
PREDICTION OF STRUCTURES AND PROPERTIES OF HIGH-PRESSURE SOLID 

MATERIALS USING FIRST PRINCIPLES METHODS 

 

 

A Thesis Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science 

In the Department of Physics and Engineering Physics 

University of Saskatchewan 

Saskatoon 

 

By 

 

MICHAEL JAMES GRESCHNER 

 

 

 

 

 

 

 Copyright Michael James Greschner, February, 2016. All rights reserved. 

 



i 

Permission to Use 

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from 

the University of Saskatchewan, I agree that the Libraries of this University may make it freely 

available for inspection.  I further agree that permission for copying of this thesis in any manner, 

in whole or in part, for scholarly purposes may be granted by the professor or professors who 

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the 

College in which my thesis work was done.  It is understood that any copying or publication or 

use of this thesis or parts thereof for financial gain shall not be allowed without my written 

permission.  It is also understood that due recognition shall be given to me and to the University 

of Saskatchewan in any scholarly use which may be made of any material in my thesis. 

 

 Requests for permission to copy or to make other use of material in this thesis in 

whole or part should be addressed to: 

 

 

 Head of the Department of Physics and Engineering Physics 

 University of Saskatchewan 

 Saskatoon, Saskatchewan  S7N5E2 



ii 

ABSTRACT 

 

The purpose of the research contained in this thesis is to allow for the prediction of new 

structures and properties of crystalline structures due to the application of external pressure by 

using first-principles numerical computations. The body of the thesis is separated into two 

primary research projects. 

The properties of cupric oxide (CuO) have been studied at pressures below 70 GPa, and it 

has been suggested that it may show room-temperature multiferroics at pressure of 20 to 40 GPa. 

However, at pressures above these ranges, the properties of CuO have yet to be examined 

thoroughly. The changes in crystal structure of CuO were examined in these high-pressure 

ranges. It was predicted that the ambient pressure monoclinic structure changes to a rocksalt 

structure and CsCl structure at high pressure. Changes in the magnetic ordering were also 

suggested to occur due to superexchange interactions and Jahn-Teller instabilities arising from 

the d-orbital electrons. Barium chloride (BaCl) has also been observed, which undergoes a 

similar structural change due to an s – d transition, and whose structural changes can offer 

further insight into the transitions observed in CuO. 

Ammonia borane (NH3BH3) is known to have a crystal structure which contains the 

molecules in staggered conformation at low pressure. The crystalline structure of NH3BH3 was 

examined at high pressure, which revealed that the staggered configuration transforms to an 

eclipsed conformation stabilized by homopolar B–Hδ-∙∙∙ δ-H–B dihydrogen bonds. These bonds 

are shown to be covalent in nature, comparable in bond strength to conventional hydrogen bonds, 

and may allow for easier molecular hydrogen formation in hydrogen fuel storage. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Ab Initio Methods and Quantum Mechanics 

 

In recent decades, computer simulations have become a useful tool to support both 

theoretical and experimental studies in science. Computer simulation can allow theoretical 

hypotheses to be modelled, and can provide predictions and help identify processes of 

experiments. They also allow for virtual experiments to be performed in situations that are 

difficult, dangerous or otherwise impossible with the current experimental capabilities in a 

laboratory setting, such as the high pressures which may be encountered in physical sciences. 

However, the results of any simulation are only as reliable as the theory being applied to produce 

them, and as many of the theories are difficult, if not impossible, to exactly calculate, 

approximations must be made in order to provide numerical results. In order to reduce the 

number of approximations needed, simulation models are often formulated from fundamental 

laws of nature, or ab initio, from the Latin for “from the beginning”. 

In condensed matter physics, the most fundamental laws of nature are derived from 

quantum mechanics, and so any ab initio simulation method must be derived from these laws. 

Using the laws of quantum mechanics, it should be possible to describe any electronic system in 

terms of its wavefunction. While in principle the full theoretical formulation of quantum 
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mechanics must necessarily include the theory of relativity to describe massive or fast moving 

particles, a more simple formulation taking into account only the non-relativistic, time-

independent, stationary nucleus description is sufficient in most cases. To describe these 

systems, it is thus necessary to solve Schrödinger’s equation, 

   NN rrrErrrH


,...,,,...,,ˆ
2121  ,      ( 1.1 )

 

where Ĥ is the Hamiltonian operator, Ψ  Nrrr


,...,, 21  is the many-body wavefunction with ir


 

being the electronic degrees of freedom, and E is the total energy of the system.  

As the interactions in chemistry and physics are dependent on the laws of quantum 

mechanics, the mathematical theory behind the underlying physical laws of these fields are thus 

completely known, so long as the wavefunction of the system can be described. Unfortunately, 

the exact analytical solution for a given system is often too complicated for the equations to be 

solved. Only in fairly simple cases, such as the case of hydrogen, or hydrogen-like, atoms, can 

these equations be completely solved [1]. The difficulty arises is because more complex systems 

must deal with large numbers of interacting particles. In these systems the physical laws are no 

different, nor more complex, dealing primarily with Coulomb interactions between charged 

particles, i.e. electrons and protons. The difficulty lies in the fact that there must be N electrons 

and M nuclei, all interacting together in the electronic system, which must be accounted for in 

the Hamiltonian operator as 


   














N

i ij ji

N

i

M

j ji

j
N

i

i
rr

e

Rr

eZ

m
H

1

2

1 1

2

1

2
2

2

1

2
ˆ




.    ( 1.2 ) 

 In this form, the Hamiltonian in Eq. 1.2 contains three terms. The first term covers the kinetic 

energy of the N electrons. The second and third terms are the Coulombic interactions. The 

second term then is the interaction between the N electrons and the M nuclei, which is system 
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dependent, and can be considered as an external potential (vext), while the third term is the 

electron-electron repulsion. While in principle the kinetic energy of the nuclei should also be 

included, in practice, compared to the speed of the electrons, the nuclei are practically 

motionless, and thus the kinetic energy is negligible and can be ignored. This is the Born-

Oppenheimer approximation. In the Hamiltonian, ħ is the reduced Planck constant, m is the mass 

of the electron, Zj is the atomic number of the jth nucleus, e is the standard charge and jR


 is the 

position of the jth nucleus. In future equations, atomic units will be used, such that ħ = m = e = 1, 

for easier readability. 

These last two terms in the Hamiltonian are pair-wise interactions, and their inclusion is 

the crux of the complications in solving the Schrödinger equation. Taking these into account 

renders the many-body wavefunction too complex to solve for, as it must be 3N-dimensional, 

and the difficulty in solving it grows dramatically with the increasing number of electrons and 

nuclei in the system. Thus, new methods of tackling the Schrödinger equation must be 

formulated in the forms of approximations made to decrease complexity.  

One method of approximation, which dates back to the 1920s and 1930s, was proposed by 

D. R. Hartree and V. A. Fock [2]. The Hartree-Fock method assumes that the electrons move 

independently from each other, thus ignoring the pairwise interaction. It does this by assuming 

that the electrons feel an effective Coulomb potential which is due to the average position of all 

other electrons in the system. In order to preserve the Pauli Exclusion Principle, the many-

particle wavefunction cannot be written as a product of the single-particle wavefunctions (as 

Hartree first suggested), as it does not satisfy the asymmetry requirement of the sign of the 

many-fermion wavefunction changing if any of the arguments are interchanged. In order to 
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satisfy this, the single-particle wavefunction must be written as an N×N Slater determinant of 

single-particle wavefunctions containing both spatial ( ir


) and spin ( is ) components: 

     
     

     NNNNN

NN

NN

srsrsr

srsrsr

srsrsr

N























2211

2222112

1221111

!

1
 .     ( 1.3 ) 

The spatial components of the single-particle wavefunctions in Eq. 1.3 are obtained from 

the Schrödinger-like Hartree-Fock equations 
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where the fourth term on the left hand side is the exchange term. This term is called the 

“exchange” term because it fulfills the asymmetry requirements of the Pauli Exclusion Principle 

regarding the exchange of arguments in the wavefunction, as mentioned above. The third term is 

the Coulombic potential of the electrons, and in the case where  

   



N

i

i rrn
1

2
 ,       ( 1.5 ) 

this term is the Hartree potential, vH( r


). From this formulation, we also find that the total energy 

in the Hartree-Fock method involves the sum over all i values and the integral over all space of 

the left-hand terms in the Hartree-Fock equations [2]. 

Despite these approximations, the Hartree-Fock method is still quite difficult to work with 

in many general cases. It is quite useful when the periodic potential is zero or constant, such as in 

the case of a free electron gas, and the free electron gas model does shed some light on further 

approximations which can be made for periodic potentials, such as in crystalline solids. 
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However, even with these increased approximations, the accuracy of predictions made solely 

with the Hartree-Fock method fall short of physical and chemical reality. Further refinements 

have been put forward to increase the accuracy of the Hartree-Fock method, but these 

improvements lead to increases in computation complexity, limiting their usefulness to small 

systems. Thus a new, less computationally intensive method was required to make computational 

results viable [3, 4]. 

 

1.2 Density Functional Theory 

  

In density functional theory (DFT), the ground state of an electronic system can be 

determined from the electron density distribution,  rn


. This method of using the electron 

density was first suggested by L. H. Thomas and E. Fermi in the late 1920s. They assumed that 

the electron-electron interactions were determined by the classical Coulomb potential, that the 

electrons behaved as a Fermi gas, and that the kinetic energy of the electrons followed a local 

density approximation (LDA), where the contribution at any point r


 can be determined from the 

homogeneous electron gas density kinetic energy [5]. However, a more modern and widely 

known method of DFT was developed by Hohenberg, Kohn and Sham.  

Like the Thomas-Fermi method, the Hohenberg-Kohn method assumes that the ground 

state of an electronic system, as well as the Hamiltonian and thus all the physical properties that 

can be found from it, depends solely on the ground state electron density. The total energy of the 

system, as stated by the Hohenberg-Kohn method, can be expressed in terms of the electron 

density, and must reach its minimum value as the density reaches the ground state density. 

Hohenberg and Kohn also showed that the external potential must be a unique functional of the 
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density (to within a constant). However, Hohenberg and Kohn showed that their method was 

only exact in the cases of a nearly constant electron density and of a slowly varying electron 

density [6]. A year after Hohenberg and Kohn’s method was published, Kohn and Sham built on 

that formalism, as well as the Hartree and Hartree-Fock formalisms, developing the Kohn-Sham 

method.  

In the Kohn-Sham method, the interacting electrons in an external potential in a many-

body system are treated as non-interacting single quasi-particles in an effective potential. As long 

as the final ground state density remains the same, we can ensure that all the physical properties 

of the system are correct, so long as they are determined by the density. Kohn and Sham defined 

the potential acting on the electrons as having three parts, 

        rnrvrvrv XCHextKS


 ,       ( 1.6 ) 

where  rvext


 is the external potential,  rvH


 is the Hartree potential as shown in third term in 

Eq. 1.4 with the condition shown in Eq. 1.5, and   rnXC


  is the exchange-correlation 

contribution to the chemical potential. As the electrons are considered non-interacting single 

particles, we transform the N-particle wavefunction problem we were faced with initially into a 

series of 1-particle wavefunctions, which satisfy the Kohn-Sham equations: 

     rrrv iiiKS
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1
.      ( 1.7 )

 

The Kohn-Sham method also describes the total ground state energy in terms of the 

electron density and an interacting inhomogeneous electron gas 
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In Eq. 1.8, the first term is the energy arising from the external potential ( extE ). The second term 

is the energy arising from the Hartree potential (
HE ), as described above. The third term is the 

kinetic energy of the system of non-interacting electrons with density  rn


. The fourth term is 

the exchange-correlation energy functional. In principle, all the terms except the exchange-

correlation energy functional can be known exactly, and thus it is only the exchange-correlation 

parts which need to be approximated. This also allows all the complications arising from many-

body interactions to be gathered into this one term. The exchange-correlation functional can be 

further broken down into an exchange part (   rnEX


) and a correlation part (   rnEC


) [7] 

        rnErnErnE CXXC




 
.      ( 1.9 )

 

Eq. 1.4 already defined the exact exchange potential in the Hartree-Fock method, which we can 

again make use of to determine the exact exchange energy functional 
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,  ( 1.10 ) 

where the  ri


  terms in Eq. 1.10 are the single-particle wavefunctions originating from the 

Kohn-Sham equation (Eq. 1.7) as opposed to the Hartree-Fock wavefunctions used in Eq. 1.4. 

While this does give an exact exchange in the Hartree-Fock style, the exchange functional does 

not depend explicitly on the electron density. Rather, it implicitly depends on the density through 

the Kohn-Sham wavefunctions. Furthermore, the correlation functional does not have an exact 

form as the exchange functional does. It was found that the exact exchange functional, paired 

with an approximate correlation functional, was not as precise as an approximate exchange 

functional which depended explicitly on the electron density paired with an approximate 

correlation functional [8].  
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Once the exchange-correlation and external potential terms have been specified, the 

method of using DFT to find the ground state of a system becomes one of self-consistent 

iteration. Starting with an initial guess of the electron density  rn


, the effective Kohn-Sham 

potential  rvKS


 can be constructed. With the Kohn-Sham potential, the Kohn-Sham equation 

(Eq. 1.7) can be constructed for the system, and solved for the Kohn-Sham wavefunctions  ri


 , 

which can then be used to determine a new electron density, as in Eq. 1.5. If this new density 

matches the initial density (within a given tolerance), then the ground state density has been 

found, and the ground state properties of the system can be determined. If not, the calculations 

are repeated, this time using the new density as the initial density, until convergence is reached. 

While this may, in principle, now sound like a complete method, there are still many steps which 

must be completed before these self-consistent calculations can be performed. The choice of 

exchange-correlation functionals is the most obvious point which needs to be resolved, but in 

addition, considerations concerning the treatment of periodic systems must also be addressed. 

This treatment will invariably depend on the k-space wavevectors in the system, and so we must 

also determine how to properly sample this space. Finally, a numerical solution to the Kohn-

Sham equations will require that the Kohn-Sham wavefunctions be expanded in some basis set, 

and the choice of basis sets will affect the values derived from the DFT method as well [3, 4]. 

 

1.3 Exchange-Correlation 

 

There are a number of different approximations which can be made to the exchange-

correlation functional, and this thesis will address three of them; LDA, the generalized-gradient 

approximation (GGA) and hybrid functionals. 
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1.3.1 Local Density Approximation 

 

LDA is one of the most straightforward, and more commonly used, approximations to the 

exchange-correlation term. In LDA, we assume that the exchange-correlation functional at any 

point in space for each electron in a non-uniform system is the same as the exchange-correlation 

energy of the homogeneous electron gas having the same electron density as at that point. In this 

way, then, we find 

        rnrnrdrnE HEG

LDA

XC


 ,     ( 1.11 ) 

where   rnHEG


  is the exchange-correlation energy per particle of the homogeneous electron 

gas. Because LDA is based on the homogeneous electron gas, it is only exact in the case where 

the density is uniform, and gives the best results as an approximation in systems where the 

density is slowly varying. While this approximation is reasonable for some solid state materials, 

in the case of materials which are covalently bonded it is not sufficient. Another deficiency of 

this method is that is does not take into consideration the spin density. While in general it should 

be sufficient to solely consider the electron density, in systems where there may be unpaired 

electrons it has been shown that using a term     rnrnHEG




,  in place of   rnHEG


  in Eq. 

1.11, where     rnrnHEG




,  is the exchange-correlation energy density of a spin-polarized 

electron gas with spin up electron density  rn



 and spin down electron density  rn




, gives 

improved results over the LDA method. This method of including the spin-polarized electron 

densities is known as the local spin density approximation (LSDA). However, even LSDA is not 

a perfect approximation. In cases where LSDA does not give accurate results, it tends to 

overestimate binding energies and underestimate bond lengths [3, 4, 9]. 
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1.3.2 Local Spin Density Approximation with Hubbard Correction 

 

Another area where LSDA tends to fall short is in the prediction of properties of Mott 

insulators, like in 3d transition metal oxides, or in predicting ground state magnetic moments in 

high-Tc superconducting cuprates. Despite the fact that all the information for describing these 

systems appears to be contained in the LSDA approach, it has difficulty describing these 

systems. These highly-correlated systems can instead be described by approximations such as the 

Hubbard and Anderson-lattice models, which assume that the highly-correlated d or f electrons 

can be treated as being affected by on-site, quasiatomic interactions. Specifically, the Hubbard 

parameter U, where 

     nnn dEdEdEU 211   ,     ( 1.12 ) 

is the Coulomb energy cost of placing two electrons at the same site, and  xdE  is the energy of 

the electron in the d orbital with occupancy x. The reason LSDA fails to describe these systems 

is because there is an inherent assumption within LSDA that the localization of electrons is 

controlled by the Hund’s rule exchange parameter, J, through the Stoner parameter [10]. For 3d 

transition metals, the Stoner parameter is independent of crystal structure and magnetization, and 

is essentially a characteristic of the transition metal atom itself. In other words, LSDA 

reproduces the atomic term splittings, since in the homogeneous electron gas the spin 

dependence has its roots in the Hund’s rule exchange J, but does not reproduce the integer only 

electron exchange in orbitals, instead producing unphysical energy minima from the partial 

orbital occupation (Fig. 1-1, obtained from Ref. 11). In systems like transition metal oxides, the 

Hubbard parameter U is responsible for the spin dependence, and in general J is on the order of 1 
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eV while U is on the order of 10 eV. This order of magnitude difference between J and U is what 

leads to the failing of LSDA in these systems [12]. Thus, in the LSDA+U method, we can write 

the rotationally invariant LSDA+U energy functional in terms of the LSDA energy functional 

  rE LSDA  , the Hubbard energy functional   nEU , which accounts for the screened 

Coulomb interactions, and the double counting energy functional   nE dc , 

         nEnErEE dcULSDAULSDA  ,    ( 1.13 ) 

where  r  is the charge density of electrons with spin  and  n  are the elements of the 

density matrix. The double counting energy functional makes use of both U and J, as 

          11
2

1
1

2

1
  nnnnJnnUnE dc  ,   ( 1.14 ) 

where 
n  and 

n  are the electron densities for spin up and spin down, respectively, and 

  nnn  is the total electron density [12]. A further simplification to a rotationally invariant 

form of the LSDA+U method also exists, which reduces the dependence of U and J to an 

effective U parameter, JUU eff  , and [13] 

              2

1111
2

1
  nnnnnnnnJUrEE LSDAULSDA  . ( 1.15 ) 
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Figure 1-1. Sketch of the total energy profile as a function of number of electrons in a generic 

atomic system in contact with a reservoir. The bottom curve is simply the difference between the 

other two (the LDA energy and the “exact” result for an open system). [11]. 

1.3.4 Generalized-Gradient Approximation 

 

To overcome the deficiencies which may arise in the LSDA method, GGA was developed 

as somewhat of an extension to LSDA. In GGA, the exchange-correlation functional depends on 

both the local electron density and the variations in space of the electron density, through the 

gradient,  rn


 . As such, the energy functional takes the form 

              rnrnrnFrnrdrnE XCXC

GGA

XC


, .    ( 1.16 ) 

In Eq. 1.16,     rnrnFXC


,  is known as the enhancement factor, which incorporates both 

an exchange term and a correlation term. Dimensional analysis of   rnEGGA

XC


 indicates that 
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    rnrnFXC


,  must be dimensionless, as the units of Eq. 1.16 must be the same as in Eq. 1.11, 

and so the enhancement factor is usually expressed through a parameter, s, 

 
 

 rnk

rn
rs

F






2


 ,      ( 1.17 ) 

where Fk  is the Fermi wavevector and has the form [15] 

  3
1

23 rnkF


 .       ( 1.18 ) 

Because of the enhancement factor’s dependence on the gradient of the density, there can 

be many different forms to the GGA, as opposed to the single form of LDA, which makes GGA 

more versatile. Like LDA, however, GGA does have its own downsides. It may overestimate 

bond lengths, underestimate band gaps, and promote non-magnetic states over magnetic ones [3, 

4, 16]. 

 

1.3.5 Hybrid Functionals 

 

As mentioned above, the exact form of the exchange functional can be expressed, but not 

the exact form of the correlation functional, and mixing the exact exchange with an approximate 

correlation does not give accurate results. It has been shown, however, that a mixing of the exact 

exchange with approximate exchange functionals and approximate correlation functionals does 

give accurate results for properties such as atomization energies and bond lengths [8]. In fact, the 

accuracy of these hybrid functionals, which average an order of 0.1 eV, are better even than the 

GGA, which averages an order of 0.2 eV [16]. These functionals have the form of  

  approx

C

approx

X

exact

X

hybrid

XC EEaaEE  1 ,    ( 1.19 ) 
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where a, a value between 0 and 1, is the mixing fraction. The exact value of a will depend on the 

system it is being applied to, and will give the most accurate results if it can be fitted empirically 

to experimental data. However, despite the increases in accuracy from using hybrid functionals, 

they are more computationally intensive, which limits their applications. 

The development of different approximations for exchange and correlation functionals is 

an area of interest in the community of computational physics and chemistry. In this work, we 

primarily focused on the use of the GGA functional proposed by Perdew, Burke and Ernzerhof 

(PBE) and the hybrid functional proposed by Heyd, Scuseria and Ernzerhof (HSE) [3, 4]. 

 

1.3.6 PBE Functionals 

 

Of the different GGA functionals, the PBE functional is one of the most commonly used in 

DFT programs. A number of conditions for any GGA exchange-correlation functional are 

known, even if the exact form of the functional cannot be stated. One of the conditions is that the 

exchange-correlation functional in any GGA formulation must reduce to the same as the LDA 

exchange-correlation functional, i.e. to the exact exchange-correlation functional of a 

homogeneous electron gas, if the electron density is constant [17]. It has also been shown that the 

exchange-correlation energy must follow the criteria that [18] 

     rnrdrnEXC


3

4

68.1 .      ( 1.20 ) 

In order to fulfill this criteria, Perdew, Burke and Ernzerhof suggested that the exchange 

enhancement factor must also be bounded by   804.1sFX , and suggested a form of the 

enhancement factor as 
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 








2

1

1
s

sF PBE

X



 .      ( 1.21 ) 

In Eq. 1.21, 804.0  and 21951.0 . The value of   was chosen to satisfy Eq. 1.20 

and the bound on the enhancement factor, and the value of   was chosen to so that the effective 

gradient coefficient for exchange cancels out the effective gradient coefficient for correlation. 

They also proposed using the correlation functional in the spin polarized form 

           trHrrnrdrnE ssC

PBE

C ,,, 


.     ( 1.22 ) 

Here, sr  is the Seitz radius and   is the relative spin polarization.  trH s ,,  is a correction term 

for the gradient contribution and has the form 

    














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
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422

2
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1

1
1ln,,

tAAt

At
ttrH s




 ,    ( 1.23 ) 

where 066725.0 , 031091.0  and  

 
 

1

3
1

,
exp



















 








 sC r
A .     ( 1.24 ) 

t  is the dimensionless density gradient, and has the form 

 

   rnk

rn
t

s





2


 ,      ( 1.25 ) 

where Fs kk 4  is the Thomas-Fermi wave number and       211 3

2

3

2







   is 

the spin-scaling factor. Also in Eqs. 1.22 and 1.24,   ,sC r  is the correlation energy per electron 

for a homogeneous electron gas [20].   

As mentioned, the PBE functional is one of the most commonly used in DFT. However, as 

with the previously mentioned methods, it too has its downsides. PBE functionals have a 
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tendency to overestimate bond lengths and lattice parameters by around 1%, which in turn 

affects any physical properties which are dependent on geometries, such as phonon frequencies, 

magnetism and ferroelectricity. A further enhancement of the PBE functional, which is the PBE 

functional revised for solids, or PBESol, was devised as well. This new formulation uses a value 

of 8110 , which is the gradient expansion form, and increases accuracy for slowly varying 

electron density, which increases accuracy of some properties in solids, such as phonon 

frequencies [3, 4, 21]. 

 

1.3.7 HSE Functional 

 

As mentioned before, the mixing of the exact Hartree-Fock exchange term with 

approximate exchange and correlation terms gives very accurate results for calculated systems. 

However, in periodic systems, metallic systems, or systems of large molecules, calculating the 

exact exchange is extremely computationally expensive. Heyd, Scuseria and Ernzerhof 

considered the screened Coulomb interaction for the exact exchange in order to increase 

calculation efficiency [22]. In metals and periodic systems, the Coulomb potential has 

divergence issues with respect to the Fourier transform of r1  ( 24 k ) at 0k . However at 

short ranges, a screened Coulomb potential eliminates the divergence. Thus, they proposed that 

the exact Coulumb exchange can be separated into short-range (SR) and long-range (LR) parts of 

the form 

   


LRSR

r

rerf

r

rerf

r







11
,     ( 1.26 ) 
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where  rerf   is the error function and   is an adjustable parameter. The error function has the 

form 




r
tdtererf






0

22
)( .     ( 1.27 ) 

From this, it can easily be seen that when   goes to zero, the error function goes to zero, so the 

exact exchange is dominated by the short-range component. Similarly when   goes to infinity, 

the error function goes to 1, so the exact exchange is dominated by the long-range component. 

The HSE hybrid functional was proposed using the exact exchange mixing only for the short-

range interactions, as Heyd, Scuseria and Ernzerhof found that the long-range contributions of 

the exact HF exchange are rather small, so they can be approximated by just the approximate 

exchange. The HSE functional was formulated using the PBE functional for the approximate 

exchange, and so takes the form 

        PBE

C

LRPBE

X

SRPBE

X

SRHF

X

HSE

XC EEEaaEE   ,,, 1 ,   ( 1.28 ) 

where the mixing fraction used is 41a , and they found that a value of 1

015.0  a  gave good 

accuracy and speed of calculations for both molecules and solids [3, 4, 22].  

 

1.4 Periodic Systems 

 

So far, these formulations of approximations to solve the Schrödinger equation for systems 

of electrons have all operated under the assumption that the number of electrons in the system is 

not too great to work with. However, in a crystalline solid, the number of electrons participating 

in the interactions reaches the order of Avogadro’s number, which is large enough to be 

considered functionally infinite and render the calculations virtually impossible to compute. 
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However, the very fact that we are investigating crystalline solids offers an insight into the 

solution to this problem, as a crystal is defined by having a regularly repeating pattern of atoms. 

These regularly repeating patterns, or unit cells, can describe the entire crystal in terms of a small 

number of atoms and the three linearly independent lattice vectors which describe translations 

that reproduce the crystal exactly. This means that the properties of the solid as a whole, with its 

near infinite number of electrons, can then be determined from the much smaller unit cell. This is 

the essence of Bloch’s theorem [3, 4]. 

 

1.4.1 Bloch’s Theorem 

 

Bloch’s theorem states that the solutions to the Schrödinger equation for periodic potentials 

must have the form 

    rki

ii erkurk
  ,, ,      ( 1.29 ) 

where  rkui


,  has the same periodic properties as the lattice, i.e.    Trkurku ii


 ,, , and 

where T


 is any of the translational lattice vectors. k


 is the wavevector of an electron in the first 

Brillouin Zone (BZ), described by the reciprocal lattice vectors. Being periodic,  rkui


,  can be 

expressed as a Fourier series 

 
G

rGi

Gki ecrku


,),( ,     ( 1.30 ) 

where Gkc ,  are the Fourier coefficients, and the vectors G


 are the reciprocal lattice vectors. The 

Fourier series gives a planewave form to  rkui


, . Applying Eq. 1.29 to Eq. 1.30 gives the 

periodic potentials in the form 
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    
G

rGki

Gki ecrk


,, .     ( 1.31 ) 

This formulation gives a planewave solution to the Kohn-Sham equations (Eq. 1.7). This allows 

us to expand the Kohn-Sham orbitals in terms of the planewave basis set whose completeness 

can be set through the kinetic energy of the system. 

Bloch’s theorem also lets us describe some other properties of the solid system with only a 

bit more thought. If Eq. 1.29 gives the wavefunction in a single unit cell, the wavefunction in a 

neighboring cell must have the form 

          Tki

i

Tkirki

i

Trki

ii erkeerkueTrkuTrk
    ,,,,  .   ( 1.32 ) 

In other words, the wavefunction in neighboring cells differs only by a phase change. Similarly, 

the electron density in a neighboring cell has the form 

      )(,,,)(
222

rnrkerkTrkTrn i

Tki

ii

 

   ,   ( 1.33 ) 

as in Eq. 1.5. Eq. 1.33 shows that, in the periodic system, the electron density has the periodicity 

as the rest of the system, as one would expect [3, 4, 23].  

 

1.4.2 Cutoff Energy 

 

In the Kohn-Sham method, the kinetic energy can be expressed as 

    






 
 rrrd







2
*

2

.    ( 1.34 ) 

If we substitute the Bloch-form Kohn-Sham orbitals from Eq. 1.31 into Eq. 1.34, it gives us 

   
  









 
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


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

 
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.   ( 1.35 ) 
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Therefore the kinetic energy is proportional to the square of kG


 . Thus, we can justify 

truncating the basis set of the system so that it only includes planewaves that have kinetic energy 

below some cutoff energy which is  

2

2 








 


kG
Ecut



.     ( 1.36 ) 

This cutoff will necessarily introduce some error into the system, as we are deliberately not 

including the infinite possible planewaves necessary to describe the system entirely. However, 

by slowly increasing the kinetic energy cutoff, convergence of the total energy to a given, set 

tolerance can be reached [3, 4, 24]. 

 

1.4.3 K-Point Sampling 

 

As mentioned above, the Bloch theorem formulation depends on the wavevectors in the 

BZ. In fact, each wavevector k


 leads to a new eigenequation of the Kohn-Sham equation. This 

shifts the problem of solving for a near-infinite number of electrons to one of solving for a finite 

number of electronic bands for an infinite number of k-points in the BZ. Obviously, switching 

from one infinite number to another does not reduce the complexity of the problem. However, 

the Kohn-Sham wavefunctions for similar k


 are very similar themselves, i.e. they do not change 

dramatically for small changes in k


. In practice, we can then represent the Kohn-Sham 

wavefunctions in the vicinity of a given k-point in reciprocal space as the wavefunction at that k-

point. Therefore, rather than an integral over the BZ of an infinite number of k-points, we can use 

a summation over a finite number of k-points in the BZ 
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    
i

ii kFwkFkd


,     ( 1.37 ) 

where iw  is the weighting of the k-point ik


. One of the more widely uses methods of sampling 

the BZ in this way was developed by Monkhorst and Pack [25]. Their method was to use a 

uniform, k-point mesh, the Monkhorst-Pack (MP) mesh. The MP mesh makes use of the 

symmetry operations of the crystal lattice in order to confine the k-points to just a region in the 

BZ that is not reducible by symmetry operations, and also to define the weighting of the k-points. 

Due to this use of symmetries, a relatively small amount k-points can be used in order to perform 

calculations. If the energy resultant from a small k-point mesh is not accurate enough, a denser k-

point mesh can always be used in its place, as it is not a variable property, like the cutoff energy 

[3, 4, 25]. 

 

1.4.4 Pseudopotentials 

 

While it is true that using the cutoff energy to expand the planewave basis set to a finite 

size is useful to enable calculations, this method still has its problems. Specifically, the tightly 

bound core electrons require higher cutoff energy in order to expand the localized 

wavefunctions, which means more planewaves are required. Also, the valence electrons and core 

electrons must oscillate in the same regions of space, allowable because the wavefunctions are 

all orthogonal, and oscillating wavefunctions again require more planewaves. However, the 

valence electrons contribute much more strongly to the chemical properties of atoms than the 

core electrons do. This has led to the use of the pseudopotential approximation, which removes 

all ionic and core potentials and replaces them with a pseudopotential which reproduces just the 
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behavior of the valence electrons as pseudowavefunctions. Since only the region outside the core 

electrons needs to be considered, the pseudowavefunctions do not need to be orthogonal to the 

core wavefunctions, as long as the pseudowavefunctions have the same eigenvalue as the real 

wavefunctions, and do not need to oscillate, thus reducing the number of planewaves required in 

the basis set.  

To construct a pseudopotential, it is first necessary to determine which electrons participate 

in bonding and which do not, which are, usually, the valence electrons and the core electrons, 

respectively. In oxygen, for example, the ground state of the electron configuration is 1s22s22p4, 

and so the 2s and 2p electrons would be the valence electrons. The next step is to determine the 

cutoff radius where the core electrons no longer interact with the valence electrons. Fig. 1-2 

shows the radial atomic orbitals for oxygen up to the 3s orbital. In Fig. 1-2, the core 1s electrons 

can be seen to be localized to within about 1 bohr, hence the radial part of the pseudopotentials 

(PP) needs to be equal to the valence all-electron (AE) radial potentials above the cutoff raidus, 

cr  

     cAEPP rrrRrR  , .     ( 1.38 ) 
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Figure 1-2. Radial atomic orbitals of an oxygen atom [26]. The horizontal axis shows the radial 

distance (r), and the vertical axis shows the radial probability distribution function (Pnl) for 

orbitals of principal quantum number n and azimuthal quantum number l.  

In Figs. 1-3a and 1-3b, then, we see the radial parts of the all electron orbitals and pseudo-

orbitals for the oxygen 2s (Fig. 1-3a) and 2p (Fig. 1-3b) electrons. Above the 1 bohr cutoff 

radius, we see that the pseudo-orbitals match the all electron orbitals exactly. Below cutoff, 

however, the pseudo-orbitals need not match as long as they produce the correct electron density 

in the core region, as this falls below the area of chemical activity. As we can see, in Fig. 1-3a, 

the 2s orbital has a node in the core region, while the pseudo-orbital is nodeless. The 2p orbital 

has no nodes since the number of nodes in the wavefunction is equal to 1 ln , thus 

0112  . Figures 1-2 and 1-3 were obtained from Ref. 26. Choosing a smaller cutoff radius 

will make the pseudopotential more adaptable to different types of systems; however, as 

mentioned above, a smaller cutoff would increase the number of planewaves, in turn increasing 

the calculation intensity [3, 4, 24]. 
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Figure 1-3. Radial all electron and pseudo-orbitals of oxygen for (a) 2s and (b) 2p electrons [26]. 

The horizontal axis shows the radial distance (r), and the vertical axis shows the radial 

probability distribution function (Pnl) for orbitals of principal quantum number n and azimuthal 

quantum number l. 

1.5 DFT at High Pressure 

 

The DFT methods described in the previous sections allow for the calculation of material 

properties at high pressures. Of great importance to high-pressure calculations are the ground 

state total energy, used to determine the pressure-dependent equations of state (EOS), as well as 

the phonon dispersions, which determine the mechanical and dynamical stabilities.   
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1.5.1 Equations of State 

 

At high pressure, many structures which appear at ambient pressure become no longer 

stable, and change to a new, lower energy, or more stable, form. These new forms reduce strain 

and minimize forces on the atoms. Thus, a phase diagram can be constructed by comparing the 

total energy of a structure in terms of the formula unit. To include the pressure-volume (pV) 

effects on the total energy, the total Gibbs free energy (G = E + pV - TS) is often more useful to 

compare than the total energy, where T is the temperature and S is the entropy of the system. 

However, the calculations in this study are performed at zero temperature, and so we can 

consider the enthalpy instead (H = E + pV) without any loss of thermodynamic information. At 

each pressure, the total energy must be minimized by allowing the lattice shape and atomic 

coordinates to relax. Fig. 1-4 shows the equation of state phase diagram for ammonia borane 

(NH3BH3, more details in Chapter 3).  

Figure 1-4. Equation of state phase diagram of ammonia borane, with the Cmc21 structure as the 

zero reference point [27]. 
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In Figure 1-4, we see that as pressure increases, the structure changes; up to around 4 GPa, the 

Pmn21 is the stable structure. Above that point the structure changes, and takes on the Cmc21 

space group, until about 9 GPa, when it again changes to the Ama2 space group. The Ama2 

structure, once more, changes around 25 GPa to the P21/m structure. Calculating these structural 

changes in general involves calculating the forces acting on each atom and the stress-tensor using 

the Hellmann-Feynman theorem [28, 29]. A stable structure has net forces minimized on any 

atom in the system. If the net forces are not balanced, then the energy could be further reduced 

by moving the atom in the direction of the non-zero force. The stress tensor respond to the 

external pressure if they are non-zero, and can be altered by changing the size and shape of the 

unit cell [4].  

 

1.5.2 Structural Stability 

 

In order for a structure to be considered stable, it must be not only energetically favored, 

but also mechanically and dynamically stable. One way of determining if the structure is 

mechanically and dynamically stable is through the phonon band structure. If the structure is 

unstable, the phonon band structure will have imaginary frequencies, often represented as 

negative frequencies in phonon frequency plots. These phonon band frequencies can be 

determined through the inter-atomic forces [4, 29]. Figs. 1-5a and 1-5b show examples of 

phonon dispersion plots for CuO in the Fm-3m structure (more details available in Chapter 2). 

The negative frequencies in Fig. 1-5a show that the structure is not mechanically and 

dynamically stable at 20 GPa. However, the increased pressure overcomes the instabilities, and 

so the structure becomes mechanically and dynamically stable above 40 GPa. 
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Figure 1-5. Phonon dispersions for CuO at (a) 20 GPa and (b) 40 GPa [30]. The vertical axis 

shows the phonon frequency, with imaginary frequencies represented by negative frequencies. 

The horizontal axis shows the specific k-points and the path between them that the phonons were 

calculated for. 

 

1.5.3 VASP 

 

VASP, or the Vienna Ab initio Simulation Package, is a first-principles package capable of 

performing electronic calculations through DFT. VASP is capable of using the Kohn-Sham 

equations, the Hartree-Fock approximation and hybrid functionals in order to approximate the 

solution to the many-body Schrödinger equation. VASP makes use of planewave basis sets to 

determine properties such as electronic charge density, and interactions between electrons and 

ions are described using projector augmented waves (PAW) [31]. All this allows VASP to 

determine forces and stress tensors, calculate magnetic moments, determine optical properties 

and allow for dynamics and relaxations to be calculated [4, 32]. 
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1.5.4 PHON 

 

PHON is a phonon frequency calculation program developed by Dario Alfè. It utilizes the 

ability of VASP (or other similar programs) to calculate the forces on atoms in a crystal in order 

to calculate the interatomic force constant (IFC) matrix using the small displacement method. 

The small displacement takes the atoms in a crystal and displaces them slightly from the ground 

state configuration, one at a time, making use of symmetry where appropriate, then calculates the 

forces acting on all the atoms in the crystal for each displacement. Doing this allows it to 

determine the force constant matrix, which in turn allows the phonon frequencies to be 

determined from the dynamical matrix (the phonon frequencies at a wavevector k


 are the 

eigenvalues of the dynamical matrix) [33]. 

 

1.6 Scope of this Study 

 

This study is focused on the prediction of new, stable structures and properties of crystals 

in the framework of DFT. These were carried out with Dr. Yansun Yao and members of Dr. John 

S. Tse’s research group from the Department of Physics and Engineering Physics at the 

University of Saskatchewan, as well as Dr. Ning Chen of the Hard X-ray MicroAnalysis 

(HXMA) beamline at Canadian Light Source, Inc and Dr. Dennis D. Klug at the National 

Research Council of Canada. 

Chapter 2 focuses on the prediction of novel forms of cupric oxide (CuO) at high 

pressures. These predictions are performed primarily using the VASP and mechanical and 

dynamical stability was verified using the PHON program. We found that the monoclinic C2/c 
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structure transforms to a face-centered cubic (FCC) rocksalt structure, Fm-3m, at around 70 GPa, 

then to a body-centered cubic (BCC) CsCl structure, Pm-3m, at around 400 GPa through an 

intermediary R-3m structure. We also found that the magnetic structure may change from an 

antiferromagnetic structure to a non-magnetic and ferromagnetic structure, respectively. We also 

examine a second study of barium chloride, BaCl, which also undergoes similar structural and 

magnetic changes. 

Chapter 3 examines the structural changes of ammonia borane (NH3BH3) at high pressure. 

We found that the structure changes from the experimentally determined Pmn21 and Cmc21 to 

newly predicted Ama2 and P21/m structures at around 6 and 24 GPa, respectively. We found that 

the new structures adopted an eclipsed conformation of the hydrogen atoms, as opposed to the 

staggered conformation found in the low pressure structures, which we attribute to dihydrogen 

bonds between borane molecules. 
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CHAPTER 2 

PRESSURE-DRIVEN SUPPRESION OF THE JAHN-TELLER EFFECTS AND 

STRUCTURAL CHANGES IN CUPRIC OXIDE 

 

2.1 Introduction        

 

Multiferroics, materials with multiple ferroic properties such as ferroelectricity, 

ferromagnetics, ferroelasticity and ferrotoroidicity, present us with options for tuneable 

multifunctional devices, especially through those with both ferroelectric and ferromagnetic 

properties, by allowing for the manipulation of the electric properties of a material via magnetic 

fields [34, 35]. The multiferroic properties of cupric oxide (CuO) have been known for some 

time. As a type-II multiferroic, the ferroelectric phase of CuO occurs due to magnetic ordering, 

and so both the ferroelectric ordering temperature and the Néel magnetic ordering temperature 

(ca. 230 K) are the same. While at ambient pressure CuO has a stable ferroelectric phase over a 

small temperature range of 20 K, from 210 to 230 K, it has been suggested recently that at 

pressures from 20-40 GPa, the multiferroic phase becomes stable from 0 to 300 K, giving it the 

potential to be a room-temperature multiferroic material [36]. Moreover, CuO is a quasi-one-

dimensional magnetic system closely related to the family of cuprate superconductors [37]. The 
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Cu-O vibrations in cuprate materials promote the pairing of electrons, which has been suggested 

as a way to facilitate phonon-mediated superconductivity. 

CuO is known to have a monoclinic structure (space group C2/c) at ambient conditions 

[38]. This structure is a distorted form of the Fm-3m rock salt structure. In CuO, each Cu2+ cation 

has an unpaired electron (3d9), which lifts the degeneracy of the eg states and induces magnetic 

ordering. The interplay between the magnetic ordering and Jahn-Teller distortions thus stabilizes 

the electronic structure of CuO in a distorted lattice [39]. The high Néel temperature observed in 

CuO arises from strong superexchange interactions in cupric pairs via the non-magnetic oxygen. 

Under high pressure, these interactions are expected to be strengthened, as the atoms move closer 

to each other, making room-temperature multiferroicity possible [36]. High-pressure behaviors 

of CuO have been investigated by using various experimental techniques including Raman 

spectroscopy, electrical conductivity measurement, neutron, and synchrotron X-ray diffractions 

[40-45]. Results obtained from the electrical conductivity measurements suggest that the C2/c 

structure is stable up to at least 70 GPa [40]. Structural refinements carried out at lower 

pressures, e.g., up to 47 GPa in X-ray diffractions, also confirmed the stability of the C2/c 

structure [44, 45]. Above the studied pressure range, however, there is little knowledge of 

possible structural phase changes.  

Previous first-principles calculations [40] suggest that the structural phase transition of 

CuO may occur near 100 GPa, where the thermal activation barrier vanishes. As suggested, the 

effect of external pressure is to suppress the Jahn-Teller effects and drive the Cu2+ center back to 

a symmetrical coordination [46]. Applying this mechanism to CuO, we hypothesize that the C2/c 

structure will transform to the Fm-3m structure at a sufficiently high pressure. Another 

consideration is the electron back-transfer from the anions to cations at high pressure [47], such 
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that the occupancy of the Cu d shell changes, modifying the magnetic ordering and stacking 

pattern.  

Here, we report a theoretical study on high-pressure structures of CuO based on density 

functional calculations. Two new structures, the rocksalt-type (Fm-3m) and CsCl-type (Pm-3m), 

are predicted as stable phases under high pressure. Transition from the C2/c structure to Fm-3m 

is predicted to occur near 72 GPa. This transition can be explained by a reduction of Jahn-Teller 

distortions in the C2/c structure as well as the pressure-induced stabilization of the Fm-3m 

structure. The transition from Fm-3m to B2 is rather sluggish over a large pressure range of 

about 210 GPa. The onset of the transition is predicted to occur near 190 GPa via an intermediate 

R-3m structure which completely transforms to the B2 structure with a ferromagnetic ground 

state near 400 GPa. At high pressure, the pV work exerted on the unit cell predominates the 

Jahn-Teller distortions and thus CuO retains the cubic forms. 

 

2.2 Methods 

 

        To determine the equation of state of CuO, we performed density functional 

calculations of the ground state energy using VASP [32] on a number of different crystal 

structures; in addition to the experimentally determined monoclinic C2/c phase, Fm-3m 

(rocksalt), Pm-3m (CsCl), F-43m (zincblende), P63mc (wurtzite), P21/c (AgO) and P42/mmc 

(PdO) structures were also calculated. Candidate structures were chosen based on structural 

analogies of CuO to other transition metal oxides, as well as on similar ratios of anion to cation 

radii as for free cupric and oxide ions, in the case of Fm-3m and Pm-3m, similar coordination 

numbers (CN) to the monoclinic phase, for F-43m, P63mc and the PdO-like P42/mmc structure, 
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and the homologue rule for the AgO-like P21/c structure [48]. The low-energy structures 

obtained were cross-checked using the ab initio random structure searching (AIRSS) methods 

[49]. These calculations were performed for paramagnetic as well as ferromagnetic and 

antiferromagnetic spin orderings. We used projector-augmented planewave (PAW) potentials 

[31] with the PBE exchange-correlation functional [20]. For the paramagnetic calculations, a 

16×16×16 k-point mesh [25] was used for the BZ sampling for accurate calculations of each 

crystal structure. For the spin-ordered structures, a larger 2×2×2 supercell was used, with a 

smaller k-point mesh of 4×4×4. All crystal structures were optimized until the 

Hellmann−Feynman forces on each atom became lower than 1 meV/Å. The electronic self-

consistency loop calculations were performed until the total energy change between two steps 

were less than 10−4 eV. The effects of electron correlations beyond the density functional 

approximation on the Cu d shell were taken into account by employing the DFT+U method in a 

simplified rotationally invariant approach [14]. To match the structural parameters and the band 

gap (1.4 eV) for the monoclinic phase at ambient pressure to the experimental results, we applied 

L(S)DA+U corrections [13], with Ueff (Ueff = U−J) = 6.5 eV [36]. The same U parameters were 

used in all the structures, in order to enable direct-comparison between the calculated enthalpies.  

Mechanical and dynamical stability of the predicted structures was determined by phonon 

calculations using a finite displacement approach through a combination of VASP and PHON 

[33] programs. For these calculations, we used U = 10 eV and J = 1 eV for the L(S)DA+U 

corrections [13, 39], as well as PAW potentials with the PBESol [14, 21] exchange-correlation 

functional, and an energy cut-off of 520 eV, in order to match expected phonon dispersion 

patterns of the undistorted Fm-3m structure[39]. These calculations were done with supercells of 

up to 128 atoms and 4×4×4 k-point meshes to obtain accurate interatomic forces. For each 
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structure, 200 pressures were tested, from ambient pressures up to ca. 600 GPa, in order to 

accurately analyze the enthalpy curve. X-ray absorption near edge structures (XANES) of CuO 

were calculated using the ab initio FDMNES code based on the finite difference method [50]. 

Experimental XANES data measured at the HXMA beamline at the Canadian Light Source from 

the mineral tenorite was used to benchmark the calculations. The cluster’s radius, core-hole 

width, spectral width of the final state, and arctangent function were optimized until the 

calculated XANES of the monoclinic structure matched the experimental data. Optimized 

parameters were then used for all other structures at high pressures.  

 

2.3 Results and Discussion 

 

        The initial equation of state calculations were performed without magnetic ordering taken 

into account, as an attempt to narrow the possibilities for structures at higher pressures. At 

ambient pressure, the C2/c structure is observed experimentally, and was found to have the 

lowest energy among the examined structures, though the AgO-type P21/c and PdO-type 

P42/mmc structures have similar energies (Fig. 2-1a). 
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Figure 2-1. (a) Non spin-polarized and (b) spin-polarized pressure dependencies of enthalpies for 

candidate structures of CuO. The enthalpies of the experimentally observed C2/c structure and 

the Fm-3m structure are used as the zero-energy reference in (a) and (b), respectively [30]. 

As the pressure was increased, the F-43m, B4, P21/c and P42/mmc structures were found to 

be not energetically competitive, and thus were not considered further. The Fm-3m and Pm-3m 

structures, on the other hand, became more energetically favored. The transition from the C2/c 

structure to Fm-3m occurs near 25 GPa, and the Fm-3m to Pm-3m transition near 240 GPa. The 

mechanical and dynamical stability of the Fm-3m and Pm-3m structures were established from 

phonon calculations which revealed no imaginary frequencies (Figs. 2-2a and 2-2b). The 

pressure-driven Fm-3m–Pm-3m transition, as predicted here, has been previously observed or 

proposed in many other transition metal oxides, for example, CdO, ZnO, and FeO [51-54]. 
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Figure 2-2.  Calculated phonon dispersion patterns for (a) the net zero magnetic moment Fm-3m 

structure at 80 GPa and (b) the ferromagnetic Pm-3m structure at 600 GPa [30]. 

In order to best represent the electronic structures of CuO, the spin-ordering of the cupric 

ions was then considered. For the C2/c phase, the magnetic structure below the Néel temperature 

is known experimentally to be antiferromagnetic (AF1) at ambient pressure and high pressures 

up to at least 1.8 GPa [45, 55].  First principles calculations [36] further suggested that the range 

of stability of the AF1 phase may be extended to the Mbar region. This spin-ordered structure, as 

shown in Fig. 2-3a, consists of Cu unpaired spins arranged antiferromagnetically along the [10-

1] direction and ferromagnetically along the [101] direction, with the [010] direction as the easy 

axis. The magnetic moments in the (010) planes are coupled by four superexchange interactions, 

Jx, Jz, J2a, and J2b, whereas adjacent planes are coupled by four interactions, Ja, Jb, Jc, and Jd [56]. 

We have examined the AF1 and other spin configurations including ferromagnetic and 

paramagnetic orderings for the C2/c structure and found the AF1 structure as the ground state, 

which is consistent with experimental results [55]. 
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Figure 2-3. (a) Schematic view of the antiferromagnetic (AF1) state of the C2/c structure as 

observed experimentally. (b) The same magnetic state in an undistorted Fm-3m structure and its 

magnetic unit cell (c). The Cu and O atoms are colored yellow and red, respectively.  In (a), Cu 

atoms belonging to different constant-y planes are separated by their sizes, big (y = 0) and small 

(y = 0.5). The Cu magnetic moment orientations are shown by arrows.  Nearest-neighbor and 

next-nearest-neighbor interactions are indicated by dotted lines and curves, respectively [30]. 

For the Fm-3m and Pm-3m structures, ferromagnetic, antiferromagnetic and paramagnetic 

structures were all tested. To determine the exchange interactions, we used the Heisenberg 

Hamiltonian,  
NNN

ji

NN

ji SSJSSJH


21 , and summed over all cupric pairs of the nearest 

(NN) and next-nearest neighbors (NNN) [57, 58]. All exchange interactions more distant than 

the next-nearest neighbors are much weaker, and therefore were not included in these 

calculations. Figure 2-3b shows an example for the Fm-3m structure, where the spins are 

arranged in the antiferromagnetic state similar to that of the C2/c structure. The magnetic unit 

cell (Fig. 2-3c) of this state has a P4/nmm space group, reduced from the non-magnetic space 

group of Fm-3m. The exchange coupling constants J1 and J2 in the Fm-3m and Pm-3m structures 

were calculated from the total energy differences of three magnetic configurations. The first 
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configuration is simply the ferromagnetic configuration where all unpaired spins are parallel 

(Figs. 2-4a and 2-4e). The second configuration has ferromagnetic ordering on the (001) planes 

and antiferromagnetic ordering along the [001] direction (Figs. 2-4b and 2-4f). The third 

configuration has ferromagnetic ordering on the (111) planes and antiferromagnetic ordering 

along the [111] direction, similar to CoO for the Fm-3m structure [59] (Figs. 2-4c and 2-4g). For 

the Fm-3m structure, a fourth magnetic configuration was also calculated which is ferromagnetic 

in the (011) planes and antiferromagnetic in the [011] direction, alternating every second plane 

[39] (Fig. 2-4d). 

Figure 2-4. Magnetic structures and Heisenberg Hamiltonians for the Fm-3m structure in the (a) 

ferromagnetic structure and the antiferromagnetic structures which are (b) ferromagnetic in the 

(100) planes and antiferromagnetic in the [100] direction, (c) ferromagnetic in the (111) planes 

and antiferromagnetic in the [111] direction and (d) ferromagnetic in the (011) planes and 

antiferromagnetic in the [011] direction every other plane, as well as the Pm-3m structure in the 

(e) ferromagnetic structure and the antiferromagnetic structures which are (f) ferromagnetic in 

the (100) planes and antiferromagnetic in the [100] direction and (g) ferromagnetic in the (111) 

planes and antiferromagnetic in the [111] direction. Yellow spheres are spin up Cu sites, blue 

spheres are spin down Cu sites and red spheres are O sites [30]. 
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For the Fm-3m structure, it was found that when an antiferromagnetic arrangement was 

used as the initial structure, the final structure would instead relax to a non-magnetic orientation 

with vanished magnetic moment on the Cu sites. This can be explained by a charge back-transfer 

from the O ion to the Cu ion in the Fm-3m structure, resulting in the Cu ion having only paired 

electrons in 3d-shell. Such charge back-transfer at high-pressure makes the CuO behave like 

CdO (in the 3d10 state), which indeed favors the Fm-3m structure, and also explains, in part, the 

fact that CuO does not have a metallic band-structure [60]. When the antiferromagnetic ordering 

was instead enforced throughout the calculation, the electronic structure would not converge, 

suggesting that the undistorted antiferromagnetic Fm-3m structure is not a likely candidate for 

the ground-state structure. Between the ferromagnetic, paramagnetic and non-magnetic Fm-3m 

structures, we found the ferromagnetic structure was marginally more thermodynamically stable 

(by ca. 28 meV/CuO), though mechanically and dynamically unstable at pressures up to and 

including the pressure range in which it was found to be energetically favorable when calculating 

phonon dispersions. The paramagnetic and charge back-transfer non-magnetic structures had 

virtually identical energies when compared to each other (Fig. 2-5), and phonon calculations of 

the net zero magnetic moment Fm-3m structure revealed it to be mechanically and dynamically 

stable above 20 GPa (Fig. 2-2b), suggesting a net zero magnetic moment ground state.  



40 

Figure 2-5. Equation of state for tested magnetic CuO structures. AFM 1 refers to a cubic 

structure with ferromagnetic ordering in the (111) planes and antiferromagnetic ordering in the 

[111] direction, alternating every plane, similar to the ordering in rocksalt CoO. AFM 2 refers to 

a structure with ferromagnetic ordering in the (011) planes and antiferromagnetic ordering in the 

[011] direction, alternating every second plane [30]. 

For the Pm-3m structure, on the other hand, both J1 and J2 were calculated to be negative (Fig. 2-

6), suggesting a ferromagnetic ground state. These exchange coupling constants were determined 

using the Heisenberg Hamiltonians (H) of the magnetic Pm-3m structures in the equation 

HEE Structure  0 , where EStructure is the total relaxed energy of the structure and E0 is the ground 

state energy, and solving for J1 and J2. As both J1 and J2 are found to be negative, the 

ferromagnetic configuration is considered to be the ground state for this structure. It should be 

noted here that this approach [61] is semi-empirical. The magnitude of the cation spin, S, was 

assumed constant in all magnetic states, and we assumed J1 and J2 were the same in all 

considered magnetic configurations. The J1 and J2 values were derived from the expressions in 

Figs. 2-4e to 2-4g. The ferromagnetic Pm-3m structure has also been previously suggested for 
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FeO at high pressure [62]. An explanation is that the Pm-3m structure lacks linear superexchange 

interactions and therefore the energy is not sensitive to the spin ordering [63]. It should be noted 

here that the energy differences between different magnetic orderings are sometimes in the 

neighborhood of a few meV, which approaches the limit of accuracy of the DFT methods. The 

lowest-energy magnetic ordering suggested here, therefore, only represents a possible solution, 

which does not eliminate the possibility that other magnetic orderings may also exist. 

Figure 2-6. Calculations of exchange coupling constants for Pm-3m structure at different 

pressures [30]. 

Using the determined magnetic ordering for each structure, we repeated the equation of 

state calculations for CuO (Fig. 2-1b). Once again, the experimentally determined C2/c structure 

was found to be the most favorable at lower pressures. The C2/c → Fm-3m → Pm-3m transition 

sequence is retained in the magnetic-ordered calculation, however the pressures for the two 

transitions are increased. The C2/c to Fm-3m transition now occurs near 72 GPa. The Fm-3m to 

Pm-3m transition (Figs. 2-7b to 2-7d) is sluggish in nature.  
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Figure 2-7. Proposed transition pathway for the C2/c (a) → Fm-3m (b) → Pm-3m (d) transition 

with the R-3m structure (c) as the intermediate phase between Fm-3m and Pm-3m. The face-

centered cubic cell (green) of the Fm-3m structure is evolved from the C2/c structure. The 

primitive cell of the Fm-3m structure (blue) continuously increases its rhombohedral angle (60º) 

through a reduction of its body diagonal and becomes the body-centered cubic cell once the 

angle reaches 90º. The Cu and O atoms are colored yellow and red, respectively [30].  

The onset of this transition is near 190 GPa and the transition is complete at 400 GPa. Along a 

large pressure range of 210 GPa, an R-3m intermediate structure, initially the primitive Fm-3m 

structure, is continuously compressed along its body diagonal and becomes the Pm-3m structure 

once its rhombohedral angle increases to 90º (Figs. 2-7a to 2-7d). In this pressure range, the R-

3m structure has slightly lower enthalpy (up to ca. 100 meV/CuO) than the two parent structures 

(Fig. 2-1b). To this end, we therefore suggest that the Fm-3m to Pm-3m transition in CuO is 

indirect and perhaps occurs with a large pressure hysteresis. The R-3m intermediate structure is 

consistent with the Buerger path for the Fm-3m to Pm-3m transition [64]. We have also searched 

for other intermediate structures in this pressure range using the AIRSS structure search method 

[49] but no other structures were found to be energetically more competitive. Other transition 

mechanisms for the Fm-3m to Pm-3m transition, for example as suggested in Refs. 65-67, may 

lead to lower energy paths but yield no stable intermediate structures. It should also be noted, 

that in the L(S)DA +U approach (Fig. 2-1b), the Fm-3m to Pm-3m transition pressure was 
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calculated to be higher than the value obtained in non-magnetic DFT method (Fig. 2-1a), which 

seems to contradict to what one would expect from the inclusion of magnetic ordering. The 

transition pressure in the L(S)DA+U calculation is sensitive to the value of Ueff. We used the 

same Ueff value [36] for all structures in order to compare their energies on the same footing. 

Thus, the relation between the DFT and the L(S)DA+U calculations would not be exactly the 

same, such that the calculated transition pressures are not the same in the two approaches. These 

types of indirect phase transitions are common in transition metal oxides in which the electronic 

and spin degrees of freedom are strongly coupled with the lattices, and the interplay of these two 

mechanisms determines the phase stability (CdO is an exception, where Cd behaves like a main 

group element [62]). In contrast, the pressure-driven Fm-3m to Pm-3m transitions in main group 

compounds, i.e., alkali and ammonium halides, are usually direct, which can be explained by a 

closed-shell sphere model where the pressure-induced stacking change dominates the transition 

[68].  

It is not surprising that the magnetic-ordering delays the C2/c to Fm-3m phase transition. 

The C2/c structure observed experimentally at lower pressures is stabilized by two mechanisms, 

the superexchange interactions between unpaired spins (Fig. 2-3a), and the Jahn-Teller 

distortions from orbital coupling (Fig. 2-8). 

 



44 

Figure 2-8. Prototypical octahedral distortions at a Cu site in CuO. In an undistorted Fm-3m 

structure, the Cu atom has an octahedral geometry (right) with energy degenerated eg and t2g 

states. In the C2/c structure, two apical Cu-O bonds are elongated (left), lifting the energy 

degeneracy and reducing the geometry to a distorted square-planar configuration. The energy 

splitting between different levels is for demonstration only, and is not plotted to scale [30]. 

In the non spin-ordered calculations, the stabilization from the superexchanges is absent so 

that the pV work can more effectively suppress the Jahn-Teller distortions. In this case, the C2/c 

to Fm-3m phase transition is entirely electrostatic and occurs at a lower pressure. As 

demonstrated in Fig. 2-8, the Jahn-Teller effects elongate two Cu-O bonds at the Cu site, 

reducing the otherwise octahedral geometry (Oh) to a distorted square-planar configuration. At 

ambient pressure, the two elongated Cu-O bonds in the C2/c structure are 2.78 Å, substantially 

longer than the other four, ca. 1.96 Å. The Jahn-Teller elongation along one four-fold axis is 

characteristic for d9 cupric ions, as previously observed in many octahedral Cu2+ complexes. 

This distortion therefore lifts the degeneracy of the eg states at the Cu site, where the doubly 

occupied a1g state (dz
2) is stabilized over the half occupied b1g state (dx

2
-y

2). Moreover, the dz
2 

state is (slightly) further stabilized by mixing with Cu s state of the same a1g symmetry. Thus, 

there is a net reduction in the total energy upon the Jahn-Teller elongation. At lower pressures, 

this distortion is reflected as a soft phonon mode at the L symmetry point in the Brillouin zone 

(Fig. 2-2a). In our calculations, we found that all spin-ordered configurations of the Fm-3m 
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structure showed soft phonon modes at ambient pressure. The Fm-3m structure is distorted at 

low pressures due to the Jahn-Teller effects, which, together with the antiferromagnetic 

interactions, leads to a stable C2/c structure [55]. At higher pressures, however, the pV work of 

the enthalpy is able to overcome the instability of the splitting energy, reverting to a stabilized 

Fm-3m structure with degenerated eg and t2g states. Similar pressure-driven suppression of Jahn-

Teller distortions has been observed previously in other Cu2+ compounds [68, 69]. At high 

pressures, bond shortening occurs in all Cu-O bonds in CuO but it is more pronounced in longer 

(weaker) bonds which lead to a phase change once the atoms are sufficiently close to each other 

[69]. It is also expected that the change of structure of CuO under high pressure will affect the 

polarization, P, which is an important component for potential multiferroic applications [36]. A 

complete investigation of these properties is beyond the scope of the present study, but should be 

considered for future research. 

To provide guidance for future experiments to test our prediction, we calculated the 

expected X-ray diffraction (XRD) patterns and the XANES for the high-pressure structures of 

CuO. To obtain suitable parameters for the XANES simulations, we measured the XANES of 

CuO (mineral tenorite) at ambient pressure at the HXMA beamline at the Canadian Light Source 

and used it as a benchmark to optimize the parameters. For the purpose of comparison, the 

simulations for all CuO structures adopted the same molar volume; one shall then expect the 

measured XRD/XANES to shift to higher angles/energies due to the strengthening of the 

bonding at high pressures. The XRD patterns were simulated [70] using the structure factors of 

the optimized CuO structures and indexed with the interplanar spacing (dhkl) (Fig. 2-9a). 

Simulated XRD patterns reveal distinct differences in the C2/c, Fm-3m and Pm-3m structures, 
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which should be sufficient for structural identification. Calculated XANES spectra also revealed 

clear changes along the phase transitions (Fig. 2-9b). 

Figure 2-9. (a) Simulated X-ray powder diffraction patterns for candidate structures of CuO 

using a wavelength of 1.54 Å (Cu–Kα).  (b) Experimental and simulated XANES spectra for 

candidate structures of CuO. Experimental molar volume of CuO at ambient pressure has been 

used in all simulations. Figure produced by N. Chen [30]. 

The two characteristic XANES features (A and B) have moderate changes along the 

transition from C2/c to Fm-3m, which is associated with the suppression of the Jahn-Teller 

distortions. The changes of XANES in the Fm-3m to Pm-3m transition, on the other hand, are 

more prominent and reveal clear changes in first-shell Cu-O coordination, and in outer-shell Cu-

Cu coordination. Considering that the XANES feature B already extends into the extended X-ray 

absorption fine structure (EXAFS) region, a complimentary EXAFS modeling was performed by 

using the FEFF7 program [71] with identical clusters, revealing corresponding changes in peak 

positions and line shape in k-space along the phase transitions, supporting the XANES results. 
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2.4 Barium Chloride: Further Analysis and Explanations 

 

Since the time of the completion of the project with CuO and its publication in the Journal 

of Physics: Condensed Matter, I was involved in another project investigating BaCl, currently 

accepted for publication in Physical Review B. As the results and analysis found in that project 

are relevant to the results obtained in this project with CuO, the discussion on BaCl will also be 

included here. 

 

2.4.1 BaCl: Introduction 

 

The application of pressure can induce extraordinary changes in the electronic properties of 

both elements and simple compounds. For example, at high pressures alkali metals can acquire 

unusual transition metal properties, like the conversion of potassium from a conventional alkali 

metal to one with transition metal properties via the s to d electron transition [72]. Another 

example is Cs, which shows s to d electron transfer at ~3 GPa, and it is expected that this may be 

a general phenomenon in other elemental metals [73]. If such a transition occurs, it is likely that 

interesting new properties could be exhibited such as magnetism and superconductivity, 

promoted by increased d-electron concentration [74]. It has been suggested that barium, which is 

an alkaline earth metal, exhibits an s to d transfer of electrons that plays a crucial role in the 

formation of complex incommensurate structures at high pressure [75, 76]. 

The question of whether barium compounds can also exhibit this type of behavior under 

high pressure is therefore interesting. Barium chloride (BaCl2), for example, is a compound with 

two crystalline forms, cotunnite and fluorite. There is a possibility that unconventional BaCl may 
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also be a stable compound with the rocksalt (Fm-3m) structure [77] and that this form could be a 

natural result of β- radioactive decay of 137CsCl. The possibility of the existence of BaCl raises 

immediate questions about its electronic structure and properties and the possibility of other 

stable structures of BaCl that may show transition metal behavior similar to elemental Ba. Such 

apparent change in the oxidation state of Ba may show either interesting magnetic structures or 

superconducting properties exhibited in transition metals. In this study, we therefore explored 

this possibility using first-principles methods and predict stability, superconductivity, and 

magnetic structures exhibiting half-metallic features. 

 

2.4.2 BaCl: Methods 

 

Structure searches were performed using the AIRSS method [49] with primitive cells 

containing up to four BaCl units. Electronic structure calculations were performed using VASP 

[32]. PAW potentials [31] with a PBE functional [20] were used, with 5s25p66s2 for Ba and 

3s23p5 for Cl treated as valence states. Magnetic structures were calculated using the HSE hybrid 

functional [22] and VASP, with a mixing of 25% of the exact Hartree-Fock exchange to 75% of 

the LDA exchange. Dense k-point meshes were chosen to converge the total energy to within 1 

meV/atom. The band structure and lm-decomposed density of states (DOS) were calculated 

using the Quantum ESPRESSO program [78].  
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2.4.3 BaCl: Results and Discussion 

Figure 2-10. Pressure dependences of enthalpies for different structures with the Fm-3m structure 

as the zero-enthalpy reference. Figure produced by Y. Yao. 

A stable BaCl compound has previously been suggested to have the Fm-3m structure via 

radioactive decay [77] but it was also noted, since Ba is divalent, that it may not be synthesized 

in conventional solid-state methods. Here we suggest that it is possible to produce BaCl by 

compressing solid BaCl2 and Ba at high pressure. Calculated enthalpies of the predicted BaCl 

structures are compared to the solid mixture of Ba and BaCl2 in Fig. 2-10. At low pressures, the 

solid mixture is thermodynamically stable, indicating that a system of Ba and Cl should stay in 

the BaCl2 form. At ~9 GPa, however, the BaCl solid becomes more stable than the solid mixture 

which signifies the viability of the Ba+BaCl2 → 2BaCl reaction at high pressure. As the Fm-3m 

structure becomes energetically favored, it undergoes a transition to the Pm-3m structure via an 
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intermediate R-3m structure along the Buerger path. Above 15 GPa, the Pm-3m structure is the 

lowest enthalpy structure of the BaCl. Calculated phonon dispersion relations suggest all three 

structures of BaCl are mechanically and dynamically stable at high-pressure (Figs. 2-11a to 2-

11c).  

Figure 2-11. Calculated phonon dispersion relations for (a) R-3m BaCl at 1.4 GPa (b) Pm-3m 

BaCl at P = 0 GPa and (c) Fm-3m BaCl at 2.84 GPa. Note Phonon dispersion relations for the 

Fm-3m structure also indicate stability at P= 0 GPa but required single point calculation near and 

at the X point to obtain stability. Figure produced by D. D. Klug. 

Most significantly, the high-pressure Pm-3m structure is also predicted to be mechanically 

and dynamically stable at ambient pressure (Fig. 2-11b). The Pm-3m structure therefore would 

be formed at high pressure, where it is thermodynamically stable, and may be quench recovered 

to ambient conditions due to the high kinetic stability. The Fm-3m structure has been previously 

calculated to be stable at low pressure [77] and was verified here. It is important to note that 

CsCl has the same Pm-3m structure. If BaCl is produced from the radioactive decay of 137CsCl, 
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then the Pm-3m structure will likely be maintained. This finding is particularly critical to the 

research of spent nuclear fuel reprocessing, as the radioparagenesis of CsCl to BaCl has been 

suggested as one approach to eliminate 137Cs in fission wastes. 

The formation of BaCl is very unusual and seems to violate the ‘octet rule’ as Ba has one 

more electron than Cs. If BaCl forms the same structure as CsCl, an obvious question to address 

is where this extra electron resides. The Pauli Exclusion Principle states that this electron needs 

to occupy empty quantum states, either on the Ba 5d orbitals or in the interstitial voids. It is well 

known that when alkaline earth metals are compressed, the valence electrons can migrate to the 

interstitial voids driven by Coulombic repulsions. Known as interstitial quasi-atoms (ISQs) [79], 

electrons in the interstitial space form quantized states, and interact with the environment in the 

same way as a new atom. In BaCl, however, the ISQs were not formed. The calculated charge 

distributions showed that the electrons in BaCl are still localized to the atomic sites (Figs. 2-12a 

and 2-12b). 

Figure 2-12. Total charge density of (a) Fm-3m structure and (b) Pm-3m structure, both at 

ambient pressure. The colour scale applies to both charge densities. The charge density of the 

chlorine site in (b) has been cut along the (100) plane for clearer presentation of the changes in 

charge density. 
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 Specifically, the extra electron in BaCl is found in the Ba 5d orbital which is energetically 

more favorable than the ISQ orbitals. This s to d transition is clearly revealed from the projected 

density of states (pDOS) for the Fm-3m and Pm-3m structures at ambient pressure (Figs. 2-13a 

and 2-13b).  

Figure 2-13. DOS, l-decomposed DOS and integrated occupied density of states at ambient 

pressure for (a) the Fm-3m structure and (b) the Pm-3m structure. The energy range was chosen 

to show all the occupied states from both the barium and chlorine sites, as well as the bands up to 

5 eV above the Fermi level. 

In the semi-core region, the pDOS are separated into four fully occupied subsets characteristic of 

Ba 5s, Cl 3s, Ba 5p, and Cl 3p states. The DOS around the Fermi level consists primarily of Ba 

5d states with minor contributions from the semi-core states, forming a metallic ground state in 

BaCl. The Ba atoms therefore act as the charge carriers, and the 5d electrons as conduction 

electrons.  
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The band structure and lm-decomposed DOS near the Fermi level were calculated for the 

Fm-3m and Pm-3m structures (Figs. 2-14a and 2-14b).  

Figure 2-14. Electronic band structure and lm-decomposed DOS around the Fermi level of (a) 

the Fm-3m structure and (b) the Pm-3m structure at ambient pressure. Figure produced by Y. 

Yao. 

The dominant electronic contribution from the Ba 5d orbitals clearly yields the t2g and eg states 

near the Fermi level. For the Fm-3m structure, the occupied bands below the Fermi level are in 

triply degenerate t2g (dxy, dxz and dyz) states, while the doubly degenerate eg (dz
2 and dx

2
-y

2) states 

are essentially unoccupied. This energy splitting is clearly a response to the octahedral crystal 

field, and is also supported by the density distribution of the conduction electrons (Fig. 2-15a). 

The electrons will naturally reside in the t2g orbitals (Fig. 2-15b), i.e., in the off-axis directions, to 
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avoid unfavorable interactions with the Cl− anions. This electron topology is reflected in the 

four-fold lobed structure in the charge density distribution. Conversely, in the Pm-3m structure 

(Fig. 2-14b) the electrons occupy primarily the eg states below the Fermi level, while the t2g 

states are mostly unoccupied. This arrangement is once again supported by the density 

distribution of the conduction electrons (Fig. 2-15c). To avoid unfavorable interactions with the 

Cl− anions, the electrons occupy the on-axis areas, showing the four-fold lobed structure of the 

dx
2

-y
2

 orbital (Fig. 2-15d), as well as the extended lobes of the dz
2 orbital (Fig. 2-15e). 

Figure 2-15. Charge density for electrons in the bands near the Fermi level of the (a) Fm-3m 

structure and the (c) Pm-3m structure at ambient pressure. Topology of (b) the t2g orbitals in the 

Fm-3m structure, and (d) and (e) the eg orbitals in the Pm-3m structure. Orbitals are for 

demonstration only, and are not plotted to scale. Figure produced by M. J. Greschner and Y. 

Yao. 

The existence of an unpaired electron in BaCl raises interesting possibilities as to the 

magnetic properties. We examined different magnetic orderings for the Fm-3m and Pm-3m 
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structures and found both structures assume a ferromagnetic ground state. We have examined 

ferromagnetic, non-magnetic, and several antiferromagnetic ordering for the Fm-3m and Pm-3m 

structures. Six antiferromagnetic orderings, grouped into three sets, were examined for each 

structure type. For the three sets, ferromagnetic ordering is placed on the (100), (110), and (111) 

planes, respectively. In each set, two structures were constructed by arranging the ferromagnetic 

planes in antiferromagnetic ordering along the perpendicular direction by (1) alternating every 

plane or (2) alternating every second plane. In the GGA method, it was predicted that at ambient 

pressure the ferromagnetic ordering of the Pm-3m structure is more energetically favorable than 

the non-magnetic structure (by ca. 15 meV/BaCl), and the antiferromagnetic orderings (by ca. 10 

meV/BaCl). For the Fm-3m structure, the antiferromagnetic orderings were less energetically 

favorable for all pressures, while the weak ferromagnetic and non-magnetic orderings have 

comparable energies. Based on the energetics, the ferromagnetic orderings were the only ones 

considered in the HSE [22] calculations. It should be noted however that the energy differences 

between different magnetic orderings in BaCl are fairly small. The lowest-energy ferromagnetic 

magnetic ordering represents a possible solution, which does not eliminate the possibility that 

other magnetic orderings may also exist in BaCl. Here it is important to note [16] that the spin-

polarized ground state was obtained in HSE hybrid calculations, as the GGA method is biased 

towards non-magnetic states. Finding a magnetic ground state in a main-group compound is very 

unusual. The calculated spin polarized DOS (Figs. 2-16a and 2-16b) shows this interesting 

feature, as well as the difference between the Fm-3m and Pm-3m structures.  
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Figure 2-16. Spin polarized total DOS for (a) Pm-3m and (b) Fm-3m structures calculated at 

ambient pressure. Figure produced by Y. Yao. 

The DOS of the Pm-3m structure (Fig. 2-16a) is consistent with the description of a half-metal 

[80], where the eg states around the Fermi level are dominated by electrons with one spin 

component. This spin disparity yields a sizeable magnetic moment, i.e. ~0.70 μB/Ba. The Pm-3m 

ferromagnetic structure is more energetically favored than the non-magnetic structure (by ~50 

meV/BaCl) at ambient pressure. The Fm-3m structure in contrast has a much smaller magnetic 

moment, i.e., 0.13 μB/Ba, as the two spin components are almost equal (Fig. 2-16b). The greater 

energy splitting of the spin-up and spin-down bands in the Pm-3m structure can be understood 

[81] as ∆E ~ SJ(M/M0), where M and M0 are the total and saturated magnetizations of the 

system, respectively, and J describes the exchange interaction strength between nearest neighbor 

spins (S). In the Pm-3m structure, the Ba-Ba distance is very short, i.e., 3.5 Å at ambient 
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pressure, which induces strong eg - eg mixing (Figs. 2-15d and 2-15e) that account for a large J. 

In the Fm-3m structure the Ba-Ba distance is much longer, i.e., 4.5 Å, resulting in substantially 

weakened t2g - t2g interactions (Fig. 2-15b) and a smaller J. Moreover, the Pm-3m structure also 

has greater DOS at the Fermi level, which, according the Stoner criterion [10], supports a 

stronger ferromagnetic state. The super-exchange interactions will also affect the 

ferromagnetism, however this is less significant compared to the direct exchanges. 

These structures were then investigated for possible superconductivity behavior, as the Ba 

acquired transition metal properties with sufficient d-electron content allowing strong electron-

phonon coupling. BaCl seems to satisfy the empirical rules of conventional superconductivity 

(Matthias rules [82]) by having d-electrons, high symmetries, and high valence electron density. 

In addition, half-metals were suggested to be possible superconductors [83, 84]. The 

superconducting behavior was therefore investigated for BaCl based on Eliashberg theory [85]. 

The calculated electron-phonon coupling constant, λ, for the Fm-3m, R-3m and Pm-3m structures 

are shown in Fig. 2-17a. The λ is notably higher in the Fm-3m structure than the other two 

structures, 0.82 at ambient pressure. At the same level of theory, it is higher than the λ for MgB2 

(~0.7) [86]. The strong coupling in the Fm-3m structure is primarily induced by the acoustic 

phonon branches, in particular by the softened mode at the X point. This suggests that near the 

point of structural instability, the electronic system of BaCl becomes perturbed by the increased 

atomic vibrations and is strongly coupled with them. This effect is most significant near the 

Fermi surface where the transition of 5d electrons to bound pairs occurs by virtue of exchanging 

phonons. This phenomenon has been observed under high pressure in alkali and alkaline earth 

metals [87, 88]. Using the Allen and Dynes modified McMillan equation [89], the estimated Tc 

in the Fm-3m structure is ~3.4 K at ambient pressure (Fig. 2-17b), which is close to the Tc of Ba 
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(~5 K) [90]. In this estimate, the Coulomb pseudopotential, μ*, was taken at an empirical value of 

0.1. At ambient pressure, the estimated Tc for the R-3m and Pm-3m structures are ~1.5 K, 

comparable to the Tc of Al (~1.2 K). At high pressures, the electronic structures become 

stabilized while the electron-screened Coulombic repulsions are enhanced. As a result, the Tc in 

all three structures decreases with increasing pressure and vanish at ~15 GPa (Fig. 2-17b). 

Figure 2-17. (a) Pressure dependence of electron-phonon coupling constant, λ, for structures of 

BaCl. (b) Pressure dependence of calculated Tc for structures of BaCl. Figure produced by Y. 

Yao. 

2.4.4 BaCl: Conclusion 

 

We predict novel BaCl compounds form at high pressure by reacting BaCl2 with Ba. At ~9 

GPa, a Fm-3m structure becomes energetically favorable, which then transforms via an 

intermediate R-3m structure to a Pm-3m structure at ~15 GPa. The Pm-3m structure is predicted 

to be thermodynamically stable above ~15 GPa, and also possibly quench recoverable to ambient 

pressure. The formation of BaCl is made possible by the transition of a Ba 6s electron to the Ba 

5d shell. HSE calculations suggest that the Fm-3m and Pm-3m structures may be ferromagnetic, 
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with the Fm-3m structure showing a weak magnetic moment of ~0.13 µB/Ba and the Pm-3m 

structure displaying half-metallic properties and a more sizable magnetic moment of ~0.70 

µB/Ba. The significant s–d transition identified for BaCl at high pressure is shown to be primarily 

responsible for predicted superconducting behavior. The electron-phonon calculation results for 

these structures predicted superconducting behavior for all three structures and raises interesting 

speculation regarding their superconducting behavior near ambient pressure. 

As we can see, these results may offer an alternative explanation into the behavior of CuO, 

as well as that of BaCl. Both compounds are predicted to take on cubic structures at high 

pressure, following the trend of Fm-3m to Pm-3m. They both also have transition metal 

properties, BaCl from the Ba s to d transition and CuO due to copper being a transition metal 

itself. We also predict that the Fm-3m structure will have a reduced magnetic moment in 

comparison to the Pm-3m structure for both compounds. As such, further research into the 

electronic structure for CuO may be necessary for an even clearer picture of the processes 

driving these transitions. 

 

2.5 Conclusion 

 

As a potential room-temperature multiferroic material, CuO has received increasing 

interest in recent years. The pressure-induced changes to the multiferroic properties have been 

investigated for the antiferromagnetic monoclinic phase. In this article, we predicted two new 

phases, Fm-3m and Pm-3m, as high-pressure forms of CuO using the density functional method. 

The Fm-3m phase resulted from the pressure-induced suppression of the Jahn-Teller distortion in 

the monoclinic phase and is stabilized by a net zero magnetic moment near 70 GPa. The Pm-3m 
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phase takes on a ferromagnetic ordering and is obtained near 400 GPa by an indirect 

transformation through an intermediate R-3m phase. The superexchange interactions between the 

Cu sites via the oxygen are critical to the phase stability and are shown to delay the phase 

transitions once the magnetic ordering is imposed. It is noteworthy that the stabilization of CuO 

structure under high pressure is determined by multiple competing mechanisms including the 

Jahn-Teller effects, back donation of electrons, magnetic ordering, and others. The results 

presented in this article represent new possibilities in the search for potential multiferroic 

materials and hopefully can encourage experimental efforts in this direction. BaCl also gives us 

further insights into transition metal-like elements. As such, future research into both of these 

compounds should primarily focus on experimental confirmation of the structures and 

examination of the magnetic properties so that more accurate predictions and understanding can 

be made of their multiferroic or superconducting capabilities.  
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CHAPTER 3 

DIHYDROGEN BONDING IN COMPRESSED AMMONIA BORANE AND ITS ROLES IN 

STRUCTURAL STABILITY 

 

3.1 Introduction 

 

 Hydrogen, the most abundant element in the universe, is a promising candidate to 

eventually replace petroleum as the fuel of choice. In the context of hydrogen storage research, 

ammonia borane (NH3BH3) has received continuous attention for decades due to its high storage 

capacity and moderate dehydrogenation temperature. Molecular NH3BH3 is a prototypical 

electron donor-acceptor complex formed between NH3 and BH3 molecules and arranged in a 

staggered conformation similar to the geometry of the isoelectronic ethane (C2H6). In the solid 

state, however, NH3BH3 and C2H6 have very different physical properties. For example, the 

melting temperature of NH3BH3 is higher than that of C2H6 by 285 K. This suggests a strong 

intermolecular interaction, often referred to as ‘dihydrogen bonding’ [91-93], to be present in 

NH3BH3. The dihydrogen bonding originates from the N–Hδ+···δ-H–B charge-transfer interaction 

which usually occurs when the intermolecular distance dH···H is shorter than the sum of the van 

der Waals (vdW) radii. A survey of the Cambridge Structural Database (CSD) carried out by 

Richardson et al. [92] shows that dihydrogen bonding has a preference for a bent B–H···HN 

angle and a nearly linear N–H···HB angle, arranged such that the N–H vector points toward 
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the middle of the B–H vector. This geometry suggests that the electron donor of the dihydrogen 

bond is the B–H σ bond, rather than an individual atom. This is an extraordinary illustration of 

the versatility of the hydrogen bonding; in the past we have seen π electrons of a multiple bond 

or aromatic ring, or a transition metal center, act as electron donors [94, 95].   

Clearly, dihydrogen bonding, to a great extent, determines the crystal structures of 

NH3BH3. At ambient conditions, NH3BH3 adopts a dynamical disordered structure (I4mm) which 

exhibits halos of hydrogen atom occupancy surrounding the N and B atoms [96, 97]. Below 225 

K, NH3BH3 has an ordered phase [98] with fixed hydrogen positions (Pmn21). Upon an increase 

in pressure, the Raman spectra of NH3BH3 show a redshift in the N-H stretching mode and a 

blueshift in the B–H stretching mode [99-102], indicating a strengthening of the dihydrogen 

bond via enhanced charge transfer (δ). X-ray diffraction measurements assisted by ab initio 

calculations have established the crystal structures of two high-pressure phases. An ordered 

Cmc21 structure [103, 104] is found to be stable above 1.0 GPa at room temperature. Upon 

heating, the Cmc21 structure transforms to a proton-disordered Pnma structure [105]. Infrared 

measurement, Raman spectroscopy, X-ray and neutron diffractions, as well as molecular 

dynamics (MD) simulations have provided evidences that there are other stable phases of 

NH3BH3 at high pressure [106-111].  

This paper reports a theoretical study on the high-pressure structures of NH3BH3. Two new 

crystalline structures, with space groups Ama2 and P21/m as stable phases under high pressure, 

were predicted. The Ama2 structure is calculated to be more stable than all previously reported 

NH3BH3 structures above 5.8 GPa, while the P21/m structure becomes more stable than the 

Ama2 structure above 25 GPa. Remarkably, all NH3BH3 molecules in the predicted structures 

adopt an unprecedented eclipsed conformation, which is stabilized under high pressure by 
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dihydrogen interactions. To investigate the details of the dihydrogen bonding, the local 

environment of the NH3BH3 molecules in the solid is characterized by a variety of theoretical 

techniques, including the quantum theory of atoms-in-molecules (QTAIM) [112], natural bond 

orbital (NBO) [113], Wiberg bond index (WBI) [114], and charge decomposition analysis 

(CDA) [115]. The results confirm the primary role of dihydrogen bonding in stabilizing the solid 

structures. A significant finding is the identification of a subtle B–Hδ-···δ-H–B interaction 

between hydrogen atoms of the same polarity. This interaction helps to stabilize the otherwise 

unfavorable eclipse conformation and becomes progressively important under high pressure. The 

outline of this paper is as follows. First, the structure and bonding of solid NH3BH3 phases at 

ambient pressure are discussed. The purpose is to examine the role of the heteropolar N–Hδ+···δ-

H–B bonding in the solid state. Next, the effect of pressure on the conformation of the NH3BH3 

molecules in the crystals is presented. The occurrence of the homopolar B–Hδ-···δ-H–B bonding 

are characterized. Finally, the relative importance of the heteropolar and homopolar bonding in 

the stabilization of the crystal and molecular structures is discussed.  

 

3.2 Methods 

 

To identify the low-energy crystal structures of NH3BH3, we employed a structure search 

scheme to locate the energy minima through an exhaustive scan of the energy surface by 

numerous trials. This method has been applied successfully in the past for the determination the 

high-pressure phase of ammonium borohydride (NH4BH4) [116]. Trial crystal structures were 

constructed from random distributions of either staggered or eclipsed NH3BH3, using the 

molecular structures optimized in gas phase. For each molecule type, 200 different stacking 
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patterns were generated randomly in unit cells of arbitrary shapes that contain up to four 

molecules. The orientations of the molecules are also randomized in the unit cell. The geometries 

of all the trial structures were then fully optimized. Those with the lowest enthalpies were then 

annealed to 300 K and equilibrated for 10 ps, in a 2×2×2 supercell, using ab initio MD 

calculations in a canonical (NVT) ensemble. This is followed by a second structural 

optimization. The purpose of the annealing step is to ensure that the crystalline structure indeed 

reaches an energy minimum as, occasionally, new structures were found after annealing [117].  

Geometry optimization, enthalpies, and phonon band structures were calculated using first 

principles electronic structure methods based on DFT. Electronic and MD calculations were 

performed with VASP [32]. The PAW potential [31, 118] treats the 2s and 2p orbitals as valence 

levels for N and B atoms with the PBE exchange-correlation functional [20]. The wavefunctions 

are expanded in a planewave basis set with an energy cutoff of 700 eV. Dense k-point meshes 

were employed to sample the BZ to ensure the energies converged to better than 1 meV/atom. 

Phonon band structures were calculated using the ABINIT program [119], employing the 

Troullier-Martins pseudopotentials [120, 121], the PBE functional, and an energy cutoff of 80 

Ry. The interatomic force constant matrix was calculated using linear response method in a 

4×4×4 q-point mesh and an 8×8×8 k-point mesh. The all-electron charge density was computed 

in a 60×60×60 grid of the unit cell using the VASP program. Topological analysis of the charge 

density was carried out using the InteGrity program [122] based on the QTAIM. The AIM theory 

is an extension of quantum mechanics to open systems in which an atom within a solid is defined 

through the ‘zero-flux’ condition of the electron density gradient  r . The electron density 

distribution  r  and its curvatures at the saddle point along a bond path, often referred to as the 

‘bond critical point (BCP)’, provides information about the electron concentration in the 
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interatomic regions, which correlate closely to the type and properties of bonding. The AIM 

theory has been applied with great success for the characterization of a variety of systems, such 

as ionic, covalent, or hydrogen-bonded compounds [123-125]. The NBO and WBI calculations 

were performed using the Gaussian 09 suite program [126], employing the PBE1PBE density 

functional and 6-31G(d) basis sets. The Multiwfn [127] was used to perform CDA and extended 

charge decomposition analysis (ECDA). Structure and orbitals presented in the figures were 

prepared with the VESTA program [128] and the VMD program [129].   

 

3.3 Results and Discussions 

 

3.3.1 Solid NH3BH3 at Ambient Pressure 

 

Crystalline structures of NH3BH3 at 1 atmosphere were constructed in two groups consist 

of either solely staggered or eclipsed molecules. The Pmn21 structure (Fig. 3-1a) observed 

experimentally at low temperatures [98] was found to have the lowest energy among all 

structures examined. This structure was found to be more stable than the lowest energy structure 

that contains only eclipsed molecules, by about 2.6 kcal/mol; coincidentally, this energy 

difference is almost identical to the energy difference between two molecular conformers [130]. 

In the Pmn21 structure, each NH3BH3 molecule is linked to four nearest-neighbor molecules and 

four second-nearest-neighbor molecules in a head-to-tail fashion through N–Hδ+···δ-H–B bonds 

(Fig. 3-1b). These dihydrogen bonds are arranged in layers perpendicular to the c-axis; one such 

layer is depicted in Fig. 3-1c. Within the layer all NH3 and BH3 groups have identical 

orientations. The neighboring layers above or below would have been identical, but since the 
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molecules are staggered, they must have the N–H and B–H bonds pointing in the opposite 

directions. A QTAIM analysis has identified the locations of the bond critical points in the 

crystal (Figs. 3-1b and 3-1c). The shortest H···H contact (1.89 Å) was found in a pair of bonds, 

N2–H···H–B1 and N3–H···H–B1, which has a bent B–H···HN (100º) and a nearly linear N–

H···HB (161º). Both features are close to the expected ideal geometry described above (see 

below). The second shortest H···H contact (2.07 Å) was found in another pair, N4–H···H–B1 

and N5–H···H–B1, which however has a nearly linear B–H···HN (158º) and a bent N–

H···HB (128º). The occurrence of the two types of dihydrogen geometry is due to the fact that, in 

the solid state, it is not possible to arrange all the dihydrogen bonds in the same, preferred 

manner. QTAIM calculated charge densities at the bond critical points for the two H···H 

contacts are 0.84 and 0.45 e-/Å3, respectively, confirming that the shorter bonds are indeed 

stronger. Furthermore, even though the geometries are different, both dihydrogen bonds have 

small but positive Laplacians, a characteristic of the closed-shell interactions [131, 132]. The 

I4mm structure observed at above 225 K is a hydrogen disordered phase [96, 97]. Since the 

hydrogen positions cannot be uniquely defined, we have not calculated the energy of this 

structure. It is expected that the I4mm structure should have energy comparable to that of the 

Pmn21 structure. Due to the rotating NH3 and BH3 groups, the dihydrogen bonding environment 

is not able to be unambiguously characterized in this structure. 
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Figure 3-1. (a) The Pmn21 structure shown in a 2×2×2 supercell. Network of intermolecular 

H···H contacts (dashed lines) shown (b) in an extended structure and (c) on a plane 

perpendicular to the c-axis. Nitrogen, boron and hydrogen atoms are colored in blue, red, and 

white, respectively.  Positions of the bond critical points are indicated by black dots [27].  

3.3.2 Crystalline Structures of NH3BH3 at High Pressure: Earlier Studies 

 

Spectroscopic studies have revealed at least three consecutive structural transitions of 

NH3BH3 upon compression to 20 GPa. At room temperature, two phase transitions were 

identified by X-ray diffraction experiments. The first phase transition near 1.5 GPa is well 

established, where the I4mm structure transforms to an orientational ordered Cmc21 structure 

[103, 104]. In the Cmc21 structure, all NH3BH3 molecules have a staggered conformation. The 

second phase transition was observed close to 12.9 GPa, and the new phase was suggested to 

have a P21 space group and may consist of both types of molecular conformers [110]. At 
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elevated temperatures, the Cmc21 structure undergoes a transition to a hydrogen disordered 

Pnma phase [105]. A separate X-ray diffraction study [107] shows that a structure with very low 

P1 symmetry may exist above 8 GPa. Recent MD simulations [108] also suggest two model 

structures, both with the P21 space group, to become stable at 15 and 25 GPa, respectively. 

Furthermore, a recent Raman spectroscopic measurement up to 65 GPa [102] reported a phase 

transition at 27 GPa, although the structure of this new phase remains elusive. Previous high-

pressure studies of NH3BH3 and their implications to hydrogen storage applications have 

recently reviewed by Song [133].  

 

3.3.3 NH3BH3 under Pressure: Interplay of Molecular Conformation and Dihydrogen 

Bonding  

 

Crystalline structures built from either staggered or eclipsed NH3BH3 molecules were 

investigated at high pressures. In Fig. 3-2, the enthalpies of three predicted low-energy structures 

with the Ama2, P21/m, and P21/c space groups are compared with those of the experimentally 

known Pmn21, Cmc21, and Pnma structures, and that of the theoretically predicted P21 structure 

[108], in the pressure range of 0 – 40 GPa. The alternative P21 structure [110] was found to be 

mechanically and dynamically unstable and energetically non-competitive in this pressure range 

and will not be discussed here. 
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Figure 3-2. Calculated pressure dependences of enthalpies for selected NH3BH3 solid structures, 

relative to the Cmc21 structure [27]. 

Figure 3-2 shows that the Cmc21 structure becomes more stable than the Pmn21 structure at 

ca. 2.8 GPa, which compares well with the experimental transition pressure of 1.5 GPa 

(measured at T ≈ 180 K) [103]. At 9.6 GPa, the Pnma structure is predicted to become more 

stable than the Cmc21 structure. Experimentally, the Pnma structure has only been studied under 

high-temperature conditions, i.e., 380 K and upward [105]. Therefore, it is not straightforward to 

make a direct comparison of the relative stability of the two phases from athermal calculations; 

an explicit consideration of entropic effect is needed. Nevertheless, X-ray diffraction 

measurements had revealed that the Pnma structure became stable and co-existed with the Cmc21 

structure at high temperature near 5.5 GPa, in close agreement with the calculations. It is 
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important to note that both the Cmc21 and Pnma structures consist entirely of staggered 

molecules (Fig. 3-3).  

Figure 3-3. Two experimentally determined high-pressure phases of NH3BH3. Structures are 

shown in a supercell [27]. 

In the Cmc21 structure, each NH3BH3 molecule is connected to 10 neighbors, through 12 N–

Hδ+···δ-H–B dihydrogen bonds, four of which are bifurcated. Similar to the zero-pressure high-

temperature I4mm structure, the Pnma structure is also a hydrogen-disordered rotor phase. The 

positions of hydrogen atoms used in the enthalpy calculations were obtained from the optimized 

static geometry. Clearly, the structural motifs of the Cmc21 and Pnma structures are similar to 

their corresponding ambient-pressure counterparts, Pmn21 and I4mm structures, respectively.  

Near 6 GPa, a structure consisting of only eclipsed NH3BH3 molecules with the Ama2 

space group is found to be thermodynamically most stable (Fig. 3-2). This structure was 

predicted to transform to a P21/m phase, also made up of eclipsed molecules, at ca. 23.9 GPa. In 

this pressure range, structures containing staggered molecules are higher in enthalpy when 

compared to these two structures. Calculated phonon band structures (Fig. 3-4a and 3-4b) for 

both structures show no imaginary frequencies, indicating that both structures are mechanically 

and dynamically stable.  
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Figure 3-4. Calculated phonon dispersion relations for (a) the Ama2 structure at 15 GPa and (b) 

the P21/m structure at 40 GPa [27].  

The optimized structural parameters for the Ama2 and the P21/m structures are listed in 

Table 3-1. 

 

Structure       P (GPa)       Lattice parameters (Å, º)              Atomic coordinates (fractional)                                                  

Ama2  10     a = 5.60, b = 8.14, c = 3.67  N 4b 0.2500    0.1353    0.3009 

B 4b 0.7500    0.1822    0.6737 

H 4b 0.2500    0.5498    0.5951 

H 8c 0.1019    0.1134    0.4609 

H 8c 0.4226    0.8869    0.8014 

H 4b 0.7500    0.1759    0.3467 

 

P21/m  40     a = 3.97, b = 5.05, c = 3.32  N 2e 0.2501    0.2500    0.3771 

       β = 69.33   B 2e 0.3748    0.7500    0.9584 

H 2e 0.0497    0.2500    0.2503 

H 2e 0.6230    0.2500    0.6903    

H 4f 0.2122    0.9381    0.9225    

H 4f 0.7850    0.9121    0.4274    

  

Table 3-1. Structure parameters for the predicted crystalline phases of NH3BH3. Unique axis b is 

used in the space group of P21/m.   
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The predicted P21/m structure is depicted in Fig. 3-5a. Similar to the Ama2 structure, which 

is stable at lower pressures, the P21/m structure also contains only the eclipsed NH3BH3 

molecules. In the P21/m structure, the eclipsed molecules are held together in slabs by 

heteropolar dihydrogen bonds. This configuration therefore results in four equivalent N–Hδ+···δ-

H–B bonds for each NH3BH3 molecule, connected to four nearest neighbors, as shown in Fig3-

5b. At 20 GPa, the intermolecular H···H distance within the slabs is 1.48 Å, which compares 

well to the value calculated in the Ama2 structure (1.491 Å) at the same pressure. The B–

H···HN and N–H···HB angles are 135.35º and 160.80º, respectively. The slabs in the P21/m 

structure are linked together by weaker, homopolar dihydrogen interactions (Fig. 3-5c).  

Figure 3-5. (a) The P21/m structure shown in a 3×2×3 supercell. (b) Network of the heteropolar 

N–H···H–B interactions. (c) Network of the homopolar B–H···H–B interactions. Bond critical 

points are indicated by black dots [27]. 
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Each NH3BH3 molecule is connected to another two molecules in the nearest slab by two 

equivalent B–Hδ-···δ-H–B interactions. Being primarily covalent, the B–Hδ-···δ-H–B bond is 

symmetrical with respect to the center of the H···H contact. At 20 GPa, the calculated H···H 

distance is 1.767 Å, whereas the B–H···HB angle is 141.92º, both corresponding well with the 

values of the Ama2 structure. The P21/m and Ama2 structures have very similar bonding motifs.  

Their enthalpies, however, are different because of the different stacking patterns of molecules. It 

is interesting, and significant, that theoretical calculations predict that NH3BH3 adopts an 

eclipsed conformation in solid state once sufficient pressure is applied. As a well-known fact, the 

staggered conformer is intrinsically lower in energy than the eclipsed one [134]. Compression 

will certainly have an effect on the molecular geometry; molecules in the crystals are expected to 

be distorted. However, it is unlikely that the energy involved in the small distortions can 

compensate for the reversal of the order of the molecular stability. To illustrate this point, we 

have extracted an eclipsed molecule from the Ama2 structure and a staggered molecule from the 

Cmc21 structure, and compared their energy difference, which turns out to be ca. 0.09 eV/f.u., 

almost the same as the energy difference between undistorted molecules [130]. Clearly, the 

stabilization of eclipsed molecules in high-pressure crystals must come from a different origin. 

We can thus show that a new type of dihydrogen interaction helps in overcoming the energetic 

disadvantages of the eclipsed conformation, and that the stacking of the molecules in the crystal 

plays a key role.  
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Figure 3-6. (a) The Ama2 structure shown in a 2×2×2 supercell. (b) Network of the shortest 

intermolecular H···H contacts. (c) Network of the second shortest (left half) and the third 

shortest (right half) intermolecular H···H contacts. Bond critical points are indicated by black 

dots [27]. 

As an explicit example, we shall study the crystal and electronic structures of the high-

pressure Ama2 phase (Fig. 3-6a) in detail. In this structure, NH3BH3 molecules form slabs 

parallel to the a-c plane; one such slab is shown in Fig. 3-6b. Within each slab, the molecules are 

connected to four nearest neighbors in a head-to-tail fashion via dihydrogen bonds. As a result of 

these interactions, the N-B bonds are tilted toward their nearest neighbors. The dihydrogen bonds 

are arranged in two layers, and, since the molecules are eclipsed, these two layers have identical 

geometry. This configuration, therefore, allows all four equivalent N–Hδ+···δ-H–B bonds 

connected to a molecule to have a bent B–H···HN (101.45º) and a nearly linear N–H···HB 
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(161.35º), which is the preferred geometry for the N–Hδ+···δ-H–B bond (see below). In Fig. 3-7a, 

the all-electron density map depicted on one of these layers shows unambiguously an 

accumulation of electrons between the NH3 and BH3 groups. To accommodate the head-to-tail 

configuration when two NH3BH3 molecules are brought close to each other, electrons from the 

two molecular fragments are pushed into the intermolecular regions to compensate for the 

unfavorable inter-proton repulsions [135]. The dihydrogen bonding network originates from 

these accumulated electron densities. A more quantitative analysis from the examination of the 

bond critical points along the bond paths will be presented later (see above). The N–Hδ+···δ-H–B 

bonds in the slabs have short H···H contacts, i.e., 1.60 Å (at 10 GPa), which is significantly 

shorter than the vdW separation (2.40 Å). In comparison, at the same pressure the shortest H···H 

contacts in the Cmc21 structure and the Pnma structure are 1.73 Å and 1.85 Å, respectively.  

  

Figure 3-7. All-electron density maps for (a) the shortest N–Hδ+···δ-H–B contacts within a slab 

and (b) the shortest B–Hδ-···δ-H–B contacts across adjacent slabs, in the Ama2 structure 

optimized at 10 GPa [27].   
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The adjacent slabs in the Ama2 structure are also linked by dihydrogen interactions. The 

interactions can be classified into two distinct types: bifurcated N–Hδ+···δ-H–B bond and 

homopolar B–Hδ-···δ-H–B bond (Fig. 3-6c). The bifurcated bonding features two equivalent 

H···H bonds involving one hydrogen atom from NH3 and two hydrogen atoms from BH3. The 

calculated H···H distance is 1.96 Å, notably longer than those within the slabs. The N–H···HB 

and B–H···HN are 149.48º and 97.63º, respectively. A similar bifurcated geometry has been 

suggested [136] for the head-to-tail (NH3BH3)2 dimer. The calculated H···H distance of 1.99 Å, 

N–H···HB of 144.48º, and B–H···HN of 88.6º, for the dimer are comparable to those in the 

Ama2 solid. Significantly, the homopolar B–Hδ-···δ-H–B interaction also appears to participate in 

stabilizing the eclipsed conformers in the crystal. A major structural difference between the 

homopolar and heteropolar bonds is that the former has a symmetric geometry, i.e., the B–H 

bond lengths and the B–H···HB angles are equal for both molecular fragments. As will be 

shown below, this geometrical arrangement is a result of a secondary covalent interaction, which 

can be explained, in part, through molecular orbital theory. This is an important feature of the B–

Hδ-···δ-H–B interaction which separates it from the vdW types of interactions: the latter have no 

preferred directionality, and are much weaker in strength. At 10 GPa, the calculated B–H···HB 

angle and H···H distance for the homopolar interaction are 139.39º and 2.03 Å, respectively. 

Clearly, this H···H distance is still much shorter than the sum of two vdW radii. The calculated 

all-electron density map on the plane containing B–Hδ-···δ-H–B bonds shows an accumulation of 

electrons, albeit with lower densities, between two homopolar hydrogen atoms (Fig. 3-7b).  This 

is the sign of a subtle, but significant, bonding interaction. The concept of homopolar dihydrogen 

interaction is not new. This phenomenon has been observed previously in a wide variety of 

organic and organometallic molecules; a review of this is given in Ref. 137. The B–Hδ-···δ-H–B 
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interaction was predicted to be present in an isolated ammonia borane tetramer in gas phase 

[138]. Evidences of this interaction have also been found in the thermal decomposition process 

of NH3BH3 [139]. Similar interactions also present in alkali-metal amido-boranes [140] and 

potentially can play a key role in hydrogen storage applications. The homopolar C–H···H–C 

interactions have also been observed in alkanes [141, 142]. 

In Table 3-2, the topological properties of the electron density in the Ama2 structure are 

presented and compared with those in the Cmc21 structure. This comparison reveals a general 

“shorter bond = stronger bond” paradigm. The electron density  BCPr  at the bond critical point 

is directly determined by the H···H distance d; the relation is almost linear, and independent of 

the bond polarities. For conventional hydrogen bonds, earlier ambient pressure studies [123, 124] 

suggest that the  BCPr  should fall in a range of 0.04 to 0.24 e−/Å3. By this approximate 

measure all dihydrogen interactions in solid NH3BH3 may be comparable in strength to that of 

conventional hydrogen bonds. Notably, the intraslab N−Hδ+···δ-H−B bonds (1.60 Å) in the Ama2 

structure appear to be on the stronger side of this category. The Laplacian at the bond critical 

point,  BCPr2 , identifies the ionicity of the bond. For closed-shell interactions, the  BCPr2  

is positive and its magnitude decreases from ionic bonding to hydrogen bonding, and on to vdW 

interactions. It has been shown that the  BCPr2  of conventional hydrogen bonds has a range 

of 0.578 to 0.843 e−/Å5 [123, 124]. By this measure, all heteropolar bonds in Table 3-2 show 

greater ionicity than conventional hydrogen bonds, whereas the homopolar one is a shared 

interaction in nature.  
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Structure   d                    Bond Type      Multiplicity      ρ(rBCP)            ∇2ρ(rBCP)           EBD                                                                                   

                          Å                                                                    e-/Å3                e-/Å5            kJ/mol 

Ama2  1.60          N-Hδ+···δ-H-B         4  0.2186  1.4435  31.367 

1.96          N-Hδ+···δ-H-B         4  0.1099  1.1495  13.106 

2.03          B-Hδ-···δ-H-B         4  0.1039             0.8314  10.957 

 

Cmc21  1.73              N-Hδ+···δ-H-B         4  0.1621  1.4809  21.798 

                     1.76          N-Hδ+···δ-H-B         4  0.1363  1.4053  17.672 

                     1.89          N-Hδ+···δ-H-B         4  0.1294  1.2193  15.891 

Table 3-2. Topological properties of the bond critical points at the three shortest intermolecular 

H···H contacts for the Ama2 and Cmc21 structures at 10 GPa. Multiplicity is the number of 

dihydrogen bonds connected to a NH3BH3 molecule. 

 

The dissociation energy ( BDE ) for hydrogen bonds and their variants can be estimated 

from the potential energy density  BCPrV  at the bond critical points, i.e.,    BCPBD rVE 21  

[143, 144]. One way to calculate  BCPrV  is by using the virial theorem, which relates  BCPrV  

and the kinetic energy density  BCPrG  to the local Laplacian  BCPr2 , 

     BCPBCPBCP rGr
m

rV 2
4

2
2

 


     ( 3.1 ) 

For closed-shell interactions, a simple approach has been proposed for the evaluation of the  

 BCPrG  from the experimental electron density distribution [145], 

       BCPBCP rrrBCPG  23

5

3

2
2

6

1
3

10

3
     ( 3.2 ) 

This approximation was shown to yield a good agreement with the Hartree−Fock calculations 

[146] of  BCPrG  in the medium-range region, i.e., 0.5−2.1 Å to the nuclei, where the chemical 

bonding usually takes place. As listed in Table 3-2, the leading N−Hδ+···δ-H−B bonds (1.60 Å) in 
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the Ama2 structure has the highest BDE  of 31.367 kJ/mol (about 7% of the BDE  for a H2 

molecule), representing the strongest intermolecular interactions in this structure. These bonds 

are responsible for stabilizing the eclipsed molecules in the slabs. The secondary N−Hδ+···δ-H−B 

bonds (1.96 Å) and the homopolar B−Hδ-···δ−H−B bonds (2.03 Å) are inherently weaker, but still 

very important as they help to hold the slabs together. All three N−Hδ+···δ-H−B bonds in the 

Cmc21 structure are significantly weaker than the intraslab N−Hδ+···δ-H−B bonds in the Ama2 

structure, which appear to be a reason why the latter is thermodynamically more stable. An 

additional advantage of the shorter bond length is that it yields a higher packing efficiency, or a 

smaller crystal volume (Fig. 3-8). From ambient pressure to 100 GPa, the volume of the Ama2 

structure falls in the range of 96.2%−97.1%, to that of the Cmc21 structure, which makes the 

former energetically more favorable by virtue of a smaller pV work. 

Figure 3-8. Pressure dependences of the crystal volume and dihydrogen bond distances for 

NH3BH3 structures [27]. 
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To characterize the homopolar dihydrogen interaction, we can extract a tail-to-tail 

(NH3BH3)2 dimer from the Ama2 structure (Fig. 3-9a).  

Figure 3-9. The (NH3BH3) dimers extracted from the Ama2 structure optimized at 10GPa. (a) A 

tail-to-tail dimer linked by a homopolar B–Hδ-···δ-H–B bond. (b) A head-to-tail dimer linked by a 

heteropolar N–Hδ+···δ-H–B bond. Nitrogen, boron and hydrogen atoms are colored in blue, red, 

and white, respectively. Numbers displayed on the atoms are the values of the NBO charges. 

Figure produced by X. Yong [27]. 

The two NH3BH3 molecules are linked by a B−Hδ-···δ-H−B interaction, which, in the 

crystal, belong to two adjacent slabs. In this geometry, the two hydrogen atoms are equivalent 

(indicated as Ha and Hb). The calculated NBO charges on both Ha and Hb are −0.021 e−, 

indicating a weak, shared interaction presenting between them. The calculated  BCPr  and 

 BCPr2  at the bond critical point between Ha and Hb are 0.114 e−/Å3 and 1.35 e−/Å5, 

respectively; both are comparable to the corresponding values in the solid (Table 3-2). The 

calculated WBI value at the bond critical point is low, i.e., 0.012, which is also consistent with a 

weak, shared interaction [114]. This secondary B−Hδ-···δ-H−B interaction is different from the 

charge transfer character of the heteropolar N−Hδ+···δ-H−B interaction. For comparison, we can 

separate a head-to-tail (NH3BH3)2 dimer from the same slab in the Ama2 structure (Figure 3-9b). 

For this dimer, the calculated amount of charge transfer in the N−Hδ+···δ-H−B bond is ca. −0.033 

e-, which is revealed in the NBO analysis as a more negatively charged Hb, compared to the other 
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two H atoms bonded to the same B atom, and a more electron deprived Ha, compared to the other 

H atoms bonded to the same N atom. The same analysis revealed no evidence of charge transfer 

in the homopolar interaction for the tail-to-tail dimer. 

The overlap population between two molecular fragments provides information on the 

nature of the interaction between the two fragmental orbitals; that is, positive and negative 

overlaps correspond to bonding (in-phase) and antibonding (out-of-phase) interactions, 

respectively. The CDA calculated overlap populations between the two NH3BH3 molecules in 

the tail-to-tail dimer are 0.072, 0.040, −0.009, and −0.165 for molecular orbitals (MO) #15, #16, 

#17, and #18, respectively. These results clearly reveal that orbitals #15 and #17 are bonding 

MOs, and orbitals #16 and #18 are their antibonding counterparts; an extended CDA molecular 

orbital diagram is shown in Figure 3-10.  

Figure 3-10. Molecular orbital diagram calculated for the homopolar B−Hδ-···δ-H−B bond in a 

tail-to-tail (NH3BH3)2 dimer extracted from the Ama2 structure (optimized at 10 GPa). The 

orbitals were plotted using an isovalue of 0.04 e−/Å3. Figure produced by X. Yong [27]. 

The MO pair #15 and #16 is primarily derived from interactions between the fragmental orbital 

(#8) of the NH3BH3 monomers, while the pair #17 and #18 is primarily constructed by the 
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fragmental orbital #9. In both cases, the MOs are dominated by the H–B pπ orbital with a larger 

lobe on the B atoms. Therefore, the B−Hδ-···δ-H−B bond is the result of a secondary interaction 

of B–H bonds between the monomers. The calculated seconder order interaction energy (E2) is 

0.78 kcal/mol, which indicates a relatively weak interaction, but stronger than usually 

anticipated. 

 

3.4 Conclusions 

 

As a potential hydrogen storage material, NH3BH3 has received extensive scientific 

investigation over the past decades. The NH3BH3 molecules adopt a staggered conformation, 

which, in crystalline structures, are stabilized by the charge-transfer N−Hδ+···δ-H−B interactions. 

In this article, we predicted the unprecedented eclipsed conformer to exist in the solid state of 

NH3BH3 under high pressure. A novel hydrogen−hydrogen interaction facilitated by hydrogen 

atoms with the same polarity, namely the homopolar B−Hδ-···δ-H−B interaction, was also 

revealed in the solid state, which, surprisingly, may have the strength comparable to that of 

conventional hydrogen bonds. The B−Hδ-···δ-H−B interaction originates from the secondary 

interactions between two BH3 groups, in which the electron density is shared symmetrically 

between the participating H atoms. This bonding mechanism is distinctly different from the 

ubiquitous N−Hδ+···δ-H−B interaction where electron donor and acceptor can be clearly 

identified. In the high-pressure crystalline structures, the B−Hδ-···δ-H−B interaction has 

determining influences on crystal packing, which helps to stabilize the otherwise unfavorable 

eclipsed molecules. The results presented in this article represent an important advance in the 

understanding of ammonia borane, and dihydrogen interactions in general. The dihydrogen 
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interactions potentially have the ability to assist in the release of molecular H2 from solid 

structures, which may provide promising new routes to a rational design of hydrogen storage 

materials. 
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CHAPTER 4 

CONCLUDING REMARKS 

 

Increased forces and stress on a solid due to high pressure has been seen to have an 

extreme effect on the physical properties of a material. The atomic positions can shift, altering 

the crystal structure to novel lower energy forms. The electronic structure can change, which can 

affect the magnetic properties, the conductive properties, and can even alter the behavior of an 

alkaline earth metal to be like a transition metal. High pressure research offers insights into 

materials which may have new and interesting properties which are not observed at ambient 

conditions otherwise, such as multiferroics, superconductors, or hydrogen fuel storage materials. 

While there are practical limits to the extremes that laboratory experiments can reach in 

terms of pressure, numerical computations are limited by the computing power and time 

available, and the accuracy of the approximations used in the calculations. In this thesis, we 

examined the structural, electronic and magnetic properties of three solid materials. In particular, 

we predicted that CuO changes from a monoclinic structure to, first, a rocksalt structure near 70 

GPa and then to a CsCl structure near 400 GPa. This structural change is accompanied by an 

electron charge back-transfer from the oxygen site to the copper site in the rocksalt phase, and a 

change in the magnetic structure from antiferromagnetic to non-magnetic to ferromagnetic, 

respectively. While the pressure for the rocksalt phase at least is readily attainable, the CsCl 

phase may require state of the art techniques to verify experimentally, though it may exist within 

the earth, where pressures are much higher. These predictions may offer insight into multiferroic 
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behavior for transition metal oxides. We also examined BaCl, which was also predicted to have a 

high pressure rocksalt phase which transitions to the CsCl phase, accompanied by a reduced 

magnetic moment for the rocksalt phase and a ferromagnetic structure for the CsCl phase. The 

Ba in BaCl also adopts transition metal properties due to the pressure. This seems to lend support 

to the predictions made for CuO, and as the pressures predicted for the BaCl transitions are lower 

than the CuO transitions, they will be much easier to verify experimentally. 

Alternative fuel sources are also a growing field of interest, especially in the fields of 

locating hydrogen fuel storage materials which allow for easy release of H2 molecules. We 

predicted that NH3BH3 takes on two high pressure forms, both of which adopt an eclipsed 

conformation. This eclipsed conformation is due to the homopolar dihydrogen bonds between 

layers in the solid. These dihydrogen bonds in NH3BH3 may allow for H2 molecules to be more 

easily extracted from the solid, making ammonia borane a good potential hydrogen fuel storage 

medium, and perhaps directing hydrogen fuel storage research towards finding other materials 

which may also share these homopolar dihydrogen bonds. 
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