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Abstract

Buoyant flows are characterized with unsteady large-scale structures and thus
time-dependent large eddy simulation (LES) is generally favored. In this dissertation,
to further explore LES for buoyant flow, an LES code based on a collocated grid
system is first developed. A multigrid solver using a control strategy is developed
for the pressure Poisson equations. The control strategy significantly accelerated the
convergence rate. A temperature solver using a fourth-order Runge-Kutta approach
is also developed. The LES code is extensively tested before it is applied. Although
the collocated grid system will introduce conservation errors, in tests of a steady lid-
driven cavity flow and transient start-up flow, the effect of the non-conservation of

the collocated grid system was not significant.

In LES, the effect of SGS scales is represented by SGS models. A novel dynamic
nonlinear model (DNM) for SGS stress is tested using isothermal channel flow at
Re, = 395. The kinetic energy dissipation and geometrical characteristics of the
resolved scale and SGS scale with respect to the DNM are investigated. In general, the
DNM is reliable and has relatively realistic geometrical properties in comparison with
the conventional dynamic model in the present study. In contrast to a pure advecting
velocity field, a scalar (temperature) field displays very different characteristics. The
modelling of SGS heat flux has not been as extensively studied as that of SGS stress
partly due to the complexity of the scalar transport. In this dissertation, LES for a
turbulent combined forced and natural convection is studied. The DNM model and
a nonlinear dynamic tensor diffusivity model (DTDM-HF) are applied for SGS stress
and heat flux, respectively. The combined effect of the nonlinear models is compared
to that of linear models. Notable differences between the nonlinear and linear SGS
models are observed at the subgrid-scale level. At the resolved scale, the difference
is smaller but relatively more distinguishable in terms of quantities related to the

temperature field.

Finally, the geometrical properties of the resolved velocity and temperature
fields of the thermal flow are investigated based on the LES prediction. Some uni-

versal geometrical patterns have been reproduced, e.g. the positively skewed resolved
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enstrophy generation and the alignment between the vorticity and vortex stretch-
ing vectors. The present research demonstrates that LES is an effective tool for the
study of the geometrical properties of a turbulent flow at the resolved-scales. The
wall imposed anisotropy on the flow structures and orientation of the SGS heat flux
vector are also specifically examined. In contrast to the dynamic eddy diffusivity
model, the DTDM-HF successfully predicts the near-wall physics and demonstrates a

non-alignment pattern between the SGS heat flux and temperature gradient vector.
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Chapter 1

Introduction

1.1 Motivation

Purely forced convection is an isothermal flow driven by a pressure gradient. In non-
isothermal cases, buoyancy forces due to density difference induced by temperature
gradients also act as a driving force for fluid motion. The case when buoyancy is the
only driving force is referred as natural convection. In many engineering and envi-
ronmental applications, such as airflow in an air-conditioned room, heat exchangers,
turbine blades, electronic cooling system, and nuclear reactors, the flow is neither
pure forced nor natural convection but instead a combination of both regimes call
mixed convection. Natural and forced convection can be combined in two different
ways: the buoyancy and pressure forces act in the same direction which is called
aiding flow, or they are in different directions which is called opposing flow. The
impact of the buoyancy can be significantly different in the aiding and opposing flow
regions. In aiding flow region, the shear stress, turbulence production and turbu-
lent heat transfer are reduced compared to the forced convection. In contrast, the
shear stress, turbulence production and turbulent heat transfer in opposing flow are
enhanced due to the effect of the buoyancy force. Compared to forced convection,
mixed convection is more complicated, because buoyancy can significantly alter the
turbulence [1]. Therefore, thermal flows exhibit some specific features which are not

encountered in isothermal flows including the following:

i) Multiple flow regimes may coexist in one flow domain. For example, it is

common to find unsteady laminar circulation and transitional flow in a fully developed
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turbulent flow at relatively high Reynolds number [2]. In contrast, low Reynolds

number phenomena are usually encountered only near a wall for isothermal flows.

ii) Buoyancy exhibits the strongest effects in a very thin boundary layer along
the wall, where many properties of practical importance vary steeply and are difficult

to measure or estimate.

iii) Buoyant flows are characterized by well-organized, 3-dimensional, unsteady
large-scale structures, which are frequently noticed even in a steady situation. Due
to these large-scale structures, turbulent diffusion may occur in a counter-gradient

direction, which is opposite to standard gradient-diffusion behaviour [3].

Given such specific features as these, buoyant flows are relatively more difficult
to predict. Among the three major computational methods, i.e. direct numerical
simulation (DNS), Reynolds-averaged Navier-Stokes (RANS) and large eddy simula-
tion (LES), RANS is the most widely used method for engineering flows since the
full spectrum of turbulence is modeled and thus fewer computational resources are
required. However, although RANS have been successfully applied for a variety of
engineering flows, it often fails for turbulent buoyant flows. One typical example is
related to simulation of a prototypical thermal flow in a vertical channel with differ-
entially heated sidewalls. In such a flow, the main temperature gradient is horizontal
and perpendicular to the buoyancy. It is well known that a RANS calculation with the
widely used linear isotropic eddy diffusivity model will fail to reproduce the stream-
wise turbulent heat flux of the flow, since the eddy diffusivity model requires that the
turbulent heat flux be aligned to the mean temperature gradient which is zero in the
streamwise direction. In general, the standard k — ¢ and traditional eddy-viscosity
models for a RANS simulation are based on the equilibrium assumption and use only
a single time or length scale, and thus cannot account for nonequilibrium effects and
multi-scale phenomena in buoyant flows. On the other hand, second-moment closures
in RANS contain a large number of terms that need to be modeled. Therefore, to re-
produce buoyant flows, and especially to capture the unsteady large-scale structures,

a time-dependent simulation, such as LES or DNS, is generally required.



1.2 Subgrid-scale Modelling in LES

DNS is the most straightforward approach and solves all scales of turbulence. How-
ever, its application is limited to low Reynolds number flows due to the excessive
computational resources required. In RANS, all scales of turbulence are modeled
which generally eliminates the details of the turbulence in both space and time. In
comparison, LES is a technique standing between DNS and RANS. In LES, the flow
field is separated into large- and small-scale motions. The contribution of the large
energy-containing scales are resolved exactly, and only the effects of the small scales
of turbulence are modeled. LES is appropriate to capture the unsteady effect of tur-
bulence since only fluctuations smaller than the cutoff scale are smoothed out using
a local, spatial averaging filter. Since the cutoff scales are expected to be problem
independent (i.e. independent of the large-scales and of a universal character), the
filter size, which is usually equal to the grid size, should be located in the inertial sub-
range in the kinetic energy spectrum where turbulence is statistically in equilibrium

and universal in character.

In LES of thermal flows, additional terms, i.e. SGS stress and heat flux terms,
are present in the LES transport equations due to the filtering operation. These SGS
terms represent the effect of the cutoff scales of motion and need to be modeled.
The first SGS stress model was derived by Smagorinsky [4], in which the SGS stress
tensor is related to the filtered rate of strain. For homogeneous, isotropic turbulence,
Lilly [5] showed that the coefficient of the Smagorinsky model has a simple, univeral
value of 0.17. However, it was soon found that this value of the constant was too
dissipative and the coefficient should be case dependent. In 1991, Germano et al. [6]
suggested a Smagorinsky-type Dynamic Model (DM) using a dynamic procedure to
determine the local value of the coefficient. The widely used DM [6,7] is known for its
capability of self-calibration, general balancing of the TKE between the resolved and
unresolved scales, and being free from any empirical constants and artificial near-wall
damping functions. However, the DM originates from the Smagorinsky constitutive
relation which is based on the molecular transport analogy and requires the principal
axes of the negative SGS stress tensor to be strictly aligned with those of the filtered

strain rate tensor. This rigid and overly simplified geometrical relation between the
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stress and strain rate tensors is not realistic in terms of physics and can lead to other
problems. For instance, simulations based on the DM can be numerically unstable
due to excessive backscatter of TKE from the subgrid to resolved scales if the model
coefficient is not properly bounded [8]. A plane-averaging scheme is often applied for
bounding the coefficient [6,7]. However, to apply the plane-averaging scheme, the flow
has to be homgeneous in one or two directions. Since the above mentioned deficiencies
of the DM stem from its constitutive relation, improved dynamic SGS stress models
often consider non-Smagorinsky type constitutive relations. One approach to achieve
this goal is to use nonlinear tensor functions to build the constitutive relation. A
dynamic nonlinear model (DNM) was proposed by Wang and Bergstrom [9] based
on the three-parameter quadratic constitutive relation of Speziale and Gatski [10,11].
The DNM is observed to have obvious advantages in comparison with the conventional
DM: it significantly increases the numerical stability, i.e., its coefficients are calculated
dynamically during simulation without any artifically ‘tuning’; it allows for a more
realistic geometrical representation of the SGS stress tensor [12] and provides more
degrees of freedom for reflecting both forward and backward scatter of TKE between
the resolved and unresolved scales. Other nonlinear SGS stress models can also
be found in the recent works of Lund and Novikov [13], Wong [14], Kosovi¢ [15],
Winckelmans et al. [16] and Liu et al. [17].

The closure of the filtered scalar (temperature) transport equation requires
modelling of the SGS scalar (heat) flux. In contrast to the velocity field, a scalar
field displays different characteristics. In a comprehensive review of scalar transport,
Warhaft [18] addressed both large- and small-scale behaviour and demonstrated that
the large- and small-scales in a scalar field are strongly coupled and the traditional
cascade picture, which promotes the notion of universality of the small scale motions,
is a crude representation. Unlike the velocity field, even at high Reynolds number,
the scalar field remains anisotropic at the dissipation and inertial scales in the pres-
ence of a main scalar gradient. Kang and Meneveau [19] also demonstrated that in
the presence of a scalar gradient, whereas the TKE dissipation tensor tends towards
isotropy at small scales, the SGS scalar-variance dissipation remains anisotropic in-
dependent of filter scale. The promise of LES strongly relies on the assumption of

small-scale universality and isotropy, i.e. the statistics of the small-scale turbulence



are independent of forcing and boundary conditions. This anisotropic behavior of
a scalar field presents a significant challenge for LES modelling: not only the mean
scalar-variance dissipation rate, but also the geometrical properties of the SGS scalar
field should be reproduced by a SGS model. Furthermore, the performance of SGS
scalar flux models may be case dependent. Partly due to the complexity of the physics
of scalar transport, modelling of the SGS heat (scalar) flux has not been as exten-
sively studied and developed as that of the SGS stress. The concept of a dynamic
SGS eddy diffusivity model (DEDM) for the SGS heat flux was initially introduced
by Moin et al. [20] in 1991 immediately after the proposal of the dynamic procedure
by Germano et al. [6], in which the SGS heat flux vector is made proportional to the
negative resolved temperature gradient based on the analogy to the molecular heat
diffusion/conduction process governed by Fourier’s law. Since the transport of the
SGS thermal energy due to unresolved turbulent motions is fundamentally different
and much more complex than that due to a molecular heat conduction process, the
predictions of the conventional DEDM [20] are much more isotropic than the actual
phenomenon [19]. Nevertheless, the DEDM is still the most popular model in the lit-
erature and has been applied for predicting some of the mean properties of turbulent

scalar fields [21-29].

In order to improve the performance of the SGS heat flux model in terms of
its physical and geometrical representation of the SGS heat flux vector, some inno-
vative modelling approaches have been proposed in the literature. Using a statistical
approach, Yoshizawa [30] derived a SGS heat flux model based on the gravitational
acceleration vector and resolved temperature and velocity gradients (It should be
noted that Yoshizawa’s model does not rely on the dynamic modelling approach,
which is different than the SGS heat flux models to be discussed below). By applying
the Taylor expansion to the classic scale-similarity model introduced by Bardina et
al. in 1980 [31], Leonard [32] suggested a gradient SGS heat flux model. However, it
was soon found that the scale-similarity-type models do not dissipate enough energy
and typically lead to inaccurate results. Since the eddy diffusivity model with a posi-
tive coefficient is a purely dissipative model, mixed models which combine the former
two models were introduced into the LES community. Salvetti and Banerjee [33]

introduced a dynamic two-parameter mixed SGS heat flux model, in which the coef-



ficients of the eddy diffusivity and scale-similarity term are determined dynamically.
The model of Salvetti and Banerjee was an extension of the work of Zang et al. [34]
on a dynamic mixed SGS stress model, and has been recently applied by Tyagi and
Acharya [35] for studying heat transfer of rotating rib roughened square duct flow,
and by Jaberi and Colucci [36] for studying reacting and non-reacting turbulent flows
using both the a priori and a posteriori LES methods®. Based on a Taylor series
analysis of the discrete filtering process related to the SGS heat flux term, Porté-Agel
et al. [37,38], and Kang and Meneveau [39] introduced a mixed model, which dy-
namically combines the linear eddy diffusivity SGS heat flux model with a gradient
SGS heat flux model. This model has been applied for studying heat fluxes and dis-
sipation in an atmospheric boundary layer and heated wind tunnel wake flow using
the a priori LES approach. Peng and Davidson [40] proposed a dynamic tensor dif-
fusivity model for representing the SGS heat flux and used it to predict a buoyancy
driven channel flow. Their model takes into account the temperature gradients in
all directions, and was able to sustain the streamwise SGS heat flux even when the

streamwise temperature gradient is zero.

1.3 Assessment of instantaneous structures: Tur-

bulence Geometrical Statistics

In the conventional approach within the LES community, turbulence is assessed in
terms of properties obtained after temporal and spatial averaging, such as mean and
fluctuating velocity and temperature fields, resolved and SGS shear stress and scalar
flux profiles, etc. Although it is well known that turbulence is characterized by various
internal organizations (coherent structures), the conventional analysis approach pro-
vides very poor information on the flow structures and dynamic interaction between
them. In contrast, various geometrical alignments (relative orientation) between vec-
tors composed of velocity gradients obtained using the methodology of turbulence

geometrical statistics clearly point to the presence of the internal organizations. For

#The so-called a priori LES denotes filtered DNS in which LES quantities are obtained by im-
posing a range of filters on the DNS data. In contrast to the a priori LES, the analysis based on
the LES prediction is specified as the a posteriori LES. The results of a posteriori LES are affected
by modelling and numerical errors.



example, there is a distinct difference between the alignment patterns of the resolved
vorticity @ and the eigenvectors \; of the strain rate tensor for a random Gaussian
field and turbulent flows, e.g. the PDFs of cos(w, A;) are flat for a random Gaussian
field [41], while @ tends to be aligned with the intermediate eigenvector of the strain
rate tensor for turbulent flows. The PDF of enstrophy generation is also different: it
is asymmetric and preferentially positive for real turbulent flows while it is symmetric
for a random Gaussian field [41]. The above alignments not only manifest the exis-
tence of organization, but also reveal the dynamics of turbulence. For instance, the
positiveness of the enstrophy generation indicates the prevalence of vortex stretching
over vortex compressing in turbulence. Although internal organization in turbulent
flows can also be observed individually by some visualization techniques, geometrical
statistics provides more unambiguous information on such structures and thus is more
appropriate for revealing the characteristics of the structures and physical process of
turbulent flows. Furthermore, since most of the geometrical invariant quantities and
relations, such as enstrophy generation, vortex stretching and compression, and align-
ments between various tensors and vectors [42-45], studied in turbulence geometrical

statistics are frame invariant, i.e. they are independent of the reference system.

Due to the richness of the topic, in the following context, I only focus on
reviewing the literature that is relevant to this research, viz., recent advances in ap-
plying LES for studying the geometrical properties of turbulent flow and scalar fields.
Since the pioneering works of Vieillefosse [46], Pelz et al. [47], Ashurst et al. [48] and
Kerr [49] in the 1980’s, the methodology of turbulence geometrical statistics has been
successfully introduced for studying turbulence structures and dynamics. However,
previous approaches have primarily utilized DNS [47-53] and experimental [44,45]
approaches based on unfiltered turbulent flows. Recently, study of the statistical ge-
ometry of turbulence at the filtered- (or, resolved-) scale based on LES has become
a relevant research topic. This is due to the evidence that many important physical
phenomena (both local and global) of fluid flows can be observed and reproduced
at a given filtered level, temporally and spatially. Tao et al. [54] analyzed the holo-
graphic particle image velocimetry (HPIV) measurements of a quasi-isotropic flow at
the center of a square duct using the a priori LES approach, and observed that many

geometrical alignment trends of the filtered turbulence agree with those of unfiltered



turbulence [48-53]. For example, Tao et al. [54] were able to reproduce the canoni-
cal preferential alignment pattern between the resolved vorticity vector (w) and the
eigenvector (egg) corresponding to the intermediate eigenvalue of the resolved strain
rate tensor in the context of LES. This specific alignment pattern has been noted in
many studies ever since the seminal work of Ashurst et al. [48] and Kerr [49]. Follow-
ing the study of Tao et al. [54], a priori LES investigations of the alignment patterns
between the resolved vorticity vector, vortex stretching vector and eigenvectors of
the resolved strain rate tensor have appeared in the literature including the recent
works by Horiuti [55] and Borue and Orszag [56] who analyzed DNS data of isotropic
flows, and by Higgins et al. [57] and Porté-Agel et al. [38] who analyzed experimental

measurements of atmospheric boundary layer flows.

An important application of a priori LES studies is to provide physical insight
for the a posteriori LES approach for numerical simulations in terms of the design
of improved SGS modelling approaches and understanding of the mechanism of in-
teractions between the resolved- and subgrid-scale (SGS) motions. In contrast to the
above-mentioned a priori LES study of the geometrical properties of fluid tensors and
vectors, the a posteriori LES approach has also been recently applied to this type
of study, which includes the work of Fureby and Grinstein [58] who investigated the
resolved-scale vorticity magnitude and vortex stretching rate using numerical simu-
lations, and the works of Wang et al. [12,59] who studied the geometrical property
of the SGS stress tensor and resolved vorticity, and the near-wall anisotropic effect
on vortex stretching patterns based on LES of turbulent Couette flow. In compari-
son with DNS, the study of turbulence geometrical statistics using an LES approach
is beneficial in that it provides a reduction in the computational cost, and more
importantly, the results of the analysis can potentially lead to the development of
improved SGS modelling strategies. For example, the phenomenological discovery
of Vieillefosse [46], Kerr [49], and Ashurst et al. [48] that w is preferentially aligned
with egg has been recently used for construction of some innovative local geometrical

structure-based SGS stress models for LES [60-62].

Closely coupled with the geometrical property of the fluid vectors and ten-
sors, the geometrical characteristics of the scalar gradient has also been investigated

based on the DNS approach over the past decade. A number of papers have been



published, for instance, Nomura and Elghobashi [63] studied turbulent mixing of an
inhomogeneous passive scalar in the context of a nonpremixed reacting flow, Martin
et al. [64] proposed a simplified stochastic equation for modelling the scalar gradient
evolution process and compared their statistical results with the DNS data, and Bo-
ratav et al. [65] studied the alignment feature between the vorticity, scalar gradient
and eigenframe of the strain rate tensor based on DNS of turbulent buoyant non-
premixed flames. Recently, the method of LES has also been applied for studying the
geometrical properties of the turbulent scalar gradient vector. For instance, Higgins
et al. [66] examined the geometrical alignments between the real SGS heat fluxes
and those predicted by a SGS model based on a priori LES analysis of a turbulent

atmospheric boundary layer flow.

1.4 Objectives of the Dissertation

i) The first objective of this dissertation is to study mixed convection in a vertical
slot for aiding and opposing flow conditions. To examine the effect of buoyancy,
the resolved velocity and temperature fields and second-order statistics including
Reynolds stress components and turbulent heat fluxes are analyzed following the

conventional method in the LES community.

ii) Although the methodology of turbulence geometrical statistics has been an effective
tool for studying the structures of turbulence, its applications are mainly based on
DNS or filtered DNS (a priori LES). The relevant studies based on a posteriori LES
are still limited, possibly due to concerns over the accuracy since the a posterior: LES
is inherently connected to modelling and numerical errors. The second objective is
to reproduce those universal geometrical properties of turbulent flows based on the a

posteriori LES of mixed convection.

iii) According to DNS and LES studies of wall-bounded flows [43,52, 53, 59|, the
presence of the wall in a flow field has a significant anisotropic effect on the local flow
structures. The third objective of this dissertation is to examine the flow structures
in the near-wall regimes (i.e., viscous sublayer, buffer layer and logarithmic region)

in terms of the statistical geometry of quantities related to the coherent structures
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and dynamics of turbulence, such as helicity, enstrophy generation, the alignment
pattern of the vorticity vector with respect to the eigenframe of the resolved strain

rate tensor, and the ratio of the eigenvalues of the resolved strain rate tensor.

iv) For mixed convection, the scalar (temperature) is driven by a mean scalar (tem-
perature) gradient and advected by turbulence. The geometrical characteristics of the
scalar field are of fundamental importance to understand the dynamics of the scalar
transport (mixing) processes, and thus are specifically investigated in this disserta-
tion together with the geometrical properties of the fluid vectors and tensors, such as

eigenvectors of the strain rate tensor.

v) The final objective of this work is to examine the performance of different SGS
stress and heat flux models, and their combined effect on the LES prediction of a
buoyant flow. In this dissertation, SGS stress models are not only assessed by the
conventional approach, i.e. by comparing their LES prediction to the DNS data, but
also by their geometrical properties studied using turbulence geometrical statistics.
Note that SGS dissipation is closely related to the local flow structures. Therefore,
both mean and instantanecous TKE dissipation as well as the statistical relationship
between the SGS dissipation and characteristic parameters of the local flow structures
are examined. Specifically, the performance of the SGS heat flux model is investigated

with respect to the orientation of the SGS heat flux vector.

1.5 Outline of the Dissertation

The dissertation is organized as follows. In chapter 2, the methodology of LES is
introduced, e.g. the filtering operation for LES, the algorithm for solving the filtered
governing equations, and classic SGS stress and heat flux models for the closure of

the LES equations are reviewed.

In chapter 3, the numerical algorithm including the discretization on a collo-
cated grid system using the finite volume method, use of a fractional-step method
suggested by Kim and Moin [67] and application of a multigrid solver using a control
strategy for solving the pressure Poisson equation are introduced. In this chapter,

the conservation properties of the collocated grid system are tested in comparison
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with that of the staggered grid system. At the end of the chapter, the present 3-D
LES code is evaluated using two benchmark flows, i.e. lid driven cavity flow and low

Reynolds number channel flow.

In chapter 4, an LES study of a channel flow at Re, = 395 is reported. The new
dynamic nonlinear SGS stress model of Wang and Bergstrom [9] is investigated and
compared to the conventional linear dynamic Smagorinsky model. In this chapter,
the local geometrical properties of the small-scale flow structures are reported, and
the issue of TKE dissipation produced by these two SGS models is investigated using
both the conventional LES approach and the methodology of turbulence geometrical

statistics.

In chapter 5, the combined forced and natural convective flow between two
vertical plates at different temperatures is investigated using the LES approach. Two
sets of dynamic SGS models, i.e. a combination of linear SGS models and a combi-
nation of nonlinear SGS models, were applied in this chapter. The LES predictions
of the thermal fluid flow field are compared with DNS data reported in the literature

using conventional LES approaches.

In chapter 6, the geometrical properties of the velocity and temperature field of
the mixed flow investigated in chapter 5 are studied. This chapter focuses on a variety
of characteristic geometrical patterns of local flow structures. The effect of buoyancy
on the flow field is examined in terms of three different near-wall flow regimes in both
the hot and cold wall regions. The near-wall restriction on the geometrical properties
of the thermal flow field is reported. In this chapter, the performance of SGS heat
flux model is also investigated with respect to the orientation of the SGS heat flux

vector.

Finally, a summary of the major contributions of the dissertation and a discus-

sion of directions for the future research are presented in chapter 7.
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Chapter 2

Filtered Equations and SGS Models

2.1 The Filtering Operation

LES is based on the fact that the flow field consists of multiple scales of motion and
can be separated into large- and small-scales by applying a filtering operation. A

filtered variable denoted by an overbar is defined as

F(x) = /D F(¥)G(x. y)dy, (2.1)

where G(x,y) is the filter function, which determines the size of the small-scales,
and D is the entire domain. The most commonly used filter functions are: the sharp

Fourier cutoff filter

. 1 ifk<w/A
G(k) = : (2.2)

0  otherwise

the Gaussian filter

and the tophat filter

(o) = /A if|lz| < AJ2 | (2.4

0 otherwise

where the caret = denotes the complex Fourier transform of the original quantity
and A denotes the filter width. An exhaustive discussion of various filters and their
properties can be found in Pope’s work [68]. In general, the sharp Fourier cutoff filter

clearly separates scales, but it causes non-local oscillatory behavior when filtering
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spatially localized phenomena [69]. The tophat filter has good spatial localization, but
does not separate the scales unambiguously. The Gaussian filter has an intermediate

character between the sharp Fourier filter and the tophat filter.

2.2 Filtered Governing Equations for LES

After applying the filtering operation (2.1), the continuity, Navier-Stokes (N-S) and

energy equations for incompressible flows will take the following forms:

Wi + (Wij),j = —Pyi [P+ Viliyjj —Tijyj » (2.6)
and
6)_ + (ﬂjﬂ_),j = O[é,jj _hjaj s (27)
where
Tij = Ul — Uil (2.8)
and
hj déf ujQ — ﬂjQ_. (29)

The additional SGS stress and heat flux terms, i.e. 7;; and h;, appearing in the

above filtered governing equations represent the effect of the small scales and must

be modeled.

In the context of the energy cascade, energy is generated in the inertial range at
the large-scale level and then transmitted to and dissipated at the viscous dissipative
scales. In LES, the dissipative scales of motion are resolved poorly. Therefore, the
main function of SGS stress models is to ‘drain’ energy from the resolved scales,
mimicking the actual energy dissipation. To demonstrate the mechanisms of energy
transfer between the resolved and SGS scales, the transport equations for kinetic

energy K = (w;u;)/2 are given as follows:
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K+ (Kuy),;, = =(w),;/p + vEKj = (7)),
—— —_—— —— ——
Advection of K Pressure diffusion  Viscous diffusion  SGS diffusion (2 10)

— Vi Uiy F @J/
Viscous dissipation ~ SGS dissipation
The advection and diffusion terms in the above equation do not create or drain
energy but only redistribute it within resolved scales. The last two terms in the
above equation, i.e., viscous and SGS dissipation, represent the energy dissipated by
viscosity and net energy transfer between the resolved and SGS scale, respectively.
The latter, i.e., SGS dissipation 7;;5;;, can be either positive or negative locally, where
the negative values of the 7;;S;; represents the energy transfer from resolved to SGS
scales (forward scatter), and the positive values of the 7;;S;; represents the energy
transfer in the reverse direction (backward scatter). In general, energy cascades in

the direction from large- to small-scales, therefore, the SGS dissipation ( 7;;5;;) is

negative on average [70].

2.3 SGS Stress Modelling

Since the small-scale motions have shorter time scales than the large, energy-carrying
eddies, it can be hypothesized that they adjust more rapidly and recover equilib-
rium nearly instantaneously. The small-scale velocity field, therefore, is assumed to
be homogeneous and isotropic. The classic Smagorinsky Model (SM) is based on
the equilibrium assumption and assumes a linear constitutive relation between the
unknown SGS stress term and resolved strain rate tensor. There are several main
drawbacks related to the model. For instance: i) measurements of the local SGS
dissipation often exhibit some negative dissipation regimes [71,72], in contrast, the
SM is purely dissipative due to the positive coefficient; ii) a comparison between the
SGS shear stress predicted by the SM and that obtained using experimental and
DNS data exhibits significant differences [72]; iii) for the laminar flow regime, the
SM with the standard coefficient over estimates the SGS stress and dissipation, often
preventing transition to turbulence [71]. Similarly, in the near-wall region, the model

is too dissipative to predict the correct asymptotic behavior without wall damping
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functions [69]. Noting the above drawbacks, Germano et al. [6] and Lilly [7] suggested
the dynamic Smagorinsky model (DM), which employed a dynamic procedure to im-
prove the performance of the SM significantly. Although the DM has been widely
applied in LES due to its simplicity and robustness, a few drawbacks are also linked
to the linear constitutive relation adopted in its modelling approach. The model
coefficient obtained through a dynamic procedure needs to be properly bounded to
avoid large values, which generally lead to a potential numerical instability due to
excessive backscatter of TKE. To prevent instability, a plane averaging technique is
often applied [7,20,73], which then limits the application of this model to flows with
homogeneous planes. On observing the deficiencies of the linear Smagorinsky type
models, nonlinear SGS modelling approaches were introduced into the LES commu-
nity. Earlier works include the classic scale-similarity model of Bardina et al. [31],
a mixed model which adds a dissipative Smagorinsky term to the scale-similarity
model [33,34,72,74-76] and other nonlinear models [9,15,32,77-79]. Recent reviews
of different SGS stress models can be found in the literature [68,70,80]. In the next
section, several classic SGS stress models, such as the DM, scale-similarity model,

mixed model, and nonlinear dynamic model are reviewed.

2.3.1 Dynamic Smagorinsky Model

The conventional DM introduced by Germano et al. [6] and Lilly [7] has been widely
used in the LES community due to its simplicity and robustness. The constitutive
relation for the DM is based on a linear tensorial function of the resolved strain rate

tensor Sj;, i.e.
ij

where S;; oo (0u;/0x; + 0u;/0v;) /2, |S] = (25;;5;:)"/? is the norm of the resolved

strain rate tensor, and an asterisk represents a trace-free tensor, i.e. ():} © ()i —
()kkdi;/3. In the DM, the model coefficient Cy is computed dynamically during the
simulation, rather than input a priori as in the SM. The DM has made significant
progress compared to the SM. It is free from any empirical constant and can adjust to

the flow condition automatically. Theoretically, its coefficient can be locally negative

and thus allow for backscatter of the kinetic energy. As for the near-wall flow, no
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additional damping function is needed to ensure the correct near-wall behavior of the

SGS stress.

The dynamic process proposed by Germano et al. [6] is based on a second,
coarser test-grid-level filtering process. By applying the second test-grid-level filter
denoted by a tilde, i.e.(j), to the filtered governing equations, we obtain a new subtest-

grid scale (STS) stress, T;;, which is

The characteristic size of the test-grid filter is denoted by A. As suggested by Ger-
mano et al. [6], the ratio of the width of the test-grid filter to that of the grid filter is
typically set to 2. Applying the closure defined by Eq.(2.11) to the test-grid filtered
equations, the STS stress is similarly approximated by

3

62“ ~ ~
T; =Ty - Ekak = —20sA*|S| S (2.13)

The Germano identity [6] is obtained by subtraction of the test-grid filtered 7;; from

T;j, 1.e.

'Cij = T;‘j — 7~—ij = ﬂz‘ﬂj — iﬁj (214)

20

Substituting Egs.(2.11) and (2.13) into the Eq.(2.14), the following equation is ob-

tained
1 o~
Lij — gﬁkk = —a;;Cs + 5;;Cs (2.15)
where
Bi; = 2 }S’ Sij (2.17)

Note that £;; can be numerically calculated and thus the coefficient Cg is only un-
known variable in Eq.(2.15). However, the above Eq.(2.15) is over-determined since
five independent equations are available to determine a single coefficient. Therefore,

the Germano identity Eq.(2.14) can be satisfied only approximately. The error is
eij = Lij + a;;Cs — [5;Cs (2.18)
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where L7, is the tracefree form of L;;, i.e. Lf; = L;; — %Ekk. By assuming that the
coefficient C'g is spatially invariant within the test window, Cg can be extracted from

the test-grid filtering operation. Eq.(2.18) then becomes
€ij = ,C;k] —+ CSMij (219)
where

An optimal value for Cg can be obtained by minimizing the error of the Germano

identity using the least squares method:

8E2 . 8(61-]-6@-]-)
0Cs  0Cq

-0 (2.21)

Note that the trace of £;; vanishes because S;; = 0 for an incompressible flow. The
following expression for the model coefficient Cy is obtained:

Cq = 2.22
S MijMij’ ( )

The dynamic procedure can be applied to models with more than one coefficient as

well.

The DM has been applied to many flows, generally with good results. How-
ever, as discussed before, it may become numerically unstable. To prevent unrealistic
backscatter of the TKE due to large negative coefficients, the coefficient field is gen-
erally filtered using a plane averaging scheme or the negative coefficients are simply
clipped during the simulation [6,7]. Difficulties in applying a plane averaging scheme
arise in flows that do not possess directions of statistical homogeneity. Another
disadvantage related to the plane averaging scheme is that it will smear the local

characteristics of the model.
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2.3.2 Scale Similarity and Mixed Model

In LES, the instanteneous velocity u; is decomposed into resolved velocity @; and SGS
fluctuations u/, i.e.

w = + (2.23)

Using the above decomposition, the SGS stress 7;; can be split as:

;ug — Ui (2.24)

Tij

= ’I_LZ"I_L]' + U;’I_Lj + ’I_LZUQ +u

where the terms in the first and second bracket are denoted as Leonard stresses and

cross terms, respectively, and the last term is the Reynolds SGS stress. Namely,

Tij = Lij + Cz'j + Rz’j (225)
where
Lij - ﬂiﬂj - ’I_LZ"I_L]', (226)
Cij = wju; + wuj, (2.27)
and

Eq. (2.23) is filtered to obtain the filtered SGS components, i.e. v/; = u;—;, and then
the scale-similarity model of Bardina [31] assumes the cross term and SGS Reynolds

stress can be approximately as

and

~ (1 — ) (1 — ;). (2.30)

Substituting Eq. (2.26), (2.29) and (2.30) into (2.25), yields:
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Consequently, the scale-similarity model introduced by Bardina et al. [31] takes the

following form:

=

Tij = CSIM (ﬂz‘ﬂj — ZQZLJ) (232)

where Cgrps is the numerical coefficient.

Another form of the scale-similarity model can be obtained by applying a test
filter. Since the most active subgrid scales are those closest to the cutoff scale (the
characteristic width of a filter) and interact primarily with the scales right above the
cutoff scale, a consequent thought is to relate the SGS stress, 7;;, to the resolved
Leonard stress ﬁz\/ﬂj — @;uj, which is obtained by subtraction of the test-grid filtered
7;; from T;; (see Eq. 2.14) and relates to the turbulent stresses right above the cutoff
scale. Based on their Particle Image Velocimetry (PIV) measurements in a round jet,
Liu et al. [72] confirmed that 7;; is highly correlated with the resolved Leonard stress

and thus proposed the following scale-similarity model:

—

75 = C&p (Wt — Uiy (2.33)
where C%;,, is the model coefficient, the tilde represents the test-grid filtering oper-
ation with characteristic width A > A. The value of CE;,; depends on the filtering
opreration. A discussion on the determination of the coefficient can be found in Cook’s
work [81]. Although a high correlations between the actual SGS stress and that mod-
eled by the scale-similarity model is found in the a priori tests [31,72], and the model
is also able to produce backscatter of TKE, it is found not to dissipate enough energy

which typically leads to inaccurate results. Therefore, a mixed model is suggested

which adds a dissipative Smagorinsky term to the scale-similarity model [31,72], i.e.
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In the simulation of recirculating flows, Zang et al. [34] implemented a dynamic
mixed model (DMM) with C) of fixed value and Cy determined dynamically with
good results. A value of C) ~ 1 was suggested in early papers [34,74,81]. Instead
of specifying C, Vreman et al. [82] proposed a dynamic two parameter mixed model
(DTMM), in which both € and Cy are determined dynamically. The coefficients of
the mixed model could be determined using the dynamical procedure described in

section 2.3.1.

2.3.3 Dynamic Nonlinear Model

The dynamic nonlinear model (DNM) proposed by Wang and Bergstrom [9] is based
on the explicit quadratic tensorial polynomial constitutive relation originally intro-
duced by Speziale and Gatski [10,11] for the RANS approach, and takes the following
form within the context of LES:

7 = =CsBi = Cwyig — COnig, (2.35)

where

Vij = QAQ(Sikaj - Qikgkj) (2.36)

where S;; = (u; j+u;,)/2 and €;; = (u;; —u;;)/2. As part of a dynamical procedure,
a test-grid filter is applied to obtain the STS stress T;;. The trace free form of Tj; is

T = —Csaij = Cwij — On G (2.37)
where
QZ] = 222 §’ :Z'j
Aij = QAQ( :Zk'ékj ~ Qu, :k;j) (2.38)
~ ~ = 1 ~ ~
g’tj - 4A2( szkj - g mnsnm(SU)



where the tilde denotes the test-grid filtering operation. The optimal values of the
three dynamic model coefficients Cs, Cy, and Cy can be obtained using the least

squares approach, which requires solution of the following matrix equation:

M Mij MiWi; - Mi; N Cs L35 Mi;
WiiMi; Wi;Wiy WigNg | - | Cw | = — | L;Wi |- (2.39)
Nz‘jMij Nz‘jVVz‘j NijNij Cn ijNij

Similar to the previous definition of M;; (Eq. 2.20), W;; and N;; are two differential
tensors defined as:

def ~
Wi = Xij = i (2.40)

and
def

Nij = Gij — Tij» (2.41)
The design of the modelling constitutive relation is based on the Speziale-Gatski con-
stitutive relation. The three tensorial base components (i.e., 5, v;; and 7;;) are
independent and individually related to three important SGS physical features, e.g.
the overall SGS dissipation level, a high correlation coefficient between the modelled
and exact SGS stress in an a priori LES test, and realistic reflection of TKE backscat-
ter [9]. Due to its nonlinear characteristics, the DNM is numerically robust and can
be applied locally without the need for bounding of its coefficients in the simulation,
which contrasts sharply with the performance of the DM. However, in terms of the
efficiency, it is found that the DNM is approximately 25% more computationally ex-
pensive than the DM [9]. Wang and Bergstrom investigated the model using LES of
turbulent Couette flow at relatively low Reynolds numbers [9]. The model was found
to be more robust compared to the DM. It can adjust to the local flow conditions
automatically and allow for both forward and backward scattering processes of TKE

between the resolved and unresolved scales.

2.4 SGS Heat Flux Modelling

Most pioneering works used the linear eddy diffusivity model (DEDM-HF) for the
heat flux term (e.g. Mion et al. [20], Cabot [83], Wong and Lilly [84]). The DEDM-
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HF assumes that the heat flux term is proportional to the temperature gradient. More
specifically, it suggests a linear constitutive relation between the SGS heat flux and
temperature gradient. Although the linear DEDM-HF cannot predict the anisotropic
behavior of the scalar field [19, 72], it has been applied for various turbulent scalar
transport problems with good results [21,22,24-27]. Recently, nonlinear SGS heat
flux models have been studied. Peng and Davidson [40] proposed a dynamic non-
linear tensor diffusivity model (DTDM-HF) for the SGS heat flux term for studying
turbulent buoyant flow. In their approach, the eddy diffusivity tensor is related to
the resolved strain rate tensor. DTDM-HF is actually similar to the nonlinear gra-
dient model (NGM-HF) proposed by Leonard [32], which is drived from Bardina’s
scale-similarity model [31]. Recall that the scale-similarity model is acknowledged to
provide insufficient dissipation of KTE, the DTDM-HF and NGM-HF, derived from
the scale-similartity model, may inherit the same deficiency. Instead, Salvetti and
Banerjee [33], Porte-Agel et al. [37,38] and Kang and Meneveau [19] suggested dy-
namic mixed SGS heat flux models (DMM-HF) which combine the scale-similarity
model with a conventional linear eddy diffusivity model for the SGS scalar flux. The
DMM-HF compensates for the deficiency of the scale-similarity type model by adding
the Smagorinsky dissipative term. Since the magnitude of the Smagorinsky term is
much smaller than the similarity term, most of the advantageous features of the scale-
similarity model are retained in the mixed model. Compared to the linear diffusivity
model, the nonlinear models are able to capture the characteristic features of the

scalar field [33,72].

2.4.1 Dynamic Eddy Diffusivity Model

The DEDM-HF introduced by Moin et al. [20] is based on the concept of a linear
eddy thermal diffusivity in analogy to Fourier’s law. In the literature, this model is
still the most popular for LES of scalar transport processes. The DEDM-HF adopts
the following constitutive relation for modelling the SGS HF vector:

o0

= gy,
J

h, (2.42)

where o, is the SGS (eddy) thermal diffusivity. It is expressed as:

22



lygs = == (2.43)
89S

where v,y is the SGS viscosity and o4 is the SGS Prandtl number. Suggested by
Lilly [7], the Smagorinsky closure, i.e. vgqg = CsA2?|S|, is applied to Eq.(2.43), i.e

Qggs = _Gs A?|3] (2.44)

sgs

Where Cs is obtained dynamically by solving the DM, and the SGS Prandtl number
0595 Temains to be determined. By substituting Eq. (2.44) into (2.42), the obtained
DEDM-HF will take the following form:

Cy 00 Cy
h; = A?|S =2 ). 2.45
e — 1S =— 5, osos (2.45)
where ~
- 00
b = A2|S|§—. (2.46)

J
Similary, the heat flux at the test-grid scale is
Cs Cs

H; = A2?S — a; 2.47
! 0sGS | |a$] USGSa] ( )

where

A2|S| (2.48)

836]
Following the dynamic procedure of Germano et al. [6], a similar identity exists to

relate h; to H; , i.e.

:lz
CDR

By substituting Eqs. (2.45) and (2.47) into Eq. (2.49) and minimizing the error of
the resulting equations using the least squares method (assuming that Cs/osgs is
spatially invariant within the test-grid scale), the SGS Prandtl number is obtained as

11 LM
0s8aGS CsMM

(2.50)

where M; = a; — l;j. Note that Cyg is calculated by Eq. 2.22. Actually, there is no

need to calculate oggs and Cg explicitly. For instance, let Cyp = —Clg/044s, and then
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the heat flux model (2.45) and (2.47) take the following form:

hj = 09A2|§|§—gi = Cyb; (2.51)
where B
b, = A%|S g—i (2.52)
and -
H; = 09B2|§|§—i — Cya, (2.53)
where -
a; = Mé\g—i. (2.54)

By using the same procedure, i.e. substitute Eqs. (2.51) and (2.53) into Eq. (2.49)
and minimize the error of the resulting equations by using the least squares method
(assuming that Cjy is spatially invariant within the test-grid scale), we obtain

LM

Cp= =17
’ M;M;

(2.55)

Note that Egs. (2.50) and (2.55) are actually equivalent. As discussed above, the
DEDM-HF is based on the concept of a linear eddy thermal diffusivity in analogy to
Fourier’s law. It is inconsistent with the physics of turbulent convection. The forced
alignment between the resolved scalar gradient and the modelled SGS scalar flux is, in

general, unphysical, as has been confirmed by the recent study of Abe and Suga [85].

2.4.2 Dynamic Tensor Diffusivity Model

On noting the limitation of the DEDM-HF, Peng and Davidson [40] proposed a novel
dynamic tensor diffusivity model (DTDM-HF) based on the concept of a dynamic
tensor thermal diffusivity, which no longer relies on the analogy of molecular diffusion
and allows for non-alignment between the SGS HF vector and resolved temperature
gradient vector. The constitutive relation for the DTDM-HF of Peng and Davidson
[40] at the grid level takes the following form:

h; = — gAQSjk%, (2.56)
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where C/ is the model coefficient and the tensor diffusivity is based on the resolved
strain rate tensor, viz. Dj; = CJ A?S;. For the dynamic procedure, the test-grid

level SGS HF vector is modelled as

<,z 00
H;=— GTAQSjka—%. (2.57)

Following the dynamic modelling approach of Germano et al. [6], the dynamic coef-

ficient for the DTDM-HF is given as:

Cl=— (2.58)

where M; = a; — b; with the base vectors defined as

bj = Aszk;—i and a; = Azgﬂg;—i. (2.59)
Unlike the DEDM-HF [cf. Eq. (2.51)], the DTDM-HF of Peng and Davidson [40] [cf.
Eq. (2.56)] does not require the SGS heat flux be aligned with the negative resolved
temperature gradient vector, instead, it models the heat flux vector h; in response to
both the resolved strain rate tensor and temperature gradient in all three coordinate
directions through the contraction between Sj, and 96/0xy. As such, in theory, the

SGS heat flux component in a direction with zero mean temperature gradient can still

be non-trivial due to the temperature gradients present in the other two directions.

2.4.3 Dynamic Mixed Model

Based on the scale-similarity model of Bardina et al. [31] for the SGS stress ten-
sor, Porte-Agel et al. [37,38] and Kang and Meneveau [19] proposed a similar scale-

similarity model for the SGS scalar flux vector as follows:

h; = CS1M (a?é - aﬁ) (2.60)

where C5™ is a numerical coefficient. Following the approach of Leonard [32] and

Clark et al. [77], Porte-Agel et al. [37,38] applied a Taylor expansion to the filtering
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operation and obtained a nonlinear gradient model from Eq. (2.60). The nonlinear
gradient model takes the following form:

om; 98

h; = CgA?
J o c%ck &ck

(2.61)
where C§ is a model coefficient to be determined using a dynamic procedure. By
combining the nonlinear gradient model (Eq. 2.61) and eddy diffusivity model (Eq.
2.53), Porte-Agel et al. [37,38] and Kang and Meneveau [19] suggested a dynamic
two-parameter mixed model (DTMM-HF') which takes the following form:

om; 98

= OB G
S 9y = Oty + Cabs (2.62)

00 _
h; = C.A*|S| = A?
J Ce |S| al‘j + Cg
where 0¥ = A?(S]90/0x; and bS = A’0u;/02,00/0xy; and C. and C, are model
coefficients, which are determined dynamically during the simulation. The test-grid

scale stress of the mixed model takes the following form:

< = 00 -~ 0@ 00
H; = CRIS| 5 + C,A220 7
J

= C.a¥? @
05, 01 Ceaj + Cya; (2.63)

where a? = A?|S|2% and of = A22% .00 - By minimizing the error of the identidy
J 0x; J Oz Oz

equation (£; = H; — ﬁ]) using the least squares method, the model coefficients can
be calculated as:
L;L; L;M; C. L;C;

_— . (2.64)
L;M;  M;M; Cy M;L,

where L; = ajE — bjE and M; = ajG — l;]G Compared to the linear eddy diffusivity
model, the dynamic mixed model has improved features that correspond better to
the characteristics of the scalar field. However, its numerical implementation requires

more CPU time than the eddy diffusivity model.
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2.5 Summary

A successful SGS model should be able to satisfy the following requirements: i) pre-
dict the overall energy (or scalar variance for a scalar field) dissipation correctly; ii)
predict both forward and backward transfer of energy (or scalar variance) between
the resolved and SGS scales; and iii) properly reproduce the geometrical characteris-
tics of the flow field. As mentioned before, since the linear eddy-viscosity type SGS
stress models are not able to account for the backward transfer of kinetic energy due
to their simple unphysical constitutive relations, a number of nonlinear SGS stress
models, such as DMM [34,74,81], DTMM [82] and DNM [9], has been introduced to
give improved results. For example, compared to the DM, the DNM [9] has advan-
tageous features: it is based on a relatively realistic constitutive relation, and thus
more robust than the DM; it can adjust to the local flow conditions automatically and
predict both forward and backward scatter. Similarly, in the modelling of SGS scalar
flux terms, the linear eddy diffusivity model cannot predict backscatter of the scalar
variance either, whereas nonlinear SGS scalar flux models, such as the scale-similarity
model, tensor diffusivity model and mixed models can predict backscatter. Note that
the scalar field is anisotropic even at dissipative scales, a proper SGS scalar flux model
should be able to reproduce the anisotropy character as well. By examining the SGS
scalar variance dissipation predicted by the DEDM-HF and a mixed model, Kang
and Meneveau [19] demonstrated that the DEDM-HF cannot predict the anisotropy
of a scalar field, in contrast, the mixed model can be tuned to reproduce the correct
amount of anisotropy. Besides the improvement, these SGS models are more com-
plicated and require more CPU time, for example, the DNM is approximately 25%
more computationally expensive than the DM [9] and dynamic mixed models require
a CPU time 11% more than the Smagorinsky model [86]. For some cases, the benefits
gained by nonlinear models may not overweigh their additional computational cost.
Jiménez et al. [87] studied the scalar transport in a mixing layer and found that, the
mixed SGS scalar flux model does not improve the LES prediction evidently (the dy-
namic mixed model and DEDM-HF yield similar prediction in their study), provided
that a proper SGS stress model is adopted. In this dissertation, the DNM for SGS
stress and DTDM-HF for SGS scalar flux are investigated based on LES of mixed
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convection. The combination of the nonlinear models, i.e. DNM&DTDM-HEF, yields
a better prediction than the combination of the linear models, i.e. DM&DEDM-HF,
especially with respect to the temperature field. It is also found that the DTDM-HF
is able to successfully predict the near-wall geometrical properties of the SGS heat

flux vector, whereas the DEDM-HF cannot.
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Chapter 3

Numerical Algorithm and Test Problems

3.1 Numerical Algorithm for LES

A method based on the commonly used fractional time-step technique for DNS and
LES calculation described in the works of Chorin [88] and Kim and Moin [67] is
applied in this work, in which the filtered Navier-Stokes equations are solved in two
steps: first, an estimated velocity field is obtained by solving the governing equation
without updating the pressure field, and then a pressure correction Poisson equation
derived from the continuity equation is calculated and the estimated velocity field is
corrected to satisfy mass conservation. The filtered Navier-Stokes equations (2.6) can
be written as

U; = —py [p— Hi + v, j;, (3.1)

where H; is the nonlinear terms, i.e.
Hi = (Usti;) 5 +(7i5) 5 - (3.2)

A typical time advancement method using a second-order Adams-Bashforth scheme
for the nonlinear terms and a Crank-Nicolson scheme for the viscous stress terms is

applied to calculate the velocity field after a time step At:

ur —ul L n—1 i u’

A = 5 BEY — H TV v g ) /2
i) A (3.3)
u: =u; — —

7 - " g
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A

FIGURE 3.1: A 2-dimensional sketch of a typical control volume for a collocated grid
system.

where n indicates the current time step and the superscript x indicates an estimated

value for the next time step (denoted by n + 1).

In the numerical solution of equations (3.3), a collocated grid system shown
in Figure 3.1 is adopted. In a collocated grid system, both velocities and pressures
are stored at cell centres, and the velocities at the interfaces of a control volume are
approximated by a interpolation of the neighboring cell-centered velocities. The finite
volume method and 2"¢-order central difference scheme used for the discretization of
the equations (3.3) are classic and can be found in the literature (e. g. the work by
Ferziger [89]), and thus will not be presented in this dissertation. We only demonstrate

(+1) in the second equation of

the strategy to obtain the new time-level pressure p
(3.3). The p™*Y can be obtained by updating the old pressure p(™ using a correcting
pressure ', i.e.

The unknown p’ is derived from the filtered continuity equation (2.5) by satisfying
mass conservation. For instance, the continuity equation can be discretized using the

finite volume method based on the collocated grid system shown in Figure 3.1, i.e.

f n e aal 8112 aag
dxidxedrs = 0. .
/b /S /w (8951 +8x2 +8x3) Tidzrodrs =0 (3.5)
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By intergrating, we obtain:
(e — Uy) A1 + (U, — Us) Az + (Up — up) Az =0, (3.6)

where the subscripts ‘e’, ‘w’, ‘n’, ‘s’, ‘f” and ‘b’ represent ‘east’, ‘west’, ‘north’, ‘south’,
‘front’ and ‘back’ faces of the control volume, respectively, and A; = Azy - Axs,
Ay = Az - Axz and A3 = Axy - Axy are the cross-sectional areas of the control
volume perpendicular to the w — e, s —n and b — f directions, respectively. The
face velocities in Eq. (3.6) are approximated by interpolation of neighboring node

velocities. For example, the velocity at the east face is calculated as:

(n+1) _(n+1)

_ +u
Ue = )
2

(3.7)

where the uppercase subscripts denote the neighboring nodes as shown in Figure 3.1.

By substituting the second equation of (3.3) into above equation, we obtain:

J)

lp = =

1H% At 9p(n+)

At 9pn D
| [ 2
P

A 7 ox ve p Ox
_uptap At {819(”“ opn+H) ] (3.8)
2 2p or |p or |g
_up+ay At 9pth
- 2 p Ox |,
Let , )
opr | _ ot —pp (3.9)
ox e A.’L’pE ’ ’

where Azpp = zp — xp. Using Eq.(3.9) and (3.4), equation (3.8) can be rewritten

as:

aptap At gt - pﬁl””]

2 P Arpg
_ap+ay At +PE) — (05 + ) (3.10)
2 1% A.’L’pE ’
_uptup At e — )| A lpE pp]
2 1% AZL‘pE 1% AZL‘pE
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Let

Tk —% —(n) _ —(n)
2 1% AJ?PE
and then Eq. (3.10) takes the following form:
—r =
ﬂe:ﬂz—gw. (3.12)

P Azpp

Substituting Eq.(3.12) into Eq.(3.6), the following discrete equation for the correcting

pressure are obtained:

apPp =Y anpPyp +b, (3.13)

where the subscript NP represents the neighboring nodes, and a and b denote the

coefficients and source term, respectively, all of which are:

Lo AAt AN AAt
B AxPE’ v AxWP, 5 A«TPS’
Lo MAL AN AgAt
N Azyp’ E Azrpr’ b Arpp’ (3.14)

b= —p [Al(ﬂ: — ﬂ;) + AQ(a:l - a:) + A3(a} - a;)} 5
ap = ZG,NP.

Note that in the above scheme, the face velocity is calcuated in two steps: first, it is
estimated using the old neighboring velocities and the pressure gradient —ﬁ,gn) at the
interface (see Eq. 3.11), and then it is corrected to satisfy mass conservation using
the correcting pressure (see Eq. 3.12). This approach leads to a pressure correction

Poisson equation (3.13) instead of a pressure Poisson equation.

3.2 Multigrid Solver Using a Control Strategy

Numerical solution of the incompressible Navier-Stokes equations requires solving
the Poisson type equation. Several techniques, including multigrid and direct meth-
ods, are commonly used. Direct methods generally require large computer memory,
while iterative methods require an effective convergence rate. Interative methods
such as classic Gauss-Seidel (GS) type solvers show strong convergence in the initial

few sweeps, but subsequently the convergence rate decreases rapidly. It can be ex-
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plained by a Fourier analysis of the error components [90]. GS solvers can effectively
smooth out errors of wavelengths comparable to the mesh size, but are less effective
in smoothing the longer wavelength (low frequency) errors, therefore, the convergence
time dramatically increases after the initial few sweeps. The multigrid method (MG)
was developed to overcome this problem. It employs a hierarchy of grids and solves
the pressure field at different grid levels so that errors with different wavelengths are
smoothed out easily on comparable grid sizes. Multi-grid methods can greatly accel-
erate the convergence rate, especially for large-scale multi-dimensional problems. For
a complete review of the MG technique, one can refer to the works by Brandt [91]

and Stitben and Trottenberg [92].

3.2.1 Formation of the Coarse-grid Equations

To apply a multigrid method, the equations for coarse-grids have to be known. The
formation of the coarse-grid equations should satisfy two requirements. First the
corrections suggested by the coarse-grid equations should go to zero when the fine-
grid values represent the correct solution of the discretization equations. Second,
the form of the coarse-grid equations should be consistent with that of the fine-grid
equations to permit the same solver. Hutchinson et al. [93] and Sathyamurthy and
Patankar [94] described a procedure which combines a block of fine-grid equations to
obtain the coarse-grid equations. Here, the simple case of a coarse grid formed from
the assembly of 1 x 2 blocks of fine-grid control volumes shown in Figure 3.2 is used

to demonstrate the procedure.

The fine-grid discretization equations for the node (i, 7) and node (7,7 + 1) in

Figure 3.2 can be written in the following general forms:

P FE w N S
a; i Pij=a;; Piv1j+a;;Pi1j+a; ;P + a7 Pijo1 4+ bij (3.15)

and
P _ F w N S
@ i1 Pigrr = ;1 Piri 1 + a1 P + 45 P + a7 Py + i, (3.16)

where @ is the variable to be solved, a denotes the coefficients of the discretization
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FIGURE 3.2: Coarse grid formed from assembly of 1 x 2 blocks

equation of the control volume, and b is a source term. The superscript P denotes the
central node, and F, W, N and S denote the east, west, north and south neighbor
nodes, respectively. To formulate the equation for the coarse-grid node (1,J), we first
sum up the fine-grid equations of nodes located in the coarse-grid control volume
(I,J), e.g. add the Eq. ( 3.15) and ( 3.16) and rearrange the resulting equation to

obtain:

P S P N R ) E
(ai; — a7 41) @i+ (4,500 — ;1) Pijrr = a;;Piv1 + ;711 Pig1
W W
+a;;Pic1j +a; 541 Pic1 i
(3.17)
i,j+1 5, +2 i,j t,J—1

+ bz,] + bi7j+1.

Let 67,7 be the average error of the fine-grid equations corresponding to the cells in
the coarse-grid control volume (I,J), and assume that the values of the variable ® for

all the fine-grid nodes in the block can be corrected by d; s, i.e.
P ; = CI)?,]- + 01, (3.18)

and
Cijp1 = P}y + 01, (3.19)
where CIDZQJ- and <I>ZQ7]- 41 are the approximate values of the variable for node (i,j) and
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(i,j4+1) on the fine grid, respectively. By substituting Eqgs. ( 3.18) and ( 3.19) into
( 3.17) and rearranging, we obtain the equation for the coarse grid:
(afj - afjﬂ + afjJrl - az]'?[j>51,J

(a +a’2j+1)51+1J+ (a’ +al]+1>51 1J+az]+151 J+1 +a/2j5]J 1

W 4,0 N §0 0 P 40
+al O+ a O a4 Y+ b — a0 (3.20)
E &0 W 40 N 40 0
+a; 1P 4 P 4 P T az]Jrlq)i,j + bij+1
P 0
- ai,jJrl(I)z',jJrl'

Let RY; and R}, denote the residuals of the fine-grid Eqgs.( 3.15) and ( 3.16), i.c

and

E 0 w 0 N 0 0
RY iy = a1y j + 00 P 009+ 0, P (3.22)

0
+ bi:j-f-l z]Jrlq)z 41

Using af ;, a?;, aV;, al¥;, a7 ; and Ry ; to denote the coefficients and source term of

Eq.( 3.20), the coarse grid equation takes the following form:
CLiJ(;I,J = G€J51+1,J + a‘[/[:](sl—l,(] + a?fJCSI,JH + a§7J5I,J—1 + Rr g, (3.23)

where

P _ P S P N
arg = Qij = Qi1+ G — G

E
aI,J_a +a’z]+17

wo_
aI,J_a +a’l]+17

(3.24)
N _ N
ar.g = Qi 115
s _ s
ar g = @ 5,

Rry=R), + R,

With the above procedure, the coarse-grid equations can be obtained by simply com-

bining the fine-grid equations. Note that the coarse-grid equation (Eq. 3.23) is of
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identical form as the fine-grid equation (Eq. 3.15 and 3.16). The higher-level coarser-
grid equations can be generated by combining the previously obtained coarse-grid
equations using the same procedure. Therefore, arbitrary level grid equations can
be generated if the lower level grid equations are known and no rediscretization is
neccessary at the coarse grid levels. An additional advantage of the technique is that
since the coarse-grid equations are derived from conservative fine-grid equations, they

will automatically retain the important conservation property of the fine grid.

3.2.2 Implementation of Multigrid Method

There are several strategies to implement multigrid methods, such as V cycle, W
cycle, and FMV cycle. However, all of these strategies implement the MG with fixed
iteration number on each grid and in a fixed sequence to employ different grid levels.
For example, the simplest V cycle shown in Figure 3.3 moves sequentially from the
finest grid to the coarsest grid and then from the coarsest grid to the finest grid.
The sequence and iteration number on each grid remain unchanged during the outer
iterations. For the strategies with fixed sequence and iteration number, sometimes,
the number of iterations on a grid level is enough, and sometimes not. To overcome
this disadvantage, a control strategy is suggested [93,95], in which the procedure is
controlled by two parameters, «; and ¢;. Here, «; is a specified fraction of residual
defined as:

a; = R/ Ry, (3.25)

where R denotes the initial residual of the discretization equations on a grid level
and R; denotes the residual at the ith iteration on the same level. ¢; is a residual

ratio defined as

The implementation of the control strategy is outlined in Figure 3.4: on a level
m, we first check the value of «; and ¢;. If the value of «; is larger than a certain
value oy and ¢; is smaller than a specific constant €y, continue the iteration on the

present level m. Otherwise, i) if ¢; is larger than €y, which implies that the residual
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FIGURE 3.3: V cycle

reduction on the present grid level is very slow, it is worth shifting to the coarser grid
level m+-1 to obtain the correction dy ;. ii) if o; is smaller than ag, which implies that
the residual reduction on the present grid level is adequate, move to the finer grid
level m — 1 to correct the variable. After correcting, further iterations on the finer
grid level (m — 1) should be performed to lead to a faster convergence rate. Repeat

the above procedure until the errors of the finest grid equations are negligible.

—

Grid levelm

Grid leve
m-1

Grid levelm+1

FIGURE 3.4: Implementation of the control strategy

3.2.3 Performance of Multigrid Method Using a Control

Strategy

The lid-driven cavity flow at Reynolds number Re = 400 was chosen to test the
performance of the multigrid method using the control strategy (MG-CS). The con-
vergence property of the MG-CS is compared with that of the MG using the simplest
V cycle (MG-V). To implement MG, four grid levels are employed. The grid sizes
ranging from the finest to the coarsest are 48 x 48 x 48, 24 x 24 x 24, 12 x 12 x 12,
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and 6 X 6 x 6, orderly. From the numerical experiments, it was found that for the
MG-CS, the parameters oy = 0.25 and ¢y = 0.5 provide good performance. These

residual reduction criterions were also adopted by Hutchinson et al. [93].

The reduction of the residual of the pressure correction equations is investigated
with respect to three different solvers, i.e. line Gauss-Seidel (LGS), MG-V and MG-

CS. The residual of the pressure correction equations is calculated as

N
Ry =Y )(ZaNpmerb—aPp}D)n : (3.27)
n=1
where N denotes the number of the control volumes of the pressure field; and the
subscript N P represents the neighboring nodes; ayp, ap and b denote the coefficients
and source term of the pressure correction equation (3.13), which are defined by Eq.
(3.14). Usually, the iteration numbers on each grid in a V cycle are fixed. In this
study using a V cycle, when the fraction of residual on a coarse grid, «;, is smaller
than 0.1, it will move to the next grid level. Otherwise, it will stay at the present grid
level until the allowed maxmum iteration number is reached. The maxmum number
for each level was 3. The number of iterations on the finest grid and the computing
time needed to reduce the residuals by four orders of magnitude using the MG-V
and MG-CS solver are shown in Table 3.1. It is evident that the control strategy
significantly improved the performance of the multigrid technique. To reduce the
residuals of the pressure field by four orders of magnitude, the finest grid takes 33
iterations for the MG-CS, while for the MG-V, the finest grid takes 120 iterations.
The computational cost of the MG-CS is only about one third of that of the MG-V.
The convergence histories of the LGS, MG-V and MG-CS are plotted in Figure 3.5.
The convergence rate of the LGS is unacceptably slow after the first few iterations.
In comparison, the slopes of the residual reduction curves of both the MG-V and

MG-CS are almost constant and much steep. Evidently, the convergence rate of the

MG-CS is much faster than that of the MG-V.
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FIGURE 3.5: Convergence histories on the finest grid before update of the coefficients

TABLE 3.1: Number of iterations and computing time to reduce the residuals by four
orders of magnitude

Numbers of iterations | Computing
on the finest grid time (s)
MG-V 120 180
MG-CS 33 65

3.3 Kinetic Energy Conservation

All of the transport equations are based on conservation laws and have physical con-
servation requirements. Discrete numerical equations should also recover the same
conservation requirements, otherwise numerical instability, dissipation or unphysical
behavior could happen. Most discretization schemes only conserve mass and mo-
mentum, but not the kinetic energy. The mass and momentum equations alone are
sufficient to obtain a solution and typically a kinetic energy equation is not solved.
For this reason, in the past, people did not pay specific attention to the kinetic energy
conservation issue. Initial concerns over kinetic energy conservation were caused by
research on the instability occurring in numerical computation. Recently, Morinishi et
al. [96] presented a comprehensive examination of the conservation properties of var-
ious finite difference schemes on collocated and staggered grids. They demonstrated
that methods based on collocated grid systems are inherently non-conservative. Vasi-

lyev [97] extended this work to non-uniform grids and developed higher order schemes
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which exhibit good conservation properties, except in time. Ham et al. [98] presented
a second order scheme for staggered non-uniform grids which conserves kinetic en-
ergy both in time and space, and examined the conservation properties of the scheme
in LES of a channel flow. Another attempt to construct higher order conservative
schemes was undertaken by Verstappen and Veldman [99, 100]. They proposed a
symmetry-preserving discretization method which conserves the total mass, momen-

tum and kinetic energy on both uniform and non-uniform staggered grids [100].

The collocated grid system is often favored over the staggered grid system due
to its simpler form. Although the inherent non-conservative performance of a collo-
cated grid system has been demonstrated, its effects are still not clear, especially in
LES. The question of interest is: how significant is the effect of the non-conservative
behavior with respect to kinetic energy of collocated grids on LES of turbulence? It
is a challenging question. Since the local kinetic energy cannot be defined unambigu-
ously in a staggered grid system and it is difficult to separate the conservation errors

from other errors, such as SGS modelling errors.

3.3.1 Conservation Properties of Collocated Grid Systems

To demonstrate the conservation properties of the analytical equations, the govern-
ing equations of incompressible flow are written symbolically for convenience. The

continuity and momentum equations will take the following forms:

(Cont.) =0 (3.28)
and
8ul- .
5 T (Conv.), + (Pres.), + (Visc.), =0, (3.29)
where
(Cont.) = 2 (3.30)
ont.) =5 .
(Conv.), = 8(;7;@7 (3.31)
(Pres.); = gi, (3.32)
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0T,

(VZSC)Z = 8—%’

(3.33)

where 7;; = IJ% is the viscous shear stress. Note that all the terms in the above
J

equations are in divergence form, e.g. 0f; (®) /Ox;. Integrating the general term in

[1] %0 f fro

From equation (3.34), one can conclude that the total quantity of ® in the domain

space, we obtain:

V only depends on the boundary condition of the domain and will remain the same
if the boundary conditions are conservative, i.e. the net mass flux across boundary
is zero. This behavior of a term in divergence form is defined as conservative. Note
that the continuity equation is conservative a priori, and the convective, pressure
and viscous terms, i.e. (Conwv.);, (Pres.); and (Visc.);, in the momentum equation
are also conservative. Now consider the derivation of the transport equation for the

kinetic energy, K = (u; - u;) /2, from the momentum equation:

88_.[: +u; - (Conv.); +u; - (Pres.); + u; - (Visc.); = 0. (3.35)

The convective, pressure and viscous terms can be rewritten as follows

8uj U; Uy

u; - (Conv.); = 5
T

— (uju;) - (Cont.), (3.36)

Opu;
8951-

u; - (Pres.); = —p-(Cont.), (3.37)

and

87;]‘ U;

u; - (Vise.); = 5
T

—T;; - (Cont.). (3.38)

Provided that the flow field satisfies the continuity equation, then the convection and
pressure terms in the kinetic energy equation are conservative. The viscous term is

not conservative and represents the dissipation of kinetic energy by viscosity.

Any conservative discrete mass, momentum and kinetic energy equations should
recover the conservation properties defined above. For convenience, the following
analysis is based on uniform grids. (One can extend the analysis to a non-uniform

grid in a similar way). Morinishi et al. [96] noted that, provided the discrete form
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of a conservative term is still in the divergence form, its conservation behavior will
be recovered. Morinishi et al. [96] defined the finite difference operator on a uniform

grid as follows:

(5an @(ZL‘l ‘I‘?’th/Q,fL’g,l’g) — @(1’1 —nh1/2,x2,x3)

= 3.39
Onty *1,22,23 nhy ’ ( )
—nz P hi/2, 1o, DO(xy —nhyi/2, x9,
D 1}001 L= (x1 +nh1/2, 29, x3) —2F (1 —nh1/2, 29 1U3). (3.40)

To verify the proposal by Morinishi et al. [96], consider the discretization of a 1D

[EEN
(6)]
NI~

FIGURE 3.6: A 1-D uniform discrete system.

conservative term Of(®)/0x using a second-order central difference scheme (CDS),

which yields the following divergence form in the discrete system:

af(q)) ~ f ((I)xi-i-h/?) - f (q)mi—h/Q) _ 51f(¢))

~

or |. h O

)

(3.41)
i
Here, i represents the ¢th control volume. Now consider a simple discrete system with
only three control volumes as shown in Figure 3.6. The integration of the conservative

term Of (®)/0x over the domain is

FOf(®) = 0uf(@)]
/11 Wda:_; 5 ‘i-h_f%—f%. (3.42)

This demonstrates that the discrete system (Eq. 3.41) recovers the analytical con-
servation behavior, i.e. the total quantity of a variable in a domain only depends on
the boundary conditions. Following the conservation definition above, we investigate

the conservation behavior of a collocated grid system using a 2"@ order CDS. On a

collocated grid system, the discrete continuity equation uses the interpolated face
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velocity, rather than the velocity defined at the nodes, i.e.

(Cont.); = =0, (3.43)

where F' denotes the interpolated velocity on the face. For the momentum equation,

the convective terms are

o Fyug '™
(Conv.); = 1({%, (3.44)
J
the pressure term is
B 51]—911‘2'
(Pres.); = . (3.45)
and the viscous term is
. 1 Oy
(Visc.) 51, (1/ 51 (3.46)

According to the conservation definition above, the discrete continuity and momentum
equations are conservative on the collocated grid. The discrete kinetic energy equation

can be obtained from the discrete momentum equation. The convective term is

u; - (Conv.); = UZM
(51[L‘j
e (3.47)
0y | By - (o)’ /2] 2 /) 01L%
= (511']- + (ul / ) —511']- .

If the continuity equation (3.43) is satisfied, the second term of the RHS of Eq.
(3.47) will disappear and the convective term is of conservative divergence form. The

pressure term of the kinetic energy is

51u—i11‘iﬁlxi 51u—i11‘i

u; - (Pres.); = (3.48)

0hzxj 0hz; ’
Because the second term of the RHS of the equation (3.48) is not necessarily zero,
therefore, the pressure term of the kinetic energy equation is not conservative. The
conservation properties of the analytical and discrete equations on the collocated grid
are summarized in the Table 3.2. Apparently, because in a collocated grid system,
velocities are stored at the cell center while the discrete continuity equation uses the
interpolated face velocity, the discrete kinetic energy equation on a collocated system

cannot recover the conservation properties. In contrast, in staggered grid systems,
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the velocities are stored at face of a control volume so that the discrete continuity

equation uses the velocities themselves, most of them do not have this defect [96].

TABLE 3.2: Conservation properties of analytical and discrete equations

Cont Momentum Kinetic Energy
“| (Conwv.) | (Press.) | (Visc.) | (Conv.) | (Press.) | (Visc.)
Analytical © © ® ©) © © ®
Discrete O] © O] O] © & ®

Note ® denotes conservative and ® denotes non-conservative

3.3.2 Numerical Tests on Kinetic Energy Conservation

The analytic conservation requirements dictate that the sum of kinetic energy of
an inviscid flow over a domain never changes with periodic boundaries. Therefore,
inviscid flow is often used to verify the conservation of a discretization system [96,97].
Following the approach of Morinishi et al [96], we construct an initial velocity field,
which satisfies the continuity equation, and solve the flow as an inviscid flow with
periodic boundary conditions. We simulate the development of the velocity field
using the numerical scheme described in section 3.1 on a collocated and staggered
grid, respectively. After an integration time, the error of the average kinetic energy
ex defined as

ex = [K(t) = K(to)] (3.49)

will reflect the conservation properties of the system. Here, K (t) is the total average
kinetic energy of the compuational domain, where ¢ and t;, denote the current and
initial time, respectively. The 2D initial velocity field can be generated by a stream-
function, such as 1» = 2sin(x) cos(y). Here, we employ a 27 x 27 square domain and

a 20 x 20 uniform grid. The initial velocity field is:

oY . .
u= B = —2sin(z) sin(y) (3.50)
v = —g—f = —2cos(z) cos(y), (3.51)
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which is implemented in the discrete form

2o 2 (i D)2 (5 1) s
e E (- DefZ (D] e

The total average kinetic energy of the computational domain is calculated as follows:

:%if[ (2 +12) -v;-]}, (3.54)

i=1 j=1

where N = 20 and M = 20 are dimensions of the computational domain, V' denotes
the area of the computational domain and Vj; is the area of the control volume (i, 7).
Note that for a staggered grid system, the total kinetic energy defined by Eq. (3.54)
is not unambiguous since the individual velocity conponents are stored in different

locations.

Figure 3.7 shows the error of the total kinetic energy, ex, after an integration
time of At = 10L (27? K(t0)>, where L = 27 is the charateristic length of the
square domain. Because the present code uses the second-order Adams-Bashforth
time-stepping scheme which introduces a slight dissipative error, the kinetic energy
is not exactly conserved even on the staggered grid system. However, as expected,
the time-stepping error decreases with the square of At on the conservative staggered
grid, whereas on the collocated grid, the error decreases with At, which implies that
the scheme introduces not only 2"¢ order time-stepping error but also errors due to
the spatial discretization. We also note that the errors of the staggered grid system

are much smaller than that for the collocated grid systems for the same time step.

3.4 Test Problems

3.4.1 Lid Driven Cavity Flow

Although the collocated grid system cannot conserve kinetic energy and the con-

servation errors lead to numerical dissipation (see section 3.3.1), the issue is: how
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FIGURE 3.7: Error of the average kinetic energy.

significant is the numerical dissipation in comparison to the viscous and turbulent
dissipation present in a real flow? In this dissertation, a benchmark flow, i.e. lid
driven cavity (LDC) flow, is used as one of the test problems for the assessment of
the collocated grid system and validation of the present LES code. As a benchmark
flow, studies on LDC flows can be found in many references [101-104]. Figure 3.8
shows the geometry and boundary conditions of a 3-D lid driven flow in a cubical
cavity, in which we assume that the lid is infinitely long and moves in horizontal
direction. The flow condition is characterized by a Reynolds number, Rep, which is

defined as

D
Rep = 22 (3.55)

14

where U is the velocity of the lid and D denotes the width of the cavity.

3.4.1.1 Steady Laminar Flow (Rep = 400)

The simulation of the LDC flow is first performed for Rep = 400. The selected low
Reynolds number Rep = 400 ensures that the simulated flows are in the laminar
regime. Therefore, the effect of SGS models is excluded in the test. The computa-

tional domain of the test problem is 15¢m x 15¢m x 15¢m, and two uniform grids of
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FIGURE 3.8: Geometry and boundary conditions of LDC flow

size 32 X 32 x 32 and 48 x 48 x 48 are adopted in the test. No-slip and no-penetration
boundary conditions were imposed on the velocity components at the walls. The
momentum equations were solved using the numerical method discribed in section

3.1.

The validity of the numerical solution is assessed by the residual of the pressure

field, R, defined by Eq.(3.27), and mass residual, R,,, defined as
N
Ry = |bml, (3.56)

n=1

where b,, is net mass flux out of the mth control volume, i.e.
b, = (e — 1y) + (1 — 1hy,) + (p — 100) , (3.57)

where m denotes the mass flux through the faces of the control volume. Table 3.3
shows the mass and pressure residuals of simulations on two different collocated grids,

and indicates that the predicted fields satisfy these discrete transport equations.

TABLE 3.3: Mass residuals and residuals of the pressure field

QGrid size Nurpber (.)f outer R, Rp
1terations
32 x 32 x 32 5400 1.84 x 10719 | 1.01 x 10719
48 x 48 x 48 5800 428 x 107101 3.39 x 10710

The simulation results based on the collocated grid of size 48 x 48 x 48 are
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FIGURE 3.9: Streamlines on the x; — x3 plane at x5/D = 0.5 using grid size 48 x
48 x 48 (Rep = 400)

shown in Figures 3.9-3.11. Figure 3.9 plots the streamlines on the z; — z3 plane at
x9/D = 0.5. Driven by the lid, a primary vortex is observed near the center of the
cavity. A counter-rotation recirculating flow is also found in the lower corner region.
The velocity vectors on this plane are also plotted in Figure 3.10. The vectors are
normalized by the largest vector in the plane to make the plots clearer. The pattern
of the velocity vectors is consistent with the streamline patterns shown in Figure 3.9.
The velocity vectors in the x5 — x5 plane at 1 /D = 0.5 is plotted in Figure 3.11. As
shown in the figure, two distinct secondary vortices are observed near the bottom due
to the effect of the side walls. The flow patterns obtained by the present 3-D code on

the collocated grid presented here are similar to those in previous studies [102-105].

A more precise evaluation of the present collocated grid system is obtained by
comparing the simulation results for the peak values of the velocity profiles on the
centerlines of the cavity to the results of other authors. As shown in Table 3.4, the
results of Ku et al. [102] are viewed as benchmark results, since in their work, the
pseudo-spectral method was applied. In the present simulations, even a relatively
coarse uniform collocated grid (32 x 32 x 32) can provide satisfying results due to the
laminar flow characteristics at the low Reynolds number. In comparison, Huang [105]

used a non-uniform grid, which was refined near the wall to capture the velocity

48



1ze

id s

ing gr

0.5 us

0.15

R N

o] o
=
o

400)

X

: e
Y Ppiuny amma s e o™ Seese
fr s N e 8 B e et
§4 s e R R AR AR R L R R s s e e e it R R A R
Praos il . S dispiootptyip sl AN
R N =] PSSl e A A A L LR
1§ ’ NN < et s T Yy ' .
1N e NWNAN S e ISt L L 24 ' ‘
H ® 2rstit :
\ NAR LAY A g :
M o == M ce !
Ve NANS AN R P oG inblylpbdydyh ol A A PR B
1y LR D R < R =
R RN — s
[N AYNS GV e T o ol
N ::
LB e
tas SRR Towo
NN IEE R oS
NN B R
LI JENN YhE IR B4 _
Yiaaa Phdddnpnar
Ntana bidddppaas
Ay ISEERRENERERE S
Uy $qdd bt S
NN IREEREEREERN [Ts]
N RN = Q
RN AR R
N AR [=] <~
NN R EREREREEN +
LRI R B L
uu. YRR R R S
N - LI I A B B R o
r1)’llrDPPIIIT1’1(||\||\\\\\!\\\\\\\\\.....4 N
bttt w
LA L AR AT B r
PN 3
P +
Q
g
=
O
@]
—
2

48 x 48 x 48 (Rep

FIGURE 3.10

1ze

id s

ing gr

0.5 us

49

400)

Velocity vectors of the x5 — 3 plane at x1/D

ReD

(

FIGURE 3.11
48 x 48 x 48



variation in the near-wall region more accurately, and thus give better prodictions of

the peak values.

TABLE 3.4: Peak values for 3-D LDC flow at Rep = 400

Method Grid size Ulpmin Usmin | Usmaz
Present 31 x 31 x 31 | -0.2105 | -0.3465 | 0.1859
Present 48 x 48 x 48 | -0.2226 | -0.3646 | 0.1923

Huang(1998) 31 x 31 x 31| -0.232 | -0.380 | 0.205
Deng et al.(1994) | 64 x 64 x 64 | -0.2330 | -0.3765 | 0.2046
Babu et al.(1994) | 63 x 63 x 63 | -0.2083 | -0.3084 | 0.1773

Ku et al.(1987) - — = -0.2378 | -0.3791 | 0.2053

To futher investigate the collocated grid system, we also compare the velocity
profiles predicted by the collocated grid to those by a staggered grid system in Figure
3.12. Both collocated and staggered grid system are uniform and of size 32 x 32 x 32.
Figure 3.12 indicates that both collocated and staggered grid systems yield satisfying
results which are consistent with the benchmark results of Ku et al. [102]. The
difference between the solutions on the two different grid systems is minimal and
perhaps insignificant (the difference between the peak values is less than 2%). This
result indicates that the kinetic energy conservation issue may not be very important
for steady flows in which the time accurate advancement is not important. The ability
of the present collocated code to accurately advance in time an unsteady flow should

be also investigated.

3.4.1.2 Start-up LDC Flow (Rep = 1000)

Obviously, accurate time advancement is a necessary requirement for LES. The study
of Guermond et al. on the 3-D LDC start-up flow (Rep = 1000) [106] provides a
good test case to evaluate the time accuracy of the numerical schemes on collocated
and staggered grids. Their paper presented both experimental and numerical results
of the flow development in a cavity with time. The flow is driven by a lid which
is accelerated from rest to a constant velocity of Us = 0.018m/s. The accelerating

process adopted by the simulation is approximated by the equation

U(t) = 0.018 [1 — exp(—100)] , (3.58)
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FIGURE 3.12: Profiles of velocity components on the central lines of the cavity
(Re D = 400)

where U(t) is the lid velocity. Guermond et al. [106] measured and calculated the flow
field at different times. Here, the flow field is advanced to t = 4 (using D /U as the

274 order explicit Adams-Bashforth scheme based on a

reference time scale) using the
uniform collocated and staggered grid of size 48 x 48 x 48, respectively. In Figure 3.13,
the profiles of the velocity components in the center plane are plotted and compared
to the experimental data of Guermond et al. [106]. The results indicate that both the
collocated and staggered grid give good predictions, and the difference between them

is relatively small. As shown in Table 3.5, the difference between the peak values

predicted by the two grids is less than 3%.

TABLE 3.5: Peak values for start-up LDC flow at Rep = 1000

ulmin/UC u3min/UC u3maw/UC
Collocated -0.0766 -0.164 0.0466
Staggered -0.0768 -0.160 0.0462

‘(ustag - UCOH)/UCOH‘ 026% 255% 085%
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FIGURE 3.13: Profiles of velocity components on the central lines of the cavity at
t =4 (Rep = 1000).

3.4.2 Turbulent Channel Flow at Re, = 180

Besides the laminar test problems, a turbulent channel flow is also used for validation
of the present LES code and assessment of SGS stress models. As one of the simplest
wall-bounded flows, turbulent channel flows has been numerically studied by many
authors [107-112]. The extensive DNS databases available make the flow a good
benchmark flow to validate the LES code with respect to wall bounded turbulence.
Here, we consider the channel flow at Re, = 180, where Re, def u;6/v and u, is the
friction velocity on the wall. The geometry and computational domain of the test
flow are shown in Figure 3.14. As suggested by Moser et al [109], the computational
domain is 47wd x 2§ x 47w /3, corresponding to the streamwise (z;), wall-normal (z5)
and spanwise (z3) directions, respectively. A grid of 48 x 48 x 64 (in x1, x5, x3) control
volumes is adopted for discretization of the computational domain. The collocated
grid is uniform in the streamwise and spanwise directions. In the wall-normal direction
corresponding to the channel gap —1 < x5/ < 1, the grid is refined near the wall

using a hyperbolic-tangent function, i.e. the locations of interfaces of control volumes
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in the direction are given as follows:

_ tanh(a&;)
fi= tanh(a; ’ (3.59)
and
§=—14+2(j—1)/N, (7=1,2,...,Na+1). (3.60)

where N is the total number of control volumes in the wall-normal direction, and a

is an adjustable parameter.

Fully developed turbulent channel flow is viewed as homogeneous in the stream-
wise and spanwise directions, and periodic boundary conditions are used in these
directions. Periodic boundary conditions assume that velocity, pressure, and their
gradients on the boundaries are the same, which are effective only if the computa-
tional domain is large enough to include the largest eddies in the flow. As suggested
by Moin and Kim [107], the computational domain is at least twice as large as the
dimension of 3.20 and 1.6¢ in the x; and w3 direction, respectively. The no-slip and

no-penetration conditions are used in the normal direction at the solid walls.

FIGURE 3.14: Computational domain and coordinate system (Re, = 180).

3.4.2.1 Governing Equations for the Large-scale Field

In LES, the filtered continuity and Navier-Stokes equationS for the large-scale field

of a channel flow are

ou;
= .61
— (1.7) = —m——— 1 —_ - 62
ot + axj (uluj) paxz 51@ + (3 6 )

Vaxj&cj dx;  pox;
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where (P /0z;)dy; is the main pressure gradient in the streamwise direction, which is
determined by the flow Reynolds number, while 0p/0x; denotes the resolved fluctu-
ating pressure gradient after extracting the mean pressure gradient. 7;; dof WUy — Uil
is the SGS stress tensor, which represents the effect of the SGS motions and needs to
be modelled to close the above system of governing equations. Here the traditional

SM [113] and DM described in section 2.3 are applied for the SGS stress tensor.

3.4.2.2 Analysis of Results

The LES predictions using the present collocated code are compared with the DNS
data given by Kim et al. [108] and Moser et al. [109]. Note that the resolved quantities
in LES ARE theoretically different from those in DNS, for instance, the DNS shear
stress is actually balanced by the resolved shear stress and the SGS stress in LES.
However, because in LES, the resolved scale is dominative in comparison with the
SGS scale, it is still popular to compare the resolved scale directly to the DNS results
in literature. Here, all quantities denoted by (-) are obtained using both spatial
averaging in the homogeneous plane and time averaging for more than 10000 time
steps after the flow is fully developed. The superscript + denotes the quantities which

are non-dimensionalized using the friction velocity w..
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FIGURE 3.15: Mean velocity profile using wall coordinates (Re, = 180).
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FIGURE 3.16: Resolved velocity fluctuations in wall coordinates: (a) streamwise; (b)
wall-normal; (c) spanwise. (Re, = 180).
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The mean resolved streamwise velocity normalized by w., is shown in Figure 3.15
using wall coordinates. It is observed that both the SM and DM yield satisfactory
predictions which are consistent with the DNS data (The DNS data of Kim et al. [108]
and Moser et al. [109] almost overlap). Compared with that yielded by the DM, the
profile of the mean resolved streamwise velocity predicted by the SM shifts upward
slightly in the logarithmic region. Figure 3.16 plots the resolved velocity fluctuations

and DNS data by Kim et al. [108] and Moser et al. [109] for comparison. Here, @{ .,
+

U3 s and 4y, donote the resolved root-mean-square streamwise (1), wall-normal
(x9) and spanwise (z3) fluctuation components, respectively, which are normalized
by the friction velocity u,. It can be seen in Figure 3.16a, both the SM and DM
prediction of the resolved streamwise component in general agree with the DNS data,
although they slightly overpredict the peak value near the wall. Figure 3.16b and
¢ indicate that both the SM and DM underpredict the peak value of the resolved
wall-normal and spanwise velocity fluctuations. The difference in peak value between
the LES predictions and the DNS results is shown in Table 3.6. In general, DM

predictions of the turbulence intensities are slightly closer to the DNS data.

TABLE 3.6: Peak values of channel flow at Re, = 180

ﬂ+ ﬂ+ ﬂ+

1,rms 2,rms 3,rms
DNS(Moser et al [109]) | 2.661 0.841 1.091
SM (%) 2.885 (8.4%) | 0.772 (8.2%) | 0.992 (9.1%)
DM (%) 2.843 (6.8%) | 0.778 (7.5%) | 1.005 (7.9%)

Note: * and ** denote the difference between the DNS data and LES predictions using the SM and
DM, respectively.

The distribution of the resolved Reynolds shear stress is shown in Figure 3.17.
The resolved Reynolds shear stress is normalized by (u,)? and denoted as —(u}u})™.
Figure 3.17a plots the (@juj)™ distribution across the channel. Results for only half
of the channel are displayed due to the symmetrical property of the plot. Figure 3.17b
shows the near-wall performance of —(@ju4)™ in wall coordinates. The magnitude
of the SGS shear stress —(7j2) is an order of magnitude smaller than the resolved
Reynolds shear stress, therefore, the resolved shear stress is compared to the DNS

data directly. Figure 3.17a and b indicate that both the SM and DM yield satisfactory

predictions of the Reynolds shear stress which are consistent with the DNS data. The
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balance equation derived from the streamwise momentum equation is

(i)
v 81'2

19(p) | Tw
PR (3.63)

— (uyuy) — (T2) =

The three terms on the left-hand side (LHS) of Eq. (3.63) represent the resolved
viscous shear stress, resolved Reynolds (or, turbulent) shear stress, and SGS shear
stress, respectively. The two terms on the right-hand side (RHS) of the equation
represent the resolved integrated driving force due to the mean streamwise pressure
gradient, and the resolved viscous shear stress at the wall, respectively. The individual
shear stresses identified in Eq. 3.63 are normalized by u, and shown in Figure 3.18.
Since the SGS shear stress component —(712) is an order of magnitude smaller than
the other two terms, it is not shown here. Again, the difference between the SM and

DM predictions is almost insignificant.

3.5 Summary

In this chapter, a 3-D LES code using a collocated grid system has been developed
and tested. The code is based on the fractional time-step technique [67,88], in which
the discretized Navier-Stokes equations are solved in two steps: first, the estimated
velocity field is calculated without updating the pressure field, and then the pressure
correction Poisson equation is solved to satisfy the continuity equation and the esti-
mated velocity field is corrected using the new pressure field. In solving the pressure
correction Poisson equation, a control strategy is adopted for the multigrid solver.
It employs a flexible procedure which automatically adjusts to the convergence rate
on each grid level. The performance of the MG-CS is tested using the LDC flow
at Rep = 400. Compared with the MG-V and LGS schemes, the MG-CS greatly
accelerates the convergence rate of the pressure field. The computational cost of the

MG-CS scheme is only about one third of that of the MG-V scheme.

The discretized equations should recover the inherent conservation nature of
the analytical governing equations. Collocated grid systems do not conserve kinetic
energy inherently [96]. The energy conservation properties of the present collocated

grid system are investigated following previous works [96-98]. The development of a
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FIGURE 3.17: Resolved Reynolds shear stress distribution in wall-normal direction:
(a) for half-channel (b) in wall coordinates (Re, = 180).

periodic inviscid flow field is simulated on both staggered and collocated grid systems.
After an integration time, the error of the average kinetic energy on the staggered
grid system is second order with respect to the time step, whereas the error on the
collocated grid is first order, which indicates that the collocated system introduces
both the time-stepping and spatial discretization errors. To investigate the effect
of the numerical dissipation on the prediction of a real flow, the collocated grid
system is also tested using a steady laminar LDC at Rep = 400 and a unsteady
start-up flow at Rep = 1000. It is found that, although the collocated grid system
introduces conservation errors for the kinetic energy, it yields satisfactory predictions
in comparison with those given by a staggered grid. This kinetic energy conservation

issue is not very important for the steady LDC flow and unsteady start-up flow.
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FIGURE 3.18: Non-dimensional shear stress distribution across the channel (Re, =
180).

Finally, the present LES code based on the collocated grid system is tested using
a low Reynolds number channel flow. The results indicate that the present LES
code yields satisfactory predictions of the turbulent flow in comparison with DNS
data. Based on the above investigations, a collocated grid system can be used with

confidence for LES of turbulent flows.
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Chapter 4

LES of Channel Flow at Re, = 395 and
Investigation of the Dynamic Nonlinear

SGS Stress Model

4.1 Introduction

The presence of solid walls will affect the physics of the flow, especially the subgrid
scale motions. For example, the growth of the small scales near the wall is inhibited
and the exchange mechanisms between the large and small scales in this region are
altered. Therefore, for LES of wall-bounded flows, the SGS models must be able to
account for the significant effect of the wall. Fully developed channel flow is one of
the most widely investigated wall-bounded flows, and due to its geometric simplicity,
it is also a classic benchmark flow for numerical testing and physical understanding
of the mechanics of wall-bounded turbulence. Because of the presence of high shear
and small-scale turbulence near the wall, experimental measurement of near-wall flow
is relatively difficult and the results are often inconsistent. With the development of
numerical simulation techniques, turbulent channel flow at relatively low Reynolds
number has been first extensively investigated in literature. The first application of
LES to channel flow was made by Deardorff [114]. In his pioneering work, using only
6720 grid cells, he was able to capture several features of turbulent channel flow.
His work indicated a potential application of LES in the study of three-dimensional
turbulent flows. Following Deardorfl’s work, Schumann [115,116] and Moin et al.

[117] calculated turbulent channel flow using a much more refined grid. Moin and
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Kim [107] later applied LES to channel flow at relatively higher Reynolds number
Re, = 640 and found that the resolution in the spanwise direction must be fine to
obtain accurate solution. Instead of using a conventional Smagorinsky model for the
SGS stress tensor, Moin and Kim [107] suggested a modified eddy viscosity model
which added a second term to the Smagorinsky model to account for the inadequate
resolution in the spanwise direction. Their work showed that with proper SGS models,
LES is able to obtain detailed, instantaneous information of turbulent flow at an
affordable resolution. Later, a DNS of a channel flow at Re, = 180 was carried out
by the same research group to provide benchmark data for comparison [118]. As an
extension of their work, Moser et al. [109] conducted DNS of turbulent channel flow
at several Reynolds numbers up to Re, = 590. They reported that the wall-bounded
turbulent flows at higher Reynold numbers revealed some Reynolds number effects.
For example, the mean velocity profiles at the Re, = 395 and Re, = 590 agree out to
y* = 200 with an apparent logarithmic region, while the velocity profile at Re, = 180

deviates from the higher Reynolds number cases beyond z3 = 10.

In this chaper, an LES study of a channel flow at a Reynolds number of Re, =
395 is reported. Here, Re, aof u;0/v and u, is the friction velocity. The newly
proposed DNM [9] for the SGS stress is investigated and compared to the linear DM
using two different averaging schemes, i.e. local and plane averaging. The present
LES results are compared to the DNS results by Moser et al. [109]. In LES, since the
small scales of motion are not numerically resolved, the SGS models need mimic the
interaction between the large and small scale motions. Therefore, one of the important
issues in SGS modelling is related to the turbulent kinetic energy (TKE) transfer
between the large and small scales. In this chapter, the TKE dissipation produced
by these two SGS models is investigated using both the conventional LES approach
and the methodology of turbulence geometrical statistics reviewed in section 1.3. In
contrast to the conventional methodology, turbulent geometrical statistics investigates
the local geometrical properties and captures the statistical features of the small-scale

flow structures.
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4.2 Basic Concepts Related to Turbulence Geo-

metrical Statistics

It is known that the local small-scale flow structures are more related to the velocity
gradients rather than velocity itself. The velocity gradient tensor can be decomposed
into a symmetric part and a skew-symmetric part, which are referred to as the strain
rate tensor [i.e., S;; = (u;; + u;;)/2] and rotation rate tensor [i.e., ;; = (u;; —
u;,;)/2], respectively. The vorticity vector, w, can be derived from the rotation rate
tensor, or, directly from the velocity gradient as w; = €;;180; = €ijrur ;. Here, €5
is the Levi-Civita symbol. The dynamical behavior of the velocity gradient tensor
is of fundamental importance for many physical quantities. Besides S;;, €2;; and w;,
the velocity gradient also determines the vortex stretching vector, helicity density,

enstrophy and enstrophy generation, and turbulent kinetic energy dissipation rate.

Because the second-order tensor S;; is real and symmetric, it has three real
eigenvalues which can be arranged in descending order as ag > g > 7vs. For incom-
pressible flows, only two of the three eigenvalues of the resolved strain rate tensor are

independent due to the continuity constraint, i.e.
as + fs + s = 0. (4.1)

The ratio between the these three eigenvalues of S;; is very useful for classifying the
structural configurations of local fluid element deformations. The local fluid element
deformation pattern is identified as purely 2-dimensional (PTD) if ag: Bs:7vs=1:
0 : —1; azxisymmetric expansion if ag : Bs : v = 1 : 1 : =2; azisymmetric compression
if g : Bg 75 =2:—1:—1; and quasi-2-dimensional (QTD) if |Bs| # 0, |Bs| < |as|

and |Bs| < |7ys]-

Since only two of the three eigenvalues of S;; are independent for incompressible
flow, the local fluid element deformation pattern derived from S;; can be determined
by a single non-dimensional parameter. Studies on the relative principal value of the
strain rate tensor can be traced back to the pioneering work of Betchov [119], who

analyzed the magnitude of the eigenvalues using some fundamental algebraic inequal-
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ities. Based on analysis of DNS data, Ashurst et al. [48] and Kerr [49] demonstrated
that the ratio of the principal values of S;; of homogeneous turbulence tends to be
as : Bs s =3 :1:—4 indicating a dominant QTD flow pattern. In their statistical

calculations [48,49], the following non-dimensional parameter was suggested:

V605

MR P

(4.2)

The experiment of Tsinober et al. [44] based on hot-wire measurements of grid gen-
erated turbulence in a wind tunnel further confirmed the result of Ashurst et al. [48]
and Kerr [49], i.e. §* =~ 0.4 which corresponds to ag : s : g ~ 3.74 : 1 : —4.74
(the ratio 3.1 :1: —3.8 was instead presented in their paper). A similar observation
was reported in the work of She et al. [50] based on analyzing a DNS database of
homogeneous turbulence. However, Lund and Rogers [42] later pointed out that the
statistical results based on Eq.(4.2) can be biased and it leads to the incorrect con-
clusion that a state of local axisymmetric expansion does not exist in turbulent flows.

Instead, they proposed an alternative non-dimensional parameter given by:

. —3VbasBs7s
5" = (4.3)
(a§ + 05 +75)%?

With the new parameterization, Lund and Rogers [42] investigated a DNS database
of isotropic incompressible turbulence. They observed that the most probable state is
S* =1 for flow regions with a low dissipation rate, and S* = 0.9 for flow regions with
a high dissipation rate. The state of S* = 1 corresponds to axisymmetric expansion
pattern (i.e., ag: Bs:vs =1:1:—2) and the state of S* = 0.9 corresponds to the
ratio ag : Bg : v = 1.7 : 1 : —2.7. In general, any local fluid element deformation
patterns corresponding to S* > 0.9 can be approximately classified as axisymmetric
expansion. The result of Lund and Rogers [42] that the axisymmetric expansion is
the most probable state in isotropic turbulence was later confirmed by a number of
researchers, including Soria et al. [120] and Blackburn et al. [53] who studied the
eigenvalue ratio using the phase plane of tensorial invariants; and Tao et. al. [54] who

analyzed HPIV measurements using an a priori LES approach.

The non-dimensional parameter is clearly not unique, but there must be a one-

to-one relationship between any two of them. A unique dependence between 3* and
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s* exists and is given by [42]:

st =("(3—-0"/2) (4.4)
The inverse relation is
5 1
B* = 2cos 3" 3 cos ' (s%) (4.5)

The relation between 5* and [g/ag is:

Ps _ 25 (4.6)

as /34— p07) -5

The relationship between s* and fg/ag can be obtained by combining Eq.(4.6) and

Eq.(4.4) or Eq.(4.5). Since there are only two independent eigenvalues for S;; for
incompressible flow, the most probable ratio of ag : Os : 75 can be calculated using
the above relationship Eq.(4.1, 4.4 - 4.6), provide that the most probable value of
either 3*, s* or Bg/ag is determined. For instance, if the most probable value of g
is 0.480, using Eq.(4.6), we obtain g/ag = 0.333. Due to the continuity constraint
(Eq.4.1), vs/as = —1 — Bs/ag = —1 — 0.333 = —1.333, therefore, ag : fs: 75 =1:
0.333: —1.333 =3 :1:—4.

The velocity gradient tensor w;; can be decomposed into a symmetric part
S;; and a skew-symmetric part €);;, which represent the strain-rate and rotation-
rate tensor, respectively. The vorticity vector w can be derived from the rotation
rate tensor or directly from the velocity gradient as w; = €;;182; = €ijrur;j. The
dynamical behavior of the velocity gradient tensor is of fundamental importance for
understanding coherent structures because it governs a variety of physical phenomena
such as local vortex stretching and TKE dissipation. If the resolved scale strain rate
tensor acts to stretch the material line element aligned with the resolved-scale vorticity
w, then the magnitude of w increases. This is the phenomenon of vortex stretching,

and corresponding vortez stretching vector w is defined as [68]:

The increase of angular velocity by vortex stretching is a consequence of angular
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momentum conservation. Stretching causes the cross-sectional area of a material fluid
element to decrease, thus the angular velocity in the stretching direction must increase
to conserve angular momentum [121]. A variable closely related to the phenomena is

enstrophy generation o, which is defined as
0=w W =ww,S; = wihicos*(w, e;) = Z 0 (4.8)

where \; and e; are the eigenvalue and eigenvector of the strain rate tensor, respec-
tively. The subscript ¢ takes the values 1, 2 and 3, which correspond to the largest (or,
the most extensive), intermediate and smallest (or, the most contracting) eigenvalues,
respectively. As mentioned earlier, following the usual convention used by the fluids
community, the eigenvalues mentioned above will be labeled in descending order of

magnitude as ag, Og, and g, respectively.

A positive enstrophy generation corresponds to the votex stretching pattern, i.e.
w;w;S;; > 0, while negative enstrophy generation corresponds to the vortex compress-
ing pattern, i.e. ww;S;; < 0. For PTD flows, both the vortex stretching vector and
enstrophy generation vanish, i.e. w = 0 and oprp = 0. The only non-zero component
of vorticity evolves as a conserved scalar. Three-dimensional and QTD turbulence are
qualitatively different from PTD flow in that they possess essentially nonvanishing
enstrophy generation. The normalized enstrophy generation o, describes the relative

orientation between the vorticity and the vortex stretching vector:

(4.9)

Op = COS @(W,W) = W

Based on measurements of turbulent grid flow, Taylor [122] first demonstrated that
the mean enstrophy generation for isotropic turbulence is positive. Taylor’s conclusion
is specific for (quasi-)homogeneous isotropic flows and has been confirmed through
recent experimental studies [44] and a number of numerical tests based on DNS
[123-125]. The predominant positiveness of the mean value of enstrophy generation
indicates that the most probable state for isotropic turbulence is related to a vortex

stretching instead of a vortex compressing flow configuration.

Helicity is an important fluid parameter which characterizes helical structures
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and plays a key role in magnetohydrodynamics, small-scale intermittency, TKE dis-
sipation processes, and the evolution of flow coherent structures [43,47,126,127]. It
is defined as

The relative helicity h,, describes the relative orientation between the velocity vector

u and vorticity vector w, i.e. the cosine of the angle © between these two vectors:

u-w

hp, = cos O(u,w) = (4.11)

ul - fw]
According to the velocity identity |u - w|® + |u x w|® = |u?|w|?, helicity is related to
the Lamb vector w xu = —u X w, which is the nonlinear convective term in the Navier-
Stokes (N-S) equations in rotational form. If a region is strongly helical with velocity
and vorticity vectors nearly aligned, i.e. h,, is close to 1 , then the magnitude of the
Lamb vector |u x w| must be small. Since a small value of |u X w| indicates a low rate
of TKE cascade to smaller-scales, helical behavior inhibits the TKE dissipation due
to nonlinear interactions. Therefore, it is expected that the coherent structures with
long lifetimes are associated with regions of large helicity and low dissipation rate;
and in turn, large helicity is primarily located in regions with large-scale turbulent
motions [43]. It is found that even if the large scales possess as much helicity as
possible, the small scales develop much less helicity, which implies that helicity is

primarily located at the large scales [128].

4.3 SGS Stress Modelling

The filtered continuity equation and Navier-Stokes equation for channel flows have
been given in Section 3.4.2. Two dynamic SGS stress models, i.e. the DM of Lilly [7]
and DNM of Wang and Bergstrom [9] (see Section 2.3), are tested in this chapter. It
is well known that one of the main deficiencies of the DM is related to the numerical
instability due to its construction, and consequently, the coefficient must be properly
constrained. In the present study, we use two different approaches to constrain the
model’s coefficient. First the general plane averaging method, where the coefficient is

averaged over the statistically homogeneous x;—x3 plane, is adopted. Obviously, the
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plane averaging approach will smear the local characteristics of the model. To retain
local information, in the present study, we also adopted an ad hoc local averaging
scheme, i.e. first bound the calculated coefficient of the DM by —0.2 < Cgs < 0.2
(approximately 92% of the calculated coefficient values fall within this range), and
then smooth the coefficient locally by using a 2-D discrete box filter (viz., local-plane-

averaging based on a stencil of 3 X 3 nodes in the homogeneous z; and z3 plane).

The second SGS stress model tested is the DNM proposed by Wang and
Bergstrom [9] (see section 2.3), which is based on the explicit quadratic tensorial
polynomial constitutive relation originally introduced by Speziale and Gatski [10,11]
for the RANS approach. The fundamental features of this model have been exam-
ined using LES of turbulent Couette flow [9]. It is found that in comparison with the
DM [6,7], the DNM can significantly increase the numerical stability. The model gave
satisfactory predictions and no singularity problem was encountered in the simulation
of Couette flow [9]. Wang and Bergstrom’s study [9] only examined the DNM at a
relatively low Reynolds number. As the extension to their work, the performance
of the model in LES of channel flow at a higher Reynolds number (Re, = 395) is
examined in this chapter. For turbulent channel flow at the Reynolds number of
Re,. = 395, the log layer is more extensive and the log law has a smaller intercept in

comparison with low Reynolds number flow.

FIGURE 4.1: Computational domain and coordinate system (Re, = 395).

4.4 Numerical Method and Flow Configuration

In this study, the governing equations are discretized using the finite volume method.

Following the approach of Kim and Moin [67], the momentum equations were solved
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using a fractional-step method where the nonlinear term was discretized using a
second-order explicit Adams-Bashforth scheme and the viscous diffusion term was
discretized using a second-order Crank-Nicolson scheme. A second-order central dif-
ference scheme was applied on a collocated grid for spatial discretization. At each
time step, the pressure field was updated using a pressure correction method and the
Poisson type pressure correction equation was solved using a multi-grid method with
the control strategy described in section 3.2. The time period used to obtain the
turbulent statistics was 10,000At after the flow became fully developed. Different
time steps were explored before the simulation. It is found that At ~ 0.00150 /u, is

small enough to obtain a stable solution and adopted in the calculation.

No-slip and no-penetration boundary conditions are imposed at the walls, and
periodic boundary conditions are applied in the streamwise and spanwise directions.
The computational domain which is shown in Figure 4.1 is set to be 270 x 20 x 27w /3,
corresponding to the streamwise (z7), wall-normal (z5) and spanwise (x3) directions,
respectively. The total number of control volumes is 48 x 48 x 64 (in zy, xg, x3).
The grid is uniform with a spacing of Az} =& 51.3 and Azj = 12.7, respectively,
in the streamwise and spanwise directions. The mesh in the wall-normal direction
corresponding to the channel gap is refined near the wall using a hyperbolic-tangent
function described by Eq 3.59. In the present simulation, the first interior node off
each wall is located at x3 ~ 0.4. Since in the LES approach, not all scales of motion
are resolved, the number of control volumes to be employed is significantly reduced in
comparison with DNS approach. For instance, in the DNS study of Kim et al. [118],
192 x 129 x 160 nodes were used for a Reynold number of Re, = 180, and for the
same test case (Re, = 395), Moser et al. [109] used 256 x 193 x 192 control volumes
for their DNS approach.

4.5 Analysis of Results

In the absence of experimental measurements and filtered DNS data, the resolved-
scale variables obtained here will be compared directly with the DNS results. All

quantities denoted by (-) are obtained using both spatial averaging in the homoge-
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neous plane and time averaging for more than 10,000 time steps after the flow is fully
developed. In presenting the results, the quantities are non-dimensionalized using the

friction velocity u..

20k © DNS, Moser et al. (1999)
DM_P
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FIGURE 4.2: Mean velocity profile using wall coordinates (Re, = 395).

4.5.1 Resolved Mean and Fluctuation Properties

The mean streamwise velocity profile using wall coordinates is shown in Figure 4.2.
We use the suffixes P and _L to denote the plane and local averaging schemes de-
scribed above, respectively. Compared with the DNS data of Moser et al. [109], both
the DNM and DM yield satisfactory predictions. None of the LES were able to pick
up the wake region. The prediction of the DNM is closer to the DNS data, while the
DM profiles are shifted slightly upward in the logarithmic region. The mean velocity
profiles given by the DM using the plane and local averaging schemes almost overlap,
which suggests that the choice of the bounding scheme does not have a significant

effect on the prediction of the mean streamwise velocity.

Figure 4.3 plots the resolved velocity fluctuations and DNS data of Moser et al.
[109] for comparison. Here, @f,,,,, U3 s and @y ., denote the normalized root-mean-
square streamwise (z7), wall-normal (x9) and spanwise (z3) fluctuation component,
respectively, which are defined as @, o <(ﬂ";—§ﬂi))2>1/ 2fori =1, 2and 3. It

can be seen in Figure 4.3a, that both the DM and DNM prediction of the resolved
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streamwise component are, in general, consistent with the DNS data, except that
the DNM slightly overpredicts the peak value near the wall. Figure 4.3b indicates
that both models underpredict the resolved wall-normal component near the wall.
However, DNM yields a prediction that is relatively closer to the DNS results. In
Figure 4.3c, both models underpredict the spanwise fluctuation component near the
wall. However, towards the channel center, the DM tends to slightly overpredict the
spanwise component, while the DNM prediction is in better agreement with the DNS

data.

Figure 4.4 plots the distribution of the resolved Reynolds shear stress across
the channel. The resolved Reynolds shear stress is normalized by (u,)? and denoted
as —(ufuy)™. The magnitude of the SGS shear stress —(72) is an order of magnitude
smaller than the resolved Reynolds shear stress, its contribution to the total shear
stress is insignificant for this case and is not shown here. Figure 4.4 indicates that
all the models give a lower peak value near the wall. Compared to the predictions of
the DM, the DNM prediction is closer to the DNS data. The prediction of the DM
using the local averaging scheme is even worse than that of the DM using the plane

averaging scheme, which suggests that the local bounding parameters may need to

be adjusted for this specific flow.

Figure 4.5 shows the instantaneous velocity vectors and contours of streamwise
vorticity fluctuations in the spanwise plane (z-x3) at the channel center. In the
figure, it can be seen that the vortices with large magnitude of streamwise vorticity
w; are concentrated near the wall. The generation of the large amplitudes of @, is
due to the no-slip boundary condition which leads to large value of dus/0zs and the
revolving fluid elements induced by the intense shear layer located at the interface

between the energetic fluid streams moving toward and away from the wall.
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FIGURE 4.3: Resolved velocity fluctuations in wall coordinates: (a) streamwise; (b)
wall-normal; (c) spanwise. (Re, = 395).
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FIGURE 4.5: Instantaneous velocity vectors and streamwise vorticity contour in the

spanwise plane (z2 — x3) across the channel center (Re, = 395).

4.5.2 SGS Kinetic Energy Dissipation

Kinetic energy transfer in LES is governed by the energy transport equation (2.10).

The SGS dissipation term in the equation represents the unresolved kinetic energy,

which should be mimicked by the SGS model. Here, we denote the SGS dissipation

72



(or TKE production) as P,, which is defined as [68]

Pr = —Tijsz‘j. (412)

To provide the correct level of overall SGS TKE dissipation to the large-scale motions
is an essential function of SGS models. Although the mean SGS dissipation rate (P,.)
has a positive value, which represents a net turbulent kinetic energy cascade from the
filtered (resolved) to subgrid scales of motions, experimental measurements [72, 129
and numerical studies [71, 130, 131] have shown that the local instantaneous TKE
transfer occurs between resolved and subgrid scales in both directions. Therefore,
SGS models are required to predict proper ‘backward scatter’ and ‘forward scatter’
of the TKE. It is well known that the simple eddy viscosity type model using a plane
averaging scheme, which is not able to predict backward scatter, has poor performance
in predicting transitional and near-wall flows, for which the backward transfer of TKE
can be locally important [72,87,129,130]. Another well-known problem of the eddy
diffusivity type model is also related to this issue: the model is potentially unstable
due to the improper TKE backward scatter [7]. In this section, the net SGS dissipation
rate and TKE transfer between the resolved and SGS motions predicted by the DM
and DNM are investigated.

Figure 4.6 shows the instantaneous SGS dissipation rate of TKE in a plane
parallel to the wall at x; = 24.4 using the DNM and DM_L, respectively. Since
the DM_P does not allow for backscatter, its prediction is not shown here. Here,
IT;, denotes the instantaneous TKE dissipation rate normalized by u?/v, i.e. I =
P./(ut/v). Figure 4.6a indicates that the DM_L allows the TKE transfer in both
forward and backward directions, however, the level of backward scatter is obviously
smaller than that of the forward scatter. Although the level of the backscatter of
TKE could be adjusted by changing the bounding parameters adopted for the local
averaging scheme, it is an ad hoc ‘tuning’ and if a relatively large level of backscatter
is allowed, a numerical instability may occur during the simulation. Figure 4.6b
shows the SGS dissipation rate predicted by the DNM. Several large peak values
of backscatter are observed in the figure, which implies that the DNM allows for a

relatively high level of local backscatter without causing numerical instability. In
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(a) DM using local average

(b) DNM

FIGURE 4.6: Instantaneous SGS dissipation of TKE normalized by u/v in a plane
parallel to the wall at y™ = 24.4 (Re, = 395).

contrast to the DM, the DNM is free from the need for any artificial control of

backward scatter.

Figure 4.7 shows the plane- and time-averaged distribution of P, along the
wall-normal direction. In the figure, the averaged SGS TKE dissipation rates are
normalized by ul/v. ‘Forward’ denotes mean positive TKE production normalized
by ul /v, ie. (PF)/(ul/v). ‘Backward’ denotes mean negative TKE production nor-
malized by u?/v, i.e. (P;)/(ul/v). ‘Net’ denotes the net transfer of TKE normalized
by ul/v, i.e. (P.)/(u}/v). It is interesting to observe that the DM with different

bounding schemes yields quite different levels of TKE production. The difference
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FIGURE 4.7: Averaged SGS dissipation rate mnormalized by ul/v in wall
coordinate(Re, = 395).

between predicted values of the TKE production when different SGS models are ap-
plied was also observed by Cottet and Vasilyev’s [132]. Compared to the DM, the
DNM yields a relatively large level of mean backward scatter and thus a small level
of net TKE production in the near-wall region. This is consistent with the previous
observation of the instantaneous TKE transfer shown in Figure 4.6, e.g. the DNM

allows a relatively high level of local negative transfer of TKE.

4.5.3 Geometrical Properties of the Resolved Strain Rate
and SGS Stress Tensor

As reviewed in section 1.3, the method of turbulence geometrical statistics has been
introduced to LES for studying the geometrical properties of the filtered flow field
and the performance of SGS models. In this section, following the pioneering work by
Tao et al. [54,133], turbulence geometrical statistics is applied to study the eigenvalue
structure of the filtered strain rate and SGS stress tensor. Here, the concept of the
nondimensional parameter S*, suggested by Lund and Rogers [42] and defined by
Eq. 4.3, is applied to study the resolved strain rate tensor, i.e. the symbol S* used
here denotes the nondimensional state parameter of S;;. In analogy to S*, Tao et

al. [134] suggested the variable S¥ to study the eigenvalue structure of the SGS stress
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tensor. The stress state parameter S is defined based on the deviatoric part of 7;;,
ie.
S* _ 3\/604—7'5—7’7—7'
T+ B )Y

where a_;, B, and _, are eigenvalues of the deviatoric part of the SGS stress, —777,

(4.13)

where 77 = 7;; — 0ijTk/3. Here a_r > . >~y_, and a_, + B, + v_, = 0. As was
the case for S*, ST is bounded between £1 by its definition.

In this study, two statistical functions, the probability density function (PDF')
and the joint probability density function (JPDF), are calculated based on a spatial
and temporal average [135]. The PDF of the non-dimensional state parameters of
the resolved strain rate and SGS stress tensor, S* and S¥, at the channel center is
shown in Figure 4.8. The PDF profiles of S* obtained by the DM_L and DNM are
similar, and indicate that the most probable strain state is axisymmetric extension
(S* = 1), rather than axisymmetric compression (S* = —1). However, the profile
of the PDF of S* drops slightly near S* = 1. In contrast, Figure 4.8b shows that
the mode of S} is located at S’ = —1, which indicates that the most probable
stress state is axisymmetric compression, corresponding to an eigenvalue ratio of
a_; Py iy_r=—1:—1:2. Although the modes of S obtained by both the DM_L
and DNM are located at S* = —1, the DNM implies a higher probability of S¥ = —1
than the DM_L. The DNM results also indicate that the probability of S* = —1 is
relatively prominent in comparison with the probability of S* = 1, while the DM_L
results indicate that the probability of S* = —1 is almost the same as that of S* = 1.
Based on Figure 4.8b, the DNM yields a prediction which is closer to the observation

of Tao et al. [54] based on the PIV measurement of a turbulent flow in a square duct.

Figure 4.9 shows the PDFs of S* and S’ near the wall in the buffer layer
(x5 = 24.4). In contrast to the PDF of S* at the channel center (Figure 4.8a),
Figure 4.9a shows that the modes of S* in the buffer layer shift towards S* = 0 (QTD
near-wall flow). Note that in Figure 4.9b, the mode of S* in the buffer layer obtained
by the DM_L also shifts towards S* = 0, but the mode of S obtained by the DNM
is still located at S¥ = —1. Figure 4.10a plots the PDF's of S* in the viscous sublayer
(z3 = 3.9). Both the DNM and DM_L results indicate that in the viscous sublayer,

the most probable state of the strain rate tensor is S* = 0. In general, the presence of
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FIGURE 4.8: PDF of the nondimensional state parameters at the channel center (a)
S* of resolved strain rate tensor S;;; (b) S¥ of SGS shear stress —7;; (Re, = 395).

the wall tends to reinforce the tendency of S* = 0, which corresponds to an eigenvalue
ratio of ag : Bs : 75 = 1:0: 1. This observation reflects the intrinsic QTD nature of
the near wall flow. The PDFs of S* in the viscous sublayer are shown in Figure 4.10b.
It is observed that the mode of S obtained by the DM_L is located at S* = 0, while
the PDF of S? obtained by the DNM still peaks at S; = —1. Obviously, although
the resolved strain structures predicted by the DM_L and DNM are similar, the SGS
stress structures predicted by these two models are quite different, especially near the
wall. It is not surprising that for the DM_L prediction, the PDF of S} is coupled with

that of S*, since the constitutive relation of the DM is based on linear relation to the

resolved strain rate tensor.

To examine the relation between the preferred states of S;; and 7;; predicted by
the DNM, the JPDF of S* and S at the channel center is calculated and plotted in
Figure 4.11. When the DNM is applied, the mode of the JPDF is located at S* =1
and S¥ = —1. Corresponding to any S*, the preferred state of the local SGS stress
is always S* = —1, whereas corresponding to any S, the most probable state of the
local strain is still S* = 1, which implies that these two state parameters predicted
by the DNM are no