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Abstract

Buoyant flows are characterized with unsteady large-scale structures and thus

time-dependent large eddy simulation (LES) is generally favored. In this dissertation,

to further explore LES for buoyant flow, an LES code based on a collocated grid

system is first developed. A multigrid solver using a control strategy is developed

for the pressure Poisson equations. The control strategy significantly accelerated the

convergence rate. A temperature solver using a fourth-order Runge-Kutta approach

is also developed. The LES code is extensively tested before it is applied. Although

the collocated grid system will introduce conservation errors, in tests of a steady lid-

driven cavity flow and transient start-up flow, the effect of the non-conservation of

the collocated grid system was not significant.

In LES, the effect of SGS scales is represented by SGS models. A novel dynamic

nonlinear model (DNM) for SGS stress is tested using isothermal channel flow at

Reτ = 395. The kinetic energy dissipation and geometrical characteristics of the

resolved scale and SGS scale with respect to the DNM are investigated. In general, the

DNM is reliable and has relatively realistic geometrical properties in comparison with

the conventional dynamic model in the present study. In contrast to a pure advecting

velocity field, a scalar (temperature) field displays very different characteristics. The

modelling of SGS heat flux has not been as extensively studied as that of SGS stress

partly due to the complexity of the scalar transport. In this dissertation, LES for a

turbulent combined forced and natural convection is studied. The DNM model and

a nonlinear dynamic tensor diffusivity model (DTDM-HF) are applied for SGS stress

and heat flux, respectively. The combined effect of the nonlinear models is compared

to that of linear models. Notable differences between the nonlinear and linear SGS

models are observed at the subgrid-scale level. At the resolved scale, the difference

is smaller but relatively more distinguishable in terms of quantities related to the

temperature field.

Finally, the geometrical properties of the resolved velocity and temperature

fields of the thermal flow are investigated based on the LES prediction. Some uni-

versal geometrical patterns have been reproduced, e.g. the positively skewed resolved
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enstrophy generation and the alignment between the vorticity and vortex stretch-

ing vectors. The present research demonstrates that LES is an effective tool for the

study of the geometrical properties of a turbulent flow at the resolved-scales. The

wall imposed anisotropy on the flow structures and orientation of the SGS heat flux

vector are also specifically examined. In contrast to the dynamic eddy diffusivity

model, the DTDM-HF successfully predicts the near-wall physics and demonstrates a

non-alignment pattern between the SGS heat flux and temperature gradient vector.
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Chapter 1

Introduction

1.1 Motivation

Purely forced convection is an isothermal flow driven by a pressure gradient. In non-

isothermal cases, buoyancy forces due to density difference induced by temperature

gradients also act as a driving force for fluid motion. The case when buoyancy is the

only driving force is referred as natural convection. In many engineering and envi-

ronmental applications, such as airflow in an air-conditioned room, heat exchangers,

turbine blades, electronic cooling system, and nuclear reactors, the flow is neither

pure forced nor natural convection but instead a combination of both regimes call

mixed convection. Natural and forced convection can be combined in two different

ways: the buoyancy and pressure forces act in the same direction which is called

aiding flow, or they are in different directions which is called opposing flow. The

impact of the buoyancy can be significantly different in the aiding and opposing flow

regions. In aiding flow region, the shear stress, turbulence production and turbu-

lent heat transfer are reduced compared to the forced convection. In contrast, the

shear stress, turbulence production and turbulent heat transfer in opposing flow are

enhanced due to the effect of the buoyancy force. Compared to forced convection,

mixed convection is more complicated, because buoyancy can significantly alter the

turbulence [1]. Therefore, thermal flows exhibit some specific features which are not

encountered in isothermal flows including the following:

i) Multiple flow regimes may coexist in one flow domain. For example, it is

common to find unsteady laminar circulation and transitional flow in a fully developed
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turbulent flow at relatively high Reynolds number [2]. In contrast, low Reynolds

number phenomena are usually encountered only near a wall for isothermal flows.

ii) Buoyancy exhibits the strongest effects in a very thin boundary layer along

the wall, where many properties of practical importance vary steeply and are difficult

to measure or estimate.

iii) Buoyant flows are characterized by well-organized, 3-dimensional, unsteady

large-scale structures, which are frequently noticed even in a steady situation. Due

to these large-scale structures, turbulent diffusion may occur in a counter-gradient

direction, which is opposite to standard gradient-diffusion behaviour [3].

Given such specific features as these, buoyant flows are relatively more difficult

to predict. Among the three major computational methods, i.e. direct numerical

simulation (DNS), Reynolds-averaged Navier-Stokes (RANS) and large eddy simula-

tion (LES), RANS is the most widely used method for engineering flows since the

full spectrum of turbulence is modeled and thus fewer computational resources are

required. However, although RANS have been successfully applied for a variety of

engineering flows, it often fails for turbulent buoyant flows. One typical example is

related to simulation of a prototypical thermal flow in a vertical channel with differ-

entially heated sidewalls. In such a flow, the main temperature gradient is horizontal

and perpendicular to the buoyancy. It is well known that a RANS calculation with the

widely used linear isotropic eddy diffusivity model will fail to reproduce the stream-

wise turbulent heat flux of the flow, since the eddy diffusivity model requires that the

turbulent heat flux be aligned to the mean temperature gradient which is zero in the

streamwise direction. In general, the standard k − ε and traditional eddy-viscosity

models for a RANS simulation are based on the equilibrium assumption and use only

a single time or length scale, and thus cannot account for nonequilibrium effects and

multi-scale phenomena in buoyant flows. On the other hand, second-moment closures

in RANS contain a large number of terms that need to be modeled. Therefore, to re-

produce buoyant flows, and especially to capture the unsteady large-scale structures,

a time-dependent simulation, such as LES or DNS, is generally required.
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1.2 Subgrid-scale Modelling in LES

DNS is the most straightforward approach and solves all scales of turbulence. How-

ever, its application is limited to low Reynolds number flows due to the excessive

computational resources required. In RANS, all scales of turbulence are modeled

which generally eliminates the details of the turbulence in both space and time. In

comparison, LES is a technique standing between DNS and RANS. In LES, the flow

field is separated into large- and small-scale motions. The contribution of the large

energy-containing scales are resolved exactly, and only the effects of the small scales

of turbulence are modeled. LES is appropriate to capture the unsteady effect of tur-

bulence since only fluctuations smaller than the cutoff scale are smoothed out using

a local, spatial averaging filter. Since the cutoff scales are expected to be problem

independent (i.e. independent of the large-scales and of a universal character), the

filter size, which is usually equal to the grid size, should be located in the inertial sub-

range in the kinetic energy spectrum where turbulence is statistically in equilibrium

and universal in character.

In LES of thermal flows, additional terms, i.e. SGS stress and heat flux terms,

are present in the LES transport equations due to the filtering operation. These SGS

terms represent the effect of the cutoff scales of motion and need to be modeled.

The first SGS stress model was derived by Smagorinsky [4], in which the SGS stress

tensor is related to the filtered rate of strain. For homogeneous, isotropic turbulence,

Lilly [5] showed that the coefficient of the Smagorinsky model has a simple, univeral

value of 0.17. However, it was soon found that this value of the constant was too

dissipative and the coefficient should be case dependent. In 1991, Germano et al. [6]

suggested a Smagorinsky-type Dynamic Model (DM) using a dynamic procedure to

determine the local value of the coefficient. The widely used DM [6,7] is known for its

capability of self-calibration, general balancing of the TKE between the resolved and

unresolved scales, and being free from any empirical constants and artificial near-wall

damping functions. However, the DM originates from the Smagorinsky constitutive

relation which is based on the molecular transport analogy and requires the principal

axes of the negative SGS stress tensor to be strictly aligned with those of the filtered

strain rate tensor. This rigid and overly simplified geometrical relation between the
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stress and strain rate tensors is not realistic in terms of physics and can lead to other

problems. For instance, simulations based on the DM can be numerically unstable

due to excessive backscatter of TKE from the subgrid to resolved scales if the model

coefficient is not properly bounded [8]. A plane-averaging scheme is often applied for

bounding the coefficient [6,7]. However, to apply the plane-averaging scheme, the flow

has to be homgeneous in one or two directions. Since the above mentioned deficiencies

of the DM stem from its constitutive relation, improved dynamic SGS stress models

often consider non-Smagorinsky type constitutive relations. One approach to achieve

this goal is to use nonlinear tensor functions to build the constitutive relation. A

dynamic nonlinear model (DNM) was proposed by Wang and Bergstrom [9] based

on the three-parameter quadratic constitutive relation of Speziale and Gatski [10,11].

The DNM is observed to have obvious advantages in comparison with the conventional

DM: it significantly increases the numerical stability, i.e., its coefficients are calculated

dynamically during simulation without any artifically ‘tuning’; it allows for a more

realistic geometrical representation of the SGS stress tensor [12] and provides more

degrees of freedom for reflecting both forward and backward scatter of TKE between

the resolved and unresolved scales. Other nonlinear SGS stress models can also

be found in the recent works of Lund and Novikov [13], Wong [14], Kosović [15],

Winckelmans et al. [16] and Liu et al. [17].

The closure of the filtered scalar (temperature) transport equation requires

modelling of the SGS scalar (heat) flux. In contrast to the velocity field, a scalar

field displays different characteristics. In a comprehensive review of scalar transport,

Warhaft [18] addressed both large- and small-scale behaviour and demonstrated that

the large- and small-scales in a scalar field are strongly coupled and the traditional

cascade picture, which promotes the notion of universality of the small scale motions,

is a crude representation. Unlike the velocity field, even at high Reynolds number,

the scalar field remains anisotropic at the dissipation and inertial scales in the pres-

ence of a main scalar gradient. Kang and Meneveau [19] also demonstrated that in

the presence of a scalar gradient, whereas the TKE dissipation tensor tends towards

isotropy at small scales, the SGS scalar-variance dissipation remains anisotropic in-

dependent of filter scale. The promise of LES strongly relies on the assumption of

small-scale universality and isotropy, i.e. the statistics of the small-scale turbulence
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are independent of forcing and boundary conditions. This anisotropic behavior of

a scalar field presents a significant challenge for LES modelling: not only the mean

scalar-variance dissipation rate, but also the geometrical properties of the SGS scalar

field should be reproduced by a SGS model. Furthermore, the performance of SGS

scalar flux models may be case dependent. Partly due to the complexity of the physics

of scalar transport, modelling of the SGS heat (scalar) flux has not been as exten-

sively studied and developed as that of the SGS stress. The concept of a dynamic

SGS eddy diffusivity model (DEDM) for the SGS heat flux was initially introduced

by Moin et al. [20] in 1991 immediately after the proposal of the dynamic procedure

by Germano et al. [6], in which the SGS heat flux vector is made proportional to the

negative resolved temperature gradient based on the analogy to the molecular heat

diffusion/conduction process governed by Fourier’s law. Since the transport of the

SGS thermal energy due to unresolved turbulent motions is fundamentally different

and much more complex than that due to a molecular heat conduction process, the

predictions of the conventional DEDM [20] are much more isotropic than the actual

phenomenon [19]. Nevertheless, the DEDM is still the most popular model in the lit-

erature and has been applied for predicting some of the mean properties of turbulent

scalar fields [21–29].

In order to improve the performance of the SGS heat flux model in terms of

its physical and geometrical representation of the SGS heat flux vector, some inno-

vative modelling approaches have been proposed in the literature. Using a statistical

approach, Yoshizawa [30] derived a SGS heat flux model based on the gravitational

acceleration vector and resolved temperature and velocity gradients (It should be

noted that Yoshizawa’s model does not rely on the dynamic modelling approach,

which is different than the SGS heat flux models to be discussed below). By applying

the Taylor expansion to the classic scale-similarity model introduced by Bardina et

al. in 1980 [31], Leonard [32] suggested a gradient SGS heat flux model. However, it

was soon found that the scale-similarity-type models do not dissipate enough energy

and typically lead to inaccurate results. Since the eddy diffusivity model with a posi-

tive coefficient is a purely dissipative model, mixed models which combine the former

two models were introduced into the LES community. Salvetti and Banerjee [33]

introduced a dynamic two-parameter mixed SGS heat flux model, in which the coef-
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ficients of the eddy diffusivity and scale-similarity term are determined dynamically.

The model of Salvetti and Banerjee was an extension of the work of Zang et al. [34]

on a dynamic mixed SGS stress model, and has been recently applied by Tyagi and

Acharya [35] for studying heat transfer of rotating rib roughened square duct flow,

and by Jaberi and Colucci [36] for studying reacting and non-reacting turbulent flows

using both the a priori and a posteriori LES methodsa. Based on a Taylor series

analysis of the discrete filtering process related to the SGS heat flux term, Porté-Agel

et al. [37, 38], and Kang and Meneveau [39] introduced a mixed model, which dy-

namically combines the linear eddy diffusivity SGS heat flux model with a gradient

SGS heat flux model. This model has been applied for studying heat fluxes and dis-

sipation in an atmospheric boundary layer and heated wind tunnel wake flow using

the a priori LES approach. Peng and Davidson [40] proposed a dynamic tensor dif-

fusivity model for representing the SGS heat flux and used it to predict a buoyancy

driven channel flow. Their model takes into account the temperature gradients in

all directions, and was able to sustain the streamwise SGS heat flux even when the

streamwise temperature gradient is zero.

1.3 Assessment of instantaneous structures: Tur-

bulence Geometrical Statistics

In the conventional approach within the LES community, turbulence is assessed in

terms of properties obtained after temporal and spatial averaging, such as mean and

fluctuating velocity and temperature fields, resolved and SGS shear stress and scalar

flux profiles, etc. Although it is well known that turbulence is characterized by various

internal organizations (coherent structures), the conventional analysis approach pro-

vides very poor information on the flow structures and dynamic interaction between

them. In contrast, various geometrical alignments (relative orientation) between vec-

tors composed of velocity gradients obtained using the methodology of turbulence

geometrical statistics clearly point to the presence of the internal organizations. For

aThe so-called a priori LES denotes filtered DNS in which LES quantities are obtained by im-
posing a range of filters on the DNS data. In contrast to the a priori LES, the analysis based on
the LES prediction is specified as the a posteriori LES. The results of a posteriori LES are affected
by modelling and numerical errors.
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example, there is a distinct difference between the alignment patterns of the resolved

vorticity ω̄ and the eigenvectors λi of the strain rate tensor for a random Gaussian

field and turbulent flows, e.g. the PDFs of cos(ω̄, λi) are flat for a random Gaussian

field [41], while ω̄ tends to be aligned with the intermediate eigenvector of the strain

rate tensor for turbulent flows. The PDF of enstrophy generation is also different: it

is asymmetric and preferentially positive for real turbulent flows while it is symmetric

for a random Gaussian field [41]. The above alignments not only manifest the exis-

tence of organization, but also reveal the dynamics of turbulence. For instance, the

positiveness of the enstrophy generation indicates the prevalence of vortex stretching

over vortex compressing in turbulence. Although internal organization in turbulent

flows can also be observed individually by some visualization techniques, geometrical

statistics provides more unambiguous information on such structures and thus is more

appropriate for revealing the characteristics of the structures and physical process of

turbulent flows. Furthermore, since most of the geometrical invariant quantities and

relations, such as enstrophy generation, vortex stretching and compression, and align-

ments between various tensors and vectors [42–45], studied in turbulence geometrical

statistics are frame invariant, i.e. they are independent of the reference system.

Due to the richness of the topic, in the following context, I only focus on

reviewing the literature that is relevant to this research, viz., recent advances in ap-

plying LES for studying the geometrical properties of turbulent flow and scalar fields.

Since the pioneering works of Vieillefosse [46], Pelz et al. [47], Ashurst et al. [48] and

Kerr [49] in the 1980’s, the methodology of turbulence geometrical statistics has been

successfully introduced for studying turbulence structures and dynamics. However,

previous approaches have primarily utilized DNS [47–53] and experimental [44, 45]

approaches based on unfiltered turbulent flows. Recently, study of the statistical ge-

ometry of turbulence at the filtered- (or, resolved-) scale based on LES has become

a relevant research topic. This is due to the evidence that many important physical

phenomena (both local and global) of fluid flows can be observed and reproduced

at a given filtered level, temporally and spatially. Tao et al. [54] analyzed the holo-

graphic particle image velocimetry (HPIV) measurements of a quasi-isotropic flow at

the center of a square duct using the a priori LES approach, and observed that many

geometrical alignment trends of the filtered turbulence agree with those of unfiltered
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turbulence [48–53]. For example, Tao et al. [54] were able to reproduce the canoni-

cal preferential alignment pattern between the resolved vorticity vector (ω̄) and the

eigenvector (eSβ) corresponding to the intermediate eigenvalue of the resolved strain

rate tensor in the context of LES. This specific alignment pattern has been noted in

many studies ever since the seminal work of Ashurst et al. [48] and Kerr [49]. Follow-

ing the study of Tao et al. [54], a priori LES investigations of the alignment patterns

between the resolved vorticity vector, vortex stretching vector and eigenvectors of

the resolved strain rate tensor have appeared in the literature including the recent

works by Horiuti [55] and Borue and Orszag [56] who analyzed DNS data of isotropic

flows, and by Higgins et al. [57] and Porté-Agel et al. [38] who analyzed experimental

measurements of atmospheric boundary layer flows.

An important application of a priori LES studies is to provide physical insight

for the a posteriori LES approach for numerical simulations in terms of the design

of improved SGS modelling approaches and understanding of the mechanism of in-

teractions between the resolved- and subgrid-scale (SGS) motions. In contrast to the

above-mentioned a priori LES study of the geometrical properties of fluid tensors and

vectors, the a posteriori LES approach has also been recently applied to this type

of study, which includes the work of Fureby and Grinstein [58] who investigated the

resolved-scale vorticity magnitude and vortex stretching rate using numerical simu-

lations, and the works of Wang et al. [12, 59] who studied the geometrical property

of the SGS stress tensor and resolved vorticity, and the near-wall anisotropic effect

on vortex stretching patterns based on LES of turbulent Couette flow. In compari-

son with DNS, the study of turbulence geometrical statistics using an LES approach

is beneficial in that it provides a reduction in the computational cost, and more

importantly, the results of the analysis can potentially lead to the development of

improved SGS modelling strategies. For example, the phenomenological discovery

of Vieillefosse [46], Kerr [49], and Ashurst et al. [48] that ω̄ is preferentially aligned

with eSβ has been recently used for construction of some innovative local geometrical

structure-based SGS stress models for LES [60–62].

Closely coupled with the geometrical property of the fluid vectors and ten-

sors, the geometrical characteristics of the scalar gradient has also been investigated

based on the DNS approach over the past decade. A number of papers have been
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published, for instance, Nomura and Elghobashi [63] studied turbulent mixing of an

inhomogeneous passive scalar in the context of a nonpremixed reacting flow, Mart́ın

et al. [64] proposed a simplified stochastic equation for modelling the scalar gradient

evolution process and compared their statistical results with the DNS data, and Bo-

ratav et al. [65] studied the alignment feature between the vorticity, scalar gradient

and eigenframe of the strain rate tensor based on DNS of turbulent buoyant non-

premixed flames. Recently, the method of LES has also been applied for studying the

geometrical properties of the turbulent scalar gradient vector. For instance, Higgins

et al. [66] examined the geometrical alignments between the real SGS heat fluxes

and those predicted by a SGS model based on a priori LES analysis of a turbulent

atmospheric boundary layer flow.

1.4 Objectives of the Dissertation

i) The first objective of this dissertation is to study mixed convection in a vertical

slot for aiding and opposing flow conditions. To examine the effect of buoyancy,

the resolved velocity and temperature fields and second-order statistics including

Reynolds stress components and turbulent heat fluxes are analyzed following the

conventional method in the LES community.

ii) Although the methodology of turbulence geometrical statistics has been an effective

tool for studying the structures of turbulence, its applications are mainly based on

DNS or filtered DNS (a priori LES). The relevant studies based on a posteriori LES

are still limited, possibly due to concerns over the accuracy since the a posteriori LES

is inherently connected to modelling and numerical errors. The second objective is

to reproduce those universal geometrical properties of turbulent flows based on the a

posteriori LES of mixed convection.

iii) According to DNS and LES studies of wall-bounded flows [43, 52, 53, 59], the

presence of the wall in a flow field has a significant anisotropic effect on the local flow

structures. The third objective of this dissertation is to examine the flow structures

in the near-wall regimes (i.e., viscous sublayer, buffer layer and logarithmic region)

in terms of the statistical geometry of quantities related to the coherent structures
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and dynamics of turbulence, such as helicity, enstrophy generation, the alignment

pattern of the vorticity vector with respect to the eigenframe of the resolved strain

rate tensor, and the ratio of the eigenvalues of the resolved strain rate tensor.

iv) For mixed convection, the scalar (temperature) is driven by a mean scalar (tem-

perature) gradient and advected by turbulence. The geometrical characteristics of the

scalar field are of fundamental importance to understand the dynamics of the scalar

transport (mixing) processes, and thus are specifically investigated in this disserta-

tion together with the geometrical properties of the fluid vectors and tensors, such as

eigenvectors of the strain rate tensor.

v) The final objective of this work is to examine the performance of different SGS

stress and heat flux models, and their combined effect on the LES prediction of a

buoyant flow. In this dissertation, SGS stress models are not only assessed by the

conventional approach, i.e. by comparing their LES prediction to the DNS data, but

also by their geometrical properties studied using turbulence geometrical statistics.

Note that SGS dissipation is closely related to the local flow structures. Therefore,

both mean and instantaneous TKE dissipation as well as the statistical relationship

between the SGS dissipation and characteristic parameters of the local flow structures

are examined. Specifically, the performance of the SGS heat flux model is investigated

with respect to the orientation of the SGS heat flux vector.

1.5 Outline of the Dissertation

The dissertation is organized as follows. In chapter 2, the methodology of LES is

introduced, e.g. the filtering operation for LES, the algorithm for solving the filtered

governing equations, and classic SGS stress and heat flux models for the closure of

the LES equations are reviewed.

In chapter 3, the numerical algorithm including the discretization on a collo-

cated grid system using the finite volume method, use of a fractional-step method

suggested by Kim and Moin [67] and application of a multigrid solver using a control

strategy for solving the pressure Poisson equation are introduced. In this chapter,

the conservation properties of the collocated grid system are tested in comparison
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with that of the staggered grid system. At the end of the chapter, the present 3-D

LES code is evaluated using two benchmark flows, i.e. lid driven cavity flow and low

Reynolds number channel flow.

In chapter 4, an LES study of a channel flow at Reτ = 395 is reported. The new

dynamic nonlinear SGS stress model of Wang and Bergstrom [9] is investigated and

compared to the conventional linear dynamic Smagorinsky model. In this chapter,

the local geometrical properties of the small-scale flow structures are reported, and

the issue of TKE dissipation produced by these two SGS models is investigated using

both the conventional LES approach and the methodology of turbulence geometrical

statistics.

In chapter 5, the combined forced and natural convective flow between two

vertical plates at different temperatures is investigated using the LES approach. Two

sets of dynamic SGS models, i.e. a combination of linear SGS models and a combi-

nation of nonlinear SGS models, were applied in this chapter. The LES predictions

of the thermal fluid flow field are compared with DNS data reported in the literature

using conventional LES approaches.

In chapter 6, the geometrical properties of the velocity and temperature field of

the mixed flow investigated in chapter 5 are studied. This chapter focuses on a variety

of characteristic geometrical patterns of local flow structures. The effect of buoyancy

on the flow field is examined in terms of three different near-wall flow regimes in both

the hot and cold wall regions. The near-wall restriction on the geometrical properties

of the thermal flow field is reported. In this chapter, the performance of SGS heat

flux model is also investigated with respect to the orientation of the SGS heat flux

vector.

Finally, a summary of the major contributions of the dissertation and a discus-

sion of directions for the future research are presented in chapter 7.
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Chapter 2

Filtered Equations and SGS Models

2.1 The Filtering Operation

LES is based on the fact that the flow field consists of multiple scales of motion and

can be separated into large- and small-scales by applying a filtering operation. A

filtered variable denoted by an overbar is defined as

f̄(x) =

∫

D

f(y)G(x,y)dy, (2.1)

where G(x,y) is the filter function, which determines the size of the small-scales,

and D is the entire domain. The most commonly used filter functions are: the sharp

Fourier cutoff filter

Ĝ(k) =





1 if k ≤ π/∆

0 otherwise
, (2.2)

the Gaussian filter

G(x) =

√
6

π∆
2 exp

(
−6x2

∆
2

)
, (2.3)

and the tophat filter

G(x) =





1/∆ if|x| ≤ ∆/2

0 otherwise
, (2.4)

where the caret ·̂ denotes the complex Fourier transform of the original quantity

and ∆ denotes the filter width. An exhaustive discussion of various filters and their

properties can be found in Pope’s work [68]. In general, the sharp Fourier cutoff filter

clearly separates scales, but it causes non-local oscillatory behavior when filtering
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spatially localized phenomena [69]. The tophat filter has good spatial localization, but

does not separate the scales unambiguously. The Gaussian filter has an intermediate

character between the sharp Fourier filter and the tophat filter.

2.2 Filtered Governing Equations for LES

After applying the filtering operation (2.1), the continuity, Navier-Stokes (N-S) and

energy equations for incompressible flows will take the following forms:

ūi,i = 0, (2.5)

˙̄ui + (ūiūj),j = −p̄,i /ρ+ νūi,jj −τij ,j , (2.6)

and

˙̄θ + (ūj θ̄),j = αθ̄,jj −hj ,j , (2.7)

where

τij
def
= uiuj − ūiūj (2.8)

and

hj
def
= ujθ − ūj θ̄. (2.9)

The additional SGS stress and heat flux terms, i.e. τij and hj, appearing in the

above filtered governing equations represent the effect of the small scales and must

be modeled.

In the context of the energy cascade, energy is generated in the inertial range at

the large-scale level and then transmitted to and dissipated at the viscous dissipative

scales. In LES, the dissipative scales of motion are resolved poorly. Therefore, the

main function of SGS stress models is to ‘drain’ energy from the resolved scales,

mimicking the actual energy dissipation. To demonstrate the mechanisms of energy

transfer between the resolved and SGS scales, the transport equations for kinetic

energy K = (ūiūi)/2 are given as follows:

13



K̇ + (Kūj),j︸ ︷︷ ︸
Advection of K

= −(p̄ūj),j /ρ︸ ︷︷ ︸
Pressure diffusion

+ νK,jj︸ ︷︷ ︸
Viscous diffusion

− (τij ūi),j︸ ︷︷ ︸
SGS diffusion

− νūi,j ūi,j︸ ︷︷ ︸
Viscous dissipation

+ τijS̄ij︸ ︷︷ ︸
SGS dissipation

(2.10)

The advection and diffusion terms in the above equation do not create or drain

energy but only redistribute it within resolved scales. The last two terms in the

above equation, i.e., viscous and SGS dissipation, represent the energy dissipated by

viscosity and net energy transfer between the resolved and SGS scale, respectively.

The latter, i.e., SGS dissipation τijS̄ij , can be either positive or negative locally, where

the negative values of the τijS̄ij represents the energy transfer from resolved to SGS

scales (forward scatter), and the positive values of the τijS̄ij represents the energy

transfer in the reverse direction (backward scatter). In general, energy cascades in

the direction from large- to small-scales, therefore, the SGS dissipation ( τijS̄ij) is

negative on average [70].

2.3 SGS Stress Modelling

Since the small-scale motions have shorter time scales than the large, energy-carrying

eddies, it can be hypothesized that they adjust more rapidly and recover equilib-

rium nearly instantaneously. The small-scale velocity field, therefore, is assumed to

be homogeneous and isotropic. The classic Smagorinsky Model (SM) is based on

the equilibrium assumption and assumes a linear constitutive relation between the

unknown SGS stress term and resolved strain rate tensor. There are several main

drawbacks related to the model. For instance: i) measurements of the local SGS

dissipation often exhibit some negative dissipation regimes [71, 72], in contrast, the

SM is purely dissipative due to the positive coefficient; ii) a comparison between the

SGS shear stress predicted by the SM and that obtained using experimental and

DNS data exhibits significant differences [72]; iii) for the laminar flow regime, the

SM with the standard coefficient over estimates the SGS stress and dissipation, often

preventing transition to turbulence [71]. Similarly, in the near-wall region, the model

is too dissipative to predict the correct asymptotic behavior without wall damping
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functions [69]. Noting the above drawbacks, Germano et al. [6] and Lilly [7] suggested

the dynamic Smagorinsky model (DM), which employed a dynamic procedure to im-

prove the performance of the SM significantly. Although the DM has been widely

applied in LES due to its simplicity and robustness, a few drawbacks are also linked

to the linear constitutive relation adopted in its modelling approach. The model

coefficient obtained through a dynamic procedure needs to be properly bounded to

avoid large values, which generally lead to a potential numerical instability due to

excessive backscatter of TKE. To prevent instability, a plane averaging technique is

often applied [7,20,73], which then limits the application of this model to flows with

homogeneous planes. On observing the deficiencies of the linear Smagorinsky type

models, nonlinear SGS modelling approaches were introduced into the LES commu-

nity. Earlier works include the classic scale-similarity model of Bardina et al. [31],

a mixed model which adds a dissipative Smagorinsky term to the scale-similarity

model [33, 34, 72, 74–76] and other nonlinear models [9, 15, 32, 77–79]. Recent reviews

of different SGS stress models can be found in the literature [68, 70, 80]. In the next

section, several classic SGS stress models, such as the DM, scale-similarity model,

mixed model, and nonlinear dynamic model are reviewed.

2.3.1 Dynamic Smagorinsky Model

The conventional DM introduced by Germano et al. [6] and Lilly [7] has been widely

used in the LES community due to its simplicity and robustness. The constitutive

relation for the DM is based on a linear tensorial function of the resolved strain rate

tensor S̄ij , i.e.

τ ∗ij = τij −
τkk

3
δij = −2CS∆̄2|S̄|S̄ij , (2.11)

where S̄ij
def
= (∂ūi/∂xj + ∂ūj/∂xi)/2, |S̄| = (2S̄ijS̄ji)

1/2 is the norm of the resolved

strain rate tensor, and an asterisk represents a trace-free tensor, i.e. (·)∗ij
def
= (·)ij −

(·)kkδij/3. In the DM, the model coefficient Cs is computed dynamically during the

simulation, rather than input a priori as in the SM. The DM has made significant

progress compared to the SM. It is free from any empirical constant and can adjust to

the flow condition automatically. Theoretically, its coefficient can be locally negative

and thus allow for backscatter of the kinetic energy. As for the near-wall flow, no
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additional damping function is needed to ensure the correct near-wall behavior of the

SGS stress.

The dynamic process proposed by Germano et al. [6] is based on a second,

coarser test-grid-level filtering process. By applying the second test-grid-level filter

denoted by a tilde, i.e.(̃·), to the filtered governing equations, we obtain a new subtest-

grid scale (STS) stress, Tij, which is

Tij = ũiuj − ˜̄ui ˜̄uj (2.12)

The characteristic size of the test-grid filter is denoted by ˜̄∆. As suggested by Ger-

mano et al. [6], the ratio of the width of the test-grid filter to that of the grid filter is

typically set to 2. Applying the closure defined by Eq.(2.11) to the test-grid filtered

equations, the STS stress is similarly approximated by

T ∗
ij = Tij −

δij
3
Tkk = −2CS

˜̄∆2
∣∣∣ ˜̄S

∣∣∣ ˜̄Sij (2.13)

The Germano identity [6] is obtained by subtraction of the test-grid filtered τij from

Tij , i.e.

Lij = Tij − τ̃ij = ˜̄uiūj − ˜̄ui ˜̄uj (2.14)

Substituting Eqs.(2.11) and (2.13) into the Eq.(2.14), the following equation is ob-

tained

Lij −
1

3
Lkk = −αijCS + β̃ijCS (2.15)

where

αij = 2 ˜̄∆2
∣∣∣ ˜̄S

∣∣∣ ˜̄Sij (2.16)

βij = 2∆̄2
∣∣S̄

∣∣ S̄ij (2.17)

Note that Lij can be numerically calculated and thus the coefficient CS is only un-

known variable in Eq.(2.15). However, the above Eq.(2.15) is over-determined since

five independent equations are available to determine a single coefficient. Therefore,

the Germano identity Eq.(2.14) can be satisfied only approximately. The error is

eij = L∗
ij + αijCS − β̃ijCS (2.18)
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where L∗
ij is the tracefree form of Lij, i.e. L∗

ij = Lij − 1
3
Lkk. By assuming that the

coefficient CS is spatially invariant within the test window, CS can be extracted from

the test-grid filtering operation. Eq.(2.18) then becomes

eij = L∗
ij + CSMij (2.19)

where

Mij = αij − β̃ij (2.20)

An optimal value for CS can be obtained by minimizing the error of the Germano

identity using the least squares method:

∂E2

∂CS
=
∂ 〈eijeij〉
∂CS

= 0 (2.21)

Note that the trace of Lij vanishes because S̄ii = 0 for an incompressible flow. The

following expression for the model coefficient CS is obtained:

CS = −MijLij

MijMij

, (2.22)

The dynamic procedure can be applied to models with more than one coefficient as

well.

The DM has been applied to many flows, generally with good results. How-

ever, as discussed before, it may become numerically unstable. To prevent unrealistic

backscatter of the TKE due to large negative coefficients, the coefficient field is gen-

erally filtered using a plane averaging scheme or the negative coefficients are simply

clipped during the simulation [6,7]. Difficulties in applying a plane averaging scheme

arise in flows that do not possess directions of statistical homogeneity. Another

disadvantage related to the plane averaging scheme is that it will smear the local

characteristics of the model.
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2.3.2 Scale Similarity and Mixed Model

In LES, the instanteneous velocity ui is decomposed into resolved velocity ūi and SGS

fluctuations u′i, i.e.

ui = ūi + u′i (2.23)

Using the above decomposition, the SGS stress τij can be split as:

τij = uiuj − ūiūj = (ūi + u′i)(ūj + u′j) − ūiūj

= ūiūj + u′iūj + ūiu′j + u′iu
′
j − ūiūj

= (ūiūj − ūiūj) +
(
u′iūj + ūiu′j

)
+ u′iu

′
j

(2.24)

where the terms in the first and second bracket are denoted as Leonard stresses and

cross terms, respectively, and the last term is the Reynolds SGS stress. Namely,

τij = Lij + Cij +Rij (2.25)

where

Lij = ūiūj − ūiūj, (2.26)

Cij = u′iūj + ūiu
′
j, (2.27)

and

Rij = u′iu
′
j. (2.28)

Eq. (2.23) is filtered to obtain the filtered SGS components, i.e. u′i = ūi− ¯̄ui, and then

the scale-similarity model of Bardina [31] assumes the cross term and SGS Reynolds

stress can be approximately as

Cij = u′iūj + ūiu′j ≈ ¯̄uj(ūi − ¯̄ui) + ¯̄ui(ūj − ¯̄uj) (2.29)

and

Rij = u′iu
′
j ≈ (ūi − ¯̄ui)(ūj − ¯̄uj). (2.30)

Substituting Eq. (2.26), (2.29) and (2.30) into (2.25), yields:
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τij = (ūiūj − ūiūj) +
(
u′iūj + ūiu′j

)
+ u′iu

′
j

≈ (ūiūj − ūiūj) + [¯̄ui(ūj − ¯̄uj) + ¯̄uj(ūi − ¯̄ui)] + (ūi − ¯̄ui)(ūj − ¯̄uj)

≈ ūiūj − ¯̄ui ¯̄uj

(2.31)

Consequently, the scale-similarity model introduced by Bardina et al. [31] takes the

following form:

τij = CSIM (ūiūj − ¯̄ui ¯̄uj) (2.32)

where CSIM is the numerical coefficient.

Another form of the scale-similarity model can be obtained by applying a test

filter. Since the most active subgrid scales are those closest to the cutoff scale (the

characteristic width of a filter) and interact primarily with the scales right above the

cutoff scale, a consequent thought is to relate the SGS stress, τij , to the resolved

Leonard stress ˜̄uiūj − ˜̄ui ˜̄uj, which is obtained by subtraction of the test-grid filtered

τij from Tij (see Eq. 2.14) and relates to the turbulent stresses right above the cutoff

scale. Based on their Particle Image Velocimetry (PIV) measurements in a round jet,

Liu et al. [72] confirmed that τij is highly correlated with the resolved Leonard stress

and thus proposed the following scale-similarity model:

τij = CL
SIM(˜̄uiūj − ˜̄ui ˜̄uj) (2.33)

where CL
SIM is the model coefficient, the tilde represents the test-grid filtering oper-

ation with characteristic width ∆̃ > ∆̄. The value of CL
SIM depends on the filtering

opreration. A discussion on the determination of the coefficient can be found in Cook’s

work [81]. Although a high correlations between the actual SGS stress and that mod-

eled by the scale-similarity model is found in the a priori tests [31,72], and the model

is also able to produce backscatter of TKE, it is found not to dissipate enough energy

which typically leads to inaccurate results. Therefore, a mixed model is suggested

which adds a dissipative Smagorinsky term to the scale-similarity model [31, 72], i.e.

τij = C1(˜̄uiūj − ˜̄ui ˜̄uj) − 2
(
C2∆̄

)2 |S̄|S̄ij (2.34)
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In the simulation of recirculating flows, Zang et al. [34] implemented a dynamic

mixed model (DMM) with C1 of fixed value and C2 determined dynamically with

good results. A value of C1 ≈ 1 was suggested in early papers [34, 74, 81]. Instead

of specifying C1, Vreman et al. [82] proposed a dynamic two parameter mixed model

(DTMM), in which both C1 and C2 are determined dynamically. The coefficients of

the mixed model could be determined using the dynamical procedure described in

section 2.3.1.

2.3.3 Dynamic Nonlinear Model

The dynamic nonlinear model (DNM) proposed by Wang and Bergstrom [9] is based

on the explicit quadratic tensorial polynomial constitutive relation originally intro-

duced by Speziale and Gatski [10,11] for the RANS approach, and takes the following

form within the context of LES:

τ ∗ij = −CSβij − CWγij − CNηij , (2.35)

where

βij = 2∆̄2
∣∣S̄

∣∣ S̄ij

γij = 2∆̄2(S̄ikΩ̄kj − Ω̄ikS̄kj)

ηij = 4∆̄2(S̄ikS̄kj −
1

3
S̄mnS̄nmδij)

(2.36)

where Sij = (ui,j +uj,i)/2 and Ωij = (ui,j −uj,i)/2. As part of a dynamical procedure,

a test-grid filter is applied to obtain the STS stress Tij . The trace free form of Tij is

T ∗
ij = −CSαij − CWλij − CNζij (2.37)

where

αij = 2 ˜̄∆2
∣∣∣ ˜̄S

∣∣∣ ˜̄Sij

λij = 2 ˜̄∆2( ˜̄Sik
˜̄Ωkj − ˜̄Ωik

˜̄Skj)

ζij = 4 ˜̄∆2( ˜̄Sik
˜̄Skj −

1

3
˜̄Smn

˜̄Snmδij)

(2.38)
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where the tilde denotes the test-grid filtering operation. The optimal values of the

three dynamic model coefficients CS, CW and CN can be obtained using the least

squares approach, which requires solution of the following matrix equation:




MijMij MijWij MijNij

WijMij WijWij WijNij

NijMij NijWij NijNij


 ·




CS

CW

CN


 = −




L∗
ijMij

L∗
ijWij

L∗
ijNij


 . (2.39)

Similar to the previous definition of Mij (Eq. 2.20), Wij and Nij are two differential

tensors defined as:

Wij
def
= λij − γ̃ij (2.40)

and

Nij
def
= ζij − η̃ij , (2.41)

The design of the modelling constitutive relation is based on the Speziale-Gatski con-

stitutive relation. The three tensorial base components (i.e., βij, γij and ηij) are

independent and individually related to three important SGS physical features, e.g.

the overall SGS dissipation level, a high correlation coefficient between the modelled

and exact SGS stress in an a priori LES test, and realistic reflection of TKE backscat-

ter [9]. Due to its nonlinear characteristics, the DNM is numerically robust and can

be applied locally without the need for bounding of its coefficients in the simulation,

which contrasts sharply with the performance of the DM. However, in terms of the

efficiency, it is found that the DNM is approximately 25% more computationally ex-

pensive than the DM [9]. Wang and Bergstrom investigated the model using LES of

turbulent Couette flow at relatively low Reynolds numbers [9]. The model was found

to be more robust compared to the DM. It can adjust to the local flow conditions

automatically and allow for both forward and backward scattering processes of TKE

between the resolved and unresolved scales.

2.4 SGS Heat Flux Modelling

Most pioneering works used the linear eddy diffusivity model (DEDM-HF) for the

heat flux term (e.g. Mion et al. [20], Cabot [83], Wong and Lilly [84]). The DEDM-
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HF assumes that the heat flux term is proportional to the temperature gradient. More

specifically, it suggests a linear constitutive relation between the SGS heat flux and

temperature gradient. Although the linear DEDM-HF cannot predict the anisotropic

behavior of the scalar field [19, 72], it has been applied for various turbulent scalar

transport problems with good results [21, 22, 24–27]. Recently, nonlinear SGS heat

flux models have been studied. Peng and Davidson [40] proposed a dynamic non-

linear tensor diffusivity model (DTDM-HF) for the SGS heat flux term for studying

turbulent buoyant flow. In their approach, the eddy diffusivity tensor is related to

the resolved strain rate tensor. DTDM-HF is actually similar to the nonlinear gra-

dient model (NGM-HF) proposed by Leonard [32], which is drived from Bardina’s

scale-similarity model [31]. Recall that the scale-similarity model is acknowledged to

provide insufficient dissipation of KTE, the DTDM-HF and NGM-HF, derived from

the scale-similartity model, may inherit the same deficiency. Instead, Salvetti and

Banerjee [33], Portè-Agel et al. [37, 38] and Kang and Meneveau [19] suggested dy-

namic mixed SGS heat flux models (DMM-HF) which combine the scale-similarity

model with a conventional linear eddy diffusivity model for the SGS scalar flux. The

DMM-HF compensates for the deficiency of the scale-similarity type model by adding

the Smagorinsky dissipative term. Since the magnitude of the Smagorinsky term is

much smaller than the similarity term, most of the advantageous features of the scale-

similarity model are retained in the mixed model. Compared to the linear diffusivity

model, the nonlinear models are able to capture the characteristic features of the

scalar field [33, 72].

2.4.1 Dynamic Eddy Diffusivity Model

The DEDM-HF introduced by Moin et al. [20] is based on the concept of a linear

eddy thermal diffusivity in analogy to Fourier’s law. In the literature, this model is

still the most popular for LES of scalar transport processes. The DEDM-HF adopts

the following constitutive relation for modelling the SGS HF vector:

hj = −αsgs
∂θ̄

∂xj
(2.42)

where αsgs is the SGS (eddy) thermal diffusivity. It is expressed as:
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αsgs = −νsgs

σsgs
(2.43)

where νsgs is the SGS viscosity and σsgs is the SGS Prandtl number. Suggested by

Lilly [7], the Smagorinsky closure, i.e. νSGS = CS∆̄2|S̄|, is applied to Eq.(2.43), i.e.,

αsgs = − CS

σsgs
∆̄2|S̄| (2.44)

Where CS is obtained dynamically by solving the DM, and the SGS Prandtl number

σsgs remains to be determined. By substituting Eq. (2.44) into (2.42), the obtained

DEDM-HF will take the following form:

hj =
CS

σSGS
∆̄2|S̄| ∂θ̄

∂xj
=

CS

σSGS
bj (2.45)

where

bj = ∆̄2|S̄| ∂θ̄
∂xj

. (2.46)

Similary, the heat flux at the test-grid scale is

Hj =
CS

σSGS

˜̄∆2| ˜̄S| ∂
˜̄θ

∂xj

=
CS

σSGS

aj (2.47)

where

aj = ˜̄∆2| ˜̄S| ∂
˜̄θ

∂xj
. (2.48)

Following the dynamic procedure of Germano et al. [6], a similar identity exists to

relate hj to Hj , i.e.

Lj = Hj − h̃j = ˜̄uj θ̄ − ˜̄uj
˜̄θ (2.49)

By substituting Eqs. (2.45) and (2.47) into Eq. (2.49) and minimizing the error of

the resulting equations using the least squares method (assuming that CS/σSGS is

spatially invariant within the test-grid scale), the SGS Prandtl number is obtained as

1

σSGS

=
1

CS

LjMj

MjMj

(2.50)

where Mj = aj − b̃j . Note that CS is calculated by Eq. 2.22. Actually, there is no

need to calculate σSGS and CS explicitly. For instance, let Cθ = −CS/σsgs, and then
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the heat flux model (2.45) and (2.47) take the following form:

hj = Cθ∆̄
2|S̄| ∂θ̄

∂xj
= Cθbj (2.51)

where

bj = ∆̄2|S̄| ∂θ̄
∂xj

(2.52)

and

Hj = Cθ
˜̄∆2| ˜̄S| ∂

˜̄θ

∂xj

= Cθaj (2.53)

where

aj = ˜̄∆2| ˜̄S| ∂
˜̄θ

∂xj
. (2.54)

By using the same procedure, i.e. substitute Eqs. (2.51) and (2.53) into Eq. (2.49)

and minimize the error of the resulting equations by using the least squares method

(assuming that Cθ is spatially invariant within the test-grid scale), we obtain

Cθ = − LjMj

MjMj

. (2.55)

Note that Eqs. (2.50) and (2.55) are actually equivalent. As discussed above, the

DEDM-HF is based on the concept of a linear eddy thermal diffusivity in analogy to

Fourier’s law. It is inconsistent with the physics of turbulent convection. The forced

alignment between the resolved scalar gradient and the modelled SGS scalar flux is, in

general, unphysical, as has been confirmed by the recent study of Abe and Suga [85].

2.4.2 Dynamic Tensor Diffusivity Model

On noting the limitation of the DEDM-HF, Peng and Davidson [40] proposed a novel

dynamic tensor diffusivity model (DTDM-HF) based on the concept of a dynamic

tensor thermal diffusivity, which no longer relies on the analogy of molecular diffusion

and allows for non-alignment between the SGS HF vector and resolved temperature

gradient vector. The constitutive relation for the DTDM-HF of Peng and Davidson

[40] at the grid level takes the following form:

hj = −CT
θ ∆̄2S̄jk

∂θ̄

∂xk
, (2.56)
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where CT
θ is the model coefficient and the tensor diffusivity is based on the resolved

strain rate tensor, viz. Djk = CT
θ ∆̄2S̄jk. For the dynamic procedure, the test-grid

level SGS HF vector is modelled as

Hj = −CT
θ

˜̄∆2 ˜̄Sjk
∂ ˜̄θ

∂xk
. (2.57)

Following the dynamic modelling approach of Germano et al. [6], the dynamic coef-

ficient for the DTDM-HF is given as:

CT
θ = − LjMj

MjMj

, (2.58)

where Mj = aj − b̃j with the base vectors defined as

bj = ∆̄2S̄jk
∂θ̄

∂xk

and aj = ˜̄∆2 ˜̄Sjk
∂ ˜̄θ

∂xk

. (2.59)

Unlike the DEDM-HF [cf. Eq. (2.51)], the DTDM-HF of Peng and Davidson [40] [cf.

Eq. (2.56)] does not require the SGS heat flux be aligned with the negative resolved

temperature gradient vector, instead, it models the heat flux vector hj in response to

both the resolved strain rate tensor and temperature gradient in all three coordinate

directions through the contraction between S̄jk and ∂θ̄/∂xk. As such, in theory, the

SGS heat flux component in a direction with zero mean temperature gradient can still

be non-trivial due to the temperature gradients present in the other two directions.

2.4.3 Dynamic Mixed Model

Based on the scale-similarity model of Bardina et al. [31] for the SGS stress ten-

sor, Portè-Agel et al. [37, 38] and Kang and Meneveau [19] proposed a similar scale-

similarity model for the SGS scalar flux vector as follows:

hj = CSIM
θ

( ˜̄uj θ̄ − ˜̄uj
˜̄θ
)

(2.60)

where CSIM
θ is a numerical coefficient. Following the approach of Leonard [32] and

Clark et al. [77], Portè-Agel et al. [37, 38] applied a Taylor expansion to the filtering
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operation and obtained a nonlinear gradient model from Eq. (2.60). The nonlinear

gradient model takes the following form:

hj = CG
θ ∆̄2 ∂ūj

∂xk

∂θ̄

∂xk

(2.61)

where CG
θ is a model coefficient to be determined using a dynamic procedure. By

combining the nonlinear gradient model (Eq. 2.61) and eddy diffusivity model (Eq.

2.53), Portè-Agel et al. [37, 38] and Kang and Meneveau [19] suggested a dynamic

two-parameter mixed model (DTMM-HF) which takes the following form:

hj = Ce∆̄
2|S̄| ∂θ̄

∂xj
+ Cg∆̄

2 ∂ūj

∂xk

∂θ̄

∂xk
= Ceb

E
j + Cgb

G
j (2.62)

where bEj = ∆̄2|S̄|∂θ̄/∂xj and bGj = ∆̄2∂ūj/∂xk∂θ̄/∂xk; and Ce and Cg are model

coefficients, which are determined dynamically during the simulation. The test-grid

scale stress of the mixed model takes the following form:

Hj = Ce
˜̄∆2| ˜̄S| ∂

˜̄θ

∂xj
+ Cg

˜̄∆2 ∂ ˜̄uj

∂xk

∂ ˜̄θ

∂xk
= Cea

E
j + Cga

G
j (2.63)

where aE
j = ˜̄∆2| ˜̄S| ∂ ˜̄θ

∂xj
and aG

j = ˜̄∆2 ∂ ˜̄uj

∂xk

∂ ˜̄θ
∂xk

. By minimizing the error of the identidy

equation (Lj = Hj − h̃j) using the least squares method, the model coefficients can

be calculated as:


 LjLj LjMj

LjMj MjMj


 ·


 Ce

Cg


 = −


 LjLj

MjLj


 . (2.64)

where Lj = aE
j − b̃Ej and Mj = aG

j − b̃Gj . Compared to the linear eddy diffusivity

model, the dynamic mixed model has improved features that correspond better to

the characteristics of the scalar field. However, its numerical implementation requires

more CPU time than the eddy diffusivity model.
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2.5 Summary

A successful SGS model should be able to satisfy the following requirements: i) pre-

dict the overall energy (or scalar variance for a scalar field) dissipation correctly; ii)

predict both forward and backward transfer of energy (or scalar variance) between

the resolved and SGS scales; and iii) properly reproduce the geometrical characteris-

tics of the flow field. As mentioned before, since the linear eddy-viscosity type SGS

stress models are not able to account for the backward transfer of kinetic energy due

to their simple unphysical constitutive relations, a number of nonlinear SGS stress

models, such as DMM [34,74,81], DTMM [82] and DNM [9], has been introduced to

give improved results. For example, compared to the DM, the DNM [9] has advan-

tageous features: it is based on a relatively realistic constitutive relation, and thus

more robust than the DM; it can adjust to the local flow conditions automatically and

predict both forward and backward scatter. Similarly, in the modelling of SGS scalar

flux terms, the linear eddy diffusivity model cannot predict backscatter of the scalar

variance either, whereas nonlinear SGS scalar flux models, such as the scale-similarity

model, tensor diffusivity model and mixed models can predict backscatter. Note that

the scalar field is anisotropic even at dissipative scales, a proper SGS scalar flux model

should be able to reproduce the anisotropy character as well. By examining the SGS

scalar variance dissipation predicted by the DEDM-HF and a mixed model, Kang

and Meneveau [19] demonstrated that the DEDM-HF cannot predict the anisotropy

of a scalar field, in contrast, the mixed model can be tuned to reproduce the correct

amount of anisotropy. Besides the improvement, these SGS models are more com-

plicated and require more CPU time, for example, the DNM is approximately 25%

more computationally expensive than the DM [9] and dynamic mixed models require

a CPU time 11% more than the Smagorinsky model [86]. For some cases, the benefits

gained by nonlinear models may not overweigh their additional computational cost.

Jiménez et al. [87] studied the scalar transport in a mixing layer and found that, the

mixed SGS scalar flux model does not improve the LES prediction evidently (the dy-

namic mixed model and DEDM-HF yield similar prediction in their study), provided

that a proper SGS stress model is adopted. In this dissertation, the DNM for SGS

stress and DTDM-HF for SGS scalar flux are investigated based on LES of mixed
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convection. The combination of the nonlinear models, i.e. DNM&DTDM-HF, yields

a better prediction than the combination of the linear models, i.e. DM&DEDM-HF,

especially with respect to the temperature field. It is also found that the DTDM-HF

is able to successfully predict the near-wall geometrical properties of the SGS heat

flux vector, whereas the DEDM-HF cannot.
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Chapter 3

Numerical Algorithm and Test Problems

3.1 Numerical Algorithm for LES

A method based on the commonly used fractional time-step technique for DNS and

LES calculation described in the works of Chorin [88] and Kim and Moin [67] is

applied in this work, in which the filtered Navier-Stokes equations are solved in two

steps: first, an estimated velocity field is obtained by solving the governing equation

without updating the pressure field, and then a pressure correction Poisson equation

derived from the continuity equation is calculated and the estimated velocity field is

corrected to satisfy mass conservation. The filtered Navier-Stokes equations (2.6) can

be written as

˙̄ui = −p̄,i /ρ−Hi + νūi,jj , (3.1)

where Hi is the nonlinear terms, i.e.

Hi = (ūiūj),j +(τij),j . (3.2)

A typical time advancement method using a second-order Adams-Bashforth scheme

for the nonlinear terms and a Crank-Nicolson scheme for the viscous stress terms is

applied to calculate the velocity field after a time step ∆t:





ū⋆
i − ūn

i

∆t
= −1

2
[3H

(n)
i −H

(n−1)
i ] + ν(ū⋆

i ,jj +ūn
i ,jj )/2

ū
(n+1)
i = ū⋆

i −
∆t

ρ
p̄,

(n+1)
i

(3.3)
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FIGURE 3.1: A 2-dimensional sketch of a typical control volume for a collocated grid
system.

where n indicates the current time step and the superscript ⋆ indicates an estimated

value for the next time step (denoted by n + 1).

In the numerical solution of equations (3.3), a collocated grid system shown

in Figure 3.1 is adopted. In a collocated grid system, both velocities and pressures

are stored at cell centres, and the velocities at the interfaces of a control volume are

approximated by a interpolation of the neighboring cell-centered velocities. The finite

volume method and 2nd-order central difference scheme used for the discretization of

the equations (3.3) are classic and can be found in the literature (e. g. the work by

Ferziger [89]), and thus will not be presented in this dissertation. We only demonstrate

the strategy to obtain the new time-level pressure p̄(n+1) in the second equation of

(3.3). The p̄(n+1) can be obtained by updating the old pressure p̄(n) using a correcting

pressure p̄′, i.e.

p̄(n+1) = p̄(n) + p̄′. (3.4)

The unknown p̄′ is derived from the filtered continuity equation (2.5) by satisfying

mass conservation. For instance, the continuity equation can be discretized using the

finite volume method based on the collocated grid system shown in Figure 3.1, i.e.

∫ f

b

∫ n

s

∫ e

w

(
∂ū1

∂x1

+
∂ū2

∂x2

+
∂ū3

∂x3

)
dx1dx2dx3 = 0. (3.5)
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By intergrating, we obtain:

(ūe − ūw)A1 + (ūn − ūs)A2 + (ūf − ūb)A3 = 0, (3.6)

where the subscripts ‘e’, ‘w’, ‘n’, ‘s’, ‘f’ and ‘b’ represent ‘east’, ‘west’, ‘north’, ‘south’,

‘front’ and ‘back’ faces of the control volume, respectively, and A1 = ∆x2 · ∆x3,

A2 = ∆x1 · ∆x3 and A3 = ∆x1 · ∆x2 are the cross-sectional areas of the control

volume perpendicular to the w − e, s − n and b − f directions, respectively. The

face velocities in Eq. (3.6) are approximated by interpolation of neighboring node

velocities. For example, the velocity at the east face is calculated as:

ūe =
ū

(n+1)
P + ū

(n+1)
E

2
, (3.7)

where the uppercase subscripts denote the neighboring nodes as shown in Figure 3.1.

By substituting the second equation of (3.3) into above equation, we obtain:

ūe =
1

2

{[
ū∗P − ∆t

ρ

∂p̄(n+1)

∂x

∣∣∣∣
P

]
+

[
ū∗E − ∆t

ρ

∂p̄(n+1)

∂x

∣∣∣∣
E

]}

=
ū∗P + ū∗E

2
− ∆t

2ρ

[
∂p̄(n+1)

∂x

∣∣∣∣
P

+
∂p̄(n+1)

∂x

∣∣∣∣
E

]

≈ ū∗P + ū∗E
2

− ∆t

ρ

∂p̄(n+1)

∂x

∣∣∣∣
e

.

(3.8)

Let
∂p̄(n+1)

∂x

∣∣∣∣
e

=
p̄

(n+1)
E − p̄

(n+1)
P

∆xPE
, (3.9)

where ∆xPE = xP − xE . Using Eq.(3.9) and (3.4), equation (3.8) can be rewritten

as:

ūe =
ū∗P + ū∗E

2
− ∆t

ρ

[
p̄

(n+1)
E − p̄

(n+1)
P

∆xPE

]

=
ū∗P + ū∗E

2
− ∆t

ρ

[
(p̄

(n)
E + p̄′E) − (p̄

(n)
P + p̄′P )

∆xPE

]

=
ū∗P + ū∗E

2
− ∆t

ρ

[
p̄

(n)
E − p̄

(n)
P

∆xPE

]
− ∆t

ρ

[
p̄′E − p̄′P
∆xPE

]
.

(3.10)
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Let

ū⋆
e =

ū⋆
P + ū⋆

E

2
− ∆t

ρ

(p̄
(n)
E − p̄

(n)
P )

∆xPE
(3.11)

and then Eq. (3.10) takes the following form:

ūe = ū⋆
e −

∆t

ρ

(p̄′E − p̄′P )

∆xPE

. (3.12)

Substituting Eq.(3.12) into Eq.(3.6), the following discrete equation for the correcting

pressure are obtained:

aP p̄
′
P =

∑
aNP p̄

′
NP + b, (3.13)

where the subscript NP represents the neighboring nodes, and a and b denote the

coefficients and source term, respectively, all of which are:

aE =
A1∆t

∆xPE
, aW =

A1∆t

∆xWP
, aS =

A2∆t

∆xPS
,

aN =
A2∆t

∆xNP
, aF =

A3∆t

∆xPF
, aB =

A3∆t

∆xBP
,

b = −ρ
[
A1(ū

⋆
e − ū⋆

w) + A2(ū
⋆
n − ū⋆

s) + A3(ū
⋆
f − ū⋆

b)
]
,

aP =
∑

aNP .

(3.14)

Note that in the above scheme, the face velocity is calcuated in two steps: first, it is

estimated using the old neighboring velocities and the pressure gradient −p̄,(n)
i at the

interface (see Eq. 3.11), and then it is corrected to satisfy mass conservation using

the correcting pressure (see Eq. 3.12). This approach leads to a pressure correction

Poisson equation (3.13) instead of a pressure Poisson equation.

3.2 Multigrid Solver Using a Control Strategy

Numerical solution of the incompressible Navier-Stokes equations requires solving

the Poisson type equation. Several techniques, including multigrid and direct meth-

ods, are commonly used. Direct methods generally require large computer memory,

while iterative methods require an effective convergence rate. Interative methods

such as classic Gauss-Seidel (GS) type solvers show strong convergence in the initial

few sweeps, but subsequently the convergence rate decreases rapidly. It can be ex-
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plained by a Fourier analysis of the error components [90]. GS solvers can effectively

smooth out errors of wavelengths comparable to the mesh size, but are less effective

in smoothing the longer wavelength (low frequency) errors, therefore, the convergence

time dramatically increases after the initial few sweeps. The multigrid method (MG)

was developed to overcome this problem. It employs a hierarchy of grids and solves

the pressure field at different grid levels so that errors with different wavelengths are

smoothed out easily on comparable grid sizes. Multi-grid methods can greatly accel-

erate the convergence rate, especially for large-scale multi-dimensional problems. For

a complete review of the MG technique, one can refer to the works by Brandt [91]

and Stüben and Trottenberg [92].

3.2.1 Formation of the Coarse-grid Equations

To apply a multigrid method, the equations for coarse-grids have to be known. The

formation of the coarse-grid equations should satisfy two requirements. First the

corrections suggested by the coarse-grid equations should go to zero when the fine-

grid values represent the correct solution of the discretization equations. Second,

the form of the coarse-grid equations should be consistent with that of the fine-grid

equations to permit the same solver. Hutchinson et al. [93] and Sathyamurthy and

Patankar [94] described a procedure which combines a block of fine-grid equations to

obtain the coarse-grid equations. Here, the simple case of a coarse grid formed from

the assembly of 1 × 2 blocks of fine-grid control volumes shown in Figure 3.2 is used

to demonstrate the procedure.

The fine-grid discretization equations for the node (i, j) and node (i, j + 1) in

Figure 3.2 can be written in the following general forms:

aP
i,jΦi,j = aE

i,jΦi+1,j + aW
i,jΦi−1,j + aN

i,jΦi,j+1 + aS
i,jΦi,j−1 + bi,j (3.15)

and

aP
i,j+1Φi,j+1 = aE

i,j+1Φi+1,j+1 + aW
i,j+1Φi−1,j+1 + aN

i,j+1Φi,j+2 + aS
i,j+1Φi,j + bi,j+1, (3.16)

where Φ is the variable to be solved, a denotes the coefficients of the discretization
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FIGURE 3.2: Coarse grid formed from assembly of 1 × 2 blocks

equation of the control volume, and b is a source term. The superscript P denotes the

central node, and E, W , N and S denote the east, west, north and south neighbor

nodes, respectively. To formulate the equation for the coarse-grid node (I,J), we first

sum up the fine-grid equations of nodes located in the coarse-grid control volume

(I,J), e.g. add the Eq. ( 3.15) and ( 3.16) and rearrange the resulting equation to

obtain:

(aP
i,j − aS

i,j+1)Φi,j + (aP
i,j+1 − aN

i,j)Φi,j+1 = aE
i,jΦi+1,j + aE

i,j+1Φi+1,j+1

+ aW
i,jΦi−1,j + aW

i,j+1Φi−1,j+1

+ aN
i,j+1Φi,j+2 + aS

i,jΦi,j−1

+ bi,j + bi,j+1.

(3.17)

Let δI,J be the average error of the fine-grid equations corresponding to the cells in

the coarse-grid control volume (I,J), and assume that the values of the variable Φ for

all the fine-grid nodes in the block can be corrected by δI,J , i.e.

Φi,j = Φ0
i,j + δI,J , (3.18)

and

Φi,j+1 = Φ0
i,j+1 + δI,J , (3.19)

where Φ0
i,j and Φ0

i,j+1 are the approximate values of the variable for node (i,j) and

34



(i,j+1) on the fine grid, respectively. By substituting Eqs. ( 3.18) and ( 3.19) into

( 3.17) and rearranging, we obtain the equation for the coarse grid:

(aP
i,j − aS

i,j+1 + aP
i,j+1 − aN

i,j)δI,J

= (aE
i,j + aE

i,j+1)δI+1,J + (aW
i,j + aW

i,j+1)δI−1,J + aN
i,j+1δI,J+1 + aS

i,jδI,J−1

+ aE
i,jΦ

0
i+1,j + aW

i,jΦ
0
i−1,j + aN

i,jΦ
0
i,j+1 + aS

i,jΦ
0
i,j−1 + bi,j − aP

i,jΦ
0
i,j

+ aE
i,j+1Φ

0
i+1,j+1 + aW

i,j+1Φ
0
i−1,j+1 + aN

i,j+1Φ
0
i,j+2 + aS

i,j+1Φ
0
i,j + bi,j+1

− aP
i,j+1Φ

0
i,j+1.

(3.20)

Let R0
i,j and R0

i,j+1 denote the residuals of the fine-grid Eqs.( 3.15) and ( 3.16), i.e.

R0
i,j = aE

i,jΦ
0
i+1,j + aW

i,jΦ
0
i−1,j + aN

i,jΦ
0
i,j+1 + aS

i,jΦ
0
i,j−1 + bi,j − aP

i,jΦ
0
i,j (3.21)

and

R0
i,j+1 = aE

i,j+1Φ
0
i+1,j+1 + aW

i,j+1Φ
0
i−1,j+1 + aN

i,j+1Φ
0
i,j+2 + aS

i,j+1Φ
0
i,j

+ bi,j+1 − aP
i,j+1Φ

0
i,j+1.

(3.22)

Using aP
I,J , aE

I,J , aW
I,J , aN

I,J , aS
I,J and RI,J to denote the coefficients and source term of

Eq.( 3.20), the coarse grid equation takes the following form:

aP
I,JδI,J = aE

I,JδI+1,J + aW
I,JδI−1,J + aN

I,JδI,J+1 + aS
I,JδI,J−1 +RI,J , (3.23)

where

aP
I,J = aP

i,j − aS
i,j+1 + aP

i,j+1 − aN
i,j,

aE
I,J = aE

i,j + aE
i,j+1,

aW
I,J = aW

i,j + aW
i,j+1,

aN
I,J = aN

i,j+1,

aS
I,J = aS

i,j,

RI,J = R0
i,j +R0

i,j+1.

(3.24)

With the above procedure, the coarse-grid equations can be obtained by simply com-

bining the fine-grid equations. Note that the coarse-grid equation (Eq. 3.23) is of
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identical form as the fine-grid equation (Eq. 3.15 and 3.16). The higher-level coarser-

grid equations can be generated by combining the previously obtained coarse-grid

equations using the same procedure. Therefore, arbitrary level grid equations can

be generated if the lower level grid equations are known and no rediscretization is

neccessary at the coarse grid levels. An additional advantage of the technique is that

since the coarse-grid equations are derived from conservative fine-grid equations, they

will automatically retain the important conservation property of the fine grid.

3.2.2 Implementation of Multigrid Method

There are several strategies to implement multigrid methods, such as V cycle, W

cycle, and FMV cycle. However, all of these strategies implement the MG with fixed

iteration number on each grid and in a fixed sequence to employ different grid levels.

For example, the simplest V cycle shown in Figure 3.3 moves sequentially from the

finest grid to the coarsest grid and then from the coarsest grid to the finest grid.

The sequence and iteration number on each grid remain unchanged during the outer

iterations. For the strategies with fixed sequence and iteration number, sometimes,

the number of iterations on a grid level is enough, and sometimes not. To overcome

this disadvantage, a control strategy is suggested [93, 95], in which the procedure is

controlled by two parameters, αi and ǫi. Here, αi is a specified fraction of residual

defined as:

αi = Ri/R0, (3.25)

where R0 denotes the initial residual of the discretization equations on a grid level

and Ri denotes the residual at the ith iteration on the same level. ǫi is a residual

ratio defined as

ǫi = Ri/Ri−1. (3.26)

The implementation of the control strategy is outlined in Figure 3.4: on a level

m, we first check the value of αi and ǫi. If the value of αi is larger than a certain

value α0 and ǫi is smaller than a specific constant ǫ0, continue the iteration on the

present level m. Otherwise, i) if ǫi is larger than ǫ0, which implies that the residual
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FIGURE 3.3: V cycle

reduction on the present grid level is very slow, it is worth shifting to the coarser grid

level m+1 to obtain the correction δI,J . ii) if αi is smaller than α0, which implies that

the residual reduction on the present grid level is adequate, move to the finer grid

level m − 1 to correct the variable. After correcting, further iterations on the finer

grid level (m − 1) should be performed to lead to a faster convergence rate. Repeat

the above procedure until the errors of the finest grid equations are negligible.
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FIGURE 3.4: Implementation of the control strategy

3.2.3 Performance of Multigrid Method Using a Control

Strategy

The lid-driven cavity flow at Reynolds number Re = 400 was chosen to test the

performance of the multigrid method using the control strategy (MG-CS). The con-

vergence property of the MG-CS is compared with that of the MG using the simplest

V cycle (MG-V). To implement MG, four grid levels are employed. The grid sizes

ranging from the finest to the coarsest are 48 × 48 × 48, 24 × 24 × 24, 12 × 12 × 12,
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and 6 × 6 × 6, orderly. From the numerical experiments, it was found that for the

MG-CS, the parameters α0 = 0.25 and ǫ0 = 0.5 provide good performance. These

residual reduction criterions were also adopted by Hutchinson et al. [93].

The reduction of the residual of the pressure correction equations is investigated

with respect to three different solvers, i.e. line Gauss-Seidel (LGS), MG-V and MG-

CS. The residual of the pressure correction equations is calculated as

Rp′ =
N∑

n=1

∣∣∣
(∑

aNP p̄
′
NP + b− aP p̄

′
P

)
n

∣∣∣, (3.27)

where N denotes the number of the control volumes of the pressure field; and the

subscript NP represents the neighboring nodes; aNP , aP and b denote the coefficients

and source term of the pressure correction equation (3.13), which are defined by Eq.

(3.14). Usually, the iteration numbers on each grid in a V cycle are fixed. In this

study using a V cycle, when the fraction of residual on a coarse grid, αi, is smaller

than 0.1, it will move to the next grid level. Otherwise, it will stay at the present grid

level until the allowed maxmum iteration number is reached. The maxmum number

for each level was 3. The number of iterations on the finest grid and the computing

time needed to reduce the residuals by four orders of magnitude using the MG-V

and MG-CS solver are shown in Table 3.1. It is evident that the control strategy

significantly improved the performance of the multigrid technique. To reduce the

residuals of the pressure field by four orders of magnitude, the finest grid takes 33

iterations for the MG-CS, while for the MG-V, the finest grid takes 120 iterations.

The computational cost of the MG-CS is only about one third of that of the MG-V.

The convergence histories of the LGS, MG-V and MG-CS are plotted in Figure 3.5.

The convergence rate of the LGS is unacceptably slow after the first few iterations.

In comparison, the slopes of the residual reduction curves of both the MG-V and

MG-CS are almost constant and much steep. Evidently, the convergence rate of the

MG-CS is much faster than that of the MG-V.
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FIGURE 3.5: Convergence histories on the finest grid before update of the coefficients

TABLE 3.1: Number of iterations and computing time to reduce the residuals by four
orders of magnitude

Numbers of iterations Computing
on the finest grid time (s)

MG-V 120 180
MG-CS 33 65

3.3 Kinetic Energy Conservation

All of the transport equations are based on conservation laws and have physical con-

servation requirements. Discrete numerical equations should also recover the same

conservation requirements, otherwise numerical instability, dissipation or unphysical

behavior could happen. Most discretization schemes only conserve mass and mo-

mentum, but not the kinetic energy. The mass and momentum equations alone are

sufficient to obtain a solution and typically a kinetic energy equation is not solved.

For this reason, in the past, people did not pay specific attention to the kinetic energy

conservation issue. Initial concerns over kinetic energy conservation were caused by

research on the instability occurring in numerical computation. Recently, Morinishi et

al. [96] presented a comprehensive examination of the conservation properties of var-

ious finite difference schemes on collocated and staggered grids. They demonstrated

that methods based on collocated grid systems are inherently non-conservative. Vasi-

lyev [97] extended this work to non-uniform grids and developed higher order schemes
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which exhibit good conservation properties, except in time. Ham et al. [98] presented

a second order scheme for staggered non-uniform grids which conserves kinetic en-

ergy both in time and space, and examined the conservation properties of the scheme

in LES of a channel flow. Another attempt to construct higher order conservative

schemes was undertaken by Verstappen and Veldman [99, 100]. They proposed a

symmetry-preserving discretization method which conserves the total mass, momen-

tum and kinetic energy on both uniform and non-uniform staggered grids [100].

The collocated grid system is often favored over the staggered grid system due

to its simpler form. Although the inherent non-conservative performance of a collo-

cated grid system has been demonstrated, its effects are still not clear, especially in

LES. The question of interest is: how significant is the effect of the non-conservative

behavior with respect to kinetic energy of collocated grids on LES of turbulence? It

is a challenging question. Since the local kinetic energy cannot be defined unambigu-

ously in a staggered grid system and it is difficult to separate the conservation errors

from other errors, such as SGS modelling errors.

3.3.1 Conservation Properties of Collocated Grid Systems

To demonstrate the conservation properties of the analytical equations, the govern-

ing equations of incompressible flow are written symbolically for convenience. The

continuity and momentum equations will take the following forms:

(Cont.) = 0 (3.28)

and
∂ui

∂t
+ (Conv.)i + (Pres.)i + (V isc.)i = 0, (3.29)

where

(Cont.) =
∂ui

∂xi
, (3.30)

(Conv.)i =
∂(uiuj)

∂xj
, (3.31)

(Pres.)i =
∂p

∂xi
, (3.32)
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(V isc.)i =
∂Tij

∂xj
, (3.33)

where Tij = ν ∂ui

∂xj
is the viscous shear stress. Note that all the terms in the above

equations are in divergence form, e.g. ∂fj (Φ) /∂xj . Integrating the general term in

space, we obtain: ∫ ∫ ∫

V

∂fj (Φ)

∂xj
dV =

∫ ∫

S

f (Φ) · dS. (3.34)

From equation (3.34), one can conclude that the total quantity of Φ in the domain

V only depends on the boundary condition of the domain and will remain the same

if the boundary conditions are conservative, i.e. the net mass flux across boundary

is zero. This behavior of a term in divergence form is defined as conservative. Note

that the continuity equation is conservative a priori, and the convective, pressure

and viscous terms, i.e. (Conv.)i, (Pres.)i and (V isc.)i, in the momentum equation

are also conservative. Now consider the derivation of the transport equation for the

kinetic energy, K = (ui · ui) /2, from the momentum equation:

∂K

∂t
+ ui · (Conv.)i + ui · (Pres.)i + ui · (V isc.)i = 0. (3.35)

The convective, pressure and viscous terms can be rewritten as follows

ui · (Conv.)i =
∂ujuiui

∂xi

− (ujui) · (Cont.), (3.36)

ui · (Pres.)i =
∂pui

∂xi
− p · (Cont.), (3.37)

and

ui · (V isc.)i =
∂Tijui

∂xi

− Tij · (Cont.). (3.38)

Provided that the flow field satisfies the continuity equation, then the convection and

pressure terms in the kinetic energy equation are conservative. The viscous term is

not conservative and represents the dissipation of kinetic energy by viscosity.

Any conservative discrete mass, momentum and kinetic energy equations should

recover the conservation properties defined above. For convenience, the following

analysis is based on uniform grids. (One can extend the analysis to a non-uniform

grid in a similar way). Morinishi et al. [96] noted that, provided the discrete form
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of a conservative term is still in the divergence form, its conservation behavior will

be recovered. Morinishi et al. [96] defined the finite difference operator on a uniform

grid as follows:

δnΦ

δnx1

∣∣∣∣
x1,x2,x3

≡ Φ(x1 + nh1/2, x2, x3) − Φ(x1 − nh1/2, x2, x3)

nh1

, (3.39)

Φ
nx1

∣∣
x1,x2,x3

≡ Φ(x1 + nh1/2, x2, x3) + Φ(x1 − nh1/2, x2, x3)

2
. (3.40)

To verify the proposal by Morinishi et al. [96], consider the discretization of a 1D
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FIGURE 3.6: A 1-D uniform discrete system.

conservative term ∂f(Φ)/∂x using a second-order central difference scheme (CDS),

which yields the following divergence form in the discrete system:

∂f(Φ)

∂x

∣∣∣∣
i

≈ f
(
Φxi+h/2

)
− f

(
Φxi−h/2

)

h
=
δ1f(Φ)

δ1x

∣∣∣∣
i

. (3.41)

Here, i represents the ith control volume. Now consider a simple discrete system with

only three control volumes as shown in Figure 3.6. The integration of the conservative

term ∂f(Φ)/∂x over the domain is

∫ x 7
2

x 1
2

∂f(Φ)

∂x
dx =

3∑

i=1

δ1f(Φ)

δ1x

∣∣∣∣
i

· h = f 7

2

− f 1

2

. (3.42)

This demonstrates that the discrete system (Eq. 3.41) recovers the analytical con-

servation behavior, i.e. the total quantity of a variable in a domain only depends on

the boundary conditions. Following the conservation definition above, we investigate

the conservation behavior of a collocated grid system using a 2nd order CDS. On a

collocated grid system, the discrete continuity equation uses the interpolated face
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velocity, rather than the velocity defined at the nodes, i.e.

(Cont.)i ≡
δ1Fi

δ1x
= 0, (3.43)

where F denotes the interpolated velocity on the face. For the momentum equation,

the convective terms are

(Conv.)i ≡
δ1Fjui

1xi

δ1xj

, (3.44)

the pressure term is

(Pres.)i ≡
δ1p

1xi

δ1xi

, (3.45)

and the viscous term is

(V isc.)i ≡
δ1
δ1xj

(
ν
δ1ui

1xi

δ1xj

)
. (3.46)

According to the conservation definition above, the discrete continuity and momentum

equations are conservative on the collocated grid. The discrete kinetic energy equation

can be obtained from the discrete momentum equation. The convective term is

ui · (Conv.)i = ui
δ1Fjui

1xj

δ1xj

=
δ1

[
Fj · (ui

1xj )
2
/2

]

δ1xj
+

(
ui

2/2
) δ1Fj

δ1xj
.

(3.47)

If the continuity equation (3.43) is satisfied, the second term of the RHS of Eq.

(3.47) will disappear and the convective term is of conservative divergence form. The

pressure term of the kinetic energy is

ui · (Pres.)i =
δ1ui

1xip1xi

δ1xj

+ p
δ1ui

1xi

δ1xj

. (3.48)

Because the second term of the RHS of the equation (3.48) is not necessarily zero,

therefore, the pressure term of the kinetic energy equation is not conservative. The

conservation properties of the analytical and discrete equations on the collocated grid

are summarized in the Table 3.2. Apparently, because in a collocated grid system,

velocities are stored at the cell center while the discrete continuity equation uses the

interpolated face velocity, the discrete kinetic energy equation on a collocated system

cannot recover the conservation properties. In contrast, in staggered grid systems,
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the velocities are stored at face of a control volume so that the discrete continuity

equation uses the velocities themselves, most of them do not have this defect [96].

TABLE 3.2: Conservation properties of analytical and discrete equations

Cont.
Momentum Kinetic Energy

(Conv.) (Press.) (V isc.) (Conv.) (Press.) (V isc.)
Analytical ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊗
Discrete ⊙ ⊙ ⊙ ⊙ ⊙ ⊗ ⊗

Note ⊙ denotes conservative and ⊗ denotes non-conservative

3.3.2 Numerical Tests on Kinetic Energy Conservation

The analytic conservation requirements dictate that the sum of kinetic energy of

an inviscid flow over a domain never changes with periodic boundaries. Therefore,

inviscid flow is often used to verify the conservation of a discretization system [96,97].

Following the approach of Morinishi et al [96], we construct an initial velocity field,

which satisfies the continuity equation, and solve the flow as an inviscid flow with

periodic boundary conditions. We simulate the development of the velocity field

using the numerical scheme described in section 3.1 on a collocated and staggered

grid, respectively. After an integration time, the error of the average kinetic energy

ǫK defined as

ǫK = |K(t) −K(t0)| (3.49)

will reflect the conservation properties of the system. Here, K(t) is the total average

kinetic energy of the compuational domain, where t and t0 denote the current and

initial time, respectively. The 2D initial velocity field can be generated by a stream-

function, such as ψ = 2 sin(x) cos(y). Here, we employ a 2π × 2π square domain and

a 20 × 20 uniform grid. The initial velocity field is:

u =
∂ψ

∂y
= −2 sin(x) sin(y) (3.50)

v = −∂ψ
∂x

= −2 cos(x) cos(y), (3.51)

44



which is implemented in the discrete form

uij = −2 sin

[
2π

N

(
i− 1

2

)]
sin

[
2π

N

(
j − 1

2

)]
(3.52)

vij = −2 cos

[
2π

N

(
i− 1

2

)]
cos

[
2π

N

(
j − 1

2

)]
. (3.53)

The total average kinetic energy of the computational domain is calculated as follows:

K(t) =
1

V

N∑

i=1

M∑

j=1

[
1

2

(
u2

ij + v2
ij

)
· Vij

]
, (3.54)

where N = 20 and M = 20 are dimensions of the computational domain, V denotes

the area of the computational domain and Vij is the area of the control volume (i, j).

Note that for a staggered grid system, the total kinetic energy defined by Eq. (3.54)

is not unambiguous since the individual velocity conponents are stored in different

locations.

Figure 3.7 shows the error of the total kinetic energy, ǫK , after an integration

time of ∆t = 10L
(
2π

√
K(t0)

)
, where L = 2π is the charateristic length of the

square domain. Because the present code uses the second-order Adams-Bashforth

time-stepping scheme which introduces a slight dissipative error, the kinetic energy

is not exactly conserved even on the staggered grid system. However, as expected,

the time-stepping error decreases with the square of ∆t on the conservative staggered

grid, whereas on the collocated grid, the error decreases with ∆t, which implies that

the scheme introduces not only 2nd order time-stepping error but also errors due to

the spatial discretization. We also note that the errors of the staggered grid system

are much smaller than that for the collocated grid systems for the same time step.

3.4 Test Problems

3.4.1 Lid Driven Cavity Flow

Although the collocated grid system cannot conserve kinetic energy and the con-

servation errors lead to numerical dissipation (see section 3.3.1), the issue is: how
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FIGURE 3.7: Error of the average kinetic energy.

significant is the numerical dissipation in comparison to the viscous and turbulent

dissipation present in a real flow? In this dissertation, a benchmark flow, i.e. lid

driven cavity (LDC) flow, is used as one of the test problems for the assessment of

the collocated grid system and validation of the present LES code. As a benchmark

flow, studies on LDC flows can be found in many references [101–104]. Figure 3.8

shows the geometry and boundary conditions of a 3-D lid driven flow in a cubical

cavity, in which we assume that the lid is infinitely long and moves in horizontal

direction. The flow condition is characterized by a Reynolds number, ReD, which is

defined as

ReD =
UD

ν
, (3.55)

where U is the velocity of the lid and D denotes the width of the cavity.

3.4.1.1 Steady Laminar Flow (ReD = 400)

The simulation of the LDC flow is first performed for ReD = 400. The selected low

Reynolds number ReD = 400 ensures that the simulated flows are in the laminar

regime. Therefore, the effect of SGS models is excluded in the test. The computa-

tional domain of the test problem is 15cm× 15cm× 15cm, and two uniform grids of
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size 32×32×32 and 48×48×48 are adopted in the test. No-slip and no-penetration

boundary conditions were imposed on the velocity components at the walls. The

momentum equations were solved using the numerical method discribed in section

3.1.

The validity of the numerical solution is assessed by the residual of the pressure

field, Rp′ , defined by Eq.(3.27), and mass residual, Rm, defined as

Rm =
N∑

n=1

|bm|, (3.56)

where bm is net mass flux out of the mth control volume, i.e.

bm = (ṁe − ṁw) + (ṁs − ṁn) + (ṁf − ṁb) , (3.57)

where ṁ denotes the mass flux through the faces of the control volume. Table 3.3

shows the mass and pressure residuals of simulations on two different collocated grids,

and indicates that the predicted fields satisfy these discrete transport equations.

TABLE 3.3: Mass residuals and residuals of the pressure field

Grid size
Number of outer

Rm Rpiterations
32 × 32 × 32 5400 1.84 × 10−10 1.01 × 10−10

48 × 48 × 48 5800 4.28 × 10−10 3.39 × 10−10

The simulation results based on the collocated grid of size 48 × 48 × 48 are
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FIGURE 3.9: Streamlines on the x1 − x3 plane at x2/D = 0.5 using grid size 48 ×
48 × 48 (ReD = 400)

shown in Figures 3.9-3.11. Figure 3.9 plots the streamlines on the x1 − x3 plane at

x2/D = 0.5. Driven by the lid, a primary vortex is observed near the center of the

cavity. A counter-rotation recirculating flow is also found in the lower corner region.

The velocity vectors on this plane are also plotted in Figure 3.10. The vectors are

normalized by the largest vector in the plane to make the plots clearer. The pattern

of the velocity vectors is consistent with the streamline patterns shown in Figure 3.9.

The velocity vectors in the x2 − x3 plane at x1/D = 0.5 is plotted in Figure 3.11. As

shown in the figure, two distinct secondary vortices are observed near the bottom due

to the effect of the side walls. The flow patterns obtained by the present 3-D code on

the collocated grid presented here are similar to those in previous studies [102–105].

A more precise evaluation of the present collocated grid system is obtained by

comparing the simulation results for the peak values of the velocity profiles on the

centerlines of the cavity to the results of other authors. As shown in Table 3.4, the

results of Ku et al. [102] are viewed as benchmark results, since in their work, the

pseudo-spectral method was applied. In the present simulations, even a relatively

coarse uniform collocated grid (32×32×32) can provide satisfying results due to the

laminar flow characteristics at the low Reynolds number. In comparison, Huang [105]

used a non-uniform grid, which was refined near the wall to capture the velocity
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variation in the near-wall region more accurately, and thus give better prodictions of

the peak values.

TABLE 3.4: Peak values for 3-D LDC flow at ReD = 400

Method Grid size u1min u3min u3max

Present 31 × 31 × 31 -0.2105 -0.3465 0.1859
Present 48 × 48 × 48 -0.2226 -0.3646 0.1923

Huang(1998) 31 × 31 × 31 -0.232 -0.380 0.205
Deng et al.(1994) 64 × 64 × 64 -0.2330 -0.3765 0.2046
Babu et al.(1994) 63 × 63 × 63 -0.2083 -0.3084 0.1773
Ku et al.(1987) −−− -0.2378 -0.3791 0.2053

To futher investigate the collocated grid system, we also compare the velocity

profiles predicted by the collocated grid to those by a staggered grid system in Figure

3.12. Both collocated and staggered grid system are uniform and of size 32×32×32.

Figure 3.12 indicates that both collocated and staggered grid systems yield satisfying

results which are consistent with the benchmark results of Ku et al. [102]. The

difference between the solutions on the two different grid systems is minimal and

perhaps insignificant (the difference between the peak values is less than 2%). This

result indicates that the kinetic energy conservation issue may not be very important

for steady flows in which the time accurate advancement is not important. The ability

of the present collocated code to accurately advance in time an unsteady flow should

be also investigated.

3.4.1.2 Start-up LDC Flow (ReD = 1000)

Obviously, accurate time advancement is a necessary requirement for LES. The study

of Guermond et al. on the 3-D LDC start-up flow (ReD = 1000) [106] provides a

good test case to evaluate the time accuracy of the numerical schemes on collocated

and staggered grids. Their paper presented both experimental and numerical results

of the flow development in a cavity with time. The flow is driven by a lid which

is accelerated from rest to a constant velocity of UC = 0.018m/s. The accelerating

process adopted by the simulation is approximated by the equation

U(t) = 0.018 [1 − exp(−100t)] , (3.58)
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FIGURE 3.12: Profiles of velocity components on the central lines of the cavity
(ReD = 400).

where U(t) is the lid velocity. Guermond et al. [106] measured and calculated the flow

field at different times. Here, the flow field is advanced to t = 4 (using D/UC as the

reference time scale) using the 2nd order explicit Adams-Bashforth scheme based on a

uniform collocated and staggered grid of size 48×48×48, respectively. In Figure 3.13,

the profiles of the velocity components in the center plane are plotted and compared

to the experimental data of Guermond et al. [106]. The results indicate that both the

collocated and staggered grid give good predictions, and the difference between them

is relatively small. As shown in Table 3.5, the difference between the peak values

predicted by the two grids is less than 3%.

TABLE 3.5: Peak values for start-up LDC flow at ReD = 1000

u1min/UC u3min/UC u3max/UC

Collocated -0.0766 -0.164 0.0466
Staggered -0.0768 -0.160 0.0462

|(ustag − ucoll)/ucoll| 0.26% 2.55% 0.85%
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FIGURE 3.13: Profiles of velocity components on the central lines of the cavity at
t = 4 (ReD = 1000).

3.4.2 Turbulent Channel Flow at Reτ = 180

Besides the laminar test problems, a turbulent channel flow is also used for validation

of the present LES code and assessment of SGS stress models. As one of the simplest

wall-bounded flows, turbulent channel flows has been numerically studied by many

authors [107–112]. The extensive DNS databases available make the flow a good

benchmark flow to validate the LES code with respect to wall bounded turbulence.

Here, we consider the channel flow at Reτ = 180, where Reτ
def
= uτδ/ν and uτ is the

friction velocity on the wall. The geometry and computational domain of the test

flow are shown in Figure 3.14. As suggested by Moser et al [109], the computational

domain is 4πδ × 2δ × 4πδ/3, corresponding to the streamwise (x1), wall-normal (x2)

and spanwise (x3) directions, respectively. A grid of 48×48×64 (in x1, x2, x3) control

volumes is adopted for discretization of the computational domain. The collocated

grid is uniform in the streamwise and spanwise directions. In the wall-normal direction

corresponding to the channel gap −1 ≤ x2/δ ≤ 1, the grid is refined near the wall

using a hyperbolic-tangent function, i.e. the locations of interfaces of control volumes
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in the direction are given as follows:

fj =
tanh(aξj)

tanh(a)
, (3.59)

and

ξj = −1 + 2(j − 1)/N2 (j = 1, 2, . . . , N2 + 1). (3.60)

where N2 is the total number of control volumes in the wall-normal direction, and a

is an adjustable parameter.

Fully developed turbulent channel flow is viewed as homogeneous in the stream-

wise and spanwise directions, and periodic boundary conditions are used in these

directions. Periodic boundary conditions assume that velocity, pressure, and their

gradients on the boundaries are the same, which are effective only if the computa-

tional domain is large enough to include the largest eddies in the flow. As suggested

by Moin and Kim [107], the computational domain is at least twice as large as the

dimension of 3.2δ and 1.6δ in the x1 and x3 direction, respectively. The no-slip and

no-penetration conditions are used in the normal direction at the solid walls.
 

Flow 2δ  

πδ4

πδ
3
4

11,ux

22,ux

33,ux

FIGURE 3.14: Computational domain and coordinate system (Reτ = 180).

3.4.2.1 Governing Equations for the Large-scale Field

In LES, the filtered continuity and Navier-Stokes equationS for the large-scale field

of a channel flow are
∂ūi

∂xi

= 0, (3.61)

∂ūi

∂t
+

∂

∂xj
(ūiūj) = −1

ρ

∂P̄

∂xi
δ1i + ν

∂2ūi

∂xj∂xj
− ∂τij
∂xj

− 1

ρ

∂p̄

∂xi
, (3.62)
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where (∂P̄ /∂xi)δ1i is the main pressure gradient in the streamwise direction, which is

determined by the flow Reynolds number, while ∂p̄/∂xi denotes the resolved fluctu-

ating pressure gradient after extracting the mean pressure gradient. τij
def
= uiuj − ūiūj

is the SGS stress tensor, which represents the effect of the SGS motions and needs to

be modelled to close the above system of governing equations. Here the traditional

SM [113] and DM described in section 2.3 are applied for the SGS stress tensor.

3.4.2.2 Analysis of Results

The LES predictions using the present collocated code are compared with the DNS

data given by Kim et al. [108] and Moser et al. [109]. Note that the resolved quantities

in LES ARE theoretically different from those in DNS, for instance, the DNS shear

stress is actually balanced by the resolved shear stress and the SGS stress in LES.

However, because in LES, the resolved scale is dominative in comparison with the

SGS scale, it is still popular to compare the resolved scale directly to the DNS results

in literature. Here, all quantities denoted by 〈·〉 are obtained using both spatial

averaging in the homogeneous plane and time averaging for more than 10000 time

steps after the flow is fully developed. The superscript + denotes the quantities which

are non-dimensionalized using the friction velocity uτ .
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FIGURE 3.15: Mean velocity profile using wall coordinates (Reτ = 180).
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FIGURE 3.16: Resolved velocity fluctuations in wall coordinates: (a) streamwise; (b)
wall-normal; (c) spanwise. (Reτ = 180).
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The mean resolved streamwise velocity normalized by uτ is shown in Figure 3.15

using wall coordinates. It is observed that both the SM and DM yield satisfactory

predictions which are consistent with the DNS data (The DNS data of Kim et al. [108]

and Moser et al. [109] almost overlap). Compared with that yielded by the DM, the

profile of the mean resolved streamwise velocity predicted by the SM shifts upward

slightly in the logarithmic region. Figure 3.16 plots the resolved velocity fluctuations

and DNS data by Kim et al. [108] and Moser et al. [109] for comparison. Here, ū+
1,rms,

ū+
2,rms and ū+

3,rms donote the resolved root-mean-square streamwise (x1), wall-normal

(x2) and spanwise (x3) fluctuation components, respectively, which are normalized

by the friction velocity uτ . It can be seen in Figure 3.16a, both the SM and DM

prediction of the resolved streamwise component in general agree with the DNS data,

although they slightly overpredict the peak value near the wall. Figure 3.16b and

c indicate that both the SM and DM underpredict the peak value of the resolved

wall-normal and spanwise velocity fluctuations. The difference in peak value between

the LES predictions and the DNS results is shown in Table 3.6. In general, DM

predictions of the turbulence intensities are slightly closer to the DNS data.

TABLE 3.6: Peak values of channel flow at Reτ = 180

ū+
1,rms ū+

2,rms ū+
3,rms

DNS(Moser et al [109]) 2.661 0.841 1.091
SM (*) 2.885 (8.4%) 0.772 (8.2%) 0.992 (9.1%)
DM (**) 2.843 (6.8%) 0.778 (7.5%) 1.005 (7.9%)

Note: * and ** denote the difference between the DNS data and LES predictions using the SM and
DM, respectively.

The distribution of the resolved Reynolds shear stress is shown in Figure 3.17.

The resolved Reynolds shear stress is normalized by (uτ)
2 and denoted as −〈ū′′1ū′′2〉+.

Figure 3.17a plots the 〈ū′′1ū′′2〉+ distribution across the channel. Results for only half

of the channel are displayed due to the symmetrical property of the plot. Figure 3.17b

shows the near-wall performance of −〈ū′′1ū′′2〉+ in wall coordinates. The magnitude

of the SGS shear stress −〈τ12〉 is an order of magnitude smaller than the resolved

Reynolds shear stress, therefore, the resolved shear stress is compared to the DNS

data directly. Figure 3.17a and b indicate that both the SM and DM yield satisfactory

predictions of the Reynolds shear stress which are consistent with the DNS data. The
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balance equation derived from the streamwise momentum equation is

ν
∂〈ū1〉
∂x2

− 〈ū′′1ū′′2〉 − 〈τ12〉 =
1

ρ

∂〈p̄〉
∂x1

x2 +
τw
ρ
. (3.63)

The three terms on the left-hand side (LHS) of Eq. (3.63) represent the resolved

viscous shear stress, resolved Reynolds (or, turbulent) shear stress, and SGS shear

stress, respectively. The two terms on the right-hand side (RHS) of the equation

represent the resolved integrated driving force due to the mean streamwise pressure

gradient, and the resolved viscous shear stress at the wall, respectively. The individual

shear stresses identified in Eq. 3.63 are normalized by uτ and shown in Figure 3.18.

Since the SGS shear stress component −〈τ12〉 is an order of magnitude smaller than

the other two terms, it is not shown here. Again, the difference between the SM and

DM predictions is almost insignificant.

3.5 Summary

In this chapter, a 3-D LES code using a collocated grid system has been developed

and tested. The code is based on the fractional time-step technique [67,88], in which

the discretized Navier-Stokes equations are solved in two steps: first, the estimated

velocity field is calculated without updating the pressure field, and then the pressure

correction Poisson equation is solved to satisfy the continuity equation and the esti-

mated velocity field is corrected using the new pressure field. In solving the pressure

correction Poisson equation, a control strategy is adopted for the multigrid solver.

It employs a flexible procedure which automatically adjusts to the convergence rate

on each grid level. The performance of the MG-CS is tested using the LDC flow

at ReD = 400. Compared with the MG-V and LGS schemes, the MG-CS greatly

accelerates the convergence rate of the pressure field. The computational cost of the

MG-CS scheme is only about one third of that of the MG-V scheme.

The discretized equations should recover the inherent conservation nature of

the analytical governing equations. Collocated grid systems do not conserve kinetic

energy inherently [96]. The energy conservation properties of the present collocated

grid system are investigated following previous works [96–98]. The development of a
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FIGURE 3.17: Resolved Reynolds shear stress distribution in wall-normal direction:
(a) for half-channel (b) in wall coordinates (Reτ = 180).

periodic inviscid flow field is simulated on both staggered and collocated grid systems.

After an integration time, the error of the average kinetic energy on the staggered

grid system is second order with respect to the time step, whereas the error on the

collocated grid is first order, which indicates that the collocated system introduces

both the time-stepping and spatial discretization errors. To investigate the effect

of the numerical dissipation on the prediction of a real flow, the collocated grid

system is also tested using a steady laminar LDC at ReD = 400 and a unsteady

start-up flow at ReD = 1000. It is found that, although the collocated grid system

introduces conservation errors for the kinetic energy, it yields satisfactory predictions

in comparison with those given by a staggered grid. This kinetic energy conservation

issue is not very important for the steady LDC flow and unsteady start-up flow.
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FIGURE 3.18: Non-dimensional shear stress distribution across the channel (Reτ =
180).

Finally, the present LES code based on the collocated grid system is tested using

a low Reynolds number channel flow. The results indicate that the present LES

code yields satisfactory predictions of the turbulent flow in comparison with DNS

data. Based on the above investigations, a collocated grid system can be used with

confidence for LES of turbulent flows.
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Chapter 4

LES of Channel Flow at Reτ = 395 and

Investigation of the Dynamic Nonlinear

SGS Stress Model

4.1 Introduction

The presence of solid walls will affect the physics of the flow, especially the subgrid

scale motions. For example, the growth of the small scales near the wall is inhibited

and the exchange mechanisms between the large and small scales in this region are

altered. Therefore, for LES of wall-bounded flows, the SGS models must be able to

account for the significant effect of the wall. Fully developed channel flow is one of

the most widely investigated wall-bounded flows, and due to its geometric simplicity,

it is also a classic benchmark flow for numerical testing and physical understanding

of the mechanics of wall-bounded turbulence. Because of the presence of high shear

and small-scale turbulence near the wall, experimental measurement of near-wall flow

is relatively difficult and the results are often inconsistent. With the development of

numerical simulation techniques, turbulent channel flow at relatively low Reynolds

number has been first extensively investigated in literature. The first application of

LES to channel flow was made by Deardorff [114]. In his pioneering work, using only

6720 grid cells, he was able to capture several features of turbulent channel flow.

His work indicated a potential application of LES in the study of three-dimensional

turbulent flows. Following Deardorff’s work, Schumann [115, 116] and Moin et al.

[117] calculated turbulent channel flow using a much more refined grid. Moin and
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Kim [107] later applied LES to channel flow at relatively higher Reynolds number

Reτ = 640 and found that the resolution in the spanwise direction must be fine to

obtain accurate solution. Instead of using a conventional Smagorinsky model for the

SGS stress tensor, Moin and Kim [107] suggested a modified eddy viscosity model

which added a second term to the Smagorinsky model to account for the inadequate

resolution in the spanwise direction. Their work showed that with proper SGS models,

LES is able to obtain detailed, instantaneous information of turbulent flow at an

affordable resolution. Later, a DNS of a channel flow at Reτ = 180 was carried out

by the same research group to provide benchmark data for comparison [118]. As an

extension of their work, Moser et al. [109] conducted DNS of turbulent channel flow

at several Reynolds numbers up to Reτ = 590. They reported that the wall-bounded

turbulent flows at higher Reynold numbers revealed some Reynolds number effects.

For example, the mean velocity profiles at the Reτ = 395 and Reτ = 590 agree out to

y+ = 200 with an apparent logarithmic region, while the velocity profile at Reτ = 180

deviates from the higher Reynolds number cases beyond x+
2 = 10.

In this chaper, an LES study of a channel flow at a Reynolds number of Reτ =

395 is reported. Here, Reτ
def
= uτδ/ν and uτ is the friction velocity. The newly

proposed DNM [9] for the SGS stress is investigated and compared to the linear DM

using two different averaging schemes, i.e. local and plane averaging. The present

LES results are compared to the DNS results by Moser et al. [109]. In LES, since the

small scales of motion are not numerically resolved, the SGS models need mimic the

interaction between the large and small scale motions. Therefore, one of the important

issues in SGS modelling is related to the turbulent kinetic energy (TKE) transfer

between the large and small scales. In this chapter, the TKE dissipation produced

by these two SGS models is investigated using both the conventional LES approach

and the methodology of turbulence geometrical statistics reviewed in section 1.3. In

contrast to the conventional methodology, turbulent geometrical statistics investigates

the local geometrical properties and captures the statistical features of the small-scale

flow structures.
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4.2 Basic Concepts Related to Turbulence Geo-

metrical Statistics

It is known that the local small-scale flow structures are more related to the velocity

gradients rather than velocity itself. The velocity gradient tensor can be decomposed

into a symmetric part and a skew-symmetric part, which are referred to as the strain

rate tensor [i.e., Sij = (ui,j + uj,i)/2] and rotation rate tensor [i.e., Ωij = (ui,j −
uj,i)/2], respectively. The vorticity vector, ω, can be derived from the rotation rate

tensor, or, directly from the velocity gradient as ωi = εijkΩkj = εijkuk,j. Here, εijk

is the Levi-Civita symbol. The dynamical behavior of the velocity gradient tensor

is of fundamental importance for many physical quantities. Besides Sij , Ωij and ωi,

the velocity gradient also determines the vortex stretching vector, helicity density,

enstrophy and enstrophy generation, and turbulent kinetic energy dissipation rate.

Because the second-order tensor Sij is real and symmetric, it has three real

eigenvalues which can be arranged in descending order as αS ≥ βS ≥ γS. For incom-

pressible flows, only two of the three eigenvalues of the resolved strain rate tensor are

independent due to the continuity constraint, i.e.

αS + βS + γS = 0. (4.1)

The ratio between the these three eigenvalues of Sij is very useful for classifying the

structural configurations of local fluid element deformations. The local fluid element

deformation pattern is identified as purely 2-dimensional (PTD) if αS : βS : γS = 1 :

0 : −1; axisymmetric expansion if αS : βS : γS = 1 : 1 : −2; axisymmetric compression

if αS : βS : γS = 2 : −1 : −1; and quasi-2-dimensional (QTD) if |βS| 6= 0, |βS| < |αS|
and |βS| < |γS|.

Since only two of the three eigenvalues of Sij are independent for incompressible

flow, the local fluid element deformation pattern derived from Sij can be determined

by a single non-dimensional parameter. Studies on the relative principal value of the

strain rate tensor can be traced back to the pioneering work of Betchov [119], who

analyzed the magnitude of the eigenvalues using some fundamental algebraic inequal-
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ities. Based on analysis of DNS data, Ashurst et al. [48] and Kerr [49] demonstrated

that the ratio of the principal values of Sij of homogeneous turbulence tends to be

αS : βS : γS = 3 : 1 : −4 indicating a dominant QTD flow pattern. In their statistical

calculations [48, 49], the following non-dimensional parameter was suggested:

β∗ =

√
6βS

(α2
S + β2

S + γ2
S)1/2

(4.2)

The experiment of Tsinober et al. [44] based on hot-wire measurements of grid gen-

erated turbulence in a wind tunnel further confirmed the result of Ashurst et al. [48]

and Kerr [49], i.e. β∗ ≈ 0.4 which corresponds to αS : βS : γS ≈ 3.74 : 1 : −4.74

(the ratio 3.1 : 1 : −3.8 was instead presented in their paper). A similar observation

was reported in the work of She et al. [50] based on analyzing a DNS database of

homogeneous turbulence. However, Lund and Rogers [42] later pointed out that the

statistical results based on Eq.(4.2) can be biased and it leads to the incorrect con-

clusion that a state of local axisymmetric expansion does not exist in turbulent flows.

Instead, they proposed an alternative non-dimensional parameter given by:

s∗ =
−3

√
6αSβSγS

(α2
S + β2

S + γ2
S)3/2

(4.3)

With the new parameterization, Lund and Rogers [42] investigated a DNS database

of isotropic incompressible turbulence. They observed that the most probable state is

S∗ = 1 for flow regions with a low dissipation rate, and S∗ = 0.9 for flow regions with

a high dissipation rate. The state of S∗ = 1 corresponds to axisymmetric expansion

pattern (i.e., αS : βS : γS = 1 : 1 : −2) and the state of S∗ = 0.9 corresponds to the

ratio αS : βS : γS = 1.7 : 1 : −2.7. In general, any local fluid element deformation

patterns corresponding to S∗ ≥ 0.9 can be approximately classified as axisymmetric

expansion. The result of Lund and Rogers [42] that the axisymmetric expansion is

the most probable state in isotropic turbulence was later confirmed by a number of

researchers, including Soria et al. [120] and Blackburn et al. [53] who studied the

eigenvalue ratio using the phase plane of tensorial invariants; and Tao et. al. [54] who

analyzed HPIV measurements using an a priori LES approach.

The non-dimensional parameter is clearly not unique, but there must be a one-

to-one relationship between any two of them. A unique dependence between β∗ and
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s∗ exists and is given by [42]:

s∗ = β∗(3 − β∗/2) (4.4)

The inverse relation is

β∗ = 2 cos

[
5

3
π − 1

3
cos−1(s∗)

]
(4.5)

The relation between β∗ and βS/αS is:

βS

αS
=

2β∗

√
3(4 − β∗2) − β∗

(4.6)

The relationship between s∗ and βS/αS can be obtained by combining Eq.(4.6) and

Eq.(4.4) or Eq.(4.5). Since there are only two independent eigenvalues for Sij for

incompressible flow, the most probable ratio of αS : βS : γS can be calculated using

the above relationship Eq.(4.1, 4.4 - 4.6), provide that the most probable value of

either β∗, s∗ or βS/αS is determined. For instance, if the most probable value of βS

is 0.480, using Eq.(4.6), we obtain βS/αS = 0.333. Due to the continuity constraint

(Eq.4.1), γS/αS = −1 − βS/αS = −1 − 0.333 = −1.333, therefore, αS : βS : γS = 1 :

0.333 : −1.333 ≈ 3 : 1 : −4.

The velocity gradient tensor ui,j can be decomposed into a symmetric part

Sij and a skew-symmetric part Ωij , which represent the strain-rate and rotation-

rate tensor, respectively. The vorticity vector ω can be derived from the rotation

rate tensor or directly from the velocity gradient as ωi = εijkΩkj = εijkuk,j. The

dynamical behavior of the velocity gradient tensor is of fundamental importance for

understanding coherent structures because it governs a variety of physical phenomena

such as local vortex stretching and TKE dissipation. If the resolved scale strain rate

tensor acts to stretch the material line element aligned with the resolved-scale vorticity

ω, then the magnitude of ω increases. This is the phenomenon of vortex stretching,

and corresponding vortex stretching vector w is defined as [68]:

wi = ωjSij (4.7)

The increase of angular velocity by vortex stretching is a consequence of angular
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momentum conservation. Stretching causes the cross-sectional area of a material fluid

element to decrease, thus the angular velocity in the stretching direction must increase

to conserve angular momentum [121]. A variable closely related to the phenomena is

enstrophy generation σ, which is defined as

σ = ω · w ≡ ωiωjSij = ω2λicos
2(ω, ei) =

∑

i

σi (4.8)

where λi and ei are the eigenvalue and eigenvector of the strain rate tensor, respec-

tively. The subscript i takes the values 1, 2 and 3, which correspond to the largest (or,

the most extensive), intermediate and smallest (or, the most contracting) eigenvalues,

respectively. As mentioned earlier, following the usual convention used by the fluids

community, the eigenvalues mentioned above will be labeled in descending order of

magnitude as αS, βS, and γS, respectively.

A positive enstrophy generation corresponds to the votex stretching pattern, i.e.

ωiωjSij > 0, while negative enstrophy generation corresponds to the vortex compress-

ing pattern, i.e. ωiωjSij < 0. For PTD flows, both the vortex stretching vector and

enstrophy generation vanish, i.e. w = 0 and σPTD = 0. The only non-zero component

of vorticity evolves as a conserved scalar. Three-dimensional and QTD turbulence are

qualitatively different from PTD flow in that they possess essentially nonvanishing

enstrophy generation. The normalized enstrophy generation σn describes the relative

orientation between the vorticity and the vortex stretching vector:

σn = cos Θ(ω,w) =
ω · w

|ω| · |w| (4.9)

Based on measurements of turbulent grid flow, Taylor [122] first demonstrated that

the mean enstrophy generation for isotropic turbulence is positive. Taylor’s conclusion

is specific for (quasi-)homogeneous isotropic flows and has been confirmed through

recent experimental studies [44] and a number of numerical tests based on DNS

[123–125]. The predominant positiveness of the mean value of enstrophy generation

indicates that the most probable state for isotropic turbulence is related to a vortex

stretching instead of a vortex compressing flow configuration.

Helicity is an important fluid parameter which characterizes helical structures
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and plays a key role in magnetohydrodynamics, small-scale intermittency, TKE dis-

sipation processes, and the evolution of flow coherent structures [43, 47, 126, 127]. It

is defined as

H = uiωi (4.10)

The relative helicity hn describes the relative orientation between the velocity vector

u and vorticity vector ω, i.e. the cosine of the angle Θ between these two vectors:

hn = cos Θ(u,ω) =
u · ω

|u| · |ω| (4.11)

According to the velocity identity |u · ω|2 + |u× ω|2 = |u|2|ω|2, helicity is related to

the Lamb vector ω̄×ū = −ū×ω̄, which is the nonlinear convective term in the Navier-

Stokes (N-S) equations in rotational form. If a region is strongly helical with velocity

and vorticity vectors nearly aligned, i.e. hn is close to ±1 , then the magnitude of the

Lamb vector |u×ω| must be small. Since a small value of |u×ω| indicates a low rate

of TKE cascade to smaller-scales, helical behavior inhibits the TKE dissipation due

to nonlinear interactions. Therefore, it is expected that the coherent structures with

long lifetimes are associated with regions of large helicity and low dissipation rate;

and in turn, large helicity is primarily located in regions with large-scale turbulent

motions [43]. It is found that even if the large scales possess as much helicity as

possible, the small scales develop much less helicity, which implies that helicity is

primarily located at the large scales [128].

4.3 SGS Stress Modelling

The filtered continuity equation and Navier-Stokes equation for channel flows have

been given in Section 3.4.2. Two dynamic SGS stress models, i.e. the DM of Lilly [7]

and DNM of Wang and Bergstrom [9] (see Section 2.3), are tested in this chapter. It

is well known that one of the main deficiencies of the DM is related to the numerical

instability due to its construction, and consequently, the coefficient must be properly

constrained. In the present study, we use two different approaches to constrain the

model’s coefficient. First the general plane averaging method, where the coefficient is

averaged over the statistically homogeneous x1–x3 plane, is adopted. Obviously, the
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plane averaging approach will smear the local characteristics of the model. To retain

local information, in the present study, we also adopted an ad hoc local averaging

scheme, i.e. first bound the calculated coefficient of the DM by −0.2 ≤ CS ≤ 0.2

(approximately 92% of the calculated coefficient values fall within this range), and

then smooth the coefficient locally by using a 2-D discrete box filter (viz., local-plane-

averaging based on a stencil of 3 × 3 nodes in the homogeneous x1 and x3 plane).

The second SGS stress model tested is the DNM proposed by Wang and

Bergstrom [9] (see section 2.3), which is based on the explicit quadratic tensorial

polynomial constitutive relation originally introduced by Speziale and Gatski [10,11]

for the RANS approach. The fundamental features of this model have been exam-

ined using LES of turbulent Couette flow [9]. It is found that in comparison with the

DM [6,7], the DNM can significantly increase the numerical stability. The model gave

satisfactory predictions and no singularity problem was encountered in the simulation

of Couette flow [9]. Wang and Bergstrom’s study [9] only examined the DNM at a

relatively low Reynolds number. As the extension to their work, the performance

of the model in LES of channel flow at a higher Reynolds number (Reτ = 395) is

examined in this chapter. For turbulent channel flow at the Reynolds number of

Reτ = 395, the log layer is more extensive and the log law has a smaller intercept in

comparison with low Reynolds number flow.

 

 
 
 
 

πδ2

32πδ

FIGURE 4.1: Computational domain and coordinate system (Reτ = 395).

4.4 Numerical Method and Flow Configuration

In this study, the governing equations are discretized using the finite volume method.

Following the approach of Kim and Moin [67], the momentum equations were solved
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using a fractional-step method where the nonlinear term was discretized using a

second-order explicit Adams-Bashforth scheme and the viscous diffusion term was

discretized using a second-order Crank-Nicolson scheme. A second-order central dif-

ference scheme was applied on a collocated grid for spatial discretization. At each

time step, the pressure field was updated using a pressure correction method and the

Poisson type pressure correction equation was solved using a multi-grid method with

the control strategy described in section 3.2. The time period used to obtain the

turbulent statistics was 10, 000∆t after the flow became fully developed. Different

time steps were explored before the simulation. It is found that ∆t ≈ 0.0015δ/uτ is

small enough to obtain a stable solution and adopted in the calculation.

No-slip and no-penetration boundary conditions are imposed at the walls, and

periodic boundary conditions are applied in the streamwise and spanwise directions.

The computational domain which is shown in Figure 4.1 is set to be 2πδ×2δ×2πδ/3,

corresponding to the streamwise (x1), wall-normal (x2) and spanwise (x3) directions,

respectively. The total number of control volumes is 48 × 48 × 64 (in x1, x2, x3).

The grid is uniform with a spacing of ∆x+
1 ≈ 51.3 and ∆x+

3 ≈ 12.7, respectively,

in the streamwise and spanwise directions. The mesh in the wall-normal direction

corresponding to the channel gap is refined near the wall using a hyperbolic-tangent

function described by Eq 3.59. In the present simulation, the first interior node off

each wall is located at x+
2 ≈ 0.4. Since in the LES approach, not all scales of motion

are resolved, the number of control volumes to be employed is significantly reduced in

comparison with DNS approach. For instance, in the DNS study of Kim et al. [118],

192 × 129 × 160 nodes were used for a Reynold number of Reτ = 180, and for the

same test case (Reτ = 395), Moser et al. [109] used 256 × 193 × 192 control volumes

for their DNS approach.

4.5 Analysis of Results

In the absence of experimental measurements and filtered DNS data, the resolved-

scale variables obtained here will be compared directly with the DNS results. All

quantities denoted by 〈·〉 are obtained using both spatial averaging in the homoge-
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neous plane and time averaging for more than 10,000 time steps after the flow is fully

developed. In presenting the results, the quantities are non-dimensionalized using the

friction velocity uτ .
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FIGURE 4.2: Mean velocity profile using wall coordinates (Reτ = 395).

4.5.1 Resolved Mean and Fluctuation Properties

The mean streamwise velocity profile using wall coordinates is shown in Figure 4.2.

We use the suffixes P and L to denote the plane and local averaging schemes de-

scribed above, respectively. Compared with the DNS data of Moser et al. [109], both

the DNM and DM yield satisfactory predictions. None of the LES were able to pick

up the wake region. The prediction of the DNM is closer to the DNS data, while the

DM profiles are shifted slightly upward in the logarithmic region. The mean velocity

profiles given by the DM using the plane and local averaging schemes almost overlap,

which suggests that the choice of the bounding scheme does not have a significant

effect on the prediction of the mean streamwise velocity.

Figure 4.3 plots the resolved velocity fluctuations and DNS data of Moser et al.

[109] for comparison. Here, ū+
1,rms, ū

+
2,rms and ū+

3,rms denote the normalized root-mean-

square streamwise (x1), wall-normal (x2) and spanwise (x3) fluctuation component,

respectively, which are defined as ū+
i,rms

def
= 〈( ūi−〈ūi〉

uτ
)2〉1/2 for i = 1, 2 and 3. It

can be seen in Figure 4.3a, that both the DM and DNM prediction of the resolved
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streamwise component are, in general, consistent with the DNS data, except that

the DNM slightly overpredicts the peak value near the wall. Figure 4.3b indicates

that both models underpredict the resolved wall-normal component near the wall.

However, DNM yields a prediction that is relatively closer to the DNS results. In

Figure 4.3c, both models underpredict the spanwise fluctuation component near the

wall. However, towards the channel center, the DM tends to slightly overpredict the

spanwise component, while the DNM prediction is in better agreement with the DNS

data.

Figure 4.4 plots the distribution of the resolved Reynolds shear stress across

the channel. The resolved Reynolds shear stress is normalized by (uτ)
2 and denoted

as −〈ū′′1ū′′2〉+. The magnitude of the SGS shear stress −〈τ12〉 is an order of magnitude

smaller than the resolved Reynolds shear stress, its contribution to the total shear

stress is insignificant for this case and is not shown here. Figure 4.4 indicates that

all the models give a lower peak value near the wall. Compared to the predictions of

the DM, the DNM prediction is closer to the DNS data. The prediction of the DM

using the local averaging scheme is even worse than that of the DM using the plane

averaging scheme, which suggests that the local bounding parameters may need to

be adjusted for this specific flow.

Figure 4.5 shows the instantaneous velocity vectors and contours of streamwise

vorticity fluctuations in the spanwise plane (x2-x3) at the channel center. In the

figure, it can be seen that the vortices with large magnitude of streamwise vorticity

ω̄1 are concentrated near the wall. The generation of the large amplitudes of ω̄1 is

due to the no-slip boundary condition which leads to large value of ∂ū3/∂x2 and the

revolving fluid elements induced by the intense shear layer located at the interface

between the energetic fluid streams moving toward and away from the wall.
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FIGURE 4.3: Resolved velocity fluctuations in wall coordinates: (a) streamwise; (b)
wall-normal; (c) spanwise. (Reτ = 395).
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4.5.2 SGS Kinetic Energy Dissipation

Kinetic energy transfer in LES is governed by the energy transport equation (2.10).

The SGS dissipation term in the equation represents the unresolved kinetic energy,

which should be mimicked by the SGS model. Here, we denote the SGS dissipation
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(or TKE production) as Pr, which is defined as [68]

Pr = −τij S̄ij. (4.12)

To provide the correct level of overall SGS TKE dissipation to the large-scale motions

is an essential function of SGS models. Although the mean SGS dissipation rate 〈Pr〉
has a positive value, which represents a net turbulent kinetic energy cascade from the

filtered (resolved) to subgrid scales of motions, experimental measurements [72, 129]

and numerical studies [71, 130, 131] have shown that the local instantaneous TKE

transfer occurs between resolved and subgrid scales in both directions. Therefore,

SGS models are required to predict proper ‘backward scatter’ and ‘forward scatter’

of the TKE. It is well known that the simple eddy viscosity type model using a plane

averaging scheme, which is not able to predict backward scatter, has poor performance

in predicting transitional and near-wall flows, for which the backward transfer of TKE

can be locally important [72, 87, 129, 130]. Another well-known problem of the eddy

diffusivity type model is also related to this issue: the model is potentially unstable

due to the improper TKE backward scatter [7]. In this section, the net SGS dissipation

rate and TKE transfer between the resolved and SGS motions predicted by the DM

and DNM are investigated.

Figure 4.6 shows the instantaneous SGS dissipation rate of TKE in a plane

parallel to the wall at x+
2 = 24.4 using the DNM and DM L, respectively. Since

the DM P does not allow for backscatter, its prediction is not shown here. Here,

Πk denotes the instantaneous TKE dissipation rate normalized by u4
τ/ν, i.e. Πk =

Pr/(u
4
τ/ν). Figure 4.6a indicates that the DM L allows the TKE transfer in both

forward and backward directions, however, the level of backward scatter is obviously

smaller than that of the forward scatter. Although the level of the backscatter of

TKE could be adjusted by changing the bounding parameters adopted for the local

averaging scheme, it is an ad hoc ‘tuning’ and if a relatively large level of backscatter

is allowed, a numerical instability may occur during the simulation. Figure 4.6b

shows the SGS dissipation rate predicted by the DNM. Several large peak values

of backscatter are observed in the figure, which implies that the DNM allows for a

relatively high level of local backscatter without causing numerical instability. In
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FIGURE 4.6: Instantaneous SGS dissipation of TKE normalized by u4
τ/ν in a plane

parallel to the wall at y+ = 24.4 (Reτ = 395).

contrast to the DM, the DNM is free from the need for any artificial control of

backward scatter.

Figure 4.7 shows the plane- and time-averaged distribution of Pr along the

wall-normal direction. In the figure, the averaged SGS TKE dissipation rates are

normalized by u4
τ/ν. ‘Forward’ denotes mean positive TKE production normalized

by u4
τ/ν, i.e. 〈P+

r 〉/(u4
τ/ν). ‘Backward’ denotes mean negative TKE production nor-

malized by u4
τ/ν, i.e. 〈P−

r 〉/(u4
τ/ν). ‘Net’ denotes the net transfer of TKE normalized

by u4
τ/ν, i.e. 〈Pr〉/(u4

τ/ν). It is interesting to observe that the DM with different

bounding schemes yields quite different levels of TKE production. The difference
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FIGURE 4.7: Averaged SGS dissipation rate normalized by u4
τ/ν in wall

coordinate(Reτ = 395).

between predicted values of the TKE production when different SGS models are ap-

plied was also observed by Cottet and Vasilyev’s [132]. Compared to the DM, the

DNM yields a relatively large level of mean backward scatter and thus a small level

of net TKE production in the near-wall region. This is consistent with the previous

observation of the instantaneous TKE transfer shown in Figure 4.6, e.g. the DNM

allows a relatively high level of local negative transfer of TKE.

4.5.3 Geometrical Properties of the Resolved Strain Rate

and SGS Stress Tensor

As reviewed in section 1.3, the method of turbulence geometrical statistics has been

introduced to LES for studying the geometrical properties of the filtered flow field

and the performance of SGS models. In this section, following the pioneering work by

Tao et al. [54,133], turbulence geometrical statistics is applied to study the eigenvalue

structure of the filtered strain rate and SGS stress tensor. Here, the concept of the

nondimensional parameter S∗, suggested by Lund and Rogers [42] and defined by

Eq. 4.3, is applied to study the resolved strain rate tensor, i.e. the symbol S∗ used

here denotes the nondimensional state parameter of S̄ij . In analogy to S∗, Tao et

al. [134] suggested the variable S∗
τ to study the eigenvalue structure of the SGS stress

75



tensor. The stress state parameter S∗
τ is defined based on the deviatoric part of τij ,

i.e.

S∗
τ =

3
√

6α−τβ−τγ−τ

(α2
−τ + β2

−τ + γ2
−τ )

3/2
, (4.13)

where α−τ , β−τ and γ−τ are eigenvalues of the deviatoric part of the SGS stress, −τ ∗ij ,
where τ ∗ij = τij − δijτkk/3. Here α−τ ≥ β−τ ≥ γ−τ and α−τ + β−τ + γ−τ = 0. As was

the case for S∗, S∗
τ is bounded between ±1 by its definition.

In this study, two statistical functions, the probability density function (PDF)

and the joint probability density function (JPDF), are calculated based on a spatial

and temporal average [135]. The PDF of the non-dimensional state parameters of

the resolved strain rate and SGS stress tensor, S∗ and S∗
τ , at the channel center is

shown in Figure 4.8. The PDF profiles of S∗ obtained by the DM L and DNM are

similar, and indicate that the most probable strain state is axisymmetric extension

(S∗ = 1), rather than axisymmetric compression (S∗ = −1). However, the profile

of the PDF of S∗ drops slightly near S∗ = 1. In contrast, Figure 4.8b shows that

the mode of S∗
τ is located at S∗

τ = −1, which indicates that the most probable

stress state is axisymmetric compression, corresponding to an eigenvalue ratio of

α−τ : β−τ : γ−τ = −1 : −1 : 2. Although the modes of S∗
τ obtained by both the DM L

and DNM are located at S∗
τ = −1, the DNM implies a higher probability of S∗

τ = −1

than the DM L. The DNM results also indicate that the probability of S∗
τ = −1 is

relatively prominent in comparison with the probability of S∗ = 1, while the DM L

results indicate that the probability of S∗
τ = −1 is almost the same as that of S∗ = 1.

Based on Figure 4.8b, the DNM yields a prediction which is closer to the observation

of Tao et al. [54] based on the PIV measurement of a turbulent flow in a square duct.

Figure 4.9 shows the PDFs of S∗ and S∗
τ near the wall in the buffer layer

(x+
2 = 24.4). In contrast to the PDF of S∗ at the channel center (Figure 4.8a),

Figure 4.9a shows that the modes of S∗ in the buffer layer shift towards S∗ = 0 (QTD

near-wall flow). Note that in Figure 4.9b, the mode of S∗
τ in the buffer layer obtained

by the DM L also shifts towards S∗
τ = 0, but the mode of S∗

τ obtained by the DNM

is still located at S∗
τ = −1. Figure 4.10a plots the PDFs of S∗ in the viscous sublayer

(x+
2 = 3.9). Both the DNM and DM L results indicate that in the viscous sublayer,

the most probable state of the strain rate tensor is S∗ = 0. In general, the presence of
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FIGURE 4.8: PDF of the nondimensional state parameters at the channel center (a)
S∗ of resolved strain rate tensor S̄ij ; (b) S∗

τ of SGS shear stress −τij (Reτ = 395).

the wall tends to reinforce the tendency of S∗ = 0, which corresponds to an eigenvalue

ratio of αS : βS : γS = 1 : 0 : 1. This observation reflects the intrinsic QTD nature of

the near wall flow. The PDFs of S∗
τ in the viscous sublayer are shown in Figure 4.10b.

It is observed that the mode of S∗
τ obtained by the DM L is located at S∗

τ = 0, while

the PDF of S∗
τ obtained by the DNM still peaks at S∗

τ = −1. Obviously, although

the resolved strain structures predicted by the DM L and DNM are similar, the SGS

stress structures predicted by these two models are quite different, especially near the

wall. It is not surprising that for the DM L prediction, the PDF of S∗
τ is coupled with

that of S∗, since the constitutive relation of the DM is based on linear relation to the

resolved strain rate tensor.

To examine the relation between the preferred states of S̄ij and τij predicted by

the DNM, the JPDF of S∗ and S∗
τ at the channel center is calculated and plotted in

Figure 4.11. When the DNM is applied, the mode of the JPDF is located at S∗ = 1

and S∗
τ = −1. Corresponding to any S∗, the preferred state of the local SGS stress

is always S∗
τ = −1, whereas corresponding to any S∗

τ , the most probable state of the

local strain is still S∗ = 1, which implies that these two state parameters predicted

by the DNM are not coupled. The DNM contradicts the DM, for which these two

state parameters are coupled as S∗ = −S∗
τ due to its constitutive relation. These

observations on the JPDF of S∗ and S∗
τ based on the DNM prediction ( Figure 4.11)
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are consistent with that based on the experimental measurements of a turbulent

duct flow [54], which imply that the geometrical orientation of the SGS stress tensor

predicted by the DNM may be close to the real orientation of the SGS stress tensor.

Here, we have to emphasis that due to the absence of DNS and experimental data for

the present test flow (channel flow), the experimental measurements of a duct flow
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(Tao et al.) [54] is used for comparison. Therefore, it is not a strict comparison since

two different flows are employed. However, we may expect that the main geometrical

properties of turbulence are universal and not related to a specific flow. For example,

the preferred alignment between the vorticity vector and the intermediate eigenvector

of the strain rate tensor, and the preference of the axisymmetric extension state of

strain structure are canonical and have been observed in many different flows.

1.2525

0.3174

0.19360.1615

0.1390
0.1242

0.10890.
09

77

0.5511

0.2394

0.3953

0.7849

S*

S
τ*

-0.5 0 0.5

-0.5

0

0.5

FIGURE 4.11: JPDF of the nondimensional status parameter S∗ and S∗
τ at the

channel center (Reτ = 395).

4.5.4 Relations between the State Parameters S∗ and S∗
τ

and

SGS Dissipation Rate

In this section, the relations between the state parameters and the SGS dissipation are

investigated, e.g. the topologies of S∗ and S∗
τ with respect to the SGS dissipation when

different SGS models are applied. A contour map of the JPDF of state parameters and

SGS dissipation is generally used for this purpose. Here, Π denotes the normalized

instantaneous SGS dissipation rate, which is defined as Π = Pr/(u
4
τ/ν). In the

statistics, the SGS dissipation rate is normalized by the mean SGS dissipation rate

Πmean, which is obtained by time and plane averaging over the homogeneous plane,

i.e. Πmean = 〈Pr/(u
4
τ/ν)〉.
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FIGURE 4.12: JPDF of S∗ and the normalized SGS dissipation at the channel center
using the linear DM L (Reτ = 395).

Figure 4.12 plots the contour of the JPDF of S∗ and Π/Πmean using the DM L

at the channel center. Both a 3-D and 2-D plot are given in the figure. Evidently,

both the positive (forward scatter) and negative (backscatter) dissipation exist over

the entire range of S∗. In the positive dissipation region, axisymmetric extension

(S∗ = 1) is the preferred state of S̄ij, while in the negative dissipation region, the

preference is not evident. Although the net SGS dissipation is positive (see Fig-

ure 4.7), Figure 4.12 shows that the mode of the JPDF of S∗ and Π/Πmean is located

in the negative dissipation region. This implies that the frequency of backscatter is

higher than that of forward scatter, but the average level of the magnitude of the

backscatter is smaller than that of the forward scatter. It can be explained by the na-

ture of the DM and the local-averaging scheme adopted. Naturally, the DM tends to

overpredict the backscatter, which is known to cause numerical instability. Although

the local-averaging scheme could constrain the total level of backscatter by clipping

large negative coefficients, it cannot reduce the occurrence of the backscatter.

Figure 4.13 shows the contour of the JPDF of S∗ and Π/Πmean using the DNM

at the channel center. The positive and negative dissipation exist over the whole range

of S∗. For the positive dissipation region, S∗ = 1 (axisymmetric extension state) is

slightly preferred, while for most of the negative dissipation region, any preference is

minimal. In contrast to the JPDF pattern of the DM L, the peak values of the JPDF
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FIGURE 4.13: JPDF of S∗ and the normalized SGS dissipation at the channel center
using the nonlinear DNM (Reτ = 395).

of S∗ and Π/Πmean using the DNM are located in the positive SGS dissipation region,

close to the axisymmetric extension state (S∗ = 1). For the region S∗ < 0, we notice

that the peak value of the JPDF is located in the negative dissipation region, which

implies that the DNM overpredicts the backscatter in this region. This conclusion is

based on the study of Tao et al. [54], who measured a turbulent duct flow and found

that for the whole range of S∗, the overall SGS dissipation should be positive.

The contour of the JPDF of S∗
τ and SGS dissipation Π/Πmean using the DNM

at the channel center is shown in Figure 4.14. In contrast to the state of strain rate

tensor (Figure 4.13), The most probable SGS stress state is axisymmetric compression

(S∗
τ = −1) rather than axisymmetric extension (S∗

τ = 1) for both the positive and

negative dissipation region. Prediction of SGS dissipation is an important issue for

SGS modelling. The topologies of SGS dissipation with respect to the state parame-

ters S∗ and S∗
τ based on the experimental measurements of Tao et al. [54] are shown

in Figure 4.15 for comparison. We notice that the JPDF contour pattern predicted

by the DNM is similar to those of the experimental measurements [54] (compare Fig-

ure 4.13b and Figure 4.14b to Figure 4.15a and 4.15b, respectively.). The topological

similarity between the DNM predictions and the measured SGS dissipation is impor-

tant in that it implies the local small structures predicted by the DNM are similar

to the real ones. However, further investigations are necessary in order to draw a

definitive conclusion.
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FIGURE 4.14: JPDF of S∗
τ and the normalized SGS dissipation at the channel center

using the nonlinear DNM (Reτ = 395).
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FIGURE 4.15: Experimental measurement of the JPDF of S∗ and S∗
τ with SGS

dissipation (by Tao et. al., 2002, for duct flow).

The contour of the JPDF of S∗ and Π/Πmean in the buffer layer using the DNM

is shown in Figure 4.16. It is observed that similar to the JPDF of S∗ and Π/Πmean at

channel center, both forward and backward scatter of SGS dissipation occur over the

entire range of S∗. However, compared to the channel center, the mode of the JPDF

S∗ and Π/Πmean in the buffer layer moves away from the axisymmetric extension

(S∗ = 1) toward the QTD region (S∗ = 0), which is mostly due to the 2-D nature of

the near-wall flow. Figure 4.16 indicates that for the region S∗ > 0, forward scatter is
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still dominant, while for the region S∗ < 0, backward scatter occurs more often and

the peak values of the JPDF occur for negative dissipation in this region.
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FIGURE 4.16: JPDF of S∗ and the normalized SGS dissipation in the buffer layer
using the nonlinear DNM (Reτ = 395).

0

5

10

15

JP
D

F

-1

-0.5

0

0.5

1

S
τ

∗

-1
-0.5

0
0.5

1
1.5

Π/Π mean

8.00

5.00

2.00

0.80
0.40

0.40

0.10 0.04

0.01

0.040.01

0.10

y+=24.4

(a) 3-Dimensional plot

5.00
1.69 0.65 0.50 0.34 0.20
0.05

0.05

0.34
0.20

0.05

0.01

Sτ
∗

Π
/Π

m
ea

n

-0.5 0 0.5
-1.2

-0.8

-0.4

0

0.4

0.8

1.2
x+

2=24.4

(b) 2-Dimensional plot

FIGURE 4.17: JPDF of S∗
τ and the normalized SGS dissipation in the buffer layer

using the nonlinear DNM (Reτ = 395).

Figure 4.17 plots the contour of the JPDF of S∗
τ and Π/Πmean in the buffer

layer using the DNM. It is observed that the JPDF contour pattern in the buffer

layer is similar to that at the channel center, i.e. both the positive and negative

dissipation strongly favour the axisymmetric compression stress state (S∗
τ = −1).

However, compared to the JPDF at the channel center (Figure 4.14), the probability
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of the axisymmetric compression state (S∗
τ = −1) is evidently enhanced in the buffer

layer.

4.6 Summary

In this chapter, the DM and DNM for SGS stress are investigated in LES of a channel

flow at Reτ = 395. The present study of the mean and fluctuating properties of the

flow indicates that the LES results are consistent with the DNS data. Both the DM

and DNM models give satisfactory predictions with respect to the resolved velocity

field. In general, the DNM yields predictions that are slightly closer to the DNS data

and displays several attractive features, e.g. it is free from any artificial ‘tuning’.

The SGS dissipation is one of the important issues for LES. It is used in this

study to evaluate the performance of the SGS models. It is observed that the DM with

different bounding schemes yields quite different levels of TKE production. The DM

with plane averaging cannot provide backscatter. Although the DM with local aver-

aging could predict backscatter, the level of the backscatter is influenced by the local

bounding scheme adopted for the model’s coefficient rather than the local flow struc-

ture. It is found that not only the level but also the local distribution of backscatter

predicted by the DM is incorrect, which implies that it is not the model’s coefficient

but the Smagorinsky type constitutive relation that should be modified. Compared

to the DM, the nonlinear DNM allows for a relatively large level of backscatter and

yet is stable in calculation due to its constitutive relation.

The methodology of turbulence geometrical statistics is used to investigate the

local structures of the resolved and SGS field. The geometrical characteristics of the

resolved strain structures predicted by both the DM and DNM are similar, i.e. at the

channel center, the most probable strain state is axisymmetric extension (S∗ = 1),

while towards the wall, the flow tends to be QTD (S∗ = 0) due to the effect of the

solid wall. However, the SGS stress structures predicted by these two models are quite

different. The DNM predictions are consistent with the experimental measurements,

i.e. the state parameters S∗ and S∗
τ predicted by the DNM are not coupled, while for

the DM, the relation S∗ = −S∗
τ is forced due to its constitutive relation.
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At the channel center, the peak values of the JPDF of S∗ and Π/Πmean using the

DM are located in the negative dissipation region, which implies that the DM tends

to overpredict the backscatter. In contrast, the mode of the JPDF of S∗ and Π/Πmean

using the DNM is located in the positive dissipation region. However, for the region

S∗ < 0, the peak values of the JPDF will fall in the negative dissipation region, which

implies that for S∗ < 0, the DNM may overpredict backscatter. Towards the wall, the

mode of the JPDF of S∗ and Π/Πmean using the DNM move from the axisymmetric

extension region (S∗ = 1) to the QTD flow region (S∗ = 0). In contrast, the JPDF

profiles of S∗
τ and Π/Πmean using the DNM is always peaked at S∗

τ = −1 (axisymmetric

compression) for all the flow region.

In general, both the DM and DNM yield satisfactory results with respect to the

resolved mean and fluctuating properties. However, the DM cannot predict the proper

level and distribution of backscatter. In contrast, the DNM allows for a relatively

large level of backscatter and yet is stable. Both models capture the geometrical

characteristics of the resolved strain structure. However, the geometrical properties

related to the SGS field predicted by these two models are quite different. It is

found that the SGS dissipation and SGS stress structures predicted by the DNM are

topologically similar to the experimental measurements.
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Chapter 5

LES of Combined Forced and Natural

Convection in a Vertical Plane Channel

using Different SGS Models

5.1 Introduction

In mechanical and environmental engineering, combined (mixed) forced and natural

turbulent convection is a frequently encountered thermal-fluid phenomenon, which ex-

ists, for example, in the atmosphere, urban canopy flows, ocean currents, gas turbines,

heat exchangers, nuclear reactors, and computer chip cooling systems. In the early

development of the subject of convective heat transfer, forced and natural convection

were studied separately and the interaction between these two physical processes was

ignored. Modern research on combined forced and natural convection was initiated

in the 1960’s based on experimental approaches (see Metais and Eckert [136]). Since

then, refined experimental measurements have become available [137,138], and the re-

search methodology has been extended to numerical simulations based on the RANS,

DNS, and LES [35, 139–145].

By their nature, buoyancy driven turbulent flows are unsteady and feature

both large and fine scale flow structures. Therefore, a time dependent and fine scale

resolved calculation based on DNS or LES can provide more details of the temperature

and fluid flow fields. In LES of buoyant flows, the unknown SGS stress tensor and

heat flux (HF) vector associated with the unresolved scales of motion need to be

modelled to close the set of governing equations. Although in a direct sense, the SGS
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stress model is for closing the filtered momentum equation and the SGS HF model is

for closing the filtered thermal energy equation, these two types of SGS models jointly

influence both the velocity and temperature fields. This is because the transport of

momentum is tightly coupled with that of thermal energy in a combined forced and

natural convective flow, both temporally and spatially.

In this chapter, LES of mixed flow for a Grashof number of Gr = 9.6 × 105

and Reynolds number of Rea
τ = 150 is performed. The DM [7] and DNM [9] are used

for closure of the filtered momentum equation, and the DEDM-HF [20] and DTDM-

HF [40] are used for closure of the filtered energy equation. LES results are compared

to the benchmark DNS study of Kasagi and Nishimura [141], Kuroda et al. [146]

and Davidson et al. [1]. Attention is focused on evaluation of the performance of

the linear and nonlinear SGS models in terms of their capability for predicting the

resolved thermal-fluid fields. In particular, we compare the set of linear SGS models

based on the DM and DEDM-HF, with the set of nonlinear SGS models based on the

DNM and DTDM-HF.

5.2 Governing Equations and SGS Models

The filtered continuity equation (Eq.2.5) and thermal energy equation (Eq.2.7) have

been presented in section 2.2. The filtered momentum equation for the mixed con-

vective flow will consider the effect of buoyancy and takes the following form:

∂ūi

∂t
+

∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+ ν

∂2ūi

∂xj∂xj
− ∂τij
∂xj

− βgi

(
θ̄ − Θr

)
, (5.1)

where Θr is a reference temperature. τij
def
= uiuj − ūiūj is the SGS stress tensor. To

close the momentum equations, the DM (Eq.2.11) and DNM (Eq.2.35) are used for

the SGS stress term in this study. The details of these two SGS stress models can

be found in section 2.3 and will not be described again in this chapter. To close the

filtered energy equation (Eq.2.7), two dynamic SGS HF models are implemented in the

simulation, namely, the DEDM-HF introduced by Moin et al. [20], and the DTDM-

HF recently proposed by Peng and Davidson [40]. These two modelling formula have

been summarized in section 2.4.

87



5.3 Physical Model and Numerical Method

The physical model tested in this research is a combined forced and natural convec-

tion (or, mixed convention) between two vertical parallel plates maintained at two

different temperatures. Specifically, we consider a benchmark test case of Kasagi

and Nishimura [141] and compare the LES results with the reported DNS results

[1, 141, 146]. The physical domain of the test flow is described in Figure 5.1. The

flow is characterized by a Grashof number of Gr = 9.6× 105 and a Reynolds number

of Rea
τ = 150 (determined by the mean driving pressure gradient in the streamwise

direction). Here, Rea
τ

def
= ua

τδ/ν and ua
τ is the average value of the friction velocities

at the two walls. So, Rea
τ = (Reτh +Reτc)/2. The pressure gradient drives the mean

flow upward, while the buoyant force acts in the upward (aiding flow) and downward

(opposing flow) directions near the hot and cold walls, respectively. Compared with

the forced convection case (Gr = 0), the mean velocity profile for mixed convection

becomes increasingly asymmetric as the Grashof number increases [1, 138, 141]. In

general, the turbulent transport is enhanced in the opposing flow region and is sup-

pressed in the aiding flow region. As mentioned in Davidson et al. [1], because the

velocity profile is asymmetric in the wall-normal direction, the value of the friction

velocity τw (and therefore, the Reynolds number Reτ ) at the hot wall is different than

that at cold wall, i.e. τwh 6= τwc (and Reτh 6= Reτc). As such, due to the buoyancy

effect, it is expected that the value of Rea
τ obtained from simulation deviates from the

nominal value of 150, and we will revisit this subject later when discussing Table 5.1.

The momentum equations are solved using the method described in section 4.4.

To solve the filtered thermal energy equation, a fourth-order Runge-Kutta method

was used to advance the temperature field over a single time step. The time period

used to obtain the turbulent statistics was 10, 000 time steps after the flow becomes

fully developed. In order to extract the value of a filtered variable at the test-grid level

to perform the dynamic modelling procedure, the boundary thermal-fluid fields are

processed using a second-order Gaussian filter and the interior fields are processed

using a fourth-order discrete Gaussian filter. For the formulation of these discrete

filters, the reader is referred to Sagaut and Grohens [147].
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FIGURE 5.1: Illustration of the physical domain of the combined forced and natural
convective channel flow.

No-slip and no-penetration boundary conditions were imposed on the velocity

components at the walls, while the temperatures on the two side walls were set to fixed

values derived from the given Grashof number. Periodic boundary conditions were

imposed in the streamwise and spanwise directions. The computational domain was

set to be 5πδ× 2δ× 2πδ, and 48× 32× 48 control volumes were used for discretizing

the domain in the streamwise (x1), wall-normal (x2) and spanwise (x3) directions,

respectively. The grid is uniform in the streamwise and spanwise directions and is

refined in the wall-normal direction using a hyperbolic-tangent function (Eq.3.59),

such that the first interior node off the wall is located at x+
2 ≈ 1.2. For the present

LES, the number of the control volumes to be employed is significantly less than that

used in a DNS approach. For instance, for a similar test case (Gr = 7.68 × 106 and

Rea
τ = 150), Davidson et al. [1] used 128 × 96 × 96 control volumes in their DNS

study of mixed convection. In the absence of filtered DNS data, the value of the

resolved scale variables obtained from the simulation will be compared directly with

the DNS results. All quantities denoted by 〈·〉 are averaged both in time and over

homogeneous planes. In presenting the results, the quantities are non-dimensionalized

using the wall friction velocity uτ and friction temperature Tτ .
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5.4 Analysis of Results

Table 5.1 summarizes the flow conditions and some important parameters that char-

acterize the thermal-fluid flow fields obtained from the LES and DNS approaches.

Although slight differences exist, Table 5.1 indicates that the LES predictions of

those characteristic flow parameters (such as the Reynolds number, and resolved wall

friction coefficient and Nusselt number) based on both sets of linear and nonlinear

models are, in general, consistent with the reported DNS data. The Reynolds num-

bers (Rea
τ and Reb) calculated from the LES are slightly smaller than those from the

DNS performed by Kasagi and Nishimura [141], with a difference of less than 5%.

The value of the resolved friction coefficient predicted using both the LES and DNS

is larger at the hot wall and smaller at the cold wall. In contrast, the predicted value

of the Nusselt number is smaller in the hot wall region and larger in the cold wall

region. The reason that the value of the resolved wall friction coefficient increases

at the hot wall and decreases at the cold wall, is due to the fact that buoyancy aids

the upstream flow motion (consistent with the effect caused by the mean streamwise

driving pressure gradient) near the hot wall while opposing it near the cold wall.

The Nusselt number in both the hot and cold wall regions is defined as the ratio

of the actual heat transferred through the wall to the heat transfer that would occur

through conduction [141], viz. Nu = 2qw/[λ(θD−θw)/D]. Here, qw represents the wall

heat flux, θw is the wall temperature, D is the distance measured from the wall to the

maximum streamwise velocity location, and θD
def
=

∫ D

0
〈θ̄〉dx2/D is the bulk averaged

temperature over the distance D. Owing to the deformation of the mean velocity

profile (see Figure 5.2a), the value of D for the hot wall region is smaller than that

for the cold wall region. As such, the fluid heat conduction [i.e., λ(θD − θw)/D] near

the hot wall is larger than that near the cold wall. Given the definition of the Nusselt

number and the condition that the averaged value of qw from the two walls must be

equal to satisfy conservation of energy, the Nusselt number in the hot wall region is

smaller than that in the cold wall region. These observations are in agreement with

the previous investigations conducted by other researchers [1, 138, 141].
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TABLE 5.1: Physical quantities of the flow

Rea
τ Reb

Gr
Re2

b

uτ Cf × 10−3 Nu
Hot Cold Hot Cold Hot Cold

DNS [141] 150 4494 0.0475 – – 9.90 7.90 7.4 20.9
DM&DEDM-HF 145 4270 0.0526 0.0565 0.0522 9.59 7.96 7.1 21.6
DNM&DTDM-HF 147 4380 0.0500 0.0568 0.0535 9.55 7.98 7.3 21.4

5.4.1 Mean Resolved Temperature and Velocity Profiles

Figures 5.2a and 5.2b show the profiles of the mean resolved streamwise velocity and

temperature across the channel for the mixed convective flow (Gr = 9.6 × 105 and

Rea
τ = 150). The DNS data of Kasagi and Nishimura [141] is used for validating the

LES results. (Unless otherwise noted, in this chapter, DNS data refers to Kasagi and

Nishimura.) In comparison with mixed convection, DNS data of forced convection

(Gr = 0 and Reτ = 150) are also plotted in the figure. The DNS data of forced

convection in Figure 5.3a refers to Kuroda et al. [146]. The mean velocity and tem-

perature profiles are symmetric for the forced convection case and asymmetric for the

mixed convection case. Compared with the DNS data [141], the results predicted by

both sets of linear and nonlinear models are very similar: near the hot wall (or, in

the aiding flow region), the mean velocity is slightly overpredicted and mean tem-

perature is slightly underpredicted. From Figure 5.2b, it is observed that the mean

temperature profile near the cold wall (or, in the opposing flow region) predicted by

the set of nonlinear models agrees better with the DNS result than that predicted by

the set of linear models.

Figures 5.3a and 5.3b show the mean velocity and temperature using wall coor-

dinates. The suffixes h and c to denote quantities related to the hot and cold walls,

respectively. DNS data of forced convection (Gr = 0 and Reτ = 150) in Figure 5.3a

refers to Kuroda et al. [146]. Compared with the forced convection case, the mean

resolved velocity profile for mixed convection deviates from the conventional logarith-

mic law in response to the buoyant force: the velocity shifts slightly downward near
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the cold wall, whereas it becomes curved and shifts upward near the hot wall. The

mean resolved temperature profile also deviates from the profile of forced convection:

it shifts downward and upward near the cold and hot walls, respectively. Although

both sets of linear and nonlinear SGS models yield almost the same prediction for

the mean resolved velocity [cf. Figure 5.3a], it appears that the mean resolved tem-

perature profile predicted by the set of nonlinear SGS models is closer to the DNS

result [141] than that predicted by the set of linear SGS models, especially in the cold

wall region [cf. Figure 5.3b].
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FIGURE 5.2: Mean resolved velocity and temperature profiles across the channel:
(a) non-dimensional mean streamwise velocity 〈ū1〉/ua

τ ; (b) non-dimensional mean

temperature 〈θ̄〉−θwc

θwh−θwc
. Solid line: DM&DEDM-HF; dash line: DNM&DTDM-HF.
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5.4.2 Resolved Shear Stresses and Heat Fluxes

To illustrate the basic characteristics of the flow in an intuitive manner, we show in

Figure 5.4 the instantaneous velocity and temperature fields in the central transverse

plane obtained using the set of nonlinear SGS models. From the figure, it is observed

that the flow structures indicated by both the temperature contours and instantaneous

velocity vectors near the cold wall are larger and more intense than those near the

hot wall. This is because buoyancy aids the upstream flow motion in the region near

the hot wall and opposes the upstream flow motion in the region near the cold wall

with the consequent suppression and enhancement of turbulence in these two regions,

respectively.
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FIGURE 5.3: Mean resolved velocity and temperature profiles across the channel dis-
played using wall coordinates: (a) velocity; (b) temperature. Solid line: DM&DEDM-
HF; dash line: DNM&DTDM-HF.
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transverse plane predicted by the set of dynamic nonlinear SGS models (Gr = 9.6×105
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τ = 150). The temperature is non-dimensionalized as 〈θ̄〉−θwc
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.

To investigate the effects of buoyancy on the balance of momentum and thermal

energy, we decompose the instantaneous filtered quantity into the mean and residual

components:

φ̄ = 〈φ̄〉 + φ̄′′, (5.2)

where 〈φ̄〉 denotes a filtered quantity averaged both in time and over the x1–x3 plane,

and φ̄′′ denotes the residual component relative to 〈φ̄〉. By substituting Eq. (5.2)

into the filtered streamwise momentum equation and then integrating the resulting

equation from x2 = 0 to a transverse location x2, the equation which balances the

time- and plane-averaged shear stresses at an arbitrary wall-normal location x2 is

obtained

ν
∂〈ū1〉
∂x2

− 〈ū′′1ū′′2〉 +

∫ x2

0

βg(〈θ̄〉 − Θr)dx2 − 〈τ12〉 =
1

ρ

∂〈p̄〉
∂x1

x2 +
τwh

ρ
. (5.3)

In order to derive the above approximate equation, two additional assumptions need

to be made: the flow is (i) statistically stationary and (ii) homogeneous in the x1–x3

plane. The four terms on the left-hand side (LHS) of Eq. (5.3) represent the resolved

viscous shear stress, resolved Reynolds (or turbulent) shear stress, resolved buoyant

shear stress, and SGS shear stress, respectively. The two terms on the right-hand

side (RHS) of the equation represent the resolved integrated driving force due to the
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mean streamwise pressure gradient, and the resolved viscous shear stress at the hot

wall, respectively.
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FIGURE 5.5: Non-dimensional shear stresses predicted by the two sets of linear and
nonlinear SGS models. Solid line: DM&DEDM-HF; dash line: DNM&DTDM-HF.

The profiles of the first three terms on the LHS of Eq. (5.3), normalized by the

value of the viscous shear stress term averaged over both walls [i.e., τa
w/ρ = (ua

τ)
2],

are shown in Figure 5.5 in comparison with the DNS results of Kasagi and Nishimura

[141]. Since the SGS shear stress component −〈τ12〉 is an order of magnitude smaller

than these three terms, we will separately analyze this SGS effect in Subsection 5.4.4.

In order for Eq. (5.3) to balance at both wall surfaces, the reference temperature

Θr is taken as the bulk temperature, viz. Θr = θb =
∫ 2δ

0
〈θ̄〉dx2/(2δ). With this

convention, the resolved buoyant shear stress term in Eq. (5.3) vanishes at both wall

surfaces. From Figure 5.5, it is observed that the LES prediction of the resolved

viscous shear stress using both the linear and nonlinear sets of models is in good

agreement with the DNS result [141]. However, the resolved buoyant shear stress is

slightly overpredicted near the hot wall, and in contrast, the resolved Reynolds shear

stress −〈ū′′1ū′′2〉 is underpredicted in the same region. Figure 5.6 shows the absolute

value of the resolved Reynolds shear stress using wall coordinates. From the figure, it

is observed that due to the effect of buoyancy, |〈ū′′1ū′′2〉+| is enhanced near the cold wall

and suppressed near the hot wall. The LES results predicted by both sets of models

agree better with the DNS result in the cold wall region than in the hot wall region.

Furthermore, near the cold wall, the set of nonlinear models yields a prediction of

|〈ū′′1ū′′2〉+| closer to the DNS data than that predicted by the set of linear models.
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FIGURE 5.6: Resolved Reynolds shear stress shown using wall coordinates. Solid
line: DM&DEDM-HF; dash line: DNM&DTDM-HF.

Following a similar procedure to derive Eq. (5.3), the time- and plane-averaged

equation that balances the mean wall-normal heat fluxes at any arbitrary wall-normal

location x2 can be obtained from the filtered energy equation (2.7):

−α∂〈θ̄〉
∂x2

+ 〈ū′′2θ̄′′〉 + 〈h2〉 =
qwh

ρcP
, (5.4)

where qwh
def
= −λ∂〈θ̄〉

∂x2

|x2=0 is the resolved molecular heat flux at the hot wall, and the

three terms on the LHS of Eq. (5.4) correspond to the resolved molecular heat flux,

resolved turbulent heat flux, and SGS wall-normal heat flux, respectively.

Figure 5.7 plots the resolved molecular and turbulent heat fluxes, which are

normalized using the molecular heat flux at the hot wall qwh/(ρcP ) = uτhTτh (we will

discuss the SGS heat fluxes 〈h1〉 and 〈h2〉 separately in Subsection 5.4.4). As shown in

the figure, in comparison with the molecular heat flux profile of the forced convection

case (Gr = 0 and Reτ = 150, based on the DNS study of Davidson et al. [1]), the

molecular heat flux of the mixed convection case predicted by both the current LES

(Gr = 9.6 × 105 and Rea
τ = 150) and DNS (Gr = 7.68 × 106 and Rea

τ = 150) by

Davidson et al. [1] increases noticeably near the hot wall, and decreases slightly near

the cold wall; in contrast, the profile of the resolved turbulent heat flux displays the

opposite trend. This is consistent with the notion that the turbulent motions are

enhanced near the cold wall and suppressed near the hot wall. Also shown in the
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FIGURE 5.7: Non-dimensional wall-normal heat fluxes predicted by the two sets of
linear and nonlinear SGS models (Gr = 9.6 × 105 and Rea

τ = 150). Dash dot line:
DNS (Gr = 0, Davidson et al. [1]); symbols (• and ◦): DNS (Gr = 7.68 × 106,
Davidson et al. [1]); solid line: DM&DEDM-HF; dash line: DNM&DTDM-HF.

figure, the profiles of the resolved molecular heat flux predicted by both sets of the

models are very similar; in contrast, the profiles of the resolved turbulent heat flux

predicted by these two sets of models are notably different.

Figure 5.8 shows the resolved streamwise and wall-normal turbulent heat fluxes

using the wall coordinate (i.e., 〈ū′′1θ̄′′〉+ and 〈ū′′2θ̄′′〉+, respectively). Both sets of linear

and nonlinear models capture the trend of the DNS profile. Formally speaking, for

a thermal convective flow in a plane channel, the time- and plane-averaged heat flux

obtained from a DNS approach can be approximately recovered by an LES approach

using the time- and plane-averaged resolved and SGS heat fluxes. However, because

the resolved heat flux is an important physical quantity and its value usually dom-

inates the SGS heat flux contribution in LES of many engineering and theoretical

test flows, it is still popular to directly compare the resolved heat flux with the DNS

results in literature. This direct comparison can be useful especially in a compara-

tive study of different SGS modelling approaches. If the test condition is the same,

the SGS modelling approach which produces results that are in better conformance

with the DNS data can be considered as a more desirable approach. As shown in

Figure 5.8a, in the cold wall region, the set of nonlinear models overpredicts the peak

value of the streamwise turbulent heat flux 〈ū′′1θ̄′′〉+ in comparison with the DNS

data [141]; in contrast, the set of linear SGS models underpredicts the peak value.
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FIGURE 5.8: Resolved turbulent heat fluxes shown using wall coordinates: (a)
streamwise; (b) wall-normal. Solid line: DM&DEDM-HF; dash line: DNM&DTDM-
HF.

From Figure 5.8b, it is observed that the prediction of the wall-normal turbulent

heat flux in both the hot and cold wall regions by the set of nonlinear SGS models

is generally in better conformance with the DNS data [141] than that predicted by

the set of linear SGS models. Figure 5.9 re-plots the profiles of the resolved stream-

wise and wall-normal turbulent heat fluxes using logarithmic coordinates based on

the same data set for Figure 5.8. Following Na and Hanratty [148], it can be shown

using a Taylor series expansion that in the vicinity of the wall, the following relations

hold: 〈ū′′1θ̄′′〉+ ∝ x+2
2 and 〈ū′′2θ̄′′〉+ ∝ x+3

2 . Such near-wall restrictions are evident in

Figs. 5.9a and 5.9b, and valid in both the hot and cold wall regions.

The effective eddy diffusivity for the wall-normal turbulent heat flux is defined
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as Γ2 = −〈ū′′2θ̄′′〉/(d〈θ̄〉/dx2). Figure 5.10 compares the value of Γ2 predicted by the

two sets of linear and nonlinear SGS models. In the figure, Γ2 is non-dimensionalized

with molecular thermal diffusivity. Common to both sets of SGS models, the predicted

level of Γ2 near the cold wall is larger than that near the hot wall. This is due to the

fact that buoyancy enhances and suppresses the turbulent heat fluxes near the cold

and hot walls, respectively [cf. Figure 5.8b]. As shown in Figure 5.10, the value of Γ2

predicted using the set of nonlinear models is noticeably larger than that predicted

using the set of linear SGS models, especially in the central region of the channel.
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FIGURE 5.9: Resolved turbulent heat fluxes shown using logarithmic wall coordi-
nates (Gr = 9.6 × 105 and Rea

τ = 150): (a) streamwise component; (b) wall-normal
component.
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τ = 150).

5.4.3 Velocity and Temperature Fluctuations

For the forced convective flow with Gr = 0, the variance of the resolved temperature

and velocity field (corresponding to resolved turbulence intensities for the latter case)

is distributed in a symmetrical manner across the channel. However, for the mixed

convection case of Gr > 0, the values of the resolved turbulence intensities near the

hot and cold walls are expected to be different due to the existence of buoyancy. Fig-

ure 5.11 shows that the effect of buoyancy is to enhance the level of all three velocity

fluctuation components (represented by ū+
1,rms, ū

+
2,rms and ū+

3,rms, respectively) near

the cold wall, and to reduce it near the hot wall. Here, the resolved velocity fluctu-

ations are evaluated using the non-dimensionalized root-mean-square values defined

as ū+
i,rms

def
= 〈( ūi−〈ūi〉

uτ
)2〉1/2 for i = 1, 2 and 3. From Figure 5.11, it is observed that

the predictions from both sets of linear and nonlinear models in general agree with

of the reported DNS results of Kasagi and Nishimura [141]. However, as indicated

by Figure 5.11a, the set of nonlinear models yields a slightly better prediction for

the streamwise velocity fluctuation ū+
1,rms in the opposing flow region than the set of

linear models.

Figure 5.12 compares the resolved temperature fluctuation θ̄+
rms

def
= 〈( θ̄−〈θ̄〉

Tτ
)2〉1/2

predicted using the two sets of SGS models with the DNS data [141]. In general, it is

observed that the prediction of θ̄+
rms from both sets of linear and nonlinear SGS models

is similar to the DNS results. It is interesting to observe that the effect of buoyancy on
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FIGURE 5.11: Resolved velocity fluctuations in wall coordinates: (a) streamwise; (b)
wall-normal; (c) spanwise. Solid line: DM&DEDM-HF; dash line: DNM&DTDM-
HF.

the resolved temperature fluctuation is exactly opposite to its effect on the resolved

velocity functions as discussed above: θ̄+
rms is suppressed near the cold wall and

enhanced near the hot wall. This result is consistent with the observation of Davidson

et al. [1] in their DNS study of mixed convection. By definition, the production

term, −〈ū′′2θ̄′′〉(∂〈θ̄〉/∂x2), in the transport equation for the resolved temperature

variance, is based on the wall-normal turbulent heat flux and the resolved temperature

gradient [1]. For the mixed convection case, since the wall-normal turbulent heat

flux 〈ū′′2θ̄′′〉 is suppressed by buoyancy near the hot wall, the resolved wall-normal

temperature gradient must increase in order to balance Eq. (5.4). Furthermore, the

increase in the resolved temperature gradient ∂〈θ̄〉/∂x2 must be much larger than the
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decrease in 〈ū′′2θ̄′′〉, since α ≪ 1. This explains why in Figure 5.12, θ̄+
rms is enhanced

near the hot wall while it is suppressed near the cold wall in comparison with the

forced convection case of Gr = 0.
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FIGURE 5.12: Resolved temperature fluctuations in wall coordinates. Solid line:
DM&DEDM-HF; dash line: DNM&DTDM-HF.

5.4.4 SGS Effects

In Subsections 5.4.1–5.4.3, we have observed that although slight differences exist,

some of the mean resolved scale quantities predicted by the two different sets of

SGS models are similar in terms of their values, e.g. the mean resolved streamwise

velocity and temperature shown in Figure 5.2 and the mean resolved viscous shear

stress shown in Figure 5.5. This is not surprising, since in LES the large scale motions

which contribute the most to the resolved fields are calculated directly. In order to

understand a SGS model in greater detail, refined examination should be based on

the statistics related to residual SGS motions, which of course, are expected to be

more erratic than the resolved large-scale motions. For this purpose, Figs. 5.13–5.14

demonstrate some SGS effects involved in the current LES study of mixed convection.

Figure 5.13 compares the SGS shear stress −τ12 predicted by the two sets of

linear and nonlinear SGS models. Although the predictions of both sets of SGS

models show similar trends, the magnitude of the SGS shear stress predicted by the

set of linear SGS models is higher than that predicted by the set of nonlinear SGS
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FIGURE 5.13: SGS shear stress produced by SGS models (Gr = 9.6 × 105 and
Rea

τ = 150). Solid line: DM&DEDM-HF; dash line: DNM&DTDM-HF.

models. Figure 5.14 compares the SGS heat fluxes predicted by the two sets of linear

and nonlinear SGS models. As shown in the figure, the SGS heat fluxes produced

by the two sets of SGS models are markedly different: the set of linear SGS models

yields |〈h1〉| ≤ |〈h2〉|, whereas the set of nonlinear SGS models yields |〈h1〉| ≥ |〈h2〉|.
According to Peng and Davidson [40], it is more reasonable to obtain |〈h1〉| ≥ |〈h2〉|,
which is in consistent with the observation that the level of the resolved streamwise

turbulent heat flux 〈ū′′1θ̄′′〉 is usually larger than that of the resolved wall-normal

turbulent heat flux 〈ū′′2θ̄′′〉. Furthermore, it is noted that the set of nonlinear SGS

models enhances the magnitude of 〈h1〉, even though no mean temperature gradient

exists in the streamwise direction. An explanation for this observation is that in

comparison with the DEDM-HF, the DTDM-HF has more degrees of freedom for

geometrical representation of the SGS HF vector, and allows for a non-alignment

between hj and −∂θ̄/∂xj to reflect the physics of turbulent thermal energy transport

at the subgrid scale.

5.5 Summary

In this research, LES of a combined forced and natural convection between two verti-

cal plates has been performed. Prototypical flow features of the resolved temperature

and velocity fields, and mean turbulent shear stresses and heat fluxes have been re-
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FIGURE 5.14: SGS heat fluxes produced by SGS models (Gr = 9.6 × 105 and
Rea

τ = 150).

produced at the resolved scale and compared with the DNS results. It is observed

that, in contrast to forced convective flows driven purely by the mean pressure gra-

dient, the existence of buoyancy in the current test case has a significant impact on

both the resolved and subgrid-scale quantities. Due to buoyancy effects, the distribu-

tion of many flow parameters is asymmetrical across the channel, which includes the

wall-normal distribution of the mean resolved temperature and velocity field, resolved

turbulent and subgrid-scale shear stresses and heat fluxes, root-mean-square value of

the fluctuation in the filtered velocity and temperature fields, and effective diffusivity

for the resolved turbulent heat flux.

Two sets of dynamic SGS models were tested in the simulation, i.e. the set

of linear SGS models with the DM for modelling the SGS stress and the DEDM-

HF for modelling the SGS HF, and the set of nonlinear SGS models with the DNM

modelling for the SGS stress and the DTDM-HF for modelling the SGS HF. The

performances of these two sets of SGS models are different in terms of the SGS

motions. In particular, their predictions for the SGS shear stress and SGS heat fluxes

are markedly different. Although notable differences exist between these two sets

of SGS models at the subgrid-scale level, it is observed that some flow quantities

predicted by these two sets of SGS models are similar at the resolved scale. This

is because in an LES approach, the large dominant turbulent motions and thermal

energy transport processes are directly computed and the contribution from the SGS
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motions is usually limited. In terms of the time- and plane-averaged values, the

SGS shear stress (−τ12) predicted by both sets of SGS models is less than 3% of the

resolved Reynolds shear stress; and the wall-normal SGS heat flux (h2) predicted by

the sets of nonlinear and linear SGS models is less than 2% and 8% of the resolved

wall-normal turbulent heat flux, respectively. At the resolved scale, the difference

between these two sets of SGS models is relatively more distinguishable in terms of

the quantities related to the temperature field, especially in the cold wall region where

the turbulent effect is the strongest due to the existence of buoyancy. It is found in

the numerical simulation that the performance of the set of nonlinear SGS models is

generally more satisfactory than that of the set of linear SGS models, however, there

is also an accompanied slight increase in computational time.
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Chapter 6

Geometrical Properties of the

Resolved-Scale Velocity and Temperature

Fields of Buoyant Channel Flow

6.1 Introduction

As introduced in section 1.3, turbulence geometrical statistics is a recently developed

methodology for studying geometrical properties of local flow structures. The earliest

works on this topic include those by Taylor [122], Townsend [149] and Betchov [119].

Previously, the study of the geometrical properties of turbulence has primarily used

DNS and experimental data. Recently, the LES approach has also been used for

studying turbulence for several reasons. Since LES costs much less in terms of com-

putational resourses and is not limited to low Reynolds number flows, it can be used

where DNS cannot. The study of the geometrical properties can lead to a better

understanding of the mechanism of interactions between the resolved and subgrid-

scale motions. The analysis of the geometrical properties can potentially be used to

improve SGS models. In LES, the flow motions can be decomposed into resolved

scale and SGS components. Since LES computes the resolved scale motions directly

and is expected to predict the major physics of turbulent flows at the resolved scale,

those important geometrical characteristics obtained with the DNS and experimen-

tal approach are also expected to be manifested by the resolved scale flow field. As

introduced in section 1.3, a priori LES approaches have been applied to study the

geometrical properties of the resolved scale motions and the orientation of the SGS
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models [54, 55, 57, 66, 133]. Following that work, a posteriori LES approaches have

also been applied [12, 58, 59].

In this chapter, the methodology of turbulence geometrical statistics is applied

to investigate the geometrical properties of both the velocity and temperature field

based on a posteriori LES prediction of the wall-bounded thermal turbulent flow

which has been investigated in chapter 5. This chapter focuses on the geometrical

properties of the resolved velocity and temperature field and the geometrical align-

ment of the SGS models, i.e. the DNM and DM for the SGS stress term, and the

DTDM-HF and DEDM-HF for the SGS heat flux term. The geometrical properties of

the local flow structures, such as resolved helicity, enstrophy generation, local vortex

stretching, and the alignment between the resolved velocity, vorticity, temperature

gradient, subgrid-scale heat flux and the eigenvectors of the resolved strain rate ten-

sor are studied. Unlike most other studies which did not explore the geometrical

characteristics of near-wall flow, in this chapter, the effect of the presence of solid

walls on the local flow structures is specifically studied. The buoyancy effect on the

geometrical property of the thermal flow field is also investigated with respect to the

different flow regimes in the hot and cold wall regions.

6.2 Physical Model and Numerical method

The physical model tested in this chapter is mixed convection in a vertical channel.

Details of the flow and numerical methods can be found in chapter 5. In order

to compare the LES predictions with the reported DNS and experimental results

and also to examine the SGS effects, a number of SGS models are employed in our

simulations for modelling the SGS stress tensor τij
def
= uiuj − ūiūj and the SGS HF

vector hj
def
= ujθ − ūj θ̄. In particular, we compare the set of the linear SGS models

based on the DM of Lilly [7] (for modelling τij) and DEDM-HF of Moin et al. [20]

(for modelling hj), with the set of nonlinear SGS models based on the DNM of Wang

and Bergstrom [9] (for modelling τij) and DTDM-HF of Peng and Davidson [40] (for

modelling hj). A brief summary of these models can be found in Sections 2.3 and 2.4.

To obtain the turbulent statistics, a time period of 10, 000 time steps was used after
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the flow becomes fully developed. For statistics, 30 bins were used for calculating the

probability density function (PDF) and 30 × 30 bins were used for calculating the

joint PDF (JPDF) of the sample data in the homogeneous (x1–x3) plane.

6.3 Analysis of Results

This current research is a continuation of the previous chapter, which focused on

addressing the basic features of the temperature and velocity fields of the test flow

obtained using the LES approach in comparison with the DNS data of Kasagi and

Nishimura [141], Kuroda et al. [146] and Davidson et al. [1]. Therefore, in this chapter,

the analysis will focus on the geometrical properties of the thermal flow field, and

skip the discussion of the details of the basic flow features.

6.3.1 Structural Configurations of Local Fluid Element De-

formation

In this subsection, we investigate the local fluid element deformation configuration by

analyzing the statistical results on the ratio of the three principal values of the resolved

strain rate tensor S̄ij . As mentioned earlier, according to Lund and Rogers [42], the

statistics based on β∗ is biased due to improper normalization of the parameter,

and they recommended using S∗ for distinguishing local fluid element deformation

configurations for turbulent flows. To verify the proposal of Lund and Rogers [42],

the PDFs of the non-dimensional parameters S∗ and β∗ in the logarithmic layer near

the hot wall are compared in Figure 6.1. Figure 6.1 shows that the most probable

value for β∗ is 0.433, indicating that the most probable flow configuration is a QTD

state with αS : βS : γS = 3.4 : 1 : −4.4, which is close to the classical ratio of 3 : 1 : −4

initially proposed by Ashurst et al. [48] and Kerr [49]. In contrast to the above biased

results based on the parameter β∗, Figure 6.1 shows that the mode of the PDF of S∗

is located at S∗ = 1, which indicates that the most probable flow configuration in the

logarithmic layer is axisymmetric expansion (αS : βS : γS = 1 : 1 : −2), a result that

is consistent with the previous observations of other researchers based on isotropic

and wall-bounded turbulent flows [42, 53, 54, 120].
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Figures 6.2a–c compare the PDFs of S∗ in the three different flow regimes

in both the hot and cold wall regions. Since the prediction of the PDFs by the

DM&DEDM-HF is similar to that by the DNM&DTDM-HF except for some differ-

ences in the magnitude of the PDFs, here we only present the results based on the

later. As shown in Figure 6.2a, in the viscous sublayer, the mode of the PDFs occurs

at S∗ = 0, which reveals that the most probable local flow configuration in both the

hot and cold wall regions is close to the PTD pattern (αS : βS : γS = 1 : 0 : −1). This

reflects the intrinsic 2-D nature of the near-wall viscous sublayer flow (x+
2 = 4). From

Figures 6.2a and b, it is observed that as the distance from the wall increases (as the

value of x+
2 increases), the value of S∗ corresponding to the PDF mode increases, and

the local flow configuration deviates from the PTD pattern towards a QTD pattern

(0 < S∗ < 1), eventually reaching the state of axisymmetric expansion (S∗ = 1)

in the logarithmic layer. From Figure 6.2a and b, and especially from Figure 6.2b,

it is observed that the value of S∗ corresponding to the mode is smaller in the hot

wall region and larger in the cold wall region. This confirms our previous analysis

(cf. Figure 5.4) that the turbulence is enhanced (and thus, more 3-D towards the

axisymmetric expansion state) near the cold wall due to the effects of buoyancy.
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FIGURE 6.1: PDF of S∗ and β∗ in the logarithmic layer predicted using
DNM&DTDM-HF.
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FIGURE 6.2: PDF of S∗ for three different flow regimes predicted using the
DNM&DTDM-HF.

6.3.2 Resolved Enstrophy Generation and Helicity

In this subsection, we analyze the geometrical property of the resolved vorticity vec-

tor (ω̄) in terms of its relative orientation with other fluid vectors. In particular, we

focus on discussing two subjects: (i) resolved enstrophy generation and local vortex

stretching patterns, and (ii) resolved helicity and local helical structures. We un-

derstand that resolved enstrophy generation characterizes the geometrical alignment

pattern between the resolved vorticity and vortex stretching (w̄) vectors; whereas, re-

solved helicity characterizes the geometrical alignment pattern between the resolved
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vorticity and velocity (ū) vectors. Since the predicted PDF patterns of σ̄n and h̄n by

the DM&DEDM-HF are similar to those by the DNM&DTDM-HF except for some

differences in the magnitude of the PDFs, we only present here the results obtained

using the DNM&DTDM-HF.
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FIGURE 6.3: PDF of the resolved normalized enstrophy generation predicted using
the DNM&DTDM-HF.

Figure 6.3 shows the PDF of the normalized enstrophy generation σ̄n evaluated

in the hot and cold wall regions based on the resolved velocity field. In Figure 6.3a, a

bi-modal PDF pattern is observed, which indicates that both local vortex stretching

(σ̄n = 1) and compressing (σ̄n = −1) are the most probable patterns in the viscous

sublayer. This bi-modal PDF distribution for the viscous sublayer predicted by the

current LES is consistent with the observation of Chong et al. [150] who analyzed DNS
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data of a wall-bounded turbulent shear flow. From Figures 6.3b and c, it is evident

that in both the buffer and logarithmic layers, the resolved vorticity vector ω̄ becomes

preferentially aligned with the resolved vortex stretching vector w̄, suggesting that

the local vortex stretching pattern becomes predominant as the distance from the wall

increases. Similar observations of this preferential alignment between ω̄ and w̄ were

obtained by Andreotti [124] who studied this alignment feature based on Burger’s

models, and by Tsinober et al. [125] and Shtilman et al. [41] who analyzed DNS

data of isotropic turbulence. In contrast to the PDF of S∗ shown in Figure 6.2, the

difference between the hot and cold wall regions in terms of the PDF of σ̄n shown

in Figure 6.3 is limited, implying that the temperature field of this specific test flow

does not have a significant impact (through the buoyant force term in the filtered

momentum equation) on the statistics of the local vortex stretching and compression

patterns.

Figure 6.4 shows the PDF of the resolved helicity density h̄n and its flatness indi-

cator 〈h̄2
n〉 for three different flow layers: viscous sublayer, buffer layer, and logarithmic

layer for both the hot and cold wall regions. The flatness indicator 〈h̄2
n〉

def
= 1

N

N∑
i=1

(h̄2
n)i

where N is the number of bins, was introduced by Rogers and Moin [43] for evalu-

ating the strength of helical motions in the flow. Figure 6.4a and b indicate that a

state of h̄n = 0 is the most prevalent in both the viscous sublayer and buffer layer,

indicating a preferential orthogonal alignment between the resolved velocity ū and

vorticity vector ω̄. The preference for this orthogonal alignment pattern is the most

strongly expressed in the viscous sublayer. Such a near-wall anisotropic effect on he-

licity has been well documented based on DNS data of Poiseuille channel flow [43,47].

In effect, by assuming that the streamwise velocity component and the wall-normal

velocity gradient component are dominant in the near-wall region, the resolved vor-

ticity can then be approximated as ω̄|wall ≈ [0, 0,−ū1,2]
T
wall. This indicates that in

the near-wall region, ω̄ is primarily aligned in the spanwise direction being perpen-

dicular to the dominant streamwise velocity component ū1, resulting in h̄n ≈ 0 in the

vicinity of the wall. Figure 6.4c shows a relatively uniform (or, “flat”) distribution

of h̄n in the logarithmic region (since the value of the probability density ranges only

from 0.42 to 0.57), with the value of 〈h̄2
n〉 being 0.303 and 0.336 in the hot and cold

wall regions, respectively. Although a thermal effect is involved in our test case, it is
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FIGURE 6.4: PDF of the resolved-scale relative helicity predicted using the
DNM&DTDM-HF.

interesting to observe that these values are comparable to those for the logarithmic

layer of the plane channel flow (Reτ = 180) obtained by Rogers and Moin [43] using

a DNS approach; in their case, 〈h̄2
n〉 ranged from 0.307 to 0.337. In comparison with

the values of 〈h̄2
n〉 shown in Figures 6.4a and b, it is concluded that as the distance

from the wall increases (as the value of x+
2 increases), helical activities as indicated

by the value of 〈h̄2
n〉 increase significantly for both the hot and cold wall regions. This

observed strong wall anisotropic effect is consistent with the physical feature that for

combined forced and natural convection in a vertical channel, large flow structures

are formed in the core region of the channel, and as the wall is approached, the scales

of the flow structure become smaller. An explanation for this feature is that because
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helicity tends to reduce nonlinear interactions and inhibits the cascade of TKE to

smaller scales, helical structures tend to remain coherent over a relatively long life-

span. As a result, high-level helical activity is preferentially located in the regions

with large-scale turbulent motions [43] (in the core region of the channel for this

particular test case). Another important physical feature exhibited in Figures 6.4a,

b and c is that the value of 〈h̄2
n〉 is higher in the cold wall region than in the hot

wall region for all three flow regimes. A stronger helical activity observed in the cold

wall region implies that the large-scale motions are more prominent in the cold wall

region, which is consistent with the characteristics of the velocity field demonstrated

previously in Figure 5.4.

6.3.3 Attitude of the Resolved Vorticity Vector with Respect

to the Eigenframe of the Resolved Strain Rate Tensor

As briefly mentioned in Section 1.3, the geometrical alignment pattern between the

resolved vorticity ω̄ and the intermediate eigenvector eSβ of the resolved strain rate

tensor S̄ij has been noted in many studies ever since the seminal works of Ashurst et

al. [48] and Kerr [49] in the mid 1980’s. Since then, this subject has been extensively

studied based on a variety of analytical, experimental and numerical methodolo-

gies. The analytical methodologies include the restricted Euler equation approach

of Cantwell [151], Burgers’ vortex method of Andreotti [124] and development of

the Lagrangian evolution equation by Dresselhaus and Tabor [152]. Experimental

validations include the studies of Tsinober et al. [44, 125] who measured a turbu-

lent grid flow and boundary-layer flow over a smooth plate using 12- and 20-wire

probes, Honkan and Andreopoulos [45] who measured boundary-layer turbulence us-

ing three individual triple-wire gradient probes, Tao et al. [54] who processed HPIV

measurements of the core field of a square duct flow using an a priori LES approach,

and Higgins et al. [57] who processed field data measured using sonic anemome-

ter arrays for an a priori LES study of the atmospheric surface layer. Numerical

studies of this special alignment pattern between ω̄ and eSβ include the LES study

of Couette flows [59] and a variety of DNS studies based on isotropic and wall-

bounded turbulent flows [50, 51, 53, 55, 125, 153–155]. Up to now, research on the
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alignment between ω̄ and eSβ has been restricted primarily to isotropic isothermal

flows [48–51,54,55,125,153–155]. In this regard, investigations of wall-bounded flows

and non-isothermal flows are still limited. Reports of the wall anisotropic effect on the

preferred alignment between ω̄ and eSβ are only found in the previous DNS studies by

Blackburn et al. [53], experimental investigations by Honkan and Andreopoulos [45],

and LES studies by Higgins et al. [57] and Wang et al. [59].

In order to describe the alignment angle between two random vectors, some

researchers evaluated the PDF of the cosine of the angle between these two vectors

[44, 48, 50, 55, 57, 153], whereas some prefer to study the PDF of the angle itself [45].

The results obtained using these two approaches can be inconsistent especially when

the alignment angle approaches zero. Blackburn et al. [53] studied both methods

and indicated that the inconsistency in the results of these two methods is due to

a “weighting effect” between the two different types of PDFs. Following the lead of

Blackburn et al. [53], here we further clarify this issue based on spherical trigonometry

analysis, and later, we will extend this analysis of the alignment angle between two

vectors to a more general case for studying the attitude of a vector with respect to a

3-D Cartesian triad.

 

o
 

�
 �  

o  

e  ��
 

(a) 2-D sample space (b) 3-D sample space

FIGURE 6.5: Illustration of the random relative orientation between two unit vectors
e and ω̄

o in the 2-D and 3-D sample spaces.
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Only one degree of freedom is needed for describing the relative orientation

between two vectors. Figures 6.5a and b illustrate the relative orientation between

two random unit vectors (i.e., e and ω̄
o for |e| = |ω̄o| = 1) in the 2-D and 3-D

Cartesian spaces, respectively. Assume that e is fixed in direction and the alignment

angle between the two vectors is random, then the end of vector ω̄
o is uniformly

distributed along the periphery of the unit circle for the 2-D sample space case and

uniformly distributed on the surface of the unit sphere for the 3-D sample space case.

Let Ψ represent the random alignment angle and ψ denote the sample space variable

corresponding to it. As shown in figure 6.5a, the sample area for the 2-D case is simply

∆S2D = ∆ψ. In contrast, the sample area for the 3-D case shown in figure 6.5b is

∆S3D = 2π sinψ∆ψ = −2π∆ cosψ. (6.1)

Obviously, the mapping relationship between these two sample areas (i.e., ∆S2D and

∆S3D) for the 2-D and 3-D cases is nonlinear. Therefore, the PDFs of the alignment

angle based on the 2-D and 3-D sample spaces are, in general, different. Since ∆S3D ∝
∆ cosψ, it is understood that the PDF based on the cosine of the angle is associated

with the 3-D sample space case; in contrast, that based on the angle itself corresponds

to the 2-D sample space case. Because a turbulent flow field is inherently 3-D and so

are the flow vectors, statistics based on a 2-D sample space is, in general, biased due

to the so-called “weighting effect” by Blackburn et al. [53].

Figure 6.6 shows the distribution of PΨ(ψ) calculated within the logarithmic

layer using the 2-D and 3-D sampling areas discussed above. Consistent with the

DNS results of Blackburn et al. [53], the value of PΨ obtained using the 2-D sampling

area shown in Figure 6.6a drops drastically near ψ = 0◦ and the mode of Ψ as

indicated by PΨ occurs at 15◦–21◦. However, as analyzed above, the results obtained

from Figure 6.6a are biased. In contrast, as shown in Figure 6.6b, the PDF of ψ

evaluated using the 3-D sampling area for the same logarithmic layer demonstrates

a strong tendency for ω̄ to be aligned with eSβ (i.e., the most probable state is

Ψ = 0◦). This is a canonical pattern consistent with the observation of many other

researchers based on DNS [44, 48, 50, 55, 153] and experimental studies [45, 54, 57].

In view of this, in the remainder of the chapter, the PDF of the random alignment
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FIGURE 6.6: PDF PΨ(ψ) of the alignment angle between ω̄ and eSβ in logarithmic
layer (x+

2 = 80) predicted using the DNM&DTDM-HF.

angle between two vectors is evaluated using Eq. (6.1) based on the 3-D sample space.

Also, it should be indicated that because an eigenvector itself does not contain any

information regarding its direction, the relative alignment angle between a vector and

an eigenvector is restricted to [0◦, 90◦] following the usual convention [54]; however, for

the relative alignment angle between two vectors with definite directions, the angular

interval is extended to [0◦, 180◦].

Figures 6.7-6.9 show the alignment patterns between the resolved vorticity vec-

tor ω̄ and the eigenvectors, i.e. eSα, eSβ and eSγ, of the resolved strain rate tensor

S̄ij at three wall-normal locations, respectively. From Figure 6.7, it is observed that

ω̄ is preferentially perpendicular to the most extensive eigenvector eSα in all three

layers in both the hot and cold wall regions. Figures 6.8 and 6.9 show that ω̄ is

preferentially aligned with the intermediate eigenvector eSβ while being perpendicu-

lar to the most contracting eigenvector eSγ. As reviewed earlier, these preferential

alignment patterns (i.e., ω̄ being parallel to eSβ and perpendicular to eSα and eSγ)

reproduced by the current LES are classical results previously observed by many re-

searchers based on a variety of analytical, experimental and numerical (both DNS and

LES) approaches. A general observation from figures 6.7-6.9 is that the presence of

the wall has a significant anisotropic impact on these preferential alignment patterns,

which become more and more strongly expressed as the wall is approached (as the
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FIGURE 6.7: PDF of the alignment angle between ω̄ and eSα predicted using the
DNM&DTDM-HF.

value of x+
2 decreases). As the wall is approached, the PDFs of these alignment angles

necessarily converge to Dirac delta functions [156]

PΨ(ψ)|wall = δ1D(ψ), (6.2)

for the alignment angle between ω̄ and eSβ, and

PΨ(ψ)|wall = δ(ψ − 90◦), (6.3)

for the alignment angle between ω̄ and eSα, and that between ω̄ and eSγ. The

strongly preferred alignment patterns and near-wall anisotropic behaviour demon-

118



0 10 20 30 40 50 60 70 80 90

0

20

40

60

80

100

120
hot    
cold 

 Angle

 

 

P
D

F

(a) Viscous sublayer (x+
2 = 4)

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

 
Angle

 

 P
D

F

(b) Buffer layer (x+
2 = 21)

0 10 20 30 40 50 60 70 80 90
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 Angle

 

 

P
D

F

(c) Logarithmic layer (x+
2 = 80)

FIGURE 6.8: PDF of the alignment angle between ω̄ and eSβ predicted using the
DNM&DTDM-HF.

strated in Figures 6.7-6.9 confirm the observations of Shtilman et al. [41] and Tsinober

et al. [125] that the geometrical property of the fluid vectors (e.g., ω̄) and tensors

(e.g., S̄ij) of (wall-bounded) turbulent flows are qualitatively different than those of

a random Gaussian field, since local preferential geometrical structures do exist in

realistic turbulent flows.

This discussion examined the relative orientation of the resolved vorticity vec-

tor ω̄ with respect to each individual eigenvector of S̄ij. However, in order to fully

describe the attitude (or relative orientation) of ω̄ with respect to the eigenframe

[eSα, eSβ, eSγ] of S̄ij , a system of two independent parameters needs to be studied.

Following the approach of Wang et al. [12], we use two independent random angles;

namely, the co-latitude Θ, and the co-longitude Φ. The values taken on by the ran-
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FIGURE 6.9: PDF of the alignment angle between ω̄ and eSγ predicted using the
DNM&DTDM-HF.
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FIGURE 6.10: Geometrical description of the attitude of ω̄
o with respect to the

eigenframe of S̄ij.
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dom angles Θ and Φ in the sample space are denoted by θ and φ, respectively (see

Figure 6.10 for the geometrical description). If the orientation of the random vector

ω̄ is uniformly distributed in a 3-D space, then the terminus of the normalized vector

ω̄
◦ is expected to be uniformly distributed on the surface of the unit sphere |ω̄◦| = 1,

and correspondingly, the JPDF of θ and φ is a uniform distribution in terms of the

solid angle:

∆S
def
=

∫∫

∆Σ

sin θdθdφ ≈ sin θ∆θ∆φ = −∆(cos θ)∆φ, (6.4)

where ∆Σ is the bin for statistics on the surface of the unit sphere. In view of this, and

in order to obtain unbiased statistical results, the JPDF of θ and φ should be evaluated

based on the concept of the solid angle; optionally, some researchers [54,57] compute

the JPDF of cos θ and φ. By comparing Eqs. (6.1) with (6.4), it is understood the

sample area represented by Eq. (6.1) can be directly obtained by integrating Eq. (6.4)

over the co-longitude φ, indicating that Eq. (6.4) represents a more general approach

for evaluating the orientation of a random vector in a 3-D Cartesian space.

Figures 6.11(a)–(c) show the JPDF of Θ and Φ for describing the attitude of ω̄

with respect to the eigenframe of S̄ij in the hot wall region. Since the JPDF patterns

predicted using the two different sets of dynamic SGS models are qualitatively similar

to each other except for some differences in the magnitude of the JPDFs, we only

present the results predicted using the DNM&DTDM-HF. Figure 6.11 shows that in

all three flow regimes, ω̄ is preferentially aligned with the intermediate eigenvector,

while simultaneously perpendicular to the most extensive and contracting eigenvec-

tors, implying that the mode is located at θ = 90◦ and φ = 0◦. This observation is

consistent with our previous analysis of the PDF of each individual alignment angle

based on figures 6.7-6.9, and also consistent with previous a priori LES studies of

Tao et al. [54] and Higgins et al. [57]. From the figure, it is also observed that as

the wall is approached, this preferential state (Θ = 90◦ and Φ = 0◦) indicated by the

JPDF becomes increasingly dominant. In effect, the JPDF of Θ and Φ degenerates

to a 2-D Dirac delta function at the wall [156]:

PΘ,Φ(θ, φ)|wall = δ2D(θ − 90◦, φ), (6.5)
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reflecting an intense near-wall anisotropic effect on the geometrical alignment pattern

under discussion.
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FIGURE 6.11: JPDF(θ, φ) for describing the attitude of ω̄ with respect to the eigen-
frame of S̄ij in the hot wall region predicted using the DNM&DTDM-HF.
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6.3.4 Attitude of the Resolved Temperature Gradient Vector

with Respect to the Eigenframe of the Resolved Strain

Rate Tensor

The geometry of the scalar gradient vector is essential for understanding the turbulent

scalar transport and micro-mixing processes. As mentioned in Section 6.1, this subject

has been extensively investigated based on a variety of DNS approaches [48, 63, 64,

155, 157, 158] over the past two decades; and recently, the method of LES has also

been applied for studying this subject based on a priori analysis of experimental

measurements of a heated wake flow [19] and thermal stratified atmospheric boundary

layer flows [38,66]. In this Subsection, we focus on examining the geometrical property

of the resolved temperature gradient vector with respect to the eigenframe of the

resolved strain rate tensor using the LES method, and provide a strict analytical

explanation for some observed alignment features characteristic to a near-wall thermal

flow. The geometrical relation between the resolved temperature gradient vector and

the SGS HF vector will be discussed separately in Subsection 6.3.5.

Figures 6.12-6.14 show the geometrical alignment between the resolved temper-

ature gradient vector ∇T̄ and the eigenvectors of S̄ij predicted using the DM&DEDM-

HF and DNM&DTDM-HF. From Figures 6.12a and b, it is observed that ∇T̄ is

preferentially aligned with eSα at ψ = 45◦ for both the viscous and buffer layers.

As the distance from the wall increases, the probability corresponding to this mode

decreases. In the logarithmic layer (cf. Figure 6.12c), this preferential alignment

pattern can still be observed, however, other modes towards ψ > 45◦ also become

prevalent. The performance of the DM&DEDM-HF and DNM&DTDM-HF shown

in Figure 6.12 is similar: the PDF patterns predicted by both sets of SGS models

exhibit a similar tendency, except that the magnitude of the predicted PDFs based

on different model sets varies especially in the logarithmic layer. Figures 6.13 and

6.14 show the PDFs of the alignment patterns between ∇T̄ and eSβ, and ∇T̄ and

eSγ, respectively. These two figures can be analyzed similarly to Figure 6.12. In

contrast to Figure 6.12, Figure 6.13 indicates that ∇T̄ is preferentially perpendicular

to the intermediate eigenvector eSβ for all three flow layers. Figure 6.14 shows that

the most probable alignment angle between ∇T̄ and the most contracting eigenvector

123



0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
                               hot     cold 
DM&DEDM_HF       
DNM&DTDM_HF     

 Angle

 

 

P
D

F

(a) Viscous sublayer (x+
2 = 4)

0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

 
Angle

 

 P
D

F

(b) Buffer layer (x+
2 = 21)

0 10 20 30 40 50 60 70 80 90

0.05

0.10

0.15

0.20

0.25

 Angle

 

 

P
D

F

(c) Logarithmic layer (x+
2 = 80)

FIGURE 6.12: PDFs of the alignment angle between the resolved temperature gra-
dient ∇T̄ and eSα predicted using two sets of SGS models: DM&DEDM-HF and
DNM&DTDM-HF.

eSγ is, in general, 45◦, however, as the distance from the wall increases, other modes

towards ψ < 45◦ become prevalent. A general interesting phenomenon observed from

figures 6.12-6.14 is that the probability for ∇T̄ being aligned at ψ = 90◦ with eSβ and

ψ = 45◦ with both eSα and eSγ becomes increasingly high as the wall is approached.

These special alignment patterns are characteristic to near-wall thermal flows, and

the PDFs of these special alignment angles must collapse to Dirac delta functions in

the vicinity of the wall in response to the wall boundary condition [156].

In order to describe the general attitude of ∇T̄ with respect to the eigenframe

of S̄ij, a JPDF of two independent parameters needs to be considered. Following the

method introduced in Subsection 6.3.3, we investigate the JPDF of the co-latitude Θ

and co-longitude Φ evaluated using the solid angle. Since the JPDF pattern for the
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FIGURE 6.13: PDFs of the alignment angle between the resolved temperature gra-
dient ∇T̄ and eSβ predicted using two sets of SGS models: DM&DEDM-HF and
DNM&DTDM-HF.

cold wall region is similar to that for the hot wall region except for some differences

in the magnitude of the JPDF, here we only show in Figure 6.15 the JPDF for

three different layers in the hot wall region predicted using the DNM&DTDM-HF.

Consistent with the PDFs of the alignment angle between ∇T̄ and each eigenvector

of S̄ij as observed previously in figures 6.12-6.14, the most probable state for the

attitude of ∇T̄ with respect to the eigenframe of S̄ij is θ = 45◦ and φ = 90◦ in

the viscous sublayer and buffer layer. As the distance from the wall increases, the

preference for this mode decreases. From Figure 6.15c, it is observed that modes

θ < 45◦ and φ = 90◦ also become prevalent in the central core of the channel. The

above observed near-wall anisotropic effect can be described in a more strict manner

using an analytical approach. This JPDF mode necessarily collapses to a 2-D Dirac

125



0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
                               hot     cold 
DM&DEDM_HF       
DNM&DTDM_HF     

 Angle

 

 

P
D

F

(a) Viscous sublayer (x+
2 = 4)

0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

 
Angle

 

 P
D

F

(b) Buffer layer (x+
2 = 21)

0 10 20 30 40 50 60 70 80 90
0.0

0.1

0.2

0.3

 Angle

 

 

P
D

F

(c) Logarithmic layer (x+
2 = 80)

FIGURE 6.14: PDFs of the alignment angle between the resolved temperature gra-
dient ∇T̄ and eSγ predicted using two sets of SGS models: DM&DEDM-HF and
DNM&DTDM-HF.

delta function at the wall, i.e. [156]

PΘ,Φ(θ, φ)|wall = δ(θ − 45◦, φ− 90◦), (6.6)

which explains the sharp JPDF peaks illustrated in Figure 6.15a.

It should be indicated that the JPDF for describing the general attitude of

∇T̄ with respect to the eigenframe of S̄ij shown in Figure 6.15 and the PDF of each

individual alignment angle between ∇T̄ and an eigenvector of S̄ij demonstrated in

Figures 6.12-6.14, are two closely related but different statistical objects. Both the

PDF and JPDF are important for understanding the alignment pattern between ∇T̄
and the eigenvectors of S̄ij , and one cannot replace the other in terms of statistics.
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FIGURE 6.15: JPDF(θ, φ) for describing the attitude of ∇T̄ with respect to the
eigenframe of S̄ij in the hot wall region predicted using the DNM&DTDM-HF.

Finally, it is observed that the JPDF patterns predicted using the DM&DEDM-HF

(not shown) are also similar to those predicted using the DNM&DTDM-HF except

for some differences in the predicted magnitude of the JPDF, which is consistent

with the previous comparison of the two sets of linear and nonlinear SGS models in

terms of their prediction of the PDFs of the alignment angles demonstrated using

Figures 6.12-6.14. This is not surprising, because both ∇T̄ and the eigenvectors of

the S̄ij are resolved quantities which are directly computed at the resolved-scale in

an LES approach. Although some of the predictions of the resolved-scale geomet-

rical alignment patterns are similar for different SGS modelling approaches, we will

demonstrate in the next Subsection that the performances of different SGS modelling
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approaches can be drastically different at the unresolved subgrid-scales.

6.3.5 Orientation of the SGS Heat Flux Vector h

The alignment angle Ψ between the modelled SGS HF vector h and the temperature

gradient ∇T̄ , defined as:

Ψ
def
= cos−1(h,∇T̄ ) = cos−1

(
h · ∇T̄

|h| ·
∣∣∇T̄

∣∣

)
, (6.7)

is an important vector invariant for characterizing the constitutive relation of a SGS

HF model. For the conventional eddy thermal diffusivity type models (e.g., the

DEDM-HF, which requires that h be aligned with −∇T̄ ), this alignment angle can

only take one of two values: either 0◦ (when CT < 0) or 180◦ (when CT > 0). In the

case of Ψ = 180◦, the physical mechanism of SGS heat flux transfer is analogous to the

process of molecular heat conduction governed by Fourier’s law. The case of Ψ = 0◦ is

allowed only in a dynamic SGS HF modelling procedure, when CT is allowed to assume

negative values. For the DTDM-HF of Peng and Davidson [40], the value of Ψ can vary

over a much larger range owing to the introduction of the tensor thermal diffusivity

in the constitutive relation. Therefore, qualitatively, the value of Ψ reflects the degree

of deviation of the constitutive relation of a SGS HF model from the equivalent of

Fourier’s law. Since the physics of turbulent heat transfer at the subgrid-scale is

fundamentally different than the mechanism of molecular diffusion/conduction, the

value of Ψ is expected to deviate from either 0◦ or 180◦ in a realistic turbulent flow.

Figure 6.16a shows the PDF of the Ψ predicted using the DEDM-HF (in con-

junction with the DM for modelling the SGS stress tensor). As expected, for all

three flow layers (viscous sublayer, buffer layer and logarithmic layer) in both the hot

and cold wall regions, a dominant bi-modal distribution is observed indicating the

value of Ψ is either 0◦ or 180◦. Figure 6.16b shows the PDF of Φ predicted using

the DTDM-HF (in conjunction with the DNM for modelling the SGS stress tensor)

for three different flow layers. From figure 6.16b, it is interesting to observe that as

the wall is approached (or, as the value of x+
2 decreases), h is preferentially aligned

in a direction that is orthogonal to ∇T̄ in both the hot and cold wall regions. As
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FIGURE 6.16: PDFs of the alignment angle between the SGS heat flux h and the
resolved temperature gradient ∇T̄ .

discussed earlier, this special orthogonal alignment pattern cannot be predicted by

the DEDM-HF (since this alignment pattern is different from either 0◦ or 180◦). The

new question is whether this special geometrical alignment feature is consistent with

the physics. In effect, this question is well answered by an analysis of the near-wall

effects on the magnitude and direction of h and ∇T̄ [156]. As the wall is approached,

the relative orientation between h and ∇T̄ converges to an exact and unique orthog-

onal pattern, and correspondingly, the PDF of the angle degenerates to a Dirac delta

function: PΨ(ψ)|wall = δ1D(ψ−π/2). As such, we have demonstrated that in contrast

to the unsatisfactory performance of the DEDM-HF, the DTDM-HF can successfully

predict the near-wall geometrical property of the SGS HF vector h in terms of its

relative orientation with respect to the resolved temperature gradient ∇T̄ .

Figure 6.17 shows the JPDF for describing the attitude of the SGS heat flux

vector h with respect to the eigenframe of S̄ij in the hot wall region predicted using

the DNM&DTDM-HF. Figures 6.17a and b indicate that h tends to be aligned at

an angle of 45◦ with eSγ and simultaneously perpendicular to eSβ (i.e., θ = 45◦ and

φ = 90◦) in the viscous sublayer and buffer layer. In the logarithmic layer, h is

also most likely perpendicular to eSβ but aligned with eSγ, i.e. θ = 0◦, φ = 90◦. A

common feature from Figures 6.17a–c is that h tends to lie in the eSα–eSγ plane (being

perpendicular to eSβ) in all three flow regimes, with a preferential alignment angle
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FIGURE 6.17: JPDF(θ, φ) for describing the attitude of h with respect to the eigen-
frame of S̄ij in the hot wall region predicted using the DNM&DTDM-HF.

between h and eSγ decreasing from 45◦ to 0◦ as the distance from the wall increases.

The above numerical results based on LES are consistent with the near-wall physics

of the flow, since it can be shown analytically that as the wall is approached, h must

be strictly aligned at 45◦ with eSα and eSγ, and 90◦ with eSβ, resulting in a unique

wall-limiting attitude corresponding to Θ|wall = 45◦ and Φ|wall = 90◦ [156].
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6.4 Summary

In this research, we investigated the geometrical property of a thermal fluid flow field

in the context of LES. The present research together with some recently reported

LES studies [19, 54, 55, 57, 66] confirms that LES is an effective tool for investigating

the geometrical property of a turbulent field at the resolved scales.

The presence of the wall has a significant anisotropic impact on many geomet-

rical parameters. In the core region of the channel, the resolved vorticity ω̄ tends to

align with the vortex stretching vector w̄, suggesting a dominant local vortex stretch-

ing flow configuration. However, in the viscous sublayer, both local vortex stretching

and compression patterns are preferred. The local fluid element deformation configu-

ration can be vividly demonstrated using the ratio of the eigenvalues of the resolved

stain rate tensor S̄ij . The statistics based on the S∗ parameter suggest that axisym-

metric expansion (αS : βS : γS = 1 : 1 : −2) is the most probable flow configuration

in the core region of the channel. In contrast, in the viscous sublayer, the most likely

local flow configuration in both the hot and cold wall regions is close to the PTD

pattern (αS : βS : γS = 1 : 0 : −1).

In the core region of the channel, the resolved vorticity vector ω̄ tends to align

in the streamwise direction resulting in a large helicity value; however, as the wall

is approached, ω̄ is preferentially aligned in the spanwise direction resulting in a

negligible level of helicity. It is observed that the level of helical activities is higher

in the cold wall region than in the hot wall region. This is due to the fact that

helicity tends to reduce nonlinear interactions and inhibits the cascade of TKE to

smaller scales for dissipation, and therefore, local helical structures are more active

at the center of the channel especially on the cold wall side where large-scale turbulent

motions are relatively more prevalent.

The present simulations based on different SGS models have all successfully

reproduced the well-known conclusion that ω̄ is predominantly parallel to eSβ and

perpendicular to eSα and eSγ, respectively. This particular alignment pattern between

ω̄ and eSβ is found to be more characteristic of the viscous sublayer than the logarith-

mic region, which is consistent with the reported experimental [45] and the DNS [53]
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studies. Furthermore, the present results demonstrated that the JPDF of Θ and Φ

for describing the attitude of ω̄ with respect to the eigenframe of S̄ij degenerates to a

2-D Dirac delta function in the vicinity of the wall, i.e. PΘ,Φ(θ, φ)|wall = δ(θ−90◦, φ).

As the wall is approached, the attitude of the resolved temperature gradient ∇T̄ with

respect to the eigenframe of S̄ij converges to a fixed pattern which also corresponds

to a 2-D Dirac delta function at the wall, i.e. PΘ,Φ(θ, φ)|wall = δ(θ − 45◦, φ− 90◦).

Two sets of dynamic SGS models were tested in the simulations, i.e. the

DM&DEDM-HF and the DNM&DTDM-HF. It is observed that the performances

of these two sets of SGS models are in general comparable to each other at the re-

solved scale. This is because in an LES approach, large dominant turbulent motions

are directly computed and the contribution from the SGS motions is usually limited.

However, the performances of these two sets of SGS models can be markedly differ-

ent at the unresolved subgrid-scale. The prediction from the DTDM-HF is able to

demonstrate a non-alignment pattern between h and ∇T̄ and successfully predict the

near-wall physics that h must be aligned towards 90◦ with eSβ, and 45◦ with eSα and

eSγ in the vicinity of the wall. In contrast, the conventional DEDM-HF fails to reflect

the geometrical property of h and strictly requires that the alignment angle between

h and ∇T̄ be either 0◦ or 180◦.
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Chapter 7

Conclusions and Future Work

7.1 Summary of the Dissertation

Many engineering and industrial flows are characterized by the effects of buoyancy.

Given that turbulent buoyant flows are inherently unsteady and feature important

large-scale motions, time-dependent LES provides a good tool in both theoretical

research and industrial applications on thermal flows. The objectives of this disserta-

tion focus on the application of LES to buoyancy affected flows, especially, the effect

of the SGS modelling in LES, and geometrical properties of the turbulent buoyant

flows based on the resolved scales of motion obtained by LES. In this dissertation, an

LES code using a collocated non-uniform mesh for wall-bounded turbulent flows is

further developed and tested exthaustively before its application. To save computa-

tional resources, a multigrid method using a control strategy scheme is implemented

in the 3-D LES code to accelerate the solution convergence of the pressure field. The

kinetic energy conservation related to the numerical schemes used for the code is ex-

amined. The accuracy and robustness of the present code are investigated carefully

using several benchmark flows, e.g. lid-driven cavity flow and low Reynolds number

channel flow. In this dissertation, LES of channel flow at Reτ = 395 is performed to

examine the performance of SGS stress models. The nonlinear DNM for SGS stress is

investigated especially with respect to the turbulence kinetic energy dissipation issue.

The geometrical properties of the resolved velocity field of wall-bounded turbulence

are also studied using the LES prediction. Next, a combined forced and natural con-

vection (or mixed convection) in a vertical channel with differentially heated side walls
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is studied. The geometrical properties of the resolved thermal flow field are examined

at the end of the dissertation. In this chapter, a general review of the contributions

of this dissertation will be presented and possible future studies will be discussed.

7.2 Contributions of the Dissertation

1) A 3-D LES Code Developed for Wall-bounded Thermal Turbulence

To study wall-bounded thermal turbulence, a 3-D LES code based on a non-uniform

collocated grid system has been developed and tested in chapter 3. The code is based

on the fractional time-step technique [67, 88], in which the discretized Navier-Stokes

equations (2.6) are solved in two separate steps: first, the velocity field is estimated

without solving the pressure field, and then the pressure field is solved to satisfy the

continuity equations and the estimated velocity field is corrected using the pressure

field at new time level. To accelerate the convergence rate of the pressure Pois-

son equation, a MG-CS solver is employed in the present LES code. The approach

and numerical implementation of MG-CS are presented in section 3.2. Compared to

Gauss-Seidel (GS) type solvers, multigrid methods can greatly accelerate the con-

vergence rate [91, 92]. Other than the strategies with fixed sequence and iteration

number, a control strategy (CS) suggested by Brandt [95] and Hutchinson [93] em-

ploys a flexible procedure which is automatically adjusted to the convergence rate on

each grid level, and thus saves CPU time. A lid-driven cavity flow at Re = 400 is

chosen to test the performance of the MG-CS. Compared with that of the MG-V,

the convergence rate of the MG-CS is much faster. To reduce the residuals of the

pressure field by four orders of magnitude, the finest grid takes 33 iterations for the

MG-CS, while for the MG-V, the finest grid takes 120 iterations. The computational

cost of the MG-CS is only about one third that of the MG-V.

The discretized transport equations should recover the inherent conservation

nature of the governing equations. However, since the mass and momentum equations

alone are sufficient to obtain a solution and a kinetic energy equation is not solved

separately, most discretization schemes only conserve the mass and momentum equa-

tions, but not the kinetic energy equation. Although a collocated grid system has
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been applied to LES for many flows, it does not conserve the kinetic energy inher-

ently [96]. Since the present code employs a collocated grid system, the conservation

property of the collocated grid system and its effect on LES are investigated in this

dissertation following the previous works of Morinishi et al. [96], Vasilyev [97] and

Ham et al. [98]. To test the conservation properties, a uniform staggered code is

also developed. Both the staggered and collocated grid system used a 2nd CDS. The

development of a periodic inviscid flow field is simulated on both grid systems. The

error for the average kinetic energy on the staggered grid is second order with respect

to time, since the second-order Adams-Bashforth time stepping scheme introduces

only a slight dissipative error. However, the error on the collocated grid is first order

with respect to time, which indicates that the collocated system introduces additional

errors other than time stepping error. The staggered and collocated grid systems are

also tested using a viscous flow, i.e. a laminar LDC at ReD = 400. Although the col-

located grid system introduces conservation errors, it yields a satisfactory prediction

of the laminar flow, which is almost the same as that obtained on a staggered grid.

This observation indicates that the kinetic energy conservation issue may not be very

important for a steady flow, in which the time accurate advancement is not impor-

tant. The ability of non-conservative collocated and conservative staggered codes to

accurately advance an unsteady flow through time is also investigated using a start-up

flow. Again, both the staggered and collocated grid systems give satisfactory results.

It appears that the numerical dissipation (conservation error) of the collocated grid

system is not significant for the specific test problems considered.

2) LES of Channel Flow and Investigation of the Dynamic Nonlinear SGS

Stress Model using Turbulence Geometrical Statistics

(i) LES Prediction of Channel Flow using DNM and DM

In Chapter 4, the nonlinear DNM for the SGS stress tensor is investigated and

compared to the DM in LES of a channel flow at Reτ = 395. The study of the mean

and fluctuation properties of the flow indicates that the LES results agree fairly well

with the DNS data. Both the DM and DNM models give satisfactory predictions with

respect to the resolved velocity field. The SGS dissipation is specifically investigated
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in this chapter. It is found that although a localized form of the DM can predict

backscatter of TKE, a geometrical statistical study of the SGS dissipation indicates

that not only the level but also the local distribution of backscatter predicted by the

DM is incorrect. It is not suprising since the level of the backscatter is decided by the

bounding scheme adopted rather than the local state of the flow. Compared to the

DM, the nonlinear DNM is free from artifical ‘tuning’ of its coefficients and allows for

a relatively large level of backscatter due to its constitutive relation.

(ii) PDF of the Non-dimensional State Parameters of the Resolved Strain

Rate and SGS Stress Tensor

The local structures of the resolved strain rate and SGS stress tensor predicted

by both DM and DNM are studied using turbulence geometrical statistics. The PDFs

of the state parameters S∗ and S∗
τ in the channel center predicted by both models

indicate that, in this region, the most probable strain state tends to be axisymmetric

extension (S∗ = 1), while the most probable stress state is axisymmetric compression

(S∗
τ = −1). Towards the wall, both models show that the mode of the PDF of S∗

shifts to S∗ = 0, corresponding to an eigenvalue ratio of αS : βS : γS = 1 : 0 : 1, which

reflects the intrinsic QTD naure of the near-wall turbulence. In contrast to the PDF

of S∗, the PDF of S∗
τ predicted by these two models are evidently different, e.g. the

PDF of S∗
τ predicted by the DNM indicates that S∗

τ = is independent with S∗ and

still peaks at S∗
τ = −1 towards wall. However, S∗

τ predicted by the DM is coupled

with S∗ as S∗ = −S∗
τ towards the wall due to the model’s constitutive relationship.

(ii) Relationship between the State Parameters S∗ and S∗
τ and SGS Dissi-

pation Rate

At the channel center, the mode of the JPDF of S∗ and SGS dissipation (

Π/Πmean ) predicted by the localized DM is located in the negative dissipation region,

which implies that the DM tends to overpredict the backscatter. Although the local

averaging scheme was able to constrain the overall level of backscatter to be positive,

it cannot reduce the number of the excessive backscatter events. In contrast, the

mode of the JPDF of S∗ and Π/Πmean in the channel center predicted by the DNM is

located in the possitive dissipation region. However, for the region S∗ < 0, the peak
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values of the JPDF will fall in the negative SGS dissipation region, which implies

that for S∗ < 0, the DNM probably overpredicts backscatter. Towards the wall, the

mode of the JPDF of S∗ and Π/Πmean using the DNM moves from the axisymmetric

extension region (S∗ = 1) to the QTD flow region (S∗ = 0). The JPDF profile of S∗
τ

and Π/Πmean using the DNM always peaks at S∗
τ = −1 (axisymmetric compression)

rather than S∗
τ = 1 (axisymmetric extension) throughout the entire flow region.

3) LES of Mixed Convection in a Vertical Channel Using Different SGS

Models

In Chapter 5, LES of mixed convection between two vertical plates at different

temperatures has been performed and the LES results are compared to related DNS

results. The mean flow features, e.g. resolved temperature and velocity fields pre-

dicted by LES are consistent with the DNS results. It is observed from the LES results

that the buoyancy force has a significant impact on both the resolved and SGS quan-

tities. Due to the buoyancy effects, the velocity and temperature fields are skewed

across the channel. For instance, the wall-normal distribution of the mean resolved

temperature and velocity, resolved turbulent and SGS shear stresses and heat fluxes,

root-mean-square value of the fluctuation in the filtered velocity and temperature

fields, and effective diffusivity for the resolved turbulent heat flux, are asymmetrical

across the channel.

Two sets of dynamic SGS models, the DM&DEDM-HF and DNM&DTDM-HF,

were used in the simulation. The performances of these two sets of SGS models are

different in terms of the SGS motions. In particular, their predictions for the SGS

shear stress and SGS heat fluxes are different. At the resolved scale, the difference

between these two sets of SGS models is more evident with respect to the temperature

field, especially in the cold wall region where the turbulent effect is the strongest due

to the existence of buoyancy. In general, the performance of the nonlinear models is

closer to the DNS data than that of the linear models.

4) Geometrical Properties of the Resolved Thermal Flow Field and SGS

Heat Flux Vector
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In Chapter 6, the geometrical properties of a mixed convection in a vertical slot

were examined using LES. Prototypical geometrical patterns have been reproduced

and compared with the reported DNS, experimental and a priori LES results. The

present research together with some recently reported LES studies [19, 54, 55, 57, 66]

confirm that LES is an effective tool for investigating the geometrical properties of a

turbulent field at the resolved-scales.

(i) Structural Configurations of Local Fluid Element Deformation

The PDF of S∗ suggests that axisymmetric expansion (αS : βS : γS = 1 : 1 : −2)

is the most probable flow configuration in the core region of the channel, which is

consistent with previous observations [42, 53, 54, 120]. In contrast, in the viscous

sublayer, the PDF of S∗ indicates that the most likely local flow configuration is PTD

pattern (αS : βS : γS = 1 : 0 : −1). It is observed that the peak value of the PDF of

S∗ in the cold wall region is smaller than that of the hot wall region, indicating that

the flow in the cold wall region more closely resembles 3-D axisymmetrical expansion

and deviates from the PTD state. This observation is consistent with the physical

notion that the flow is more “turbulent” in the cold wall region than in the hot wall

region due to the existence of buoyancy.

In the core region of the channel, the resolved vorticity vector ω̄ tends to align

in the streamwise direction resulting in a large helicity value; however, as the wall

is approached, ω̄ is preferentially aligned in the spanwise direction resulting in a

negligible level of helicity. It is observed that the level of helical activities is higher

in the cold wall region than in the hot wall region. This is due to the fact that

helicity tends to reduce nonlinear interactions and inhibits the cascade of TKE to

smaller scales for dissipation, and therefore, local helical structures are more active

at the center of the channel especially on the cold wall side where large-scale turbulent

motions are relatively more prevalent.

(ii) Resolved Enstrophy Generation and Helicity

The present study predicts a strong alignment between the resolved vorticity

ω̄ and vortex stretching vector w̄ in the core (logarithmic) region of the channel,
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which suggests a dominant local vortex stretching flow configuration in that region.

This feature is expected and has been reported previously based on DNS and exper-

imental studies [41, 44, 123, 125]. However, near the wall, a bi-modal distribution of

σ̄n is observed, indicating both local vortex stretching and compression patterns are

preferred.

Near the wall, ω̄ is preferentially aligned in the spanwise direction resulting in

a negligible level of helicity. As the distance from the wall increases, helical activities

increase significantly in both the hot and cold wall regions. However, it is observed

that the level of helical activities is higher in the cold wall region than in the hot wall

region, which implies that the helical behavior is more related to large-scale turbulent

motions near the cold wall.

(iii) Attitude of the Resolved Vorticity, Temperature Gradient and SGS

heat flux Vector with Respect to the Eigenframe of the Resolved Strain

Rate Tensor

In all three flow regimes, ω̄ is preferentially aligned with the intermediate eigen-

vector eSβ, and simultaneously perpendicular to the most extensive eigenvector eSα

and contracting eigenvectors eSγ, implying that the mode is located at θ = 90◦ and

φ = 0◦ with respect to the eigenframe of S̄ij . It is also observed that as the wall

is approached, this preferential state (θ = 90◦ and φ = 0◦) indicated by the JPDF

becomes increasingly dominant. The temperature gradient vector ∇T̄ tends to be

perpendicular to eSβ, and simultaneously aligned at 45◦ with eSα and eSγ for both

the viscous and buffer layer. As the distance from the wall increases, the specific

preference decreases. In the logarithmic layer, this preferential alignment pattern,

i.e. θ = 45◦ and φ = 90◦, can still be observed, but is not dominant.

(iv) Orientation of the SGS Heat Flux Vector

Both the DM&DEDM-HF and DNM&DTDM were used in this study. Al-

though the performance of these two sets of SGS models are in general comparable to

each other at the resolved scale, in performance is clearly different at the unresolved

subgrid-scale. The prediction from the DTDM-HF of Peng and Davidson [40] demon-
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strated a non-alignment pattern between the SGS heat flux and resolved temperature

gradient vector, and successfully predict the near-wall physics that h must be aligned

at 90◦ with eSβ, and 45◦ with eSα and eSγ in the vicinity of the wall. In contrast,

the conventional DEDM-HF fails to reflect the geometrical property of the SGS HF

vector h, since it strictly requires that the alignment angle between h and ∇T̄ be

either 0◦ or 180◦.

7.3 Future Studies

In this study, the SGS stress and heat flux models are studied in terms of two combina-

tions, i.e. DM&DEDM-HF and DNM&DTDM-HF. It is observed that the nonlinear

combination (DNM&DTDM-HF) generally yields better predictions of the buoyant

flow, especially with respect to the temperature field. Since the temperature and ve-

locity field are coupled, the specific contribution of either the SGS stress or heat flux

model to the thermal field is often unclear. It is reported by Jiménez et al. [87] in their

study of scalar transfer in a mixing layer that although the DEDM-HF cannot yield

proper reverse TKE transfer, it can still result in a good LES prediction of the scalar

evolution, provided that a proper SGS stress model is adopted. In other words, the

SGS heat flux model does not have a significant impact on the LES predictions in their

case. To further study the performance of SGS models for thermal flows, different

combinations of SGS models, for instance, DM&DTDM-HF and DNM&DEDM-HF,

should be investigated. A mixed dynamic two-parameter model for the SGS heat

flux [33] is found to be able to reproduce the proper forward and backward TKE

transer [87], and therefore should be considered in any future study.

Although impressive progress has been made over the past two decades to im-

prove our understanding of the geometrical property of turbulent flows, this subject

still presents multiple challenges for future studies. For instance, the geometrical

property of the velocity and temperature gradients is still less understood in the core

region of the channel than in the near-wall regions; and according to our knowledge,

although some interesting local structure-based SGS stress models have already ap-

peared in the literature [60–62], the potential for designing local structure-based SGS
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heat flux models is yet to be explored. Turbulence topology is another interesting

methodology to study the local structures of turbulence. Based on critical-point the-

ory, the technique provides an unambiguous way to interpret and understand the local

flow patterns [151, 159–161]. It is found that the cubic discriminant of the velocity

gradient tensor is closely related to the Reynolds stress and turbulence kinetic energy

generating events. For instance, Blackburn et al. [53] and Chong et al. [150] used

the discriminant as a marker of coherent motions in the flow. Future study should

consider utilizing this methodology to further explore the physics of the thermal fluid

flow and evaluate the SGS models.

The present results show that for many flows, LES captures much of the resolved

scales. Future study may consider the application of LES to other thermal engineering

flow in which the SGS scales also play a significant role, such as room fire and engine

combustion. LES application of such reacting flows is a relatively new field and much

of the theory of the modelling of reacting processes needs to be developed. In a

nonpremixed combustion, chemical reactions occur essentially at the smallest scales

and strongly depend on the small-scale mixing process [162], which requires accurate

prediction on small-scale structure of the scalar field.
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stresses and fluxes in a vertical slot natural convection flow at Rayleigh Ra = 105

and 5.4105,” Int. J. Heat Fluid Flow, vol. 18, pp. 70–79, 1997.

[4] J. Smagorinsky, “General circulation experiments with the primitive equations,

I. the basic experiment,” Month. Weath. Rev., vol. 91, pp. 99–165, 1963.

[5] D. K. Lilly, “The representation of small-scale turbulence in numerical simu-

lation experiments,” in Proc. IBM Sci. Comp. Symp. on Eviron. Sci., p. 195,

1967.

[6] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale

eddy viscosity model,” Phys. Fluids A, vol. 3, pp. 1760–1765, 1991.

[7] D. K. Lilly, “A proposed modification of the Germano subgrid-scale closure

method,” Phys. Fluids A, vol. 4, pp. 633–635, 1992.

[8] U. Piomelli, “High Reynolds number calculations using the dynamic subgrid-

scale stress model,” Phys. Fluids A, vol. 5, pp. 1484–1490, 1993.

142



[9] B.-C. Wang and D. J. Bergstrom, “A dynamic nonlinear subgrid-scale stress

model,” Phys. Fluids, vol. 17(035109), 2005.

[10] C. G. Speziale, “On nonlinear k–l and k–ǫ models of turbulence,” J. Fluid

Mech., vol. 178, pp. 459–475, 1987.

[11] T. B. Gatski and C. G. Speziale, “On explicit algebraic stress models for com-

plex turbulent flows,” J. Fluid Mech., vol. 254, pp. 59–78, 1993.

[12] B.-C. Wang, E. Yee, and D. J. Bergstrom, “Geometrical description of the

subgrid-scale stress tensor based on euler axis/angle,” AIAA J., vol. 44,

pp. 1106–1110, 2006.

[13] T. S. Lund and E. A. Novikov, “Parameterization of subgrid-scale stress by

the velocity gradient tensor,” Annu. Res. Briefs, pp. 27–43, 1992. Center for

Turbulence Research, Stanford Univ.

[14] V. C. Wong, “A proposed statistical-dynamic closure method for the linear and

nonlinear subgrid-scale stresses,” Phys. Fluids A, vol. 4, pp. 1080–1082, 1992.
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