
Advances in the analysis of event-related
potential data with factor analytic methods

Von der Fakultät für Lebenswissenschaften

der Universität Leipzig

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt von

Florian Scharf, M.Sc. Psychologie

geboren am 14.11.1990 in Grimma

Dekan:

Prof. Dr. Tilo Pompe

Gutachter:

Prof. Dr. Steffen Nestler

Prof. Dr. André Beauducel

Tag der Verteidigung: 29.03.2019



Acknowledgements

To begin, I want to thank a number of people who supported me throughout the work on this

theses.

First and foremost, I want to express my gratitude to my supervisor Steffen Nestler. He let

me pursue my own project ideas while teaching me the patience, the serenity, and the ability

to reflect on my own work that are necessary to cope with the ups and downs of the scientific

process – and academia in general. I am grateful for all the things that I could learn from him,

and his guidance has shaped me in many ways.

A special thanks goes to Jana Pförtner for assisting me with supplementary simulations that

helped me to better understand my simulation results – and for sharing my pleasure in pro-

gramming.

I am indebted to Richard Rau for agreeing to proofread this thesis even when it turned out to

be on short notice.

I would also like to thank Dagmar Müller for being an eternal source of encouragement and for

paving more ways for me than I would ever have dared to ask for.

I am grateful to Andreas Widmann for introducing PCA of ERP data to me in the first place.

I also want to thank Maria Blöchl for numerous challenging and interesting discussions.

I thank Urte Roeber and Robert O’Shea for an interesting and joyful research stay in Perth.

I also want to thank all members of the Psychological Methods group for the greatest team

spirit I could imagine and for bearing endless repetitions of basically the same talk.

Last but not least, I want to close by thanking Julia Heinz for her never-ending support and

for constantly reminding me to take breaks from time to time.



Dedication

This thesis is dedicated to Burghilde Marx.



Contents

Acknowledgements 1

1 General introduction 4

1.1 Relevance of neurophysiological measures . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Event-related potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Exploratory factor analysis of event-related potentials . . . . . . . . . . . . . . . 9

1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Principles behind variance misallocation in temporal exploratory factor

analysis for ERP data: Insights from an inter-factor covariance decompo-

sition 16

3 Exploratory structural equation modeling for event-related potential data

– an all-in-one approach? 65

4 Should regularization replace simple structure rotation in Exploratory Fac-

tor Analysis? 114

5 General Discussion 156

5.1 Summary of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2 Implications and future research questions . . . . . . . . . . . . . . . . . . . . . 158

5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6 References 165



4

Chapter 1

General introduction

1.1 Relevance of neurophysiological measures

The investigation of cognitive processes with psychological experiments has a long tradition in

psychology (Fuchs & Milar, 2003). Through clever experimental design (e.g., Deary, Liewald,

& Nissan, 2011) and modern modeling approaches (e.g., van der Linden, 2009), researchers

have learned a lot about cognitive processes by studying overt behavior (i.e., reaction times

or erroneous responses). Nevertheless, insights from behavioral studies are limited regarding

mechanistic explanations because they do not allow direct access to the underlying brain pro-

cesses. This has motivated the development of countless methods that enable the investigation

of neural correlates (see Thompson & Zola, 2003, for a review). One of the oldest and most

popular of these methods is the recording of brain activity from multiple electrodes that are

placed on the participant’s scalp via electroencephalography (EEG).

Technically, EEG mainly captures synchronous post-synaptic potentials (PSPs) from cortical

pyramidal neurons (Jackson & Bolger, 2014). In order to be detectable from outside the skull,

PSPs from thousands of neurons that have parallel orientation and are temporally synchronized

need to sum up. On its way from the source to the electrodes outside the skull, the electric

potential is affected by many influences (e.g., other electric potentials, transitions between

tissues, external noise, etc.). Therefore, the EEG signal is best described as a mixture of

spatiotemporally smoothed brain activity and electric activity from other sources (e.g., electric

noise, changes in skin conductance, muscular activity). Consequently, only very strong brain

activity is readily visible in raw EEG signals (e.g., epileptic activity Maganti & Rutecki, 2013).

EEG has excellent temporal resolution because the electric potentials are transmitted through

the head nearly instantaneously (Nunez & Srinivasan, 2006), but its spatial resolution is poor

because the source activity in 3D space is projected on the 2D head surface.
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Over the last decades, many research efforts were made in order to extract relevant and valid

information from EEG signals for research and application purposes. The development of brain-

computer interfaces (BCIs) is an outstanding example how useful EEG signals can be although

they only provide partial access to the activity of the brain (see Fazel-Rezai et al., 2012, for

a review). With such devices, it is possible to communicate with completely locked-in pa-

tients with whom communication through any other means is impossible (Wolpaw, Birbaumer,

McFarland, Pfurtscheller, & Vaughan, 2002). This example of research utilizing EEG signals

underlines the potential and the relevance of the EEG method.

1.2 Event-related potentials

Cognitive psychologists are often interested in comparing brain activity between two (or more)

specific points in time (e.g., the presentation of different stimuli or the same stimulus in different

experimental conditions). For this purpose, the investigation of event-related potentials (ERPs)

has received a lot of attention since the middle of the 20th century (Sur & Sinha, 2009).

Typically, the broad term event is used to refer to the time point of interest indicating that

a variety of features may define the relevant time points (e.g., stimulus on- and offsets, or the

participant’s response). Brain activity that occurs time-locked to an event is called event-related

(e.g., Kappenman & Luck, 2012). Event-related activity is usually investigated in a specific

time epoch around the event (e.g., 100 ms before and 500 ms after the event). The ERP can

be defined as a time series of voltage deflections in such an epoch that is elicited by the event

and recorded from the participant’s scalp via EEG.

Figure 1 depicts a simplistic, simulated example of an ERP. The ERP is typically described

by amplitude, polarity, latency, and topography of peaks in the voltage deflection (e.g., Luck,

2014). In the left-most panel of Figure 1, for instance, a negative peak with a latency of 120

ms (in short: N120) is followed by a positive peak with a latency of 300 ms (in short: P300).

The term topography is used in reference to the distribution of the voltage across the electrode

sites at a specific sampling point. In the middle panel in Figure 1, one can see the ERP at

another electrode site. Here, the polarity of the first peak is reversed and the amplitude of the
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Figure 1. Left & middle panel: Simulated example ERP at two electrode sites. The colors
represent the ERPs elicited by two event types (A: green, B: black). Both peaks vary as a
function of the event type showing larger amplitudes for Event A than for Event B. Right
panel: Factor loadings of the simulated underlying components. The components have nearly
no temporal overlap. The data were simulated as described in Scharf and Nestler (2018a) and
Scharf and Nestler (2018b), respectively.

second peak is much larger. That is, the topographies of the peak sampling points differ from

each other. ERP researchers may be interested in differences between different events in any

(or all) of these four features with the ultimate goal to attribute differential brain activity to

differences in psychological processes (e.g., differential states of attention). In the remainder of

this thesis, I will focus on the case where amplitude differences are investigated (Figure 1).

In the following, a brief description of a traditional recording and analysis procedure for ERPs

is provided (e.g., Luck, 2014). The high noise level due to electric noise, electric activity from

non-brain sources (e.g., eye blinks or changes in skin conductance), and non-event-related brain

activity is an important limitation of EEG recordings. For many purposes, the resulting poor

signal-to-noise ratio makes it impossible to reliably use ERPs on the level of a single presentation

of an event and the most common remedy to this problem is to record a continuous EEG for

a large number of repetitions of the events (e.g., experimental trials). The continuous EEG

signal is then cut into epochs around the events, and averaged across all repetitions of the

same event.1,2 The averaging procedure improves the signal-to-noise ratio because it averages
1Typically, other pre-processing steps are performed (e.g., filtering or rejection of artifacts) to improve the

signal-to-noise ratio by removing artifact-related signal contributions. For the sake of brevity, these steps are
not further discussed here and the interested reader is referred to Luck (2014) for a more detailed introduction.

2Importantly, the averaging procedure assumes that the ERPs elicited by the events are constant (e.g.,
no latency-jitter across repetitions) which need not be the case (see, e.g., Mouraux & Iannetti, 2008, for a
discussion of the problem of latency-jitter). Throughout this thesis, the approximate absence of latency-jitter
will be assumed.
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out all electric activity that is not time-locked to the event including a substantial amount of

noise. Essentially, this procedure results in a data set with an average ERP for each event type,

electrode, and participant. Throughout this thesis, such a data set will be referred to as an

ERP data set. Most generally, an ERP data set can be written as a 4-dimensional sampling

points × participants × electrodes × event type hypermatrix.

After the computation of an ERP data set, the amplitudes of the ERP peaks (for each partic-

ipant, condition, and electrode site) need to be quantified for subsequent statistical analyses.

This has been done using simple peak amplitudes (i.e., the local minima and maxima of the

voltage), mean voltages in time windows around the across-participant grand average peaks,

or using an area under the curve measure (Luck, 2014, chapter 9) of which mean voltages in

time windows are arguably most common. Whatever measure is used to quantify the peak

amplitudes, the last step of the data analytic procedure is typically to subject the chosen mea-

sure to a general linear model (GLM), most commonly an analysis of variance (ANOVA) with

event type and electrode site specified as within-subject-factors - potentially followed up by

post hoc pairwise comparisons. Functional interpretations of the ERPs are then made based

on the results of the statistical analyses.

The described data analytic procedure has dominated ERP research for decades but it suffers

from a number of severe shortcomings. The most fundamental issue is that the electric po-

tential recorded from the scalp is a 2D projection of brain activity in 3D space in the brain.

Consequently, ERPs are a linear superposition of actual event-related source signals, typically

referred to as components (see Nunez & Srinivasan, 2006, for physiological details). The de-

scribed traditional measures implicitly assume that the peaks or the time points that enter

the measure, respectively, reflect activity from a single underlying component. The right-most

panel in Figure 1 depicts the underlying components of the simulated example ERP. In this

case, the peaks of the observed ERPs validly reflect the peaks of the underlying components

and all amplitude measures would correctly quantify the intended component. The reason for

this is that the components do not overlap in time at all. Figure 2 shows example where the

temporal overlap of the components was increased by shifting the peak latencies of the compo-

nents closer together. Especially at Electrode 2 (middle panel), the two components are clearly
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Figure 2. Left & middle panel: Simulated example ERP at two electrode sites. The colors
represent the ERPs elicited by two event types (A: green, B: black). Both peaks vary as a
function of the event type showing larger amplitudes for Event A than for Event B. Right panel:
Factor loadings of the simulated underlying components. Please note the increased temporal
overlap of the components compared to the example in Figure 1. The data were simulated as
described in Scharf and Nestler (2018a) and Scharf and Nestler (2018b), respectively.

conflated in the observed ERP affecting the validity of amplitude measures. There is consensus

among ERP researchers that the second example is more realistic (e.g., Luck, 2014, chapter 2).

Apart from that, modern ERP data sets challenge researchers with their sheer size. It is

not uncommon for modern EEG recording systems to record data from 64 or more electrode

sites at a sampling rate of 1000 Hz (i.e., 1 sampling point every millisecond). The resulting

ERP data sets therefore tend to be very large, and analyses of such large data sets using

the traditional data analytic approach suffer both from a multivariate comparison and an

interpretation problem. For instance, in a setup with 64 electrodes, 2 event types, 64 pairwise

comparisons could be conducted per peak to compare the amplitudes between the event types at

all electrode sites – resulting in a massive multivariate comparison problem, and, consequently,

in a loss of power due to controlling the family-wise error. In an attempt to cope with the

challenging size of modern ERP data sets, a range of questionable data analytic practices

emerged that suffer from extremely high type I error rates (Luck & Gaspelin, 2016).

Whereas sophisticated solutions to the multivariate comparison problem are available (Groppe,

Urbach, & Kutas, 2011a, 2011b), they do not solve the other major problem which concerns the

interpretation of the results. Specifically, the large number of comparisons raises questions such

as how many electrode sites with a significant difference are necessary to call an experimental
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effect substantial or whether the significant differences at two distant electrode sites should be

attributed to the same component or not. These problems are even aggravated when each sam-

pling point is treated separately instead of computing one of the described amplitude measures.

Very often, researchers choose to reduce this issue by a-priori specifying electrodes of interest

(and ignoring other electrode sites in the statistical analyses) or averaging the values from

several adjacent electrodes – effectively discarding information from the data. Taken together,

the outlined limitations of traditional data analytic procedure motivated the development of

several multivariate analysis methods that estimate the unobserved underlying components and

reduce the size of ERP data sets in an information preserving way.

1.3 Exploratory factor analysis of event-related potentials

A variety of decomposition methods has been used for ERP data among them Principal Compo-

nent Analysis (PCA), Independent Component Analysis (ICA), Wavelet-based decompositions,

multimode PCAs, and source reconstruction methods (Groppe, Makeig, Kutas, & Diego, 2008;

Möcks, 1988; Mørup, Hansen, Herrmann, Parnas, & Arnfred, 2006). From a physiological point

of view, source reconstruction is clearly the most reasonable modeling approach because it con-

siders the physical processes that underly the conduction of the electric potential from the source

to the electrodes on the head. However, source reconstruction depends on accurate knowledge

of both the exact positions of the electrode sites and the participants’ neuroanatomy, and even

small inaccuracies may result in considerable localization errors (Slotnick, 2005). Many ERP

experiments are conducted in the absence of additional information from functional and struc-

tural magnetic resonance imaging so that accurate source reconstruction is not an option. The

ability to provide data-driven summaries of ERP data sets under these circumstances is the

main advantage of the former decomposition methods that rely only on statistical properties

of ERP data sets. Although these methods lack direct physiological interpretability, they are

still able to extract reliable and substantively meaningful features from ERP data sets (e.g.,

Beauducel, Debener, Brocke, & Kayser, 2000; Fogarty, Barry, De Blasio, & Steiner, 2018).
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The present thesis focuses on the analysis of ERP data sets using PCA or, more generally,

exploratory factor analysis (EFA). Technically, PCA and EFA are different in so far that the

EFA model contains an explicit error term for each observed variable whereas the PCA model

does not. The results of EFA and PCA differ to the extent to which the variance of these error

terms differs from zero (De Winter & Dodou, 2014; Widaman, 2007, 2018) and, in this sense,

PCA may be conceptualized as a restricted EFA model with all error variances restricted to

zero (McDonald, 1996). For ERP data, the differences between EFA and PCA are typically

considered negligible (Dien & Frishkoff, 2005). Although PCA is more common than EFA in

research applications, throughout this thesis, the more general term EFA will be used to refer

to this data analytic approach, and the term factors will be used in reference to the estimated

latent entities – also to avoid confusion with the term component in reference to the source

activity that generated the potential on the scalp.

In the following, the interpretation of the EFA model in the context of ERP data and the

prototypical steps of an EFA are briefly outlined. For further details, including formal math-

ematical definitions, the reader is referred to chapter 2. The most important decision when

applying EFA to ERP data is the choice of the analysis mode. In order to apply EFA to an ERP

data set, the initial 4-dimensional hypermatrix must be rearranged as 2-dimensional matrix.

Analysis mode refers to the dimension of the initial hypermatrix to which dimension reduction

should be applied. Typically, the analysis mode is arranged as the columns of the 2D matrix,

and the remaining dimensions are concatenated in the rows. Either the sampling points or the

electrodes (or both consecutively; e.g., Dien, 2010; Dien & Frishkoff, 2005; Spencer, Dien, &

Donchin, 2001) may be treated as analysis mode. The present thesis focusses on the case where

the sampling points are the analysis mode – often referred to as temporal EFA.

Essentially, temporal EFA decomposes the ERP waveform into a set of latent factors where the

factor loadings reflect the time courses of the latent factors, and the amplitudes are represented

by the factor scores. The factor loadings are assumed to be fixed across all participants,

electrodes, and conditions whereas the factor scores are allowed to vary. The observed ERP

data can be recomputed by multiplying the factor loadings by the factor scores (cf. chapter 2,

Footnote 4). Figure 3 shows the results of an EFA analysis for a simplistic example with two
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Figure 3. Upper panel: Factor loadings of a simulated example population (left) and the
corresponding factor loadings estimates from a Promax-rotated EFA (right). Lower panel:
Simulated ERPs for Event A (green) and B (black) computed in a factor-wise manner by
multiplying the factor loadings by the factor scores for the population values (left) and the
Promax-rotated EFA (right). The data were simulated as described in Scharf and Nestler
(2018a) and Scharf and Nestler (2018b), respectively.

factors and two event types. The left-hand panels show the population factor loadings and the

population ERP computed in a factor-wise manner. Only the factor scores of the first factor

varied as a function of the event type. The right-hand panel shows the results of a Promax-

rotated EFA for a sample data set. One can see that the estimated factor loadings reflect

the population factor loading quite well, and, most importantly, that the estimated differences

between Event A and Event B resemble the population pattern.3

An application of temporal EFA to ERP data typically consists of the following steps (Dien,

2012): First, the number of factors to be extracted needs to be determined which is typically

done using the Parallel Test method (Horn, 1965). Then, an initial unrotated factor solution is
3One can also see that the estimated factor loadings are not on the same scale as the simulated factor

loadings but this is irrelevant in the context of this illustration. The reader is referred chapter 2 for a detailed
explanation of the rescaling.
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estimated in which the factors are uncorrelated and estimated with the restriction that the first

factor accounts for the largest proportion of variance, the second factor accounts for the second

largest proportion of variance, and so forth. In order to achieve an interpretable solution,

the initial factors are rotated, yielding the estimated factor loadings and factor correlations.

The gold standard for ERP data is an oblique Promax rotation (Dien, 1998, 2010; Dien,

Beal, & Berg, 2005). Finally, the factor scores are estimated, typically using a regression

method (Thomson, 1935; Thurstone, 1935), and subjected to a general linear model (GLM) for

subsequent statistical analysis of amplitude differences, most commonly, an analysis of variance

(Dien, 2016).

As functional interpretations of the factors are based on the results of the subsequent GLM, an

important methodological concern is to ensure the GLM parameters are unbiased. The term

variance misallocation has been introduced in reference to the case where the GLM parame-

ters are biased (Wood & McCarthy, 1984). In the worst case of variance misallocation, false

positive results can occur, that is, differences in the factor scores between event types may be

found although the population effect is zero. Such an extreme case of variance misallocation

is illustrated in Figure 4. In the EFA solution (lower-right panel), there is a notable difference

between event types in both factors although no such difference exists in the population (lower-

left panel). It is also apparent (top-panel) that the estimated factor loadings do not resemble

the population factors as well as in Figure 4. This is in line with previous research emphasizing

the role of the factor loading estimates, and, hence, the importance of the rotation step for the

occurrence of variance misallocation (Achim & Marcantoni, 1997; Dien, 1998, 2010; Möcks &

Verleger, 1986).

The present thesis used a simulation approach to study the occurrence of variance misallocation.

Notably, previous studies predominantly relied on simulated data from virtual head models (e.g.,

Dien et al., 2005) or real ERP data sets (e.g., Kayser & Tenke, 2003). Complementing these

studies, a Monte Carlo approach was taken, that is, data were generated from the EFA model

(cf. Chapter 2, for details) by defining a set of population parameters (i.e., factor loadings,

factor correlations, and factor scores) and drawing random samples from the model-implied

multivariate normal distribution. The main advantage of this approach is that biases in the
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Figure 4. Upper panel: Factor loadings of a simulated example population (left) and the
corresponding factor loadings estimates from a Varimax-rotated EFA (right). Notably, the
estimated factor loadings are severely biased with respect to the population loadings. Lower
panel: Simulated ERPs for Event A (green) and B (black) computed in a factor-wise manner
by multiplying the factor loadings by the factor scores for the population values (left) and the
Varimax-rotated EFA (right). The data were simulated as described in Scharf and Nestler
(2018a) and Scharf and Nestler (2018b), respectively.

model parameters can be investigated more formally because a ground truth is known for each

parameter. In addition, the approach is especially well suited to study how the values of the

population parameters themselves affect the performance of EFA for ERP data because these

parameters can be manipulated directly.

1.4 Research objectives

The main goal of the present thesis was to investigate how the risk of variance misallocation

can be minimized in applications of factor analytic methods to ERP data. In the subsequent

chapters, the determinants of the occurrence of variance misallocation are identified (chapter 2),

and recently proposed improvements to EFA approaches are investigated that can considerably
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reduce the risk of variance misallocation (chapters 3 & 4). In the following, the research

questions of the subsequent chapters are outlined in more detail.

In chapter 2, the principles behind variance misallocation are investigated by means of an

analytic decomposition of the factor (co-)variance matrix and a Monte Carlo simulation. The

study sets out from the fact that ERP data sets differ from psychometric data sets, for which

EFA was originally intended, in at least two ways: First, the observations in the rows of an ERP

data matrix are not independent and exchangeable. Rather, they are well structured and some

observations are more strongly correlated with each other than others because they stem from

the same electrode site, the same participant, and/or the same event type. This fact cannot be

acknowledged in the original EFA model. Second, latent factors extracted from ERP data are

likely to have a considerable temporal overlap (i.e., a considerable amount of cross-loadings),

and this can hardly be influenced by researchers themselves. The study presented in chapter

2, is concerned with the consequences of these two properties for the estimation performance

and interpretability of the EFA parameters.

Addressing the consequences of the neglected structure of ERP data sets, in chapter 3, ex-

ploratory structural equation modeling (ESEM) is proposed as an alternative to EFA. ESEM

can properly acknowledge the structure of ERP data sets, for instance, providing substantively

interpretable factor correlation estimates. Essentially, ESEM expands EFA by a structural

model in which predictors of the latent variables can be specified (Asparouhov & Muthén,

2009). The study presented in chapter 3 discusses which structural model should be specified

in order for ESEM to be useful for typical ERP research questions. Finally, a Monte Carlo

study is reported that investigated whether ESEM is less prone to biases in the parameter

estimates than EFA.

Finally, chapter 4 addresses the influence of the rotation criterion on the quality of the factor

solution. In line with previous literature (Dien, 1998; Möcks & Verleger, 1986; Verleger &

Möcks, 1987), the results presented in chapter 2 emphasize the importance of the rotation

step in EFA for the occurrence of variance misallocation. As a rotation step is an essential

part of ESEM as well, ESEM suffers from biases due to factor rotation as well. It is well-
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known that simple structure rotation can result in biased factor loading estimates, especially

in the presence of substantial cross-loadings (Browne, 2001). Recently, regularized (or sparse)

estimation of factor models has been proposed as a substitute for factor rotation. Due to

it different concept of simplicity, regularized factor analaysis is able to provide good factor

solutions even in conditions under which rotated EFA does not (see Trendafilov, 2014, for

a review). Whereas many different regularized factor analysis methods have been proposed

(Hirose & Yamamoto, 2014; Huang, Chen, & Weng, 2017; Jacobucci, Grimm, & McArdle,

2016; Trendafilov & Adachi, 2015; Trendafilov, Fontanella, & Adachi, 2017), to the best of the

author’s knowledge, no extensive comparison of the performance of regularization and simple

structure rotation has been available. Closing this gap, the simulation study reported in chapter

4 was conducted in which the performance of simple structure rotation and regularization was

compared for a wide range of factor loading patterns. Although the analysis of ERP data was

not in center of interest in this study, its results have important implications for the further

development of the ERP analysis framework outlined in chapter 3.
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Chapter 2

Principles behind variance misallocation in temporal ex-
ploratory factor analysis for ERP data: Insights from an
inter-factor covariance decomposition

To obey the publisher’s copyright restrictions, this chapter contains the post-peer review author

version of the manuscript. The published article can be found under the following reference:

Scharf, F., & Nestler, S. (2018b). Principles behind variance misallocation in temporal ex-
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Abstract

Temporal exploratory factor analysis (EFA) is commonly applied to ERP data sets to

reduce their dimensionality and the ambiguity with respect to the underlying

components. However, the risk of variance misallocation (i.e., the incorrect allocation of

condition effects) has raised concerns with regard to EFA usage. Here, we show that

variance misallocation occurs because of biased factor covariance estimates and the

temporal overlap between the underlying components. We also highlight the

consequences of our findings for the analysis of ERP data with EFA. For example, a

direct consequence of our expositions is that researchers should use oblique rather than

orthogonal rotations, especially when the factors have a substantial topographic

overlap. A Monte Carlo simulation confirms our results by showing, for instance, that

characteristic biases occur only for orthogonal Varimax rotation but not for oblique

rotation methods such as Geomin or Promax. We discuss the practical implications of

our results and outline some questions for future research.

Keywords: Event-related Potential, Principal Component Analysis, Exploratory

Factor Analysis, Variance misallocation
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Principles behind variance misallocation in temporal exploratory factor analysis for

ERP data: Insights from an inter-factor covariance decomposition

1 Introduction

The recording of electric brain activity from the scalp surface via

electroencephalography (EEG) is a very popular tool among cognitive neuroscientists.

Event-related potentials (ERPs) are commonly applied to investigate how brain activity

reflects the differential processing of events (e.g., different stimuli or responses).

Typically, the EEG signal is cut into epochs around the events of interest and averaged

across all replications of the same event to improve the signal-to-noise ratio (SNR), thus

resulting in an average ERP per participant, electrode, and condition. The high

dimensionality of these data results in various challenges to the analyst. For instance, a

rather simple experiment with 2 conditions and 20 participants using 64 electrodes and

an epoch length of 500 ms (500 Hz sampling rate) produces 2 · 20 · 64 · 250 = 640, 000

data points. As a consequence of these large data sets, ERP experiments suffer from a

massive multiple comparison problem (but see, for instance, Groppe, Urbach, & Kutas,

2011a, 2011b; Maris, 2004, for solutions). In our example, comparing the two conditions

at all sampling points and all electrodes would result in 16,000 possible statistical tests.

Another problem arises from the fact that the electric potential observed on the

scalp surface is only a (weighted) 2D summation of the underlying electrical potentials

produced by neuronal populations in 3D space. Thus, when analyzing the observed

mixture of signals, it is difficult to determine the true underlying ERP components and

which of them is responsible for the observed differences between conditions. Since

neither shape nor allocation of effects can be determined with respect to the underlying

components, it is hard to draw inferences from ERPs on the basis of the raw voltage

(see e.g., Luck, 2014, p. 52). Exploratory factor analysis (EFA) has been suggested as a

way to overcome the multiple test problem and to characterize the observed mixture of

signals (e.g., Donchin, 1966; Donchin & Heffley, 1978; Chapman & McCrary, 1995;

Dien, 2012). The goal of EFA is to describe the large number of data points as a
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function of a few underlying sources of variation that are called factors or components.1

Amplitude differences between conditions and participants can then be analyzed on the

level of these factors, potentially reducing the ambiguity of the raw signal. In addition,

the number of comparisons can be reduced since the amplitude of each factor can be

described as a single value without the need for analysis time windows. Thus, the use of

EFA can significantly decrease the complexity of ERP data.

Different methods exist within the EFA framework such as Principal Component

Analysis (PCA) or Maximum Likelihood Factor Analysis (MLFA). Due to its

computational simplicity, previous methodological research on ERP data has focused

almost exclusively on PCA (James, Witten, Hastie, & Tibshirani, 2013; Mulaik, 2010;

Widaman, 2007), which is implemented in the PCA ERP Toolbox (Dien, 2010b), a

common toolkit for ERP analyses. An important issue that was investigated in prior

research was how the rotation method influences the adequacy of the EFA solution

(Achim & Marcantoni, 1997; Beauducel & Debener, 2003; Dien, 1998; Dien, Beal, &

Berg, 2005; Kayser & Tenke, 2003; Möcks & Verleger, 1986; Wood & McCarthy, 1984).

Here, we want to examine the influence of both points with regard to a commonly

studied problem with EFA for ERP data: variance misallocation (Wood & McCarthy,

1984). Based on a decomposition of the inter-factor covariance, we explicate why

variance misallocation occurs and how its influence can be decreased by using the

correct rotation method. Furthermore, we confirm our theoretical results in a Monte

Carlo simulation.

The present article is organized as follows: We will first briefly describe the

common factor model and its application to ERP data. Then, we will introduce the

problem of variance misallocation, we theoretically explain how variance misallocation

can be caused by biased factor covariance estimates and temporal overlap between

factors, and highlight the consequences of our results for the analysis of ERP data with

1Although the resulting estimated components in a Principal Component Analysis (PCA) or Indepen-
dent Component Analysis (ICA) are usually called components, throughout this article, we will refer to
estimated components as factors irrespective of the estimation method that was used. We do so to be as
clear as possible about the fact that the extracted factors are the result of a mathematical transformation
of the data and do not necessarily reflect a physical reality although this would be a desirable outcome
(for an example, see Makeig et al., 1999).

21



EFA. We will then report the results of a simulation study in which we manipulated

both causes of variance misallocation and compared the performances of two different

estimation methods (PCA and MLFA) for the factor model and three different rotation

methods (Varimax, Promax, and Geomin) for the occurrence of variance misallocation.

Finally, we will discuss the implications of our findings for researchers who want to

apply EFA in case of ERP data.

2 Exploratory factor analysis for ERP data

In the common factor model it is assumed that the observed variables are a linear

function of a set of shared latent sources of variation called common factors (see e.g.,

Dien, 2012; Dien & Frishkoff, 2005, for more exhaustive descriptions). The model was

originally developed in a psychometric context in order to summarize the answers from

multiple questionnaire items in a few psychological constructs such as personality traits

(see e.g., Mulaik, 2010). Questionnaire data can be organized in a simple 2-dimensional

matrix with n participants (observations) in the rows and the p items (variables) in the

columns. However, data from ERP experiments tend to have a much more complicated

structure. For the remainder of the article, we will assume that the data were averaged

across all trials (per participant, electrode, and condition). Thus, they can be arranged

in a 4-dimensional electrodes× sampling points× participants× conditions matrix.

In principle, dimension reduction can be applied in either the spatial, the

temporal or in both domains (Dien, 2010a; Dien & Frishkoff, 2005), yielding factors

that summarize electrodes or time points, respectively, with a common activity pattern.

Here, we focus on dimension reduction in the temporal domain. According to the

common factor model, the voltage at each sampling point is modeled as a function of a

few underlying factors. Mathematically, this is expressed by assuming that the voltage

tj at sampling point j (where j = 1, 2, ..., p and p is the number of sampling points) is a

weighted linear combination of m latent factors:

tj = λj1 · η1 + λj2 · η2 + ...+ λjm · ηm + εj, (1)
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where ηk denotes the vector of factor scores for factor k, with k ranging from 1 to m

and m has to be determined during the analysis. The factor scores represent the

characteristic value (i.e., amplitude) of each factor for each electrode of each participant

in each condition. λjk are weights called factor loadings, which express how much each

factor is reflected by each sampling point. The higher the absolute value of λjk the

stronger the influence of factor k on the voltage at sampling point j. When λjk = 0,

factor k does not contribute to the observed voltage at sampling point j at all. The

error term εj is the part of tj that is not explained by the factors (i.e., noise). While the

factor loadings (i.e., the time course) are fixed for all observations, amplitude differences

between participants, conditions, and electrodes are reflected by the factor scores. Note

that there is no intercept term in Equation 1 and therefore the model only captures the

variation around the grand average waveform of the sampling points. That is, factors

are formally defined as sources of variation and a voltage deflection that is constant

across all participants, conditions, and electrodes would not be considered a factor.

Usually, the common factor model is expressed in matrix notation as:

T = Λ · η + ε (2)

where T is the p× n matrix of all (centered) sampling point variables from all n

observations, η is the m× n matrix of factor scores, Λ is a p×m matrix of factor

loadings, and ε is a p× n matrix of error terms. The advantage of writing the EFA

model as it is written in Equation 2 is that the covariance matrix between the sampling

points, Σ, can easily be derived (see Mulaik, 2010, p. 136). This matrix is given by:

Σ = ΛΦΛ′ + Θ, (3)

where Φ is the covariance matrix of the latent factors and Θ is the covariance matrix of

the error terms. Equation 3 shows that the covariance between sampling points is

effectively decomposed into the variances and covariances of the factors and some error

(co-)variances. It is often assumed that the error covariance matrix Θ is a diagonal
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matrix, that is, that the error terms are mutually uncorrelated.

MLFA and PCA differ in whether an explicit error term is modeled or not.

Specifically, PCA does not contain an error covariance matrix and thus does not

explicitly distinguish between substantial and unique (i.e., residual) factors. In spite of

that, it is one of the most popular methods for estimating the parameters of the EFA

model (Fabrigar, Wegener, MacCallum, & Strahan, 1999). MLFA, on the other hand, is

used to estimate the full common factor model by maximizing the likelihood function of

the covariance matrix Σ (Jöreskog, 1967; Mulaik, 2010). To this end, MLFA has to

assume that the data is multivariate normally distributed.2 Furthermore, it is assumed

that the factors and the error terms are uncorrelated. In general, PCA and estimation

methods that explicitly consider error variance, such as MLFA, are mathematically

equivalent if the latent factors explain (nearly) all of the variance in the observed

variables. Specifically, differences in the loading estimates between PCA and genuine

EFA methods are a function of the communality of the involved variables (i.e., the

variance of a variable accounted for by the factors) and the number of variables per

factor (De Winter & Dodou, 2016; Widaman, 1990, 1993, 2007). For ERP data this

implies that differences between PCA and MLFA estimates are smaller 1) the higher the

explained variance of a sampling point’s data (typically, this variance is considered to

be very high, see Dien & Frishkoff, 2005), and 2) the larger the time range of the

components (i.e., stronger differences between factors that are only present over a very

small time range).

In general, the factor loadings cannot be determined in a mathematically unique

manner because the EFA model is unidentified. That is, an infinite set of factor loading

matrices with equal fit exists for a given number of factors and a given data set.

Therefore - after determining the number of factors to be retained and estimating an

initial solution from the covariance matrix of the sampling points (Dien et al., 2005;

2One might reasonably argue that the multivariate normality assumption is unlikely to hold for ERP
data. However, it has been shown that the MLFA estimators can be derived without this assumption
(Howe, 1955). A violation of the multivariate normality assumption affects the calculation of standard
errors for the estimates of Λ and Θ, but the estimation remains unbiased (Mulaik, 2010). Therefore,
MLFA can be assumed to be applicable to ERP data.
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Dien, 2012) - the initial solution may be rotated in order to find a more interpretable

solution (e.g., Mulaik, 2010). There are two major forms of rotation: (1) orthogonal

rotations (e.g., Varimax, Kaiser, 1958, 1959) in which the factor scores are forced to be

uncorrelated, and (2) oblique rotations (e.g., Promax, Hendrickson & White, 1964),

which allow for a certain correlation between the factor scores. Factor rotation

effectively reallocates the variance between factors, aiming for a so-called simple

structure (Thurstone, 1954). In an ideal simple structure, each factor is well-defined by

a distinct set of variables, that is, the variables have high loadings on only one factor

and zero loadings on the remaining factors. Most of the available rotation methods are

designed to rotate the factor loadings as close as possible to a simple structure (for an

overview, see Browne, 2001). Notably, in the context of ERP data, the factor loadings

reflect the time courses of the factors and an ideal simple structure would be satisfied if

there was no temporal overlap between the components. Hence, rotation procedures will

prefer solutions in which each sampling point is as uniquely as possible assigned to a

single factor rather than several factors – potentially oversimplifying situations when

the temporal overlap of the underlying factors is high.

After the factor loadings have been rotated, factor scores need to be estimated to

examine experimental condition effects. Several different approaches exist for this such

as the commonly used regression approach (Thomson, 1935; Thurstone, 1935). Having

obtained the factor scores, there are two ways to test for condition effects in the

amplitudes: Researchers can use the factor scores as dependent measures in subsequent

analyses (typically t-tests, ANOVAs, or multiple regressions; e.g., Boxtel, 1998) or they

can use the factor scores to reconstruct the raw data in a factorwise manner and use

these in subsequent analyses (Dien, 1998, 2012). Whatever of the two methods is

employed, the very idea of both methods is that EFA has significantly decreased the

complexity of the original ERP data.

We have now seen how EFA can be used to summarize ERP data sets. In real

application scenarios, it remains unknown in how far the factor solution reflects any

underlying unobserved physical entity and - at best - EFA increases the interpretability
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and reliability of the extracted information (Beauducel, Debener, Brocke, & Kayser,

2000). In the following sections (3 & 4), we will revert our view and assume that we

know the underlying factor structure (because we constructed the data with a certain

factor structure in mind) in order to see how well EFA can blindly recover our

constructed factors.

3 Mechanisms of variance misallocation

In light of the central goal of testing for condition differences in the factor scores

(i.e., amplitudes) or the reconstructed raw data, it is important that experimental

effects are attributed to the correct factors because otherwise functional interpretations

of the factors might be misguided. The term variance misallocation has been

introduced in reference to the case where variance is incorrectly attributed to factors

that are actually not affected by the experimental manipulation (Wood & McCarthy,

1984). As described earlier, the ’translation’ of the data into factors (and vice versa) is

mainly controlled through the factor loadings. Hence, whatever causes systematic biases

in the factor loading estimates will trigger variance misallocation to some extent (Achim

& Marcantoni, 1997). Two important influences on the risk of biased factor loadings

have been identified in the methodological literature: biases in the factor correlations or

factor covariance parameters, respectively, and variables’ cross-loadings (e.g., Schmitt &

Sass, 2011, for a discussion).

With regard to the factor covariance parameters, we note that - when EFA is

applied to ERP data - the inter-factor covariance matrix has a special structure due to

the arrangement of the initial data matrix. As stated earlier, EFA is applied to a data

matrix in which the rows represent observations from all participants in all conditions

and from all electrodes. This arrangement of the data has the consequence that each

estimated factor variance is a combination of variance due to differences between

participants and due to differences between conditions and electrodes. Furthermore, the

estimated factor covariance is influenced by the condition effects and the topography.

To illustrate, assume a simple fictional data set that contains the average ERPs to
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a certain stimulus, recorded at two electrode sites from several participants. To keep

the equations simple, we further assume, that two factors are sufficient to describe our

fictional data set. Condition effects are considered by writing the factor scores as

dependent variables in a linear regression with electrode as predictor:

η1 = b01 + b11 · x+ δ1

η2 = b02 + b12 · x+ δ2

(4)

Here, η1 and η2 are vectors containing the factor scores for all observations (i.e., data

from each participant at each electrode) for the respective factors, x is the effect-coded

electrode, that is, a dichotomous variable that is either +1 (electrode 1) or −1

(electrode 2). Consequently, b0· is the average factor score across both electrodes of the

respective factor and b1· is half the mean difference of the factor scores between the two

electrodes. Finally, δ. denote error terms that reflect the deviation of each

participant-electrode combination from the predicted value. We note that while x, δ1

and δ2 are vectors containing one element for each participant-electrode combination,

all other parameters are simple scalars.

For this example, the factor covariance matrix is (see Equation 3)

Φ =



var(η1) cov(η1, η2)

var(η2)




=



var(b01 + b11 · x+ δ1) cov(b01 + b11 · x+ δ1, b02 + b12 · x+ δ2)

var(b02 + b12 · x+ δ2)




=



b2

11 · var(x) + var(δ1) b11 · b12 · var(x) + cov(δ1, δ2)

b2
12 · var(x) + var(δ2)




=




b2
11︸︷︷︸

topographic variance
of factor 1

+ var(δ1)︸ ︷︷ ︸
between-person variance

of factor 1

b11 · b12︸ ︷︷ ︸
covariation due to

topographic overlap

+ cov(δ1, δ2)︸ ︷︷ ︸
covariation across

participants

b2
12︸︷︷︸

topographic variance
of factor 2

+ var(δ2)︸ ︷︷ ︸
between-person variance

of factor 2




(5)

where the third transformation follows from applying standard rules concerning the
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(co-)variance and the assumption that all covariances between residuals and predictors

in Equation 4 are zero. The last transformation follows from the assumption that for

each participant both electrode sites were recorded. This entails that the data set is

balanced and that the variance of the effect-coded electrode x equals 1.

Equation 5 shows that the estimated factor variance can be decomposed into

topographic variance due to electrode differences and residual variance due to

unexplained between-participant differences. Similarly, the estimated factor covariance

(i.e., the off-diagonal element in Φ) can be split up into covariation due to the

topographic overlap and covariation due to differences between participants.

Remarkably, the former occurs whenever the scores (i.e., amplitudes) of both factors

vary systematically between electrodes. Thus, the correlation of the factors across

electrodes can roughly be understood as the amount of topographic overlap and it is

therefore virtually impossible that the factors are uncorrelated (see also Dien, 2010a).

For instance, factor 1 might show a more positive peak at electrode 1 compared to

electrode 2 while factor 2 might show a reverse pattern. Therefore, across participants,

a high first factor is typically followed by a low second factor at electrode 1 and vice

versa at electrode 2. In other words, the peaks are negatively correlated. This

covariation due to topographic overlap will differ from zero, except if the peak of either

of the factors is constant across both electrodes (i.e. either, or both, b11 = 0 or b12 = 0).

We note that one can extend these results to the multiple electrode case where the

(co-)variance can also be decomposed into scalp topography across multiple electrodes,

condition effects and between-participant differences (see Appendix A). Although the

described mixture of (co-)variance sources has been noted before (Dien, 1998; Dien

et al., 2005; Dien, 2010a; Hunt, 1985; Möcks & Verleger, 1985), the explicit derivation of

the covariance decomposition for ERP data has - as far as we know - not been presented.

However, the decomposition is informative as it allows us both to understand why

variance misallocation occurs and also how its influence can be decreased. For instance,

when using an orthogonal rotation method such as Varimax, one implicitly makes the

constraint during estimation that the sum of the covariances caused by participants,
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electrodes and condition effects equals zero. This might occur when the covariance

terms are in fact zero or when one covariance term is the exact counterpart of the other

terms. However, we believe that this precondition is rather unlikely to hold in practice,

because, typically, there are multiple electrodes and conditions. The sum of the

covariance terms will thus deviate from zero in most circumstances, and the more it

deviates from zero, the more of the shared variance between the factors is represented

as spurious cross-loadings (Sass & Schmitt, 2010; Schmitt & Sass, 2011).

This suggestion is well in line with previous simulation research on applications of

EFA to ERP data showing that variance misallocation can be reduced by using oblique

rotations (e.g., Promax; Beauducel, 2017; Dien, 1998; Dien et al., 2005; Dien, 2010a).

However, arguments in favor of orthogonal rotations are still made (Kayser & Tenke,

2006) and orthogonal rotation methods (i.e., mainly Varimax) are still applied (e.g.,

Kayser & Tenke, 2015; Barry, De Blasio, Fogarty, & Karamacoska, 2016). Our

theoretical results clearly show that oblique rotation methods are superior to orthogonal

rotation methods and that the use of orthogonal rotations carries a high risk for the

occurrence of variance misallocation. To reduce this risk, oblique rotation methods

should be the default choice when applying EFA to ERP data.

Apart from the inter-factor covariance, previous research has identified temporal

overlap between factors as an influential feature of the underlying ERP components

triggering variance misallocation (Dien, 1998; Dien et al., 2005; Möcks & Verleger, 1986;

Verleger & Möcks, 1987; Verleger, Paulick, Möcks, Smith, & Keller, 2013). By temporal

overlap, we refer to time ranges in which two or more factors are concurrently activated.

This concurrent activation is reflected by non-zero factor loadings of the respective time

points on all involved factors. These cross-loadings are a major challenge for all rotation

methods because they interfere with their optimization criterion to strive for factor

loading matrices with simple structure, that is, with minimal cross-loadings (Browne,

2001; Mulaik, 2010). Hence, when the true population pattern deviates from the

optimum that a rotation method is aiming for (i.e., there are high cross-loadings, see

Asparouhov & Muthen, 2009), then the method will provide inflated factor correlation
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estimates and deflated estimates of the cross-loadings (De Winter, Dodou, & Wieringa,

2009; De Winter & Dodou, 2012; De Winter & Dodou, 2016; Sass & Schmitt, 2010;

Schmitt & Sass, 2011), which in turn will lead to variance misallocation.

We believe that the high prevalence of slow-wave components makes ERP data

especially prone to this problem as they overlap with almost all other factors in an EFA

(Verleger & Möcks, 1987). A consequence of this is, that the bias could be avoided by

applying rotation criteria that are more suitable for situations with high temporal

overlap. For instance, there is some evidence that oblique Geomin rotation (Yates,

1987) performs better in the presence of substantial cross-loadings than other rotation

methods (Schmitt & Sass, 2011; Asparouhov & Muthen, 2009, but see also Dien,

2010a). Alternatively, one can try to modify rotation criteria by considering likely time

courses of ERP components (Beauducel, 2017).

To sum up, in this section we explained that variance misallocation is due to

biases in the factor loadings and we showed that biased factor covariance parameters or

cross-loadings increase the risk for the occurence of these biases. With regard to the

former, we used a decomposition of the factor covariance to show that substantial

inter-factor covariances are likely to be expected for ERP data due to topography and

condition effects. An important consequence of this is that - in general - the usage of

orthogonal rotation methods should be avoided. Furthermore, we showed why temporal

overlap between factors, or cross-loadings, poses a challenge for currently available

rotation methods.

4 A Simulation Study

In the following, we want to investigate the suitability of our theoretical results in

a Monte Carlo simulation. We used a Monte Carlo approach here because it allowed us

to examine the occurrence or non-occurence of variance misallocation in a range of

different conditions defined by the size of the factor correlation, the temporal overlap

between factors, and the topographic overlap between the factors. Recent studies

evaluating PCA for ERP data have either used real data sets (e.g., Kayser & Tenke,
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2003) or data sets simulated from virtual head models to which real EEG noise was

added (e.g., Dien et al., 2005). These studies were extremely valuable for assessing the

usefulness of the method (e.g., in terms of the interpretability of the solution) under

realistic data situations. However, we believe that Monte Carlo studies can nicely

complement these efforts, as they allow us to evaluate the statistical properties of EFA

for ERP data.

In our simulation, we varied the factor correlation across participants, the

temporal overlap of the time courses, the topographic overlap of the factors, and the

number of participants per sample. Furthermore, we compared the performance of three

rotation methods (Varimax, Promax and Geomin) with regard to the correct estimation

of the factor loadings. Based on our considerations, we expected that - especially in the

presence of topographic overlap - orthogonal factor rotation (i.e., Varimax) will result in

biased factor loading estimates even if the factors are actually uncorrelated across

participants. This bias should be substantially weaker without topographic overlap and

it should not occur for the oblique Promax and Geomin rotations (Dien, 1998; Dien

et al., 2005; Dien, 2010a). In addition, we expected that a differentiable bias occurs

that increases only as a function of the temporal overlap. We expected that Geomin

rotation can handle substantial cross-loadings better than Promax (Schmitt & Sass,

2011; Asparouhov & Muthen, 2009).

On an exploratory basis, finally, we also compared two different EFA methods

(MLFA and PCA) for estimating the initial (unrotated) solution. This was done as it is

typically claimed that both estimation methods yield highly similar estimates for

ERP-like data (Dien et al., 2005), and we wanted to provide empirical evidence for this

assumption.

4.1 Method

4.1.1 Simulation Model. Our simulation model was designed to be

appropriate for investigating a variety of data situations typical of ERP analyses. We

systematically varied the parameters sample size (2), temporal overlap (3), topographic
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overlap (2), and population factor correlation (2). Each sample consisted of a matrix T

with 200 sampling points in the columns spread over an epoch of 450 ms and 2 · 10 ·N

rows (emulating ERPs from N participants recorded at 10 electrode sites in two

conditions). For illustration purposes, one might think of placing 10 electrodes over the

central line where electrode 1 is the most anterior and electrode 10 is the most posterior

electrode. The sample size N was 20 or 40, representing typical sample sizes in ERP

experiments. The samples were drawn from a matrix-variate normal distribution (e.g.,

Gupta, 2000). That is, T ∼ N(M,V,Σ) where M is the 2 · 10 ·N × 200 matrix of

expected time courses for each participant at each electrode site and in each condition,

and V and Σ are the covariance matrices between the rows and the sampling points,

respectively. The row covariance matrix V was an identity matrix of size 2 · 10 ·N . Note

that this procedure resulted in independent samples, that is, data from different

conditions and electrodes were not correlated within participants.

The sampling point covariance matrix Σ was derived from the common factor

model (Equation 3). We specified two factors in the population factor loading matrix Λ.

The loading time courses are depicted in Figure 1 (A to C). The time courses were

specified by Gaussian density functions with a standard deviation of 40 ms. The mean

(i.e., peak) of the first factor was at 120 ms. In order to vary the amount of temporal

overlap between the factors, three latency conditions were investigated with the mean of

the second factor at 200 ms (L1), 250 ms (L2), or 300 ms (L3). The loading curves had

a peak loading of 0.8 and 1, respectively. The variance of the factors was normalized

(i.e., ϕ11 = ϕ22 = 1), and the factors were either mildly correlated (ϕ12 = 0.3) or

uncorrelated (ϕ12 = 0). That is, in the correlated condition, a participant with a more

positive amplitude for the first factor was likely to show a more positive amplitude for

the second factor as well. The error covariance matrix Θ = σ2
error · Ip was a diagonal

matrix, that is, all error terms were mutually uncorrelated (white noise) and the noise

level was constant over the whole simulated epoch. The noise variance (σ2
error) was 0.4,

simulating a moderate noise level as might be expected for average ERPs. 3

3For instance, at the electrode and sampling point with the highest signal-to-noise ratio, about 16%
of the total variance was due to the simulated noise.
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Figure 1 . Illustration of the simulation model. A to C: Factors as defined by their
loading time courses for the 3 different overlaps (L1 to L3 from A to C). D: Population
time course for the condition with the smallest temporal overlap (L3) separately for
Electrode 1 (solid lines) and Electrode 10 (dashed lines) in the condition with perfect
topographic overlap. The tROIs for the loading recovery analyses are highlighted in
colored boxes. Figure available at http://osf.io/xtjkn under a CC-BY 4.0 license.

The expected time courses (i.e., the population grand average ERPs) for all 20

rows per participant can be derived from Equation 2.4 In a similar manner as

Beauducel and Debener (2003), we simulated both topographic variance and condition

effects. At the respective topographic maximum, the first factor had expected factor

scores of -1.5 (condition 1) or -2.5 (condition 2), and the second factor had expected

factor scores of 2.5 (condition 1) or 3.5 (condition 2). With respect to the topographic

4The factor loadings have to be multiplied by the mean vector of the factor scores in each condition:
µ = E(t) = E(Λ · η + ε) = E(Λ · η) + E(ε) = E(Λ · η) = Λ · E(η)
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overlap, we contrasted the two extremes of perfectly overlapping and non-overlapping

(orthogonal) factors. The first factor had its maximum peak at electrode 1 (’anterior’

distribution). In the conditions with perfect topographic overlap, the second factor had

its maximum peak at electrode 10 (’posterior’ distribution). In the conditions with

non-overlapping topographies, the second factor had its maximum peak at electrodes 5

and 6 (’central’ distribution). Following the principles of the topographic component

model (e.g., Achim & Bouchard, 1997; Möcks, 1988b), the remaining factor scores were

calculated by multiplying the expected factor scores with topographic weights. The

weights were 1 at the maximum peak and linearly decreased towards values of -0.5

(factor 1) and 0.1 (factor 2) at the other extreme of the topography. This procedure

resulted in plausible topographies in the sense that the condition effects were stronger

at electrode sites at which the factor was stronger and were reversed if the polarity of

the factor was reversed at an electrode site. An example for the resulting ERPs at two

electrodes is provided in Figure 1D. The expected condition effects and topographies

were kept constant across participants.

4.1.2 Simulation Procedure. Simulations were conducted in R (Version

3.3.1, R Core Team, 2017). All scripts for simulations and analyses are available at

http://osf.io/xtjkn. In each condition, 1000 samples were generated using the package

LaplacesDemon (Statisticat & LLC., 2016). For each sample, the correlation matrix was

calculated and then smoothed to ensure positive semi-definiteness in spite of the fact

that there were few observations for the high number of variables. For this purpose, a

principal component smoothing was applied as it is implemented in the psych package

(Revelle, 2016; Wothke, 1993). That is, the eigenvalues of the correlation matrix were

calculated such that eigenvalues smaller than 10−12 were fixed to 10−10, and the

eigenvalues were rescaled to add up to the number of variables again. The smoothed

correlation matrix was calculated from the smoothed eigenvalues and was then rescaled

using the original sample standard deviations. This resulted in a smoothed covariance

matrix which was used in all succeeding steps.

In each sample, model parameters were estimated with PCA and MLFA. The same
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PCA procedure was applied as in the ERP PCA Toolkit (Dien, 2010a). For MLFA, the

algorithm by Lawley and Maxwell (1971) was used as it is implemented in the psych

package (Revelle, 2016). The number of factors to be extracted was determined by

parallel analysis (Horn, 1965). The resulting initial loading matrix was subjected to

three different rotations: a Varimax rotation with Kaiser-normalization (Kaiser, 1958,

1959), a Promax rotation with Kaiser-normalization (κ = 4) (Hendrickson & White,

1964) an oblique Geomin rotation (Yates, 1987). All rotation procedures were

conducted using the package GPArotation (Bernaards & I. Jennrich, 2005).

4.1.3 Dependent Measures.

4.1.3.1 Performance of Parallel Analysis based on PCA versus

MLFA. We investigated the general performance of the parallel analysis and explored

whether there were performance differences between parallel analysis based on the

factors from PCA versus an MLFA. We classified the results of parallel analysis as

correct when it suggested 2 factors and as under- or overextracted when parallel analysis

suggested too few or too many factors, respectively. Our dependent measure was the

relative proportion of correct, under-, and overextracted parallel analysis solutions in

each condition.

4.1.3.2 Recovery of Model Parameters. To evaluate the performance of

the estimation methods, we computed measures of the overall model fit, and of the

recovery of the population parameters. As a measure of global model fit, we calculated

the standardized root mean residual (SRMR) between the observed and model-implied

covariance matrices in each sample (e.g., Brown, 2014, p.70). The overall model fit was

calculated directly from the initial solution as it does not depend on the rotation

technique due to rotational indeterminacy (e.g., Mulaik, 2010). The recovery of the

model parameters (i.e., factor loadings and factor correlations) was assessed in terms of

accuracy and stability of the estimates by calculating the mean and standard deviation

across all samples per simulation condition. The deviation between the population
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values and their estimates was quantified as the absolute bias for each parameter:

BiasΛ = Λ̂ − Λ (6)

Biasϕ = ϕ̂12 − ϕ12 (7)

Here, the hat symbols denote the average estimated sample values (in contrast to the

population values), and ϕ12 is the factor correlation. In order to avoid distortions due

to the under- or overextraction of factors, samples were considered only if parallel

analysis yielded the correct number of factors (i.e., m = 2). To summarize our findings

more comprehensively, we specified three time ranges of interest (tROIs) and averaged

the bias of the factor loadings within each tROI. Two tROIs were centered around the

two peaks (± 6 sampling points). The other tROI was located around the intersection

of the loading curves (i.e., 6 sampling points before and after the crossing point; Fig. 1).

We are aware that the amount of variance misallocation has been quantified by

different measures in the literature. For instance, some studies focused on the amount

of false positive significance tests (Wood & McCarthy, 1984; Dien et al., 2005). We

quantified variance misallocation by two measures. First, we calculated the correlations

between the average estimated factor loadings and the population factor loadings (rλλ̂)

separately for each factor. As in other simulation studies (De Winter & Dodou, 2016;

Dien, 1998), this correlation served as a scale-independent measure of similarity

between the population loading patterns (i.e., time courses) and their estimates. As

variance misallocation is a consequence of biased factor loading estimates, similarity

between the population loadings and their estimates is sufficient to indicate any risk of

variance misallocation. Second, in order to evaluate the impact of the biases on

statistical inferences more directly, we calculated the bias in the effect size estimates.

That is, Cohen’s d (δ̂) was calculated from the estimated factor scores using the classic

formula (Cohen, 1962) and the bias was calculated as:

Biasδ = δ̂ − δ (8)
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Here δ̂ denotes the estimated effect size and δ denotes the population effect. As δ was

equal to ±1 for both factors, this measure directly reflects the relative bias in our

simulations. The bias was calculated at the electrode site of the respective topographic

maximum of each factor (where the effect was maximal as well). It depends on the

specific data situation (e.g., power) in how far biased factor loading estimates will affect

the number of significant test results (Beauducel & Debener, 2003). Addressing this

problem to some extent, our measure reflects direction and severity of the bias

independent of the number of observations.

4.2 Results

Under all investigated conditions, Parallel Analysis suggested to extract 2 factors

in all samples – no matter whether it was based on PCA or MLFA. The overall model

fit as reflected by the SRMR ranged from .02 to .03 (M = 0.03), indicating reasonable

model fit for all investigated conditions (Tab. 1 & 2). The model fit was better for

larger sample sizes (N20: M = 0.02; N40: M = 0.03). The choice of estimation method

and varying temporal or topographic factor overlap did not affect the SRMR.

The average MLFA-estimated factor loadings in comparison with the population

loadings for an example condition (N = 40) are shown in Figure 2 and Figure 3 for

factors with and without topographic overlap, respectively. These conditions were quite

representative of the general trends we observed in our simulations. Differences between

PCA and MLFA were negligible (see Tab. 1, 2, 3, & 4). The factor loadings were

generally overestimated (Tab. 3 & 4). However, the population time courses were

sufficiently recognized which is reflected by a correct representation of the peak

latencies of the two factors (Fig. 2 & 3) and the high correlations (>.90) between the

estimated and population loadings (Tab. 1 & 2). The most apparent distortions

occurred for Varimax rotation in conditions with topographic overlap where it yielded a

second, smaller peak in the time range around the peak of the respective other factor

(where zero-loadings would have been expected). Notably, these spurious cross-loadings

did not occur when the within-participant factor correlation was zero and the
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Figure 2 . Average MLFA-estimated (colored) and population (Λ, gray) factor loadings
of the two factors with topographic overlap (solid vs. dashed lines) for sample size
N = 40 as a function of temporal overlap (L1 to L3: A to C; D to F) and within-person
correlation in the population (A to C: correlated, D to F: uncorrelated). Different colors
represent the different rotation methods. Figure available at http://osf.io/xtjkn under a
CC-BY 4.0 license.

topographies were orthogonal, but they did occur, when the factors were correlated

within participants – even in the absence of topographic overlap (Fig. 3, upper panels).

The obliquely rotated factor loadings where overall much closer to the population

time courses than the Varimax rotated loadings. The only exception occurred for the

conditions without topographic overlap but with substantial temporal overlap (L1 &

L2), where Varimax rotated loadings recovered the population loadings slightly better.

This pattern was also reflected by the correlations between the estimated and the

population loadings (Tab. 1 & 2) where Varimax rotated loadings yielded lower

correlations than obliquely rotated loadings, except for the conditions without

topographic overlap but with temporal overlap. However, the benefits of Varimax

rotation in these isolated conditions were much smaller than the losses in conditions

with topographic overlap.

Performance differences between the oblique rotation methods were much smaller.

Both Promax and Geomin perfectly recovered the population time courses in the
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Figure 3 . Average MLFA-estimated (colored) and population (Λ, gray) factor loadings
of the two factors without topographic overlap (solid vs. dashed lines) for sample size
N = 40 as a function of temporal overlap (L1 to L3: A to C; D to F) and within-person
correlation in the population (A to C: correlated, D to F: uncorrelated). Different colors
represent the different rotation methods. Figure available at http://osf.io/xtjkn under a
CC-BY 4.0 license.

conditions without temporal overlap (L3). However, when there was temporal overlap

(L1, L2), both oblique rotations tended to underestimate the population loadings in

regions of temporal overlap (see Fig. 2 & 3). Neither of the oblique rotations performed

unequivocally better: Geomin performed slightly better for medium overlap (L2) but for

high temporal overlap (L1), Promax was slightly superior in the presence of topographic

overlap. This pattern was also confirmed by the correlations between the estimated and

the population loadings (Tab. 1 & 2). Finally, it should be mentioned that the factor

loading estimates were very stable across samples despite the low sample size (see

Appendix B & C). Geomin rotated loadings were slightly more stable than Varimax or

Promax rotated loadings, especially for cross-loadings (i.e., F2 in tROI1 and F1 in

tROI3, respectively). In addition, we observed that Varimax rotated loadings were more

stable than Promax rotated loadings around the first peak (i.e., F1 in tROI1).

Like for the factor loadings, our simulations revealed systematic biases in the

estimates of the factor correlation (ϕ12, Tab. 3 & 4). The relative size of these biases
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Table 1
Global fit and time course recovery as a function of simulation condition for conditions
with overlapping topographies

rλλ̂
Varimax Promax Geomin

Estimation ϕ12 N Overlap SRMR F1 F2 F1 F2 F1 F2
PCA 0.3 20 L1 0.0331 0.9399 0.9663 0.9997 0.9969 0.9939 0.9956

L2 0.0311 0.9242 0.9630 0.9998 0.9992 1.0000 1.0000
L3 0.0312 0.9235 0.9643 0.9998 1.0000 1.0000 1.0000

40 L1 0.0234 0.9405 0.9663 0.9995 0.9967 0.9937 0.9954
L2 0.0220 0.9235 0.9632 0.9997 0.9991 1.0000 1.0000
L3 0.0221 0.9237 0.9645 0.9999 1.0000 1.0000 1.0000

0.0 20 L1 0.0332 0.9681 0.9833 0.9960 0.9924 0.9931 0.9947
L2 0.0312 0.9635 0.9827 0.9991 0.9989 0.9999 0.9999
L3 0.0312 0.9646 0.9835 1.0000 1.0000 1.0000 1.0000

40 L1 0.0235 0.9685 0.9833 0.9957 0.9921 0.9931 0.9947
L2 0.0221 0.9635 0.9828 0.9991 0.9988 0.9999 0.9999
L3 0.0221 0.9648 0.9837 1.0000 1.0000 1.0000 1.0000

MLFA 0.3 20 L1 0.0331 0.9376 0.9653 0.9998 0.9970 0.9939 0.9956
L2 0.0310 0.9221 0.9622 0.9998 0.9992 1.0000 1.0000
L3 0.0311 0.9215 0.9636 0.9998 1.0000 1.0000 1.0000

40 L1 0.0234 0.9382 0.9652 0.9997 0.9967 0.9938 0.9955
L2 0.0219 0.9214 0.9624 0.9997 0.9991 1.0000 1.0000
L3 0.0220 0.9217 0.9638 0.9998 1.0000 1.0000 1.0000

0.0 20 L1 0.0332 0.9668 0.9827 0.9963 0.9925 0.9931 0.9948
L2 0.0311 0.9626 0.9824 0.9991 0.9989 0.9999 0.9999
L3 0.0311 0.9638 0.9832 1.0000 1.0000 1.0000 1.0000

40 L1 0.0235 0.9671 0.9827 0.9959 0.9924 0.9931 0.9947
L2 0.0220 0.9626 0.9824 0.9991 0.9988 0.9999 0.9999
L3 0.0220 0.9640 0.9834 1.0000 1.0000 1.0000 1.0000

Note. ϕ12 = population factor correlation across participants, N = sample size, rλλ̂ = correlation
between average estimated loadings and population loadings, F · = factor.

was remarkable, exceeding 100% relative to the population value of 0.3 in some

conditions. The pattern of these biases depended heavily on the topographic overlap: In

conditions with topographic overlap, the factor correlation was generally overestimated

and differences between Promax and Geomin were negligible. In conditions without

topographic overlap, the biases were generally smaller but both oblique rotation

methods still tended to overestimate the factor correlation when the temporal overlap

was high (L1). In addition, non-zero population correlations where underestimated for

the lower temporal overlaps (L2, L3) whereas the estimates were nearly unbiased for

zero population correlations. This pattern was slightly more pronounced for Promax
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Table 2
Global fit and time course recovery as a function of simulation condition for conditions
with orthogonal topographies

rλλ̂
Varimax Promax Geomin

Estimation ϕ12 N Overlap SRMR F1 F2 F1 F2 F1 F2
PCA 0.3 20 L1 0.0333 0.9967 0.9988 0.9875 0.9861 0.9914 0.9932

L2 0.0312 0.9968 0.9988 0.9987 0.9987 0.9999 0.9999
L3 0.0310 0.9971 0.9989 1.0000 1.0000 1.0000 1.0000

40 L1 0.0236 0.9964 0.9988 0.9875 0.9859 0.9915 0.9932
L2 0.0221 0.9968 0.9988 0.9987 0.9987 0.9999 0.9999
L3 0.0219 0.9971 0.9989 1.0000 1.0000 1.0000 1.0000

0.0 20 L1 0.0335 1.0000 0.9999 0.9840 0.9838 0.9905 0.9921
L2 0.0313 1.0000 1.0000 0.9987 0.9986 0.9998 0.9998
L3 0.0310 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

40 L1 0.0237 1.0000 0.9999 0.9839 0.9837 0.9906 0.9922
L2 0.0222 1.0000 1.0000 0.9986 0.9986 0.9998 0.9998
L3 0.0220 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

MLFA 0.3 20 L1 0.0333 0.9965 0.9987 0.9877 0.9861 0.9914 0.9932
L2 0.0311 0.9967 0.9988 0.9987 0.9987 0.9999 0.9999
L3 0.0309 0.9970 0.9988 1.0000 1.0000 1.0000 1.0000

40 L1 0.0235 0.9962 0.9987 0.9876 0.9860 0.9915 0.9933
L2 0.0220 0.9967 0.9988 0.9987 0.9987 0.9999 0.9999
L3 0.0218 0.9971 0.9989 1.0000 1.0000 1.0000 1.0000

0.0 20 L1 0.0334 1.0000 0.9999 0.9841 0.9838 0.9905 0.9922
L2 0.0313 1.0000 1.0000 0.9987 0.9986 0.9998 0.9998
L3 0.0309 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

40 L1 0.0237 1.0000 0.9999 0.9840 0.9837 0.9906 0.9922
L2 0.0221 1.0000 1.0000 0.9986 0.9986 0.9998 0.9998
L3 0.0219 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

Note. ϕ12 = population factor correlation across participants, N = sample size, rλλ̂ = correlation
between average estimated loadings and population loadings, F · = factor.

rotated solutions than for Geomin rotated solutions.

The relative biases of the effect size estimates (Tab. 5) corresponded very well to

the biases in the factor loadings and factor correlations. That is, the biases in the effect

size estimates tended to be larger in conditions where the EFA parameters were

strongly biased. Overall, the relative biases for Varimax rotated solutions were stronger

than for Promax and Geomin rotated solutions – exceeding 10 % in some conditions.

Varimax yielded more biased effect sizes in the presence of topographic overlap and/or

non-zero across-participant correlation but also when the temporal overlap was high.

The bias of the effect sizes for Promax and Geomin solutions varied mainly as a
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function of the temporal overlap. Notably, in the most favorable conditions (i.e., no

temporal or topographic overlap, no across-participants correlation), none of the tested

rotation methods substantially biased the effect size estimates.

Table 5
Relative biases of the effect sizes as a function of simulation condition

Overlapping Topographies Non-Overlapping Topographies
Varimax Promax Geomin Varimax Promax Geomin

Estimation ϕ12 N Overlap F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
PCA 0.3 20 L1 -0.01 -0.16 -0.07 -0.07 -0.08 -0.06 0.03 0.09 -0.07 -0.05 -0.04 -0.03

L2 0.07 -0.10 -0.04 0.04 -0.02 0.04 0.00 0.04 -0.04 -0.04 -0.02 -0.02
L3 0.08 -0.13 -0.01 0.00 0.00 0.01 0.01 0.07 -0.01 0.02 -0.01 0.02

40 L1 0.01 -0.19 -0.06 -0.07 -0.07 -0.07 0.02 0.08 -0.08 -0.06 -0.06 -0.04
L2 0.07 -0.13 -0.03 0.02 -0.02 0.01 0.01 0.04 -0.04 -0.04 -0.02 -0.01
L3 0.08 -0.13 0.01 0.01 0.01 0.01 0.03 0.04 0.00 -0.02 0.01 -0.01

0.0 20 L1 -0.01 -0.16 -0.02 0.02 -0.01 0.04 0.00 0.03 -0.03 -0.03 -0.01 -0.01
L2 0.00 -0.11 -0.02 0.06 -0.01 0.05 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01
L3 0.00 -0.14 -0.01 0.01 -0.01 0.00 -0.01 0.02 -0.01 0.02 -0.01 0.02

40 L1 -0.02 -0.19 -0.03 0.00 -0.02 0.01 -0.01 0.02 -0.04 -0.04 -0.03 -0.02
L2 0.00 -0.14 -0.02 0.03 -0.01 0.01 -0.01 0.00 -0.02 -0.02 -0.01 -0.01
L3 0.01 -0.14 0.01 0.01 0.01 0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01

MLFA 0.3 20 L1 -0.01 -0.16 -0.07 -0.07 -0.08 -0.06 0.02 0.09 -0.07 -0.05 -0.05 -0.03
L2 0.07 -0.10 -0.04 0.04 -0.02 0.04 0.00 0.04 -0.04 -0.04 -0.03 -0.02
L3 0.07 -0.13 -0.01 0.01 -0.01 0.01 0.01 0.06 -0.01 0.01 -0.01 0.02

40 L1 0.01 -0.18 -0.06 -0.07 -0.07 -0.06 0.02 0.08 -0.08 -0.06 -0.06 -0.04
L2 0.07 -0.13 -0.04 0.02 -0.02 0.01 0.01 0.04 -0.04 -0.04 -0.02 -0.01
L3 0.08 -0.13 0.00 0.01 0.01 0.01 0.03 0.04 0.00 -0.02 0.01 -0.01

0.0 20 L1 -0.01 -0.16 -0.02 0.03 -0.01 0.04 0.00 0.03 -0.03 -0.03 -0.02 -0.01
L2 0.00 -0.11 -0.02 0.06 -0.01 0.05 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01
L3 0.00 -0.14 -0.01 0.01 -0.01 0.01 -0.01 0.02 -0.01 0.02 -0.01 0.02

40 L1 -0.01 -0.19 -0.03 0.00 -0.02 0.01 -0.01 0.02 -0.04 -0.04 -0.03 -0.02
L2 0.00 -0.14 -0.02 0.03 -0.01 0.02 -0.01 0.00 -0.02 -0.02 -0.01 -0.01
L3 0.01 -0.14 0.01 0.01 0.01 0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01

Note. ϕ12 = population factor correlation across participants, N = sample size, F · = factor.
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5 Discussion

In the present article, we showed that variance misallocation occurs because of

biased factor covariance estimates and because of biased cross-loading estimates caused

by the temporal overlap between underlying factors. In a Monte-Carlo study, we then

investigated the role of the different sources of factor covariance and the temporal

overlap between factors for the occurrence of variance misallocation. We compared the

recovery of EFA parameters for several rotation methods and two estimation methods

(PCA and MLFA) in situations that are representative of typical ERP data. The results

showed that the number of factors to be extracted was recognized with remarkable

accuracy, that differences between PCA and MLFA were negligible, and that the

recovery of the population factor loadings with respect to the overall time course was

quite sufficient across all conditions. These findings support the notion that EFA is a

useful method for ERP researchers (see also Kayser & Tenke, 2005). Therefore, before

discussing the biases we found, we want to reemphasize that we view them as hints how

to improve the method rather than arguments against the use of EFA.

With regard to orthogonal (here Varimax) versus oblique rotation methods, our

results showed that characteristic biases occurred only for Varimax but not for Geomin

or Promax rotation. Varimax produced spurious cross-loadings reflecting the shared

variance of the factors that comes from systematic topographic and condition variance

(Appendix A; Dien, 2010a) – even in conditions without temporal overlap (L3). In line

with our reasoning, these biases clearly increased as a function of the total factor

covariance: When the factors were uncorrelated across participants in the population

and the factor topographies were orthogonal, Varimax yielded unbiased factor loadings

estimates. When either factors were overlapping or factors were correlated across

participants, spurious cross-loadings could be observed which were strongest when both

sources of covariance differed from zero. The relative biases of the effect sizes confirm

that the severity of variance misallocation due to correlated factors by far outweighs the

benefits of Varimax rotation in the most favorable conditions (i.e., when the total factor

correlation is indeed zero). Considering the facts that only two factors with orthogonal
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topography are possible for ERP data (Dien, 2010a) and that EFA for ERP data

typically yields more than 2 factors, our theoretical and our simulation results suggest

that researchers should abandon the use of Varimax rotation when applying temporal

EFA to ERP data because it virtually guarantees variance misallocation. We note that

in case the total factor covariance is indeed close to zero, the estimates of orthogonal

and oblique rotations will be very similar (see Fig. 3F). Hence, there is ’nothing to lose’

when regularly using oblique rotation methods (Dien, 1998; Dien et al., 2005; Dien,

2010a).

Independent from the factor correlation, oblique rotations yielded unbiased factor

loadings only in absence of temporal overlap (L3), otherwise small spurious

cross-loadings of opposite sign were observed that increased with temporal overlap (L1

> L2). In spite of their small size, the spurious cross-loadings clearly resulted in biased

effect sizes, at least in conditions with high temporal overlap (L1). Of the two tested

oblique rotation methods, Geomin performed better than Promax in medium overlap

conditions (L2) and worse in some high overlap conditions (L1 with topographic

overlap). Consistent with this ambiguous pattern, previous simulations found

advantages for either Promax (Dien, 2010a) or Geomin rotation depending on the tested

factor loading pattern (Asparouhov & Muthen, 2009; Sass & Schmitt, 2010; Schmitt &

Sass, 2011). These results are not contradictory because the performance of factor

rotation methods depends on the degree to which the true loading pattern matches the

optimum of the rotation criterion (Browne, 2001). Consequently, researchers applying

EFA to ERP data should be aware that each rotation method makes implicit

assumptions about the time courses of the ERP factors and the choice of the rotation

method should be guided by the expected factor loading pattern (Schmitt & Sass,

2011). Indeed, researchers can easily assess the potential impact of the rotation criterion

on their specific ERP factors by specifying an artificial factor loading matrix (Λ) that

represents their beliefs about the expected ERP factors. When this matrix is subjected

to factor rotation, the difference between the original and the rotated matrix is a valid

indicator of the bias to be expected (Möcks & Verleger, 1986; Verleger & Möcks, 1987).
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We note that the small size of the rotation bias in our simulations is a feature of

the simulated loading pattern and more severe distortions can be demonstrated easily

(Beauducel, 2017; Verleger & Möcks, 1987). Therefore, it is important for future

research to determine which rotation method is appropriate for which situation. Kayser

and Tenke (2003) suggested to use Varimax rotation including all factors (i.e., an

unrestricted solution) instead of extracting the number of factors as suggested by

Parallel Analysis (and then rotating them). However, although additionally extracted

noise factors may indeed improve the general time course recovery of the meaningful

factors as temporal autocorrelations of the noise may be better represented (see Dien,

2018, p. 101, for a similar argument), this approach cannot resolve the problem outlined

here that many of the extracted factors are necessarily correlated due to topographic

overlap5. Therefore, we see the questions how many factors should be extracted or how

noise correlations should be considered as independent matters from the choice of the

rotation method that should be further investigated in future research.

In order to improve existing rotation methods, it may be fruitful to develop

rotation criteria that incorporate the tendency of ERP factors to overlap to a large

extent. Recently, efforts were made to systematically improve rotation methods with

additional information such as the allocation of known effects (Beauducel & Leue, 2015)

or to rotate to the closest Gaussian-shaped time course (Beauducel, 2017). In addition,

we suggest to explore the use of partial target rotation to utilize information about the

expected time courses of the factors (Myers, Ahn, & Jin, 2013; Myers, Jin, Ahn,

Celimli, & Zopluoglu, 2015). Specifically, in many situations, it might be possible to

provide the rotation with a wide range of fixed zero-loadings representing time ranges in

which the respective factor should not contribute any activity.

Regarding the factor correlation estimates, we found that they deviated heavily

from the population factor correlation across participants - even for oblique rotations.

At first glance, this result may be surprising as the population factor loadings were

5 We confirmed that notion empirically by implementing another simulation condition in which 20
rather than two factors were extracted and then Varimax rotated. However, we did not find any reduction
in variance misallocation compared to the other Varimax conditions in our simulation. The results for
this additional simulation condition can be found on the OSF (http://osf.io/xtjkn)."
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recovered relatively well. However, this finding is in line with our theoretical

considerations showing that the estimated factor correlation is the result of three

sources of covariance. We believe that this result is important for research in which the

factor score correlation is substantively interpreted (e.g., Steiner, Barry, & Gonsalvez,

2016). As one does not know which source of variance dominates the formation and

interpretation of the factors (Hunt, 1985; Rösler & Manzey, 1981), correlations between

the factors scores can be caused by any of these sources. Hence, when the other sources

of covariance are not partialled out, it is, strictly speaking, not possible to find a clear,

substantive interpretation for the correlation.6

A number of modifications to the EFA procedure have been suggested in previous

research (see, e.g., Dien & Frishkoff, 2005, for a brief overview), trying to consider the

contributions of the different variance sources. For example, Möcks and Verleger (1985)

suggested to partial out between-person and topographic variance by subtracting

participant and electrode means from the raw signal, effectively treating them a

nuisance variance and discarding all information that may be contained in them.

Alternatively, separate EFAs per condition could be computed (Barry et al., 2016),

resulting in one set of parameter estimates per condition. We note that this approach is

especially reasonable when there are systematic latency shifts between the conditions.

Nevertheless, the resulting factor scores will still vary due to between-person and

topographic (between-electrode) differences so that the factor (co-)variance estimates

still commingle these two sources of variance. Another potential modification to the

temporal EFA procedure is a two-step approach where a temporal EFA is followed up

by a spatial EFA on the extracted factor scores (or vice versa; Dien, 2010a; Spencer,

Dien, & Donchin, 1999, 2001). An advantage of this method is that factors which were

conflated in one dimension might be disentangled in the other dimension. However, this

approach lacks a unified statistical model and therefore does not consider factors as

unified entities across both temporal and spatial domain. Addressing this issue,

Trilinear models such as the topographic components model (Achim & Bouchard, 1997;

6Note that even zero-correlations can be uninformative because they can be the result of summing
up a positive correlation from one source of variance and a negative correlation from another one.
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Möcks, 1988a, 1988b; Verleger et al., 2013) were suggested which build on the

assumption that the same temporal factors contribute to the signal at each electrode

but with varying weights (see Cong et al., 2015; Field & Graupe, 1991; Harshman &

Lundy, 1984; Harshman & Lundy, 1994, for a description of these approaches). Apart

from these previous suggestions, the structural equation modeling framework might

offer the possibility of modeling condition (and electrode) effects as well as repeated

measurement occasions within one unified model (Asparouhov & Muthen, 2009, 2012).

Given this multitude of opportunities for future developments, we believe that more

research is needed that directly compares these methods to determine which model is

best suited both from a statistical and from a biophysiological point of view.

6 Limitations

One weakness of our simulation approach is that the simulated data contained

considerable simplifications: Realistic ERP data contain more components (with

varying shapes), correlated noise, and many electrode sites instead of only ten. In

addition, in real ERP data sets, data from the same participant and data from

neighboring electrodes within each participant should be correlated. As long as there is

a sufficient number of high-loading sampling points per factor, more factors per se

should not substantially degrade EFA solutions (De Winter et al., 2009). Also, the

presence of more electrodes should not lead to fundamentally different conclusions. The

relative impact of spatial, temporal, and participant-related autocorrelation cannot be

evaluated from our simulations and needs to be evaluated in future research. A second

short-coming of conducting a Monte Carlo simulations is that we were not able to

investigate the effects of variance misallocation on other types of analyses that are

specifically applied to EEG/ERP data such as source localization. There is some

evidence that Promax rotated factors yield better localization results (Dien, Spencer, &

Donchin, 2003; Dien, 2010a). With respect to our findings, it is likely that the

localization works better the more closely the population factor loadings are recovered.
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7 Conclusion

On the basis of a decomposition of the factor covariance and a Monte Carlo

simulation, we investigated variance misallocation from the perspective of EFA as a

statistical model and compared the performance of PCA and MLFA. For researchers

applying temporal EFA for ERP data, our results should clarify three points: 1) Beyond

philosophical discussions about whether the brain is orthogonal or not (Dien, 2006;

Hunt, 1985; Kayser & Tenke, 2005), Varimax rotation of the temporal factors carries a

very high risk of variance misallocation due to the covariance between factors caused by

condition effects and topographic overlap. 2) Each factor rotation method makes

implicit assumptions about the time courses of the ERP factors that one needs to be

aware of. 3) Any correlation involving the factor scores must be interpreted with great

caution because the factor scores commingle condition, topographic, and participant

variation, except if all but one source of variance are partialled out. Finally, we want to

emphasize that - although there is some room for methodological improvements - we see

the EFA approach as an important tool in any ERP researcher’s toolbox which can

provide remarkably useful summaries of ERP data sets.
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Appendix A

Derivation of the biased factor correlation estimate for the

multiple-electrode case

In the following, we want to generalize our derivation of the factor covariance

matrix (cf. introduction section) from the single to the multiple electrode case.

We start again from the general common factor model:

T = Λ · η + E (A.1)

Here, T denotes the grand-mean-centered ERP data matrix (with sampling points in

the rows and participants, electrodes and conditions in the columns). Λ denotes the

factor loadings for all factors and E is a matrix of error terms. Without loss of

generality, we assume that the factor scores are also grand-mean-centered (i.e.,

E(η) = 0). If we extract m factors for the data set with p sampling points and n

observations (where n = nperson · nelectrode · ncondition), the matrices would look as follows:




t11 t12 t13 . . . t1n

t21 t22 t23 . . . t2n

. . . . . . . . . . . . . . . . . . . .

tp1 tp2 tp3 . . . tpn




=




λ11 λ12 . . . λ1m

λ21 λ22 . . . λ2m

. . . . . . . . . . . . . . . . . .

λp1 λp2 . . . λpm




·




η11 . . . η1n

η21 . . . η2n

. . . . . . . . . . . . .

ηm1 . . . ηmn




+




e11 . . . e1p

e21 . . . e2p

. . . . . . . . . . . .

en1 . . . enp




(A.2)

Put simply: Each column in T contains the grand-mean-centered ERP recorded at

a specific electrode site in a specific condition from a specific participant (in the

following referred to as observation).7 These ERPs are decomposed in a

model-predicted part (i.e., the columns in Λ · η) and an error term (i.e., the columns in

E). Each column in Λ reflects the time course of a specific factor over the whole epoch

and each column in η contains the factor scores of all factors for a specific observation.
7The orientation of the matrices may seem unfamiliar because observations are typically in the rows

of the data matrix in typical ERP software. We chose this notation because it is quite common in text
books on EFA (e.g., Mulaik, 2010).
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Assuming we have l predictor variables for the condition effects (i.e., main effects

and interactions of experimental manipulations) and k effect-coded indicator variables

for the electrodes, we can consider the factor scores η as a function of three sources of

variance:

η = Γcond ·Xcond + Γel ·Xel + ζ (A.3)



η11 . . . η1n

η21 . . . η2n

. . . . . . . . . . . . .

ηm1 . . . ηmn




=




γ
(cond)
11 . . . γ

(cond)
1l

γ
(cond)
21 . . . γ

(cond)
2l

. . . . . . . . . . . . . . . . . .

γ
(cond)
m1 . . . γ

(cond)
ml




·




x
(cond)
11 . . . x

(cond)
1n

x
(cond)
21 . . . x

(cond)
2n

. . . . . . . . . . . . . . . . . .

x
(cond)
l1 . . . x

(cond)
ln




+ (A.4)




γ
(el)
11 . . . γ

(el)
1k

γ
(el)
21 . . . γ

(el)
2k

. . . . . . . . . . . . . .

γ
(el)
m1 . . . γ

(el)
mk




·




x
(el)
11 . . . x

(el)
1n

x
(el)
21 . . . x

(el)
2n

. . . . . . . . . . . . . .

x
(el)
k1 . . . x

(el)
ln




+




ζ11 . . . ζ1n

ζ21 . . . ζ2n

. . . . . . . . . . . . .

ζm1 . . . ζmn




(A.5)

Similar to the simplified example in the introduction, this equation can be seen as

a regression on the level of the latent factor scores. The factor scores of each

observation are predicted by condition and electrode position – leaving an

observation-specific residual. The elements in the Γ matrices are regression weights, the

predictor matrices X contain the predictor variables. For the condition effects, the

predictor variables may be categorical or continuous (or a mixture of both). For the

electrode effects, the most general formulation is to have an indicator variable for each

electrode. The observation-specific residual will then be a mixture of

participant-specific variation in the condition effects and the topography.

For the sake of simplicity, we derive the variance decomposition for an additive

model although a model including interaction terms would arguably be more

appropriate (Möcks, 1988a). However, the resulting equations are much more

comprehensible for the additive case. The principle validity of our deliberations should

not be affected by this simplification because, technically, the interaction terms are
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simply additional predictors that add even more sources of (co-)variance to the final

decomposition.

The covariance matrix of the centered factor scores Φ can be rewritten as the

expected value of the crossproduct of the factor scores (see Mulaik, 2010, for an

extensive introduction into the basic mathematics of factor analysis)8:

Φ = E[η · ηT ] (A.6)

= E[(Γcond ·Xcond + Γel ·Xel + ζ) · (Γcond ·Xcond + Γel ·Xel + ζ)T ] (A.7)

= E[(Γcond ·Xcond)(Γcond ·Xcond)T ]︸ ︷︷ ︸
Φcond

+E[(Γel ·Xel)(Γel ·Xel)T ]︸ ︷︷ ︸
Φel

(A.8)

+ E[(Γcond ·Xcond)(Γel ·XT
el ] + E[(Γel ·Xel)(Γcond ·Xcond)T ]︸ ︷︷ ︸

Φcond,el

+E[ζ · ζT ]︸ ︷︷ ︸
Φperson

(A.9)

That is, the covariance of the factors is the result of covariance due to condition

effects, the scalp topography, the correlation between condition and electrode

predictors, and person-specific residuals. Note that even if there were no condition

effects (i.e., all elements in Γcond are zero) and the factors were orthogonal within

participants (i.e., Φperson is a diagonal matrix), it would be extremely unlikely to get

orthogonal factors as there are always topographic distributions across the scalp that

overlap to some degree (Dien, 2010a).

8Some of the resulting product terms are zero because we assumed that predictors (here, electrodes
and conditions) are uncorrelated with the residuals ζ. These zero-terms were left out of the equation.
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Abstract

Event-related potential (ERP) data are characterized by high dimensionality and a

mixture of constituting signals and are thus challenging for researchers to analyze. To

address these challenges, exploratory factor analysis (EFA) has been used to provide

estimates of the unobserved factors, and to use these estimates for further statistical

analyses (e.g., analyses of group effects). However, the EFA approach is prone to biases

due to assigning individual factor scores to each observation as an intermediate step and

does not properly consider participants, electrodes and groups/conditions as

differentiable sources of factor variance with the consequence that factor correlations

are inaccurately estimated. Here, we suggest Exploratory Structural Equation Modeling

(ESEM) as a potential approach to address these limitations. ESEM may handle the

complexity of ERP data more appropriately because multiple sources of variance can be

formally taken into consideration. We demonstrate the application of ESEM to ERP

data (in comparison with EFA) with an illustrative example and report the results of a

small simulation study in which ESEM clearly outperformed EFA with respect to

accurate estimation of the population factor loadings, population factor correlations and

group differences. We discuss how robust statistical inference can be conducted within

the ESEM approach. We conclude that ESEM naturally extends the current EFA

approach for ERP data and that it can provide a coherent and flexible analysis

framework for all kinds of ERP research questions.

Keywords: Event-Related Potentials, Principal Component Analysis, Exploratory

Factor Analysis, Exploratory Structural Equation Modeling
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Exploratory structural equation modeling for event-related potential data – an

all-in-one approach?

Event-related potentials (ERPs) are averaged brain responses to an event (e.g., a

certain stimulus) recorded as electric potentials from several electrode sites (e.g., 64 or

128) on a participant’s scalp through electroencephalography (EEG). ERPs are

commonly used as a measure of differential brain activity that can be compared across

experimental conditions or groups in psychological experiments. ERP data sets

typically contain measurements from many time points (called sampling points) over a

certain time range (e.g., 500 ms after the event). As the preprocessed data are averaged

per participant and event type, they can be arranged in a large four-dimensional

electrodes× participants× conditions× sampling points matrix. In addition to their

high dimensionality, ERP data are challenging for analysts because the signal recorded

from the scalp is a mixture of constituting signals called components. This makes it

difficult to attribute differences in the observed signals to a specific component, but this

must be done in order to find a functional (or physiological) interpretation of the signal.

Addressing both challenges, Exploratory Factor Analysis (EFA) has been used in order

to approximate the components (e.g., Dien, 2012; Dien & Frishkoff, 2005, for

introductory treatments), and these estimates can be then used in further statistical

analyses (e.g., analyses of group effects). Throughout this article, we will use the term

EFA for this analysis approach and the term factors when referring to estimated

components.

Some readers may wonder why we refer to this analysis approach as EFA instead

of Principal Component Analysis (PCA). Technically, the difference between EFA and

PCA is that the former contains explicit error terms for the observed variables (here:

sampling points) while the latter does not (see, e.g., Widaman, 2007, 2018, for detailed

discussions). In that sense, one may see PCA as a special case of EFA in which the

error variances are fixed at zero (see also McDonald, 1996). Hence, when error variance

approaches zero and/or the number of observed variables is high, the differences

between EFA and PCA become negligible (Widaman, 2007). It has been noted that
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these conditions typically hold for ERP data (Dien, Beal, & Berg, 2005; Scharf &

Nestler, 2018). However, it is unknown in how far this is a general condition that always

holds for applications of the method. Therefore, we use the more general EFA model

throughout this paper.

For ERP data, EFA is typically applied as follows (e.g., Dien, 2012): First, the

parameters of the EFA model (i.e., factor loadings, factor correlations, and factor

scores) are estimated. Second, statistical inference for group or condition effects is

conducted on the factor scores (or the factor-wisely reconstructed ’raw’ data), typically

in the context of a general linear model (GLM; i.e., AN(C)OVAs or regressions). Such

approaches are limited in at least two respects: First, it is well-known that they can

result in biased estimates for GLM parameters in the second step (e.g., Devlieger,

Mayer, & Rosseel, 2016; Lastovicka & Thamodaran, 1991; Lewis & Linzer, 2005;

Skrondal & Laake, 2001). Second, EFA assumes only a single source of (co-)variance in

the factor scores and, consequently, it commingles (co-)variance in the factors due to

participants, electrodes and conditions (Scharf & Nestler, 2018).

Extended approaches are available that consider topographic variance (see

Discussion) such as the two-step EFA in which a temporal EFA is followed by a spatial

EFA (Dien, 2010; Spencer, Dien, & Donchin, 2001), or trilinear models (Achim &

Bouchard, 1997; Field & Graupe, 1991; Möcks, 1988b; Mørup, Hansen, Herrmann,

Parnas, & Arnfred, 2006; Verleger, Paulick, Möcks, Smith, & Keller, 2013; Wang,

Begleiter, & Porjesz, 2000). Here, we explore how these limitations could be addressed

in the framework of Structural equation modeling (SEM) (see Bollen, 1989; Kline, 2016,

for introductions to SEMs) which is frequently used for research purposes in the social

sciences (MacCallum & Austin, 2000) and for which many extensions exist (e.g.,

Asparouhov, Hamaker, & Muthén, 2017; Asparouhov & Muthén, 2009, 2012).

Traditionally, SEMs require pre-specified measurement models which are not available

for ERP data because the factor loading patterns vary heavily between experiments.

This is arguably one of the reasons why neuroscientists applying SEM quantified ERP

amplitudes by peak or windowed-average measures instead of utilizing EFA-estimated
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measurement models (e.g., Brydges, Fox, Reid, & Anderson, 2014; Charlton et al., 2008;

Papaliagkas, Kimiskidis, Tsolaki, & Anogianakis, 2008; Thomas, Leeson, Gonsalvez, &

Johnstone, 2013; Wilhelm, Hildebrandt, & Oberauer, 2013). Consequently, a

combination of EFA and SEM would be better suited for the purposes of ERP

researchers.

Recently, Exploratory Structural Equation Modeling (ESEM) was proposed that

combines flexible EFA measurement models with the opportunity of SEM to model

predictors of the latent variables (Asparouhov & Muthén, 2009). ESEM allows

researchers to directly regress the factor scores on latent (e.g., psychometric test scores)

or manifest (e.g., group or condition assignment) variables - obviating the need for a

factor scoring step. Here, we suggest that ERP data can be analyzed with ESEM in

order to avoid potential biases of the EFA approach and to disentangle the multiple

sources of variance in ERP data.

The present article is organized as follows: First, we will explain the statistical

models behind EFA and ESEM, respectively. Thereby, we briefly discuss why the EFA

approach can lead to biased results and we outline the wide range of possibilities that

an ESEM analysis provides. Then, we will demonstrate the use of ESEM for ERP data

(in comparison with EFA) with an illustrative example. Finally, we will report the

results of a small Monte Carlo simulation investigating whether ESEM effectively avoids

the biases inherent to the EFA approach and whether it is able to disentangle the

different sources of variance.

Exploratory Factor Analysis

The fundamental idea of temporal EFA for ERP data is that the raw voltage at a

specific sampling point tj is a weighted linear combination (i.e., a mixture) of a few (m)

underlying factors:

tj = λj1 · η1 + λj2 · η2 + ...+ λjm · ηm + εj (1)

Here, j is an index of the specific sampling point with j = 1, 2, ..., p, where p denotes the

number of sampling points. The vector of factor scores ηk (with k ranging from 1 to m)
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represents the characteristic values (i.e., amplitudes) of factor k for each electrode in

each group/condition for all participants. The factor loadings λjk indicate how much

each factor is reflected by each sampling point and are assumed to be constant across

participants, electrodes, and groups/conditions. That is, a higher absolute value of λjk

reflects a stronger influence of factor k on the voltage at sampling point j. The error

term εj is the deviation of tj from the value predicted by the model.

The EFA model is typically presented in matrix notation:

T = Λη + ε (2)

where T is the p× n matrix of all sampling points from all n observations (i.e., data

from all participants, electrodes, and conditions), η is the m× n matrix of factor scores,

Λ is a p×m matrix of factor loadings, and ε is a p×n matrix of error terms. Essentially,

EFA provides a representation of the ERP data set in which the time course and

amplitude of each factor are reflected by factor loadings and factor scores, respectively.

For ERP data applications, the parameters of Equation 1 are typically estimated

as follows: The factor loadings are estimated for an initial (orthogonal) model. A

variety of methods can be applied to estimate the initial model such as PCA, or

Maximum Likelihood Factor Analysis (MLFA) which do not differ substantially for

typical ERP data sets due to the high number of variables and the high communalities

(Dien & Frishkoff, 2005; Scharf & Nestler, 2018; Widaman, 1993, 2007). The initial

model is typically used to determine the number of factors to be retained (but see also

Kayser & Tenke, 2003), for instance, using Parallel Analysis (Horn, 1965). The factor

loadings of the extracted factors are rotated utilizing an oblique rotation procedure

(Dien, 1998, 2010; Dien et al., 2005; Scharf & Nestler, 2018) yielding the final (rotated)

estimates of the factor loadings and the factor correlations.

Thereafter, the factor scores are obtained and submitted to subsequent statistical

analyses (e.g., regressions or ANOVAs). Put simply, factor scores are an elaborate way

of quantifying the amplitudes of the factors and other once common simple approaches

such as peak-picking or averaging across time-windows around the peaks can be seen as
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naive factor scoring methods (Beauducel & Debener, 2003; Donchin, 1978). The factor

scores Fη can be obtained by multiplying the (usually standardized) raw data T with

the factor scoring matrix Aη (e.g., Mulaik, 2010):

Fη = AηT (3)

Several methods have been proposed to obtain a factor scoring matrix Aη (see

DiStefano, Zhu, & Mîndrilă, 2009; Mulaik, 2010, for an overview) such as the regression

method (Thomson, 1935; Thurstone, 1935), the Bartlett method (Bartlett, 1937;

Thomson, 1938), or the Anderson-Rubin method (Anderson & Rubin, 1956). Of these

methods, the regression method is still the most widely applied. In the context of PCA,

it is also common to use the generalized inverse of the factor loading matrix as factor

scoring matrix (Mulaik, 2010, p. 371 ff.).

The factor scores are then subjected to a GLM for further analyses (see, e.g.,

Myers, Montgomery, Vining, & Robinson, 2010; Rutherford, 2011, for general

introductions to the GLM), that is:

Fη = Xγ̂ + E (4)

Here, γ̂ denotes the vector of estimated GLM parameters (e.g., regression slopes) and X

is the design matrix that contains the data of continuous predictor variables and, for

categorical predictors, the indicator variables, respectively. The matrix E is the residual

matrix of the GLM.

As ERP researchers applying EFA are typically interested in the results of the

subsequent GLM, an important goal of methodological research is to investigate

whether the estimated GLM parameters γ̂ are unbiased with respect to their population

values γ. Resembling the terminology of previous literature (e.g., Achim & Marcantoni,

1997; Dien, 1998; Kayser & Tenke, 2003; Möcks & Verleger, 1986; Wood & McCarthy,

1984), we refer to the case of biased effect size estimates in EFA as variance

misallocation. Previous research has mainly focused on variance misallocation due to
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biased factor loading estimates. This may occur either as a consequence of implausibly

choosing an orthogonal rotation (orthogonality bias; Dien, 1998; Dien et al., 2005; Scharf

& Nestler, 2018) or as a consequence of the rotation itself which biases the estimates

towards its simplicity criterion (rotation bias; Dien, 1998; Dien et al., 2005; Möcks &

Verleger, 1986; Scharf & Nestler, 2018). The rotation bias is a function of the temporal

overlap of the factors and gets stronger the more two factors load on the same sampling

points. Another contribution to variance misallocation, which has received less attention

in the context of ERP data, is that the effect size estimates may be attenuated due to

the factor scoring procedure (Skrondal & Laake, 2001) - resulting in a loss of power. In

the following, we will briefly explain why and when this factor scoring bias can occur.

When subjecting factor scores to a GLM, the GLM does not acknowledge

potential uncertainty inherent to the procedure of factor scoring. In general, this

uncertainty is a function of the number of indicators (i.e., sampling points) per factor

and the communalities (i.e., the amount of variance explained by the factors). That is,

the bias decreases as the number of indicators (per factor) and the communalities

increase (Acito & Anderson, 1986; Devlieger et al., 2016; Skrondal & Laake, 2001). For

ERP data, this implies that the bias gets smaller the more sampling points are recorded

(i.e., the higher the sampling rates) and the wider the time range of the respective

factor is.1 Based on experience, it is typically assumed that high communalities and

high samplings rates make the factor scoring bias negligible for ERP data (e.g., Dien &

Frishkoff, 2005). However, there is no guarantee that this assumption always holds in

practice. For instance, when predictors with measurement error (e.g., cognitive test

scores) are used in the GLM, the factor scoring bias may become substantial.2 In order

to avoid any risk of biases due to factor scoring, the structural parameters can be

1We note that this statement is only true if the rotation bias remains unchanged. In practice, the
estimated effect size is a function of the population effect size and the outlined biases. For instance,
when a factor has a wide time range (i.e., loads on many sampling points), the factor scoring bias will be
relatively small. However, in practice, a wider time range is typically confounded with higher temporal
overlap with other factors, which in turn increases the rotation bias. Therefore, it is hard to predict the
relative impact of each contribution to variance misallocation for a specific application.

2As outlined above, other peak measures that are based on the raw data are simplified special cases
of factor scores and, hence, are prone to the factor scoring bias as well (see, e.g., Mai & Zhang, 2018,
where variable averages are used as factor scores).
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estimated using SEMs – or, alternatively, factor scoring methods may be used that yield

unbiased regression coefficient estimates within the EFA approach (Croon, 2002;

Devlieger et al., 2016; Skrondal & Laake, 2001).

Apart from the potential bias due to factor scoring, the EFA approach does not

properly consider the multiple sources of variance in ERP data (Scharf & Nestler,

2018). Typically, the data matrix subjected to (temporal) EFA contains the data from

all combinations of electrodes, participants and groups/conditions in the rows and

treats the sampling points as variables in the columns. Consequently, the three sources

of (co-)variance in the data are commingled. This has the consequence that factor

(co-)variances must be interpreted as a mixture which makes it very difficult to interpret

them substantively, especially because the topographic overlap between the factors

virtually guarantees that the factors are substantially correlated. Perhaps the most

important implication of this mixture is that orthogonal rotations must not be applied

because neglecting the topographic overlap causes a substantial amount of variance

misallocation (Dien, 1998; Dien et al., 2005; Dien, 2010; Scharf & Nestler, 2018). In the

following, we will describe ESEM as a framework that both avoids the risk of biases due

to factor scoring and that is able to disentangle the multiple sources of variance.

Exploratory Structural Equation Models

ESEM combines EFA with SEM (Asparouhov & Muthén, 2009; Marsh, Morin,

Parker, & Kaur, 2014). In general, an SEM consists of a measurement model and a

structural model. The measurement model describes the relationship between the

observed variables (here: sampling points) and the latent factors. The structural model

is a regression model in which latent variables can be predicted by other manifest or

latent variables. The only difference between SEM and ESEM is that some factor

loadings are fixed to zero in SEM in order to achieve a unique solution, whereas rotated

EFA solutions are used as measurement models in ESEM (Marsh et al., 2014). As it is

hard to pre-specify measurement models for ERP factors (because they vary between

experiments), the flexibility of ESEM’s exploratory measurement model is more
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appropriate for ERP data.

Applied to ERP data, the ESEM consists of two equations 3:

Measurement model: T = Λη + ε (5)

Structural model: η = α + ΓX + ζ (6)

The measurement model (Equation 5) is the same as in EFA (Equation 2). The

structural model (Equation 6) is a regression in which each observation’s factor scores

(η) are predicted by a set of independent manifest (X) predictors multiplied by their

respective regression weights (Γ). In the case of ERP data, the manifest predictor

variables could, for instance, be categorical variables encoding group assignment and

electrode site (see example below). In order to adapt the model to the behavior of

Dien’s (2012) toolkit, one can add an intercept term α to the structural model so that

the factor scores are not centered. The structural error term matrix ζ denotes the

deviation of each observation’s factor score from its predicted value. The interested

reader is referred to the Appendix for some technical details on the estimation of the

ESEM parameters.

Less technically, one could say that the structural model replaces the GLM in the

ESEM approach - obviating the need for an intermediate step of factor scoring. That is,

the structural model may serve for the same purposes as the GLM. In experimental

contexts, mean comparisons are arguably the most prominent application. Therefore, in

the following, we will focus on structural models that resemble latent versions of

ANOVAs in regression formulation (see Cohen, 1968; Rutherford, 2011, for basic

treatments in the context of the GLM). However, in principle, linear models with any

combination of categorical (e.g., electrodes or conditions) and continuous (e.g., test

scores) predictors can be specified in the structural model. The only limitation is that

the same structural model must be specified for all factors, even if some predictors are

3In the service of comprehensibility, we simplified the ESEM equations by leaving out possible regres-
sions among the manifest and latent variables, respectively. Fixing the intercept terms of the sampling
points to zero reflects the notion that the expected voltage at each sampling point is zero in the absence
of a signal (i.e., a factor). The full model can be found in Asparouhov and Muthén (2009).
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relevant only for a subset of the factors (Asparouhov & Muthén, 2009).

ESEM can address both problems of the EFA approach outlined above: First, it is

not prone to factor scoring biases. As can be seen from Equation 6, the factor scores (η)

instead of factor score approximations (Fη, cf. Equation 4) are specified as a function of

the predictor variables, avoiding the estimation of individual factor scores and

eliminating the associated risk of biases (Mai, Zhang, & Wen, 2018). This is possible

because ESEM operates on sufficient sample statistics (i.e., means and variances), and

therefore avoids the uncertainties inherent to assigning an individual factor score to

each observation. Second, the capability of ESEM to model several sources of factor

variation in the structural model (cf. Equation 6) allows researchers to specify models

that consider condition/group differences and topographic variance in the factors.

Specifically, this can be achieved with categorical variables (e.g., ’dummies’) encoding

condition/group assignment and electrode site of each observation. This allows the

average factor score to vary between electrodes. In addition, a plausible model must

allow condition/group effects to vary between electrode sites (Möcks, 1988a). Therefore,

it is crucial to also specify all interaction terms between the condition/group and

electrode site in the structural model.

For instance, in the hypothetical case of 2 groups of participants and two recorded

electrode sites, the following structural model can be specified that roughly resembles

an electrodes × group ANOVA:

ηk = αk + γ1k · xgroup + γ2k · xel + γ3k · xgroup · xel + ζk (7)

Here, the index k denotes the respective factor. The manifest predictors xgroup and xel

are dummy-coded variables with a value of 1 for group 2 (xgroup) or electrode 2 (xel),

respectively, and 0 otherwise. The dummy-coding of the indicators determines the

interpretation of the model parameters (see Table 1 for an example): The intercept αk

represents the average factor score of the kth factor when both indicators are zero, that

is, for group 1 at electrode 1. The topographic difference between the electrodes is

encoded by γ2k. Hence, the average factor score of the first group for the kth factor at
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electrode 2 is αk + γ2k. The parameter γ1k stands for the difference in the average factor

score between the groups at electrode 1. The topographic variation of the group

difference is represented by the remaining interaction parameter γ3k, that is, the group

difference at electrode 2 is γ1k + γ3k. The residual term ζk is the difference between the

predicted factor score and the actual factor score of each observation (i.e.,

participant-electrode combination). Analogous to EFA, where the factor variance is

fixed to 1, the variance of the residual ζk is fixed to 1 in ESEM and the remaining

partial correlation between the factor scores ϕ12 = cov(ζ1, ζ2) is estimated.

An ESEM specified in this way explicitly models the factor topographies (i.e.,

factor scores as a function of electrode site) assuming that the factor topography is

constant across participants. It is an advantage of ESEM that the topography is

directly represented by the model parameters because this enables researchers to

directly test hypotheses regarding the topographic parameters within the model. One

might object that the assumption of constant topographies does not necessarily hold for

real data. However, we note that our parametrization is equivalent to presenting

averaged topographies of (bias-corrected) EFA factor scores. Therefore, this is

problematic only for cases for which the topographies are so variable across participants

that the mean is not a useful representation of the sample topography any more. Apart

from that, the only consequence of violating this assumption would be that the factor

residuals (ζ) loose some interpretability because they would reflect both variation in the

factor amplitudes and variation in the factor topographies across participants instead of

only the former.

ESEM offers further advantages over the EFA approach because it provides a

more general and flexible analysis framework: An ESEM model can contain any

combination of manifest variables, exploratory (rotated) factors (e.g., ERP factors) and

confirmatory factors (e.g., test scores) that can be regressed on manifest or latent

variables – enabling researchers to test a wide range of hypotheses (see Asparouhov &

Muthén, 2009). For instance, ESEMs can answer substantive questions regarding the

factor correlation (e.g., Barry, De Blasio, Fogarty, & Karamacoska, 2016) because the

78



factor correlation matrix (Φ = cov(ζ)) may be interpreted as a partial correlation

matrix – controlled for the predictors in the structural model (e.g., topographic and

condition/group-related variance).

Finally, we note that ESEM contains EFA as a special case: When the factors are

not predicted by any other variable (intercept-only model; i.e., Γ is a zero-matrix), the

ESEM and EFA solutions will be equivalent. This notion has the profound implication

that all recommendations from previous methodological research on the use of EFA for

ERP data also apply to ESEM – at the very least for that special case. Therefore,

ESEM can be seen as a logical extension of the well-established EFA method. Having

mentioned this, we would like to emphasize that ESEM is an extension of the statistical

model of EFA. That is, it does not include any form of ERP source modeling and the

resulting factors should not be interpreted as source signals. While this fact should be

acknowledged as a limitation of the ESEM approach, the estimated factors may still be

useful quantifications of the ERP signal and make functional interpretations easier (e.g.,

Beauducel, Debener, Brocke, & Kayser, 2000; Beauducel & Debener, 2003).

Illustrative Example

In the following, we will use a simplified artificial example data set based on

previous simulations (Scharf & Nestler, 2018) in order to illustrate differences and

similarities between EFA and ESEM and to give an example of how to apply an ESEM

to ERP data. In the service of comprehensibility, we will focus on the basic principles of

ESEM for an independent sample case with two groups. We note that this is done

exclusively to focus on the core principles and does not represent a limitation of ESEM

per se. Statistical inference for the structural parameters (Eq. 7) will be conducted

with bootstrapped confidence intervals (e.g., Efron & Tibshirani, 1993) because they do

not require strong assumptions about the form of the sampling distribution, and

because they can be used to account for the dependencies within the data (Cameron,

Gelbach, & Miller, 2008; Kreiss & Paparoditis, 2011). The bootstrapping procedure can

be summarized as follows:
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(1) Draw a random bootstrap sample (of original sample size) from the original

sample with replacement. The sample should be drawn in a participant-wise

manner (so-called block bootstrap), that is, all data from each participant are

drawn as a fixed block if that participant is (randomly) chosen.

(2) Estimate the ESEM for the new sample.

(3) Repeat (1) and (2) many times (e.g., 1000 times) and collect the ESEM

parameters each time.

(4) Obtain confidence intervals for all parameters by determining the 2.5% and the

97.5% quantiles of the parameter distributions across all bootstrap samples.

Due to the blocked resampling in step (1) this procedure preserves the correlations

between the repeated measures and enables valid statistical inferences (Davison &

Hinkley, 1997, chapter 8).

For illustration purposes, one may think of a typical Oddball paradigm, in which

two tones that differ with respect to their probability of occurrence are presented. For

instance, high tones (standards) are presented more often than low tones (deviants) and

participants might be instructed to watch a silenced video while they are passively

presented with the sequence of tones. The typical ERP for such an experiment is well

known: Deviants elicit a negative deflection in the time range between 100 and 200 ms

(N1/MMN) followed by a positive deflection around 300 ms (P3) relative to the

frequent (standard) tone (e.g., Horváth, Winkler, & Bendixen, 2008). It has been

attempted to use these ERPs as biomarkers for a variety of psychological disorders. For

instance, reduced MMN and P3 amplitudes were found for schizophrenic patients

compared to healthy controls (e.g., Kaur et al., 2011).

Inspired by this line of research, we simulated a data set with two factors recorded

at two electrode sites mimicking the described deviant ERPs in a very simplified

manner4: We created epochs with a length of 100 sampling points equally spaced over a
4The simulated data and the R- and Mplus-codes used to generate and analyse the simulated data

are available from the Open Science Framework http://osf.io/t8mau.
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Figure 1 . A & B: Population average ERPs of the example data in the two groups at
the anterior (A) and posterior (B) electrode site, respectively. C: Factor loading
estimates for factor 1 (solid) and factor 2 (dashed) from EFA (blue) and ESEM (red)
compared with the true population value (grey). Note that the population loadings of
factor 1 are hidden behind the ESEM estimates because the estimates perfectly
resembled the population values. Available from http://osf.io/t8mau under a CC-BY
4.0 license.

time range of 450 ms. Roughly emulating volume conduction, data from the two

electrodes within each participant were highly correlated (0.9). The simulated

population ERPs are depicted in Figure 1 (A & B). The first factor5 (N1/MMN) caused

a negative voltage deflection around 120 ms peaking at electrode 1 (’anterior’) and

showed a polarity reversal at electrode 2 (’posterior’). The second factor (P3) had its

maximum positive deflection around 300 ms at electrode 2 and showed a much weaker

positive deflection at electrode 1. Both factors had Gaussian shaped factor loading

curves with an SD (i.e., width) of 40 ms. The peak loadings were 0.8 (N1/MMN) and 1

(P3), that is, P3 explained more variance than N1/MMN. The factor amplitudes had a

moderate correlation across participants of 0.3.

We simulated two groups (healthy controls vs. patients) with amplitude

differences by defining average factor scores of -2.5 (healthy-controls-N1/MMN), -1.5

(patient-N1/MMN), 3.5 (healthy-controls-P3), and 2.5 (patients-P3), at the respective

topographic maximum. That is, the N1/MMN and P3 amplitudes were higher for

healthy controls than for patients. For the sake of comprehensibility, we reduced the

influence of sampling error and drew an unrealistically large sample of 500 participants

per group from a multivariate normal distribution. For more detailed simulations with
5Following the naming of ERP peaks, we will name the corresponding factors by their temporal

latency, that is, η1 refers to the factor with the lowest latency.
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realistic sample sizes, the reader is referred to the subsequent section of the article.

For ESEM, binary indicator variables (’dummies’) were used to predict the factor

scores, applying the same principles as in the GLM (Cohen, 1968; Rutherford, 2011).

Again, one may think of this model as a two-way latent variable ANOVA with the

factors group (healthy controls vs. patients) and electrode (anterior vs. posterior). The

specified structural model was the same as in Equation 7 with the group indicator

(xgroup) being 1 for patients and 0 for healthy controls. For EFA, no predictor was

entered into the structural model (intercept-only model, i.e., η = α + ζ). We estimated

the EFA parameters (including the factor scores) in Mplus (Version 8 Muthén &

Muthén, 2015). The ESEM parameters were estimated with a custom implementation

in R (R Core Team, 2018) that was based on the packages lavaan (Rosseel, 2012),

GPArotation (Bernaards & Jennrich, 2005), and boot (Canty & Ripley, 2017; Davison &

Hinkley, 1997). We employed a maximum likelihood estimator to obtain the initial

solutions and subsequently rotated these initial solutions by applying an oblique

Geomin rotation (Asparouhov & Muthén, 2009). Then, bootstrapped confidence

intervals were obtained from 1000 block bootstrap samples. That is, bootstrap samples

were drawn with replacement from the original sample in a participant-wise manner so

that the dependency structure between the repeated measures was preserved (Cameron

et al., 2008; Kreiss & Paparoditis, 2011).

For our example data set, both EFA and ESEM fit the data reasonably well as

was indicated by overall model fit indices, for instance, the standardized root mean

residual (SRMR) of 0.018 and 0.021, respectively. Roughly, the SRMR quantifies how

well the observed covariance matrix between the sampling points can be reconstructed

from the EFA/ESEM model estimates (e.g., Brown, 2014, p. 70). Taking a closer look

at the model parameters, both EFA and ESEM recovered the time courses of the factors

very well but only ESEM loadings were asymptotically unbiased (Fig. 1C). We note

that the differences in the factor loading estimates (Fig. 1C) can be treated as a simple

rescaling. In EFA, the factor variance is the sum of variance due to differences between

participants, electrodes, and conditions (see Scharf & Nestler, 2018, for analytic
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expressions) whereas, in ESEM, it is the residual variance after controlling for condition

effects and topography. As an identification constraint, the total factor variances are

fixed to 1 in EFA whereas the residual variances are fixed to 1 in ESEM. The bias is

therefore not relevant if the ultimate goal of the analysis is to analyse condition effects.

Differences in the factor correlation estimates were more profound: The factor

correlation was strongly inflated by EFA (ϕ̂12 = 0.74), whereas ESEM indeed provided

much less biased factor correlation estimates (ϕ̂12 = 0.23). These results are in line with

the notion that (co-)variance estimates are the sum of the different sources of

(co-)variance in the raw data matrix (Dien, 2010; Scharf & Nestler, 2018) and

demonstrate that ESEM but not EFA could separate group variance, topographic

variance, and participant variance in our example data set.

Overall, the simulated topography was sufficiently recovered by ESEM. The first

factor (N1/MMN) was negative at electrode 1 and showed reversed polarity (and

effect-direction) at electrode 2, and the second factor (P3) had its positive maximum at

electrode 2 and a weaker positive peak (and a weaker group effect) at electrode 1. This

notion is further supported by the fact that the estimates of the structural ESEM

parameters (Table 1) closely resembled the simulated population with respect to

average factor scores (α1, α2 + γ22) in the group of patients at the topographic

maximum of the respective factor. Finally, both EFA and ESEM estimated the group

differences with sufficient accuracy. For ESEM, this was reflected by the respective

structural parameters (γ11, γ12 + γ32). For EFA, separate t-tests on the

regression-estimated factor scores revealed that the average factor scores of the two

groups were significantly different for both factor 1 (N1/MMN), t(998) = 15.09, p <

.001, d = 0.966, and factor 2 (P3), t(998) = -15.28, p < .001, d = -0.954, yielding

comparable but slightly lower effect size estimates as the ESEM.

To sum up, this simple example demonstrates how ESEM extends the EFA

approach. Both approaches served the goal of analysing group/condition effects well

and for the given data set and yielded nearly unbiased effect size estimates. In addition

to that, ESEM was able to decompose the total factor (co-)variances into the
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contributions due to participants, electrodes, and groups/conditions as reflected by the

unbiased factor correlation estimate. Thus, apart from the ability to analyse

group/condition effects, ESEM directly provides interpretable estimates of the average

factor topography and the factor correlations. Robust inference can be conducted with

bootstrapped confidence intervals.

A Simulation Study

To demonstrate the generalizability of the results of the illustrative example for

realistic sample sizes, we conducted a simulation study that compared the performance

of ESEM and EFA under varying temporal and topographic overlap of the factors,

under varying sizes of the population factor correlation and for an orthogonal (Varimax;

Kaiser, 1958, 1959) and an oblique rotation method (Geomin; Yates, 1987). We are

aware that PCA is most commonly chosen to estimate the initial unrotated model for

ERP data. For typical ERP data sets, EFA and PCA can be expected to yield

equivalent results (Dien & Frishkoff, 2005; Scharf & Nestler, 2018). Nevertheless, the

results of a Geomin-rotated PCA can be found as online supplementary material on the

Open Science Framework (http://osf.io/t8mau).

Methods

Simulation Model. We varied temporal overlap (2), topographic overlap (2),

and population factor correlation (2) in this simulation. In order to avoid unfeasibly

long estimation times per model, we simulated epochs of only 50 sampling points

equally spaced over a time range of 450 ms. The simulated data for each sample were

arranged in a (2 · 10 · 40)× 50 sample matrix T with the sampling points in the columns

and, in the rows, the data from 2 groups of 40 participants at 10 electrode sites. In

reference to the illustrative example, one may imagine the 10 electrodes being placed

over the central line from electrode 1 (’anterior’) to electrode 10 (’posterior’).

Each sample was drawn from a matrix-variate normal distribution, that is,

T ∼ N(M,V,Σ) where M denotes the 2 · 10 · 40× 50 matrix of expected time courses,

and V and Σ are the covariance matrices between the observations (i.e., the rows) and
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Table 1
ESEM structural parameter estimates for example data

Parameter Interpretation Estimate SE CI

α1
Average η1 score of

healthy controls at E1 -2.44 0.07 [-2.56; -2.29]

γ11

Group difference in
average

η1 scores at E1
1.00 0.07 [0.86; 1.12]

γ21

Topographic
difference in

α1 (E2 minus E1)
3.75 0.09 [3.57; 3.91]

γ31

Topographic
difference in

γ11 (E2 minus E1)
-1.54 0.04 [-1.63; -1.45]

α1 + γ21
Average η1 score of

healthy controls at E2 1.32 0.05 [1.20; 1.42]

γ11 + γ31

Group difference in
average

η1 scores at E2
-0.54 0.06 [-0.67; -0.42]

α2
Average η2 score of

healthy controls at E1 0.32 0.05 [0.23; 0.42]

γ12

Group difference in
average

η2 scores at E1
-0.05 0.06 [-0.18; 0.08]

γ22

Topographic
difference in

α2 (E2 minus E1)
3.21 0.07 [3.06; 3.34]

γ32

Topographic
difference in

γ12 (E2 minus E1)
-0.91 0.04 [-0.97; -0.84]

α2 + γ22
Average η2 score of

healthy controls at E2 3.53 0.09 [3.35; 3.69]

γ12 + γ32

Group difference in
average

η2 scores at E2
-0.96 0.07 [-1.10; -0.82]

ϕ12

Residual correlation
of

η1 and η2 scores
0.23 0.03 [0.18; 0.29]

Note. SE =Standard error, CI = Bootstrapped confidence interval, η1 =
Factor 1 (N1/MMN), η2 = Factor 2 (P3), E1 = Anterior electrode, E2 =
Posterior electrode. Group differences are parameterized as patients minus
healthy controls. The full R and Mplus code is available from the Open
Science Framework (http://osf.io/t8mau).
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the sampling points (i.e., the columns), respectively (e.g., Gupta, 2000). The covariance

matrix of the observations V was an identity matrix resulting in independent samples.

This simplification was made because it avoids the necessity for bootstrapped standard

errors which would result in infeasibly long simulation times.

The covariance matrix of the sampling points (Σ) was derived from the common

factor model:

Σ = ΛΦΛ′ + Θ, (8)

where Λ, Φ, and Θ denote the factor loading, the factor correlation and the error

covariance matrix, respectively. We specified a two factor model in the simulated

population in which Gaussian density functions with a standard deviation of 40 ms

emulated the time courses. The first factor peaked at 120 ms with a peak loading of 0.8,

the second factor peaked either at 200 ms (L1) or at 300 ms (L2) with a peak loading of

1 – resulting in simulation conditions with high (L1) or low (L2) temporal overlap of

the factors (Figure 2 A & B). The factor variance was normalized (i.e., ϕ11 = ϕ22 = 1),

and the factors were moderately correlated (ϕ12 = 0.3) or uncorrelated (ϕ12 = 0). All

error terms were mutually uncorrelated (white noise) with a moderate noise level (σ2
error

= 0.4) that was constant over the whole simulated epoch (i.e., Θ = σ2
error · Ip).

The time courses were derived exactly as in Scharf and Nestler (2018): The first

factor had its topographic maximum at electrode 1 (’anterior’ distribution) and the

second factor peaked either at electrodes 5 and 6 (’central’ distribution) in simulation

conditions without topographic overlap (T1) or at electrode 10 (’posterior’ distribution)

in simulation conditions with perfect topographic overlap (T2). At the respective

topographic maximum, the expected factor scores were -1.5 (group 1) or -2.5 (group 2)

for the first factor, and 2.5 (group 1) or 3.5 (group 2) for the second factor. For the

remaining electrodes, these expected factor scores were multiplied with topographic

weights (e.g., Achim & Bouchard, 1997; Möcks, 1988a). The weights were 1 at the

topographic maximum and linearly decreased to -0.5 (factor 1) and 0.1 (factor 2) at the

most distant electrode sites. Consequently, the group differences were strongest at the

topographic maximum (γ = 1) and otherwise followed the topography of the factor.
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The resulting ERPs at electrode 1 and electrode 10 are depicted in Figure 2 (C & D).

The expected condition effects and topographies were constant across participants.
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Figure 2 . Upper panel: Population factor loadings of the first factor (solid) and the
second factor (dashed) used in our simulations for (A) simulation conditions with high
temporal overlap (L1), and (B) simulation conditions with low temporal overlap (L2).
Lower panel: Population time course for the simulation condition with high (C) and low
(D) temporal overlap, separately for group 1 (blue lines) and group 2 (red lines) at
Electrode 1 (solid lines) and Electrode 10 (dashed lines) in the simulation condition
with perfect topographic overlap. Color-shaded regions mark the temporal regions of
interest (tROIs) for the analyses of the factor loading estimates. Available from
http://osf.io/t8mau under a CC-BY 4.0 license.

Procedure. Simulations were conducted in R (Version 3.4.4, R Core Team,

2018). The following packages were used: abind (Plate & Heiberger, 2016), arrayhelpers

(Beleites, 2016), MplusAutomation (Hallquist & Wiley, 2018), LaplacesDemon

(Statisticat & LLC., 2016), psych (Revelle, 2016; Wothke, 1993), tarRifx (Friedman,

2014), reshape2 (Wickham, 2007), and xtable (Dahl, 2016). EFA and ESEM models

were estimated in Mplus (Version 7.4, Muthén & Muthén, 2015). All scripts for

simulations and analyses are available at https://osf.io/t8mau/.
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In each simulation condition, 1000 samples were generated and, for each sample, a

two-factor solution was estimated for the ESEM and the EFA models employing a

maximum likelihood estimator.6 The measurement models were rotated by applying an

oblique Geomin rotation with ε = .0001 (Yates, 1987) or an orthogonal CF-Varimax

rotation (Crawford & Ferguson, 1970; Yates, 1987).7 Alignment of the factors across

samples was ensured by reordering the two factors according to the rank order of their

correlations with the population factor loadings. For the ESEM models, we specified

dummy-coded binary indicator variables for group, electrode site and their interaction

in the same manner as for the presented example – except that more dummy-variables

were necessary to encode 10 instead of 2 electrode sites. For EFA, the factor scores of

each factor were estimated with the regression method (see Thomson, 1935; Thurstone,

1935). The factor scores were then subjected to an independent-sample t-test

comparing the average factor scores between the two groups.

Dependent Measures. We evaluated the performance of EFA and ESEM with

respect to overall fit with the SRMR (e.g., Brown, 2014, p.70). The accuracy of the

measurement model estimates was evaluated by means of the absolute biases of the

parameters (θ):

Biasθ = θ̂ − θ (9)

Here, the hat symbol denotes the respective estimated parameter averaged across all

samples, and the symbol without hat denotes the true population value. In particular,

we calculated the bias in the factor loadings (BiasΛ) and the factor correlation (Biasϕ).

We also calculated empirical standard errors (i.e., SDs across all 1000 samples per

simulation condition) in order to quantify the precision of the estimates. For the factor

loadings, we defined three time ranges of interest (tROIs) to summarize the results in a

comprehensive way. Two tROIs were centered around the peaks (± 6 sampling points)

of the factors, and the remaining tROI was set around the intersection of the loading

6We skipped the step of determining the number of factors because previous simulations showed that
this could be accurately done in similar data situations (see e.g., Scharf & Nestler, 2018).

7Technically, CF-Varimax is a member of the quartimin family but it yields equivalent results to the
original Varimax rotation (Browne, 2001). It was chosen because the original Varimax rotation is not
available for ESEM in Mplus.
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curves (i.e., 6 sampling points before and after the crossing point; Figure 2 A & B).

Both bias and empirical standard errors of the factor loadings were averaged within

each tROI.

Finally, the risk of variance misallocation was quantified by two measures: First,

the Pearson correlation between the averaged estimated factor loadings and the

population loadings (rλλ̂) was calculated for each factor as a scale-free measure of time

course recovery (i.e., similarity between estimated and population factor loading

vectors). Second, we calculated the bias in the estimated structural coefficient of the

group effect for ESEM at the topographic maximum of each factor (Biasγ). We note

that due to the dummy-coding and the normalization of the factor variances, this

measure is equivalent to the group difference in Cohen’s d (Cohen, 1962). Therefore, for

EFA, we calculated Cohen’s d from the parameters of the t-test on the factor scores

representing the structural parameter estimate γ̂.

Results

All results of our simulations are summarized in Table 2. For applied readers, the

rightmost columns containing the bias of the estimated effect sizes may be in the center

of interest as they most directly reflect the consequences of biases for the statistical

inferences. Both ESEM and EFA achieved reasonable overall model fits in all simulation

conditions as indicated by an average SRMR of 0.025 (Hu & Bentler, 1999). None of

the simulation conditions differed substantially with respect to overall model fit.

Both ESEM and EFA recovered the general time courses of the factors very well

(Figure 3 & Table 2) but some characteristic distortions were observed: First, ESEM

loading estimates were relatively unbiased, whereas the EFA estimates were consistently

too high. Second, Varimax rotation yielded inflated cross-loadings when the factors

were correlated (ϕ12 = 0.3), and, for EFA, when the topographies were overlapping

(T2). Third, Geomin rotation tended to underestimate the cross-loadings when the

temporal overlap was high (L1) for both EFA and ESEM. The empirical standard errors

indicated that the estimates had sufficient stability.
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The correlation of the estimated and the population loadings (rΛΛ̂) was consistent

with this pattern yielding very high correlations (>.99) except for Varimax rotated

loadings in simulation conditions with correlated factors and, for EFA only, in

simulation conditions with topographic overlap (T2). Notably, the size of the

correlations was similar for Geomin rotated ESEM and EFA, whereas Varimax rotated

loadings yielded much higher similarity with the population loadings in ESEMs than in

EFAs.

The factor correlations as estimated by the oblique Geomin rotation also revealed

considerable biases. For ESEM, the factor correlation estimate was substantially

inflated (Biasϕ > 0.10) when the temporal overlap was high (L1) but otherwise

unbiased. For EFA, the bias was also more positive in the presence of temporal overlap,

but, in addition, it depended on the topographic overlap: With topographic overlap

(T2), the factor correlation was generally overestimated, and, without topographic

overlap (T1), the factor correlation was underestimated when the factors were

correlated in the population (ϕ12 = 0.3).

ESEM yielded relatively unbiased estimates of the group differences except for

considerable overestimation (Biasϕ > 0.05) when Varimax rotation was used for

correlated factors (ϕ12 = 0.3). EFA yielded generally underestimated group differences –

with the strongest biases for Varimax in the presence of topographic overlap (T2) and

for Geomin in the presence of temporal overlap (L1). Notably, the empirical standard

errors for the group effects were quite high (~.24) and EFA and ESEM did not differ in

that respect.

Discussion

In the present article, we introduced ESEM as an extension of the commonly

applied EFA approach to analyzing ERP data sets. ESEM offers advantages for ERP

researchers because it explicitly represents the latent factors as a function of other

manifest (especially group or condition) or latent variables in the structural model.

This allows researchers to examine the effects of these predictors without a separate
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factor scoring step before the statistical inference. In addition, ESEM allows for

interpretable estimates of the latent factor covariance parameters which separate

(co-)variance from different sources. The results of an illustrative example and the

results of a Monte Carlo simulation study supported that ESEM can disentangle

topographic, group-effect related and between-participant (co-)variance, and that

Maximum Likelihood estimation of ESEMs is feasible even for very small sample sizes

as long as the factor loadings are high (see also De Winter, Dodou, & Wieringa, 2009).

The biases in the factor loadings for both ESEM and EFA followed the same

pattern as in previous simulations (Scharf & Nestler, 2018), that is, we observed

differentiable biases due to the violation of orthogonality constraints (i.e., ϕ12 6= 0 or,

for EFA, topographic overlap) and due to the rotation criterion. The former bias caused

spurious cross-loadings when Varimax was used in spite of substantial factor correlations

in the population. Importantly, only for EFA, these cross-loadings depended on the

topographic overlap, providing further evidence that ESEM succeeded in separating the

topographic variance. The latter bias due to the rotation criterion resulted in

underestimated cross-loadings and inflated factor correlations for high temporal overlap

(L1). The reason for this bias is that the rotation criterion aims for simple structure

(i.e., small cross-loadings; Browne, 2001), and can – to some extent – achieve that at the

cost of inflated factor correlations (Asparouhov & Muthén, 2009; Schmitt & Sass, 2011;

Scharf & Nestler, 2018). Notably, ESEM was as prone to the rotation bias as EFA.

The results for the group effect sizes in ESEM demonstrate that these biases

propagated to the structural model. Even moderate factor correlations in the

population of 0.3 were enough to cause considerable (relative) biases in the group effect

sizes (between 6% and 10%) when Varimax rotation was applied. In our simulations,

the rotation bias for oblique rotation methods had clearly less serious consequences

(≤ 5% relative bias). That is, although Varimax rotation was overall less prone to the

rotation bias, its benefits were smaller than its costs when the orthogonality constraint

was violated. Therefore, we tend to recommend avoiding orthogonal rotation also for

ESEM – except if there are very strong reasons to believe that orthogonality of the
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factors is a valid assumption for a given data set.

Apart from the propagated factor loading biases, EFA group effect size estimates

suffered from biases due to factor scoring as indicated by the general underestimation of

group effect sizes. This is consistent with previous results comparing the EFA approach

with SEM or ESEM (Skrondal & Laake, 2001; Devlieger et al., 2016; Mai et al., 2018).

However, although the same simulation conditions were used, these results differ from

the previous simulations with a comparable setup (Scharf & Nestler, 2018) which did

not observe the consistent underestimation throughout all simulation conditions. These

differences can be explained by the lower sampling rate (50 vs. 200 sampling points)

used here to improve the speed of the ESEM simulations. As mentioned earlier, the

differences between EFA approaches and (E)SEM approaches are a function of the

number of variables per factor and the communality (Acito & Anderson, 1986;

Devlieger et al., 2016). Consistent with this interpretation, the biases for EFA were

clearly weaker for the illustrative example with 100 sampling points.

We tested this interpretation empirically by running a supplementary simulation

over a range of different numbers of sampling points. In addition, we investigated the

influence of the communalities by comparing our simulation setup (σ2
error = 0.4) with a

setup in which the error variances were almost zero (σ2
error = 0.01). In order to avoid

confounds due to other contributions to variance misallocation, we simulated a

single-electrode case. The number of observations was set to 4000 to minimize sampling

error and we used the setup from the illustration example in which a rotation bias is

avoided because the temporal overlap is very small. Figure 4 depicts the difference

between factor-score-based and ESEM-based estimates of the condition effect as a

function of the number of sampling points and for both investigated communality

conditions. These results clearly demonstrate that differences between ESEM and factor

scoring approaches depend both on the communalities and on the sampling rate. In our

view, these results reemphasize that biases due to factor scoring can be substantial even

for ERP data when the factors do not span a sufficient time range (relative to the

sampling rate). Taken together, the results of our simulation and the supplementary
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Figure 4 . Differences between factor-score-based effect size estimates and ESEM-based
effect size estimates as a function of the number of sampling points, separately for the
noise level in our simulations (left-hand panel) and almost noise-free data (right-hand
panel). EFA scores were obtained by the regression method, PCA scores were obtained
by multiplying the Moore-Penrose inverse of the rotated factor loading matrix with the
raw data. As the simulation study showed that ESEM yields unbiased estimates of the
group effects (if there is no rotation bias) and as the raw ESEM estimates (not
depicted) were within ±1 standard error around the population value, we present the
EFA- and PCA-based estimates relative to ESEM as the reference method. The figure
and related scripts are available from http://osf.io/t8mau under a CC-BY 4.0 license.

simulation support the notion that ESEM instead of EFA should be applied to ERP

data in order to avoid the risk of biases.

Having said this, we want to stress that the present results should not be read as

an argument in favor of peak-picking or averaged time-window approaches over the EFA

approach. Both approaches can be described as EFA-approaches with very strict

assumptions regarding the factor loading pattern (Donchin, 1978). More specifically,

peak-picking assumes that the peaks of the ERPs exclusively reflect activity of the

respective factor. Averaging across a time-window of interest further assumes that the

factor loadings within the time-window are constant. It can be shown with very simple

examples that both assumptions are not reasonable (see, e.g., Luck, 2014). As a

consequence, both approaches carry an even higher risk of variance misallocation than
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EFA (Beauducel & Debener, 2003).

Finally, we want to outline some tasks for future research. First of all, although

our results regarding the application of ESEM to ERP-like data are promising, we

acknowledge that experience with real data applications is necessary to establish ESEM

as an extension of EFA. In order to support such pioneer work, we describe how an

ESEM is estimated in four simple steps in the Appendix. In addition, a working basic

implementation of this procedure (requiring only open source software) can be found on

the OSF (http://osf.io/t8mau). Our implementation demonstrates that, in principle,

any existing SEM software can be combined with rotation algorithms in order to

estimate the ESEM parameters – making ESEM a very accessible method from a

technical point of view.

In order to apply ESEM routinely, another crucial task is to establish reasonably

robust methods for statistical inference that work both for independent groups and

repeated measures. In both ESEM and EFA, the rows of the data matrix are assumed

to be independent. This assumption is typically violated for repeated measures, for

instance, when multiple electrodes and experimental conditions are analyzed per

participant. For EFA, this is typically resolved by analyzing condition effects at selected

electrode sites with dependent sample tests on the factor scores (or on reconstructed

’raw’ data; Dien, 2012, 2016). For ESEM, we proposed a structural model that is

equivalent to a two-way electrode × conditions ANOVA combined with a block

bootstrap procedure to obtain confidence intervals that are valid in the presence of

repeated measurements. We validated our approach both with respect to the point

estimates (by comparison with the corresponding Mplus estimates), and with respect to

the accuracy of the standard error estimates (and, hence, the statistical tests) by

running a supplementary Monte Carlo simulation. The results confirmed that the

statistical inferences hold the nominal alpha level and that the bootstrap standard

errors consistently estimated the empirical sampling variation of the parameters. More

detailed results and the corresponding scripts are available from the OSF.

The proposed ESEM-bootstrap approach has the advantage that it does not
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require strict assumptions regarding the form and the covariance structure of the

sampling distributions. Furthermore, it can easily be generalized to within-participant

manipulations of experimental conditions - only requiring that all data from each

participant including data from all repeated measurement conditions are treated as

fixed blocks. This procedure closely resembles the typical participant-wise sampling

scheme in experimental contexts and therefore provides a general basis for valid

bootstrap procedures (Davison & Hinkley, 1997). Nevertheless, bootstrapping is

computationally extensive, and the proposed percentile bootstrap confidence intervals

require nearly symmetric sampling distributions (Efron & Tibshirani, 1993). Therefore,

it is important for future research to compare different statistical inference methods

such as bootstrapping techniques (Efron & Tibshirani, 1993; Davison & Hinkley, 1997),

latent versions of the repeated measurement ANOVA (see Rutherford, 2011, chapters 6

& 7; for a detailed technical treatment), SEM-specific random effects approaches

(Asparouhov & Muthén, 2012; Rabe-Hesketh, Skrondal, & Zheng, 2007) or robust

standard errors (e.g., Yuan & Bentler, 1997; Zhang, 2014) in order to determine which

method is favorable under which conditions.

Another open question is how the rotation bias can be reduced. Recently, it has

been suggested to develop alternative rotation criteria that do not aim for simple

structure but for plausible time courses, for instance, assuming that time courses are

monophasic (Beauducel, 2018). If available, prior knowledge regarding the allocation of

effects (Beauducel & Leue, 2015) or the time courses of the factors (Scharf & Nestler,

2018) may be utilized in target rotations (Myers, Ahn, & Jin, 2013; Myers, Jin, Ahn,

Celimli, & Zopluoglu, 2015). Further research is necessary to directly compare these

approaches and to determine for which factor loading patterns they are appropriate. To

this end, it is important to consider more complex factor patterns than in the present

simulation because, for instance, slow-wave potentials present a considerable challenge

for available rotation methods (Verleger & Möcks, 1987).

Apart from questions regarding the details of ESEM implementation, future

research should compare ESEM with other proposed enhancements of the EFA
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procedure. A variety of methods have been proposed that take the topography into

account (see also Dien & Frishkoff, 2005), among them the trilinear topographic

components model (Achim & Bouchard, 1997; Möcks, 1988a, 1988a), and two-step

PCAs (Dien, 2010; Spencer et al., 2001). Systematic comparisons of their relative

performance are rare (but see, e.g., Verleger et al., 2013, for a comparison of trilinear

models and PCA). For instance, formal comparisons could explore the mathematical

relations between the models so that their relative strengths and weaknesses can be

judged. In this context, it is especially interesting under which conditions the proposed

methods yield similar (or even equivalent) results and under which conditions they

differ substantially.

Beyond these basic considerations, enhancements of the ESEM could be developed

that relax some of the assumptions that are currently made. An important assumption

of ESEM (and EFA) is that the time courses of the factors are constant across groups

(or conditions) and participants. In principle, this assumption can be relaxed and tested

within the ESEM framework (Asparouhov & Muthén, 2009; Marsh et al., 2014), which

may improve the appropriateness of ESEM for some experimental paradigms (Barry

et al., 2016). Another interesting direction would be to relax the assumption that all

participants have the same fixed condition effect so that individual differences in

condition effects could be investigated. Similar approaches have already been proposed

to analyse raw ERPs (Frömer, Maier, & Abdel Rahman, 2018; Pernet, Chauveau,

Gaspar, & Rousselet, 2011; Tremblay & Newman, 2015).

Conclusion

In the present article, we suggested ESEM as an enhancement of EFA to analyze

ERP data. The ESEM approach allows researchers to analyze ERP factor amplitudes

(i.e., scores) as a function of a set of predictors while maintaining the flexibility of

exploratory measurement models. Using an illustrative example, we explained, how the

factor topography and group effects can be specified in an ESEM and how the model

parameters are interpreted. A Monte Carlo simulation confirmed that ESEM could
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avoid the potential biases related to the EFA approach. We believe that this makes

ESEM a suitable framework to model the full complexity of the ERP data structure.

Therefore, despite the outlined open questions, we believe that ESEM is a powerful

statistical technique that can become a significant addition to the ERP researcher’s

toolbox.
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Appendix

Technical details of an ESEM implementation

As a service to the interested reader, we provide some more details on the technical

implementation of ESEM (see Asparouhov & Muthén, 2009, for a more detailed

treatment). A basic implementation in the form of an R-script utilizing the packages

lavaan (Rosseel, 2012), GPArotation (Bernaards & Jennrich, 2005) and boot (for

bootstrapped standard errors; Canty & Ripley, 2017; Davison & Hinkley, 1997) is

available from the Open Science Framework (http://osf.io/t8mau).

The estimation of an ESEM can be described in four steps:

(1) An initial SEM is estimated, in which the factors are orthogonal (i.e.,

cov(ζ) = I, where I denotes the identity matrix) and in which the upper diagonal of the

factor loading matrix Λ is fixed to zero while all other elements of Λ are freely

estimated for the exploratory factors (i.e., Λ is an upper-echelon matrix). This results

in a solution that is rotationally indeterminate (as for any other EFA model).

(2) The factor loading matrix Λ for the exploratory factors is rotated utilizing any

method of factor rotation (e.g., Geomin or Infomax).

(3) The rotation matrix (which we denote as H) is used to rotate all other model

parameters. The necessary transformations can be derived from Equations 5 & 6 by

applying the well-known rotation transformation (e.g., Mulaik, 2010, p. 276):

T = ΛH−1
︸ ︷︷ ︸

Λrot

Hη︸︷︷︸
ηrot

+ ε︸︷︷︸
εrot

(A.1)

ηrot = Hη = H · (α + ΓX +Bη + ζ) (A.2)

= Hα︸︷︷︸
αrot

+HΓ︸︷︷︸
Γrot

X +HBH−1
︸ ︷︷ ︸

Brot

ηrot + Hζ︸︷︷︸
ζrot

(A.3)

Hence, the residual covariance matrices after rotation are:

cov(εrot) = cov(ε) (A.4)

cov(ζrot) = E(ζrotζTrot) = H · cov(ζ) ·HT (A.5)
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(4) Standard errors of the model parameters are estimated. Several parametric

and non-parametric approaches are available for this purpose. Parametric standard

errors can, for instance, be calculated from the Maximum likelihood standard errors of

the initial model via the (multivariate) delta theorem (Asparouhov & Muthén, 2009;

Dorfman, 1938; Jennrich, 2007). Non parametric standard errors can be obtained, for

instance, using resampling methods such as bootstraps (see Zhang, 2014, for detailed

considerations in the context of EFA). Here, we used a block bootstrap, resampling the

data in a participant-wise manner, because this procedure inherently controls for

dependencies due to repeated measurement without requiring assumptions about the

structure of the dependencies (e.g., sphericity). This approach performed very well for

our example (see OSF for some validation results). However, it remains up to future

research to investigate the application of other robust statistical inference techniques

frequently used in ERP research (e.g., permutation tests) in the context of ESEM.

102



References

Achim, A. & Bouchard, S. (1997). Toward a dynamic topographic components model.

Electroencephalography and Clinical Neurophysiology, 103, 381–385.

doi:10.1016/S0013-4694(97)96055-0

Achim, A. & Marcantoni, W. (1997). Principal component analysis of event-related

potentials: Misallocation of variance revisited. Psychophysiology, 34, 597–606.

doi:10.1111/j.1469-8986.1997.tb01746.x

Acito, F. & Anderson, R. D. (1986). A simulation study of factor score indeterminacy.

Journal of Marketing Research, 23, 111–118. doi:10.2307/3151658

Anderson, T. W. & Rubin, H. (1956). Statistical Inference in Factor Analysis, 111–150.

Asparouhov, T., Hamaker, E. L., & Muthén, B. (2017). Dynamic Latent Class Analysis.

Structural Equation Modeling: A Multidisciplinary Journal, 24, 257–269.

doi:10.1080/10705511.2016.1253479

Asparouhov, T. & Muthén, B. (2009). Exploratory Structural Equation Modeling.

Structural Equation Modeling: A Multidisciplinary Journal, 16, 397–438.

doi:10.1080/10705510903008204

Asparouhov, T. & Muthén, B. (2012). General random effect latent variable modeling :

Random subjects, items, contexts, and parameters. Retrieved from

http://www.statmodel.com/download/NCME12.pdf

Barry, R. J., De Blasio, F. M., Fogarty, J. S., & Karamacoska, D. (2016). ERP

Go/NoGo condition effects are better detected with separate PCAs. International

Journal of Psychophysiology, 106, 50–64. doi:10.1016/j.ijpsycho.2016.06.003

Bartlett, M. S. (1937). The statistical conception of mental factors. British Journal of

Psychology. General Section, 28, 97–104. doi:10.1111/j.2044-8295.1937.tb00863.x

Beauducel, A. (2018). Recovering Wood and McCarthy’s ERP-prototypes by means of

ERP-specific procrustes-rotation. Journal of Neuroscience Methods, 295, 20–36.

doi:10.1016/j.jneumeth.2017.11.011

Beauducel, A. & Debener, S. (2003). Misallocation of variance in event-related

potentials: Simulation studies on the effects of test power, topography, and

103



baseline-to-peak versus principal component quantifications. Journal of

Neuroscience Methods, 124, 103–112. doi:10.1016/S0165-0270(02)00381-3

Beauducel, A., Debener, S., Brocke, B., & Kayser, J. (2000). On the reliability of

augmenting/ reducing: Peak amplitudes and principal component analysis of

auditory evoked potentials. Journal of Psychophysiology, 14, 226–240.

Beauducel, A. & Leue, A. (2015). Controlling for experimental effects in event-related

potentials by means of principal component rotation. Journal of Neuroscience

Methods, 239, 139–147. doi:10.1016/j.jneumeth.2014.10.008

Beleites, C. (2016). arrayhelpers: Convenience Functions for Arrays. Retrieved from

https://cran.r-project.org/package=arrayhelpers

Bernaards, C. A. & Jennrich, R. I. (2005). Gradient Projection Algorithms and

Software for Arbitrary Rotation Criteria in Factor Analysis. Educational and

Psychological Measurement, 65, 676–696.

Bollen, K. A. (1989). Structural Equations with Latent Variables. Hoboken, NJ, USA:

John Wiley & Sons, Inc. doi:10.1002/9781118619179

Brown, T. A. (2014). Confirmatory factor analysis for applied research. Guilford

Publications.

Browne, M. W. (2001). An overview of analytic rotation in Exploratory Factor Analysis.

Multivariate Behavioral Research, 36, 111–150. doi:10.1207/S15327906MBR360105

Brydges, C. R., Fox, A. M., Reid, C. L., & Anderson, M. (2014). Predictive validity of

the N2 and P3 ERP components to executive functioning in children: a

latent-variable analysis. Frontiers in Human Neuroscience, 8, 1–10.

doi:10.3389/fnhum.2014.00080

Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2008). Bootstrap-Based Improvements

for Inference with Clustered Errors. Review of Economics and Statistics, 90,

414–427. doi:10.1162/rest.90.3.414

Canty, A. & Ripley, B. D. (2017). boot: Bootstrap R (S-Plus) Functions.

Charlton, R. A., Landau, S., Schiavone, F., Barrick, T. R., Clark, C. A., Markus, H. S.,

& Morris, R. G. (2008). A structural equation modeling investigation of

104



age-related variance in executive function and DTI measured white matter

damage. Neurobiology of Aging, 29, 1547–1555.

doi:10.1016/j.neurobiolaging.2007.03.017

Cohen, J. (1962). The statistical power of abnormal-social psychological research: A

review. The Journal of Abnormal and Social Psychology, 65, 145–153.

doi:10.1037/h0045186

Cohen, J. (1968). Multiple Regression As a General Data-Analytic System.

Psychological Bulletin, 70, 426–443. doi:10.1037/h0026714

Crawford, C. B. & Ferguson, G. A. (1970). A general rotation criterion and its use in

orthogonal rotation. Psychometrika, 35, 321–332. doi:10.1007/BF02310792

Croon, M. (2002). Using predicted latent scores in general latent structure models. In

G. Marcoulides & I. Moustaki (Eds.), Latent variable and latent structure

modeling (pp. 195–223). Mahwah, NJ: Lawrence Erlbaum.

Dahl, D. B. (2016). xtable: Export Tables to LaTeX or HTML. Retrieved from

https://cran.r-project.org/package=xtable

Davison, A. C. & Hinkley, D. V. (1997). Bootstrap methods and their application (11.

print.). Cambridge series in statistical and probabilistic mathematics. Cambridge:

Cambridge University Press. doi:10.1017/CBO9780511802843

De Winter, J. C. F., Dodou, D., & Wieringa, P. A. (2009). Exploratory Factor Analysis

with small sample sizes. Multivariate Behavioral Research, 44, 147–181.

doi:10.1080/00273170902794206

Devlieger, I., Mayer, A., & Rosseel, Y. (2016). Hypothesis Testing Using Factor Score

Regression: A Comparison of Four Methods. Educational and Psychological

Measurement, 76, 741–770. doi:10.1177/0013164415607618

Dien, J. (1998). Addressing misallocation of variance in principal components analysis

of event-related potentials. Brain Topography, 11, 43–55.

doi:10.1023/A:1022218503558

105



Dien, J. (2010). Evaluating two-step PCA of ERP data with Geomin, Infomax,

Oblimin, Promax, and Varimax rotations. Psychophysiology, 47, 170–183.

doi:10.1111/j.1469-8986.2009.00885.x

Dien, J. (2012). Applying Principal Components Analysis to event-related potentials: a

tutorial. Developmental Neuropsychology, 37, 497–517.

doi:10.1080/87565641.2012.697503

Dien, J. (2016). Best practices for repeated measures ANOVAs of ERP data: Reference,

regional channels, and robust ANOVAs. International Journal of

Psychophysiology. doi:10.1016/j.ijpsycho.2016.09.006

Dien, J., Beal, D. J., & Berg, P. (2005). Optimizing principal components analysis of

event-related potentials: Matrix type, factor loading weighting, extraction, and

rotations. Clinical Neurophysiology, 116, 1808–1825.

doi:10.1016/j.clinph.2004.11.025

Dien, J. & Frishkoff, G. A. (2005). Principal components analysis of event-related

potential datasets. In T. Handy (Ed.), Event-related potentials: A methods

handbook (pp. 189–208). Cambridge, MA: MIT Press.

DiStefano, C., Zhu, M., & Mîndrilă, D. (2009). Understanding and using factor scores:

Considerations for the applied researcher. Practical Assessment, Research &

Evaluation, 14, 1–11. doi:10.1.1.460.8553

Donchin, E. (1978). Multivariate analysis of event-related potential data: A tutorial

review. Multidisciplinary perspectives in event-related brain potential research,

555–572.

Dorfman, R. (1938). A note on the delta-method for finding variance formulae. The

Biometric Bulletin, 1, 92.

Efron, B. & Tibshirani, R. (1993). An introduction to the bootstrap ([Repr.]).

Monographs on statistics and applied probability. Boca Raton u.a.: Chapman &

Hall/CRC. Retrieved from https://katalog.ub.uni-leipzig.de/Record/0003155546

106



Field, A. S. & Graupe, D. (1991). Topographic component (parallel factor) analysis of

multichannel evoked potentials: Practical issues in trilinear spatiotemporal

decomposition. Brain Topography. doi:10.1007/BF01129000

Friedman, A. B. (2014). taRifx: Collection of utility and convenience functions.

Retrieved from https://cran.r-project.org/package=taRifx

Frömer, R., Maier, M., & Abdel Rahman, R. (2018). Group-Level EEG-Processing

Pipeline for Flexible Single Trial-Based Analyses Including Linear Mixed Models.

Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00048

Gupta, A. K. (2000). Matrix variate distributions. Chapman & Hall/CRC monographs

and surveys in pure and applied mathematics ; Boca Raton u.a.: Chapman & Hall

/ CRC.

Hallquist, M. N. & Wiley, J. F. (2018). MplusAutomation : An R Package for

Facilitating Large-Scale Latent Variable Analyses in M plus. Structural Equation

Modeling: A Multidisciplinary Journal, 25, 621–638.

doi:10.1080/10705511.2017.1402334

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis.

Psychometrika, 30, 179–185. doi:10.1007/BF02289447

Horváth, J., Winkler, I., & Bendixen, A. (2008). Do N1/MMN, P3a, and RON form a

strongly coupled chain reflecting the three stages of auditory distraction?

Biological Psychology, 79, 139–147. doi:10.1016/j.biopsycho.2008.04.001

Hu, L. & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure

analysis: Conventional criteria versus new alternatives. Structural Equation

Modeling: A Multidisciplinary Journal, 6, 1–55. doi:10.1080/10705519909540118

Jennrich, R. I. (2007). Rotation methods, algorithms, and standard errors. Erlbaum

Mahwah, NJ.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.

Psychometrika, 23, 187–200. doi:10.1007/BF02289233

107



Kaiser, H. F. (1959). Computer Program for Varimax Rotation in Factor Analysis.

Educational and Psychological Measurement, 19, 413–420.

doi:10.1177/001316445901900314

Kaur, M., Battisti, R. A., Ward, P. B., Ahmed, A., Hickie, I. B., & Hermens, D. F.

(2011). MMN/P3a deficits in first episode psychosis: Comparing

schizophrenia-spectrum and affective-spectrum subgroups. Schizophrenia

Research. doi:10.1016/j.schres.2011.03.025

Kayser, J. & Tenke, C. E. (2003). Optimizing PCA methodology for ERP component

identification and measurement: Theoretical rationale and empirical evaluation.

Clinical Neurophysiology, 114, 2307–2325. doi:10.1016/S1388-2457(03)00241-4

Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.)

(T. D. Little, Ed.). Methodology in the social sciences. New York ; London: The

Guilford Press.

Kreiss, J. P. & Paparoditis, E. (2011). Bootstrap methods for dependent data: A

review. Journal of the Korean Statistical Society, 40, 357–378.

doi:10.1016/j.jkss.2011.08.009

Lastovicka, J. L. & Thamodaran, K. (1991). Common Factor Score Estimates in

Multiple Regression Problems. Journal of Marketing Research, 28, 105.

doi:10.2307/3172730

Lewis, J. B. & Linzer, D. A. (2005). Estimating regression models in which the

dependent variable is based on estimates. Political Analysis, 13, 345–364.

doi:10.1093/pan/mpi026

Luck, S. J. (2014). An introduction to the event-related potential technique (2nd ed.).

Cambridge, Mass.: MIT Press.

MacCallum, R. C. & Austin, J. T. (2000). Applications of Structural Equation

Modeling in Psychological Research. Annual Review of Psychology, 51, 201–226.

doi:10.1146/annurev.psych.51.1.201

108



Mai, Y. & Zhang, Z. (2018). Software Packages for Bayesian Multilevel Modeling.

Structural Equation Modeling: A Multidisciplinary Journal, 00, 1–9.

doi:10.1080/10705511.2018.1431545

Mai, Y., Zhang, Z., & Wen, Z. (2018). Comparing Exploratory Structural Equation

Modeling and Existing Approaches for Multiple Regression with Latent Variables.

Structural Equation Modeling: A Multidisciplinary Journal, 25, 737–749.

doi:10.1080/10705511.2018.1444993

Marsh, H. W., Morin, A. J., Parker, P. D., & Kaur, G. (2014). Exploratory Structural

Equation Modeling: An Integration of the Best Features of Exploratory and

Confirmatory Factor Analysis. Annual Review of Clinical Psychology, 10, 85–110.

doi:10.1146/annurev-clinpsy-032813-153700

McDonald, R. (1996). Path Analysis with Composite Variables. Multivariate Behavioral

Research, 31, 239–270. doi:10.1207/s15327906mbr3102

Möcks, J. (1988a). Decomposing event-related potentials: A new topographic

components model. Biological Psychology, 26, 199–215.

doi:10.1016/0301-0511(88)90020-8

Möcks, J. (1988b). Topographic components model for event-related potentials and

some biophysical considerations. IEEE Transactions on Biomedical Engineering,

35, 482–484. doi:10.1109/10.2119

Möcks, J. & Verleger, R. (1986). Principal component analysis of event-related

potentials: A note on misallocation of variance. Electroencephalography and

Clinical Neurophysiology/ Evoked Potentials, 65, 393–398.

doi:10.1016/0168-5597(86)90018-3

Mørup, M., Hansen, L. K., Herrmann, C. S., Parnas, J., & Arnfred, S. M. (2006).

Parallel Factor Analysis as an exploratory tool for wavelet transformed

event-related EEG. NeuroImage, 29, 938–947.

doi:10.1016/j.neuroimage.2005.08.005

Mulaik, S. A. (2010). Foundations of factor analysis (2nd ed.). CRC press.

109



Muthén, L. K. & Muthén, B. O. (2015). Mplus user’s guide (7th ed.). Los Angeles:

Muthén & Muthén.

Myers, N. D., Ahn, S., & Jin, Y. (2013). Rotation to a Partially Specified Target Matrix

in Exploratory Factor Analysis: How Many Targets? Structural Equation

Modeling: A Multidisciplinary Journal, 20. doi:10.1080/10705511.2013.742399

Myers, N. D., Jin, Y., Ahn, S., Celimli, S., & Zopluoglu, C. (2015). Rotation to a

partially specified target matrix in exploratory factor analysis in practice.

Behavior Research Methods, 47, 494–505. doi:10.3758/s13428-014-0486-7

Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. (2010). Generalized

Linear Models. Wiley Series in Probability and Statistics. Hoboken, NJ, USA:

John Wiley & Sons, Inc. doi:10.1002/9780470556986

Papaliagkas, V., Kimiskidis, V., Tsolaki, M., & Anogianakis, G. (2008). Usefulness of

event-related potentials in the assessment of mild cognitive impairment. BMC

Neuroscience, 9, 1–10. doi:10.1186/1471-2202-9-107

Pernet, C. R., Chauveau, N., Gaspar, C., & Rousselet, G. A. (2011). LIMO EEG: A

toolbox for hierarchical linear modeling of electroencephalographic data.

Computational Intelligence and Neuroscience, 2011. doi:10.1155/2011/831409

Plate, T. & Heiberger, R. (2016). abind: Combine Multidimensional Arrays. Retrieved

from https://cran.r-project.org/package=abind

R Core Team. (2018). R: A language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing. Retrieved from

https://www.r-project.org/

Rabe-Hesketh, S., Skrondal, A., & Zheng, X. (2007). Multilevel Structural Equation

Modeling. Elsevier B.V. doi:10.1016/B978-044452044-9/50013-6

Revelle, W. (2016). psych: Procedures for Psychological, Psychometric, and Personality

Research. Evanston, Illinois: Northwestern University.

Rosseel, Y. (2012). {lavaan}: An {R} Package for Structural Equation Modeling.

Journal of Statistical Software, 48, 1–36. Retrieved from

http://www.jstatsoft.org/v48/i02/

110



Rutherford, A. (2011). Anova and Ancova: A GLM Approach (2nd ed.). Hoboken, New

Jersey: John Wiley & Sons, Inc. doi:10.1002/9781118491683

Scharf, F. & Nestler, S. (2018). Principles behind variance misallocation in temporal

exploratory factor analysis for ERP data: Insights from an inter-factor covariance

decomposition. International Journal of Psychophysiology, 128, 119–136.

doi:10.1016/j.ijpsycho.2018.03.019

Schmitt, T. A. & Sass, D. A. (2011). Rotation criteria and hypothesis testing for

Exploratory Factor Analysis: Implications for factor pattern loadings and

interfactor correlations. Educational and Psychological Measurement, 71, 95–113.

doi:10.1177/0013164410387348

Skrondal, A. & Laake, P. (2001). Regression among factor scores. Psychometrika, 66,

563–575. doi:10.1007/BF02296196

Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late

ERP responses to deviant stimuli. Psychophysiology, 38, 343–358.

doi:10.1017/S0048577201000324

Statisticat & LLC. (2016). LaplacesDemon: Complete Environment for Bayesian

Inference. Bayesian-Inference.com. Retrieved from

https://web.archive.org/web/20150206004624/http://www.bayesian-

inference.com/software

Thomas, S. J., Leeson, P. C. R., Gonsalvez, C. J., & Johnstone, S. J. (2013). Structural

equation modelling to assess relationships between event- related potential

components and skin conductance in the context of emotional stimuli .

International Journal of Psychophysiology, 94, 245–246.

Thomson, G. H. (1935). The definition and measurement of "g" (general intelligence).

Journal of Educational Psychology, 26, 241–262. doi:10.1037/h0059873

Thomson, G. H. (1938). Methods of Estimating Mental Factors. Nature, 141, 246–246.

doi:10.1038/141246a0

Thurstone, L. L. (1935). The vectors of mind: Multiple-factor analysis for the isolation

of primary traits. Chicago: University of Chicago Press. doi:10.1037/10018-000

111



Tremblay, A. & Newman, A. J. (2015). Modeling nonlinear relationships in ERP data

using mixed-effects regression with R examples. Psychophysiology, 52, 124–139.

doi:10.1111/psyp.12299

Verleger, R. & Möcks, J. (1987). Varimax may produce slow-wave-like shapes by

merging monotonic trends with other components. Journal of Psychophysiology, 1,

265–270.

Verleger, R., Paulick, C., Möcks, J., Smith, J. L., & Keller, K. (2013). Parafac and

go/no-go: Disentangling CNV return from the P3 complex by trilinear component

analysis. International Journal of Psychophysiology, 87, 289–300.

doi:10.1016/j.ijpsycho.2012.08.003

Wang, K., Begleiter, H., & Porjesz, B. (2000). Trilinear modeling of event-related

potentials. Brain topography, 12, 263–71. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/10912734

Wickham, H. (2007). Reshaping Data with the {reshape} Package. Journal of

Statistical Software, 21, 1–20. Retrieved from http://www.jstatsoft.org/v21/i12/

Widaman, K. F. (1993). Common Factor Analysis versus Principal Component

Analysis: Differential bias in representing model parameters?

doi:10.1207/s15327906mbr28031

Widaman, K. F. (2007). Common factors versus components: Principals and principles,

errors and misconceptions. In R. Cudeck & R. C. MacCallum (Eds.), Factor

analysis at 100: Historical developments and future directions (pp. 177–203).

Mahwah, NJ: Lawrence Erlbaum Associates.

Widaman, K. F. (2018). On Common Factor and Principal Component Representations

of Data: Implications for Theory and for Confirmatory Replications. Structural

Equation Modeling, 00, 1–19. doi:10.1080/10705511.2018.1478730

Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory

capacity, and how can we measure it? Frontiers in Psychology, 4.

doi:10.3389/fpsyg.2013.00433. arXiv: 0610-2896

112



Wood, C. C. & McCarthy, G. (1984). Principal component analysis of event-related

potentials: simulation studies demonstrate misallocation of variance across

components. Electroencephalography and clinical neurophysiology, 59, 249–60.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6203715

Wothke, W. (1993). Nonpositive definite matrices in structural modeling. In K. A.

Bollen & J. S. Long (Eds.), Testing structural equation models. Newbury Park:

Sage Publications.

Yates, A. (1987). Multivariate exploratory data analysis: A perspective on exploratory

factor analysis. Albany, NY, USA: State Univ. of New York Press.

Yuan, K.-H. & Bentler, P. M. (1997). Improving parameter tests in covariance structure

analysis. Computational Statistics & Data Analysis, 26, 177–198.

doi:10.1016/S0167-9473(97)00025-X

Zhang, G. (2014). Estimating Standard Errors in Exploratory Factor Analysis.

Multivariate Behavioral Research, 49, 339–353. doi:10.1080/00273171.2014.908271

113



114

Chapter 4

Should regularization replace simple structure rotation in
Exploratory Factor Analysis?

To obey the publisher’s copyright restrictions, this chapter contains the post-peer review author

version of the manuscript. The published article can be found under the following reference:

Scharf, F., & Nestler, S. (2019). Should regularization replace simple structure rotation in

Exploratory Factor Analysis? Structural Equation Modeling: A Multidisciplinary Journal.

doi:10.1080/10705511.2018.1558060

https://dx.doi.org/10.1080/10705511.2018.1558060


115



Should regularization replace simple structure rotation in Exploratory Factor Analysis?

Florian Scharf and Steffen Nestler

University of Leipzig

Author Note

Florian Scharf, Institute of Psychology, University of Leipzig, Germany. Steffen

Nestler, Institute of Psychology, University of Leipzig, Germany. We embrace the values

of openness and transparency in science (http://www.researchtransparency.org/). We

have therefore published all data necessary to reproduce the reported results and

provide reproducible scripts for all data analyses reported in this paper. Correspondence

concerning this article should be addressed to Florian Scharf, Neumarkt 9 - 19, 04109

Leipzig, Germany, Email: florian.scharf@uni-leipzig.de, Phone: +49 341 - 9735924.

116



Abstract

Exploratory factor analysis (EFA) is an important tool when the measurement

structure of psychological constructs is uncertain. Typically, factor rotation is applied

to obtain interpretable results resembling a simple structure. However, an overwhelming

multitude of rotation techniques is available of which none is unequivocally superior.

Recently, regularization has been suggested as an alternative to factor rotation. In two

simulation studies, we addressed the question if regularized EFA is a suitable

alternative for rotated EFA. We compared their performance in recovering pre-defined

factor loading patterns with varying amounts of cross-loadings. Elastic net regularized

EFA yielded estimates comparable to rotated EFA. For complex loading patterns, both

rotated and regularized EFA tended to underestimate cross-loadings and inflate factor

correlations but regularized EFA was able to recover loading patterns as long as a

subset of items followed a simple structure. We conclude that regularization is a

suitable alternative to factor rotation for psychometric applications.

Keywords: Factor Rotation, Regularization, Penalized Maximum Likelihood,

Exploratory Factor Analysis, Structural Equation Modelling
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Should regularization replace simple structure rotation in Exploratory Factor Analysis?

Exploratory factor analysis (EFA) is one of the most commonly used statistical

methods in psychological research. EFA allows researchers to summarize the observed

data (e.g., item responses) as a function of a few latent variables (e.g., traits), typically

called factors (see, e.g., Mulaik, 2010, for a general introduction). After an initial

solution has been estimated, factor rotation is used in order to obtain a more

interpretable solution. A variety of rotation techniques have been proposed for this

purpose including, for example, Varimax, Geomin, or Quartimax (see Browne, 2001;

Mulaik, 2010, for overviews). However, the multitude of rotation techniques makes it

difficult for applied researchers to choose an appropriate technique for their application

scenario. Furthermore, research found that rotation techniques differ in their ability to

uncover a known population factor structure and that the performance of a specific

rotation technique depends on the population pattern itself (Asparouhov & Muthén,

2009; Sass & Schmitt, 2010; Schmitt & Sass, 2011). As the population factor structure

is unknown in practical EFA applications, the choice of the rotation technique is a

purely subjective step.

Regularized (or sparse) EFA has been suggested as an alternative to the factor

rotation step (e.g., Trendafilov, 2014; Yamamoto, Hirose, & Nagata, 2017). Instead of

rotating factor loadings, regularized EFA tries to achieve a more interpretable solution

such as a simple structure by penalizing factor loadings and/or factor correlations

directly in the estimation step – shrinking non-substantial parameters towards zero.

Regularized EFA addresses the subjectivity of the rotation approach to some extent,

because the tuning parameters that are used for penalization can be determined in a

more objective way, for example, by drawing on information criteria such as the BIC

(e.g., Hastie, Tibshirani, & Friedman, 2009; Jacobucci, Grimm, & McArdle, 2016;

James, Witten, Hastie, & Tibshirani, 2013).

Despite the growing body of methodological literature on regularized EFA,

including illustrative examples of the potential of regularized EFA as a substitute for

factor rotation (Trendafilov, 2014; Yamamoto et al., 2017), applications of regularized
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EFA are rare. One reason for this might be that applied researchers are lacking

sufficient information to judge the usefulness of regularized EFA for their specific use

case. Previous research focused on direct comparisons of either rotation techniques

(e.g., Schmitt & Sass, 2011) or regularization methods (e.g., Hirose & Konishi, 2012)

but extensive direct comparisons of factor rotation and regularization across many data

situations are not yet available. The present article aims to fill this gap by comparing

the performance of different rotation techniques with different regularization techniques

with regard to parameter estimation. In addition, we investigated whether only the

factor loadings or both factor loadings and factor correlations should be treated as

to-be-regularized parameters in regularized EFA.

In the following, we first describe how the parameters of the EFA model are

conventionally estimated by factor rotation techniques. Then, we explain how

regularized EFA parameters can be obtained using penalized maximum likelihood

estimation with a least absolute shrinkage and selection operator (lasso), ridge, or elastic

net (enet) penalty (e.g., Hastie et al., 2009). Thereafter, we present the results of two

simulation studies comparing the performance of factor rotation and regularization in

the estimation of factor loadings and factor correlations. In addition, we investigated

the influence of the sparsity of the factor loading pattern on the recovery of the

population parameters.

Factor Rotation in EFA

The EFA model describes the p observed variables as a weighted linear

combination of m factors (e.g., Mulaik, 2010):

Y = Λη + ε (1)

where Y is the p× n matrix of observed variables measured from n observations, η is

the m× n matrix of factor scores, Λ is a p×m matrix of factor loadings, and ε is a

p× n matrix of error terms. The parameters of the EFA model are often estimated with

a maximum likelihood (ML) approach. Here, estimates are obtained that minimize the
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discrepancy between the model-implied covariance matrix of the variables Σ and their

observed covariance matrix S (Jöreskog, 1969):

FML(Σ, S) = ln|Σ|+ tr(Σ−1S)− ln|S| − n (2)

It is well known, that the EFA model is rotationally indeterminate. That is, an

infinite set of equally well fitting factor solutions exists for a given data set that may be

transformed into each other by a rotation matrix H (e.g., Mulaik, 2010, p. 276):

Y = ν + ΛHH−1η + ε (3)

Here, ΛH are the rotated factor loadings and H−1η are the rotated factor scores.

Consequently, researchers have to ’choose’ a factor solution that describes the observed

data in a convenient (i.e., interpretable) way. This is achieved by rotating the initial

model, that is, computing an optimal rotation matrix H according to a pre-specified

criterion. Most of the common rotation techniques optimize a simple structure criterion

of the factor loadings requiring that each variable should load highly onto one factor

and should have low cross-loadings onto the other factors (Browne, 2001; Thurstone,

1935, 1954).

About 50 rotation techniques have been proposed in the methodological literature

(Trendafilov, 2014). The most apparent distinction can be made between orthogonal

rotation techniques (e.g., V arimax; Kaiser, 1958, 1959), which constrain the factor

correlation to zero, and oblique rotation techniques (e.g., Geomin; Yates, 1987), which

allow the factors to be correlated. Apart from that, rotation techniques differ in the

exact criterion that is used to operationalize a simple factor loading pattern (e.g.,

Browne, 2001), and hence in their tolerance for cross-loadings (Schmitt & Sass, 2011).

In the following, we will briefly contrast three common rotation techniques: V arimax

rotation, Geomin rotation, and Facparsim as a member of the general

Crawson-Ferguson (CF) rotation family.

V arimax (Kaiser, 1958, 1959) is one of the most widely applied rotation
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techniques (Fabrigar, Wegener, MacCallum, & Strahan, 1999). It assumes uncorrelated

factors and maximizes the variance of the squared loadings:

f(Λ) =
p∑

i=1
λ4

ij −
1
p




p∑

i=1
λ2

ij




2

(4)

An initial V arimax rotation is an essential part of the popular oblique Promax

criterion (Hendrickson & White, 1964).

The Geomin rotation was explicitly developed in order to represent more complex

loading patterns. It minimizes the (variable-wise) geometric mean of the squared factor

loadings (Browne, 2001):

f(Λ) =
p∑

i=1




m∏

j=1
(λ2

ij + ε)



1
m

(5)

Here, ε is an additional parameter to ensure that the rotation criterion is generally

differentiable even if one of the factor loadings is exactly zero for each variable.

Traditionally, ε = 0.01 is used but a slightly higher value of ε = 0.5 has been suggested

in the literature to better represent more complex factor structures (Marsh et al., 2009;

Marsh et al., 2010; Morin, Marsh, & Nagengast, 2013).

The CF rotation criterion considers both variable-wise and factor-wise complexity

in the rotation:

f(Λ) = (1− k)
p∑

i=1

m∑

j=1

m∑

l 6=j,l=1
λ2

ijλ
2
il + k

m∑

j=1

p∑

i=1

p∑

l 6=i,l=1
λ2

ijλ
2
lj (6)

The first and second term in this sum quantify the row (i.e., variable) and column (i.e.,

factor) complexity, respectively, in the factor loading matrix. The weight k = [0, 1]

determines which complexity receives more emphasis during factor rotation with higher

values indicating more emphasis on factor complexity. Many rotation criteria may be

described as special cases of the CF criterion with different values of k (e.g., Sass &

Schmitt, 2010).

Due to the different simple structure criteria, rotation techniques differ in their

ability to recover population patterns that differ in their amount of cross-loadings.

121



More specifically, simulation studies showed that orthogonal rotations of oblique factor

patterns yield spurious cross-loadings even if the population factor loading pattern is a

simple structure (Schmitt & Sass, 2011). Furthermore, oblique rotations tend to yield

inflated factor correlations and underestimated cross-loadings in the presence of high

cross-loadings in the population factor loading pattern (Asparouhov & Muthén, 2009;

Sass & Schmitt, 2010; Schmitt & Sass, 2011). Thus, factor rotation techniques can

achieve a more unique assignment of variables to factors at the cost of less distinct

factors (or vice versa), and it is desirable to achieve a reasonable trade-off between

factor correlation and cross-loadings.

To summarize, factor rotation is utilized to find a factor solution that is as

interpretable as possible according to some simplicity criterion. However, applying

rotation techniques has two major drawbacks: First, researchers have to choose among

a multitude of rotation techniques that is still growing (e.g., Beauducel, 2018; Ertel,

2011; Jennrich, 2004, 2006; Yamamoto & Jennrich, 2013). In addition, some rotation

techniques have tuning parameters (e.g., k and ε mentioned above) that also have to be

chosen (and that have profound consequences for parameter estimation). Second, the

performance of a rotation technique in terms of the suitability of the parameter

estimates depends on the true data generating mechanism in the population, especially

on the amount of cross-loadings, which is unknown in practice. Therefore, alternative

approaches that perform consistently well across a wide range of factor patterns would

be preferable – obviating the need for such a subjective choice.

Regularized EFA

The rotation problem in EFA can be re-conceptualized as a variable (or model)

selection problem in which a set of indicator variables for each factor needs to be

chosen among all indicators (e.g., Hirose & Konishi, 2012; Hirose & Yamamoto, 2014).

A lot of work in the SEM literature has been done on efficient model selection via

heuristic search algorithms in the context of model modification (e.g., Glymour,

Madigan, Pregibon, & Smyth, 1997; Marcoulides, Drezner, & Schumacker, 1998;
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Marcoulides & Drezner, 2003; Marcoulides & Ing, 2013; Marcoulides & Falk, 2018).

Essentially, these approaches are best subset selection methods that try to go through

the space of possible models as efficiently as possible but still apply conventional

estimators (such as Maximum Likelihood) to estimate the model parameters. The best

model is then selected based, for instance, on the Bayesian information criterion (BIC,

Schwarz, 1978). In contrast, regularization strives for a solution in which as many

parameters as possible are (close to) zero directly during the estimation of the model

with the goal that only few but substantial variables remain in the final model (Hastie

et al., 2009).

A vector of parameters in which most of the entries are zero is called sparse. With

respect to EFA, where the parameters to be estimated are the factor loadings and factor

correlations, a perfect simple structure of the factor loadings can be seen as a special

case of sparsity, and this is the reason why regularized EFA has been suggested as an

alternative to factor rotation (Trendafilov, 2014). However, unlike the simple structure

criterion, the sparsity condition does not refer to a specific pattern of the non-zero

estimates within the set of parameters (e.g., that cross-loadings are zero). In that sense,

a conventional rotated EFA and a regularized EFA both aim for a simple factor loading

pattern but the latter does not distinguish between factor and variable complexity (see

Hirose & Yamamoto, 2015a; Yamamoto et al., 2017, for more formal treatments of this

notion). This property may enable regularized EFA to flexibly recover a larger variety

of factor loading patterns than rotated EFA – challenging the predominance of rotation

in typical psychometric applications.

Several variations of regularized EFA have been proposed in the literature (e.g.,

Arruda & Bentler, 2017; Hirose & Konishi, 2012; Hirose & Yamamoto, 2014; Huang,

Chen, & Weng, 2017a, 2017b; Jacobucci et al., 2016; Jung & Takane, 2007; Jung & Lee,

2011; Trendafilov & Adachi, 2015; Trendafilov, Fontanella, & Adachi, 2017). Here, we

focus on approaches that directly add a penalty term at the ML-estimation stage with

the aim of finding a sparse measurement model (Hirose & Yamamoto, 2014; Jacobucci

et al., 2016). That is, the parameters of the model are estimated by minimizing a
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penalized version of the ML fit function (Eq. 2):

FregEF A(Σ, S) = FML(Σ, S) + α · P (θ) (7)

= ln|Σ|+ tr(Σ−1S)− ln|S| − n+ α · P (θ) (8)

Here, P (θ) is a penalty function of a vector of model parameters θ that may, in

principle, contain any parameter of the model, that is factor loadings or factor

correlations. The tuning parameter α determines the amount of penalty applied during

estimation and needs to be determined in a separate step. In general, the penalty term

will increase as a function of the number of non-zero parameter estimates so that the

estimation procedure prefers models with many low or zero parameter estimates. In

that respect, rotation and regularization have similar objectives (see Trendafilov, 2014;

Yamamoto et al., 2017, for illustrative examples).

The vector of penalized parameters θ may contain the factor loadings (i.e.,

θ = vec(Λ)) or both the factor loadings and the factor correlations (i.e., θ = [vec(Λ) ϕ],

where ϕ denotes a vector containing all factor correlations)1. Furthermore, a variety of

different penalty functions have been proposed in the literature including ridge, lasso,

and enet penalties. Both ridge (Hoerl & Kennard, 1970) and lasso (Tibshirani, 1996)

penalties are based on vector norms of the parameter vectors. Specifically, ridge uses

the sum of the squared parameter estimates as penalty term, while lasso penalizes the

sum of the absolute values of the parameter estimates:

Pridge = ‖θ‖2 =
∑

i

θ2
i (9)

Plasso = ‖θ‖1 =
∑

i

|θi| (10)

Here, ‖ · ‖ denotes the respective norm operator and the sum is taken across all

1For the sake of completeness, it should be noted that θ must not contain factor loadings and variable
residuals at the same time because their strong relationship (the higher the factor loadings, the smaller
the variable residuals) would lead to severe estimation problems (Jacobucci et al., 2016).
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parameters contained in θ. Both penalties result in a shrinkage of the parameters

towards zero but only lasso can shrink the parameter estimates to exactly zero (i.e., for

α→∞), allowing for variable selection (Hastie et al., 2009). Importantly, the variable

selection property of regularization also removes the rotational indeterminacy so that

regularized EFA solutions are unique (except for reordering of factors and sign switches;

Choi, Oehlert, & Zou, 2010). Another consequence of the penalty term is that

regularized EFA solutions tend to fit the data slightly worse than rotated EFA

solutions.(e.g., Jin, Moustaki, & Yang-Wallentin, 2018; Trendafilov et al., 2017).

The ability to conduct variable selection is an advantage of lasso over ridge

penalization. However, lasso regression performs worse than ridge if the number of

parameters exceeds the number of observations by far (Zou & Hastie, 2005). For these

situations, the enet penalty has been proposed which applies both a lasso and a ridge

penalty. That is, enet considers both the sum of the absolute values of the parameter

estimates and the sum of the squared parameter estimates:

Penet = (1− β)‖θ‖1 + β‖θ‖2 (11)

Enet can be seen as a generalization of lasso and ridge. It includes an additional weight

parameter β that determines which of the penalties receives more weight. Notably,

when β = 1 or β = 0, enet is equivalent to ridge and lasso, respectively. When

0 < β < 1, continuously less parameters are shrunken to exactly zero the more β

approaches 1 (Hastie et al., 2009).

For the sake of completeness, it should be mentioned that further penalty

functions have been proposed with the explicit goal of achieving sparser solutions than

factor rotation (Fan & Li, 2001; Hirose & Yamamoto, 2015b; Hirose, 2016; Zhang,

2010). This is especially important for data sets with a very large number of variables

(relative to the sample size) such as genome data (e.g., Carvalho et al., 2008), or fMRI

data (e.g., Hirose, 2016). However, as outlined in the context of factor rotation, simpler

(or sparser) solutions are typically accompanied by inflated factor correlations for

psychometric data sets. Considering even sparser solutions would rather aggravate the
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outlined problems. Therefore, in the present paper, we focus on penalties that do not

specifically aim for sparser solutions than factor rotation (i.e., ridge, lasso, and enet).

Apart from the choice of the penalty function, the tuning parameter α heavily

influences the estimates of regularized EFA. In general, the parameter estimates and the

proportion of non-zero parameters decrease as α increases. In that sense, regularization

may be seen as a continuous and objective approach to achieve a simple (or sparse)

solution as the tuning parameter is determined utilizing an objective criterion.

Typically, the model is estimated over a range of possible values for α, and the set of

parameters is chosen that yields the best cross-validated fit as indicated by the root

mean squared error or some information criterion (Hastie et al., 2009) such as the BIC.

For regularized factor analysis models, the BIC performs well in finding a penalty

weight that results in reasonable parameter estimates (Hirose & Yamamoto, 2014;

Jacobucci et al., 2016).

In summary, regularized EFA aims for a sparse factor loading matrix with as

many zero-elements as possible but without assuming a specific form of simple structure

(e.g., that each variable should have at least one zero loading). This makes

regularization a potential alternative to factor rotation also for psychometric

applications (see also Trendafilov, 2014). Importantly, it should not be expected that

regularized EFA always performs better than rotated EFA - although there may be

conditions under which regularized EFA is generally superior in terms of parameter

estimation. Rather, regularized EFA may provide a better compromise between the

ability to uncover simple structure when it exists with the ability to offer reasonably

interpretable results when this is not the case. In that sense, regularized EFA could

already be considered a suitable alternative for factor rotation if its estimates are not

substantially worse than the best rotated EFA for a given factor loading pattern.

Previous research convincingly demonstrated that regularized EFA achieves

interpretable solutions for some specific applications (e.g., genome data or popular

standard examples for EFA). Extending these studies, we investigated if this

observation can be generalized over a wider range of populations inspired by typical
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psychometric data sets in which we systematically varied the size of the cross-loadings.

The present study

Extensive empirical comparisons of factor rotation techniques for typical

psychometric data sets are available (Asparouhov & Muthén, 2009; Sass & Schmitt,

2010; Schmitt & Sass, 2011) and a number of studies have compared different penalty

functions in the context of both exploratory factor analysis and regression (Fan & Li,

2001; Hirose & Yamamoto, 2014, 2015b; Hirose, 2016; Huang et al., 2017a; Zhang,

2010). Occasionally, rotation techniques have been included in simulation studies on

regularization but these comparisons were limited to one specific rotation technique per

study and considered only a small variety of factor loading patterns (Hirose &

Yamamoto, 2015b; Ning & Georgiou, 2011; Trendafilov & Adachi, 2015, 2015).

Hence, more direct and extensive comparisons of factor rotation and

regularization on the same data set are necessary to judge the usefulness of

regularization for typical psychometric applications. Closing this gap, we report the

results of two simulation studies comparing the performance of the described

regularization methods with factor rotation. In the first simulation, we compared the

asymptotic properties of factor rotation and regularization for large samples, and, in the

second study, we investigated whether the results from the large samples also apply to

samples sizes that are more realistic in psychological research.

Study 1: Asymptotic performance

In this study, we compared the performance of factor rotation and regularization

for large samples. We based our comparison on factor loading patterns for which the

performance of common factor rotation techniques is known. In addition, we

investigated the performance of regularization and factor rotation on extended factor

loading patterns with more items and varying degrees of sparsity. We focused on

oblique CF-Varimax rotated EFA due to its popularity, and on Geomin and Facparsim

rotated EFAs as comparison techniques because they performed best for complex

loading patterns in previous simulations (Asparouhov & Muthén, 2009; Schmitt & Sass,
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2011). We estimated regularized EFAs with ridge, lasso, and enet penalties. We either

penalized the factor loadings only or both the factor loadings and the inter-factor

correlations.

As outlined above, the success of factor rotation depends on the degree to which

the population factor loadings follow a simple structure. Regarding the performance of

regularization, it is an important property, especially of lasso penalties, that the

performance of the regularization depends on the degree to which the true model is

actually sparse (Donoho, 2006; Donoho & Stodden, 2006). Only if a sufficient degree of

sparsity holds in the population, regularization is likely to recover the correct factor

loading pattern. In the present context, the factor loading patterns are sparser the

closer they approximate a perfect simple structure. Therefore, we expected that

regularization behaves similarly as factor rotation in case of a population pattern that

conforms to a simple structure. For more complex factor loading patterns, the

cross-loading estimates are shrunken towards zero at the cost of inflated factor

correlations. We expected that this effect is reduced if the penalty also considers the

inter-factor correlations. In this case, inflated factor correlations would result in a

higher penalty term, which in turn should allow the estimation procedure to aim for a

better compromise between minimal cross-loadings and minimal factor correlations.

Methods

Simulation Model. We simulated factor loading patterns of varying

complexity with 3 factors and 18 (basic conditions) or 36 variables (extended

conditions). For the sake of comparability, we adapted the simulation setup that was

used in Schmitt and Sass (2011, Tab. 1) comprising of 18 variables that follow a perfect

simple pattern, an approximate simple pattern with small cross-loadings (< 0.20) or a

complex pattern with substantial cross-loadings of up to 0.40 (standardized loadings).

The standardized main loadings varied between 0.63 and 0.75 and the factors were

standardized (variance of 1) and substantially correlated (0.40). The residual covariance

matrix was a diagonal matrix, that is, the residuals were uncorrelated.
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Table 1
Simulated factor loading patterns (standardized) in the replicated conditions

Perfect
Simple Pattern

Approximate
Simple Pattern Complex Pattern

Variable F1 F2 F3 F1 F2 F3 F1 F2 F3
1 0.75 0.00 0.00 0.70 0.11 0.14 0.67 0.22 0.13
2 0.75 0.00 0.00 0.70 0.17 0.05 0.68 0.09 0.23
3 0.75 0.00 0.00 0.68 0.16 0.16 0.68 0.27 0.05
4 0.75 0.00 0.00 0.70 0.05 0.17 0.65 0.39 0.09
5 0.75 0.00 0.00 0.72 0.08 0.08 0.64 0.13 0.39
6 0.75 0.00 0.00 0.70 0.11 0.11 0.67 0.18 0.18
7 0.00 0.75 0.00 0.11 0.69 0.17 0.05 0.68 0.27
8 0.00 0.75 0.00 0.05 0.72 0.08 0.25 0.63 0.38
9 0.00 0.75 0.00 0.05 0.72 0.08 0.38 0.63 0.21
10 0.00 0.75 0.00 0.16 0.68 0.16 0.09 0.69 0.18
11 0.00 0.75 0.00 0.08 0.71 0.11 0.05 0.73 0.05
12 0.00 0.75 0.00 0.05 0.71 0.14 0.27 0.67 0.13
13 0.00 0.00 0.75 0.08 0.14 0.70 0.04 0.40 0.66
14 0.00 0.00 0.75 0.14 0.14 0.69 0.38 0.25 0.63
15 0.00 0.00 0.75 0.14 0.11 0.70 0.26 0.18 0.66
16 0.00 0.00 0.75 0.11 0.05 0.71 0.14 0.09 0.70
17 0.00 0.00 0.75 0.16 0.14 0.69 0.22 0.22 0.66
18 0.00 0.00 0.75 0.08 0.05 0.72 0.18 0.09 0.69

Note. The factor correlations were .40 among all factors. These simulation
parameters were adapted from Schmitt and Sass (2011, where the same patterns
are used but unstandardized loadings are presented). The factor loadings were
standardized with respect to the total variable variances (Muthén, 2004,
Appendix 3). F· = Factor.

In addition to these basic conditions, we also explored the behavior of factor

rotation and regularization for five extended factor loading patterns with 36 variables.

These patterns were constructed by concatenating different combinations of the basic

patterns (Tab. 2). These extended conditions enabled us to investigate the influence of

the number of items and the degree of sparsity on the performance of factor rotation an

regularization. For instance, in the condition ’Extended Simple 1’ comprised of a
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Perfect Simple pattern and an Approximate Simple pattern, that is, the variables 1 to

18 loaded on the 3 factors with 6 main loadings (0.75) per factor and otherwise

zero-loadings (Tab. 1, left-most pattern), and the variables 19 to 36 loaded on the 3

factors with small cross-loadings (Tab. 1, middle pattern). In this pattern, both factor

and variable complexity are higher than in the basic Perfect Simple pattern but the

sparsity is preserved to some extent due to the zero cross-loadings of the first 18

variables. Hence, this condition is optimally suited to investigate differential behavior of

rotated and regularized EFA.

Finally, in order to exclude that differences between basic and extended conditions

may be attributed to the increased number of variables, we included two conditions

(Extended Simple 2, Extended Complex 3) that differed to the respective basic

condition only in the number of variables.

Table 2
Simulated factor loading patterns in the extended conditions

Condition Loading Pattern 1 Loading Pattern 2
Extended Simple 1 Approximate Simple Perfect Simple
Extended Simple 2 Approximate Simple Approximate Simple

Extended Complex 1 Complex Perfect Simple
Extended Complex 2 Complex Approximate Simple
Extended Complex 3 Complex Complex

Note. All extended patterns had 36 variables. The basic patterns can be
found in Tab. 1.

Procedure. All simulations and analyses were conducted in R (Version 3.4.4, R

Core Team, 2018). All scripts necessary to reproduce the simulations and analyses are

available from the Open Science Framework. For each factor loading pattern, we derived

the implied covariance matrix of the variables from the common factor model (e.g.,

Mulaik, 2010, p. 138). In order to investigate the asymptotic behavior of the discussed

approaches, we drew large random samples of N = 10000 participants from a continuous

multivariate normal distribution using the package mvtnorm (Genz et al., 2017).

For each condition, the respective data set was subjected to rotated ML-EFAs and

regularized EFAs, extracting 3 factors. ML-EFA was conducted as implemented in the

130



package psych (Version 1.7.5 Revelle, 2016) and rotated using oblique CF-Varimax,

oblique Geomin (ε = 0.01 or 0.5) or Facparsim rotations from the GPArotation package

(Bernaards & Jennrich, 2005). Regularized EFA was conducted using the package

regSEM, a general package that estimates regularized structural equation models

(regSEMs) allowing the user to select which parameters of the model should be

penalized (Jacobucci, 2017). In order to estimate a regularized EFA, we specified three

measurement models but no structural model. Each variable was allowed to load on

each factor, the factor variances were fixed to 1, and all factor correlations were freely

estimated. Both rotated and regularized EFA were conducted on z-standardized data.

We compared the performance of ridge, lasso and enet penalty on either the factor

loadings alone (RidgeΛ, LassoΛ, EnetΛ) or the factor loadings and factor correlations

(RidgeΛ,Φ, LassoΛ,Φ, EnetΛ,Φ). The tuning parameters α and β (for enet, Eq. 11) were

automatically chosen so that they minimized the BIC over the respective sample

(Jacobucci et al., 2016). For α, a grid of 100 values starting from α = 0.001 with a step

size of 10−5 was used. For all models, we ensured that the final parameter estimate was

not at the boundary of the grid (indicating that the parameter space should be

enhanced). For β, we tested values between 0.05 and 0.95 with a step size of 0.05.

Dependent Measures. The standardized root mean residual (SRMR) was

calculated as measure of fit between the model-implied and the observed correlation

matrices following the procedure described, for instance, by Asparouhov and Muthén

(2018, section 2.2). Before calculating the dependent measures describing the recovery

of the population parameters, factors were inverted if the sum of their loadings was

negative (e.g., Asparouhov & Muthén, 2009, Appendix D) and factor alignment was

ensured by reordering the factors according to their highest Tucker congruency with the

respective factors in the population loading pattern (e.g., Lorenzo-Seva & ten Berge,

2006). The average congruency across all 3 factors also served as measure of similarity

between the estimated and the population loadings. In addition, the average bias

(across all factors and variables) was calculated separately for main loadings,

cross-loadings, and the inter-factor correlations.
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To avoid misunderstandings, it should be reiterated that due to the rotational

indeterminacy of the EFA model an infinite set of factor loadings and factor correlations

has the same fit for a given correlation matrix. Hence, the concept of parameter bias

does not apply in the same manner to the EFA model as to other models (e.g., linear

regression). Following conventions of previous studies (Asparouhov & Muthén, 2009;

Sass & Schmitt, 2010; Schmitt & Sass, 2011), we define bias as the deviation of the

estimated parameters from the data generating parameters. The main purpose of the

reported bias measures is to summarize the estimated factor loading patterns in an

efficient way, and they should not be understood as deviations from a ground truth.

Results

The main results of this simulation are summarized in Table 3. The model fit as

indicated by the SRMR was nearly perfect across all methods but slightly worse for

lasso and enet regularized EFA than for rotated or ridge regularized EFA. The

estimated factor loadings and factor correlations for each condition are available from

the OSF. Except for ridge penalized regularized EFAs, the congruencies and biases of

the main loadings indicated that all investigated methods recovered the general factor

pattern sufficiently. However, we observed strong differences between the methods with

respect to the biases in the cross-loadings and factor correlations. Notably, across all

conditions, methods and factors, the bias in the cross-loadings and the bias in the factor

correlations were strongly correlated, rspearman = −0.98, indicating that the bias in the

factor correlation reliably increased the more the cross-loadings were underestimated.

Basic conditions. Geomin (ε = 0.01) rotation performed very well for

conditions with simple structure in the population, yielding unbiased estimates of main

loadings, cross-loadings and factor correlations. However, in the presence of substantial

cross-loadings, Geomin (ε = 0.01) underestimated the cross-loadings and overestimated

both main-loadings and factor correlations. This pattern was more pronounced the

more complex the factor pattern was (Approximate Simple vs. Complex condition).

The alternative tuning parameter in Geomin (ε = 0.5) had profound influences on the
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Table 3
Simulation results for all dependent measures as a function of estimation method and
simulation condition in Study 1

Condition

Basic Extended

Method Measure Perfect
Simple

Approximate
Simple Complex Simple 1 Simple 2 Complex 1 Complex 2 Complex 3

Geomin (ε = 0.01) SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 1.00 0.98 0.98 1.00 0.98 1.00 0.98 0.98
Bias main loadings -0.00 0.08 0.07 0.03 0.09 0.03 0.07 0.07
Bias cross-loadings 0.01 -0.09 -0.10 -0.04 -0.09 -0.04 -0.09 -0.10
Bias factor correlation -0.02 0.24 0.27 0.10 0.24 0.12 0.25 0.27

Geomin (ε = 0.5) SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.99
Bias main loadings -0.03 0.00 0.02 -0.01 0.01 -0.00 0.01 0.02
Bias cross-loadings 0.06 -0.01 -0.04 0.02 -0.01 0.00 -0.03 -0.04
Bias factor correlation -0.17 0.02 0.14 -0.07 0.02 -0.01 0.08 0.13

Facparsim SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bias main loadings -0.03 -0.00 0.01 -0.02 -0.00 -0.01 0.00 0.01
Bias cross-loadings 0.07 0.01 -0.03 0.04 0.01 0.02 -0.01 -0.03
Bias factor correlation -0.20 -0.03 0.09 -0.12 -0.03 -0.06 0.02 0.08

CF-Varimax SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bias main loadings -0.03 0.00 0.01 -0.02 -0.00 -0.01 0.01 0.01
Bias cross-loadings 0.06 -0.00 -0.04 0.04 0.01 0.02 -0.01 -0.03
Bias factor correlation -0.18 -0.00 0.11 -0.11 -0.02 -0.05 0.04 0.09

RidgeΛ SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.94 0.90 0.99 0.83 0.84 0.87 0.89 0.97
Bias main loadings -0.07 -0.09 -0.01 -0.15 -0.13 -0.11 -0.09 -0.02
Bias cross-loadings 0.08 0.06 -0.01 0.10 0.08 0.07 0.04 -0.01
Bias factor correlation -0.21 -0.04 0.07 -0.12 -0.04 -0.07 0.01 0.07

RidgeΛ,Φ SRMR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Congruencies 0.94 0.90 0.99 0.83 0.85 0.87 0.90 0.97
Bias main loadings -0.07 -0.09 -0.02 -0.15 -0.13 -0.11 -0.09 -0.02
Bias cross-loadings 0.10 0.07 0.01 0.11 0.09 0.08 0.05 -0.00
Bias factor correlation -0.23 -0.10 0.01 -0.15 -0.07 -0.09 -0.02 0.04

LassoΛ SRMR 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Congruencies 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.98
Bias main loadings -0.00 0.05 0.04 0.00 0.05 -0.00 0.04 0.04
Bias cross-loadings 0.00 -0.07 -0.07 -0.00 -0.07 -0.01 -0.07 -0.08
Bias factor correlation -0.02 0.18 0.22 0.01 0.18 0.01 0.19 0.22

LassoΛ,Φ SRMR 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Congruencies 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99
Bias main loadings -0.01 0.03 0.03 -0.00 0.04 -0.00 0.03 0.03
Bias cross-loadings 0.01 -0.05 -0.06 -0.00 -0.06 -0.00 -0.06 -0.07
Bias factor correlation -0.02 0.13 0.19 0.01 0.17 -0.00 0.16 0.20

EnetΛ SRMR 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01
Congruencies 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99
Bias main loadings -0.00 0.05 0.03 0.00 0.05 0.00 0.04 0.04
Bias cross-loadings 0.00 -0.07 -0.07 -0.00 -0.06 -0.00 -0.07 -0.07
Bias factor correlation -0.01 0.18 0.19 0.01 0.17 0.00 0.20 0.21

EnetΛ,Φ SRMR 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.02
Congruencies 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99
Bias main loadings -0.01 0.03 0.02 -0.00 0.03 -0.00 0.03 0.03
Bias cross-loadings 0.01 -0.05 -0.06 -0.00 -0.05 0.00 -0.05 -0.07
Bias factor correlation -0.02 0.13 0.17 0.00 0.14 -0.00 0.14 0.19

Note. The index symbols indicate which parameters were penalized with Λ = Factor loading matrix, and Φ = Factor correlation matrix.
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performance of the Geomin rotation, resulting in much weaker biases for Approximate

Simple and Complex patterns but performing worse for Simple patterns where it

introduced spurious cross-loadings and underestimated factor correlations. A similar

trend as for Geomin (ε = 0.5) was observed for Facparsim and CF-Varimax rotations

but both were slightly less biased for Approximate Simple and Complex factor patterns

and more biased for Perfect Simple patterns.

Lasso and enet regularization estimates (see Tab. A1 for an overview of the enet β

weights) were very similar to Geomin estimates. They perfectly recovered the Simple

factor loading pattern, and resulted in underestimated cross-loadings and inflated factor

correlations for Approximate Simple and Complex patterns. Notably, lasso and enet

were less biased compared to Geomin (ε = 0.01) but more biased than Geomin (ε = 0.5)

or Facparsim in the presence of cross-loadings. Ridge penalized EFAs behaved notably

different yielding more biased estimates than all other tested methods for Perfect and

Approximate Simple patterns. Complex factor patterns, however, were almost perfectly

recovered by ridge regularization, especially when the factor correlations were included

in the penalty term (RidgeΛ,Φ). Overall, the factor correlations tended to be less

inflated for Complex factor patterns when they were included in the penalty term.

However, the differences between regularization of only the factor loadings or factor

loadings and factor correlations were rather small – except for the RidgeΛ,Φ.

Extended conditions. In general, we observed similar trends in the extended

conditions, that is, the higher the cross-loadings of a respective pattern, the more

difficult it was for the majority of the investigated methods to recover the population

pattern. Especially, Geomin (ε = 0.01) rotation yielded severely biased estimates in all

extended conditions. As in the basic conditions, cross-loadings were underestimated and

factor correlations overestimated, and this pattern was more pronounced the higher the

cross-loadings. Notably, we observed that even a set of additional items with perfect

simple structure (Extended Simple 1, Extended Complex 1) did not reduce the biases

sufficiently for Geomin (ε = 0.01). Geomin (ε = 0.5) and Facparsim were clearly less

biased in the presence of cross-loadings but – as in the basic conditions – suffered from
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spurious cross-loadings in the simpler conditions (Extended Simple 1).

Unlike all investigated rotation techniques, lasso and enet penalties recovered the

factor loading patterns in the extended conditions perfectly if the additional variables

followed a perfect simple structure (Extended Simple 1, Extended Complex 1). In all

other extended conditions, lasso and enet yielded similar estimates as in the basic

Complex condition, that is, cross-loadings and factor correlations were biased to a

similar degree. In contrast to enet and lasso, ridge penalties resulted in fairly distorted

estimates in the extended conditions. Remarkably, the ridge penalty additionally

distorted the main loadings by a substantial amount.2

Discussion

In the first simulation study, we compared the asymptotic performances of

regularized EFAs and traditional rotated EFAs. For factor rotation, we replicated

previous simulation results indicating that the performance of factor rotation depends

on the combination of factor rotation technique, rotation parameter (here: ε) and

population factor loading pattern. In line with previous notions (Morin et al., 2013), a

modified Geomin (ε = 0.5) criterion and Facparsim rotation performed especially well

in conditions with moderate to high variable complexity but performed poorly in

conditions with simple structure. This was also the case for oblique CF-Varimax

rotation. The performance of regularized EFA depended largely on the choice of the

penalty function: Lasso and enet recovered the population pattern if it contained a

sufficient amount of zero-loadings and otherwise yielded similar estimates as factor

rotation. Overall ridge penalties were less successful than lasso and enet. While ridge

penalties were superior in some selected conditions, they resulted in severe distortions in

some other conditions.

In sum, the advantages of ridge for complex loading patterns were – by far –

outweighed by the distortions in other conditions and the inability to recover simple

structure in the population. Enet and lasso, however, recovered simple structure where
2Some readers may wonder if the ridge estimates were simply over-shrunken, explaining the low

congruencies. This was not the case as indicated by low Pearson correlations between the ridge estimates
and the population pattern (0.65 < rP earson < .9).
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it existed and were able to handle the extended conditions in which additional simple

structure items were appended. These results are in line with previous studies showing

that lasso (but not ridge) asymptotically selects the correct subset of variables (here,

items as indicators of the factors) if the sparsity assumption holds, that is, if a sufficient

proportion of the parameters to be estimated is zero in the population (Donoho, 2006;

Donoho & Stodden, 2006). Put simply, lasso and enet strive for the sparsest parameter

matrix and do not distinguish between factor and variable complexity – which enables

them to recover the extended factor loading patterns in which there was high variability

with respect to variable complexity. Across all conditions, an enet penalty on factor

loadings and factor correlations showed slightly better performance than a simple lasso

penalty, indicating that it combined the strengths of lasso and ridge to some extent.

With respect to the question if regularization can is a suitable alternative to factor

rotation, the present results are promising because, even in the conditions where the

sparsity assumption was violated, enet was able to match up with factor rotation

techniques – outperforming the traditional Geomin (ε = 0.01) rotation in every single of

the tested conditions. Compared to the modified Geomin (ε = 0.5) and Facparsim

rotations, enet performed worse for patterns with moderate cross-loadings

(Approximate Simple) and comparably for patterns with high cross-loadings (Complex).

However, it should be considered that both rotations achieved their partial superiority

(similarly to ridge regularization) at the cost of an inability to recover the loadings of

simple structure factor patterns. In practice (i.e., without a known ground truth), an

informed choice of the rotation criterion is not possible. From that perspective, enet

regularized EFA has reasonable all-round properties without the necessity of additional

subjective choices.

Although these results were convincing in favor of regularization, it should be

acknowledged that they were obtained from unrealistically large samples. This is

especially relevant for regularized EFA because the penalty is considered directly in the

estimation step, and estimation performance largely depends on sample size. In order to

conclude that regularization is a suitable alternative to factor rotation, it needs to be
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established whether these results also hold for more practically common samples sizes.

Apart from that, an open question is how factor rotation and regularization compare

with respect to the stability (i.e., standard errors) of the parameter estimates. We

addressed these questions in the second simulation study.

Study 2: Small-sample performance

In this simulation, we compared the performances of factor rotation and

regularization for more realistic sample sizes (N = 100, N = 200). In order to achieve a

feasible simulation time, we focused on the basic conditions from Schmitt and Sass

(2011) and the extended conditions with partial simple structure. These conditions

were chosen in order to investigate if the performance advantages of regularized EFA

from Study 1 are preserved in realistic samples. In addition, we only used the two most

successful regularization methods (EnetΛ & EnetΛ,Φ) from Study 1. These were

compared with both versions of the Geomin rotation and CF-Varimax rotation. We

evaluated the average recovery of the factor loading pattern and their empirical

standard errors across samples.

Methods

Simulation Model. The same simulation model was used as in the first

simulation but we reduced the number of conditions to keep the simulation feasible.

Specifically, we included only the basic conditions and the extended conditions with

partial simple structure (i.e., Extended Simple 1 and Extended Complex 1; Tab. 2).

Procedure. The procedure in Study 2 differed from Study 1 in two aspects:

First, instead of simulating one large sample, we drew Nrep = 500 random samples from

a multivariate normal distribution with either N = 100 or N = 200 observations per

sample. Second, we only applied Geomin (ε = 0.01 or 0.5) and CF-Varimax rotated

ML-EFA and enet penalized regularized EFA. For the penalty weight α, a grid of 10

values starting from α = 0.001 with a step size of 10−4 was used. For the enet weight β,

we tested values between 0 and 1 with a step size of 0.1, that is, enet was allowed to

result in pure lasso or ridge penalties if this optimized the sample BIC.
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Dependent Measures. For each sample, sign and order indeterminacies of

EFA estimates were taken into account and the same dependent measures as in Study 1

were calculated. We report means and standard deviations across all samples for all

measures.

Results

The main results of the simulation are summarized in Table 4. The average

estimated factor loadings and factor correlations for each condition are available from

the OSF. ML-EFA converged normally in all samples. Regularized EFA converged

normally in all but 2 samples with N = 100 in which EnetΛ penalized solutions were

improper (factor correlations > 1). For these samples, the solution with the tuning

parameters (α, β) entered the results that yielded the next best BIC.

Overall, the model-implied covariance matrices fit the observed covariance

matrices of the data very well as indicated by the SRMR. The fit was slightly worse for

smaller samples and for regularized EFA compared to rotated EFA. The congruencies

and biases of the main loadings indicated that all investigated methods recovered the

general factor pattern sufficiently. Factor recovery and stability were marginally better

for N = 200 than for N = 100. For the factor loadings, the stability of the estimates did

not differ substantially between rotated and regularized solutions. For the factor

correlations, Geomin (ε = 0.5) and CF-Varimax yielded smaller standard errors than

the other methods. Notably, unlike in Study 1, none of the tested methods was able to

perfectly recover the Perfect Simple pattern but rather yielded underestimated factor

correlations and spurious cross-loadings. Across all conditions and methods, the biases

of factor correlations and cross-loadings were almost perfectly correlated,

rspearman = −0.98.
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Table 4
Simulation results for all dependent measures as a function of estimation method and
simulation condition in Study 2

N Method Measure Perfect
Simple

Approximate
Simple Complex Extended

Simple 1
Extended
Complex 1

100 Geomin (ε = 0.01) SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.99 (0.01) 0.97 (0.01) 0.96 (0.04) 0.98 (0.00) 0.98 (0.00)
Bias main loadings -0.01 (0.02) 0.05 (0.02) 0.05 (0.05) -0.01 (0.02) 0.03 (0.01)
Bias cross-loadings 0.02 (0.01) -0.07 (0.01) -0.08 (0.03) -0.01 (0.01) -0.04 (0.01)
Bias factor correlation -0.06 (0.07) 0.17 (0.08) 0.21 (0.13) 0.07 (0.07) 0.10 (0.05)

Geomin (ε = 0.5) SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.98 (0.01) 0.99 (0.01) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)
Bias main loadings -0.03 (0.02) 0.00 (0.02) 0.02 (0.02) 0.01 (0.02) -0.00 (0.01)
Bias cross-loadings 0.06 (0.01) -0.00 (0.01) -0.04 (0.01) 0.01 (0.01) 0.00 (0.01)
Bias factor correlation -0.17 (0.05) 0.00 (0.06) 0.12 (0.05) -0.08 (0.05) -0.03 (0.04)

CF-Varimax SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.98 (0.01) 0.99 (0.01) 0.99 (0.00) 0.98 (0.00) 0.99 (0.00)
Bias main loadings -0.03 (0.02) -0.00 (0.02) 0.01 (0.02) 0.02 (0.02) -0.01 (0.01)
Bias cross-loadings 0.06 (0.01) 0.00 (0.01) -0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
Bias factor correlation -0.18 (0.05) -0.02 (0.06) 0.10 (0.05) -0.11 (0.05) -0.06 (0.04)

EnetΛ SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.98 (0.01) 0.98 (0.01) 0.97 (0.01) 0.99 (0.00) 0.99 (0.01)
Bias main loadings -0.03 (0.02) 0.02 (0.02) 0.03 (0.02) -0.00 (0.02) -0.00 (0.01)
Bias cross-loadings 0.04 (0.01) -0.04 (0.02) -0.07 (0.02) -0.00 (0.01) -0.01 (0.01)
Bias factor correlation -0.11 (0.07) 0.10 (0.08) 0.19 (0.07) -0.01 (0.08) 0.01 (0.06)

EnetΛ,Φ SRMR 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)
Congruencies 0.98 (0.02) 0.97 (0.03) 0.98 (0.02) 0.99 (0.00) 0.99 (0.00)
Bias main loadings -0.03 (0.03) -0.00 (0.03) 0.01 (0.02) -0.00 (0.02) -0.01 (0.01)
Bias cross-loadings 0.05 (0.02) -0.02 (0.02) -0.05 (0.03) 0.00 (0.01) -0.00 (0.01)
Bias factor correlation -0.15 (0.08) 0.01 (0.12) 0.12 (0.10) -0.04 (0.07) -0.02 (0.06)

200 Geomin (ε = 0.01) SRMR 0.03 (0.00) 0.02 (0.00) 0.01 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.98 (0.00) 0.97 (0.01) 0.99 (0.00) 0.99 (0.00)
Bias main loadings -0.01 (0.01) 0.06 (0.01) 0.06 (0.01) -0.01 (0.01) 0.03 (0.01)
Bias cross-loadings 0.01 (0.00) -0.08 (0.01) -0.10 (0.01) -0.02 (0.00) -0.04 (0.01)
Bias factor correlation -0.04 (0.07) 0.22 (0.05) 0.24 (0.06) 0.07 (0.04) 0.13 (0.05)

Geomin (ε = 0.5) SRMR 0.03 (0.00) 0.02 (0.00) 0.01 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)
Bias main loadings -0.03 (0.01) -0.00 (0.01) 0.02 (0.01) 0.01 (0.01) -0.01 (0.01)
Bias cross-loadings 0.06 (0.01) -0.00 (0.01) -0.04 (0.01) 0.01 (0.01) 0.01 (0.01)
Bias factor correlation -0.17 (0.05) 0.03 (0.04) 0.12 (0.04) -0.09 (0.03) -0.01 (0.04)

CF-Varimax SRMR 0.03 (0.00) 0.02 (0.00) 0.01 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)
Bias main loadings -0.04 (0.01) -0.01 (0.01) 0.01 (0.01) 0.02 (0.01) -0.01 (0.01)
Bias cross-loadings 0.06 (0.01) 0.01 (0.01) -0.04 (0.01) 0.02 (0.01) 0.02 (0.01)
Bias factor correlation -0.18 (0.04) 0.01 (0.04) 0.10 (0.04) -0.12 (0.03) -0.05 (0.03)

EnetΛ SRMR 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.98 (0.01) 0.98 (0.03) 0.99 (0.00) 0.99 (0.00)
Bias main loadings -0.02 (0.01) 0.03 (0.01) 0.03 (0.02) -0.01 (0.01) -0.00 (0.01)
Bias cross-loadings 0.03 (0.01) -0.05 (0.01) -0.07 (0.01) -0.01 (0.01) -0.01 (0.01)
Bias factor correlation -0.09 (0.06) 0.16 (0.06) 0.18 (0.06) -0.01 (0.04) 0.03 (0.06)

EnetΛ,Φ SRMR 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.02 (0.00)
Congruencies 0.99 (0.00) 0.97 (0.05) 0.98 (0.01) 0.99 (0.00) 0.99 (0.00)
Bias main loadings -0.03 (0.01) 0.00 (0.03) 0.02 (0.01) -0.00 (0.01) -0.01 (0.01)
Bias cross-loadings 0.04 (0.01) -0.02 (0.02) -0.06 (0.01) -0.00 (0.01) -0.00 (0.01)
Bias factor correlation -0.12 (0.07) 0.05 (0.15) 0.14 (0.07) -0.03 (0.05) 0.00 (0.05)

Note. The index symbols indicate which parameters were penalized with Λ = Factor loading matrix, and Φ = Factor correlation
matrix. The numbers outside the parentheses give the averages across all samples of the respective measure, the numbers in
parentheses give the standard deviation across all samples of the respective measure.
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Both Geomin and CF-Varimax rotations resulted in underestimated

cross-loadings and inflated cross-loadings for complex factor loading patterns. As in

Study 1, Geomin (ε = 0.5) and CF-Varimax perfectly recovered the Approximate

Simple pattern whereas Geomin (ε = 0.01) yielded similar (but slightly weaker)

distortions as in the Complex condition. The enet regularization behaved very similar

to the Geomin rotations. The inclusion of the factor correlation in the penalty term

was more influential than in Study 1. Specifically, EnetΛ,Φ like Geomin (ε = 0.5)

yielded less distorted estimates than EnetΛ in the presence of cross-loadings

(Approximate Simple & Complex) but performed worse for Perfect Simple patterns. In

the extended conditions, regularized EFA was superior to rotated EFA as indicated by

(nearly) unbiased estimates (especially for the factor correlation). Altogether, the

performance of factor rotation and regularization were very similar with respect to both

accuracy and stability of the factor solutions.

Discussion

In this simulation, we investigated whether regularization yields comparable

results as factor rotation for realistic sample sizes. Overall, the results of Study 1

generalized quite well to the small sample case and all investigated methods recovered

the factor loading pattern with reasonable accuracy (Tucker’s congruencies > 0.95;

Lorenzo-Seva & ten Berge, 2006) and yielded reasonable fit (SRMR < 0.05 Bentler &

Yuan, 1999). In contrast to Study 1, none of the investigated methods was able to

recover Perfect Simple patterns without biases. This was almost negligible for

Geomin (ε = 0.01) but all other methods underestimated the factor correlations to a

considerable extent. As in study 1, only regularized EFA was able to recover the

parameters in the extended conditions.

Despite additional small sample biases, the present results support the notion that

(enet) regularization may be used to estimate EFA without a separate rotation step.

Differences between Geomin rotated and enet regularized estimates with respect to

accuracy and stability were rather small. As in Study 1, both methods tended to

140



oversimplify loading patterns with high cross-loadings, resulting in inflated factor

correlations. We note that the general size of the biases was rather small, especially for

the factor loadings, and would arguably not lead to fundamentally different

interpretations of the factor loading pattern (e.g., a different selection of items). With

respect to factor correlation bias, we note that interpretations of factor correlations

should acknowledge the trade-off between the size of the cross-loadings and the size of

the factor correlation that is inherent to all oblique factor analysis methods. In sum, we

conclude regularization is a suitable alternative to the traditional factor rotation

approach even in the case of small samples.

General Discussion

In two simulation studies, we compared the performance of factor rotation and

regularization in recovering pre-defined factor loading patterns that resembled typical

psychometric data sets. Both with respect to asymptotic (Study 1) and finite sample

performance (Study 2), regularization resulted in similar estimates as factor rotation. In

line with previous notions (Morin et al., 2013), Geomin rotation with an increased

rotation parameter ε = 0.5 was superior for factor loading patterns with substantial

cross-loadings but was unable to recover perfect simple structures. An enet penalty on

both factor loadings and factor correlations showed the best overall performance among

the investigated regularization methods and provided reasonable balance between the

ability to recover simple structure, if it exists, and the ability to handle complex loading

patterns.

We set out to investigate whether regularization is a suitable alternative to simple

structure rotation in EFA. With respect to the estimation performance, our results

confirm that regularization is a viable alternative to factor rotation. This is not to say

that regularization is always the better approach to estimate the EFA parameters but,

across all conditions in our simulations, it performed very well compared to the

arguably best among the commonly used rotation techniques (cf. Asparouhov &

Muthén, 2009; Schmitt & Sass, 2011). In addition, regularization was able to recover
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the EFA parameters when only a subset of the items followed a simple structure –

where factor rotation failed to do so (cf. Extended Simple/Complex 1 in Study 1).

Thus, for typical psychometric data sets it can be expected that the results of

regularized EFA match the results of simple structure rotated EFA very well.

Despite the promising performance of regularized EFA, the method is not without

limitations: First, the penalization approach implemented in regSEM is very simplistic

because all penalized parameters are treated equally, no matter whether they are factor

loadings, structural coefficients or factor (co-)variances (or correlations). This could be

a drawback because the number of factor loadings always exceeds the number of factor

correlations or structural parameters; hence, the factor loadings will have a stronger

relative influence on the estimation process (cf. Jacobucci et al., 2016; Jacobucci, 2017,

for technical details). Second, the lasso and enet penalty (just as factor rotation)

oversimplified complex loading patterns. It is well-known that lasso can result in

overshrinkage of parameter estimates (here: cross-loadings), therefore, alternative

methods for obtaining the final parameters may be considered (see Jacobucci et al.,

2016, for a discussion). Lastly, our simulations were limited to the cases where all

assumptions of ML-EFA and regSEM were fulfilled. Further research is needed to assess

the sensitivity of regSEM to violations of distributional assumptions and model

misspecification (e.g., correlated residuals). Especially the use of Likert scales may have

profound consequences on the estimation performance (DiStefano, 2002; DiStefano &

Morgan, 2014). Moreover, in the light of the increasing availability of large data sets

(e.g., Kosinski, Wang, Lakkaraju, & Leskovec, 2016), future investigations should also

consider conditions in which the number of variables exceeds the number of

observations.

Taken together, the present and previous research (e.g., Trendafilov, 2014;

Yamamoto et al., 2017) suggest that, regarding estimation performance, there is not

much to lose when replacing factor rotation with regularization but potential gains are

also rather small (except for situations as in our extended conditions with partial simple

structure). Therefore, applied readers may wonder why they should consider replacing
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well-established rotation procedures with regularization. We think that regularization

has advantages both at a pragmatic and at a conceptual level: First, from a pragmatic

perspective, a general use of regularization over factor rotation considerably alleviates

the subjectivity of the analyses. Admittedly, researchers must still choose a penalty

function just as they have to choose a rotation technique – which cannot be optimally

done without a known ground truth – but the elastic net may provide a reasonable

default choice and at least the tuning parameter can be determined in an objective and

(nearly) automatized way.

At a conceptual level, regularization offers a generalization that subsumes EFA

and confirmatory factor analysis (CFA). These methods are often considered separate

methods that have different purposes. Using the penalized likelihood approach,

however, both are simply two extremes in the space of possible models - differing only

in which parameters enter the penalty term P (θ) in Equation 8. EFA, on the one hand,

has measurement models where all paths are allowed and all paths are considered

to-be-regularized. CFA, on the other hand, has measurement models where only the

theoretically motivated paths are estimated, all other paths are constrained to zero, and

no parameter enters the penalty term. As a generalized method that contains both EFA

and CFA as special cases, regularization allows all possible variations in between these

two extremes. In particular, it has been considered to specify the theoretically

motivated main loading paths but to not include them into the penalty term and only

regularize all cross-loadings. Such a semi-confirmatory approach allows researchers to

specify a model that considers there prior beliefs about the factor structure but that

does not completely depend on the validity of these beliefs (Huang et al., 2017b).

Beyond basic factor analysis applications, the present findings have implications

for the more generalized Exploratory Structural Equation modeling (ESEM) approach

in which factor rotation is an important step as well (Asparouhov & Muthén, 2009).

ESEMs extent EFA by a structural model of the latent variables. As we operationalized

regularized EFA from a regSEM perspective, regularized EFA can be easily extended to

a regularized ESEM by (enet) penalizing the factor loadings and correlations of the
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exploratory factors. Such a regularized ESEM may be used to address similar research

questions as ESEM (see also Huang et al., 2017a). Our results on factor rotation and

regularization in the context of EFA should in principle apply for a comparison of

ESEM and regularized ESEM as well. That is, the more complex the exploratory

measurement model, the more rotation and regularization will underestimate the

cross-loadings and overestimate the factor correlations. Consequently, the structural

parameters may be distorted as well (Mai, Zhang, & Wen, 2018). Nevertheless, future

research should investigate this notion empirically and investigate how additional

regularization of the structural parameters affects the solutions.

Considering this connection, some of the central limitations of ESEMs may be

solved in the regSEM framework. For instance, in ESEM, it is mandatory that the

relationships between all or none of the exploratory factors with a given predictor are

specified (otherwise, the rotation procedure is not valid, see Asparouhov & Muthén,

2009). RegSEM is much more flexible in that respect, allowing researchers to choose

which parameters of the model should be penalized and also add restrictions such as

equality constraints to the model. Consequently, regSEM obviates the need for

work-arounds to ESEM limitations such as the ESEM within Confirmatory Factor

Analysis approach (Morin et al., 2013). In this context, it would, for instance, be

interesting to extend regSEM to the multi-level framework (e.g., Asparouhov &

Muthén, 2012; Rabe-Hesketh, Skrondal, & Zheng, 2007). All in all, regSEM offers a

consistent translation of the rotation problem into an estimation problem – allowing for

a unified framework of both confirmatory and exploratory techniques.

Future research should directly compare the performance of regSEM with other

methods of semi-automatic model specification such as specification search in order to

develop recommendations which method is appropriate for which purposes. In this

context, it should be noted that regSEM and specification search are closely related to

Bayesian Structural Equation Modeling (BSEM, e.g., Muthén & Asparouhov, 2011)

because best subset selection and common penalty functions may be seen as a special

case of BSEM with specific priors (Hastie et al., 2009; Jacobucci & Grimm, 2018).
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Apart from providing a unifying theoretical framework, the connection to BSEM offers

a range of possibilities for improvements because different priors (i.e., penalty functions)

could be placed on different parameters. For instance, one could use different priors on

the factor loadings and factor correlations, respectively, in order to achieve a better

balance between cross-loadings and factor correlations for complex loading patterns.

Conclusion

Regularization is an estimation method for complex statistical models with

increasing popularity among social scientists. In two simulation studies, we compared

the estimates of the traditional rotated EFA approach and regularized EFA for realistic

factor loading patterns with varying complexity. Regularized EFA performed very

similar to common factor rotation techniques in the majority of the considered

conditions, indicating that regularization is a suitable alternative to the traditional

rotation approach. Although regularized EFA was not unequivocally the best method

across all conditions, the increased objectivity and the relation of the underlying

regSEM to wider statistical frameworks such as ESEM and BSEM make it a valuable

tool to be considered by social scientists.
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Appendix

Elastic net weights β for Study 1

Table A1
Elastic net weights β for all conditions in Study 1

Condition enetΛ enetΛ,Φ

Perfect Simple 0.40 0.15
Approximate Simple 0.15 0.40

Complex 0.10 0.15
Extended Simple 1 0.20 0.65
Extended Simple 2 0.80 0.65

Extended Complex 1 0.30 0.70
Extended Complex 2 0.15 0.75
Extended Complex 3 0.65 0.10

Note. The index symbols indicate which
parameters were penalized with Λ = Factor
loading matrix, and Φ = Factor correlation
matrix.
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Chapter 5

General Discussion

5.1 Summary of the main results

The aim of the present thesis was to explore how exploratory factor analytic methods can be

made less prone to variance misallocation. These efforts resulted in a series of three publications

in which variance misallocation in EFA was described as a consequence of the properties of ERP

data (Chapter 2), ESEM was proposed as an extension of EFA that acknowledges the structure

of ERP data sets (Chapter 3), and regularized estimation was suggested as an alternative

to simple structure rotation with desirable properties when perfect simple structure cannot

be expected in the population (Chapter 4). In the following, it will be discussed how these

contributions extent the literature on variance misallocation in temporal EFA for ERP data.

In chapter 2, it was shown that variance misallocation can be the result of applying orthogonal

factor rotation to an actually oblique factor pattern (orthogonality bias) and/or the result of

simple structure rotation which biases the estimated factor loadings towards the optimum of its

mathematical simplicity criterion (rotation bias). Most importantly, chapter 2 provided formal

support for previous recommendations of oblique over orthogonal rotations in temporal EFA

for ERP data (Dien, 1998; Dien et al., 2005). An analytical decomposition of the variance-

covariance matrix of the latent factors revealed that it can be written as a sum of contributions

due to electrodes, participants, and condition effects. Given that no more than two orthogonal

factors are physiologically possible (Dien, 2010), and that the number of factors is typically

found to be 8 and more for ERP data sets (e.g., Barry, De Blasio, Fogarty, & Karamacoska,

2016), it is highly unlikely for the (co-)variance contributions to sum up to zero and orthogonal

rotation should be generally avoided. These results cleared remaining doubts about the general

appropriateness of oblique rotation in temporal EFA for ERP data (Dien, 2006; Kayser &

Tenke, 2003, 2006).
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Another important consequence of the commingled (co-)variance sources (i.e., participants,

electrodes, and conditions) is that the factor covariances may not be interpreted substantially

without accounting for the commingled contributions. To resolve this problem, in chapter 3,

it was proposed to replace EFA with an ESEM in which electrode site, condition, and their

interactions are specified as predictors in the structural model. To the best of the author’s

knowledge, it has not been proposed to apply ESEM to ERP data previously. A simulation

study confirmed that ESEM is capable of separating the (co-)variance contributions. In addi-

tion, it was shown that variance misallocation can also occur as a consequence of the factor

scoring procedure that is necessary as an intermediate step in EFA but not in ESEM approach

- although this possibility was considered negligible before (Dien & Frishkoff, 2005). In sum,

ESEM has the potential to become a powerful and flexible tool for ERP researchers that is

considerably less prone to variance misallocation.

Whereas ESEM solves the problems related to the commingled (co-)variance contributions in

EFA, the rotation step remains an important part of the data analytic procedure, and therefore

the choice of the rotation technique still has profound consequences. Even for the rather sim-

plistic factor patterns presented in chapter 3, considerable orthogonality biases occurred when

the factors were only mildly correlated. In the absence of a known ground truth, it is therefore

recommend to estimate an oblique factor loading pattern. However, oblique simple structure

rotation techniques are prone to certain biases when the temporal overlap is high (Dien, 1998;

Dien et al., 2005; Sass & Schmitt, 2010; Schmitt & Sass, 2011). More specifically, the cross-

loadings are underestimated at the cost of inflated factor correlation estimates. Therefore, an

alternative to factor rotation that is more tolerant towards temporal overlap was explored in 4.

Chapter 4 investigated if regularized estimation is a suitable alternative to simple structure

rotation. Elastic net regularized estimation was found to yield reasonable results irrespective

whether the population factor loading pattern was simple or complex. Although the presented

simulations focused on typical psychometric applications, the results suggest that regularization

is also a suitable alternative to factor rotation for the analysis of ERP data. In this context,

especially the presented extended conditions with partial simple structure are of interest because

conditions with partial temporal overlap can be expected to occur regularly with ERP data
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sets. In addition, considering the factor correlation a to-be-regularized parameter offers the

possibility to counterweigh the influence of temporal overlap on the estimated factor solution

to some extent.

To sum up, the work presented in this thesis identified, first, the presence of multiple sources

of (co-)variance, second, the factor scoring step and, third, high temporal overlap of the factors

as major causes of variance misallocation in EFA for ERP data. ESEM was proposed as a

remedy to the first and second point, and, regarding the third point, regularized estimation

was proposed as a potential substitute for factor rotation that is better able to cope with the

high prevalence of temporal overlap.

5.2 Implications and future research questions

The presented results imply that a combination of the ESEM approach and regularized esti-

mation may provide a data analytic framework for ERP data that is less prone to all three

causes of variance misallocation. Recently, regularized structural equation modeling (regSEM)

has been proposed as a method that offers such a combination (Jacobucci et al., 2016). In the

following, a temporal regSEM for ERP data will be outlined in more detail and discussed in the

light of alternative suggestions to reduce the rotation bias. Finally, further research questions

and potential extensions of ESEM/regSEM are discussed.

More specifically, an ESEM can be conceptualized as a regSEM by using the same structural

model as in the ESEM and specifying a measurement model in which all factors are allowed

to load on all observed variables. Crucially, as explained in more detail in chapter 4, all factor

loadings enter the penalty term during estimation to achieve a sparse measurement model.

How can regSEM be applied to ERP data? Building on the findings regarding ESEM in

chapter 3, a structural model should be specified in which the indicator variables for electrode

sites and conditions as well as their interactions predict the latent factors. The factors should

be allowed to correlate because even after controlling for the factor topography, the biases

resulting from a violated orthogonality assumption are profound (Chapter 3). Furthermore,

all factors are allowed to load on each sampling point, and all factor loadings are considered
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to-be-regularized.1 In addition, it may be considered to include the factor correlations into the

penalty term as well to counteract the inflation of factor correlation estimates due to temporal

overlap (Chapters 2 & 3). The findings in chapter 4 suggest that an elastic net penalty could

provide a reasonable default choice for the penalty function. A regSEM specified in this way

both properly considers the structure of ERP data sets and it should be less prone to variance

misallocation than simple structure rotation. Despite the promising results reported here, a

direct empirical test of this notion is a necessary task for future research.

It may be argued that the proposed regSEM addresses the problem of rotation bias only indi-

rectly because it is maximally agnostic about the expected time courses of the latent factors.

Alternatively, it was suggested to develop ERP-specific rotation criteria that either make use

of a priori knowledge of condition effects (Beauducel & Leue, 2015), or that include assump-

tions regarding the time courses of the factors that are motivated directly from ERP research

(Beauducel, 2018). Given that a priori knowledge of condition effects is rarely available, the

latter approach is arguably more generally applicable than the former. Specifically, assuming

that ERPs are transient voltage deflections, Beauducel (2018) proposed ERP-specific rotation

techniques that take a two-step approach. First, an initial Varimax-rotated solution is found.

Second, a rotation target is derived either by fixing successive loadings with small slopes to

zero (Event-related orthogonal partial Procrustes rotation, EPP rotation) or by fitting an opti-

mal Gaussian shape to the Varimax solution (Gaussian event-related Procrustes rotation, GEP

rotation). The rotation target is then supplied to a target rotation algorithm yielding the final

rotated solution. Both EPP and GEP rotation aim at reducing typical distortions of the factor

loading estimates that have been observed in the literature on variance misallocation (Wood

& McCarthy, 1984). Beauducel (2018) found that both EPP and GEP rotation were able to

recover factor loading patterns that included slow-wave potentials (i.e., factors with non-zero

loadings spread over the whole epoch) which are known to be a challenging ground for simple

structure rotation techniques (Verleger & Möcks, 1987).
1In regSEM, the initial model may be over-parameterized. As long as a sufficient number of parameters is

penalized, identification can still be achieved because some of parameters are shrunken to zero (Jacobucci, 2017;
Jacobucci et al., 2016).
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ERP-specific rotation criteria can easily be combined with the ESEM approach presented in

chapter 3, offering an alternative approach to reduce the rotation bias within the ESEM frame-

work. A direct comparison of ESEM with simple structure rotation, ESEM with ERP-specific

rotation, and regSEM is required to explore which of the methods performs best under a vari-

ety of conditions. In order to judge in how far the methods are generally useful, it is crucial

for such a comparison to include conditions that are challenging enough. For instance, on the

one hand, slow-wave potentials may be challenging to recover for regSEM (just as for simple

structure rotation) because the ideal factor solution may not be sparse any more. On the other

hand, ERP-specific rotation may be challenged by factors with bi-phasic time courses because

it assumes that the targeted time course shape is approximately correct (e.g., mono-phasic,

transient factors for GEP rotation). These examples illustrate the importance of a representa-

tive choice of the simulation conditions because otherwise no generalizable conclusions can be

drawn.

Apart from the question which of the methods proposed here has the best relative performance,

an important question is how these methods perform when compared with other frequently used

decomposition techniques such as ICA, multimode PCAs (Möcks, 1988), or temporospatial PCA

(i.e., applying a spatial PCA to the results of a temporal PCA; Dien, 2010). Some efforts have

been made in that direction (Bugli & Lambert, 2007; Delorme, Palmer, Onton, Oostenveld,

& Makeig, 2012; Dien, Khoe, & Mangun, 2007; Makeig et al., 1999; Verleger, Paulick, Möcks,

Smith, & Keller, 2013), but these studies were often limited to real data examples making it

hard to judge the generalizability (but see Groppe et al., 2008, for a notable exception). In this

context, it is important to investigate the mathematical relationships between the underlying

models in order to establish generalizable conclusions about their relative strengths and weak-

nesses. For instance, it would be interesting to learn under which conditions different methods

can be expected to give (approximately) equivalent results.
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Finally, it would be interesting to explore in how far some of the assumptions of the temporal

EFA/ESEM approach can be relaxed. Arguably the most restrictive assumption is that the fac-

tor loading patterns are fixed across participants and conditions.2 Especially, the consequences

of latency-jitter (i.e., time-shifted factor loadings patterns between participants and condi-

tions) have been investigated by previous research (Donchin, 1978; Möcks, 1986), showing that

latency-jitter results in additional factors in the solution that have a certain shape. However,

it is hard to distinguish whether genuine factors from additional factors due to latency-jitter in

empirical applications. Therefore, an extension of ESEM that allows for variation in the factor

loading patterns (see Marsh et al., 2017, for a solution in the context of confirmatory factor

analysis) or even allows to attribute differences in factor loading patterns to other variables

(De Roover, Timmerman, & Ceulemans, 2017) would be very useful for ERP researchers (e.g.,

Barry et al., 2016).

5.3 Limitations

Despite the promising results presented above, some important limitations of factor analytic

approaches (i.e., EFA, ESEM, regSEM) in the context of ERP data have to be considered. The

main limitation of all factor analytic approaches in the context of ERP data is that they do

not take any biophysiological considerations into account but are solely data-driven analytic

approaches. For this reason, some authors have argued that factor analytic methods should be

generally avoided for ERP data (Groppe et al., 2008). However, whereas it is correct that the

lack of a direct physiological interpretation should be kept in mind when using factor analytic

methods, it does not mean that they are not useful. Beauducel et al. (2000) showed that

ERPs quantified by factor analytic methods were much more reliable than ERPs quantified by

the traditional measures described in section 1.2. It has also been shown that the traditional

measures are more prone to variance misallocation than factor analytic quantifications because

they are essentially naïve factor scoring methods (Beauducel & Debener, 2003; Donchin, 1978).

Finally, some studies suggest that source localization can be improved when it is based on a
2Due the principles of volume conduction, the assumption of fixed time courses at all electrode sites (within

each participant and condition) is physically plausible. (e.g., Nunez & Srinivasan, 2006).
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factor analytic solution (Dien, Spencer, & Donchin, 2003), and that the improvement is larger

when variance misallocation is minimized through the choice of an appropriate rotation criterion

(Dien, 2010).

These examples clearly show that factor analytic solutions can have benefits for ERP-specific

analyses such as source localization, and it seems reasonable to expect that these benefits are

even more pronounced when variance misallocation is further reduced (Dien, 2010). In the

present studies, such hypotheses could not be tested because all simulation studies reported

here generated data from factor analytic models with pre-specified parameters rather than

from source dipoles placed in head models. The reason for preferring a model-based simulation

approach was that it allowed the investigation of biases in the model parameters, and unbiased

estimation of model parameters is an important prerequisite for any real data application. In

order to judge whether ESEM/regSEM approaches are generally useful for ERP data analyses,

the simulation studies presented here must be complemented with simulation studies based on

physiologically plausible head models (e.g., Dien et al., 2005), and with real data applications

that demonstrate that ESEM/regSEM are able to find well-established effects.

Another limitation concerns the focus on temporal factor analytic approaches in which the

sampling points are considered the observed variables to be analyzed. Hence, no conclusions

can be drawn regarding extension of spatial EFA approaches in which the electrode sites are

considered as observed variables. Unlike a temporal EFA, a temporal ESEM or regSEM cannot

simply be translated into a spatial ESEM/regSEM by rearranging the data matrix subjected to

the analysis. Rather, the structural model needs to be adapted as well. As a spatial approach

does not assume fixed time courses of the factors across participants and conditions, it is not

straightforward how the sampling points should be treated in such an analysis. Apart from that,

spatial factors are not sparse and characterized by even greater overlap than temporal factors

(Dien et al., 2007). Consequently, spatial analysis approaches have fundamentally different

methodological requirements, and cannot be easily subsumed under the same research agenda

as temporal analysis approaches.
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Finally, some limitations that arise from the simulation design in the presented studies should be

acknowledged. First, the considered factor loading patterns were very simplistic with only two

factors. Typically, 8 or more factors can be expected for ERP data sets (e.g., Dien et al., 2005).

This simplification was made to focus on the main principles behind variance misallocation but

it may have created a too optimistic impression of the capability of factor analytic methods

as very severe cases of variance misallocation have been demonstrated in the literature (e.g.,

Beauducel, 2018). Second, the number of factors was mostly assumed to be correct, concealing

the effects of over- and underextraction of factors on the results. It is plausible to assume that

especially factors with high temporal and/or spatial overlap may be challenging to detect as

separate factors in common factor extraction methods such as parallel analysis (Horn, 1965).

In this sense, it remains an open debate how to decide on the number of extracted factors in

ERP applications (see also Dien, 2006; Dien et al., 2005; Kayser & Tenke, 2003). Third, it

was assumed that the correct factor model is specified, for instance, that the error terms are

uncorrelated. For time series such as ERP data, it is more common to show a certain degree

of autocorrelation in the noise – leading to one or more additional factors that capture these

autocorrelations (Dien, 2018). While simulation studies with real EEG-background noise did

not find any hints on such distortions (Dien et al., 2005), it cannot be ruled out that noise

factor have an impact on the factor solution.
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5.4 Conclusion

This thesis investigated how variance misallocation can be avoided in applications of temporal

EFA to ERP data. The presence of multiple sources of (co-)variance, the factor scoring step, and

high temporal overlap of the factors were identified as major causes of variance misallocation in

EFA for ERP data. It was shown that ESEM is capable of separating the (co-)variance sources

and that it avoids biases due to factor scoring. Further, regularized estimation was shown to

be a suitable alternative for factor rotation that is able to recover factor loading patterns in

which only a subset of the variables follow a simple structure. Based on these results, regSEMs

and ESEMs with ERP-specific rotation have been proposed as promising extensions of the

EFA approach that might be less prone to variance misallocation. Future research should

provide a direct comparison of regSEM and ESEM, and conduct simulation studies with more

physiologically motivated data generation algorithms.
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Researchers are often interested in comparing brain activity between experimental contexts. Event-related

potentials (ERPs) are a common electrophysiological measure of brain activity that is time-locked to an

event (e.g., a stimulus presented to the participant). A variety of decomposition methods has been

used for ERP data among them temporal exploratory factor analysis (EFA). Essentially, temporal EFA

decomposes the ERP waveform into a set of latent factors where the factor loadings reflect the time

courses of the latent factors, and the amplitudes are represented by the factor scores.

An important methodological concern is to ensure the estimates of the condition effects are unbiased

and the term variance misallocation has been introduced in reference to the case of biased estimates.

The aim of the present thesis was to explore how exploratory factor analytic methods can be made less

prone to variance misallocation. These efforts resulted in a series of three publications in which variance

misallocation in EFA was described as a consequence of the properties of ERP data, ESEM was proposed

as an extension of EFA that acknowledges the structure of ERP data sets, and regularized estimation was

suggested as an alternative to simple structure rotation with desirable properties.

The presence of multiple sources of (co-)variance, the factor scoring step, and high temporal overlap

of the factors were identified as major causes of variance misallocation in EFA for ERP data. It was

shown that ESEM is capable of separating the (co-)variance sources and that it avoids biases due to

factor scoring. Further, regularized estimation was shown to be a suitable alternative for factor rotation

that is able to recover factor loading patterns in which only a subset of the variables follow a simple

structure. Based on these results, regSEMs and ESEMs with ERP-specific rotation have been proposed

as promising extensions of the EFA approach that might be less prone to variance misallocation. Future

research should provide a direct comparison of regSEM and ESEM, and conduct simulation studies with

more physiologically motivated data generation algorithms.
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Introduction

Researchers are often interested in comparing brain activity between experimental contexts. Event-

related potentials (ERPs) are a common electrophysiological measure of brain activity that is

time-locked to an event (e.g., a stimulus presented to the participant; Luck, 2014). ERPs are

computed from a continuous electroencephalogram (EEG) that is recorded at multiple electrode

sites (e.g., 64 or 128) from the participant’s scalp with a high sampling rate (e.g., 500 Hz). For

each participant, electrode site and event type, the continuous EEG signal is cut into epochs

around the events of interest (e.g., stimuli in several experimental conditions) and averaged across

repetitions of the same event to improve the signal-to-noise ratio. The resulting ERP data set,

consisting of the averaged waveforms, can be arranged in a 4-dimensional hypermatrix with the

dimensions sampling points × participants × electrodes × event type.

The ERP is typically described in terms of amplitude, polarity, latency, and topography (i.e.,

the distribution of the voltages across all electrode sites) around the time points of minimal and

maximal voltage deflection. ERP researchers may be interested in differences between different

events in any (or all) of these four features with the ultimate goal to attribute differential brain

activity to differences in psychological processes (e.g., differential states of attention). Here, only

the case where researchers are interested in amplitude differences is considered. Traditionally, the

amplitudes of the ERP peaks for each participant, condition, and electrode site are quantified for

subsequent statistical analyses using simple peak amplitudes (i.e., the local minima and maxima

of the voltage), mean voltages in time windows around the grand average peaks, or using a variety

of area under the curve measures (Luck, 2014, chapter 9). Alternatively, statistical tests for
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condition effects may be done separately for each sampling point and electrode site (Groppe,

Urbach, & Kutas, 2011a, 2011b). Functional interpretations of the ERPs are then made based on

the results of the statistical analyses, typically an analysis of variance (ANOVA).

The statistical analysis of ERP data sets with this traditional approach is problematic for at least

two reasons. First, the electric potential recorded from the scalp is a 2D projection of the 3D

source activity in the brain. This makes it hard to attribute differences in the ERP waveforms to

the underlying source signals. Second, due to their high dimensionality, the statistical analysis of

ERP data suffers from a massive multivariate comparison problem that can only be solved at the

cost of a considerable reduction in statistical power. Taken together, these problems result in an

interpretation problem. For instance, when a significant condition effect (in a certain time range)

is observed at two different electrode sites, it is not clear if this result reflects a condition effect

on a single source signal that projects to both electrode sites or a condition effect on two separate

sources.

A variety of decomposition methods has been used for ERP data among them temporal exploratory

factor analysis (EFA; Dien, 2012; Donchin, 1978). Essentially, temporal EFA decomposes the ERP

waveform into a set of latent factors where the factor loadings reflect the time courses of the latent

factors, and the amplitudes are represented by the factor scores. EFA addresses the first challenge

because the decomposition into factors does not rely on visible peaks in the waveform but on

statistical properties of the data. EFA also addresses the second challenge because statistical

analyses of condition effects can be conducted on the factor scores, condensing the information

from all sampling points into a single score for each factor, participant, electrode, and condition. In

this context, it is crucial that the estimation of experimental effects is not biased by the preceding

EFA because otherwise functional interpretations of the factors might be misguided. The term

variance misallocation has been introduced in reference to the case where variance is incorrectly

attributed to factors, resulting in biased condition effect estimates (Wood & McCarthy, 1984).

The goal of the present dissertation was to investigate how the risk of variance misallocation

can be minimized in applications of factor analytic methods to ERP data. In a series of three

publications, the determinants of the occurrence of variance misallocation are identified (Scharf

& Nestler, 2018b), and recently proposed improvements to EFA approaches are investigated that

can considerably reduce the risk of variance misallocation (Scharf & Nestler, 2018a, 2019).
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Study 1

In Scharf and Nestler (2018b), the principles behind variance misallocation were investigated

by means of an analytic decomposition of the factor (co-)variance matrix and a Monte Carlo

simulation. The study set out from the fact that ERP data sets differ from psychometric data

sets, for which EFA was originally intended, in at least two ways: First, the observations in

the rows of an ERP data matrix are not independent and exchangeable. Rather, they are well

structured and some observations are more strongly correlated with each other than others because

they stem from the same electrode site, the same participant, and/or the same event type, and this

fact cannot be acknowledged in the EFA model. Second, latent factors extracted from ERP data

are likely to have a considerable temporal overlap (i.e., a considerable amount of cross-loadings),

and this can hardly be influenced by researchers themselves. The study was concerned with the

consequences of these two properties for the estimation performance and interpretability of the

EFA parameters.

It was shown that variance misallocation can be the result of inappropriately applying orthogonal

factor rotation (orthogonality bias) and/or the result of simple structure rotation which biases the

estimated factor loadings towards the optimum of its mathematical simplicity criterion (rotation

bias). Most importantly, the presented considerations provided formal support for previous rec-

ommendations of oblique over orthogonal rotations in temporal EFA for ERP data (Dien, 1998;

Dien, Beal, & Berg, 2005). An analytical decomposition of the variance-covariance matrix of the

latent factor revealed that it can be written as a sum of contributions due to electrodes, partici-

pants, and condition effects. Given that no more than two orthogonal factors are physiologically

possible (Dien, 2010), and that the number of factors is typically 8 and more for ERP data sets

(e.g., Barry, De Blasio, Fogarty, & Karamacoska, 2016), it is highly unlikely for the (co-)variance

contributions to sum up to zero and orthogonal rotation should be generally avoided. These re-

sults cleared remaining doubts about the general appropriateness of oblique rotation in temporal

EFA for ERP data (Dien, 2006; Kayser & Tenke, 2003, 2006).
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Study 2

Addressing the consequences of the neglected structure of ERP data sets, in Scharf and Nestler

(2018a), exploratory structural equation modeling (ESEM) is proposed as an alternative to EFA

that can properly acknowledge the structure of ERP data sets, for instance, providing substantively

interpretable factor correlation estimates. ESEM expands EFA by a structural model in which

predictors of the latent variables can be specified (Asparouhov & Muthén, 2009). Specifically,

it was proposed to replace EFA with an ESEM in which electrode site, condition, and their

interactions are specified as predictors in the structural model. A simulation study confirmed

that ESEM is capable of separating the (co-)variance contributions. In addition, it was shown

that variance misallocation can also occur as a consequence of the factor scoring procedure that

is necessary as an intermediate step in the EFA but not in the ESEM approach.

Study 3

The results from Study 1 emphasized the importance of the rotation step in EFA for the occurrence

of variance misallocation. As a rotation step is also an essential part of ESEM, ESEM suffers

from biases due to factor rotation as well. Recently, regularized (or sparse) estimation of factor

models has been proposed as a substitute for factor rotation that is able to provide good factor

solutions even for some conditions under which rotated EFA does not (see Trendafilov, 2014, for a

review). Whereas several different regularized factor analysis methods were proposed, no extensive

comparison of the performance of regularization and simple structure rotation has been available.

The simulation study by Scharf and Nestler (2019) closed this gap, comparing the performance of

simple structure rotation and regularization for a wide range of factor loading patterns.

The results showed that elastic net regularized estimation is a suitable alternative to factor rota-

tion. It yielded reasonable results irrespective whether the population factor loading pattern was

simple or complex. Although the presented simulations focused on typical psychometric applica-

tions, the results are relevant for the analysis of ERP data as well. Especially the results from a

set of conditions with partial simple structure are of interest for ERP data applications. In these

conditions, half of the observed variables followed a simple structure whereas the other half did

not. Such conditions with partial temporal overlap can be expected to occur regularly with ERP

data sets. The promising performance of regularized estimation under such conditions makes it a

suitable candidate for ERP applications as well.
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Implications and conclusion

The presented results imply that a combination of the ESEM approach and regularized estimation

may provide a data analytic framework for ERP data that is less prone to all three causes of

variance misallocation. Recently, regularized structural equation modeling (regSEM) has been

proposed offering such a combination (Jacobucci, Grimm, & McArdle, 2016). More specifically, an

ESEM can be conceptualized as a regSEM by using the same structural model as in the ESEM and

specifying a measurement model in which all factors are allowed to load on all observed variables,

and in which all factor loadings are regularized during the estimation. Alternatively, it was

suggested to develop ERP-specific rotation criteria that include assumptions regarding plausible

time courses of the factors that are motivated directly from ERP research (Beauducel, 2018). ERP-

specific rotation criteria can easily be combined with the ESEM approach, offering an alternative

approach to reduce the rotation bias within the ESEM framework. A direct comparison of ESEM

with simple structure rotation, ESEM with ERP-specific rotation, and regSEM is required to

explore which of the methods performs best under a variety of conditions.

To conclude, the present dissertation investigated how variance misallocation can be avoided in

applications of temporal EFA to ERP data. The presence of multiple sources of (co-)variance, the

factor scoring step, and high temporal overlap of the factors were identified as major causes of

variance misallocation in EFA for ERP data. It was shown that ESEM is capable of separating

the (co-)variance sources and that it avoids biases due to factor scoring. Further, regularized

estimation was shown to be a suitable alternative for factor rotation that is able to recover factor

loading patterns in which only a subset of the variables follow a simple structure. Based on

these results, regSEMs and ESEMs with ERP-specific rotation have been proposed as promising

extensions of the EFA approach that might be less prone to variance misallocation. Future research

should provide a direct comparison of regSEM and ESEM, and conduct simulation studies with

physiologically motivated data generation algorithms.
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Einleitung

Forscher sind häufig daran interessiert die Hirnaktivität zwischen verschiedenen experimentellen

Kontexten zu vergleichen. Ereignis-korrelierte Potentiale (EKPs) sind ein oft verwendetes elektro-

physiologisches Maß der Hirnaktivität, die zeitlich gekoppelt an ein Ereignis auftritt (z.B. an einen

Stimulus, der dem Probanden präsentiert wird; Luck, 2014). EKPs werden aus einem Elektroen-

zephalogramm (EEG) gewonnen, welches kontinuierlich von vielen auf dem Kopf des Probanden

platzierten Elektroden (z.B. 64 oder 128) mit hoher Sampling-Rate (z.B. 500 Hz) aufgezeichnet

wurde. Das kontinuierliche EEG-Signal wird in Epochen um die interessierenden Ereignisse (z.B.

Stimuli in verschiedenen experimentellen Bedingungen) herum ausgeschnitten und separat für

alle Probanden, Elektroden und Ereignistypen über alle Wiederholungen des gleichen Ereignis-

ses hinweg gemittelt, um das Signal-Rausch-Verhältnis zu verbessern. Der daraus resultierende

EKP-Datensatz, welcher die mittleren Spannungsverläufe enthält, kann in einer 4-dimensionalen

Hypermatrix mit den Dimensionen Messzeitpunkte × Probanden × Elektroden × Ereignistypen

arrangiert werden.

EKPs werden typischerweise anhand der Amplitude, Polarität, Latenz und Topographie (d.h.,

der Spannungsverteilung über die Elektroden hinweg) der Messzeitpunkte nahe der minimalen

und maximalen Spannungswerte beschrieben. Klassischerweise interessieren sich EKP-Forscher

für Unterschiede zwischen Ereignistypen in einer dieser Eigenschaften mit dem Ziel Unterschiede

in der Hirnaktivität auf Unterschiede in psychologischen Prozessen (z.B. unterschiedliche Auf-

merksamkeitszustände) zurückzuführen. Hier soll ausschließlich der Fall betrachtet werden, bei

dem Wissenschaftler an Amplitudenunterschieden interessiert sind.
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Typischerweise werden die Amplituden der EKP-Gipfel pro Proband, Bedingung und Elektrode

für die anschließende statistische Analyse quantifiziert, indem man die Gipfelamplituden (d.h., die

lokalen Minima und Maxima des Spannungszeitverlaufs), die mittlere Spannung in einem Zeit-

fenster um die Gipfel des Grand Averages oder ein Maß für die Fläche unter der Kurve verwendet

(Luck, 2014, Kapitel 9). Alternativ können statistische Tests einzeln für jeden Messzeitpunkt und

jede Elektrode durchgeführt werden (Groppe, Urbach & Kutas, 2011a, 2011b). Eine funktionelle

Interpretation des EKPs erfolgt dann auf Basis der Ergebnisse der statistischen Analysen, zumeist

Varianzanalysen.

Die statistische Analyse von EKP-Datensätzen mit diesem klassischen Ansatz ist unter mindestens

zwei Gesichtspunkten problematisch. Erstens ist das elektrische Potenzial auf der Schädeloberflä-

che eine 2-dimensionale Projektion der Quellaktivität im 3-dimensionalen Raum. Dadurch ist

es schwierig, die EKP-Verläufe auf die zugrundeliegenden Quellsignale zurückzuführen. Zweitens

führt die Hochdimensionalität der EKP-Daten zu einem massiven multiplen Testproblem für die

statistischen Analysen, dem nur auf Kosten der Teststärke begegnet werden kann. Zusammen

genommen resultiert daraus auch ein Interpretationsproblem. Beispielsweise bleibt es unklar, ob

ein statistisch signifikanter Bedingungseffekt an zwei Elektroden im selben Zeitraum das Ergebnis

eines Bedingungsunterschiedes in einer einzigen zugrunde liegenden Quelle oder eines Bedingungs-

unterschiedes verschiedener Quellen ist.

Eine Reihe von Dekompositionsmethoden wurde bereits auf EKP-Daten angewendet, darunter

temporale explorative Faktoranalysen (EFA; Dien, 2012; Donchin, 1978). Im Wesentlichen zerlegt

eine temporale EFA die EKP-Zeitverläufe in eine Anzahl an latenten Faktoren, wobei die Faktor-

ladungen die Zeitverläufe der latenten Faktoren widerspiegeln und die Faktorwerte die abbilden.

Die EFA adressiert das Überlappungsproblem, weil die Dekomposition nicht auf den sichtbaren

Gipfeln des EKPs basiert, sondern auf statistischen Eigenschaften der Daten. Auch das multiple

Testproblem wird in der EFA reduziert, weil Inferenzstatistik für die Bedingungseffekte anhand

der Faktorwerte betrieben werden kann, wobei die Informationen von allen Messzeitpunkten in je

einem einzelnen Wert pro Faktor, Proband, Elektrode und Bedingung zusammengefasst werden.

In diesem Zusammenhang ist es wichtig, dass die geschätzten Bedingungseffekte erwartungstreu

sind und nicht durch die vorangehende EFA verzerrt werden, weil andernfalls auch die funktio-

nelle Interpretation der Faktoren beeinträchtigt wäre. Der Begriff Varianzmissallokation wurde in

Bezug auf den Fall eingeführt, in dem Varianz falsch auf die Faktoren verteilt wird, sodass auch
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die Bedingungseffekte nicht erwartungstreu sind (Wood & McCarthy, 1984).

Das Ziel der vorliegenden Dissertation war es zu untersuchen, wie das Risiko von Varianzmiss-

allokation in der Anwendung von faktoranalytischen Methoden auf EKP-Daten minimiert wer-

den kann. In einer Reihe von drei Publikationen wurden die Determinanten des Auftretens von

Varianzmissallokation herausgearbeitet (Scharf & Nestler, 2018b) und kürzlich vorgeschlagene

Weiterentwicklungen von EFA-Ansätzen im Hinblick darauf untersucht, ob sie das Risiko von

Varianzmissallokation verringern (Scharf & Nestler, 2018a, 2019).

Studie 1

In Scharf und Nestler (2018b) wurden die Prinzipien hinter Varianzmissallokation mittels einer

analytischen Zerlegung der Varianz-Kovarianz-Matrix der latenten Faktoren und einer Monte Car-

lo Simulation untersucht. Ausgangspunkt war die Tatsache, dass EKP-Datensätze sich von psy-

chometrischen Datensätzen, für welche EFA ursprünglich entwickelt wurde, auf mindestens zwei

Arten unterscheiden: Zum einen sind die Beobachtungen in den Zeilen einer EKP-Datenmatrix

nicht unabhängig und austauschbar, sondern stark strukturiert. Einige Beobachtungen korrelieren

stärker miteinander als andere, weil sie von derselben Elektrodenposition, vom selben Probanden

und/oder vom selben Ereignistyp stammen. Dies kann innerhalb des EFA-Modells nicht berück-

sichtigt werden. Zum anderen zeichnen sich die Faktoren, die bei EKP-Daten extrahiert werden

durch substantielle zeitliche Überlappung aus (d.h., durch substantielle Kreuzladungen), was kaum

beeinflusst werden kann. Die Studie beschäftigte sich mit den Konsequenzen beider Eigenschaften

für die Performanz der Schätzungen sowie die Interpretierbarkeit der EFA-Parameter.

Es zeigte sich, dass Varianzmissallokation infolge der nicht gerechtfertigten Verwendung orthogo-

naler Rotationen (Orthogonalitätsbias) und/oder infolge der Faktorrotation auftreten kann, wel-

che die geschätzten Faktorladungen hin zum Optimum ihres Einfachstrukturkriteriums verzerrt

(Rotationsbias). Vor allem lieferten die dargestellten Überlegungen eine formale Begründung für

die in einigen Studien gefundene Überlegenheit obliquer Rotationsmethoden bei temporaler EFA

für EKP-Daten (Dien, 1998; Dien, Beal & Berg, 2005). Die analytische Zerlegung der Varianz-

Kovarianz-Matrix der latenten Faktoren zeigte, dass diese als Summe von Beiträgen der Elek-

troden, Probanden und der Bedingungsunterschiede dargestellt werden kann. Berücksichtigt man

die Tatsachen, dass physiologisch maximal zwei orthogonale Faktoren möglich sind (Dien, 2010)

und dass die Zahl der Faktoren bei typischen EKP-Datensätzen eher acht oder mehr beträgt

(z.B. Barry, De Blasio, Fogarty & Karamacoska, 2016), ist es äußerst unwahrscheinlich, dass sich
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die Beiträge zu null aufsummieren und orthogonale Rotation sollte generell vermieden werden.

Diese Befunde räumten letzte Zweifel an der generellen Angemessenheit obliquer Rotation bei

Anwendung temporaler EFA auf EKP-Daten aus (Dien, 2006; Kayser & Tenke, 2003, 2006).

Studie 2

In Scharf und Nestler (2018a) wurden die Konsequenzen der vernachlässigten Struktur von EKP-

Datensätzen adressiert. Das explorative Strukturgleichungsmodell (ESEM) wurde als Alternative

zur EFA vorgeschlagen, bei dem die Struktur von EKP-Daten angemessen berücksichtigt wer-

den kann, wodurch es zum Beispiel inhaltlich interpretierbare Faktorkorrelationsparameter liefern

kann. ESEM erweitert EFA um ein Strukturmodell, in dem Prädiktoren der Faktoren spezifiziert

werden können (Asparouhov & Muthén, 2009). Konkret wurde vorgeschlagen, EFA durch ein

ESEM zu ersetzen, in dem die Elektrodenposition, die Bedingungseffekte sowie deren Interaktio-

nen als Prädiktoren ins Strukturmodell aufgenommen werden. Eine Simulationsstudie bestätigte,

dass ESEM in der Lage ist, die einzelnen Beiträge zur Faktor(ko)varianz zu trennen. Darüberhin-

aus wurde gezeigt, dass Varianzmissallokation auch als Folge der Faktorwertbestimmung auftreten

kann, welche ein Zwischenschritt der EFA-Methode, aber nicht des ESEMs ist.

Studie 3

Die Ergebnisse aus Studie 1 unterstrichen die Bedeutung des Rotationsschrittes in der EFA für das

Auftreten von Varianzmissallokation. Da Faktorrotation auch essentieller Bestandteil des ESEMs

ist, ist dieses ebenfalls anfällig für den Rotationsbias. Kürzlich wurde regularisierte Schätzung des

Faktormodells als Alternative zur Rotation vorgeschlagen, welche in der Lage ist, unter allgemei-

neren Bedingungen gute Ergebnisse zu erzielen als Faktorrotation (Trendafilov, 2014). Während

zahlreiche Varianten regularisierter Faktoranalysen vorgeschlagen wurden, fehlte es an ausführ-

lichen Vergleichen zwischen regularisierten und rotierten Faktoranalysen. In Scharf und Nestler

(2019) wurde diese Lücke geschlossen, indem die Performanz von Rotation und Regularisierung

für eine breite Auswahl an Populationsfaktorladungsmustern verglichen wurde.

Die Ergebnisse zeigten, dass eine elastic net regularisierte Schätzung eine geeignete Alternative

zur Faktorrotation darstellt, weil sie brauchbare Ergebnisse lieferte, unabhängig davon, ob das Po-

pulationsladungsmuster eher einfach oder komplex war. Obwohl die präsentierte Simulationsstudie

auf typische psychometrische Anwendungen fokussierte, sind die Ergebnisse auch im Kontext der

Analyse von EKP-Daten relevant. Insbesondere zeigte sich, dass Regularisierung Vorteile bietet,
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wenn nur ein Teil der Variablen einer Einfachstruktur folgt. Derartige Bedingungen können bei

EKP-Daten regelmäßig auftreten, sodass Regularisierung auch in diesem Kontext in Betracht

gezogen werden sollte.

Implikationen

Die vorgestellten Ergebnisse implizieren, dass eine Kombination aus dem ESEM-Ansatz und re-

gularisierter Schätzung eine Analysemethode bereitstellen könnte, die weniger anfällig für alle

drei Ursachen von Varianzmissallokation ist. Kürzlich wurden regularisierte Strukturgleichungs-

modelle (regSEM) vorgestellt, welche so eine Kombination verfügbar machen (Jacobucci, Grimm

& McArdle, 2016). Konkret kann ein ESEM als ein regSEM aufgefasst werden, bei dem dasselbe

Strukturmodell spezifiziert wurde wie im ESEM, aber ein Messmodell angenommen wird, in dem

alle Faktoren auf alle Variablen laden, und alle Faktorladungen in den Strafterm der regularisierten

Schätzung eingehen. Alternativ wurde vorgeschlagen, EKP-spezifische Rotationskriterien zu ent-

wickeln, welche Annahmen über plausible Zeitverläufe der Faktoren machen, welche direkt aus der

EKP-Forschung abgeleitet sind (Beauducel, 2018). EKP-spezifische Rotation kann ohne Weiteres

mit dem ESEM-Ansatz verwendet werden, sodass der Rotationsbias auch im Rahmen des ESEMs

reduziert werden könnte. Ein direkter Vergleich zwischen ESEM mit Rotation zur Einfachstruk-

tur, ESEM mit EKP-spezifischer Rotation und regSEM ist notwendig, um herauszufinden, welche

Methode über eine breite Spanne von Bedingungen am besten funktioniert.

Conclusio

Die vorliegende Dissertation untersuchte, wie Varianzmissallokation vermieden werden kann, wenn

temporale EFA auf EKP-Daten angewendet wird. Die Existenz mehrerer Varianzquellen, der

Schritt der Faktorwertbestimmung und die starke zeitliche Überlappung der Faktoren wurden

als Hauptgründe für Varianzmissallokation identifiziert. Es wurde gezeigt, dass ein ESEM-Ansatz

die Varianzquellen trennen kann und dass er Verzerrungen durch Faktorwertbestimmung ver-

meidet. Weiterhin wurde gezeigt, dass regularisierte Schätzung eine geeignete Alternative zur

Faktor-rotation ist, die auch dann noch brauchbare Ergebnisse liefert, wenn nur ein Teil der Va-

riablen einer Einfachstruktur folgt. Basierend auf diesen Ergebnissen wurden regSEMs und ESEMs

mit EKP-spezifischer Rotation als vielversprechende Erweiterungen des EFA-Ansatzes vorgestellt.

Zukünftige Forschung sollte einen direkten Vergleich von regSEM und ESEM sowie weitere Simu-

lationsstudien mit physiologisch motivierter Datenerzeugung durchführen.
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