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ABSTRACT 

This thesis investigates the characteristics of an involute gear system including 

contact stresses, bending stresses, and the transmission errors of gears in mesh. Gearing is 

one of the most critical components in mechanical power transmission systems. 

Transmission error is considered to be one of the main contributors to noise and vibration 

in a gear set. Transmission error measurement has become popular as an area of research 

on gears and is possible method for quality control. To estimate transmission error in a 

gear system, the characteristics of involute spur gears were analyzed by using the finite 

element method. The contact stresses were examined using 2-D FEM models. The 

bending stresses in the tooth root were examined using a 3-D FEM model. 

Current methods of calculating gear contact stresses use Hertz’s equations, which 

were originally derived for contact between two cylinders. To enable the investigation of 

contact problems with FEM, the stiffness relationship between the two contact areas is 

usually established through a spring placed between the two contacting areas. This can be 

achieved by inserting a contact element placed in between the two areas where contact 

occurs. The results of the two dimensional FEM analyses from ANSYS are presented. 

These stresses were compared with the theoretical values. Both results agree very well. 

This indicates that the FEM model is accurate.  

This thesis also considers the variations of the whole gear body stiffness arising 

from the gear body rotation due to bending deflection, shearing displacement and contact 

deformation. Many different positions within the meshing cycle were investigated. 



IV 

TABLE OF CONTENTS 

PERMISSION TO USE.................................................................................................... I 

ACKNOWLEDGEMENTS.............................................................................................II 

ABSTRACT .................................................................................................................... III 

TABLE OF CONTENTS................................................................................................IV 

LIST OF FIGURES ......................................................................................................VII 

LIST OF TABLES ..........................................................................................................IX 

Nomenclature.................................................................................................................... X 

Chapter 1 INTRODUCTION..................................................................................... 1 

1.1 Research Overview ......................................................................................... 1 

1.2 Objectives of the Research.............................................................................. 4 

1.3 Layout of Thesis.............................................................................................. 7 

Chapter 2 Literature Review and Background ........................................................ 8 

2.1 Model with Tooth Compliance ....................................................................... 9 

2.2 Models of Gear System Dynamics................................................................ 12 

2.3 Models of a Whole Gearbox ......................................................................... 16 

2.4 Models for Optimal Design of Gear Sets ...................................................... 16 

Chapter 3 Contact Stress Simulation of Two Cylinders........................................ 19 

3.1 Why is the Contact Problem Significantly Difficult ..................................... 19 

3.2 How to Solve the Contact Problem............................................................... 20 

3.2.1 Contact Problem Classification............................................................. 20 

3.2.2 Types of Contact Models ...................................................................... 21 



V 

3.2.3 How to Solve the Contact Problem....................................................... 21 

3.2.4 Contact Element Advantages, Disadvantages and their Convergence.. 24 

3.2.5 Numerical Example ---- Contact Problem of Two Circular Discs........ 25 

3.2.6 The FEM Numerical Procedure ............................................................ 27 

3.3 Hertz Contact Stress Equations ..................................................................... 29 

3.4 The Result of the Contact Stress Analysis .................................................... 31 

Chapter 4  Involute Gear Tooth Contact and Bending Stress Analysis............... 40 

4.1 Introduction ................................................................................................... 40 

4.2 Analytical Procedure ..................................................................................... 40 

4.3 Rotation Compatibility of the Gear Body ..................................................... 43 

4.4 Gear Contact Stress ....................................................................................... 46 

4.5 The Lewis Formula ....................................................................................... 49 

4.6 FEM Models.................................................................................................. 52 

4.6.1 The Two Dimensional Model ............................................................... 52 

4.6.2 The Three Dimensional Model ............................................................. 55 

4.7 Comparison with Results using AGMA Analyses........................................ 57 

4.8 Conclusion..................................................................................................... 59 

Chapter 5 Torsional Mesh stiffness and Static Transmission Error .................... 60 

5.1 Introduction and Definition of Transmission Error....................................... 60 

5.2 The Combined Torsional Mesh Stiffness...................................................... 62 

5.3 Transmission Error Model ............................................................................ 67 

5.3.1 Analysis of the Load Sharing Ratio ...................................................... 67 

5.3.2 2D FEA Transmission Error Model ...................................................... 69 

5.3.3 Overcoming the convergence difficulties ............................................. 70 



VI 

5.3.4 The Results from ANSYS..................................................................... 75 

5.4 The Transmission Error................................................................................. 76 

5.5 Conclusion..................................................................................................... 78 

Chapter 6 Conclusions and Future Work............................................................... 79 

6.1 Conclusions ................................................................................................... 79 

6.2 Future Work .................................................................................................. 79 

REFERENCES................................................................................................................ 80 

Appendix A   Input File of A Model of Two Cylinders................................................ 86 

 

 

 

 

 



VII 

LIST OF FIGURES 

Figure 1-1   Fatigue failure of the tooth surface.................................................................. 6 

Figure 2-1   Meshing of a helical pair ............................................................................... 11 

Figure 3-1   Point-to-surface contact element ................................................................... 24 

Figure 3-2  Two steel cylinders are pressed against each other ........................................ 27 

Figure 3-3   Equilibrium iteration ..................................................................................... 29 

Figure 3-4   Ellipsoidal-prism pressure distribution.......................................................... 30 

Figure 3-5   Rectangular shaped elements were generated near contact areas ................. 32 

Figure 3-6   Normal contact stress along the contact surface............................................ 33 

Figure 3-7 Contact stress from ANSYS agrees with the Hertz stress............................... 34 

Figure 3-8   Stress along depth distance below the contact surface from ANSYS ........... 34 

Figure 3-9   FEM stresses agree with the theoretical values............................................. 36 

Figure 3-10   Comparison between calculated values and ANSYS values....................... 36 

Figure 3-11   Orthogonal shear stress magnitudes ............................................................ 37 

Figure  3-12   Maximum shear stress from ANSYS ......................................................... 39 

Figure 4-1   Involutometry of a spur gear ......................................................................... 42 

Figure 4-2   Gear contact stress model.............................................................................. 43 

Figure 4-3 Illustration of one complete tooth meshing cycle ........................................... 44 

Figure 4-4 Different positions for one complete tooth meshing cycle ............................. 45 



VIII 

Figure 4-5   FEM Model of the gear tooth pair in contact ................................................ 47 

Figure 4-6   Fine meshing of contact areas ....................................................................... 48 

Figure 4-7   Contact stress along contact areas ................................................................. 48 

Figure 4-8   A fine mesh near contact areas...................................................................... 49 

Figure 4-9   Length dimensions used in determining bending tooth stress....................... 50 

Figure 4-10   FEM gear tooth bending model with 3 teeth ............................................... 53 

Figure 4-11   A two dimension tooth from a FEM model with 28 teeth........................... 53 

Figure 4-12   Von Mises stresses with 28 teeth on the root of tooth................................. 54 

Figure 4-13   FEM bending model with meshing ............................................................. 55 

Figure 4-14   Von Mises stresses with 28 teeth on the root of tooth................................. 56 

Figure 5-1  The beam elements were used in the FEA model .......................................... 66 

Figure 5-2   Vectors of displacement ................................................................................ 67 

Figure 5-3 Vectors of displacement near the contact surfaces.......................................... 68 

Figure 5-4   Contact elements between the two contact surfaces...................................... 71 

Figure 5-5   Meshing model for spur gears ....................................................................... 71 

Figure 5-6 The fine mesh near the two contact surfaces................................................... 72 

Figure 5-7   Von Mises stresses in spur gears ................................................................... 75 

Figure 5-8   The distribution of contact stresses between two teeth ................................. 76 

Figure 5-9   Static transmission error from ANSYS ......................................................... 77 

   



IX 

LIST OF TABLES 

 

Table 3.1 Specifications of spur gears used……………………………………………26 

Table 4.1 Bending Stresses for 3-D and 2D FEM bending model..................................59                                 

Table 5.1 Gear Parameters Used in the Model…………………………………………69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 

Nomenclature 

K  Structural stiffness             

u  Displacement vector           

F  Applied load vector 

maxP   Maximum contact stress   

1d  Pinion pitch diameter 

2d  Gear pitch diameter           

iF  Load per unit width 

iR  Radius of cylinder i  

ϕ  Pressure angle        

iυ  Poisson’s ratio for cylinder i  

iE  Young’s modulus for cylinder i  

Hσ  Maximum Hertz stress. 

a          Contact width   

r  Any radius to involute curve   

br  Radius of base circle 

θ  Vectorial angle at the pitch circle 

ξ  Vectorial angle at the top of tooth 

φ  Pressure angle at the pitch circle 



XI 

1φ  Pressure angle at radius r  

B
PB  Tooth displacement vectors caused by bending and shearing of the pinion 

B
gB  Tooth displacement vectors caused by bending and shearing of the gear 

B
PH  Contact deformation vectors of tooth pair B for the pinion  

B
gH  Contact deformation vectors of tooth pair B for the gear 

B
Pθ  Transverse plane angular rotation of the pinion body  

B
gθ  Transverse plane angular rotation of the gear body 

dp  Diametral pitch 

Y  Lewis form factor                                                

aK  Application factor     

sK  Size factor      

mK  Load distribution factor 

vK  Dynamic factor 

tF  Normal tangential load  

jY  Geometry factor 

gθ  Angular rotation of the output gear  

pθ  Angular rotation of the input gear                                                            

 

 



1 

Chapter 1  INTRODUCTION 

1.1 Research Overview  

Gearing is one of the most critical components in a mechanical power 

transmission system, and in most industrial rotating machinery.  It is possible that gears 

will predominate as the most effective means of transmitting power in future machines 

due to their high degree of reliability and compactness. In addition, the rapid shift in the 

industry from heavy industries such as shipbuilding to industries such as automobile 

manufacture and office automation tools will necessitate a refined application of gear 

technology. 

A gearbox as usually used in the transmission system is also called a speed 

reducer, gear head, gear reducer etc., which consists of a set of gears, shafts and bearings 

that are factory mounted in an enclosed lubricated housing. Speed reducers are available 

in a broad range of sizes, capacities and speed ratios. Their job is to convert the input 

provided by a prime mover (usually an electric motor) into an output with lower speed 

and correspondingly higher torque. In this thesis, analysis of the characteristics of 

involute spur gears in a gearbox was studied using nonlinear FEM.  

The increasing demand for quiet power transmission in machines, vehicles, 

elevators and generators, has created a growing demand for a more precise analysis of the 

characteristics of gear systems. In the automobile industry, the largest manufacturer of 

gears, higher reliability and lighter weight gears are necessary as lighter automobiles 

continue to be in demand. In addition, the success in engine noise reduction promotes the 

production of quieter gear pairs for further noise reduction. Noise reduction in gear pairs 

is especially critical in the rapidly growing field of office-automation equipment as the 

office environment is adversely affected by noise, and machines are playing an ever-
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widening role in that environment. Ultimately, the only effective way to achieve gear 

noise reduction is to reduce the vibration associated with them. The reduction of noise 

through vibration control can only be achieved through research efforts by specialists in 

the field. However, a shortage of these specialists exists in the newer, lightweight 

industries in Japan [42] mainly because fewer young people are specializing in gear 

technology today and traditionally the specialists employed in heavy industries tend to 

stay where they are.  

Designing highly loaded spur gears for power transmission systems that are both 

strong and quiet requires analysis methods that can easily be implemented and also 

provide information on contact and bending stresses, along with transmission errors. The 

finite element method is capable of providing this information, but the time needed to 

create such a model is large. In order to reduce the modeling time, a preprocessor method 

that creates the geometry needed for a finite element analysis may be used, such as that 

provided by Pro/Engineer. Pro/Engineer can generate models of three-dimensional gears 

easily. In Pro/E, the geometry is saved as a file and then it can be transferred from Pro/E 

to ANSYS. In ANSYS, one can click File > Import > IGES > and check No defeaturing 

and Merge coincident key points.            

The prime source of vibration and noise in a gear system is the transmission error 

between meshing gears. Transmission error is a term used to describe or is defined as the 

differences between the theoretical and actual positions between a pinion (driving gear) 

and a driven gear. It has been recognized as a main source for mesh frequency excited 

noise and vibration. With prior knowledge of the operating conditions of the gear set it is 

possible to design the gears such that the vibration and noise is minimized.  
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Transmission error is usually due to two main factors. The first is caused by 

manufacturing inaccuracy and mounting errors. Gear designers often attempt to 

compensate for transmission error by modifying the gear teeth. The second type of error 

is caused by elastic deflections under load. Among the types of gearbox noise, one of the 

most difficult to control is gear noise generated at the tooth mesh frequency. 

Transmission error is considered to be one of the main contributors to noise and vibration 

in a gear set. This suggests that the gear noise is closely related to transmission error. If a 

pinion and gear have ideal involute profiles running with no loading torque they should 

theoretically run with zero transmission error. However, when these same gears transmit 

torque, the combined torsional mesh stiffness of each gear changes throughout the mesh 

cycle as the teeth deflect, causing variations in angular rotation of the gear body. Even 

though the transmission error is relatively small, these slight variations can cause noise at 

a frequency which matches a resonance of the shafts or the gear housing, causing the 

noise to be enhanced. This phenomenon has been actively studied in order to minimize 

the amount of transmission error in gears. 

Gears analyses in the past were performed using analytical methods, which 

required a number of assumptions and simplifications. In general, gear analyses are 

multidisciplinary, including calculations related to the tooth stresses and to tribological 

failures such as like wear or scoring. In this thesis, static contact and bending stress 

analyses were performed, while trying to design spur gears to resist bending failure and 

pitting of the teeth, as both affect transmission error. 

As computers have become more and more powerful, people have tended to use 

numerical approaches to develop theoretical models to predict the effect of whatever are 

studied. This has improved gear analyses and computer simulations. Numerical methods 
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can potentially provide more accurate solutions since they normally require much less 

restrictive assumptions. The model and the solution methods, however, must be chosen 

carefully to ensure that the results are accurate and that the computational time is 

reasonable.  

The finite element method is very often used to analyze the stress state of an 

elastic body with complicated geometry, such as a gear. There have been numerous 

research studies in the area [2],[3] as described in chapter 2.  

In this thesis, first, the finite element models and solution methods needed for the 

accurate calculation of two dimensional spur gear contact stresses and gear bending 

stresses were determined. Then, the contact and bending stresses calculated using 

ANSYS 7.1 were compared to the results obtained from existing methods. The purpose 

of this thesis is to develop a model to study and predict the transmission error model 

including the contact stresses, and the torsional mesh stiffness of gears in mesh using the 

ANSYS 7.1 software package based on numerical method. The aim is to reduce the 

amount of transmission error in the gears, and thereby reduce the amount of noise 

generated. 

1.2 Objectives of the Research 

In spite of the number of investigations devoted to gear research and analysis 

there still remains to be developed, a general numerical approach capable of predicting 

the effects of variations in gear geometry, contact and bending stresses, torsional mesh 

stiffness and transmission errors. The objectives of this thesis are to use a numerical 

approach to develop theoretical models of the behavior of spur gears in mesh, to help to 

predict the effect of gear tooth stresses and transmission error. The main focus of the 

current research as developed here is: 
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• To develop and to determine appropriate models of contact elements, to calculate 

contact stresses using ANSYS and compare the results with Hertzian theory.  

• To generate the profile of spur gear teeth and to predict the effect of gear bending 

using a three dimensional model and two dimensional model and compare the 

results with theose of the Lewis equation. 

• To determine the static transmission errors of whole gear bodies in mesh. 

The objectives in the modeling of gears in the past by other researchers have 

varied from vibration analysis and noise control, to transmission error during the last five 

decades. The goals in gear modeling may be summarized as follows: 

• Stress analysis such as prediction of contact stress and bending stress. 

• Prediction of transmission efficiency. 

• Finding the natural frequencies of the system before making the gears. 

• Performing vibration analyses of gear systems. 

• Evaluating condition monitoring, fault detection, diagnosis, prognosis, 

reliability and fatigue life. 

Different analysis models will be described in chapter 2.  For gears, there are 

many types of gear failures but they can be classified into two general groups. One is 

failure of the root of the teeth because the bending strength is inadequate. The other is 

created on the surfaces of the gears. There are two theoretical formulas, which deal with 

these two fatigue failure mechanisms. One is the Hertzian equation, which can be used to 

calculate the contact stresses. The other is the Lewis formula, which can be used to 

calculate the bending stresses. The surface pitting and scoring shown in Figure 1.1 [35] 

are the examples of failures which resulted in the fatigue failure of tooth surface. The 
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Hertzian equation will be used to investigate surface pitting and scoring by obtaining the 

magnitude of the contact stresses. 

 

Figure 1-1   Fatigue failure of the tooth surface  

Pitting and scoring is a phenomena in which small particles are removed from the 

surface of the tooth due to the high contact stresses that are present between mating teeth. 

Pitting is actually the fatigue failure of the tooth surface. Hardness is the primary 

property of the gear tooth that provides resistance to pitting. In other words, pitting is a 

surface fatigue failure due to many repetitions of high contact stress, which occurs on 

gear tooth surfaces when a pair of teeth is transmitting power.  

The literature available on the contact stress problems is extensive. But that 

available on the gear tooth contact stress problem is small, especially for transmission 

error including the contact problem. Klenz [1] examined the spur gear contact and 

bending stresses using two dimensional FEM. Coy and Chao [9] studied the effect of the 

finite element grid size on Hertzian deflection in order to obtain the optimum aspect ratio 

at the loading point for the finite element grid. Gatcombe and Prowell [10] studied the 
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Hertzian contact stresses and duration of contact for a very specific case, namely a 

particular rocket motor gear tooth. Tsay [11] has studied the bending and contact stresses 

in helical gears using the finite element method with the tooth contact analysis technique. 

However, the details of the techniques used to evaluate the transmission error including 

contact stresses were not presented. 

1.3 Layout of Thesis  

This thesis is comprised of a total of six chapters. Chapter 1 presents a general 

introduction, and the objectives to be achieved. Finally the layout of the thesis is 

described. Chapter 2 is a literature review and gives background of characteristics of 

involute spur gears for different types of modeling. Chapter 3 describes why the contact 

problem is difficult. A contact problem classification was done which as well as provides 

a discussion of the advantages and disadvantages of contact elements. Finally a 

discussion on how to overcome some of the disadvantages is presented.  The contact 

stress model between two cylinders was then developed. Many graphical results from 

ANSYS are shown. Chapter 4 begins with presentation of an involute gear tooth contact 

stress analysis model from ANSYS, and then presents the bending stresses from 3-D 

models and 2-D models for the different numbers of teeth. The results are compared with 

the results from the Lewis Formula. In Chapter 5, FEM will be used to determine the 

transmission error model including the contact problem for ideal involute spur gears and 

how to obtain the transmission error in mesh from ANSYS. Chapter 6 gives the 

conclusions of this thesis, and suggests future work. 
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Chapter 2 Literature Review and Background 

There has been a great deal of research on gear analysis, and a large body of 

literature on gear modeling has been published. The gear stress analysis, the transmission 

errors, the prediction of gear dynamic loads, gear noise, and the optimal design for gear 

sets are always major concerns in gear design. Errichello [12] and Ozguven and 

Houser[13] survey a great deal of literature on the development of a variety of simulation 

models for both static and dynamic analysis of different types of gears. The first study of 

transmission error was done by Harris [14].  He showed that the behavior of spur gears at 

low speeds can be summarized in a set of static transmission error curves. In later years, 

Mark [15] and [16] analyzed the vibratory excitation of gear systems theoretically. He 

derived an expression for static transmission error and used it to predict the various 

components of the static transmission error spectrum from a set of measurements made 

on a mating pair of spur gears. Kohler and Regan [17] discussed the derivation of gear 

transmission error from pitch error transformed to the frequency domain. Kubo et al [18] 

estimated the transmission error of cylindrical involute gears using a tooth contact 

pattern. The current literature reviews also attempt to classify gear model into groupings 

with particular relevance to the research. The following classification seems appropriate 

[64]. 

• Models with Tooth Compliance 

• Models of Gear system Dynamics 

• Models of A Whole Gearbox 

• Models for Optimal Design of Gear Sets 
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2.1 Model with Tooth Compliance 

These models only include the tooth deformation as the potential energy storing 

element in the system. There are studies of both single tooth and tooth pair models. For 

single tooth models, a method of stress analysis was developed. For the models with 

paired teeth, the contact stresses and meshing stiffness analysis usually were emphasized. 

The system is often modeled as a single degree of freedom spring-mass system. The basic 

characteristic in this group is that the only compliance considered is due to the gear tooth 

deflection and that all other elements have assumed to be perfectly rigid.  

Harris [14] made an important contribution to this area. The importance of 

transmission error in gear trains was discussed and photo-elastic gear models were used 

in his work. Due to the loss of contact he considered manufacturing errors, variation in 

the tooth stiffness and non-linearity in tooth stiffness as three internal sources of 

vibration. Harris was the first investigator who pointed out the importance of 

transmission error by showing the behavior of spur gears at low speeds. His work can be 

summarized in a set of static transmission error curves. In 1969, Aida [67] presented 

other examples of studies in this area. He modeled the vibration characteristics of gears 

by considering tooth profile errors and pitch errors, and by including the variation of 

teeth mesh stiffness. In 1967, Tordion [68] first constructed a torsional multi-degree of 

freedom model with a gear mesh for a general rotational system. The transmission error 

was suggested as a new concept for determining the gear quality, rather than individual 

errors.  

In 1981, Cornell [21] obtained a relationship between compliance and stress 

sensitivity of spur gear teeth. The magnitude and variation of the tooth pair compliance 

with load position affects the dynamics and loading significantly. The tooth root stresses 
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versus load varies significantly with load positions. With improved fillet/foundation 

compliance analysis the compliance analysis was made based on work by Weber [22] and 

O’Donell [23]. The stress sensitivity analysis is a modified version of the Heywood 

method [24]. These improved compliance and stress sensitivity analyses were presented 

along with their evaluation using tests, finite element analysis, and analytic 

transformation results, which indicated good agreement. 

In 1988, Umezawa [27] developed a new method to predict the vibration of a 

helical gear pair.  The developed simulator was created through theoretical analysis on 

the vibration of a narrow face width helical gear pair. The studies on a helical gear are 

very different from the ones on a spur gear. A simple outline of the theoretical analysis 

on the vibration of a helical gear is given below. The length of path of contact is on the 

plane of action of helical gear pairs in Figure 2.1 [27]. A pair of mated teeth starts 

meshing at point S on the plane of action. The meshing of the pair proceeds on the plane 

with the movement of the contact line. It finishes at point E, the position of the line-of-

contact is represented by the coordinate Y along the line-of-action of the helical gear 

(hereafter simply stated as the line-of-action) which is considered to be the middle of the 

face width. That is, the starting point of meshing S  is substituted by 'S , the position of 

line-of-contact cCC  by 'C  and the ending point E  by 'E on the line-of-action. A 

vibration model was built [28] there. When the rotational vibration of a power-

transmitting helical gear pair is considered along the line-of-action model similar to the 

case of a spur-gear pair, in which the tooth is replaced by a spring and the gear blank is 

replaced by a mass.  
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Figure 2-1   Meshing of a helical pair 

In 1992, Vijayarangan and Ganesan [58] studied static contact stresses including 

the effect of friction between the mating gear teeth. Using the conventional finite element 

method the element stiffness matrices and the global stiffness matrix ][K of the two gears 

in mesh were obtained. If the external forces at the various nodes are known, then the 

system of equations is written as: 

                                        }{}]{[ FUK =                                                             (2.1)                

where }{U is the nodal displacement vector and }{F is the nodal force vector. The 

system of equations is solved and }{U is obtained. Then the stress can be calculated. Each 

gear is divided into a number of elements such that in the assumed region of contact there 

is equal number of nodes on each gear. These contact nodes are all grouped together. 
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In 2001, David and Handschuh [20] investigated the effect of this moving load on 

crack trajectories. The objective of this work was to study the effect of the moving gear 

tooth load on crack propagation predictions. A finite element model of a single tooth was 

used to analyze the stress, deformation and fracture in gear teeth when subjected to 

dynamic loading. At different points on the tooth surface impulsive loads were applied. 

Moving loads normal to the tooth profile were studied. Even effective designs have the 

possibility of gear cracks due to fatigue. In addition, truly robust designs consider not 

only crack initiation, but crack propagation trajectories. As an example, crack trajectories 

that propagate through the gear tooth are the preferred mode of failure compared to 

propagation through the gear rim. Rim failures would lead to catastrophic events and 

should be avoided. Analysis tools that predict crack propagation paths can be a valuable 

aid to the designer to prevent such catastrophic failures. Using weighting function 

techniques to estimate gear tooth stress intensity factors, analytical methods have been 

developed [53]. Numerical techniques such as the boundary element method and the 

finite element method have also been studied [54]. Based on stress intensity factors, and 

fatigue crack growth, gear life predictions have been investigated [55]. The gear crack 

trajectory predictions have been addressed in a few studies [56]. From publications on 

gear crack trajectory predictions, the analytical methods have been used in numerical 

form (finite or boundary element methods) while solving a static stress problem. 

2.2 Models of Gear System Dynamics 

The current models can predict shaft torsional vibration, shaft bending stiffness, 

gear tooth bending stiffness, bearings stiffness, etc. The models of gear system dynamics 

include the flexibility of the other parts as well as the tooth compliance. The flexibility of 
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shafts and the bearings along the line of action are discussed. In these models, the 

torsional vibration of the system is usually considered.  

In 1971, Kasuba [66] determined dynamic load factors for gears that were heavily 

loaded based on one and two degree of freedom models. Using a torsional vibratory 

model, he considered the torsional stiffness of the shaft. In 1981, he published another 

paper [48]. An interactive method was developed to calculate directly a variable gear 

mesh stiffness as a function of transmitted load, gear profile errors, gear tooth deflections 

and gear hub torsional deformation, and position of contacting profile points. These 

methods are applicable to both normal and high contact ratio gearing. Certain types of 

simulated sinusoidal profile errors and pitting can cause interruptions of the normal gear 

mesh stiffness function, and thus, increase the dynamic loads. In his research, the gear 

mesh stiffness is the key element in the analysis of gear train dynamics. The gear mesh 

stiffness and the contact ratio are affected by many factors such as the transmitted loads, 

load sharing, gear tooth errors, profile modifications, gear tooth deflections, and the 

position of contacting points. 

In 1979 Mark [15] [16] analyzed the vibration excitation of gear systems. In his 

papers, formulation of the equations of motion of a generic gear system in the frequency 

domain is shown to require the Fourier-series coefficients of the components of vibration 

excitation. These components are the static transmission errors of the individual pairs in 

the system. A general expression for the static transmission error is derived and 

decomposed into components attributable to elastic tooth deformations and to deviations 

of tooth faces from perfect involute surfaces with uniform lead and spacing. 

In the 1980s although more and more advanced models were developed in order 

to obtain more accurate predictions, some simple models were developed for the purpose 
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of simplifying dynamic load prediction for standard gears. In 1980, the coupled torsional-

flexural vibration of a shaft in a spur geared system was investigated by some 

researchers. That the output shaft was flexible in bearing and the input shaft was rigid in 

bearing was assumed. Researchers derived equations of motion for a 6-degree-of-

freedom (DOF) system. The tooth contact was maintained during the rotation and the 

mesh was rigid in those models. Four years later, other researchers presented another 

model that consists of three shafts, rather than two shafts, one of them being a counter 

shaft.  

In 1992, Kahraman [41] developed a finite element model of a geared rotor 

system on flexible bearings. The gear mesh was modeled by a pair of rigid disks 

connected by a spring and a damper with a constant value which represented the average 

mesh value. Coupling between the torsional and transverse vibrations of the gear was 

considered in the model, and applied the transmission error as the excitation at the mesh 

point to simulate the variable mesh stiffness.  

In 1996, Sweeney [25] developed a systematic method of calculating the static 

transmission error of a gear set, based on the effects of geometric parameter variation on 

the transmission error. He assumed that the tooth (pair) stiffness is constant along the line 

of action (thin-slice model) and that the contact radius for calculation of Hertzian 

deformation is the average radius of the two profiles in contact. Sweeney’s model is 

applicable to cases where the dominant source of transmission error is geometric 

imperfections, and is particularly suited to automotive quality gear analysis. The results 

of his model gave very good agreement with measurements on automotive quality gears. 

Randall and Kelley [26] modifications have been made to Sweeney’s basic model 

to extend it to higher quality gears where the tooth deflection component is more 
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important. The tooth deflection compliance matrix and the contact compliance vector 

have been derived using finite element models. The effects on the transmission error of 

the variation of the tooth body stiffness with the load application point have been 

investigated, and a simulation program for transmission error (TE) computation with 

varying stiffness has been developed. In order to study the case where the tooth 

deflection component is the dominant source of the transmission error nylon gears were 

used. All the simulation results have been compared with the measured transmission 

errors from a single-stage gearbox.  

In 1999, Kelenz [1] investigated a spur gear set using FEM. The contact stresses 

were examined using a two dimensional FEM model. The bending stress analysis was 

performed on different thin rimmed gears. The contact stress and bending stress 

comparisons were given in his studies.  

In 2001, Howard [34] simplified the dynamic gear model to explore the effect of 

friction on the resultant gear case vibration. The model which incorporates the effect of 

variation in gear tooth torsional mesh stiffness, was developed using finite element 

analysis, as the gears mesh together. The method of introducing the frictional force 

between teeth into the dynamic equations is given in his paper. The comparison between 

the results with friction and without friction was investigated using Matlab and Simulink 

models developed from the differential equations.   

In 2003, Wang [7] surveyed the nonlinear vibration of gear transmission systems. 

The progress in nonlinear dynamics of gear driven system is reviewed, especially the gear 

dynamic behavior by considering the backlash and time-varying mesh stiffness of teeth. 

The basic concepts, the mathematical models and the solution methods for non-linear 

dynamics of geared systems were all reviewed in his paper. 
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2.3 Models of a Whole Gearbox 

The studies in this group may be thought of as advanced studies. Traditional 

analysis approaches mentioned previously in the gear dynamic area have concentrated on 

the internal rotating system and have excluded dynamic effects of the casing and flexible 

mounts. All elements in the system including the gear casing are considered in the recent 

models. The studies of this group is to focus on the dynamic analysis including the gear 

pair, shafts, rolling element bearings, a motor, a load, a casing and a flexible or rigid 

mount. The gearbox may be single stage or multi-stage.   

In 1991, Lim and Singh [38] presented study of the vibration analysis for 

complete gearboxes. Three example cases were given there:  a single-stage rotor system 

with a rigid casing and flexible mounts, a spur gear drive system with a rigid casing and 

flexible mounts, and a high-precision spur gear drive system with a flexible casing and 

rigid mounts. In 1994, Sabot and Perret-Liaudet [57] presented another study for noise 

analysis of gearboxes. A troublesome part of the noise within the car or truck cab could 

be attributed by the transmission error which gives rise to dynamic loads on teeth, shafts, 

bearings and the casing. During the same year, a simulation method by integrating finite 

element vibration analysis was developed by others. Each shaft was modeled as a lumped 

mass and added to the shaft in their model. Each of the rolling element bearings was 

represented as a spring and damper. The casing of the gearbox was modeled by a thin 

shell element in the finite element package program.  

2.4 Models for Optimal Design of Gear Sets 

Several approaches to the models for optimum design of gears have been 

presented in the recent literature. Cockerham [29] presents a computer design program 

for 20-degree pressure angle gearing, which ignores gear-tooth-tip scoring. This program 
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varies the diametral pitch, face width, and gear ratio to obtain an acceptable design. 

Tucker [30] and Estrin [31] look at the gear mesh parameters, such as addendum ratios 

and pressure angles and outline the procedures for varying a standard gear mesh to obtain 

a more favorable gear set. Gay [32] considers gear tip scoring and shows how to modify a 

standard gear set to bring this mode of failure into balance with the pitting fatigue mode. 

In order to obtain an optimal design he adjusts the addendum ratios of the gear and 

pinion. The basic approach available is to check a given design to verify its acceptability 

[33], [36] to determine the optimal size of a standard gear mesh. With the object of 

minimizing size and weight, optimization methods are presented for the gearbox design 

[37], [39].  The gear strengths must be considered including fatigue as treated by the 

AGMA (American Gear Manufacturing Association) [40]. Surface pitting of the gear 

teeth in the full load region must also be handled with [43]-[45] as scoring at the tip of 

the gear tooth [46], [47].  

In 1980, Savage and Coy [19] optimized tooth numbers for compact standard spur 

gear sets. The design of a standard gear mesh was treated with the objective of 

minimizing the gear size for a given gear ratio, pinion torque, and the allowable tooth 

strength. Scoring, pitting fatigue, bending fatigue, and interference are considered. A 

design space is defined in terms of the number of teeth on the pinion and the diametric 

pitch. This space is then combined with the objective function of minimum center 

distance to obtain an optimal design region. This region defines the number of pinion 

teeth for the most compact design.  

Many engineering design problems are multiobjective as they often involve more 

than one design goal to be optimized. These design goals impose potentially conflicting 

requirements on the technical and cost reduction performances of system design. To 
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study the trade-offs that exist between these conflicting design goals and to explore 

design options, one needs to formulate the optimization problem with multiple objectives. 

The optimization algorithms seek an optimum design, which attains the multiple 

objectives as closely as possible while strictly satisfying constraints. To help the 

exploration of different multiobjective formulations Stadler and Dauer [49] incorporated 

Pareto optimality concepts into the optimization algorithms, which require the designer’s 

involvement as a decision maker. A variety of techniques and many applications of 

multiobjective optimization have been developed over the past few years. Tappeta [51] 

and Hwang and Masud [50] summarized the progress in the field of multi-criteria 

optimization. A comprehensive survey of multiobjective optimization methods is also 

given. The most traditional methods involve converting a multiobjective problem into a 

single objective problem for a compromise solution are also presented. This scalarization 

was usually achieved using either weights or targets that the designers have to specify for 

each objective a priori. Some of the disadvantages of traditional methods are listed there 

[52]. 

In 2001, Chong and Bar [8] demonstrated a multiobjective optimal design of 

cylindrical gear pairs for the reduction of gear size and meshing vibration. The results of 

the relation between the geometrical volume and the vibration of a gear pair were 

analyzed, in addition a design method for cylindrical gear pairs to balance the conflicting 

objectives by using a goal programming formulation was proposed. The design method 

reduces both the geometrical volume and the meshing vibration of cylindrical gear pairs 

while satisfying strength and geometric constraints. 
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Chapter 3 Contact Stress Simulation of Two Cylinders 

3.1 Why is the Contact Problem Significantly Difficult 

Despite the importance of contact in the mechanics of solids and its engineering 

applications, contact effects are rarely seriously taken into account in conventional 

engineering analysis, because of the extreme complexity involved. Mechanical problems 

involving contacts are inherently nonlinear. Why is it “nonlinear” behavior? Usually the 

loading causes significant changes in stiffness, which results in a structure that is 

nonlinear. Nonlinear structural behavior arises for a number of reasons, which can be 

reduced to three main categories: (1) Geometric Nonlinearities (Large Strains, Large 

Deflections) (2) Material Nonlinearities (Plasticity) (3) Change in Status Nonlinearities 

(Contact). So the contact between two bodies belongs to the case (3).  

Why is the contact problem significantly difficult? Contact problems present 

many difficulties. First, the actual region of contact between deformable bodies in contact 

is not known until the solution has been obtained. Depending on the loads, materials, and 

boundary conditions, along with other factors, surfaces can come into and go out of 

contact with each other in a largely unpredictable manner. Secondly, most contact 

problems need to account for friction. The modeling of friction is very difficult as the 

friction depends on the surface smoothness, the physical and chemical properties of the 

material, the properties of any lubricant that might be present in the motion, and the 

temperature of the contacting surfaces. There are several friction laws and models to 

choose from, and all are nonlinear. Frictional response can be chaotic, making solution 

convergence difficult (ANSYS). In addition to those difficulties, many contact problems 

must also address multi-field effects, such as the conductance of heat and electrical 
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currents in the areas of contact. Bodies in contact may have complicated geometries and 

material properties and may deform in a seemingly arbitrary way. 

With the rapid development of computational mechanics, however, great progress 

has been made in numerical analysis of the problem. Using the finite element method, 

many contact problems, ranging from relatively simple ones to quite complicated ones, 

can be solved with high accuracy. The Finite Element Method can be considered the 

favorite method to treat contact problems, because of its proven success in treating a wide 

range of engineering problem in areas of solid mechanics, fluid flow, heat transfer, and 

for electromagnetic field and coupled field problems. 

3.2 How to Solve the Contact Problem 

3.2.1 Contact Problem Classification 

There are many types of contact problems that may be encountered, including 

contact stress, dynamic impacts, metal forming, bolted joints, crash dynamics, assemblies 

of components with interference fits, etc. All of these contact problems, as well as other 

types of contact analysis, can be split into two general classes (ANSYS), 

Rigid - to - flexible bodies in contact, 

Flexible - to - flexible bodies in contact. 

In rigid - to - flexible contact problems, one or more of the contacting surfaces are 

treated as being rigid material, which has a much higher stiffness relative to the 

deformable body it contacts. Many metal forming problems fall into this category. 

Flexible-to-flexible is where both contacting bodies are deformable. Examples of a 

flexible-to-flexible analysis include gears in mesh, bolted joints, and interference fits. 
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3.2.2  Types of Contact Models 

In general, there are three basic types of contact modeling application as far as 

ANSYS use is concerned.  

Point-to-point contact: the exact location of contact should be known beforehand. 

These types of contact problems usually only allow small amounts of relative sliding 

deformation between contact surfaces. 

Point-to-surface contact: the exact location of the contacting area may not be 

known beforehand. These types of contact problems allow large amounts of deformation 

and relative sliding.  Also, opposing meshes do not have to have the same discretisation 

or a compatible mesh. Point to surface contact was used in this chapter. 

Surface-to-surface contact is typically used to model surface-to-surface contact 

applications of the rigid-to-flexible classification. It will use in chapter 5. 

 

3.2.3  How to Solve the Contact Problem 

In order to handle contact problems in meshing gears with the finite element 

method, the stiffness relationship between the two contact areas is usually established 

through a spring that is placed between the two contacting areas. This can be achieved by 

inserting a contact element placed in between the two areas where contact occurs.  

There are two methods of satisfying contact compatibility: (i) a penalty method, 

and (ii) a combined penalty plus a Lagrange multiplier method. The penalty method 

enforces approximate compatibility by means of contact stiffness. The combined penalty 

plus Lagrange multiplier approach satisfies compatibility to a user-defined precision by 

the generation of additional contact forces that are referred to as Lagrange forces. 



22 

It is essential to prevent the two areas from passing through each other. This 

method of enforcing contact compatibility is called the penalty method. The penalty 

allows surface penetrations, which can be controlled by changing the penalty parameter 

of the combined normal contact stiffness. If the combined normal contact stiffness is too 

small, the surface penetration may be too large, which may cause unacceptable errors. 

Thus the stiffness must be big enough to keep the surface penetrations below a certain 

level. On the other hand, if the penalty parameter is too large, then the combined normal 

contact stiffness may produce severe numerical problems in the solution process or 

simply make a solution impossible to achieve. For most contact analyses of huge solid 

models, the value of the combined normal contact stiffness may be estimated [ANSYS] 

as, 

            fEhk n ≈                                                                                      (3.1) 

where f  is a factor that controls contact compatibility. This factor is usually be 

between 0.01 and 100, 

 =E smallest value of Young’s Modulus of the contacting materials 

 =h the contact length 

The contact stiffness is the penalty parameter, which is a real constant of the 

contact element. There are two kinds of contact stiffness, the combined normal contact 

stiffness and the combined tangential or sticking contact stiffness. The element is based 

on two stiffness values. They are the combined normal contact stiffness nk  and the 

combined tangential contact stiffness tk . The combined normal contact stiffness nk  is 

used to penalize interpenetration between the two bodies, while the combined tangential 

contact stiffness tk  is used to approximate the sudden jump in the tangential force, as 
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represented by the Coulomb friction when sliding is detected between two contacting 

nodes. However, serious convergence difficulties may exist during the vertical loading 

process and application of the tangential load often results in divergence. A detailed 

examination of the model’s nodal force during the vertical loading may indicate the 

problem. Not only are friction forces developing but they develop in random directions. 

This is due to Poission’s effect causing small transverse deflections of the nodes in the 

contact zone. These deflections are enough to activate the friction forces of the contact 

elements [1]. The friction forces are developing in various directions because the 

generation of a tangential friction force facing right on one node would tend to pull the 

node on its left to the right. This would generate a friction force facing left on this node, 

pulling back on the other node. This continual tug-of-war causes the poor convergence. 

This problem was eliminated by applying a small rotation to the above cylinder model 

forces as it was displaced and loaded vertically. This rotation ensured that the friction 

forces would develop in the proper direction.           

The contact problem is addressed using a special contact element. A number of 

contact elements were available (two and three dimensional, spring and damper 

combinations). For the problem in hand, the element to be used is a two-dimensional, the 

three nodes, and point-to-surface contact element. In the input file, the CONTAC48 

element from the ANSYS element library as the contact elements between the two 

contact bodies shown as Figure 3.1 was chosen.  It is applicable to 2-D geometry, plane 

strain, plane stress, or axisymmetry situations. The area of contact between two or more 

bodies is generally not known in advance. It may be applied to the contact of solid bodies 

for static or dynamic analyses, to problems with or without friction, and to flexible-to-

flexible or rigid-to-flexible body contact.  
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Figure 3-1   Point-to-surface contact element 

                     

3.2.4  Contact Element Advantages, Disadvantages and their Convergence 

Because of the simplicity of their formulation, the advantages of using contact 

elements are:   

• They are easy to use 

• They are simple to formulate, and 

• They are easily accommodated into existing FE code. 

However, using contact elements poses some difficulties such as the fact that their 

performance, in term of convergence and accuracy, depends on user defined parameters. 

 Contact nodes 

Target surface 
Target nodes 
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In overcoming convergence difficulties, usually the biggest challenge is that the 

solution must start within the radius of convergence. However, there is no simple way to 

determine the radius of convergence. If the solution converges, the start was within the 

radius. If solution fails to converge, the start was outside the radius. Trial-and-error must 

be used to obtain convergence. In order to get convergence in ANSYS, difficult problems 

might require many load increments, and if many iterations are required, the overall 

solution time increases. Balancing expense versus accuracy: All FEA involves a trade-off 

between expense and accuracy. More detail and a finer mesh generally leads to a more 

accurate solution, but requires more time and system resources. Nonlinear analyses add 

an extra factor, the number of load increments, which affect both accuracy and expense. 

Other nonlinear parameters, such as contact stiffness, can also affect both accuracy and 

expense. One must use their own engineering judgment to determine how much accuracy 

is needed versus how much expense can be afforded. 

 

3.2.5 Numerical Example ---- Contact Problem of Two Circular Discs 

First, to investigate the accuracy of the present method, two circular elastic discs 

under two-dimensional contact are analysed, and the numerical solutions are compared 

with that of the Hertz theory. The calculation is carried out under a plane strain condition 

with a Poisson’s ratio of 0.3 using eight-node isoparametric elements. 

Consider two circular discs, A and B, with a radius of R1= 3 in. and R2= 3 in. as 

shown in Figure 3.2. To reduce the number of nodes and elements and to save more 

computer memory space, half of the discs are partitioned to the finite element mesh, the 

number of elements and nodes for each disc is 1766 and 1281, respectively.  
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In this problem, two steel cylinders are pressed against each other. This model 

was built based on the Hertz contact stress theoretical problem. The radii were calculated 

from the pitch diameters of the pinion and gear and other parameters shown in Table 3.1 

and Figure 3.2. The contact stress of this model should represent the contact stress 

between two gears.  In the input file, first, the geometry of two half cylinders, must be 

described. Then the geometry areas were meshed. In contact areas a fine mesh was built. 

The boundary conditions were applied in this model. The loads also were applied four 

times as four steps. In each step there are a lot of sub-steps. In each sub-step the number 

of equilibrium iterations was set.  The steel material properties have an elastic Young’s 

modulus of 30,000,000 psi and the Poisson’s ratio was 0.30.   

 

                                      Table 3.1 Specifications of spur gears used 

 Number of teeth                                                                                          25 

 Normal Module (M)                                                                                    6 mm 

Addendum Modification coefficient                                                            0 

Normal Pressure Angle                                                                               20 degrees 

Face Width (mm)                                                                                        0.015 M 

Addendum (mm)                                                                                         1.00 M 

Dedendum (mm)                                                                                         1.25 M 
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Figure 3-2  Two steel cylinders are pressed against each other 

3.2.6 The FEM Numerical Procedure 

The resulting contact problem is highly nonlinear and usually requires significant 

computer resources to solve. Contact nonlinearities occur when two components come 

into or out of contact with each other or when two components slide relative to each 

other. This nonlinear contact problem can be simulated using the FEA method. It can use 

the linear problem iterated many times instead of solving the nonlinear problem. That 

means that the nonlinear problem is usually solved based on the linear problem. For a 

linear elastic problem, in the 1600s, Robert Hooke discovered a simple linear relationship 

between force { F } and displacement {u}: 

                                               }{}}{{ FuK =                                                                 (3.2) 

where { K } is the stiffness matrix, and represents structural stiffness, 
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           {u } is the displacement vector, and 

           { F } is the applied load vector. 

A linear structure obeys this linear relationship. A common example is a simple 

spring. Linear structures are well suited to finite-element analysis, which is based on 

linear matrix algebra. If }{K  is constant and known, the problem can be solved for 

}{u using a linear equation solver. However, significant classes of structures do not have 

a linear relationship between force and displacement. Because a plot of F  versus u for 

such structures is not a straight line, such structures are said to be nonlinear. The stiffness 

is no longer a constant K . It becomes a function of applied load. In a nonlinear analysis, 

the response cannot be predicted directly with a set of linear equations. However, a 

nonlinear structure can be analyzed using an iterative series of linear approximations, 

with corrections. For example in modeling most contact problems, the contact area is not 

known in advance, }{K  is a function of }{u and an iterative procedure is needed. ANSYS 

uses an iterative process called the Newton-Raphson method which functions as follows: 

                                                   }{})}{({ 1 FuuK ii =−                                               (3.3) 

Where }{ 1−iu is known, the deflection }{ iu is calculated by Gaussian elimination. 

For example, using the stiffness of the undeflected shape, the deflections }{ 1u are 

calculated.  Each iteration is known as an equilibrium iteration. Since the stiffness of the 

structure in the displaced configuration is different than in the previous configuration[1], 

the applied load and structure’s reaction force are not in equilibrium. The Newton 

Raphson method uses this force imbalance to drive the structure to equilibrium. A full 

Newton-Raphson iterative analysis for one increment of load and four iterations is shown 

as Figure 3.3.  In Figure 3.3 the relationship is shown between the loads and the 

displacement when the linear problem is used instead of the nonlinear problem. 
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In other words, the Finite Element Method treats contact problems by extending 

the variational formulation upon which the Finite Element Method is based. The stiffness 

matrix associated with contact elements and other element stiffness matrices of the body 

are formulated and assembled into the original finite element model. The solution is then 

obtained by solving the resulting set of nonlinear equations. 

 

 

 

 

 

 

 

 

3.3 Hertz Contact Stress Equations 

Usually, the current methods of calculating gear contact stresses use Hertz’s 

equations, which were originally derived for contact between two cylinders. Contact 

stresses between two cylinders were shown in Figure 3.4. An ellipsoidal-prism pressure 

distribution is generated between the two contact areas. 
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Figure 3-4   Ellipsoidal-prism pressure distribution 

From Figure 3.4 the width of the contact zone is 2a. If total contact force is F and 

contact pressure is p(x), there is a formula [5], which shows the relationship between the 

force F and the pressure p(x):  
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1d  and 2d represent the pinion and gear pitch diameters. 

 The maximum surface (Hertz) stress: 
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3.4 The Result of the Contact Stress Analysis 

The objective of the contact stress analyses was to gain an understanding of the 

modeling and solution difficulties in contact problems and examine the contact stresses in 

the gears. In order to verify the FEM contact model procedure, contact between two 

cylinders was modeled. To reduce computer time, only half cylinders were meshed in the 

model as shown in Figure 3.5(a). The fine meshed rectangular shaped elements were 

generated near contact areas shown as 3.5 (b). The dimensions of the elements are based 

on the half width of the contact area. The contact conditions are sensitive to the geometry 

of the contacting surfaces, which means that the finite element mesh near the contact 

zone needs to be highly refined. Finer meshing generally leads to a more accurate 

solution, but requires more time and system resources. It is recommended not to have a 

fine mesh everywhere in the model to reduce the computational requirements. The edge 

length dx  of the rectangular shaped fine mesh elements: ./*2 Numadx =  Num  is the 

number of elements in the contact zone as specified in the input file. It was hoped that the 
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  F   is the load per unit width, 

 iR  is the radius of cylinder i ,  2sinϕii dR =  for the gear teeth, 

  ϕ  is pressure angle,     iυ  is Poisson’s ratio for cylinder i , 

  iE  is Young’s modulus for cylinder i . 
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number of elements in the Hertz contact zone could be related to the solution accuracy, 

independent of the specific force or cylinder sizes considered. Num  is equal to 10 here. 

 

                              )(a                                                                             )(b  

Figure 3-5   Rectangular shaped elements were generated near contact areas 

The normal contact stress along the contact surface from the ANSYS solution is 

shown in Figure 3.6.  Figure 3.6 (a) and (b) show the distributions of the contact stress 

along the contact area, and Figure 3.6 (c) shows the magnitude directly from ANSYS.  

The comparison of results from FEM and the Hertzian theoretical formula are 

shown in Figure 3.7 in which the two distributions lie very close. The red color line 

represents the value from the theoretical Hertz equation and the blue color points 

represent the results from ANSYS. They match very well. It is easy to see the blue color 

points are on the red curve.  
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                                                    (c)  

Figure 3-6   Normal contact stress along the contact surface 
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Figure 3-7 Contact stress from ANSYS agrees with the Hertz stress 

         Figure 3.8 shows the stresses yx σσ ,  as a function of depth y along a radius of the 

cylinder. The depth is normalized to the half-width a of the contact patch. This plot 

provides a dimensionless picture of the stress distribution on the centerline under an 

ellipsoidal contact. Note all the stresses have diminished to <10% of maxP  within ay 5= .  
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Figure 3-8   Stress along depth distance below the contact surface from ANSYS 
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 The blue colour curve represents stress in the x direction, and the red color curve 

represents the stress in the y direction. Both of these stresses distributions are along the 

depth distance, which is perpendicular to contact surface. The next step is to compare 

results from ANSYS with the results from the theoretical equations. The stresses due to 

the normal loading maxF are [1] 
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Figure 3-9   FEM stresses agree with the theoretical values 

 

Figure 3-10   Comparison between calculated values and ANSYS values 
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Note that these above equations cannot be used to calculate the stresses on the 

surface because if we set y equal zero it will result in the stresses being calculated as 

zero. The peak values of the equivalent stress using the Von Mises criterion, the 

maximum shear stress, and the maximum orthogonal shear stress can be calculated from 

the maximum Hertz stress (3.7) as follows[1]: 
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 where Hσ  is the maximum Hertz stress. 
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Figure 3-11   Orthogonal shear stress magnitudes 

  



38 

 Figure 3.9 and Figure 3.10 show a comparison of ANSYS results with the 

theoretical equations for stresses in x and y direction respectively. In both figures, the red 

curves represent the values from the above theoretical formula and blue points represent 

the results from ANSYS. It can be seen that the FEM results are essentially identical to 

the theoretical solution for both stresses xσ  and yσ . The FEA model from ANSYS is 

reliable if the solution is convergent. When finishing running the program, whether the 

solution has converged is checked after many times of  equilibrium iteration. Usually a 

converged solution occurred at an expected “time” value such as the end of the load step. 

 If there is no convergence indicated in ANSYS, troubleshooting is necessary. 

Usually for nonlinear problems it is not easy to get convergence. In the author’s 

experience, there are several ways to do that: (1) Change the FKN – Normal Penalty 

Stiffness value (2) Solve the nonlinear analysis using “Line Search”, which can provide 

rapid convergence (3) Increasing the number of sub-steps. As long as the solution has 

converged, one can get a great deal of information from “General Postproc” for example : 

Von Mises, Principal, Shear, Contact Stresses.  

Figures 3.11 (a) and (b) show orthogonal shear stress. Figures 3.12 (a) and (b) 

show maximum shear stresses under the contact areas between two cylinders. The largest 

orthogonal shear stress lies below the surface at the edge of the contact zone. This was 

shown in Figure 3.11 (b). The subsurface location of the maximum shear stress can also 

be seen lying below the surface at the center of the contact zone shown in Figure 3.12 (b). 

If both materials are steel, it occurs at a depth of about 0.63 a  where a is half of the 

contact length shown in Figure 3.4 and its magnitude is about 0.30 maxP . The shear stress 

is about 0.11 maxP  at the surface on the z axis. The subsurface location of the maximum 
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shear stress is believed to be a significant factor in surface-fatigue failure. The theory 

indicates that cracks that begin below the surface eventually grow to the point that the 

material above the crack breaks out to form a pit. 

 

 

                       )(a                                                              )(b  

            Figure  3-12   Maximum shear stress from ANSYS 

3.5 Conclusion 

Finite element modelling of the contact between two cylinders was examined in 

detail. The finite element method with special techniques, such as the incremental 

technique of applying the external load in the input file, the deformation of the stiffness 

matrix, and the introduction of the contact element were used. It was found that initial 

loading using displacements as inputs was helpful in reducing numerical instabilities. 
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Chapter 4  Involute Gear Tooth Contact and Bending 

Stress Analysis 

4.1 Introduction 

When one investigates actual gears in service, the conditions of the surface and 

bending failure are two of the most important features to be considered. The finite 

element method is very often used to analyze the stress states of elastic bodies with 

complicated geometries, such as gears. There are published papers, which have calculated 

the elastic stress distributions in gears. In these works, various calculation methods for 

the analysis of elastic contact problems have been presented.  The finite element method 

for two-dimensional analysis is used very often. It is essential to use a three-dimensional 

analysis if gear pairs are under partial and nonuniform contact. However, in the three-

dimensional calculation, a problem is created due to the large computer memory space 

that is necessary. In this chapter to get the gear contact stress a 2-D model was used. 

Because it is a nonlinear problem it is better to keep the number of nodes and elements as 

low as possible. In the bending stress analysis the 3-D model and 2-D models are used for 

simulation. 

4.2 Analytical Procedure  

From the results obtained in chapter 3 the present method is an effective and 

accurate method, which is proposed to estimate the tooth contact stresses of a gear pair. 

Special techniques of the finite element method were used to solve contact problems in 

chapter 3. Using the present method, the tooth contact stresses and the tooth deflections 

of a pair of spur gears analyzed by ANSYS 7.1 are given in section 4.4. Since the present 
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method is a general one, it is applicable to many types of gears. In early works, the 

following conditions were assumed in advance: 

• There is no sliding in the contact zone between the two bodies 

• The contact surface is continuous and smooth 

Using the present method ANSYS can solve the contact problem and not be 

limited by the above two conditions. A two-dimensional and an asymmetric contact 

model were built. First, parameter definitions were given and then many points of the 

involute profile of the pinion and gear were calculated to plot an involute profile using a 

cylindrical system. The equations of an involute curve below were taken from 

Buckingham [6]: 
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where r = radius to the involute form,  br = radius of the base circle 

       φξβ +=  

       θ  = vectorial angle at the pitch circle 

       ξ  = vectorial angle at the top of the tooth 

       φ  = pressure angle at the pitch circle 

       1φ  = pressure angle at radius r  

One spur tooth profile was created using equation 4.1, shown in Figure 4.1, as are 

the outside diameter circle, the dedendum circle, and base circle of the gear.  
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Secondly, in ANSYS from the tool bars using “CREATE”, “COPY”, “MOVE”, 

and “MESH” and so on, any number of teeth can be created and then kept as the pair of 

gear teeth in contact along the line of the action. The contact conditions of gear teeth are 

sensitive to the geometry of the contacting surfaces, which means that the element near 

the contact zone needs to be refined. It is not recommended to have a fine mesh 

everywhere in the model, in order to reduce the computational requirements. There are 

two ways to build the fine mesh near the contact surfaces. One is the same method as 

presented in chapter 3, a fine mesh of rectangular shapes were constructed only in the 

contact areas. The other one, “SMART SIZE” in ANSYS, was chosen and the fine mesh 

near the contact area was automatically created. A FEM gear contact model was 

generated as shown in Figure 4.2. 

  

      Figure 4-1   Involutometry of a spur gear 

   βξ

θ φ
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Thirdly, proper constraints on the nodes were given. The contact pair was inserted 

between the involute profiles, the external loads were applied on the model from ANSYS 

“SOLUTION > DEFINE LOAD > FORCE / MOMENT”, and finally, ANSYS was run 

to get the solution. 

 

Figure 4-2   Gear contact stress model 

4.3  Rotation Compatibility of the Gear Body  

In order to know how much load is applied on the contact stress model and the 

bending stress model, evaluating load sharing between meshing gears is necessary. It is 

also an important concept for transmission error. It is a complex process when more than 

one-tooth pair is simultaneously in contact taking into account the composite tooth 

deflections due to bending, shearing and contact deformation. This section presents a 
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general approach as to how the load is shared between the meshing teeth in spur gear 

pairs. 

When the gears are put into mesh, the line tangent to both base circles is defined 

as the line of action for involute gears. In one complete tooth mesh circle, the contact 

starts at points A shown in Figure 4.3 [64] where the outside diameter circle, the 

addendum circle of the gear intersects the line of action. The mesh cycle ends at point E, 

as shown in Figure 4.4 where the outside diameter of the pinion intersects the line of 

action.  

Figure 4-3 Illustration of one complete tooth meshing cycle 

Consider two identical spur gears in mesh. When the first tooth pair is in contact 

at point A it is between the tooth tip of the output gear and the tooth root of the input gear 

(pinion). At the same time a second tooth pair is already in contact at point D in Figure 

zew668
B

zew668
A
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4.3. As the gear rotates, the point of contact will move along the line of action APE. 

When the first tooth pair reaches point B shown in Figure 4.4, the second tooth pair 

disengage at point E leaving only the first tooth pair in the single contact zone. After this 

time there is one pair of gear in contact until the third tooth pair achives in contact at 

point A again. When this tooth pair rotates to point D, the another tooth pair begins 

engagement at point A which starts another mesh cycle. After this time there are two 

pairs of gear in contact until the first tooth pair disengage at point E. Finally, one 

complete tooth meshing cycle is completed when this tooth pair rotates to point E. To 

simplify the complexity of the problem, the load sharing compatibility condition is based 

on the assumption that the sum of the torque contributions of each meshing tooth pair 

must equal the total applied torque.  

 

Figure 4-4 Different positions for one complete tooth meshing cycle  

Analytical equations can also be developed for the rotation of the gear and pinion 

hubs, including the effects of tooth bending deflection and shearing displacement and 
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contact deformation [64]. In the pinion reference frame, it is assumed that the pinion hub 

remains stationary, while the gear rotates due to an applied torque. 

Considering the single pair contact zone at point B, the condition of angular 

rotation of the gear body will then be given by [64] 

For the pinion, 

                                                                                                                        (4.2) 

and for the gear,                                                             

                                                                                                                        (4.3) 

where B
PB  and B

gB  are the tooth displacement vectors caused by bending and 

shearing for pairs B of the pinion and gear respectively, B
PH  and B

gH  are the contact 

deformation vectors of tooth pair B of the pinion and gear respectively. B
Pθ  denotes the 

transverse plane angular rotation of the pinion body caused by bending deflection, 

shearing displacement and contact deformation of the tooth pair B while the gear is 

stationary. Conversely, for the gear rotation while the pinion is stationary, B
gθ  gives the 

transverse plane angular rotations of the gear body. 

4.4  Gear Contact Stress  

One of the predominant modes of gear tooth failure is pitting. Pitting is a surface 

fatigue failure due to many repetitions of high contact stress occurring on the gear tooth 

surface while a pair of teeth is transmitting power. In other words, contact stress 

exceeding surface endurance strength with no endurance limits or a finite life causes this 

kind of failure. The AGMA has prediction methods in common use. Contact failure in 

gears is currently predicted by comparing the calculated Hertz stress to experimentally-

determined allowable values for the given material. The details of the subsurface stress 
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field usually are ignored. This approach is used because the contact stress field is 

complex and its interaction with subsurface discontinuities are difficult to predict. 

However, all of this information can be obtained from the ANSYS model. 

Since a spur gear can be considered as a two-dimensional component, without 

loss of generality, a plane strain analysis can be used. The nodes in the model were used 

for the analysis. The nodes on the bottom surface of the gear were fixed. A total load is 

applied on the model. It was assumed to act on the two points shown in Figure 4.2 and 

three points in Figure 4.5.                    

There are two ways to get the contact stress from ANSYS. Figure 4.5 shows the 

first one, which is the same method as one in chapter 3 to create the contact element 

COCNTA 48 and the rectangular shape fine mesh beneath the contact surfaces between 

the contact areas. Figure 4.6 shows the enlarged-area with a fine mesh which is composed 

of rectangular shapes. 

 

Figure 4-5   FEM Model of the gear tooth pair in contact 



48 

 

Figure 4-6   Fine meshing of contact areas 

 

Figure 4-7   Contact stress along contact areas 
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Figure 4-8   A fine mesh near contact areas 

Figure 4.7 shows the normal contact stress along the contact areas. The results are 

very similar to the results in the two cylinders in chapter 3. Figure 4.8 presents how to 

mesh using a second method. Different methods should show the close results of 

maximum contact stress if the same dimension of model and the same external loads are 

applied on the model. If there is a small difference it is likely because of the different 

mesh patterns and restricted conditions in the finite element analysis and the assumed 

distribution form of the contact stresses in the contact zone. 

4.5  The Lewis Formula 

There are several failure mechanisms for spur gears. Bending failure and pitting 

of the teeth are the two main failure modes in a transmission gearbox. Pitting of the teeth 
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is usually called a surface failure. This was already discussed in the last section. The 

bending stresses in a spur gear are another interesting problem.  When loads are too large, 

bending failure will occur. Bending failure in gears is predicted by comparing the 

calculated bending stress to experimentally-determined allowable fatigue values for the 

given material. This bending stress equation was derived from the Lewis formula. 

Wilfred Lewis (1892) [5] was the first person to give the formula for bending stress in 

gear teeth using the bending of a cantilevered beam to simulate stresses acting on a gear 

tooth shown in Figure 4.9 are Cross-section = tb * , length = l, load = tF , uniform across 

the face. For a rectangular section, the area moment of inertia is 
12

3bhI =  

lFM t=  and 2tc = , stress then is                 

                                                23
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Figure 4-9   Length dimensions used in determining bending tooth stress 
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Where =b  the face width of the gear. For a gear tooth, the maximum stress is 

expected at point A, which is a tangential point where the parabola curve is tangent to the 

curve of the tooth root fillet called parabola tangential method. Two points can be found 

at each side of the tooth root fillet. The stress on the area connecting those two points is 

thought to be the worst case. The crack will likely start from the point A. 

From similar triangles         
2

2tan
t
l

x
t ==α       where    

x
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=         (4.5)  

Substituting  (4.7) into (4.6):  
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where =dp diametral pitch 

                       == dxp
Y

3
2 Lewis form factor                                                (4.7)   

Equation (4.8) [5] in the next page is known as the Lewis equation, and Y is 

called the Lewis form factor. The Lewis equation considers only static loading and does 

not take the dynamics of meshing teeth into account. The Lewis form factor is given for 

various numbers of teeth while assuming a pressure angle of o20  and a full – depth 

involute.  The Lewis form factor is dimensionless, and is also independent of tooth size 

and only a function of shape. The above stress formula must be modified to account for 

the stress concentration cK . The concentrated stress on the tooth fillet is taken into 

account by cK  and a geometry factor jY , where cj KYY /=  is introduced. Other 

modifications are recommended by the AGMA for practical design to account for the 

variety of conditions that can be encountered in service. The following design equation, 

developed by Mott (1992) is used  
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vj

msadt
t KbY

KKKpF
=σ                                               (4.8)  

where aK = application factor , sK = size factor ,    

           mK = load distribution factor, vK = dynamic factor, 

           tF  = normal tangential load, jY  = Geometry factor. 

Each of these factors can be obtained from the books on machine design such as 

[5]. This analysis considers only the component of the tangential force acting on the 

tooth, and does not consider effects of the radial force, which will cause a compressive 

stress over the cross section on the root of the tooth. Suppose that the greatest stress 

occurs when the force is exerted at top of tooth, which is the worst case. When the load is 

at top of the tooth, usually there are a least two tooth pairs in contact. In fact, the 

maximum stress at the root of tooth occurs when the contact point moves near the pitch 

circle because there is only one tooth pair in contact and this teeth pairs carries the entire 

torque. When the load is moving at the top of the tooth, two teeth pairs share the whole 

load if the ratio is larger than one and less than two. If one tooth pair was considered to 

carry the whole load and it acts on the top of the tooth this is adequate for gear bending 

stress fatigue.  

4.6 FEM Models 

4.6.1 The Two Dimensional Model 

Fatigue or yielding of a gear tooth due to excessive bending stresses are two 

important gear design considerations. In order to predict fatigue and yielding, the 

maximum stresses on the tensile and compressive sides of the tooth, respectively, are 

required. In the past, the bending stress sensitivity of a gear tooth has been calculated 

using photo elasticity or relatively coarse FEM meshes. However, with present computer 
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developments we can make significant improvements for more accurate FEM 

simulations.  

 

 

 

 

 

 

 

Figure 4-10   FEM gear tooth bending model with 3 teeth 

 

Figure 4-11   A two dimension tooth from a FEM model with 28 teeth 
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Figure 4-12   Von Mises stresses with 28 teeth on the root of tooth   

In the procedure for generating a FEM model for bending stress analyses, the 

equations used to generate the gear tooth profile curve were the same as the ones in 

section 4.2. When meshing the teeth in ANSYS, if “SMART SIZE” is used the number of 

elements near the roots of the teeth are automatically much greater than in other places.  

Figure 4.10 shows that the maximum tensile stresses on the tensile side and maximum 

compressive stresses on other side of the tooth, respectively. It also indicates that only 

one tooth is enough for the bending stress analysis for the 3-D model or the 2-D model. 

Figure 4.11 shows one tooth FEM model and Figure 4.12 shows how much Von Mises 

stress is on the root of tooth when the number of teeth is 28 for the gear. There are more 

detailed results for different number of teeth in table 4.1 in section 4.7, which are 

compared with the results from the Lewis Formula. 
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4.6.2 The Three Dimensional Model 

In this section the tooth root stresses and the tooth deflection of one tooth of a 

spur gear is calculated using an ANSYS model. For the bending stresses, the numerical 

results are compared with the values given by the draft proposal of the standards of the 

AGMA in the next section. 

Figure 4.14 shows how to mesh the 3D model and how to apply the load on the 

model. The element type “SOLID TETRAHEDRAL 10 NODES 187” was chosen. 

Because “SMART SET” was chosen on the tool bar there are many more elements near 

the root of the tooth than in other places. There are middle side nodes on the each side of 

each element. So a large number of degrees of freedom in this 3D model take a longer 

time to finish running. 

 

 

Figure 4-13   FEM bending model with meshing 
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From the stress distributions on the model, the large concentrated stresses are at 

the root of the tooth. Figure 4.14 shows large Von Mises stresses at the root of the tooth. 

They are equal to the tensile stresses.  The tensile stresses are the main cause of crack 

failure, if they are large enough. That is why cracks usually start from the tensile side. 

From the Lewis equation if the diameters of the pinion and gear are always kept the same 

and the number of teeth was changed, the diametral pitch will be changed or the module 

of gear will be changed. That means that there are different bending strengths between 

the different teeth numbers. Different Maximum Von Mises with different numbers of 

teeth are shown in the table 4.1.  

 

Figure 4-14   Von Mises stresses with 28 teeth on the root of tooth 
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4.7 Comparison with Results using AGMA Analyses   

In this section, a comparison of the tooth root stresses obtained in the three 

dimensional model and in the two dimensional model using ANSYS with the results 

given by the standards of the AGMA is carried out.  Eq. (4.8) is recommended by the 

AGMA and the other coefficients, such as the dynamic factor, are set at 1.2.  Here 

analysis of gears with different numbers of teeth are carried out. First, the number of gear 

teeth is 28. The meshing spur gear has a pitch radii of 50 mm and a pressure angle of 
°20 . The gear face width, b = 1.5 in (38.1mm). The transmitted load is 2500 N.  

                    inmm 9685.150 =  PoundsN 02.5622500 =  

                                       112.7
2*9685.1

28 ===
d
Npd                                                

vj

msadt
t KbY

KKKpF
=σ = MPa783.102

8.0*37.0*5.1
15.1*2.1*2.1*112.7*022.562 =  

Detailed investigations, including the effects with the two different numbers of 

teeth on the tooth root stress were carried out. If the number of teeth is changed from 28 

to 23 and the other parameters were  kept the same. 

vj

msadt
t KbY

KKKpF
=σ = MPa429.84

8.0*37.0*5.1
15.1*2.1*2.1*842.5*022.562 =  

If the number of teeth is changed from 28 to 25 and the other parameters were 

kept the same. 

vj

msadt
t KbY

KKKpF
=σ = MPa770.91

8.0*37.0*5.1
15.1*2.1*2.1*35.6*022.562 =  
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If the number of teeth is changed from 28 to 34 with the other parameters kept the 

same. 

vj

msadt
t KbY

KKKpF
=σ = MPa805.124

8.0*37.0*5.1
15.1*1*1*636.8*022.562 =  

If the number of teeth is changed to 37, with the other parameters kept the same. 

vj

msadt
t KbY

KKKpF
=σ = MPa149.132

8.0*37.0*5.1
15.1*1*1*398.9*022.562 =  

The above calculations of the Von Mises stresses on the root of tooth were carried 

out in order to know if they match the results from ANSYS. The results are shown in 

Table 4.1. In this table, the maximum values of the tooth root stress obtained by the 

ANSYS method were given. For the number of teeth of 28, the ANSYS results are about 

97% (2D) of the values obtained by the AGMA. For the cases from 23 teeth to 37 teeth, 

the values range from 91% to 99% of the value obtained by the AGMA. From these 

results, it was found that for all cases give a close approximation of the value obtained by 

the methods of the AGMA in both 3D and 2D models. These differences are believed to 

be caused by factors such as the mesh pattern and the restricted conditions on the finite 

element analysis, and the assumed position of the critical section in the standards.  

Here the gears are taken as a plane strain problem. 2D models are suggested to be 

use because much more time will be saved when running the 2D models in ANSYS. 

There are not great differences between the 3D and 2D model in Table 4.1. 
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Table 4.1   Von Mises Stress of 3-D and 2-D FEM bending model 

Num.of teeth    Stress 3D (2D) (ANSYS)      Stresses (AGMA)          Difference 3D (2D)                            

23                         86.418     (85.050)                     84.429                        2.35%   (0.74%) 

25                         95.802      (91.129)                    91.770                         4.39%   (0.69%) 

28                         109.21     (106.86)                     102.78                         6.26%  (3.97%) 

31                         123.34     (116.86)                     113.79                          8.39%  (2.69%) 

34                         132.06     (128.46)                      124.80                         5.82%  (2.93%) 

37                         143.90     (141.97)                      132.15                         8.89%  (7.43%) 

 

4.8  Conclusion 

In the present study, effective methods to estimate the tooth contact stress by the 

two-dimensional and the root bending stresses by the three-dimensional and two-

dimensional finite element method are proposed. To determine the accuracy of the 

present method for the bending stresses, both three dimensional and two dimensional   

models were built in this chapter. The results with the different numbers of teeth were 

used in the comparison. The errors in the Table 4.1 presented are much smaller than 

previous work done by other researchers for the each case. So those FEA models are 

good enough for stress analysis. 
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Chapter 5  Torsional Mesh stiffness and Static 

Transmission Error 

5.1 Introduction and Definition of Transmission Error 

Getting and predicting the static transmission error (TE) is a necessary condition 

for reduction of the noise radiated from the gearbox. In the previous literature to obtain 

TE the contact problem was seldom included because the nonlinear problem made the 

model too complicated. This chapter deals with estimation of static transmission error 

including the contact problem and the mesh stiffness variations of spur gears. For this 

purpose, an FEA numerical modeling system has been developed. For spur gears a two 

dimensional model can be used instead of a three dimensional model to reduce the total 

number of the elements and the total number of the nodes in order to save computer 

memory. This is based on a two dimensional finite element analysis of tooth deflections. 

Two models were adopted to obtain a more accurate static transmission error, for a set of 

successive positions of the driving gear and driven gear. Two different models of a 

generic gear pair have been built to analyze the effects of gear body deformation and the 

interactions between adjacent loaded teeth. Results are from each of the two models’ 

average values. 

It is generally accepted that the noise generated by a pair of gears is mainly 

related to the gear transmission error. The main source of apparent excitation in 

gearboxes is created by the meshing process. Researchers usually assume that 

transmission error and the variation in gear mesh stiffnesses are responsible for the noise 

radiated by the gearbox. The static transmission error is defined by Smith [59].  
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The term transmission error is used to describe the difference between the 

theoretical and actual relative angular rotations between a pinion and a gear. Its 

characteristics depend on the instantaneous positions of the meshing tooth pairs. Under 

load at low speeds (static transmission error) these situations result from tooth deflections 

and manufacturing errors. In service, the transmission error is mainly caused by: 

• Tooth geometry errors: including profile, spacing and runout errors from the 

manufacturing process; 

• Elastic deformation: local contact deformation from each meshing tooth pair and the 

deflections of teeth because of bending and shearing due to the transmitted load; 

• Imperfect mounting: geometric errors in alignment, which may be introduced by 

static and dynamic elastic deflections in the supporting bearings and shafts. 

The first two types of transmission errors are commonly referred to in the 

literature [7][17]. The first case has manufacturing errors such as profile inaccuracies, 

spacing errors, and gear tooth runout. When the gears are unloaded, a pinion and gear 

have zero transmission error if there is no manufacturing error. The second case is loaded 

transmission error, which is similar in principle to the manufactured transmission error 

but takes into account tooth bending deflection, and shearing displacement and contact 

deformation due to load. In chapter 5 the second case is considered. 

The static transmission error of gears in mesh at particular positions throughout 

the mesh cycle was generated in this study by rotating both solid gears one degree each 

time then creating a finite element model in that particular position. In order to develop 

representative results, a large number of finite element models at the different meshing 

positions were undertaken for this investigation. One of the most important criteria for 

each model was that the potential contact nodes of both surfaces would be created on the 
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nodes near the intersection point between the pressure line and the involute curve for that 

particular tooth. The additional problem of determining the penalty parameter at each 

contact position could be user-defined or a default value in the finite element model. At 

each particular meshing position, after running ANSYS the results for angular rotation of 

the gear due to tooth bending, shearing and contact displacement were calculated. In the 

pinion reference frame: the local cylindrical system number 12 was created by definition 

in ANSYS. By constraining the all nodes on the pinion in radius and rotating gθ with the 

gear having a torque input load the model was built. In this case, 0=pθ  and gθ  is in the 

opposite direction to that resulting from forward motion of pθ changing the TE result to 

positive as seen by equation  (5.1) 

                                                pg ZTE θθ )(−=                                                             (5.1)  

Where Z is the gear ratio and gp,θ is the angular rotation of the input and output 

gears in radians respectively.  In relation to the gear reference frame: the local cylindrical 

system number 11, the gear was restrained with degrees of freedom in radius and rotating 

pθ  with the pinion having the torque input load and the resulting angular rotation of the 

pinion was computed. In this second case 0=gθ  and the TE will be positive for forward 

motion of gθ . After compensating for torque and angular rotation for the particular gear 

ratio, the results from these two models should be the same, and so the mean of these two 

angular rotations would give the best estimate of the true static transmission error of the 

involute profile gears under load. 

5.2   The Combined Torsional Mesh Stiffness 

Because the number of the teeth in mesh varies with time, the combined torsional 

mesh stiffness varies periodically. When a gear with perfect involute profiles is loaded 
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the combined torsional mesh stiffness of the gear causes variations in angular rotation of 

the gear body. The gear transmission error is related directly to the deviation of the 

angular rotation of the two gear bodies and the relative angular rotation of the two gears 

is inversely proportional to the combined torsional mesh stiffness, which can be seen 

from the results of ANSYS later in this document. The combined torsional mesh stiffness 

is different throughout the period of meshing position. It decreases and increases 

dramatically as the meshing of the teeth change from the double pair to single pair of 

teeth in contact. 

In other words under operating conditions, the mesh stiffness variations are due to 

variations in the length of contact line and tooth deflections. The excitation located at the 

mesh point generates dynamic mesh forces, which are transmitted to the housing through 

shafts and bearings. Noise radiated by the gearbox is closely related to the vibratory level 

of the housing. 

Sirichai [60] has developed a finite element analysis and given a definition for 

torsional mesh stiffness of gear teeth in mesh. The combined torsional mesh stiffness is 

defined as the ratio between the torsional load and the angular rotation of the gear body. 

The development of a torsional mesh stiffness model of gears in mesh can be used to 

determine the transmission error throughout the mesh cycle. 

The combined torsional mesh stiffness of gears is time dependent during involute 

action due to the change in the number of contact tooth pairs. Considering the combined 

torsional mesh stiffness for a single tooth pair contact zone, the single tooth torsional 

mesh stiffness of a single tooth pair in contact is defined as the ratio between the torsional 

mesh load (T) and the elastic angular rotation )(θ of the gear body. In the single tooth 

pair contact zone, as the pinion rotates, the single tooth torsional mesh stiffness of the 
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pinion, PK  is decreasing while the single tooth torsional stiffness of the gear, gK , is 

increasing. When the pinion rotates to the pitch point P , the single tooth torsional 

stiffness of both gears is equal because both of them were assumed to be identical spur 

gears with ratio 1:1 in order to make the analysis simple. The single tooth torsional mesh 

stiffness of the pinion and the gear are given by [64], 

                                              B
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B
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P
TK
θ

=                                                            (5.2) 
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θ
=                                                           (5.3) 

where B
PK  and B

gK  are the single tooth torsional mesh stiffness of the single tooth 

pairs at B of the pinion and gear respectively.  

The torsional mesh stiffness can be related to the contact stiffness by considering 

the normal contact force operating along the line of action tangential to the base circles of 

the gears in mesh. The torsional mesh stiffness can be seen to be the ratio between the 

torque and the angular deflection. By considering the total normal contact force F, acting 

along the line of action, the torque T will be given by the force multiplied by the 

perpendicular distance (base circle radius br ) bFrT =  if there is one pair gear on contact.  

The elastic angle of rotation θ  of the gear body can then be calculated from related to the 

arc length c, by the base circle radius as brc /=θ . The torsional mesh stiffness can then 

be given by  

                                             
c

Fr
rc

FrTK b

b

b
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/
===

θ
                                      (5.4) 
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The tooth contact stiffness mbK , can be seen to be the ratio of the normal contact 

force F  to the displacement along the line of action, which gives aFK mb /= , where the 

length a  is equal to the arc c length for a small anglesθ . The relationship between the 

linear contact stiffness and torsional mesh stiffness then becomes,  

                                           2
b

m
mb r

K
K =                                                            (5.5) 

The contact between the gears is a nonlinear problem. This cannot be put in the 

form of a linear differential equation if the problem is solved by the equations so here 

ANSYS was used to study this problem. In this chapter the program ANSYS 7.1 was 

used to help to solve this nonlinear problem. The gears were modeled using quadratic two 

dimensional elements and the contact effect was modeled using 2D surface-to-surface 

(line-to-line) general contact elements that can include elastic Coulomb frictional effects. 

The torsional mesh stiffness of gears in mesh at particular positions throughout the mesh 

cycle was generated by rotating both solid gears one degree each time, then creating a 

finite element model in that particular position. The torsional mesh stiffness mK  in mesh 

was automatically considered, when the transmission error was obtained from the results 

of the FEA model. Figure 5.1 shows how to apply load and how to define the input 

torque by a set of beam elements (beam3) connected from the nodes on the internal cycle 

of rim to the center point of the pinion, while restraining all nodes on the internal circle of 

the output gear hub. The center node of pinion was constrained in the X and Y directions 

and it was kept the degree of freedom for rotation around the center of the pinion.  The 

moment was applied on the center of the pinion. 

After running ANSYS for the each particular position of the FEA model there 

were volumous results from the postprocessor. For example, the Von Mises stresses, 
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contact stresses and deformations in the X and Y directions can easily be gotten. The 

static transmission error and the torsional mesh stiffness were then automatically 

obtained from ANSYS in the postprocessor. The vectors of displacement in the global 

system at one particular meshing position were shown in Figure 5.2. In Figure 5.2 θ  

represents TE at one position. Twenty-six positions were chosen and for each position 

ANSYS would produced numerous results. These results indicated that variation in the 

mesh stiffness is clearly evident as the gears rotate throughout the meshing cycle. The 

results here are based on FEA modeling and also on the tooth stiffness change.      

  

 

Figure 5-1  The beam elements were used in the FEA model 
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Figure 5-2   Vectors of displacement 

5.3 Transmission Error Model  

5.3.1 Analysis of the Load Sharing Ratio 

Under normal operating conditions, the main source of vibration excitation is 

from the periodic changes in tooth stiffness due to non-uniform load distributions from 

the double to single contact zone and then from the single to double contact zone in each 

meshing cycle of the mating teeth. This indicates that the variation in mesh stiffness can 

produce considerable vibration and dynamic loading of gears with teeth, in mesh. For the 

spur involute teeth gears, the load was transmitted between just one to two pairs of teeth 

gears alternately. The torsional stiffness of two spur gears in mesh varied within the 

θ

zew668

zew668
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meshing cycle as the number of teeth in mesh changed from two to one pair of teeth in 

contact. Usually the torsional stiffness increased as the meshing of the teeth changed 

 

Figure 5-3 Vectors of displacement near the contact surfaces 

from one pair to two pairs in contact. If the gears were absolutely rigid the tooth load in 

the zone of the double tooth contacts should be half load of the single tooth contact. 

However, in reality the teeth become deformed because of the influence of the teeth 

bending, shear, and contact stresses. These factors change the load distribution along the 

path of contact. In addition, every gear contains surface finishing and pitching errors. 

They alter the distribution of load. Because the teeth are comparatively stiff, even small 

errors may have a large influence. The elastic deformation of a tooth can result in shock 

loading, which may cause gear failure. In order to prevent shock loading as the gear teeth 

move into and out of mesh, the tips of the teeth are often modified so as the tooth passes 
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through the mesh zone the load increases more smoothly. The static transmission error 

model of gears in mesh can be used to determine the load sharing ratio throughout the 

mesh cycle. Two identical spur gears in mesh are considered here. Table 5.1 shows the 

gear parameters.     

 

Table 5.1 Gear Parameters Used in the Model 

Gear Type                                                       Standard Involute, Full-Depth Teeth 

Modulus of Elasticity, E                                   200GPa 

Module (M)                                                        3.75 mm 

Number of Teeth                                                27 

Pressure Angle                                                   20 

Addendum, Dedendum                                      1.00*M, 1.25*M 

 

5.3.2 2D FEA Transmission Error Model   

Usually calculation of the static transmission error requires estimation of the 

loaded teeth deflections. In order to evaluate these required quantities, Tavakoli [61] 

proposed to model gear teeth using a non uniform cantilever beam. Tobe [62] used a 

cantilever plate, while numerous authors have developed finite element tooth modeling 

excluding the contact problem. Unfortunately, the hypotheses related to these models can 

not be justified because characteristic dimensions of gear teeth are neither representative 

of a beam nor a plate for the calculation of the static transmission error and tooth 

deflection behavior changes because of non-linear contact. Most of the previously 
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published FEA models for gears have involved only a partial tooth model. In this section 

to investigate the gear transmission error including contact elements, the whole bodies of 

gears have to be modeled because the penalty of parameter of the contact elements must 

account for the flexibility of the whole bodies of gears, not just the local stiffness.  

Here 2D plane42 elements were used with 2 degrees of freedom per node. The 

whole model has 5163 nodes, 4751 elements. For the contact surface the contact element 

was Conta172 and for the target surface the target element was Targe169 shown in Figure 

5.4 that matches the position in Figure 5.5. Figure 5.5 displays a meshing model of a spur 

gear. Fine meshing was used shown in Figure 5.6. The one or two sets of contact 

elements were enlarged for the single or the double pairs of gears in contact. This 

operation allows extracting the compliance due to bending and shear deformation, 

including the contact deformation. This procedure was successively applied to the pinion 

and the gear. 

 

5.3.3 Overcoming the convergence difficulties  

In this study the contact stress was always emphasized. The contact problem is 

usually a challenging problem because contact is a strong nonlinearity. Both the normal 

and tangential stiffness at the contact surfaces change significantly with changing contact 

status. Those kinds of large, sudden changes in stiffness often cause severe convergence 

difficulties. If the constraints established on the model are not proper, it will result zero 

overall stiffness. In a static analysis unconstrained free bodies are mathematically 

unstable and the solution “blows up”. In addition, the solution will not be in convergence 

if the total number of degrees of freedom exceeds 1,000,000. 
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Figure 5-4   Contact elements between the two contact surfaces 

 

Figure 5-5   Meshing model for spur gears 
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Figure 5-6 The fine mesh near the two contact surfaces 

The 3D model first exhibited difficult convergence behavior. The output window 

always displayed: “The system process was out of virtual memory”. Or “the value at the 

certain node is greater than current limit of 610 .”  Several methods were used in order to 

overcome such difficulties. First, at the beginning a simple model was built. For example, 

the contact stress between the two square boxes or two circles was obtained using 

ANSYS. From this simple model, the author learned that it is necessary to make sure 

there is the enough computer memory for the 3D model so here the 2D model was 

chosen. It is also very important to allow the certain constraint conditions for the model 

to be modeled. If the constraints are inadequate, the displacement values at the nodes may 
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exceed 610 . This generally indicates rigid body motion as a result of an unconstrained 

model so one must verify that the model is properly constrained. 

In the author’s opinion there are the four important keys to get correct solutions 

for this FEA model: 

Firstly, try to choose the different type of contact element options or choose 

different element types underlying the contact surfaces. For example, plane42 was chosen 

instead of the element with middle side nodes on element edges, which make it hard to 

get convergence. If the elements with middle side nodes were chosen, one must remove 

the middle side nodes along every element edge before the contact element was built. The 

total number of the nodes and total number of the elements were thus reduced. This 

allowed a large amount of computer memory to be saved.   

Secondly, there are several choices to deal with the gaps between contact 

surfaces. For instance, from ANSYS there are three advanced contact features that allow 

you to adjust the initial contact conditions to prevent the rigid body from moving away: 

• Automatic contact adjustment (CNOF) – The program calculates how large the 

gap is to close the gap, 

• Initial contact closure (ICONT) – Moves the nodes on the contact surface within 

the adjustment band to the target surface, 

• Initial allowable penetration range (PMIN & PMAX) – Physically moves the rigid 

surface into the contact surface. 

All three of these methods have been used by trial and error, numerous times. 

Especially, for the second one, different ICONT values were chosen.  ICONT = 0.02, 

0.015, 0.012 … However the first one seemed better than other ones. It worked very well. 
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The first one was chosen for this model.  In ANSYS, from Contact Pair in Create from 

Modeling: Settings > Initial Adjustment > Automatic Contact adjustment: Choose “Close 

Gap” from listing. Thirdly, if convergence difficulties are encountered, they may 

generally arise from: 

• Too great a value for contact stiffness, 

• Too tight a value for penetration tolerance, 

• Too large a value for the minimum time step size or too small maximum 

number of substeps. 

So at the beginning in this model the maximum number of substeps is equal to 

100. However it took a long time to get convergence. One should try to decrease the 

number of substeps as long as it can obtain convergence and a certain accuracy. If the 

maximum number of substeps was equal to 100, it seemed that the accuracy was 

improved a little but it would take a very long time to solve or to run it. The larger the 

number of substeps the more time was consumed. This is the reason why the author 

eventually used 10 as the number of substeps. The normal penalty stiffness is chosen for 

default. The penetration tolerance is equal to 0.1 (DEFAULT Value). In order to control 

nonlinear SOLUTION “Large Displacement Static” was chosen from listing. Finally, 

before going to the solution do not forget the three important things that should be done:  

• Merge the node if necessary otherwise it is difficult to get convergence, 

• Compress the nodes and the elements to reduce the total number of nodes & 

elements, and to save more memory in the computer, 

• Delete the all the nodes which are not attached the elements. 
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5.3.4 The Results from ANSYS 

Here Von Mises stresses and the contact stresses just for one position are shown 

below in Figure 5.7 and Figure 5.8. For the gears the contact stress was compared with 

the results from the Hertz equations, and the two results agree with each other well.  

 

Figure 5-7   Von Mises stresses in spur gears 

In this model, there are 4751 elements and 5163 nodes. For the contact surfaces 

there are more than eight nodes on each contact side. So the distribution of contact 

stresses is resonable. In this chapter the transmission error is emphasized and contact is a 

nonlinear problem so the solution will likely be done after a greater time compared with 

the time in linear analysis. It is much simpler to use “WIZARD BAR” and to create 

contact pair between the contact surfaces from “Preprocessor>Modeling>Create>Contact 

Pair”. 
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Figure 5-8   The distribution of contact stresses between two teeth 

5.4 The Transmission Error  

The static transmission error is expressed as a linear displacement at the pitch 

point [63]. A kinematic analysis of the gear mesh allows determining the location of 

contact line for each loaded tooth pair. These contact lines were discretized. The total 

length of lines of contact grows with the applied load. For each position of the driving 

gear, the iterative procedures were used to solve the static equilibrium of the gear pair 

and to calculate the load distribution on the contact lines and the static transmission error. 

However the contact deformation was excluded in those models. 

This section considers a FEA model, which was used to predict static 

transmission error of a pair of spur gears in mesh including the contact deformation. The 

S3 
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model involves the use of 2-D elements, coupled with contact elements near the points of 

contact between the meshing teeth. When one pair of teeth is meshing one set of contact 

elements was established between the two contact surfaces, while when two pairs of teeth 

are meshing two sets of contact elements were established between the two contact 

bodies. When gears are unloaded, a pinion and gear with perfect involute profiles should 

theoretically run with zero transmission error. However, when gears with involute 

profiles are loaded, the individual torsional mesh stiffness of each gear changes 

throughout the mesh cycle, causing variations in angular rotation of the gear body and 

subsequent transmission error. The theoretical changes in the torsional mesh stiffness 

throughout the mesh cycle match the developed static transmission error using finite 

element analysis shown in Figure 5.9. 
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Figure 5-9   Static transmission error from ANSYS 
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5.5 Conclusion 

Mesh stiffness variation as the number of teeth in contact changes is a primary 

cause of excitation of gear vibration and noise. This excitation exists even when the gears 

are perfectly machined and assembled. Numerical methods using 2-D FEM modeling of 

toothed bodies including contact elements have been developed to analyze the main static 

transmission error for spur gear pairs. Numerous simulations allowed validating this 

method and showed that a correct prediction of transmission error needed an accurate 

modeling of the whole toothed bodies. The elasticity of those bodies modifies the contact 

between loaded tooth pairs and the transmission error variations. The developed 

numerical method allows one to optimize the static transmission error characteristics by 

introducing the suitable tooth modifications. These offer interesting possibilities as first 

steps of the development of a transmission system and can be also successfully used to 

improve to control the noise and vibration generated in the transmission system.   
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Chapter 6 Conclusions and Future Work  

6.1 Conclusions 

The contribution of the thesis work presented here can be summarized as follows: 

It was shown that an FEA model could be used to simulate contact between two 

bodies accurately by verification of contact stresses between two cylinders in contact and 

comparison with the Hertzian equations. 

Effective methods to estimate the tooth contact stress using a 2D contact stress 

model and to estimate the root bending stresses using 2D and 3D FEA model are 

proposed. The analysis of gear contact stress and the investigation of 2D and 3D solid 

bending stresses are detailed in Chapter 4. 

In Chapter 5 the development of a new numerical method for FEA modelling of 

the whole gear body which can rotate in mesh including the contact problem is presented. 

The static transmission error was also obtained after running the models in ANSYS. 

6.2 Future Work 

The following areas are worthy of further research as computer capabilities 

increase. Further numerical method investigations should be conducted on:  

• The transmission error for all types of gears for example: helical, spiral bevel and 

other gear tooth form, 

• A whole gearbox with all elements in the system such as the bearing and the gear 

casing, 

• Three-dimensionally meshed simulations for both spur and helical gears, 

• Simulation of an oil film in contact zone. 
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Appendix A   Input File of A Model of Two Cylinders  

!*********************************************** 

!            Parameter Definitions 

!*********************************************** 

!Cyclinder Geometry and Materials 

*SET,PI,acos(-1) 

*SET,F,91.545    

*SET,R1,3  

*SET,R2,3    

*SET,v1,0.3  

*SET,v2,0.3  

*SET,E1,30e6 

*SET,E2,30e6 

*SET,L,1 

*SET,ptype,2 

!Loading Controls 

*SET,st1,1   

*SET,st2,1   

*SET,st3,1   

*SET,st4,1   

*SET,kn,10e8 

*SET,coloumb,1   

*SET,mu,0.1  

*SET,tol,1e-6   

!Load Step Options 

*SET,disp,-1e-6  

*SET,pnot,0.20   

*SET,ns2i,5  

*SET,ns3i,5  

*SET,ns4i,4  
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*SET,rotate1,0   

*SET,rotate2,0   

*SET,rot,0*2 

!Model Size 

*SET,hi,0.5  

*SET,wi,1.4  

!Meshing Controls  

*SET,elemtype,1 

*SET,nec,10 

*SET,ratio1,50 

*SET,ratio2,25  

!Non-Contact Element Properties 

*SET,etop,30e9   

*SET,itop,355    

*SET,atop,555 

!Calculated Values 

*SET,delta,(1-v1**2)/E1+(1-v2**2)/E2 

*SET,po,0.564*(F*(1/R1+1/R2)/(L*delta))**0.5 

*SET,b,1.13*(F*delta/(1*(1/R1+1/R2)))**0.5 

!*SET,b,1.08*sqrt(F*R1/E1)   

*SET,dx,2*b/nec  

*SET,gamma1,atan(b/R1)   

*SET,gamma2,atan(b/R2)   

/title, Two cylinders' contact 2002 with friction 

!**************************************************** 

!                Geometry Generation 

!**************************************************** 

/prep7   

*SET,delta,gamma1/nec*180/pi*rot 

local,11,1,0,R1+R2+1e-9,,delta  

csys,1   

/pnum,line,1 



88 

/pnum,kp,1   

k,1  

k,2,R1+R2+1e-9,90  

k,3,R2,180   

k,4,R2,90+gamma2*wi*180/pi   

k,5,R2-hi*2*b,90+gamma2*wi*180/pi    

k,6,R2-hi*2*b,90-gamma2*wi*180/pi   

k,7,R2,90-gamma2*wi*180/pi    

k,8,R2,0 

k,15,R2/2,180  

k,16,R2/2,0 

k,19,R2-hi*2*b,90   

k,21,R2,90+100*gamma2*wi*180/pi   

k,22,R2-hi*100*b,90+100*gamma2*wi*160/pi    

k,23,R2-hi*180*b,90   

k,24,R2-hi*100*b,90-100*gamma2*wi*160/pi    

k,25,R2,90-100*gamma2*wi*180/pi      

larc,3,21,1,R2 

larc,21,4,1,R2 

l,4,5 

l,5,19 

l,19,6 

l,6,7 

larc,7,4,1,R2 

larc,7,25,1,R2 

larc,25,8,1,R2 

l,8,16 

l,16,1 

l,1,15 

l,15,3 

l,6,24 

l,24,16 
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l,5,22 

l,22,15 

l,19,23 

l,23,1 

l,21,22 

l,22,23 

l,23,24 

l,24,25 

csys,11 

k,9,R1 

k,10,R1,-90+gamma1*wi*180/pi 

k,11,R1-hi*2*b,-90+gamma1*wi*180/pi 

k,12,R1-hi*2*b,-90-gamma1*wi*180/pi 

k,13,R1,-90-gamma1*wi*180/pi 

k,14,R1,-180 

k,17,R1/2 

k,18,R1/2,-180 

k,20,R1-hi*2*b,-90 

k,26,R1,-90-100*gamma1*wi*180/pi     

k,27,R1-hi*100*b,-90-100*gamma1*wi*160/pi  

k,28,R1-hi*180*b,-90   

k,29,R1-hi*100*b,-90+100*gamma1*wi*160/pi  

k,30,R1,-90+100*gamma1*wi*180/pi     

larc,14,26,2,R1 

larc,26,13,2,R1 

larc,13,10,2,R1 

l,10,11 

l,11,20 

l,20,12 

l,12,13 

larc,10,30,2,R1 

larc,30,9,2,R1 
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l,9,17 

l,17,2 

l,2,18 

l,18,14 

l,11,29 

l,29,17 

l,12,27 

l,27,18 

l,20,28 

l,28,2 

l,26,27 

l,27,28 

l,28,29 

l,29,30 

al,3,4,5,6,7 

al,26,27,28,29,30 

al,2,20,16,3 

al,1,13,17,20 

al,16,21,18,4 

al,17,12,19,21 

al,18,22,14,5 

al,19,11,15,22 

al,6,14,23,8 

al,15,10,9,23 

al,25,30,39,43 

al,39,29,41,44 

al,41,28,37,45 

al,37,27,31,46 

al,24,43,40,36 

al,40,44,42,35 

al,42,45,38,34 

al,38,46,32,33 
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!******************************************************* 

!                       Meshing 

!******************************************************* 

!Define element type 

*if,elemtype,eq,1,then 

et,1,plane42,,,ptype 

*else 

et,1,plane82,,,ptype 

*endif 

mp,ex,1,30e6 

mp,nuxy,1,0.3 

eshape,3 

real,1 

mat,1 

type,1 

lesize,3,dx 

lesize,4,dx 

lesize,5,dx 

lesize,6,dx 

lesize,7,dx 

lesize,26,dx 

lesize,27,dx 

lesize,28,dx 

lesize,29,dx 

lesize,30,dx 

asel,all 

amesh,all 

*if,elemtype,eq,2,then 

modmesh,detach 

type,1 

csys,1 

nsel,s,loc,x,r2-1e-4,r2+1e-10 
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esln,s,0 

emid,remove,both 

csys,11 

nsel,s,loc,x,r1-1e-4,r1+1e-10 

esln,s,0 

emid,remove,both 

allsel 

nsel,all 

nsel,inve 

ndele,all 

allsel 

*endif 

!Define and Generate contact elements 

et,2,contac48,,0,coloumb,,,,1 

r,2,kn,kn,,1,tol 

mp,mu,2,mu 

type,2 

real,2 

mat,2 

!Generate contact elements on one surface 

csys,11 

nsel,s,loc,x,r1-1e-10,r1+1e-10 

nsel,r,loc,y,-90-3*gamma1*180/pi,-90+3*gamma1*180/pi 

cm,uppern,node 

!Generate contact elements on the other surface 

csys,1 

nsel,s,loc,x,r2-1e-10,r2+1e-10 

nsel,r,loc,y,90-3*gamma2*180/pi,90+3*gamma2*180/pi 

cm,lowern,node 

csys,0 

gcgen,uppern,lowern 

gcgen,lowern,uppern 
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allsel 

!Generate ....... 

n,,0,r1+r2+1e-9 

nsel,s,loc,x,0-1e-8,0+1e-8 

nsel,r,loc,y,r1+r2,r1+r2+2e-9 

*get,ntop,node,,num,max 

nsel,all 

csys,11 

nsel,s,loc,x,R1-1e-12,R1+1e-12 

nsel,r,loc,y,-180-1e-12,-180+1e-12 

*get,natkp14,node,,num,max 

nsel,all 

nsel,s,loc,x,R1-1e-12,R1+1e-12 

nsel,r,loc,y,0-1e-12,0+1e-12 

*get,natkp9,node,,num,max 

nsel,all 

et,4,beam3 

r,4,atop,itop,1 

mp,ex,4,etop 

mp,nuxy,4,0.3 

mat,4 

type,4 

real,4 

lmesh,33 

lmesh,34 

lmesh,35 

lmesh,36 

nsel,all 

e,ntop,natkp14 

e,ntop,natkp9 

!******************************************************* 

!                  Boundary Conditions 
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!******************************************************* 

 

!Rotate all nodes in upper cylinder to be in a cylindrical system 

csys,0 

allsel 

nsel,s,loc,y,R2+1e-12,400 

cm,upper,node 

allsel 

csys,11 

nrotate,all 

csys,0 

nsel,s,loc,y,0,R2+1e-10 

cm,lower,node 

csys,1 

nrotate,all 

!Fix bottom of lower cylinder 

csys,0 

nsel,s,loc,x,-R2,R2 

nsel,r,loc,y,0 

d,all,all 

!Eliminate lateral motion of upper cylinder's totation center 

nsel,s,node,,ntop 

csys,0 

nrotate,all 

d,ntop,ux,0 

allsel 

wsort 

/dist,,dist 

/focus,,0,center 

/pbc,u,1 

/pbc,f,1 

/dscale,all,1 
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eplot 

!************************************************************ 

!                        Solution 

!************************************************************ 

/solu 

load=F 

!***********Load Step 1 *********** 

*if,st1,eq,1,then 

d,ntop,uy,disp 

d,ntop,rotz,0 

neqit,25 

allsel 

solve 

*endif 

!***********Load Step 2************ 

*If,st2,eq,1,then 

ddele,ntop,uy 

ddele,ntop,rotz 

d,ntop,rotz,rotate1 

!Apply a pressure 

csys,0 

nsel,s,loc,x,0 

nsel,r,loc,y,R1+R1 

f,all,fy,-load*pnot 

csys,0 

nsubst,ns2i,,1 

neqit,200 

allsel 

solve 

save 

*endif 
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!***********Load Step 3************* 

*if,st3,eq,1,then 

ddele,ntop,rotz 

nsubst,ns3i,,1 

csys,0 

nsel,s,loc,x,0 

nsel,r,loc,y,R1+R2 

f,all,fy,-load 

/psf,pres,2 

csys,0 

allsel 

solve 

*endif 

 

!**************Load Step 4************ 

*if,1,eq,st4,then 

d,ntop,rotz,-5e-3 

csys,0 

nsubst,ns4i,,1 

neqit,10 

allsel 

solve 

*endif 

finish 

 

 

 




