant proteins; a 

histone H2 and a lipase/acylhydrolase, which likely interact with the columns by non-specific 

ionic interactions and are thus considered contaminants in all tubulin binding columns and were 

not included in the list of Arabidopsis tubulin binding proteins. Tubulin affinity chromatography 

will also isolate proteins that indirectly associate with MTs by their binding to tubulin binding 

proteins.  

Examination of silver stained 1D-SDS PAGE gels of tubulin binding protein fractions 

from different replicates and temperature treatments revealed consistent patterns of protein bands 

between replicates, with some variation related to band intensity. Variation in band intensity and 

location in different sample types was observed (Figure 3.1). Because of the limited resolution of 

1D-SDS PAGE gels, it is probable that other protein differences were present but not detectable 

in the gels.  
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Figure 3.1. Silver stained 1D SDS-PAGE gels of Arabidopsis proteins that bound to tubulin 
affinity columns. Variation in protein binding from different treatment types and replicates were 
observed in (A) control Arabidopsis tissue and 1 h and 1 d low temperature treated tissue (two 
replicates each). (B) Gel segment of control BSA column showing nonspecific protein binding. 
The molecular mass standards are indicated to the left of each gel, with corresponding kDa 
values at the left of the image. 
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3.3.2 Identification of Tubulin Binding Proteins by LC-MS/MS 

In total, 96 proteins from tubulin-binding protein fractions of control and 1 h and 1 d 4°C 

treated Arabidopsis plants were identified in at least two replicate samples by LC-MS/MS (Table 

3.1). There were 47 tubulin binding proteins identified in control plants, 81 from 1 d low 

temperature treated plants and 49 from 1 h low temperature treated plants. As shown in Figure 

3.2 the majority of proteins identified in the analysis were present in multiple sample types. 

However, five proteins were identified only in the control, and 31 identified only in low 

temperature treated plants (Figure 3.2), representing 24 and 7 proteins unique to the 1 d and 1 h 

LT plants, respectively. 

Despite similar protein banding patterns there was some variation in the number of 

proteins identified in the different replicates. Some of the differences in numbers may reflect the 

caveats of 1D-PAGE LC-MS/MS protein identification. Although 1D-PAGE LC-MS/MS is less 

biased towards high abundance proteins than 2D-PAGE, when a dominant protein or group of 

proteins is present in a sample, lower abundance peptides can be overshadowed when they share 

similar mass to charge (m/z) properties with the more abundant peptides. Protein identification 

could have been limited in this way here. Alternatively when proteins with high affinity binding 

to tubulin are present in high levels they are able to out-compete proteins with lower affinity to 

tubulin, resulting in similar limited protein identification. 

3.3.2.1 Predicted cellular distribution 

The relative distribution of identified proteins (Table 3.1) believed to be associated with 

various cell components is presented in Figure 3.3. Membrane proteins (e.g. endomembrane 

proteins) were the largest group (33%), followed by cell wall proteins (12%) and proteins in the 

cytoplasm (11%). Proteins annotated as nuclear, plastid and mitochondria-localized made up 3, 6 

and 4% of the tubulin binding proteins, respectively.  

The protein localization results are based on data currently present in databases obtained 

through experimental methods, from inferences based on sequence or structural similarity, and 

from computational prediction analysis. Unfortunately the annotations have not been tested for 

accuracy, and unaccountable errors may be present in this data.  

The majority of identified proteins annotated as ‘other membrane’ proteins were 

endomembrane proteins with annotation inferred from N-terminal amino acid sequence analysis 

prediction using TargetP computational analysis software (Emanuelsson et al. 2000).



 

Table 3.1 Arabidopsis tubulin binding proteins identified by LC-MS/MS.    

Proposed 
function 

Spot 
# 

AGI gene 
locus 

Fraction 
found 

Gene 
index 

number Name 

Calculated 
molecular 

weight(Da)/pI 
1 AT5G51280 C * 15241415 DEAD/DEAH-box RNA/DNA helicase, putative 144480/8.07 nucleic acid 

binding  
2 AT2G21660 1 d 21553354 glycine-rich RNA binding protein 7; ATGRP7 16934/5.85 

  3 AT5G47210 C; 1 h * 21553991 nuclear RNA binding protein A-like protein, putative 38000/9.35 
  4 AT4G16830 C * 15235894 nuclear RNA-binding protein 37468/8.63 
  5 AT5G07030 C; 1 h; 1 d * 9759559 nucleoid DNA-binding-like protein 47687/9.30 
  6 AT3G07590 C; 1 d * 15231485 small nuclear ribonucleoprotein D1, putative 12592/11.22 
  7 AT3G59980 1 d * 15232216 tRNA-binding region domain-containing protein 29898/7.71 
  8 AT4G13780 1 h * 15236350 methionyl-tRNA synthetase; tRNA-methionine ligase 89854/7.00 

9 AT3G54400 C; 1 h; 1 d 15232503 aspartyl protease family protein; pepsin A 45476/9.30 protein 
metabolism 

10 AT5G60390 C; 1 h; 1 d * 295789 elongation factor 1-alpha  49503/9.64 
  11 AT2G33530 1 d * 2459435 serine carboxypeptidase II, putative 51514/8.66 
  12 AT4G10540 1 h 4115919 similar to the subtilase family of serine proteases 83519/6.47 
  13 AT5G51750 C; 1 h 18423316 subtilase family protein 84951/9.78 
  14 AT1G71950 C; 1 d 18409953 subtilase; identical protein binding  14900/5.76 
  15 AT2G04160 C; 1 h 3695019 subtilisin-like protease 82874/9.87 
  16 AT4G34980 C; 1 d 18418552 subtilisin-like serine protease 2 81047/9.7 
  17 AT3G04820 C; 1 d 145338120 pseudouridylate synthase  79402/5.96 

18 AT4G35090 1 d 16215 catalase 2 57192/6.75 cell 
responses 

19 AT1G20620 1 d 2347178 catalase 3 57060/8.31 
  20 AT2G34810 1 h 15226834 FAD-binding domain-containing protein 61308/10.11 
  21 AT1G75750 1 d 887939 GA-responsive GAST1 protein homolog 11395/9.40 
  22 AT5G58390 1 d 15237187 peroxidase, putative 35142/9.83 
  23 AT4G37930 1 d * 15235745 serine hydroxymethyltransferase 1; SHM1 57535/8.13 
  24 AT5G09440 C; 1 h; 1 d 15242420 phosphate-responsive protein, putative 29474/9.86 
  25 AT5G64260 C; 1 h; 1 d * 15237656 phosphate-responsive protein, putative 32675/9.07 
  26 AT1G23010 C; 1 h; 1 d 12323429 spore coat protein-like protein; multi-copper oxidase 66166/9.56 
  27 AT1G18250 1 d 8671776 thaumatin-like protein T10O22.21 25978/8.53 
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28 AT3G18080 C; 1 h; 1 d 15229584 glycosyl hydrolase family 1 protein 58984/9.82 carbohydrate 
metabolism 

29 AT5G36890 C; 1 h; 1 d 22327412 glycosyl hydrolase family 1 protein 56077/5.35 
  30 AT3G18070 1 d 9294062 glycosyl hydrolase family 1 protein; beta-glucosidase 56574/6.18 
  31 AT5G25980 C; 1 h; 1 d 5107821 glycosyl hydrolase family 1 protein; thioglucosidase  62733/7.49 
  32 AT3G47010 C; 1 h; 1 d 15232707 glycosyl hydrolase family 3 protein  67252/5.08 
  33 AT5G20950 C; 1 h; 1 d 22326920 glycosyl hydrolase family 3 protein  33950/9.02 
  34 AT1G02640 1 d 110740481 glycosyl hydrolase family 3 protein; beta-xylosidase 82986/8.42 
  35 AT5G49360 C; 1 h; 1 d * 15239867 glycosyl hydrolase family 3 protein; beta-xylosidase 1 83524/8.61 
  36 AT1G78060 C; 1 h; 1 d 6573772 glycosyl hydrolase family 3 protein; F28K19.27  83893/8.12 
  37 AT5G13870 C; 1 h; 1 d 15240733 glycosyl hydrolase family 16 protein; endoxyloglucan transferase A4 33950/9.00 
  38 AT2G06850 C; 1 h; 1 d * 15225605 glycosyl hydrolase family 16 protein; endoxyloglucan transferase A1 34291/9.20 
  39 AT3G55430 C; 1 h; 1 d * 15028379 glycosyl hydrolase family 17 protein; beta-1,3-glucanase, putative 48443/9.74 
  40 AT4G39640 C; 1 h; 1 d 22329258 glycosyl hydrolase family 17 protein; gamma-glutamyltransferase 61059/10.04 
  41 AT1G65590 1 h 2190547 glycosyl hydrolase family 20 protein 60014/8.67 
  42 AT4G23820 C; 1 h; 1 d 15236625 glycosyl hydrolase family 28 protein 48636/8.66 
  43 AT1G45130 C; 1 h; 1 d * 15231354 glycosyl hydrolase family 35 protein; beta-galactosidase 1 81444/8.37 
  44 AT5G26000 C; 1 h; 1 d 24417252 unknown protein; similar to glycosyl hydrolase family 3 protein 61133/5.70 
  45 AT1G11840 1 h 15221116 glyoxalase 1 homolog; lactoylglutathione lyase 31929/4.91 

46 AT1G69530 C; 1 d 1041702 ATEXPA1 expansin A1 29280/9.09 cell wall 
modification 

47 AT1G20190 C; 1 h; 1 d 15223799 ATEXPA11 expansin A11 26761/8.72 
  48 AT5G63180 C; 1 d * 10177299 pectate lyase 46119/6.13 
  49 AT4G24600 1 d 4220512 pectate lyase, putative 45037/8.04 
  50 AT5G53370 C; 1 h; 1 d 15231828 pectin methylesterase 3/2; ATPME3 64256/9.24 
  51 AT5G62350 C; 1 d 15241799 pectin methylesterase inhibitor family protein; invertase 22450/9.21 
  52 AT3G14310 C; 1 h; 1 d 1932927 pectin methylesterase, putative 10678/10.16 
  53 AT1G53830 C; 1 h; 1 d 2895510 pectin methylesterase, putative  64256/9.22 
  54 AT5G45280 C; 1 h; 1 d 18415308 pectinacetylesterase, putative 42126/9.43 
  55 AT2G45220 C; 1 h; 1 d 18406733 pectinesterase family protein 55977/9.37 
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signalling 56 AT3G02260 1 d 30678519 calossin-like protein required for polar auxin transport 574541/5.65 
  57 AT5G23400 1 h * 15237312 disease resistance family protein; LRR family protein 64019/10.21 
  58 AT2G26380 1 d 21536600 disease resistance protein, putative 52430/10.02 
  59 AT1G33600 C; 1 h; 1 d 15217593 leucine-rich repeat family protein 52472/9.27 
  60 AT3G20820 C; 1 h; 1 d 15232373 leucine-rich repeat family protein; polygalacturonase inhibitor-like 39863/8.50 
  61 AT1G33590 C; 1 h; 1 d 10998936 leucine-rich repeat protein related hypothetical protein 51742/9.23 
  62 AT5G12940 C; 1 h; 1 d 14532722 unknown protein; leucine-rich repeat family protein 39953/9.90 

63 AT1G29670 C; 1 h; 1 d 15220514 GDSL-motif lipase/hydrolase family protein 39872/8.63 

64 AT4G21280 C; 1 d 4583542 16 kDa polypeptide of oxygen-evolving complex 22991/9.64 

other 
cellular 

metabolic 
processes 65 AT1G22840 1 d 15219956 ATCYTC-A/CYTC-1 (cytochrome C-1); electron carrier 12500/9.34 

  66 ATCG00480 C; 1 d 7525040 ATP synthase CF1 beta subunit 53957/5.38 
  67 AT1G42970 C; 1 d * 336390 glyceraldehyde 3-phosphate dehydrogenase B subunit 43168/5.60 
  68 AT2G39730 C; 1 d 15450379 rubisco activase  52405/5.69 
  69 ATCG00490 C; 1 h; 1 d 1944432 ribulosebisphosphate carboxylase; RBCL 52956/6.24 
  70 AT2G22230 1 h * 18399910 beta-hydroxyacyl-ACP dehydratase, putative 24242/8.75 
  71 AT5G17920 C; 1 d 55670112 cobalamine independent methionine synthase chain A; MetE 84283/6.02 
  72 AT4G29210 C; 1 d 3080433 gamma-glutamyltransferase; putative  61191/10.06 
  73 AT2G38540 C 15224899 nonspecific lipid transfer protein 1 11755/9.09 
  74 AT2G10940 1 d 18396941 lipid transfer protein/ protease inhibitor family protein 30370/9.52 
  75 AT3G06860 C; 1 h; 1 d * 15235527 multifunctional protein; ATMFP2; AIM protein 77859/9.89 
  76 AT5G62330 1 d 8809646 similar to invertase/pectin methylesterase inhibitor family protein  22883/7.55 
  77 AT4G28090 1 d 15234381 SKS10 (SKU Similar 10); copper ion binding oxidoreductase  62326/9.65 
  78 AT1G76160 1 d 15222981 SKS5 (SKU Similar 5); copper ion binding oxidoreductase 60174/8.49 
  79 AT1G41830 C; 1 h; 1 d 15234688 SKS6 (SKU Similar 6); copper ion binding oxidoreductase 60456/10.25 
  80 AT4G34138 1 d 18418382 UDP-glucosyl transferase 73B1; abscisic acid glucosyltransferase 55257/5.51 
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unknown 81 AT1G46840 C; 1 d 15220125 F-box family protein 55412/9.39 

  82 ATCG01000 1 d 7525093 hypothetical protein Arthcp087  214675/9.75 
  83 AT1G28290 C; 1 h; 1 d 15217879 arabinogalactan protein 31; pollen allergen and extensin family protein 38489/10.84 
  84 AT1G78820 C; 1 d 15219197 curculin-like lectin family protein; PAN domain-containing protein  51246/8.75 
  85 AT3G15356 C; 1 h; 1 d 995619 lectin-like protein 29750/9.38 
  86 AT5G03350 1 d 15242724 legume lectin family protein 30200/9.39 

  87 AT3G28220 C; 1 h; 1 d 15232931 meprin and TRAF homology domain-containing protein 42887/8.80 

  88 AT1G48090 1 d 30694236 protein kinase C2 domain containing protein 385059/5.76 

  89 AT1G03230 C; 1 h; 1 d 18379072 extracellular dermal glycoprotein, putative 46148/9.46 

  90 AT4G32460 C; 1 d 21537379 unknown protein 40215/6.92 

  91 AT1G78830 C; 1 d 17644159 unknown protein 51007/8.74 

  92 AT5G11420 C; 1 h; 1 d 15239049 unknown protein  39641/7.84 

  93 AT5G25460 C; 1 h; 1 d 15239438 unknown protein  39978/7.44 

  94 AT5G16780 1 d 13605837 unknown protein, F5E19_120 75072/5.31 

  95 AT1G76780 C 15223730 unknown protein, heat shock protein-related  216902/4.51 

  96 AT3G28830 C 11994791 unnamed protein product; similar to ATP binding 55501/10.42 
 

Spot # represents arbitrary number given to each identified protein. Fraction found refers to the identifcation of the given 
protein in the corresponding sample type: C= control tissue; 1 h = 1 hour treatment at 4°C; 1 d = 1 day treatment at 4°C. 
Gene index number refers to GenBank GenInfo Identifier of identified protein sequence. 
 
* Tubulin binding proteins identified by Chuong et al. 2004.  
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Figure 3.2. Venn diagram analysis of the tubulin binding proteins that differentially bind tubulin 
during 4°C temperature exposure. The majority of proteins were present in both sample types, 
while 5 where unique to control plants and 31 unique to low temperature treated plants. 
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Figure 3.3. Classification of cellular component localization of identified tubulin binding 
proteins according to the gene ontology database. Classification of cellular component 
localization of proteins from the whole Arabidopsis genome is shown for comparison purposes 
(www.arabidopsis.org/idex/jsp).

  
60 31 5 

Tubulin Binding Whole Genome 



66 

 
Connections between MTs and endomembranes in plants have been demonstrated by organelle 

co-localization, and many MAPs were previously shown to have both endomembrane and 

cytoskeleton localization (Mathur et al. 2003; Cai et al. 2005). When compared with the 

annotation for the entire Arabidopsis genome, the tubulin binding protein fraction was enriched 

for cell wall proteins, which contributed to 12% of the tubulin binding protein fraction but less 

than 1% of the entire genome complement (Figure 3.3). The interaction between MTs and some 

of these cell wall proteins, including xylosidase, beta galactosidase, pectate lyase, and 

endoxylogucan transferase, has been described previously (Chuong et al. 2004). 

3.3.2.2 Classification of tubulin binding proteins by putative function  

Identified tubulin binding proteins were categorized by their known and predicted 

function (Figure 3.4). Proteins were classified into functional classes related to cell wall 

modification, carbohydrate metabolism, other cellular metabolic processes, RNA binding, 

protein metabolism, signalling, cell responses, and unknown function. 

3.3.2.2.1 Proteins that modify the cell wall or carbohydrates. Proteins predicted to 

function in carbohydrate metabolism and cell wall modification comprised 23% of the identified 

tubulin binding proteins. Some of the proteins believed to modify cell walls include pectin 

modifiers, expansins, and proteins representing six families of glycosyl hydrolases (Table 3.1).  

The majority of the hydrolases were identified in each temperature treatment type. 

However, a beta-xylosidase (spot 34) and beta-glucosidase (spot 30) (both family 3 glycosyl 

hydrolases) were found only in 1 d LT while a glycosyl hydrolase family 20 protein (spot 41) 

and glyoxalase 1 homologue (lactoylglutathione lyase; spot 45) were found only in the 1 h LT. 

Both expansin A1 (spot 46) and a pectin methylesterase inhibitor (spot 51) were found in control 

and 1 d LT tissue, but not in 1 h LT.  

3.3.2.2.2 Proteins with other cellular and metabolic functions. A number of isolated 

tubulin binding proteins function in general metabolic and cellular processes. Some of these 

proteins act in photosynthesis and energy releasing pathways, including glyceraldehyde 3-

phosphate dehydrogenase (GAPDH; spot 67), a 16 kDa polypeptide of the oxygen-evolving 

complex (spot 64), rubisco activase (spot 68), ribulosebisphosphate carboxylase (spot 69), ATP 

synthase CF1 beta subunit (spot 66) and cytochrome C-1 (spot 65).  
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Figure 3.4. Functional classification of tubulin binding proteins identified by LC-MS/MS based 
n known (and putative) protein functions. Percentage values indicate the proportion of tubulin 
binding proteins present in the group. 
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Proteins active in amino acid biosynthesis and recycling (e.g. methionine synthesis 

enzyme; spot 71 and glutathione breakdown and amino acid recycling; spot 72), lipid 

metabolism (spots 63, 73, 74), and fatty acid metabolism (spot 70) were also identified. The 

identified peroxisomal multifunctional protein (MFP; spot 75) and one of the three copper ion 

binding oxidoreductases SKS proteins (spots 77-79) are well studied MT-binding proteins 

(Chuong et al. 2002; Sedbrook et al. 2004).  

There was significant variability in binding of these proteins under the different 

temperature treatments. Four of the proteins were present in all three treatments and six were 

present in control and 1 d LT. There were also six proteins identified only in 1 d LT, and one 

protein unique to 1 h LT and control tissue. 

3.3.2.2.3 RNA-binding proteins. Eight percent of the identified MAPs have nucleotide 

(RNA and/or DNA) binding capabilities. These include proteins that bind/modify tRNA (spots 7 

and 8), a nucleoid DNA binding protein (spot 5), nuclear RNA-binding proteins (spot 3 and 4), a 

small nuclear ribonucleoprotein (spot 6), a glycine-rich RNA binding protein (spot 2), and a 

DEAD/DEAH-box RNA/DNA helicase (spot 1) (Table 3.1). The two tRNA associated/binding 

proteins and the glycine-rich RNA binding protein were only found in LT plants, while the 

helicase and one of the nuclear RNA binding proteins were only found in control plants.  

3.3.2.2.4 Protein metabolising proteins. Proteins involved in protein metabolism and 

translation made up 9% of the isolated tubulin binding proteins. The RNA modifying 

pseudouridylate synthase protein (spot 17), involved in translation, was found in control and 1 d 

treatment while the well known tubulin binding protein, eEF1α (spot 10), was found in all 

treatment types. The remaining six protein metabolising enzymes were subtilase family proteins 

and aspartyl and serine proteases (spots 11-16). 

3.3.2.2.5 Signalling proteins. Seven percent of proteins identified in the tubulin binding 

protein fraction were classified as signalling proteins. These include six disease resistance and 

leucine-rich repeat (LRR) family proteins (spots 57-62) and a calossin-like protein required for 

polar auxin transport (spot 56). The calossin-like protein and two disease resistance proteins 

were present only in LT plants.  

3.3.2.2.6 Proteins responsive to stress and signals. Proteins annotated as responsive to 

hormones and other signals were identified in the tubulin binding protein fraction. Seventy 

percent of these proteins were found only in the low temperature treated samples. A thaumatin-
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like protein (spot 27), similar to pathogenesis-responsive thaumatin proteins, was found only in 

the 1 d LT. Two proteins involved in hormone responses, a GA-responsive GAST1 protein 

homolog (spot 21) and a FAD-binding domain-containing protein (spot 20) were found in 1 d 

and 1 h LT tissue, respectively. Four proteins involved in protecting the cell against reactive 

oxygen species (ROS), a putative peroxidise (spot 22), two catalases (spots 18 and 19), and a 

serine hydroxymethyltransferase (spot 23), were identified in 1 d LT only. Three proteins 

classified as phosphate-responsive were identified in all samples. These include a spore coat 

protein-like protein with multi-copper oxidase (MCO) activity (spot 26) and two low phosphate 

responsive MCOs similar to the tobacco phosphate-induced (Phi)-1 and -2 proteins (spots 24 and 

25).  

3.3.2.2.7 Proteins with unknown function. No known biological function was ascribed 

to 16% of the proteins identified as tubulin binding proteins. Four of these proteins are lectins or 

lectin-like proteins (spots 83-86). An F-box family protein with possible involvement in 

mediating protein-protein interactions (spot 81) and a hypothetical protein (spot 82) are some of 

the remaining unknown proteins of this category. 

 

3.4 Discussion 

In this study, 96 proteins were identified as tubulin binding proteins using tubulin affinity 

chromatography and LC-MS/MS. Tubulin affinity chromatography was previously demonstrated 

to be a reliable method for isolating MT and tubulin-binding proteins (Durso and Cyr 1994; 

Chuong et al. 2002). The use of control columns, the consistent patterns of protein banding 

observed in replicates, and the identification of previously described tubulin and MT-binding 

proteins (e.g. ATMFP, eEF1α, SPR1) indicated that the tubulin-binding protein isolation was 

effective and reproducible. 

3.4.1 Comparison to Previously Isolated Tubulin Binding Proteins 

Although the total number of proteins identified in this study was similar to the number 

of tubulin binding proteins identified by Chuong et al. (2002), only 21% of these proteins were 

also present in the previous analysis. Differences of a similar magnitude have been described for 

other proteomics studies. For example, in five recent studies of the Arabidopsis cell wall 

proteome, only 30% of 268 cell wall identified proteins were present in at least two of the five 

studies (Boudart 2005; Bayer et al. 2006; Jamet et al. 2006). Further, when proteins identified by 
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LC-MS/MS were compared to proteins identified from the same samples run on 2D gels, groups 

of proteins were identified by only one technique or the other (Koller et al. 2002). Although LC-

MS/MS is a much more sensitive technique, it appears unable to identify the full set of proteins 

identified by gel based techniques and therefore, many researchers consider these two methods 

complementary to each other (Koller et al. 2002). The relative little overlap in proteins identified 

in similar studies show that experimental design has significant impact on protein identification 

and proteome level biological responses. The tubulin binding proteome is likely larger and more 

complex than studies have currently revealed and further research should uncover yet additional 

proteins. 

A major difference between the results of this study and those of Chuong et al. (2004) is 

the large number of cell wall modifying proteins found here, probably due to the different tissues 

used for protein extraction. A previous analysis by Jamet et al. (2006) found that significantly 

higher numbers of well known cell wall proteins (e.g. glycosyl hydrolases) were present in 

rosette leaves and etiolated hypocotyls compared to cell cultures. This difference in number is 

probably a related to the reduced wall differentiation in cell cultures compared to full plants 

(Jamet et al. 2006). The presence of fewer cell wall proteins within cell suspensions could also 

be a result of a loss of some extracellular proteins and other loosely bound cell wall proteins to 

the cell culture medium rather than being retained in the cell wall (Feiz et al. 2006). 

3.4.2 Protein Localization 

When examining the predicted cellular localization of identified tubulin binding proteins, 

the protein distribution largely corresponded to that of functional MTs throughout the cell. 

Tubulin binding by proteins that localize within various membrane-bound organelles such as 

mitochondria and plastids may at first seem surprising considering the cytoplasmic localization 

of MTs. However, proteins can have multiple functions corresponding to multiple sites of 

localization throughout the cell. Also, binding of these ‘organelle-localized’ proteins to tubulin 

may reflect the ability of MTs to distribute organelles and proteins throughout the cell 

(Romagnoli et al. 2003). Although actin filaments (AFs) are generally considered to be 

responsible for the transportation and localization of secretory vesicles and organelles throughout 

the plant cell, there is accumulating evidence indicating that some organelles can be transported 

via MTs, and that MTs cooperate with AFs to control secretory vesicle transportation and 

localization (Romagnoli et al. 2003; Wasteneys and Galway 2003; Romagnoli et al. 2007). The 
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molecular characteristics of the relationship between these two systems are not well understood; 

it is possible that features of this relationship would be revealed by examining endomembrane 

localized tubulin binding proteins identified in this study (e.g. some expansins and FAD-binding 

domain-containing protein). 

Because cortical MTs underlie and communicate with the plasma membrane and the cell 

wall, proteins associated with both of these structures were expected in the tubulin binding 

fraction (Baluska et al. 2003). Many wall proteins were identified, but relatively few proteins 

known to localize within the plasma membrane were found (Figure 3.3). The identification of 

some of these proteins may have been compromised by the protein extraction techniques used, 

and using techniques that specifically enhance plasma membrane disruption may enable 

identification of more PM - MAPs (Santoni 2006).  

3.4.3 Protein Functions 

Proteins with a range of predicted cellular functions were identified as tubulin binding 

proteins in this study (Figure 3.4). The functions of some of the proteins are closely related to 

MT functions, including proteins involved in cell elongation. However, the majority of the 

identified proteins are involved in functions unrelated to MT and tubulin activity, and the 

purpose of many of these associations is as yet unknown. There is evidence supporting the 

involvement of some of the identified MAPs in the plant cold stress response. Proteins classified 

into functions ranging from stress responsive and signalling, to protein metabolism and other 

metabolic and cellular functions could play critical roles in stress sensing and signalling and 

increasing plant cold hardiness. 

3.4.3.1 Microtubule-related functions 

As previously mentioned, many important interactions occur between the cell wall and 

MTs. Cell elongation is one cell function that requires such interactions. MTs are involved in 

controlling cellulose microfibril orientation and seem to cooperate with a variety of cell wall 

proteins/enzymes to carry out their functions (Wasteneys and Galway 2003; Yoneda et al. 2007). 

Mutant plants with impaired MT organization or altered sensitivity to MT-specific drugs often 

display isotropic cell expansion and lose control of growth polarization (Burk et al. 2006; 

Furutani et al. 2000; Wasteneys and Galway 2003; Whittington et al. 2001). Pectin modification, 

e.g. via methylesterases, are important for plant development and cell growth, and tubulin 

binding glycosyl hydrolases help to control plant cell elongation and affect MT orientation 
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(Akashi and Shibaoka 1991; Takeda et al. 2002). Enzymes and cell wall components are 

continually being transported across the plasma membrane to permit growth, loosening, and 

elongation of the cell wall, and MTs may assist with these processes. 

The close physical association between the cell wall, plasma membrane and MTs 

suggests that, at a minimum, changes to the cell wall will be transmitted to underlying MTs (Cyr 

1994). When the cell wall arrangement is altered and turgor pressure causes the cellulose MFs to 

separate, the underlying MTs that are not immediately in line with the cellulose MFs must 

disassemble or break. The most sensitive component of the growing cell to strain or stress is 

believed to be the xyloglucans that connect the cellulose MFs to one another (Carpita and 

Gibeaut 1993; Cyr 1994). When put under strain, such as that occuring during cell expansion, the 

xyloglucan chains and MTs must yield, by breaking or disassembling, in order to allow 

relaxation of cell walls and subsequent cell growth. Many of the identified tubulin binding 

carbohydrate metabolising and cell wall modifying proteins, including the expansins and many 

of the glycosyl hydrolases, are believed to participate in cell elongation by loosening the cell 

wall and disrupting the xyloglucan bonds holding cellulose fibrils together (Van Sandt et al. 

2007).  

Altered activity of cell wall/carbohydrate modifying proteins will change the state of the 

cell wall to either promote or suppress cell elongation. Many of the wall/carbohydrate modifying 

proteins had altered MT-binding at the different temperature treatment points (Table 3.1). 

Because plants have reduced growth and undergo cell wall modifications during cold 

acclimation, changes in cell wall modifying proteins should reflect changes in wall metabolism 

occurring at these time points. Many of these cell wall modifying enzymes respond to hormones, 

light, cold and other external stimuli, which all affect MT orientation, cell growth and elongation 

(Shibaoka 1994; Xu et al. 1996; Khokhlova et al. 2003; Le et al. 2005). Possibly, cell wall/ 

carbohydrate modifying proteins act in conjunction with MTs as part of a complex system 

involved in responding to elongation signals, controlling cell wall loosening, orienting the 

cellulose synthase complex and determining the general state of cell expansion. Pectin 

modifications (e.g. deesterification by pectin methylesterase) control the effectiveness of other 

cell wall enzymes, are important in the plant defence response, and could directly affect plant 

cold tolerance (Lionetti et al. 2007).  
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Three SKS proteins were identified as tubulin binding proteins in this study. Despite 

being annotated as having copper ion binding and oxidoreductase activity, these SKS proteins 

have been shown to lack characteristic copper binding motifs and have no clear enzymatic 

function (Sedbrook el al. 2002). One of these proteins, SKS6, was identified in each of the 

temperature treatments. SKS6 (a.k.a. SPR1) is a well-known plant MAP important for cell 

expansion and directional cell growth (Furutani et al. 2000; Sedbrook et al. 2004). SPR1 is 

believed to act as an intermolecular linker that controls axial twisting and touch-induced 

directional cell expansion (Sedbrook et al. 2004). The other two SKS proteins were identified 

only in the 1 d LT. Although not previously described as MAPs, these proteins may have similar 

or related functions. 

3.4.3.2 Non-microtubule functions: possible microtubule involvement? 

Proteins involved in processes apparently unrelated to MT function made up the largest 

proportion of tubulin binding proteins. The importance of the protein-MT association of each one 

of these proteins is not known, but there is evidence indicating that some of these associations 

are important for normal, efficient cell metabolism and function. While evidence supporting 

these interactions in animal systems is abundant, only one example of such associations has been 

clearly demonstrated in plants. RNA metabolism and transportation involves the association of 

RNA with the cytoskeleton (Jansen 1999; Chuong et al. 2002; von Groll et al. 2002). Evidence 

dating from the early 1990’s show that polysomes associate with the plant cytoskeleton via 

interactions between MAPs and mRNA (Davies et al. 1991). RNA binding proteins, including 

small nuclear ribonucleoproteins, helicases and other RNA-binding proteins, were identified in 

the tubulin-binding protein fraction of this study as well as that of Chuong et al. (2004). RNA 

binding proteins and other proteins involved in translation could assist with both of these 

functions, ensuring efficient translation and transportation of mRNA throughout the cell.  

In animals, many tubulin folding cofactors and MAPs (e.g. CLIP-170s) are glycine-rich 

proteins (GRPs). Glycine-rich cytoskeleton-associated protein domains are responsible for 

mediating the association of these proteins with MTs (Mishima et al. 2007). Direct associations 

between GRPs and MTs in plants have yet to be defined, but many GRPs have functions such as 

controlling cell wall constituents and other MT related functions (Mousavi and Hotta 2005). 

DNA and RNA helicases are involved in many cellular functions, including DNA and RNA 

repair and stability, the regulation of mitosis, and posttranscriptional gene silencing (Jacobsen et 
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al. 1999). It is thought that helicases can mediate some interactions between the cytoskeleton and 

RNA processing and transport (Zhang et al. 2002). 

Proteins with functions ranging from energy releasing pathways and photosynthesis to 

lipid metabolism and amino acid and fatty acid biosynthesis were identified in this study as 

MAPs. Although the purpose of MT binding has not been demonstrated, the isolation of some of 

these proteins supports previous evidence of MT binding. The Calvin cycle enzyme GAPDH 

(spot 67), is known to bind to MTs and affect MT bundling in both animals and plants (Somers 

et al. 1990; Chuong et al. 2004). Enzymes involved in catalyzing methionine synthesis, such as 

spots 71 and 72, were previously shown to associate with MTs and secretory vesicles in pollen 

tubes (Moscatelli et al. 2005). The association of multifunctional protein ATMFP2 (spot 75) with 

MTs has been well-studied in plants. Similar to the MT binding of RNA binding proteins, 

ATMFP binds to MTs to facilitate its functioning in the transport of peroxisomes, mRNA 

transport and translation (Chuong et al. 2002). The reason for MT binding has been examined in 

very few proteins, but where studied, MT binding was found to play an important role in protein 

function and transport (Jansen 1999; Chuong et al. 2002; Lopez-Valenzuela et al. 2003). One can 

therefore expect that the association of some proteins with MTs is a requirement for their 

function, even if at this moment in time that function is unknown.  

Some RNA associated proteins and proteins involved in various cellular and metabolic 

processes appear to be stress responsive. Differences in MT binding of some proteins in response 

to low temperature treatments was observed. Rubisco activase, cytochrome C-1, glyceraldehyde 

3-phosphate dehydrogenase and the ATP synthase CF1-beta subunit have all been previously 

identified as cold responsive, and RNA associated proteins seem to be important to the cold 

response (Chuong et al. 2002; Gong et al. 2002; Hannah et al. 2005; Dong et al. 2006; Yan et al. 

2006). RNA helicases act as abiotic stress response repressors and positive regulators of CBF 

gene expression, while nucleotide binding proteins are important in stress responses (Gong et al. 

2002; Kant et al. 2007). Glycine-rich RNA binding proteins have been implicated in several 

physiological processes (Mousavi and Hotta 2005) and the glycine-rich RNA-binding protein 7 

in Arabidopsis (ATGRP7) was identified in 1 d LT plants. ATGRP7 is a circadian clock 

regulated protein and atgrp7 mutants are hypersensitive to ABA and osmotic stress conditions 

(Cao et al. 2006). It is unclear what generates the stress sensitivity in atgrp7 mutants, or if the 
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process is ABA-dependent or -independent (Cao et al. 2006), but in either case MT binding may 

have a role in facilitating the stress response. 

Four of the identified tubulin binding proteins where annotated as multi-copper oxidases 

(MCOs). The calossin-like protein (spot 56) identified in 1 d LT plants is a MCO with ubiquitin-

protein ligase activity. Plants encoding mutant forms of this protein display altered 

photomorphogenesis and defects in auxin responses and auxin transporter localization (Gil et al. 

2001). The remaining three proteins with MCO activity respond to low phosphate signals. The 

spore coat protein-like protein (spot 26) MCO appears to be involved in reprogramming cell 

growth in roots following contact with low phosphate media, by sensing the stress and initiating 

signals to stunt primary root growth (Svistoonoff et al. 2007). Two phosphate responsive MCOs 

are closely related to the phosphate-induced (Phi)-1 and -2 bZIP-type transcription factors 

originally identified in tobacco (Sano et al. 1999; Sano and Nagata 2002). Phi-1 and Phi-2 

transcription is rapidly induced following an application of external phosphate or ABA, or 

changes in cytoplasmic pH, with maximum transcript levels obtained after approximately 1 h 

(Sano et al. 1999; Sano and Nagata 2002), and the potato Phi-1 orthologue was identified in the 

potato abiotic stress transcriptome (Rensink et al. 2005), suggesting a role for this protein in 

multiple abiotic stress responses. The electronic Fluorescent Pictograph (eFP) Browser 

(www.bar.utoronto.ca/efp), which visually displays microarray data of approximately 22,000 

genes from Arabidopsis (Winter et al. 2007), as well as EST expression data, have both 

identified the gene encoding Arabidopsis Phi-1-like protein (At5g64260) as highly responsive to 

low temperatures (Kilian et al. 2007; Robinson and Parkin 2008). The cold induced expression 

and their similarity to transcription factors suggest that these proteins may act as stress induced 

transcription factors that bind to the MT cytoskeleton and support protein translocation to the 

nucleus where it encourages low temperature induced gene expression. Arabidopsis Phi-1-like 

protein was previously identified as a tubulin binding protein (Chuong et al. 2004). The SKS 

proteins, including the MAP SPR1, are structurally similar to these multiple-copper oxidases, 

and including the SKS proteins, seven copper-oxidases were identified as MAPs in this study. It 

would be interesting to identify conserved features of these proteins responsible for MT binding 

activity.  

A non-annotated F-box family protein (spot 82) bound to tubulin in 1 d LT and control 

treatment. F-box domains generally function to mediate protein-protein interactions including 
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polyubiquitination, centromere binding, translational repression and transcription elongation. In 

plants, many F-box proteins are transcription factors controlling various stress responses. A 

group of plant F-box proteins (with unknown functions), up-regulated by cold, have orthologues 

in animals. This group of animal proteins are transcription factors that shuttle between the 

plasma membrane and the nucleus in response to environmental cues (Lai et al. 2004). The 

Arabidopsis eFP database indicates that gene expression of the F-box protein is nearly doubled 

after 1 h at LT before returning to base levels. Possibly after exposure to LT, the identified F-box 

family protein follows a similar pathway as described for animal F-box proteins, where it is 

transmitted along MTs from a site of stress sensing to the nucleus and upon release from the 

MTs, it functions to activate stress-responsive genes. 

During exposure to low temperatures there are many changes in gene expression with 

new groups of cold responsive proteins being synthesized. Tubulin has been shown to cross the 

nuclear membrane following low temperature exposure (Chapter 3; Schwarzerová et al. 2006), 

possibly as a result of interactions between tubulin binding proteins and proteins of the NPC that 

are important in stress responses (Xu and Meier 2008). The localization of tubulin and tubulin 

binding proteins (e.g. F-box family protein and Phi-1-like) to the nucleus could possibly affect 

gene expression and the subsequent transport of mRNA out of the nucleus.  

3.4.3.3 Proteins involved in stress sensing, signalling, and cold tolerance  

Proteins annotated as responsive to various signals and hormones comprised 10% of the 

identified tubulin binding proteins. Four of these proteins (spots 18, 19, 22 and 23) were 

identified only in low temperature treated samples and function to protect the cell against ROS. 

ROS are produced under various stress conditions and can have two different outcomes: they can 

function as secondary messengers that affect the activity of various proteins leading to a variety 

of cellular responses, while excess ROS production can cause oxidative damage to cellular 

compartments. The presence of antioxidant proteins only in 1 d LT may reflect a need for the 

activity of these proteins to remove excess ROS and avoid damage caused by low temperature-

induced, lowered photosystem reaction rates. 

Two hormone responsive proteins (spots 20 and 21) were found in 1 d and 1 h LT tissues. 

Plant hormones are known to elicit changes in MT structure and dynamics, and as such, are 

important in stress responses and low temperature tolerance (Davies et al. 1991; Chuong et al. 

2002; von Groll et al. 2002). There are many ways that hormones may require or make use of 
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MTs to facilitate plant stress responses. Hormones, such as auxin and GA, affect plant growth by 

controlling cell elongation, such that the presence of hormone responsive proteins on MTs in 

cold-treated plants may reflect a conserved function related to reducing cell growth/elongation 

following exposure to different stimuli. Thaumatin proteins are involved in pathogenesis-related 

responses, and the presence of the thaumatin-like protein (spot 27) in 1 d LT plants suggesting a 

possible general stress response protein function.  

Many MAPs not annotated as stress/signal responsive are capable of responding to 

various stimuli. For example, the protein kinase C2 domain containing protein (spot 88) has an 

unknown biological function but has characteristics that link it to stress responses and MTs. 

These include a Ca2+-binding motif found in protein kinase C and identity with proteins 

containing a pleckstrin homology (PH) domain, common in MAPs and proteins involved in 

intracellular signalling (Lemmon and Ferguson 2000). The kinase C2 domain protein was only 

identified in 1 d LT tissue, indicating a possible increased MT-dependent activity during 

prolonged cold exposure. The meprin and TRAF homology domain-containing protein (spot 87) 

also has no annotated function or cellular localization, but it was identified as being highly 

upregulated in response to salt stress, suggesting another link between tubulin binding proteins 

and common stress responses (Gong et al. 2001). 

Six disease resistance and leucine-rich repeat (LRR) family proteins (spots 57-62), 

described as signalling proteins, were found to interact with tubulin in this study. Plant proteins 

containing LRR domains are important to various plant-environmental and developmental signal 

transduction pathways (Osakabe et al. 2005). The LRR domain functions as a hormone receptor 

capable of linking biotic, abiotic, and ABA signalling pathways (Osakabe et al. 2005). LRRs are 

the primary domain responsible for recognizing pathogens and controlling the specificity of plant 

defence mechanisms (Banerjee et al. 2001). LRRs perceive signals and mediate intracellular 

interactions among proteins, and the binding to MTs may help facilitate this signalling process. 

Beyond stress sensing and signalling function, many LRR proteins exhibit high sequence 

similarity to antifreeze proteins that act to modify ice crystal formation (Meyer et al. 1999). Two 

of the disease-resistance LRR proteins were found only in cold treated plants, indicating a 

potential role in the cold response. 

Two lipid transfer proteins (LTPs) potentially involved in cold acclimation and 

increasing cold hardiness were found in this study. LTPs are usually small, extracellularly 
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located proteins with a range of proposed biological functions that can act to bind acyl chains 

and enhance the transfer of phospholipids between membranes. Some LTPs function as 

cryoprotective proteins and LTP overexpression can increase plant cold tolerance; seven genes 

encoding LTPs are upregulated in the cold tolerant Arabidopsis esk1 mutants (Bubier and 

Schlappi 2004; Xin et al. 2007). A LTP family protein/protease inhibitor protein (spot 74), found 

only in 1 d LT tissue, contains a protease inhibitor domain and lipid transfer domain capable of 

binding to and transporting membrane lipids. It is proline-rich and shares significant sequence 

similarity with cell wall-plasma membrane linker proteins, extensin-like proteins, and other 

LTPs previously shown to increase Arabidopsis freezing tolerance (Bubier and Schlappi 2004). 

Its presence only in 1 d LT tissue supports a possible role for this LTP in freezing tolerance. 

The nonspecific LTP1 protein (spot 73), found only in untreated Arabidopsis samples, is 

a calmodulin binding protein involved in the calmodulin-signalling pathway (Wang et al. 2005). 

Two different classes of proteins that interact with tubulin and bind to calmodulin have been 

described in plants; those in which tubulin binding requires Ca2+, and those that only bind tubulin 

when Ca2+ levels are low (Zielinski 1998). The latter group appear to act in conjunction with 

calmodulin to stabilize microtubules (Zielinski 1998). Low temperatures increase intracellular 

Ca2+ levels, which would cause proteins of the latter class to release from tubulin. Nonspecific 

LTP1 was not identified as a tubulin binding protein in low temperature exposed material, 

indicating it likely is a low Ca2+ specific binding LTP. Therefore, once released LTP1 would be 

unable to stabilize MTs, thereby encouraging low temperature-induced MT disassembly. 

Four lectins/lectin-like proteins (spots 84-87) were identified in this study. While the role 

of lectins in normal plant functioning is relatively poorly understood, recent studies suggest a 

possible involvement in the plant cold stress response. Once thought to only act as storage 

proteins, changes to lectin protein content and activity in response to low temperatures and over 

the course of cold acclimation suggests that they are involved in plant stress responses (Sonobe 

et al. 2001; Peck 2005; Garaeva et al. 2006). Further, they have been shown to colocalize with 

the cytoskeleton and their behaviour is dependent on the integrity of the cytoskeleton (Wasteneys 

and Galway 2003; Garaeva et al. 2006; Nguema-Ona et al. 2007). The curculin-like lectin (spot 

85) may act as a link between the cytoskeleton and vesicle membranes and to control plant 

growth in response to red light (www.ebi.ac.uk/interpro/databases.html). This lectin was only 

present in control and 1 d LT tissue, possibly reflecting a separation of membranes and 
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cytoskeleton during the early stages of cold acclimation. Unlike curculin-like, legume-like lectin 

(spot 87) was only identified in 1 d LT. This protein shares features with many predicted protein 

kinases suggesting a potential involvement in signalling. Arabinogalactan proteins (AGP) (spot 

84) are also lectin proteins and are the best candidates, of the lectins, for linking MTs to the 

plasma membrane and MT activity to signalling sensing and responses (Peck 2005). Plants 

mutated in certain AGP proteins have altered stress sensitivity, thin cell walls and inhibited cell 

expansion, resembling various cytoskeleton mutants (Shi et al. 2003).  

The stress sensing and signalling potential of AGPs and lectin-like proteins is partially 

attributed to the presence of glycosyl phosphatidylinositol (GPI) anchors on these proteins. In 

addition to lectins and AGPs, glycosyl hydrolase family 17 proteins, lipid transfer-like proteins, 

SKS proteins, and pectate lyase-like proteins, all identified as tubulin binding proteins, are 

thought to be GPI anchored proteins (Borner et al. 2003; Elortza et al. 2003). As mentioned in 

Chapter 1, GPIs are added posttranslationally to the C-terminal ends of certain proteins and act to 

anchor these proteins in the membrane in a manner different to that of transmembrane protein 

anchoring. While anchored in the plasma membrane, many GPI anchored proteins (GAPs) are 

actually cell wall localized proteins. However, these proteins can become solely cell wall 

localized if the GPI domain is cleaved off by the activity of PLD (Borner et al. 2002). Disruption 

of some GAPs has been shown to promote MT disassembly. Therefore, MT rearrangement, 

induced by PLD, may occur as a result of GPI anchor cleavage (Nguema-Ona et al. 2007). GPI 

anchors may function to maintain proper localization or function of the anchored protein, and 

cleavage of the GPI results in alterated protein function and/or interactions with other proteins 

(Borner et al. 2002). With their role in extracellular matrix remodelling and signalling, GAPs 

may act as important connectors between the extracellular matrix and the cytoskeleton (Baluska 

et al. 2003). Moreover, both MTs and GAPs localize to membrane microdomains believed to act 

as platforms for cellular trafficking, cell wall metabolism and signalling and stress responses 

(Borner et al. 2003). Proteomic studies of GPIs, GAPs and membrane microdomains in plants 

are in their infancy (Borner et al. 2003; Grennan 2007); however, it is highly likely that future 

research will reveal MT and MAP functions closely connected to these elements.  

Subtilase family proteins and aspartyl and serine proteases (spots 11-16) are stress and 

pathogen responsive proteases believed to be involved in development, protein turnover, and 

signalling cascades (Rautengarten et al. 2005). At least one of the subtilase-like proteins is 
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believed to localize to both the apoplast and plasma membrane and to function in generating 

extracellular signals required for cell-to-cell communication (von Groll et al. 2002). Binding of 

six of these protease proteins to tubulin was affected differently by low temperature treatments 

(Table 3.1). Interestingly, subtilases are known to modify tubulin by cleaving (shortening) the  

β-tubulin C-terminal end (Bokros et al. 1996), which could have significant consequences on MT 

stability, as it is the C- terminal end of β- tubulin that is responsible for MT cold-sensitivity. 

Removal of this domain by subtilases increased the cold stability of MTs containing these 

modified tubulin proteins (Bokros et al. 1996), therefore, subtilases may act on tubulin during the 

cold acclimation process to increase MT cold stability.  

The cytoskeleton is present throughout the cell, making up a large surface area that 

interconnects nearly all cell structures. This large and highly charged MT surface area provides a 

site of localization and stabilization for all kinds of cytoplasmic components. The identification 

of diverse types of tubulin binding proteins supports the idea that many proteins use the 

cytoskeleton as a scaffold to facilitate their transport and interaction with other cellular elements. 

Additional research is required to determine if the proteins identified in this study interact with 

MTs or associate with other MT-binding proteins in planta. 

The predicted functions and expression patterns of tubulin binding proteins identified in 

control and short term cold acclimated Arabidopsis plants has revealed numerous and diverse 

ways that MTs may be involved in the Arabidopsis low temperature response. Further 

investigation (Chapter 4) will provide more detailed insight into the role of these MAPs in the 

low temperature response in Arabidopsis, and how these proteins are affected by low 

temperature.  
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CHAPTER 4 
GENERAL DISCUSSION AND FURTHER RESEARCH 

 
4.1 General Discussion and Conclusions 

In this work several aspects of the relationship between low temperature stress and plant 

MTs in Arabidopsis were investigated. Despite abundant evidence in the literature suggesting 

that the cytoskeleton may be involved in the plant response to low temperature stress only a few 

studies have attempted to directly examine this link. One highly cited publication indicated that 

MT reorganization is able to initiate the cold acclimation process (Abdrakhamanova et al. 2003). 

However, there has been no follow up work since its publication nearly five years ago, leaving 

the mechanism by which MTs initiate cold signalling unknown and questioning if a similar 

process occurs in other species.  

In the first part of this project the effect of low temperatures on MT organization in 

Arabidopsis were monitored and the potential consequences of these changes examined. In this 

study the changes to MT organization caused by low temperatures were visualized in a live plant 

system for the first time. MTs were observed undergoing transient partial disassembly when 

exposed to cold acclimation temperatures, similar to the rearrangements observed in 

immunolabelled root MTs in cold tolerant winter wheat cultivars exposed to cold acclimation 

treatment (Abdrakhamanova et al. 2003). However unlike previous results, disassembly and 

reassembly of MTs was found to be insufficient to increase cold hardiness to the full extent of 

cold acclimation in Arabidopsis (Chapter 2). The results of this study support the idea that 

changes to MT composition, not induced by MT disruption with chemicals, such as altered MAP 

binding, are necessary for complete cold hardiness in plants.  

The second part of this project was a study of tubulin binding proteins present in 

untreated and cold treated Arabidopsis tissue. The MT cytoskeleton is an important site for the 

binding of many proteins, but likely only a portion of proteins that make up the plant MT binding 

proteome have been identified to date (Chuong et al. 2004; Forgacs et al. 2004). Some of these 

proteins are critical to controlling MT activity and organization while the binding of others do 
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not appear to affect MTs. The large-scale analysis of tubulin binding proteins performed in this 

study has appreciably expanded the identification of tubulin binding proteins.  

This was also the first analysis of the impact of exposure to stress on binding of proteins 

to MTs. Comparing the MT binding proteins found in 1 h and 1 d cold-treated plants vs. control 

plants provided information on how MTs may be involved in the plant response to low 

temperature stress. For example, signalling proteins that only bound to MTs in stressed plant 

tissue supports the concept of MTs serving as a track for signal transport. The cellular elements 

that are responsible for sensing low temperature signals and linking MTs and the cell wall are 

still unknown. The considerable presence of cell wall proteins in the tubulin binding proteome 

provides many candidate proteins that may link these elements and/or facilitate communication 

between extracellular matrix and MT cytoskeleton.  

In conclusion, this project was successful in determining how MT arrays and MAPs 

respond to low temperatures. This work provides an extensive framework on which further 

analysis, to determine precisely how MTs act to increase plant cold hardiness, can be based. 

 

4.2 Further Research 

 The general goals of this study were broad, and more complex than can be fully 

examined in the spectra of a Masters Thesis project. Cold acclimation and MAPs are both areas 

of research with lots of unknowns. There are many ways this study could be expanded to gain 

further insight into the relationship between MTs and the cold acclimation process in plants. 

Questions related to this topic, that arose during the course of this research and would benefit 

from further study, are discussed below. 

4.2.1 Examination of Microtubule Disrupting Chemicals 

In this study, pronamide and oryzalin treatments had very different effects on freezing 

tolerance, with the differences likely related to the different modes of action of the two 

chemicals. While there is some idea of how these chemicals cause MT disassembly, relatively 

little is known about what effect, if any, these chemicals have on the binding of MAPs and other 

cell constituents, or if these chemicals have preferential binding to different tubulin isoforms. 

Research should be carried out to answer these questions and examine the relationship between 

low temperature and chemically induced MT reorganization. 
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4.2.2 Examination of Tubulin Isoform Changes 

Past literature indicates that there are tubulin isoforms with differing sensitivities to low 

temperatures. Combined with the observed gradual changes in MT arrangement and inconsistent 

effects of chemically induced MT disassembly on freezing tolerance, these results suggest that 

the shift from dynamic, cold-sensitive MTs to slower moving, cold-hardy MTs may be important 

to the acquisition of MT and plant freezing tolerance.  

It has been reported that the C-terminal end of the tubulin protein is responsible for the 

sensitivity of MTs to cold induced disassembly. Post secondary modifications to tubulin, the 

high presence of acidic or basic amino acids, and binding affinity of MAPs to different protein 

motifs may alter MT dynamics or directly make MTs more sensitive to low temperature-induced 

depolymerization. Examining the features of the C-terminal domain that contribute to cold 

sensitivity would greatly enhance our understanding of the role of MTs in plant cold hardiness. 

Future studies should be carried out to examine expression levels of tubulin genes and 

proteins during cold acclimation in Arabidopsis, to determine if MT disassembly during cold 

acclimation occurs in order to permit the formation of MTs with cold resistant tubulin isoforms. 

Creating and examining plant lines with altered expression levels of the cold sensitive and cold 

hardy tubulin isoforms, including over-expression and gene knockout (KO) lines, would provide 

considerable insight into the importance of MTs in cold hardiness.  

4.2.3 Characterization of Tubulin Binding Proteins 

In planning this study we predicted that many of the tubulin binding proteins involved in 

low temperature response would completely change their tubulin association following exposure 

to low temperatures. While some proteins with these characteristics were identified, most 

proteins were present in both control and low temperature-treated samples. Future studies to 

identify more quantitative changes in tubulin binding during low temperature exposure could use 

quantitative proteomics techniques such as differential in-gel electrophoresis (DIGE), isotope-

coded affinity tagging (ICAT), and protein labelling using isobaric tags for relative and absolute 

quantification (iTRAQ).  

A large subject of future research is a more in depth examination of the tubulin binding 

proteins identified in this study. The ability of these proteins to bind tubulin/MTs should be 

examined using techniques such as yeast two hybrid assays and fluorescent protein studies. Some 

of the identified proteins may interact with other MAPs and other proteins of interest, and the 
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full array of possible protein-protein interaction partners should be identified to establish 

mechanisms and outcomes of MT-interactions. 

Other powerful tools for studying proteins at a functional level are mutant plant lines 

suppressing or over-expressing the proteins of interest. Over-expression and KO plant lines can 

be examined to determine the effect these proteins may have on MT activity and organization. 

The ability of these mutants to cold acclimate and perform low temperature signalling could also 

be assessed through means such as traditional LT50 determination.  
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APPENDIX 
PRELIMINARY CHARACTERIZATION OF PUTATIVE MAPS 

 
Preliminary characterization of three putative MAPs was undertaken to investigate their 

potential involvement in MT activity and low temperature responses. Two MAPs, a phosphate-

responsive protein (phi-1-like, At5g64260; spot 25), and a glycosyl hydrolase family 3 protein 

(xylosidase, At5g49360; spot 35) were selected for analysis. A third protein (DRP2B, 

At1g59610) belonging to the dynamin-related family was also selected because it was identified 

among a group of cold-responsive nuclear proteins (Parkin, unpublished results). 

GFP fusion proteins were created for each of the three target proteins and preliminary 

results reveal their potential localization patterns. Preliminary protein expression analysis of 

GFP:phi-1-like phosphate responsive protein-GFP fusion protein in tobacco leaf epidermal cells 

expression systems showed protein localization at the cell wall, plasma membrane, and 

cytoplasm (Figure A.1A and B). Fluorescence was limited to the cell periphery and what 

appeared to be the cell wall and plasma membrane in N-terminal GFP fusions (Figure A.1A), 

while C-terminal GFP fusion proteins were present throughout the cytoplasm (Figure A.1B) in 

punctate patterns streaming throughout the cytoplasm. The different localization patterns of the 

differently labelled proteins suggest that the presence of the GFP tag interferes with some part of 

the protein trafficking.  

Fluorescence from GFP:DRP2B fusion proteins expressed in tobacco leaf epidermal cells 

was localized to the cell periphery and large vesicle-like structures at the cell periphery (Figure 

A.1C). The identity and significance of the fluorescent patches remains to be determined. 

Fluorescence from GFP:xylosidase expressed in tobacco leaf epidermal cells appeared to be 

concentrated in thickened areas of the cell wall, while Arabidopsis transformants showed 

fluorescence localized to the cell wall and globules within the vacuole of root epidermal cells 

(Figure A.1D). This observed vacuolar accumulation of GFP:xylosidase is unusual and of 

unknown significance.  

More detailed/thorough analysis of protein expression is required to verify subcellular 

localization of these proteins. Analysis should include co-expression of the fusion proteins with
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Figure A.1. Expression of GFP-target protein fusions revealing putative cellular localization. 
(A) Localization of phi-1:GFP and (B) GFP:phi-1 in tobacco leaf epidermal cells. (A) 
Tobacco cell at early stage of plasmolysis showing separation of the plasma membrane (open 
arrow) from the cell wall (closed arrow). (B) GFP:phi-1 fluorescence throughout the 
cytoplasm with some punctate distribution (open arrows). (C) Expression of GFP:DRP2B in 
tobacco epidermal cells with fluorescent accumulations at the cell periphery (closed arrow). 
Red indicates chloroplast autofluorescence. (D) Localization of GFP:xylosidase expressed in 
Arabidopsis root cells at the cell wall (closed arrow) and in bright accumulations within the 
vacuole. Arrowheads indicate location of nucleus. Scale bars = 10 µm. 

A   B

C   D
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fluorescent labelled organelle markers and cytoskeleton proteins to determine if the proteins co- 

localize with MTs or other organelles. Stable lines of Arabidopsis, expressing the MT markers 

together with the described fusion proteins, as well as lines expressing fluorescently labelled 5’ 

regulatory regions of the protein’s should be created to identify if the proteins co-localize with 

MTs and where and when the genes are expressed.  

Preliminary examination of Arabidopsis SALK lines with gene KOs of xylosidase and 

the dynamin related protein was undertaken. Preliminary results suggest that control and 

homozygous SALK gene KO lines have no characteristic morphological differences, differential 

responses to ABA, pronamide or taxol, or differences in salt or freeze tolerance.  

The presence of many duplicated and potentially functionally redundant genes in 

Arabidopsis can often limit the value of gene KO studies. A lack of detectable phenotype would 

result from a functional redundancy among members of the same gene family. The loss of gene 

expression in a KO line could be compensated for by increased expression of other members of 

the gene subfamily. 

The xylosidase is a member of the glycosyl hydrolase family 3. There are 14 members of 

this family, and three Arabidopsis family members share >60% protein identity with xylosidase 

At5g49360. Creating a plant line with gene KOs of multiple members of this family may provide 

more insight into this protein function. One protein in Arabidopsis is similar to the Phi-1 

phosphate induced protein, Phi-2. Although there are 16 dynamin-related proteins in 

Arabidopsis, only one protein in Arabidopsis, DRP2A, is closely related to DRP2B (Hong et al. 

2003). The function of both DRP2B and Phi-1 would therefore be best examined in Arabidopsis 

lines containing double KOs of the respective closely related genes.  
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