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Abstract 

 
 

 In a linear time-invariant system, the parameters are constant thereby poles are static. 

However, in a linear time-varying system since the parameters are a function of time, therefore, 

the poles are not static rather dynamic. Similarly, the parameters of a nonlinear system are a 

function of system states, and that makes nonlinear system poles dynamic in the complex plane. 

The location of nonlinear system poles are a function of system states explicitly and time 

implicitly. Performance characteristics of a dynamic system, e.g., stability conditions and the 

quality of response depend on the location of dynamic poles in the complex plane.   

 

 In this thesis, a dynamic pole motion in the complex 𝑔 −plane based approach is 

established to enhance the performance characteristics of a nonlinear dynamic system. 𝑔 −plane 

is a three-dimensional complex plane. 

 

 The stability approach, initiated by Sahu et al. (2013), was an exertion of the dynamic 

Routh's stability criterion by constructing a dynamic Routh's array to examine the absolute 

stability of a nonlinear system in time domain. This thesis extends the work to investigate the 

relative stability as well as stability in the frequency domain with the introduction of the dynamic 

Nyquist and Bode plots. A dynamic Nyquist criterion together with the concept of the dynamic 

pole motion is developed. The locations of the dynamic poles are executed by drawing a 

dynamic root locus from the dynamic characteristic equation of a nonlinear system.  

 

 The quality of the response of a nonlinear dynamic system is enhanced by using a 

dynamic pole motion based neuro-controller, introduced by Song et al. (2011). In this thesis, we 

give a more comprehensive descriptions of the neuro-controller design techniques and illustrate 

the neuro-controller design approach with the help of several nonlinear dynamic system 

examples. The controller parameters are a function of the error, and continually relocate the 

dynamic poles in the complex 𝑔 −plane to assure a higher bandwidth and lower damping for 

larger errors and lower bandwidth and larger damping for smaller errors. Finally, the theoretical 

concepts are further corroborated by simulation results. 
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controller parameters are  𝐾𝑝𝑓 = 85, 𝐾𝑣𝑓 = 23, 𝛼 = 50 and 𝛽 = 5. The 

green dotted line is the system error 𝑒(𝑡). 
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locations of a unit step response of the system defined by Eq. 4.18. 
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poles are at −0.07 ± 𝑗11.6 and at t=2s poles are at −18.3 + 𝑗0.0 and 

−4.69 + 𝑗0.0. 
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ratio 𝜉(𝑡) with the increase of time 𝑡 of the system defined by Eq. 4.18 
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Figure 4.23 The neuro-controller parameters vs error 𝑒(𝑡). (i) The position feedback 

𝐾𝑝(𝑒, 𝑡) vs. error 𝑒(𝑡) and (ii) velocity feedback 𝐾𝑣(𝑒, 𝑡) vs. error 𝑒(𝑡). 
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Figure 4.24 The variation of the bandwidth 𝜔𝐵𝑊(𝑡) of the overall neuro-controlled 

system defined by Eq. 4.18 at each time interval. 

 

107 
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Figure 4.26 The block diagram representation of the state-space model of the 
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Figure 4.27 The neuro-controlled response of the system defined by Eq. 4.23 to a unit 

step input. Rise time 𝑇𝑟 = 0.19s and settling time 𝑇𝑠 = 0.49s. Neuro-
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Chapter 1 

Neuro-Control Systems: an Introduction 

 

 

Controlling a system is becoming a more and more integral part of our daily life with the 

advancement of engineering and technology. In fact, from missile guidance to household 

gadgets, heating water to human-made manufacturing machines, and so on, the omnipotent 

application of automatic control is found almost everywhere. Besides, motivations from 

biological systems to ensure the concurrence of human and human-built structures with nature 

were growing since the ancient history. The portrayal of human calibers to dominant over 

situations through robust cognition (i.e., thinking, learning, adaption, and perception) has been a 

desire of control engineers to apply on machines for many years [1]. 

 

 Nonlinearity is an undeniable phenomenon in physical dynamic systems to be controlled 

[2]. Nonlinearities come inherently with the structure of a system and its motion. The example of 

the nonlinear systems is biological, structural, socio-economic systems and so forth. Controlling 

a nonlinear dynamic system to get its desired response and the stability of the system along with 

its controller is getting one of the highest fields of interest from engineers and scientists.  

 

 However, most physical systems can be modeled mathematically with the help of a 

system of nonlinear equations that include algebraic, differential, integral and functional terms 

[3]. Stability analysis of this system of equation sometimes becomes cumbersome and 

complicated. On the other hand, stability analysis of a linear dynamic system is comparatively 

easy, and standard tools are available to analyze the stability region of a linear dynamic system. 

Most nonlinear systems can be approximated to a linear system close to some operating points 

[2].  Stability analysis of this approximate linear system of a nonlinear system using the linear 

stability theorem is sometimes gruesome and often dangerous because stability beyond those 

operating points cannot be guaranteed. 
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 A mathematical model of any dynamic physical system, through proper treatment, is 

nothing but an arithmetic combination of poles and zeros. The characteristics of a dynamic 

system such as transient response and steady-state response depend on the location of poles and 

zeros in the complex plane [4, 5]. Location of poles and zeros may be fixed (e.g., a linear time-

invariant system with unit gain), changes with the change of system gains (e.g., a linear time-

invariant system with variable gain), or with the change of system states and time (e.g., 

nonlinear, and/or time-variant system). In other words, poles can be static or dynamic. Dynamic 

poles change their location in the complex plane with the change of time and/or system 

parameters [6]. Stability and the performance of a nonlinear and/or time-variant dynamic system 

depend on the location and movement of dynamic poles in the complex plane [6]. 

 

 In this thesis, the dynamic Routh’s stability criterion, an approach to account for the 

stability of any nonlinear and/or time-varying dynamic system based on the dynamic pole motion 

in a complex plane, is presented. A dynamic Nyquist stability criterion is also developed to 

analyze the stability in the frequency domain. The location of dynamic poles in the complex 

plane is calculated using the dynamic Routh’s array. This thesis also introduces several tools for 

analyzing and examining the behavior of a nonlinear dynamic system, including 𝑔 −transfer 

matrix, dynamic root locus and root contour, and dynamic Nyquist and Bode plots. Dynamic 

pole movement is also used to design a neuro-controller which is an error based adaptive 

controller. The neuro-controller controls the pole locations as a function of error by adjusting the 

controller parameters in a systematic way to get the best system response by the continuous 

rectification of the overall plant dynamics.   

 

1.1 Previous Research  

 

 Over the decades, a great effort has been taken on the stability analysis and the controller 

design of a dynamic system. The concept of poles and zeros, in the complex 𝑠 −plane, is the 

fundamental to analysis the stability and design of the controller for a linear and time-invariant 

system [4, 5]. The linear and time-invariant plant dynamic behavior depends on the location of 

poles, for instance, a stable under-damped system has left-half complex poles in the complex 

𝑠 −plane, whereas a stable over-damped system has real left-half poles [4, 5]. The study of a 
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linear system is mature enough with many analyzing tools available, e.g., root locus, Bode plot, 

Routh-Hurwitz stability criterion, etc. On the other hand, many of these tools are not applicable 

to the nonlinear dynamic systems. The first attempt to extend the Routh’s stability criterion for 

the nonlinear time-varying dynamic systems was dynamic Routh’s criterion, developed in [6]. 

Although they successfully implemented the concept of dynamic pole motion in the complex 

𝑔 −plane to analyze the stability conditions of a nonlinear dynamic system, it was limited to the 

absolute stability of a nonlinear system in time domain. Besides, a dynamic pole motion-based 

adaptive neuro-controller for the desired response of a nonlinear system was initiated in [7, 8, 9, 

10, 11]. 

  

 The equilibrium of a conservative mechanical system based on the theory of minimum 

potential energy with the absence of external forces is a pioneer work on the stability analysis, 

carried out by Lagrange in 1788. The most famous and general method of determining the 

stability of nonlinear and/or time-varying systems is the direct method of Lyapunov’s, conducted 

in 1892. Lyapunov’s work on defining the stability based on Lagrange’s principle for the 

establishment of equilibrium is one of the most crucial events in the field of dynamic system 

stability [12]. Despite its vast usefulness, the mathematical counterpart of defining the energy 

like ‘Lyapunov’s function’ from a purely mathematical form of the nonlinear dynamic system 

for stability analysis sometimes becomes cumbersome and requires considerable perception and 

expertise [13]. To eliminate much of the supposition with Lyapunov’s method, Ingwerson [13] 

included an intermediate condition to the original stability criterion based upon an integration of 

matrices which solves the linearization problem exactly.  

 

 Popov’s criterion for defining the bounded input and bounded output (BIBO) stability of 

a nonlinear system with single nonlinearity has received massive attention in the early seventies 

[14]. Lagrange stability of a nonlinear, memoryless, single-valued and single instantaneous 

system, confined within a gain, can be identified sufficiently using Popov’s stability criterion 

[14]. Popov’s criterion can be used satisfactorily to investigate the stochastic stability of a 

nonlinear system in large, with probability one, and exponential p-stability [6, 15].  

 



4 
 

 Stability analysis of uncertain control systems with separable nonlinearities using the 

describing function (DF) method and Bode envelope of linear uncertain transfer functions have 

gained popularity and is covered in many texts [16]. The stability of a class of nonlinear systems 

with real parametric uncertainties and norm-bounded perturbations are studied in [17]. Impram 

and Munro [17] made a combination of the small gain theorem (SGT) with the fundamental 

concept of circular arithmetic to analyze the robust stability of the systems with separable 

nonlinearities. Detailed treatments can be found in [18, 19, 20].  The translation of the origin of 

the local exponential stability of a no-triangular nonlinear system to global exponential stability 

based on the Hurwitz nature of the Jacobian at the origin is studied in [21].  

 

Stability analysis of a nonlinear systems having fractional-order dynamics is proven 

theoretically by using Gronwall-Bellman lemma and fractional calculus in [22]. A simple 

criterion is then derived based on the theory to design a controller for stabilizing original 

nonlinear, fractional-order systems [22, 23]. Linear matrix inequities (LMIs) technique is 

extended to analyze the stability and performance of nonlinear systems by use of the sum of 

squares (SOS) programming [24, 25]. An algorithm is developed using SOS programming to 

find the global contraction matric of an autonomous nonlinear system. Contraction analysis, a 

stability theory for nonlinear systems where stability is defined between two arbitrary 

trajectories, is then carried out to find the maximum allowable uncertainty of the system [24]. 

 

1.2 Motivations 

 

 The most wondrous carbon-based biological computer, the human brain, which controls 

all the actions, is made of billions of individual nerve cells called neurons, and neurons are the 

powerhouses for executing all the complex biological algorithms in the brain [1].  

 

 Neuro means ‘learn plus adaptation.’ Human neurons learn from the situation and adapt 

the brain dynamics to accomplish the task assigned to it. The biological motivation of a neuro-

controller comes from the biological control scheme of the human brain for accomplishing a task 

by controlling human hands and legs. 
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Figure 1.1: Biological Control Loop. 

 

 The control action of the neuron-made human brain is a closed-loop control action. 

Hands and legs are actuators, vision and cognition are sensors, and brain acts as a controller. 

Brain varies its control output to control hands and legs, continuously, taking the sensor feedback 

from vision and cognition. For example, walking on the street, the human brain changes its 

output to adjust the walking speed. If the target is far away, the brain controls actuators, i.e., 

hand and leg to increase the walking speed. On the other hand, if the target is close, the brain 

changes its output to decrease the walking speed. The brain takes the position and velocity 

feedback of the body via sensor action, through vision and cognition, to change its control action.   

  

 An error based neuro-controller is designed, in this thesis, to control the complex 

dynamic systems where the controller learns from error and adapts its parameters as a function of 

the system error yielding the response very fast without overshoot.  

 

 

1.3 Objectives 

 

 The overall objective of this thesis is to extend a dynamic pole motion in the complex 

𝑔 −plane based stability analysis, dynamic Routh’s stability criterion presented in [6], to study 

the relative stability, and frequency domain characteristics by developing a dynamic Nyquist 

criterion along with its application in the analysis of nonlinear systems. The concepts will be 
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applied to the design of a neuro-controller to achieve a very fast response with zero overshoot, 

original work is done in [7], along with several nonlinear examples. A neuro-controller 

continuously adjusts its dynamics and relocates the overall system dynamic poles in the complex 

𝑔 −plane as a function of the system error. 

 

The overall objective can be broken down to the following specific objectives: 

 

1. To develop a general state-space representation of a dynamic system, the introduction of 

𝑔 operator and the complex 𝑔 −plane to establish the input-output relationship regarding 

𝑔 −transfer matrix, and the derivation of the dynamic characteristic equation to locate the 

dynamic poles in the complex 𝑔 −plane. The effects of the changing values of the system 

parameters, e.g., gain, system states 𝐱 and time 𝑡, on the location of dynamic poles in the 

complex 𝑔 −plane are also need to be examined. The sketching procedure of the dynamic 

root locus and dynamic root contour will be discussed. 

2. To develop a theory for stability analysis based on dynamic pole locations in the complex 

𝑔 −plane in the frequency domain, the dynamic Nyquist criterion, to characterize 

different perspectives of system behaviors with a commencement to dynamic Nyquist 

and Bode plots. A phase plane analysis will be studied applying the dynamic Routh’s 

criterion to determine the stability region. A study to present the interrelationship 

between the dynamic root locus, and the dynamic Nyquist and Bode plots will be 

discussed. 

3. To design an error-based adaptive neuro-controller based on dynamic pole movement in 

the complex 𝑔 −plane in such a way that dynamic pole moves as a function of system 

error to get a very fast response with zero overshoot. The stability of the proposed neuro-

controlled system needs to be verified according to the dynamic Routh's stability 

criterion.   

 

All the simulation works presented in this thesis are performed by using the software packages 

MATLAB r2016a, and SIMULINK v8.7. 

 

1.4 Thesis Organization 
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 The rest of the thesis is organized as follows. Some basic mathematical concepts 

regarding nonlinear systems are introduced in Chapter 2. A general state-space representation is 

presented to address the dynamic systems, i.e., linear, nonlinear and/or time-variant systems. The 

𝑔 operator along with the complex 𝑔 −plane is introduced in this chapter to establish the input-

output relationship by establishing a 𝑔 −transfer matrix and finding out the dynamic 

characteristic equations to locate the dynamic poles in the complex 𝑔 −plane. Dynamic root 

locus, the movement of dynamic poles with the variation of system parameters, e.g., system 

states and time and its sketching procedure, is also presented. Several numerical examples to 

explain the dynamic root locus techniques are given at the end of Chapter 2.  

 

 The dynamic pole location based stability analysis in the complex 𝑔 −plane, dynamic 

Routh’s stability criterion is discussed in Chapter 3. The dynamic pole locations in the complex 

𝑔 −plane are determined from the dynamic Routh’s array. The dynamic Nyquist criterion is 

developed to analyze a nonlinear system frequency domain characteristics and relative stability. 

Dynamic Nyquist and Bode plots are also introduced in this chapter. The dynamic Routh’s 

criterion is also applied to do a phase plane analysis to find out the stability region. Several 

numerical examples including nonlinear systems and their stability results according to the 

dynamic Routh’s stability criterion are illustrated. An interrelationship between the dynamic root 

locus and the dynamic Nyquist and Bode plots is also presented. 

 

 The design criteria for the neuro-controllers are devoted to Chapter 4. A neuro-controller 

adjusts the overall system dynamics by continuously changing its parameters as a function of the 

system error to ensure a very fast response with zero overshoot. Various possible functions along 

with their graphical correspondence representations are also given in this chapter. Several 

numerical examples were chosen from the literature, and the neuro-controller parameters are 

designed to work on these examples at the end of the chapter. The stability analysis of the neuro-

controlled systems for these exemplary systems are carried out by using the dynamic Routh’s 

stability criterion, as discussed in Chapter 3. 
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 Finally, the summary of the thesis by discussing the main contributions with some future 

research issues are recapitulated in Chapter 5. The verification of the examples presented in this 

thesis are given in Appendix A, a comparison between linearization and dynamic pole motion 

approach on nonlinear system performance is given on Appendix B, and the details of the 

Simulink models of the examples in Chapter 4 are shown in Appendix C. 
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Chapter 2 

𝒈 −Plane Characteristics of a Nonlinear Dynamic System 

 

 

 This chapter gives some preliminary discussions of a dynamic system representation to 

facilitate the understanding of a new method for representing the stability of a nonlinear dynamic 

system (in Chapter 3) and of a new methodology for designing a neuro-controller to control the 

response (in Chapter 4). 

 

 The achievements of this chapter lies in the construction of a 𝑔 −transfer matrix of a 

nonlinear dynamic system and as well as, the derivation of the dynamic characteristic equation 

from it. The definition and the sketching procedure of the dynamic root locus are also illustrated. 

Several numerical examples have been undertaken to illustrate the concepts. 

 

2.1 Mathematical Representation of a Dynamic System 

 

 A linear, nonlinear, time-variant, or time-invariant dynamic system can be modeled by a 

finite number of coupled first-order ordinary differential equations [2, 26], 

 

 𝑥1̇ = 𝑓1(𝑥1,⋯ , 𝑥𝑛 , 𝑡, 𝑢1,⋯ , 𝑢𝑚), 

𝑥2̇ = 𝑓2(𝑥1,⋯ , 𝑥𝑛, 𝑡, 𝑢1,⋯ , 𝑢𝑚), 

⋮ 

𝑥𝑖̇ = 𝑓𝑖(𝑥1,⋯ , 𝑥𝑛 , 𝑡, 𝑢1,⋯ , 𝑢𝑚), 

⋮ 

𝑥𝑛̇ = 𝑓𝑛(𝑥1,⋯ , 𝑥𝑛 , 𝑡, 𝑢1, ⋯ , 𝑢𝑚), 

𝑥1(0) 

𝑥2(0) 

⋮ 

𝑥𝑖(0) 

⋮ 

𝑥𝑛(0) 

(2.1) 

 

where 𝑥𝑖, 𝑖 ∈ [1, 𝑛], is the state variable of the system and 𝑥𝑖̇  is the time derivative of 𝑥𝑖. 𝑢𝑖, 𝑖 ∈

[1,𝑚],  is the control input. 𝑥𝑖(0), 𝑖 ∈ [1, 𝑛], is the initial condition. 
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 We can represent this system of first-order differential equations, Eq. (2.1) to a 

𝑛 −dimentional first-order vector differential equation [2, 26], 

 

 𝐱̇ = 𝐟(𝐱, 𝑡, 𝐮) ∈ ℜ𝑛, 𝐱(0) (2.2) 

 

where 

 𝐱 =
|

|

𝑥1
𝑥2

⋮
𝑥𝑖

⋮
𝑥𝑛

|

|
∈ ℜ𝑛,  𝐮 =

|

|

𝑢1
𝑢2

⋮
𝑢𝑖

⋮
𝑢𝑚

|

|
∈ ℜ𝑚, 𝐟(𝐱, 𝑡, 𝐮) =

|

|

𝑓1(𝐱, 𝑡, 𝐮)
𝑓2(𝐱, 𝑡, 𝐮)

⋮
𝑓𝑖(𝐱, 𝑡, 𝐮)

⋮
𝑓𝑛(𝐱, 𝑡, 𝐮)

|

|
∈ ℜ𝑛, 𝐱(0) =

|

|

𝑥1(0)
𝑥2(0)

⋮
𝑥𝑖(0)

⋮
𝑥𝑛(0)

|

|
∈ ℜ𝑛. 

 

𝐟(∙) is a continuously differentiable nonlinear function. The output vector is defined as [2, 26], 

 

 𝐲 = 𝐡(𝐱, 𝑡, 𝐮) (2.3) 

 

where 

 𝐲 =
|

|

𝑦1
𝑦2

⋮
𝑦𝑖

⋮
𝑦𝑝

|

|
∈ ℜ𝑝 , 𝐡(𝐱, 𝑡, 𝐮) =

|

|

ℎ1(𝐱, 𝑡, 𝐮)
ℎ2(𝐱, 𝑡, 𝐮)

⋮
ℎ𝑖(𝐱, 𝑡, 𝐮)

⋮
ℎ𝑝(𝐱, 𝑡, 𝐮)

|

|
∈ ℜ𝑝 

 

𝐡(∙) is a continuously differentiable nonlinear function. Equations (2.2) and (2.3) together refer 

to a state-space model of the dynamic system. 

 

 The state and output equations for nonlinear systems, as given in Eq. (2.2) and (2.3), can 

also be represented in the following state-space form [6], 

 

 𝐱̇(𝑡) = 𝐀(𝐱, 𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡) ,    𝐱(𝟎) 

𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱(𝑡) + 𝐃(𝑡)𝐮(𝑡) 
(2.4) 
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where 𝐀(𝐱, 𝑡)  = [𝑎𝑖𝑗(𝐱, 𝑡)] ∈ ℜ𝑛×𝑛 is the system matrix of the nonlinear system. Each element 

of the matrix 𝐀(𝐱, 𝑡) can be a function of states 𝐱 and/or time 𝑡. System states 𝐱 are a function of 

input 𝐮(𝑡) in both amplitude and frequency. 𝐁(𝑡) ∈ ℜ𝑛×𝑚 is the input matrix, where 𝑚 ≤ 𝑛. 

The elements of  𝐁(𝑡) can be a constant or a function of time 𝑡. 𝐂(𝐱, 𝑡) ∈ ℜ𝑙×𝑝 is the output 

matrix, where 1 ≤ 𝑙 ≤ 𝑝. 𝐃(𝑡) ∈ ℜ𝑙×𝑚 is the feed-forward matrix. The state-space 

representation of Eq. (2.4) is shown graphically in Figure 2.1. 

 

 

 

Figure 2.1. An equivalent block diagram of the state-space representation, 

𝐱̇(𝑡) = 𝐀(𝐱, 𝑡)𝐱 + 𝐁(𝑡)𝐮(𝑡),  𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱 + 𝐃(𝑡)𝐮(𝑡). 

 

 However, in a linear system, the system matrix 𝐀(𝐱, 𝑡) and the output matrix 𝐂(𝐱, 𝑡) 

are independent of system states 𝐱. The state and output equations of a linear dynamic system 

[4], 

 

 𝐱̇ = 𝐀(𝑡)𝐱 + 𝐁(𝑡)𝐮,    𝐱(𝟎) 

𝐲 = 𝐂(𝑡)𝐱 + 𝐃(𝑡)𝐮 
(2.5) 

 

where 𝐀(𝑡) ∈ ℜ𝑛×𝑛 is the system matrix of a linear system. Elements of the matrix 𝐀(𝑡) are a 

constant or a function of time 𝑡. 𝐁(𝑡) ∈ ℜ𝑛×𝑚 is the input matrix, where 𝑚 ≤ 𝑛. 𝐂(𝑡) ∈ ℜ𝑙×𝑝 is 

the output matrix, where 1 ≤ 𝑙 ≤ 𝑝. 𝐃(𝑡) ∈ ℜ𝑙×𝑚 is the feed-forward matrix. 

 

 It can be noted that Eq. (2.4) defines a general state-space representation of any dynamic 

system either linear or nonlinear, time-variant or time-invariant. A quantitative comparison 
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between Eq. (2.4) and (2.5) gives a certain ideology that the state-space representation of a linear 

system is a subset of the general state-space representation.  

 

2.2 𝒈 −Transfer Matrix 

 

 The system states 𝐱 of a dynamic system are implicitly time 𝑡 dependent. Unlike the 

linear time-invariant system, a nonlinear system may change explicitly with the change of system 

states 𝐱 while implicitly with time 𝑡. This changing behavior of a nonlinear system with system 

states 𝐱 and time 𝑡 causes to change the location of poles and zeros in the complex pole-zero 

plane [6]. Thus, it becomes an obvious practice to relate this dynamic nature of poles and zeros 

movement with system states 𝐱 or time 𝑡 in the complex pole-zero plane. 

 

 Let us consider 𝑔 is a differential operator, 
𝑑

𝑑𝑡
. Introducing 𝑔 operator to the state-space 

equation, Eq. (2.4), we can write, 

 

 𝑔𝐱(𝑡) = 𝐀(𝐱, 𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡) 

𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱(𝑡) + 𝐃(𝑡)𝐮(𝑡) 
(2.6) 

 

Rearranging Eq. (2.6), we get, 

 

 (𝑔𝐈 − 𝐀(𝐱, 𝑡))𝐱(𝑡) = 𝐁(𝑡)𝐮(𝑡) (2.7) 

 

where I is a 𝑛 × 𝑛 identity matrix. Pre-multiplying both sides of Eq. 2.7 with (𝑔𝐈 − 𝐀(𝐱, 𝑡))−1 

leads to, 

 

 𝐱(𝑡) = (𝑔𝐈 − 𝐀(𝐱, 𝑡))
−1

𝐁(𝑡)𝐮(𝑡) (2.8) 

 

where (𝑔𝐈 − 𝐀(𝐱, 𝑡)) is invertible. Substituting the value of 𝐱(𝑡) from Eq. (2.8) to 𝐲(𝑡) =

𝐂(𝐱, 𝑡)𝐱(𝑡) + 𝐃(𝑡)𝐮(𝑡), we obtain, 
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 𝐲(𝑡) = [𝐂(𝐱, 𝑡)(𝑔𝐈 − 𝐀(𝐱, 𝑡))
−1

𝐁(𝑡) + 𝐃(𝑡)] 𝐮(𝑡) (2.9) 

 

where [𝐂(𝐱, 𝑡)(𝑔𝐈 − 𝐀(𝐱, 𝑡))
−1

𝐁(𝑡) + 𝐃(𝑡)] is the 𝑔 −transfer matrix and it relates the output 

vector 𝐲(𝑡) to the input vector 𝐮(𝑡). Expanding Eq. (2.9), 

 

 
𝐲(𝑡) = [𝐂(𝐱, 𝑡)

𝐚𝐝𝐣(𝑔𝐈 − 𝐀(𝐱, 𝑡))

𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡))
𝐁(𝑡) + 𝐃(𝑡)] 𝐮(𝑡) (2.10) 

or, 

 
𝐲(𝑡) = [

𝐂(𝐱, 𝑡)𝐚𝐝𝐣(𝑔𝐈 − 𝐀(𝐱, 𝑡))𝐁(𝑡) + 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡))𝐃(𝑡)

𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡))
] 𝐮(𝑡) (2.11) 

 

where 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) ≠ 0. 𝐚𝐝𝐣 and 𝐝𝐞𝐭 stands for the adjoint and determinant of a matrix, 

respectively. The elements of the adjoint matrix 𝐚𝐝𝐣(𝑔𝐈 − 𝐀(𝐱, 𝑡)) are either constant or a 

function of 𝑔. The numerator of Eq. (2.10) gives the location of the zeros, if any, in the complex 

pole-zero plane. 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) is a scalar function of 𝑔, and the location of poles in the 

complex pole-zero plane depends on the solution of the equation, 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0  for 𝑔. 

The dynamic characteristic equation is thus defined by 

 

 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0  (2.12) 

 

where I is a 𝑛 × 𝑛 identity matrix. Elements of 𝑛 × 𝑛 system matrix A (𝐀𝑖𝑖 , where 𝑖 =

1,2,⋯ , 𝑛) contains all the states 𝐱 and time 𝑡 dependent nonlinear terms. Solving Eq. (2.12) for 𝑔 

gives the roots of the dynamic characteristic equation, which are also the poles of the nonlinear 

system represented by Eq. (2.4).  

 

 A care must be taken that 𝑠 ≜
𝑑

𝑑𝑡
 is a differential operator widely used to characterize 

linear time-invariant systems [4, 5], whereas the time-varying differential operator 𝑔 is equally 

applicable to linear, nonlinear, time-variant or time-invariant dynamic systems. In other words, 𝑠 

operator is a subset of 𝑔 operator. 
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2.2.1 Complex 𝒈 −plane 

 

 A complex number has a real and an imaginary part. Similarly, a complex variable also 

has a real and an imaginary part [5].  The real and imaginary parts of a complex variable can be a 

function of system states 𝐱 and/or time 𝑡.  If 𝑔[𝐱, 𝑡] denotes a time 𝑡 and a state 𝐱 dependent 

complex variable, then 

 

 𝑔[𝐱, 𝑡]  = 𝜎[𝐱, 𝑡] + 𝑗𝜔[𝐱, 𝑡] (2.13) 

 

where 𝜎[𝐱, 𝑡] and 𝜔[𝐱, 𝑡] are the time and state-dependent real and imaginary parts, respectively.  

Note that system states 𝐱 are implicitly time 𝑡 dependent. We can reduce Eq. (2.13) to a simpler 

form [6], 

 

 𝑔(𝑡)  = 𝜎(𝑡) + 𝑗𝜔(𝑡)  (2.14) 

 

where 𝑔(𝑡) is a differential operator, 
𝑑

𝑑𝑡
. 𝑔(𝑡), 𝜎(𝑡) and 𝜔(𝑡) are explicitly state 𝐱 and implicitly 

time 𝑡 dependent. 𝑔(𝑡) gives time-varying roots of the dynamic characteristic equation 

represented by Eq. (2.12). The magnitude and angle of 𝑔(𝑡) at a particular time 𝑡𝑐 is given by 

√𝜎𝑥
2(𝑡𝑐) + 𝜔𝑦

2(𝑡𝑐) and tan−1[𝜎𝑥(𝑡𝑐) 𝜔𝑦(𝑡𝑐)⁄ ], respectively.  

 

 A nonlinear system dynamics can be examined graphically by plotting their poles and 

zeros in the complex 𝑔 −plane.  𝑔 −plane is a three-dimensional complex pole-zero plane, where 

the horizontal axis represents the real part 𝜎(𝑡) of the complex variable 𝑔(𝑡), the vertical axis 

represents the imaginary part 𝜔(𝑡) of the complex variable 𝑔(𝑡), and the third axis of 𝑔 −plane 

represents the pole-zero movement to the system error 𝑒(𝑡), system states 𝐱, or time 𝑡. The 

graphical representation of the complex 𝑔 −plane is shown in Figure 2.2 [6]. 
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Figure 2.2. Three-dimensional complex 𝑔 −plane, 𝑔(𝑡) = 𝜎(𝑡) + 𝑗𝜔(𝑡). The horizontal axis 

represents the real part 𝜎(𝑡), the vertical axis represents the imaginary part 𝑗𝜔(𝑡). The third axis 

can be either error 𝑒(𝑡), system states 𝐱, or time 𝑡.  

 

Note that poles and zeros in the 𝑔 −plane are not static rather dynamic [6]. Similar to the 𝑔 

operator, the 𝑔 −plane is applicable to a linear, nonlinear, time-invariant, and time-variant 

dynamic system.  

 

2.2.2 Dynamic Poles and Zeros 

 

 The dynamic characteristic equation, Eq. (2.12), can also be described by [6], 

 

 𝑎𝑛𝑔𝑛 + 𝑎𝑛−1𝑔
𝑛−1 + ⋯+ 𝑎1𝑔 + 𝑎0 = 0 (2.15) 

 

where 𝑎𝑖 = 𝑎𝑖(𝐱, 𝑡), 𝑖 = 0,1,2,3,… , 𝑛, is the coefficient of 𝑔𝑖 and a function the states 𝐱 and time 

𝑡. The roots of the dynamic characteristic equation, Eq. (2.15), are a function of states 𝐱 and 

moves in the complex 𝑔 −plane with the change of states 𝐱 and time 𝑡 [6]. As mentioned before, 

the roots of the dynamic characteristic equation are poles of the nonlinear dynamic system, so the 

poles of the system, Eq. (2.4), also moves with the change of system states 𝐱 and time 𝑡. This 

moving behavior of the nonlinear system poles in the complex 𝑔 −plane with the change of the 

system states 𝐱 or time 𝑡 is called dynamic poles [6].  
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Similarly, the elements of the numerator of Eq. (2.10) and (2.11) 𝐂(𝑡)[𝐚𝐝𝐣 (𝑔𝐈 −

𝐀(𝐱, 𝑡))]𝐁(𝑡) + 𝐃(𝑡) [𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡))] can be a constant or a function of states 𝐱 and time 𝑡. 

𝐝𝐞𝐭 [ 𝐂(𝐱, 𝑡)[𝐚𝐝𝐣 (𝑔𝐈 − 𝐀(𝐱, 𝑡))]𝐁(𝑡) + 𝐃(𝑡) [𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡))]] = 0 gives the location of the 

zeros in the complex 𝑔 −plane.  These zeros are a constant or change their location in the 

complex 𝑔 −plane with the change of system states 𝐱 or time 𝑡. This changing behavior of the 

nonlinear system zeros in the complex 𝑔 −plane is called dynamic zeros. 

 

2.3 Dynamic Root Locus 

 

 Root locus is a graphical representation of the paths of the closed-loop poles of a linear 

time-invariant system with the variation of system parameters (e.g., gain) from zero to infinity 

and it is a tool for analyzing the performance of a dynamic system [4]. The root locus technique 

has been extended for the nonlinear and/or time-varying dynamic systems and has given a name 

dynamic root locus in the complex 𝑔 −plane. 

 

Definition I: Dynamic root locus is the graphical representation of the path of the dynamic poles 

of a nonlinear and/or time-variant system, as the parameters of the system are varied, 

respectively, from zero to infinity. Although the parameters can be any other variable of the 

system, in most cases the system states 𝐱 and time 𝑡 are the common system parameters. 

 

 Rearranging the dynamic characteristic equation, Eq. (2.15), 

 

 
1 + 𝐾(𝐱, 𝑡)

(𝑔 + 𝑧1(𝐱, 𝑡))(𝑔 + 𝑧2(𝐱, 𝑡))⋯ (𝑔 + 𝑧𝑚(𝐱, 𝑡))

(𝑔 + 𝑝1(𝐱, 𝑡))(𝑔 + 𝑝1(𝐱, 𝑡))⋯ (𝑔 + 𝑝𝑛(𝐱, 𝑡))
= 0 (2.16) 

 

(𝑔 + 𝑝𝑖(𝐱, 𝑡)), 𝑖 = 1,2, … . , 𝑛, gives the locations of dynamic poles in the complex 𝑔 −plane and 

(𝑔 + 𝑧𝑘(𝐱, 𝑡)), 𝑘 = 0,1,2,… ,𝑚, gives the locations of dynamic zeros. 𝐾(𝐱, 𝑡) is the system state 

𝐱 and time 𝑡 dependent dynamic gain and determines the path of dynamic roots in the complex 

𝑔 −plane. 
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 It is possible that a nonlinear system dynamics involves more than one parameter to be 

varied. The dynamic root locus for a nonlinear and/or time-variant system with multiple 

parameters to be varied, respectively, from zero to infinity is called dynamic root contour, is an 

extension of the root contour plots of a linear time-invariant system [5].   

 

2.4 Illustrative Numerical Examples 

 

 In this section, several examples of nonlinear dynamic systems are taken to illustrate the 

𝑔 −plane characteristics. The nature of a dynamic system can be described qualitatively 

regarding its dominant parameters. For instance, the dynamics of a typical second-order system 

is, 

 

 𝑥̈ + 𝑘𝑣𝑥̇ + 𝑘𝑝𝑥 = 𝑢(𝑡) (2.17) 

 

where 𝑘𝑝 = 𝜔𝑛
2 is the position feedback and determines the bandwidth of the system. 𝑘𝑣 =

2𝝃𝜔𝑛 is the velocity feedback and determines the damping ratio. For a linear system, 𝑘𝑝 and 𝑘𝑣 

are a constant but for a nonlinear system; they can be a constant or a function of states 𝐱 and/or 

time 𝑡. 

 

Example 2.1:  

 

 Consider a nonlinear time-invariant second-order differential equation with a nonlinear 

damping and nonlinear spring, represented by 

 

 𝑥̈ − 𝑥̇3 + 𝑥2 = 𝑢(𝑡) (2.18) 

 

This system can be represented by the state-space model, i.e., 

 

 𝑥1̇ = 𝑥2  
(2.19) 

 𝑥2̇ = −𝑥1𝑥1 + 𝑥2
2𝑥2 + 𝑢(𝑡)  
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where 𝑥1 = 𝑥 and 𝑥2 = 𝑥̇ are the states of the system. The position feedback 𝑘𝑝 and velocity 

feedback 𝑘𝑣 are given by  𝑥1 and −𝑥2
2, respectively. The output is given by 

 

 𝑦 = 𝑥1 (2.20) 

 

Equations (2.19) and (2.20) can also be represented by 

 

 𝐱̇(𝑡) = 𝐀(𝐱, 𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡)  
(2.21) 

 𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱(𝑡)  

 

where 

𝐱 ∈ ℜ𝑛 : the state vector, 

𝐱̇ ∈ ℜ𝑛 : the derivation of the state vector 𝐱 to time 𝑡, 

𝐲 ∈ ℜ𝑝 : the output vector, and 

u∈ ℜ𝑚 : the control input. 

System matrix 𝐀(𝐱, 𝑡) = |
0 1

−𝑥1 𝑥2
2|. 

Input matrix 𝐁(𝑡) = |
0
1
|. 

Output matrix 𝐂(𝐱, 𝑡) = |1 0|. 

 

The equivalent block diagram is shown in Figure 2.3. 

 

 

 

Figure 2.3. Block diagram representation of the state-space model of the nonlinear system, 

 𝑥̈ − 𝑥̇3 + 𝑥2 = 𝑢(𝑡). 
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Invertible matrix (𝑔𝐈 − 𝐀(𝐱, 𝑡)) = [
𝑔 −1

𝑥1 𝑔 − 𝑥2
2]. So the dynamic characteristic equation 

𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 of the nonlinear time-invariant system, Eq. (2.18), is given by 

  

 𝑔2 − 𝑥2
2𝑔 + 𝑥1 = 0 (2.22) 

 

The roots of the dynamic characteristic equation, Eq. (2.22), are, 

 

 
𝑔1,2 =

𝑥2
2 ± √𝑥2

4 − 4𝑥1

2
 (2.23) 

 

From Eq. (2.23) we conclude that the system has a conjugate dynamic pole and these dynamic 

poles are a function of system states 𝑥1 and 𝑥2. 𝑥1 and 𝑥2 are a function of input signal 𝐮(𝑡) and 

the initial conditions. The dynamic poles 𝑔1,2 are real or complex depending on the values of 𝑥1 

and 𝑥2. 

 

Example 2.2: 

 

 Consider a second-order nonlinear differential equation, 

 

 𝑥1̇ = −2𝑥1  

(2.24) 
 𝑥2̇ = 2𝑥2

2𝑥1 + 2𝑥2 + 𝑢(𝑡)  

and the output,  

 𝑦 = 𝑥1  

 

where 𝑥1 = 𝑥 and 𝑥2 = 𝑥̇ are the states of the dynamic system. The system matrix A(𝐱, 𝑡) = 

[
−2 0
2𝑥2

2 2
]. An equivalent block diagram of the nonlinear system is, 
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Figure 2.4. An equivalent block diagram of the nonlinear dynamic system, 

𝑥1̇ = −2𝑥1,  𝑥2̇ = 2𝑥2
2𝑥1 + 2𝑥2, 𝑦 = 𝑥1. 

 

 The dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 of the nonlinear time-

invariant system Eq. (2.24) is, 

  

 𝑔2 + 2(𝑥2
2 − 2)  = 0 (2.25) 

 

The roots of this dynamic characteristic equation, Eq. (2.25), are a function of the system states 

𝑥2 explicitly and time 𝑡 implicitly. Rearranging Eq. (2.25), 

 

 
1 +

2𝑥2
2

𝑔2 − 4
= 0 (2.26) 

 

From Eq. (2.26), the nonlinear system has a conjugate dynamic pole in the complex 𝑔 −plane. 

When 𝑥2 = 0, dynamic poles are located at ±2. With the change of the value of system state 𝑥2, 

the conjugate dynamic poles change their location in the complex 𝑔 −plane because of the 

presence of a nonlinear spring (𝑥2
2 − 2) in the dynamic characteristic equation, Eq. (2.25). For 

instance, the conjugate dynamic poles are located at ±𝑗6.78 for 𝑥2 = 5. A three-dimensional 

sketch of the dynamic root locus of the nonlinear system, Eq. (2.24), varying system state 𝑥2 is 

shown in Figure 2.5. Arrowhead indicates the direction of the increased value of 𝑥2. 
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Figure 2.5. Three-dimensional dynamic root locus of the dynamic characteristic equation,  

𝑔2 + 2(𝑥2
2 − 2)  = 0. The third axis represents the system state 𝑥2. 

 

A two-dimensional projection of the three-dimensional dynamic root locus plot, Figure 2.4, is 

shown in Figure 2.6. 

 

 

Figure 2.6. A two-dimensional projection of a three-dimensional dynamic root locus of the 

characteristic equation 𝑔2 + 2(𝑥2
2 − 2)  = 0. The horizontal axis is the real axis 𝝈(𝒕), the 

vertical axis is the imaginary axis 𝒋𝝎(𝒕), and the third axis represents the system state 𝑥2. 
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From Figure 2.5 and 2.6, for a small value of 𝑥2 both dynamic poles are on the real axis, one is 

on the left-half side, and another is on the right-half side of the complex 𝑔 −plane. As 𝑥2 

increases from a value of zero, both dynamics poles move towards each other creating a break-

away point at (0,0,1.41). If 𝑥2 increases above the value of 1.41, both dynamic poles leave the 

real axis creating a 900 angles with the imaginary axis. These poles stay on the imaginary axis 

for 𝑥2 > 1.41. 

  

Example 2.3:  

 

 A second-order nonlinear dynamic system, 

 

 𝑥1̇ = −6𝑥1 + 2𝑥2  
(2.27) 

 𝑥2̇ = 2𝑥1 − (6 + 2𝑥2
2)𝑥2  

 

where 𝑥1 = 𝑥 and 𝑥2 = 𝑥̇ are the states of the system. The system matrix 𝐀(𝐱, 𝑡) =

|
−6 2
2 −(6 + 2𝑥2

2)
|. 

 

 The dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 of the nonlinear time-

invariant system Eq. (2.27) is, 

 

 𝑔2 + 2(6 + 𝑥2
2)𝑔 + (32 + 12𝑥2

2) = 0 (2.28) 

 

Nonlinearity arises in this dynamic characteristic equation because of the presence of two 

nonlinear terms, nonlinear spring 32 + 12𝑥2
2, and nonlinear damping  6 + 𝑥2

2
. Nonlinearity, as 

well as dynamic pole locations in the complex 𝑔 −plane, depend on the value of system state 𝑥2. 

Rearranging Eq. (2.28), 

 

 
1 +

2𝑥2
2(𝑔 + 6)

𝑔2 + 12𝑔 + 32
= 0 (2.29) 
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Figure 2.7 plots a three-dimensional representation of the dynamic root locus of the dynamic 

characteristic equation, Eq. (2.29), in the complex 𝑔 −plane. The third axis is describing 𝑥2. 

From the dynamic characteristic equation, Eq. (2.28) and (2.29), the system has a conjugate 

dynamic pole located at −8 and −4, and a dynamic zero located at −6. As 𝑥2 increases, one of 

the dynamic poles moves towards the zero, and another moves to infinity. For example, at 𝑥2 =

5 dynamic poles are located at −56.08 and −5.92. The arrowhead indicates the direction of the 

increased value of 𝑥2. 

 

 

 

Figure 2.7. Three-dimensional dynamic root locus of the nonlinear dynamic system represented 

by state-space, 𝑥1̇ = −6𝑥1 + 2𝑥2, 𝑥2̇ = 2𝑥1 − 6𝑥2 − 2𝑥2
3. The third axis represents the system 

state 𝑥2. 

 

Example 2.4: 

 

 The state and output equations of a simplified model of a single link manipulator with a 

flexible joint system are given by Eq. 2.30. This example is adapted from [7]. 

 

 𝑥1̇ = 𝑥2  

(2.30)  𝑥2̇ = −𝑥1 − 𝑥2 − 𝑥3 + 𝑢(𝑡)  

 𝑥3̇ = 𝑥4  
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𝑥4̇ = −𝑥1 − {1 +

𝑠𝑖𝑛(𝑥3)

𝑥3
}𝑥3 − 𝑥4 

 

and the output,  

 𝑦 = 𝑥3  

 

where 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are the states of the system. 𝑢(𝑡) is the control input, and 𝑦 is the 

output. 𝑥1 = 𝜃𝑚 , 𝑥2 = 𝜃𝑚̇, 𝑥3 = 𝜃𝑙, 𝑥4 = 𝜃𝑙̇. 𝜃𝑚 and 𝜃𝑙 are the relative angular displacement of 

the joint actuator and relative displacement of the end effector, respectively. The state 𝑥3 

dependent sine function 
𝑠𝑖𝑛(𝑥3)

𝑥3
 creates the nonlinearity in the system.  

 

The system matrix 𝐀(𝐱, 𝑡) =

[
 
 
 
 

0 1 0 0
−1 −1 −1 0
0 0 0 1

−1 0 −{1 +
𝑠𝑖𝑛(𝑥3)

𝑥3
} −1]

 
 
 
 

, the input matrix 𝐁(𝐱, 𝑡) = [

0
1
0
1

], 

and the output matrix 𝐂(𝐱, 𝑡) = [0 0 1 0]. The equivalent block diagram is, 

 

 

 

Figure 2.8. An equivalent block diagram of the simplified model of a single link manipulator 

with a flexible joint system presented by Eq. 2.30. 

 

The dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 is, 

  

 𝑔4 + 2𝑔3 + (3 + 𝜑)𝑔2 + (2 + 𝜑)𝑔 + 𝜑 = 0 (2.31) 
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where 𝜑 =
sin 𝑥3

𝑥3
. The roots of this dynamic characteristic equation, Eq. (2.31), are a function of 

the state 𝑥3 dependent sinusoidal term 𝜑, and given by 

 

 
𝑔1,2 =

1

2
(−1 ± √2√𝜑2 + 4 − 2𝜑 − 3) 

(2.32) 
 

𝑔3,4 =
1

2
(−1 ± √−2𝜑 − 2√𝜑2 + 4 − 3) 

 

Rearranging Eq. (2.32), 

 

 
1 +

𝜑(𝑔2 + 𝑔 + 1)

𝑔(𝑔3 + 2𝑔2 + 3𝑔 + 2)
= 0 (2.33) 

 

Comparing Eq. (2.33) with (2.16), the nonlinear system has two conjugate dynamic poles and a 

conjugate dynamic zero in the complex 𝑔 −plane. 𝜑 =
sin 𝑥3

𝑥3
 is the state 𝑥3 dependent periodic 

gain and determines the movement of the dynamic poles. Initial dynamic poles are located at 

𝑔1 = 0 + 𝑗0, 𝑔2 = −1 + 𝑗0, and 𝑔3,4 = −0.5 ± 𝑗1.32.  

 

 A three-dimensional sketch of the dynamic root locus of the nonlinear system Eq. (2.30) 

varying the system state 𝑥3 is shown in Figure 2.9. Arrowhead indicates the direction of the 

increased value of 𝑥3. A two-dimensional projection is displayed in Figure 2.10. 
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Figure 2.9. Three-dimensional dynamic root locus of the nonlinear system defined by Eq. 2.30. 

The third axis is presenting the system state 𝑥3. 
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Figure 2.10. A two-dimensional projection of a three-dimensional dynamic root locus of the 

nonlinear system defined by Eq. 2.30. The horizontal axis is the real axis 𝝈(𝒕), the vertical axis 

is the imaginary axis 𝒋𝝎(𝒕), and the third axis represents the system state 𝑥3. 

 

 The locations of the poles 𝑔1, 𝑔2, 𝑔3, and 𝑔4 in the complex 𝑔 −plane are a function of 

the system state 𝑥3 explicitly and time 𝑡 implicitly. Because of the presence of the state-

dependent dynamic gain  𝜑 =
sin 𝑥3

𝑥3
 in Eq. (2.33), an oscillatory behavior of dynamic poles is 

observed on the dynamic root locus. 𝑔1 and 𝑔2 are complex for the value of the system state 𝑥3 

between −1.65 < 𝑥3 < 1.65 and other than that they are on the real axis. 𝑔3 and 𝑔4 are complex 

conjugate dynamic poles. 

 

Example 2.5: 

 

 Consider a third-order nonlinear system, 

 

 𝑥1̇ = 𝑥2  

(2.34) 

 𝑥2̇ = 𝑥3  

 𝑥3̇ = −100𝑥1 − (50 + 5𝑥1)𝑥2 − (14 + 𝑥1)𝑥3 + 𝑢(𝑡)  

and the output,  

 𝑦 = 5𝑥1 + 𝑥2  

 

where 𝑥1 = 𝑥, 𝑥2 = 𝑥̇, and 𝑥3 = 𝑥̈ are the states of the dynamic system. The System matrix 

𝐀(𝐱, 𝑡) = [
0 1 0
0 0 1

−100 −(50 + 5𝑥1) −(14 + 𝑥1)
], the input matrix 𝐁(𝑡) = [

0
0
1
], and the output 

matrix 𝐂(𝐱, 𝑡) = [5 1 0]. The presence of state 𝑥1 dependent term −(50 + 5𝑥1) and −(14 +

𝑥1) in the system matrix 𝐀(𝐱, 𝑡) creates the nonlinearity. An equivalent block diagram is, 
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Figure 2.11. An equivalent block diagram of the nonlinear dynamic system defined by Eq. 2.34. 

 

The dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 is, 

  

 𝑔3 + (14 + 𝑥1)𝑔
2 + (50 + 5𝑥1)𝑔 + 100 = 0 (2.35) 

 

The roots of this dynamic characteristic equation, Eq. (2.35), are function of state 𝑥1. 

Rearranging Eq. (2.35), 

 

 
1 +

𝑥1 𝑔(𝑔 + 5)

(𝑔 + 10)(𝑔 + 2 + 𝑗2.5)(𝑔 + 2 − 𝑗2.5)
= 0 (2.36) 

 

 Comparing Eq. (2.36) with (2.16), the nonlinear system has a conjugate dynamic pole 

located at  −2 ± 𝑗2.5, and a real pole located at −10 in the complex 𝑔 −plane. There are two 

dynamic zeros located at 0 and −5, respectively. The state 𝑥1 dependent dynamic gain K(𝐱, 𝑡) =

𝑥1 determines the locus of dynamic poles in the complex 𝑔 −plane. A three-dimensional sketch 

of the dynamic root locus of the nonlinear system Eq. (2.35) varying the system state 𝑥1 is shown 

in Figure 2.12. The arrowhead indicates the direction of the increased value of 𝑥1 from zero to 

infinity. 
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Figure 2.12. Dynamic root locus of the nonlinear system defined by Eq. 2.34 for the increased 

value of the system state 𝑥1 from zero to infinity. The third axis is representing 𝑥1. 

 

A two-dimensional projection of the three-dimensional dynamic root locus Figure 2.12 is shown 

in Figure 2.13. 
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Figure 2.13. A two-dimensional projection of the three-dimensional dynamic root locus of the 

nonlinear system defined by Eq. 2.34. The horizontal axis is the real axis 𝝈(𝒕), the vertical axis 

is the imaginary axis 𝒋𝝎(𝒕), and the third axis is representing the system state 𝑥1. 

 

 An increased value of 𝑥1 makes both dynamics conjugate poles move towards each other 

creating a break-in point on the real axis at −2.46 + 𝑗0 for 𝑥1 = 7.5, and then one pole travels 

towards to the origin (0,0) and another pole moves to the dynamic zero located at −10 + 𝑗0. 

The third dynamic pole moves to infinity as shown in the Figures 2.12 and 2.13. 

 

The verification of the examples presented in this chapter are given in Appendix A. 

 

 

2.5 Summary 

 

 In this chapter, a nonlinear dynamic system representation and some mathematical 

background in the complex 𝑔 −plane were given, and it was illustrated that 𝑠 −plane is a subset 

of 𝑔 −plane. The state-space representation of a nonlinear dynamic system was introduced in 

Section 2.1. The state-space representation of a linear time-invariant system is a subset of general 

state-space representation of a nonlinear dynamic system, Eq. 2.4. Section 2.1 was used to 

apprise 𝑔 operator and the three-dimensional complex 𝑔 −plane. The definition and 

mathematical derivation of the 𝑔 −transfer matrix, which relates the input vector 𝒚(𝒕) to the 

output vector 𝒖(𝒕), were also introduced in this section. The formation of the dynamic 

characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 and the definition of dynamic poles and zeros on 

the complex 𝑔 −plane were also discussed here. The definition and the procedure of sketching of 

the dynamic root locus were explained in Section 2.3.  

Five numerical examples were presented at the end of the chapter to illustrate the concepts. 
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Chapter 3 

Nonlinear Systems Stability Analysis Using the Dynamic Routh’s 

Criterion and the Development of Dynamic Nyquist Criterion 

  

 

 As discussed in Chapter 2, a nonlinear dynamic system can be represented by the state 

and output equations [6], 

 

 𝐱̇(𝑡) = 𝐀(𝐱, 𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡), 

𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱(𝑡) + 𝐃(𝑡)𝐮(𝑡) 

𝐱(0) 
 (3.1) 

 

where 𝐀(𝐱, 𝑡)  = [𝑎𝑖𝑗(𝐱, 𝑡)] ∈ ℜ𝑛×𝑛 is the system matrix. 𝐁(𝑡) ∈ ℜ𝑛×𝑚 is the input matrix 

where 𝑚 ≤ 𝑛. 𝐂(𝐱, 𝑡) ∈ ℜ𝑙×𝑝 is the output matrix where 1 ≤ 𝑙 ≤ 𝑝. 𝐃(𝑡) ∈ ℜ𝑙×𝑚 is the feed-

forward matrix. The dynamic characteristic equation is [6], 

 

 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0  (3.2) 

 

where I is a 𝑛 × 𝑛 identity matrix. The elements of the matrix 𝐀(𝐱, 𝑡) are a constant or a function 

of states 𝐱 and/or time 𝑡. 

 

The dynamic characteristic equation can also be written as [6], 

 

 𝑎𝑛𝑔𝑛 + 𝑎𝑛−1𝑔
𝑛−1 + ⋯+ 𝑎1𝑔 + 𝑎0 = 0  (3.3) 

 

where 𝑎𝑖 = 𝑎𝑖(𝐱, 𝑡), 𝑖 = 0,1,2,3,… , 𝑛,  is the coefficient of 𝑔𝑖 and it is constant or a function of 

system states 𝐱 and/or time 𝑡. The roots of the dynamic characteristic equation are the dynamic 

poles of the nonlinear dynamic system defined by Eq. (3.1). 

 

 In this chapter, a comprehensive numerical analysis of the stability analysis of a nonlinear 

system using the dynamic Routh’s stability analysis of [6] is presented. The dynamic Routh’s 
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stability criterion is extended for the phase plane analysis. The contributions of this chapter also 

lie in the relative stability analysis, as well as stability in the frequency domain with the 

commencement of dynamic gain and phase margin. A dynamic Nyquist stability criterion is 

developed in Section 3.3. The dynamic Nyquist and Bode plots are also introduced. A study of 

the interrelationship between the dynamic root locus and the dynamic Nyquist and Bode plots 

with the help of an example is also presented. 

 

3.1 Dynamic Routh’s Stability Criterion 

 

The dynamic pole locations in the complex 𝑔 −plane determine the stability of a 

nonlinear and/or time-variant dynamic system. At least one of these dynamic poles in the right-

half side of the complex 𝑔 −plane can make the system unstable by increasing the transient 

response monotonically or oscillating with rising amplitude with the increase of system states 𝐱 

and/or time 𝑡. On the other hand, an equilibrium condition can be achieved by keeping all the 

dynamic poles on the left-half side of the complex 𝑔 −plane at any condition. Thus, the stability 

of a nonlinear and/or time-varying dynamic system can be guaranteed if and only if all the 

dynamic poles lie in the left-half side of the complex 𝑔 −plane. The definition of stability region 

in the complex 𝑔 −plane is shown in Figure 3.1. 

 

 

 

Figure 3.1: The definition of stability region in the complex 𝑔 −plane, 

 𝑔(𝑡) = 𝜎(𝑡) + 𝑗𝜔(𝑡). 
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The dynamic Routh’s stability criterion and the dynamic Routh’s array together give us a 

quantitative idea about the number of dynamic poles located on the right-half side of the 

complex 𝑔 −plane without solving any complex mathematical equations.  

 

 The dynamic Routh’s array of the dynamic characteristic equation, Eq. (3.3), is shown in 

Table 3.1 [6]. As illustrated in Chapter 2, the coefficients of the dynamic characteristic equation 

contain the states 𝐱 and/or time 𝑡 dependent nonlinear terms, so it is imminent that the elements 

of the dynamic Routh's array also contain the states 𝐱 and/or time 𝑡 dependent nonlinear terms. 

Elements of the dynamic Routh's array can be a constant, a function of system states 𝐱 and/or 

time 𝑡. 

 

Table 3.1: Dynamic Routh’s Array 

 

𝑔𝑛 𝑎𝑛 𝑎𝑛−2 𝑎𝑛−4 𝑎𝑛−6 ⋯ 

𝑔𝑛−1 𝑎𝑛−1 𝑎𝑛−3 𝑎𝑛−5 𝑎𝑛−7 ⋯ 

𝑔𝑛−2 
−|

𝑎𝑛 𝑎𝑛−2

𝑎𝑛−1 𝑎𝑛−3
|

𝑎𝑛−1
= 𝑏1 

− |
𝑎𝑛 𝑎𝑛−4

𝑎𝑛−1 𝑎𝑛−5
|

𝑎𝑛−1
= 𝑏2 

− |
𝑎𝑛 𝑎𝑛−6

𝑎𝑛−1 𝑎𝑛−7
|

𝑎𝑛−1
= 𝑏3 ⋯ ⋯ 

𝑔𝑛−3 
− |

𝑎𝑛−1 𝑎𝑛−3

𝑏1 𝑏2
|

𝑏1
= 𝑐1 

−|
𝑎𝑛−1 𝑎𝑛−5

𝑏1 𝑏3
|

𝑏1
= 𝑐2 ⋯ ⋯ ⋯ 

⋮  ⋮    

⋮  ⋮    

𝑔1  ⋮    

𝑔0  ⋮    

 

 

Dynamic Routh’s stability criterion [6]:  

(i) A nonlinear and/or time-varying dynamic system is necessarily stable if all the 

elements of the first column of the dynamic Routh’s array have a positive non-zero 

value. 
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(ii) An oscillatory dynamic pole on the imaginary axis is present for a nonlinear and/or 

time-varying dynamic system if a zero is present at any rows of the first column of 

the dynamic Routh’s array.  

(iii) The number of dynamic roots of the dynamic characteristic equation located on the 

right-half side of the complex 𝑔 −plane is equal to the number of sign changes in the 

first column of the dynamic Routh’s array.  

 

The stability analysis of a linear time-invariant dynamic system using the Routh’s stability 

criterion is a subset of the stability analysis of a nonlinear and/or time-varying dynamic system 

having dynamic poles. The dynamic Routh’s stability criterion is applicable to a linear, 

nonlinear, time-invariant, and time-variant dynamic systems.  In other words, the dynamic 

Routh’s stability criterion gives a complete scenario of the Routh’s stability criterion. 

 

3.2 Illustrative Numerical Examples 

 

In the preceding sections, the stability analysis of a dynamic system based on the 

dynamic pole motion in the complex 𝑔 −plane, dynamic Routh’s stability criterion, is discussed. 

In this section, several examples of nonlinear dynamic systems are taken, and the dynamic 

Routh’s stability criterion is applied to do a comprehensive numerical analysis of their stability 

conditions. The simulation works presented in this section are performed by using software 

packages: MATLAB r2016a, and SIMULINK v8.7. 

 

Example 3.1: 

 

Consider a nonlinear time-invariant second-order system with a nonlinear damping and a 

linear spring, presented by 

 

 𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡)  (3.4) 
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Nonlinearity arises in this system because of the presence of state dependent nonlinear damping 

term (1 − 𝑥2). This system can be represented to a state-space model by using the following 

equations, 

 

 𝑥1̇ = 𝑥2  
(3.5) 

 𝑥2̇ = −𝑥1 − (1 − 𝑥1
2)𝑥2 + 𝑢(𝑡)  

 

where 𝑥1 and 𝑥2 are the states of the system. The output is, 

 

 𝑦 = 𝑥1  (3.6) 

 

Equations (3.5) and (3.6) can also be represented by 

 

 𝐱̇(𝑡) = 𝐀(𝐱, 𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡)  
(3.7) 

 𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱(𝑡)  

 

where 

𝐱 ∈ ℜ𝑛 : the state vector, 

𝐱̇ ∈ ℜ𝑛 : the derivation of the state vector 𝐱 to time 𝑡, 

𝐲 ∈ ℜ𝑝  : the output vector, and 

u∈ ℜ𝑚 : the control input. 

System matrix 𝐀(𝐱, 𝑡) = |
0 1

−1 −(1 − 𝑥1
2)

|. 

Input matrix 𝐁(𝑡) = |
0
1
|. 

Output matrix 𝐂(𝐱, 𝑡) = |1 0|. 

 

The dynamic characteristic equation is defined as 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0, and given by 

  

 𝑔2 + (1 − 𝑥1
2)𝑔 + 1 = 0  (3.8) 
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where 𝑔 is a differential operator, 
𝑑

𝑑𝑡
. The dynamic Routh’s array of this dynamic characteristic 

equation is, 

 

 𝑔2 1 1 

 𝑔1 (1 − 𝑥1
2) 0 

 𝑔0 1 0 
 

(3.9) 

 

Investigating this dynamic Routh's array Eq. (3.9) we can summarize some important 

conclusions: 

 

(i) As we know from the dynamic Routh’s stability criterion that a nonlinear and/or 

time-variant system is necessarily stable if all the elements of the first column of the 

dynamic Routh’s array have positive non-zero values. Thus, the nonlinear dynamic 

system Eq. (3.4) is stable if and only if (1 − 𝑥1
2)  > 0, where 𝑥1 is system state. This 

is shown graphically in Figure 3.2. The horizontal axis represents the time 𝑡 

dependent system state 𝑥1, and the vertical axis represents (1 − 𝑥1
2). In other words, 

the nonlinear time-invariant dynamic system Eq. (3.4) is stable for the values of 𝑥1 

where |𝑥1| < 1.  

 

(ii) According to dynamic Routh’s stability criterion, there exist an oscillatory dynamic 

pole on the imaginary axis of the complex 𝑔 −plane of a nonlinear and/or time-

variant dynamic system if a zero is present at any rows of the first column of the 

dynamic Routh’s array. Examining the first column of the dynamic Routh’s array Eq. 

(3.9), a zero is present if and only if (1 − 𝑥1
2) = 0 or |𝑥1| = 1. If |𝑥1| = 1, then the 

dynamic characteristic equation becomes 𝑔2 + 1 = 0 and system has a conjugate 

imaginary pole located at 𝑔 = ±𝑗.  

 

(iii) The dynamic Routh’s stability criterion states that the number of dynamic roots of the 

dynamic characteristic equation located in the right-half side of the complex 

𝑔 −plane is equal to the number of sign changes in the first column of the dynamic 
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Routh’s array. For example, if (1 − 𝑥1
2) < 0 or |𝑥1| > 1, then there are two sign 

changes of the elements of the first column of the dynamic Routh’s array. So, 

for |𝑥1| > 1, there are two dynamic poles located in the right-half side of the complex 

𝑔 −plane. On the other hand, if (1 − 𝑥1
2) > 0 or, |𝑥1| < 1, there is no sign changes 

on the first column of the dynamic Routh’s array, i.e., no dynamic poles are located in 

the right-half side of the complex 𝑔 −plane. 

 

 

 

Figure 3.2. Graphical representation of the stability region of the dynamic characteristic 

equation, 𝑔2 + (1 − 𝑥1
2)𝑔 + 1 = 0. 

 

 It is clear that the dynamic roots of the dynamic characteristic equation, Eq. (3.9), are not 

static because of the state 𝑥1 dependent nonlinear term (1 − 𝑥1
2). The dynamic root locus can be 

drawn by placing through every point in the complex 𝑔 −plane to locate the dynamic roots of the 

system as states 𝑥1 is varied from zero to infinity. Figure 3.3 shows the dynamic root locus in the 

complex 𝑔 −plane of the nonlinear system Eq. (3.4). The horizontal axis defines the real part of 

the complex dynamic poles, and the vertical axis indicates the imaginary part.  The location of 

the dynamic poles changes explicitly with the change of system state 𝑥1 while implicitly with 

time 𝑡. Initially when |𝑥1| < 1, the system has a conjugate dynamic pole located in the left-half 

side of the complex 𝑔 −plane and with the increase of system state 𝑥1 both dynamic poles 

shifted towards the imaginary axis as indicated by a dotted arrowhead in Figure 3.3. When 

|𝑥1| = 0, both dynamic poles are located on the imaginary axis showing a sinusoidal natural 
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response with a frequency equal to the location of the imaginary axis, ±𝑗. For the values of 

|𝑥1| > 1, both conjugate dynamic poles move to the right-half side of the complex 𝑔 −plane 

causing an amplification of system motion with the increase of time, i.e., instability region. 

 

 

 

Figure 3.3. Dynamic root locus of the characteristic equation, 𝑔2 + (1 − 𝑥1
2)𝑔 + 1 = 0.  

The horizontal axis is the real axis, the vertical axis is the imaginary axis, and the third axis is 

representing system state 𝑥1. 

 

 A comparison between the nonlinear time-invariant second-order dynamic system Eq. 

(3.4) with the general transfer function of a second-order differential equation 𝑦(𝑡) =

 
𝜔𝑛

2𝑢(𝑡)

𝑔2+2𝜉𝜔𝑛𝑔+𝜔𝑛
2  leads us to an inverse relationship between system states 𝑥1 and the damping ratio 

𝜉(𝑡), and it is given by the Eq. (3.10). The graphical representation is shown in Figure 3.4. 

 
𝜉(𝑡)  =

(1 − 𝑥1
2)

2
 

 

(3.10) 

 𝜔𝑛(𝑡)  =  1  

 

where 𝜔𝑛(𝑡) is the time and state-dependent dynamic natural frequency.  
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Figure 3.4. An inverse relation between system state 𝑥1 and the dynamic damping ratio 𝜉(𝑡) of 

the nonlinear system, 𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡). 

 

 As mentioned in Chapter 3, because of the presence of a nonlinear relationship between 

the damping ratio 𝜉(𝑡) and time 𝑡 dependent system state 𝑥1, a time 𝑡 dependent variation on 

damping ratio 𝜉(𝑡) is observed. This changing nature of system damping ratio 𝜉(𝑡) with time 𝑡 is 

called dynamic damping ratio. Starting from a zero initial condition, as system state 𝑥1 increases 

to a value of 2 with the increase of time 𝑡, dynamic damping ratio 𝜉(𝑡) decreases from an initial 

value of 0.5 to a value of −1.5. When  𝑥1 < 1, the system has positive damping (i.e., 𝜉(𝑡) > 0, 

dynamic conjugate poles are located in the left-half side of the complex 𝑔 −plane) and energy is 

dissipated from the system resulting in a decaying motion. On the other hand, if 𝑥1 > 1, negative 

damping (i.e., 𝜉(𝑡) < 0, the dynamic conjugate poles are located in the right-half side of the 

complex 𝑔 −plane) happens, i.e., adding energy to the system resulting in an amplification of the 

motion. The moment 𝑥1 = 0 is called a zero damping situation (i.e., 𝜉(𝑡) = 0, both dynamic 

conjugate poles are located on the 𝑗𝜔 axis of the complex 𝑔 −plane) resulting in an oscillatory 

motion. The dynamic damping ratio 𝜉(𝑡) for various pole locations in the complex 𝑔 −plane is 

shown in Figure 3.3. 

 Some exciting but powerful features can be explained in here. As discussed before, 

system dynamics changes with the increase or decrease of the system state 𝑥1 and system state 

𝑥1 is implicitly time 𝑡 dependent; thus the nonlinear system Eq. (3.4) shows a state 𝑥1 and time 𝑡 

dependent frequency response. The dynamic Bode plot is a state 𝑥1 and time 𝑡 dependent 
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frequency response plot. It is a three-dimensional frequency response plot. The horizontal axis 

represents the change of frequency in a logarithmic scale, and the vertical axis represents the 

magnitude (in dB) and the phase (in degree). Another axis represents the change of time 𝑡 or 

system states 𝐱 of the nonlinear system. Figure 3.5 shows the dynamic Bode plot of the nonlinear 

dynamic system Eq. (3.4). 

 

 

(a) Three-dimensional magnitude frequency response plot. 

 

(b) Three-dimensional phase frequency response plot. 

Figure 3.5. Dynamic Bode plot, a three-dimensional Bode plot of the second-order nonlinear 

system 𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡). The third axis represents the system state 𝑥1. 
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A two-dimensional sketch of the three-dimensional magnitude and phase frequency response 

plot of the nonlinear system Eq. (3.4) for the various values of the system state 𝑥1 and the 

associated dynamic damping ratio 𝜉(𝑡) is shown in Figure 3.6.   

 

Figure 3.6. Magnitude and phase frequency response of the nonlinear system, 

 𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡) for the various values of the system state 𝑥1. 

 

 For a second order system, the peak resonance and the bandwidth are related to the 

damping ratio of the system [27]. As said before, the nonlinearity arises in the system because of 

the presence of the nonlinear damping term (1 − 𝑥1
2). As system state 𝑥1 varies with time 𝑡, 

damping ratio also changes according to Eq. (3.10). It is seen from Figures 3.5 and 3.6 that lower 

the damping ratio higher the peak resonance and vice versa. The resonance happens at the 

frequency equal to 1 rad/s. From the phase frequency response plot, the damping ratio becomes 

smaller; and the phase curve becomes steeper. Investigating Figure 3.6, we see that for the values 

𝑥1 < 1, system Bode plot starts from 00 and never reaches to -1800, and when 𝑥1 > 1, the 

system has a Bode plot always lower than -1800. 
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 As a large peak resonance correspondence to a large peak overshoot in the response, a 

system may be stable at low frequency and high frequency, but unstable near the resonant 

frequency. As mentioned earlier, the input is a function of both amplitude and frequency, and 

thus, the stability of a nonlinear system depends on the amplitude and frequency of the input 

signal as well.   

 

The stability of the nonlinear time-invariant dynamic system in the frequency domain is defined 

by developing a dynamic Nyquist stability criterion. A detailed treatment is given in Section 3.3. 

 

 

Example 3.2: 

 

Consider another nonlinear time-invariant second-order system with a nonlinear damping 

(𝑥2−1) 

2
 and single input 𝑢(𝑡), 

 

 𝑥̈ + (𝑥2 − 1)𝑥̇ + 𝑥 = 𝑢(𝑡)  (3.11) 

 

The state-space model of this nonlinear dynamic system can be represented by  

 

 𝑥1̇ = 𝑥2  
(3.12) 

 𝑥2̇ = −𝑥1 − (𝑥1
2 − 1)𝑥2 + 𝑢(𝑡)  

 

where 𝑥1 and 𝑥2 are representing the states of the system. The output 𝑦 is, 

 

 𝑦 = 𝑥1  (3.13) 

 

The vector-matrix form of the state-space model Eq. (3.12) and (3.13) is, 

 

 𝐱̇(𝑡) = 𝐀(𝐱, 𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡)  
(3.14) 

 𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱(𝑡)  
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where 

𝐱 ∈ ℜ𝑛 : the state vector, 

𝐱̇ ∈ ℜ𝑛 : the derivation of the state vector 𝐱 to time 𝑡, 

𝐲 ∈ ℜ𝑝  : the output vector, and 

u∈ ℜ𝑚 : the control input. 

System matrix 𝐀(𝐱, 𝑡) = |
0 1

−1 −(𝑥1
2 − 1)

|. 

Input matrix 𝐁(𝑡) = |
0
1
|. 

Output matrix 𝐂(𝐱, 𝑡) = |1 0|. 

 

The dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 of the nonlinear system 

defined by Eq. (3.14) is given by 

  

 𝑔2 + (𝑥1
2 − 1)𝑔 + 1 = 0  (3.15) 

 

where 𝑔 is a differential operator, 
𝑑

𝑑𝑡
. The dynamic Routh’s array of this dynamic characteristic 

equation, Eq. (3.15), is, 

 

 𝑔2 1 1 

 𝑔1 (𝑥1
2 − 1) 0 

 𝑔0 1 0 
 

(3.16) 

 

Applying the dynamic Routh’s stability criterion to this dynamic Routh’s array Eq. (3.16) we 

can define the stability of the nonlinear dynamic system Eq. (3.11) as, 

 

(i) The nonlinear time-invariant dynamic system Eq. (3.11) is stable if and only if (𝑥1
2 −

1)  > 0, where 𝑥1 represents system state. Graphical presentation of the stability 

region is shown in Figure 3.7. The horizontal axis represents the time 𝑡 dependent 

system states 𝑥1, and the vertical axis represents (𝑥1
2 − 1). The nonlinear dynamic 
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system represented by Eq. (3.11) is stable for the values of 𝑥1, where |𝑥1| > 1, i.e., 

−1 > 𝑥1 > 1. 

 

(ii) A zero is present in the second row of the first column of the dynamic Routh’s array 

Eq. (3.16) if and only if  (𝑥1
2 − 1) = 0 or, |𝑥1| = 1. If |𝑥1| = 1, then the dynamic 

characteristic equation, Eq. (3.15), becomes 𝑔2 + 1 = 0 and the conjugate imaginary 

poles are located at 𝑔 = ±𝑗.  

 

(iv) If (𝑥1
2 − 1) < 0 or |𝑥1| < 1 then there are two sign changes in the elements of the 

first column of the dynamic Routh’s array Eq. (3.16), i.e., if |𝑥1| < 1 both conjugate 

dynamic poles located in the right-half side of the complex 𝑔 −plane. Besides, there 

are no sign changes on the first column of the dynamic Routh's array if (𝑥1
2 − 1) >

0. In other words, there are no dynamic poles located in the right-half side of the 

complex 𝑔 −plane for |𝑥1| > 1. 

 

 

 

Figure 3.7. Graphical representation of the stability region of the dynamic characteristic 

equation, 𝑔2 + (𝑥1
2 − 1)𝑔 + 1 = 0. 

 

Figure 3.8 shows the dynamic root locus of the nonlinear system Eq. (3.12). If |𝑥1| < 1, 

the system has a conjugate dynamic pole located on the right-half side of the complex 𝑔 −plane, 

i.e., in the unstable region. In other words, the system starts with a negative dynamic damping 
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ratio 𝜉(𝑡) < 0 and the negative damping will pump energy to the system resulting in an 

amplification of the motion. With the rise of time 𝑡 and system state 𝑥1 these conjugate dynamic 

poles will shift towards the imaginary axis. When |𝑥1| = 0, both dynamic poles are located on 

the imaginary axis and the system dynamic damping ratio 𝜉(𝑡) = 0. For the values of   |𝑥1| > 1, 

the conjugate dynamic poles move to the left-half side of the complex 𝑔 −plane, i.e., stable 

region. The dynamic damping ratio becomes positive in sign, i.e., 𝜉(𝑡) > 0 and energy is 

absorbed from the system resulting in a decreasing motion. 

 

 

 

Figure 3.8. Dynamic root locus of the dynamic characteristic equation, 𝑔2 + (𝑥1
2 − 1)𝑔 + 1 =

0. The third axis is representing the system state 𝑥1. 

 

Figure 3.9 shows a three-dimensional dynamic Bode plot of the nonlinear system, Eq. 

(3.11), graphically. Figure 3.10 gives a two-dimensional sketch of the magnitude and phase 

frequency response plot of the same nonlinear system expressed for the various values of the 

system state 𝑥1. For the values of 𝑥1 < 1, the phase frequency response plot starts from −3600 

and never reaches to -1800, and for 𝑥1 > 1, the system has a phase frequency response always 

higher than -1800. 
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(a) Three-dimensional magnitude frequency response plot. 

 

(b) Three-dimensional phase frequency response plot. 

 

Figure 3.9. Dynamic Bode plot, a three-dimensional bode plot of the nonlinear system 

 𝑥̈ + (𝑥2 − 1)𝑥̇ + 𝑥 = 𝑢(𝑡). The third axis represents the system state 𝑥1. 
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Figure 3.10. Magnitude and phase frequency response of the nonlinear system 

 𝑥̈ + (𝑥2 − 1)𝑥̇ + 𝑥 = 𝑢(𝑡) for the various values of the system state 𝑥1. 

 

From the state-space model of the nonlinear system Eq. (3.12), it can be shown that 

nonlinear system Eq. (3.11) has only one equilibrium point located at the origin (0,0). From Eq. 

(3.16), it is clear that the boundary condition for the stability of the same system is −1 > 𝑥1 > 1. 

The phase portrait analysis is a graphical method of studying second-order system dynamics [2]. 

It is divided into four quadrants, and each axis represents each state of the dynamic system.  The 

horizontal axis represents the position 𝑥1, and the vertical axis represents the velocity 𝑥2 (where 

𝑥2 = 𝑥1̇). −1 > 𝑥1 > 1 is the stability boundary of the nonlinear dynamic system Eq. (3.11), 

identified by using the dynamic Routh’s stability criterion, divides each of these four quadrants 

into two parts: stable and unstable region, as shown in the Figure 3.11(a). Phase portrait of the 

system is drawn for initial condition (0.5,1) is shown in Figure 3.11(b).  

 

As we mentioned in our earlier discussion, because of the state and time-dependent 

nonlinear damping term (𝑥1
2 − 1), the nonlinear system Eq. (3.11) exhibits time and state-
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dependent damping ratio 𝜉(𝑡) =
𝑥1

2−1

2
. Natural frequency 𝜔𝑛 = 1. This dynamic nature of 

damping ratio demonstrates a negative damping for |𝑥1| < 1 (𝜉(𝑡) < 0, i.e., dissipation of 

energy from the system resulting in a decaying motion), a zero damping for |𝑥1| = 1  (𝜉(𝑡) = 0, 

i.e., neither adding nor dissipation of energy), and a positive damping for |𝑥1| > 1  (𝜉(𝑡) > 0, 

i.e., energy is added to the system resulting in an amplification of motion). Thus, a perpetuation 

of periodic oscillation is expected at the steady-state motion of the system, creating a limit cycle 

to the phase portrait. 

 

Using the dynamic Routh’s stability criterion, it can also be shown that on the 1st 

quadrant (𝑥1: +𝑣𝑒, 𝑥2: +𝑣𝑒 ) of the phase portrait Fig 3.11(a), stability is defined by the region 

where 𝑥2̇ : − 𝑣𝑒 and 𝑥2̇: +𝑣𝑒 define the unstable region on the 1st quadrant. Similarly 𝑥2̇: +𝑣𝑒 

and 𝑥2̇ : − 𝑣𝑒 define the stable and unstable region respectively in the 3rd quadrant (𝑥1 : −

𝑣𝑒, 𝑥2 : − 𝑣𝑒 ) of the phase portrait. In the 4th quadrant (𝑥1: +𝑣𝑒, 𝑥2 : − 𝑣𝑒), a +𝑣𝑒 value of 𝑥2̇ 

shifts the system dynamics to the 1st quadrant and a −𝑣𝑒 value of 𝑥2̇ shifts the system dynamics 

to the 3rd quadrant. On the other hand, in the 2nd quadrant (𝑥1 : − 𝑣𝑒, 𝑥2: +𝑣𝑒) a +𝑣𝑒 values of 

𝑥2̇ shifts the system dynamics to the 1st quadrant and a −𝑣𝑒 values of 𝑥2̇ shifts the system 

dynamics to the 3rd quadrant. The value of 𝑥2̇ is calculated by using the state-space equations, 

Eq. (3.12), for various values of system states 𝑥1 and 𝑥2. 

 

 

(a) Graphical representation of the stability region on the phase plane. 
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(b) Phase portrait of the system, 𝑥̈ + (𝑥2 − 1)𝑥̇ + 𝑥 = 0 for an initial condition (0.5,1). 

 

Figure 3.11. The phase portrait of the nonlinear time-variant dynamic system, 

 𝑥̈ + (𝑥2 − 1)𝑥̇ + 𝑥 = 0. 

 

Figure 3.11(b) exposes the phase portrait plot of the nonlinear dynamic system Eq. 

(3.11). At the beginning of time and with the initial condition (𝑥1, 𝑥2) = (0.5,1), the system 

dynamics is located on the unstable region of the 1st quadrant (Figure 3.11(b)). 𝑥2̇ is +𝑣𝑒 in this 

unstable region, and it causes to rise system position 𝑥1 and velocity 𝑥2, simultaneously. This 

increasing values of 𝑥1 and 𝑥2 take the system dynamics to the stable region of the 1st quadrant 

where 𝑥1 > 1. Acceleration, 𝑥2̇ is −𝑣𝑒 in this stable region, and eventually, it induces 𝑥2 to 

decay but 𝑥1 to increase. System dynamics cross the horizontal axis at the point (𝑥1, 𝑥2) ≈

(1.26,0.0) with a −𝑣𝑒 acceleration, 𝑥2̇ ≈-1.26. A −𝑣𝑒 acceleration in the 4th quadrant constrain 

to shift the system dynamics to the unstable region of the 3rd quadrant. However, a −𝑣𝑒 

acceleration in the 3rd quadrant make the dynamic system unstable with a declining 𝑥1 and 𝑥2, 

synchronously. When position 𝑥1 becomes less than −1, i.e., 𝑥1 < −1, at that moment 𝑥2̇ 

becomes +𝑣𝑒 and system dynamics enter to the stable region of the 3rd quadrant, i.e., induce 𝑥2 

to rise but 𝑥1 to decrease. Eventually, system dynamics cross the horizontal axis from the 3rd 

quadrant to enter 2nd quadrant at (𝑥1, 𝑥2) ≈ (−1.90,0.0) with 𝑥2̇ ≈-1.90. This −𝑣𝑒 value of 𝑥2̇ in 

the 2nd quadrant retake the dynamics in the unstable region of the 1st quadrant. This process 

continues creating a steady state sustained periodic oscillations called a limit cycle. The 
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amplitude and frequency of a limit cycle depend on the position feedback 𝐾𝑝(𝑒, 𝑡) and velocity 

feedback 𝐾𝑣(𝑒, 𝑡) of the dynamic system. For various initial conditions with each position 

feedback 𝐾𝑝(𝑒, 𝑡) and velocity feedback 𝐾𝑣(𝑒, 𝑡), there exists only one unique limit on the phase 

portrait.  

  

  

(a) Phase portrait for various values of 

𝐾𝑝. 𝐾𝑝 = 1, 𝐾𝑝 = 2, 𝐾𝑝 = 3. 

(b) Time response for various values 

of 𝐾𝑝. 𝐾𝑝 = 1,𝐾𝑝 = 2,𝐾𝑝 = 3. 

 

Figure 3.12. Effect of changing the values of 𝐾𝑝 of the oscillatory dynamic system  

𝑥̈ + (𝑥2 − 𝛼)𝑥̇ + 𝐾𝑝𝑥 = 0 with an initial condition (𝑥1, 𝑥2) = (0.5,1).  

𝛼 is kept constant 𝛼 = 1. 

 

  
(a) Phase portrait for various values of . 

𝛼 = 1, 𝛼 = 1.5, 𝛼 = 2. 

(b) Time response for various values of 𝛼. 

 𝛼 = 1, 𝛼 = 1.5, 𝛼 = 2. 

 

Figure 3.13. Effect of changing the values of 𝛼 of the oscillatory dynamic system  

𝑥̈ + (𝑥2 − 𝛼)𝑥̇ + 𝐾𝑝𝑥 = 0 with an initial condition (𝑥1, 𝑥2) = (0.5,1). 
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 𝐾𝑝 is kept constant, 𝐾𝑝 = 1. 

 

From the above interpretation of the phase portrait of the nonlinear system Eq. (3.11) 

applying the dynamic Routh’s stability criterion, it is interesting to note that this nonlinear 

differential system can be designed as an oscillator of various amplitude and frequency by 

comprehending a variable position and variable velocity feedback parameters 𝐾𝑝 and 𝛼, 

respectively.  For example, the overall system dynamics of an oscillator is given by 

 

 𝑥̈ + (𝑥2 − 𝛼)𝑥̇ + 𝐾𝑝𝑥 = 0  (3.17) 

 

where 𝐾𝑝 and 𝛼 both are positive numbers, and they control the frequency and the amplitude of 

oscillation, respectively. Figure 3.12 and 3.13 illustrate the effect of changing 𝐾𝑝 and 𝛼 with an 

initial condition (𝑥1, 𝑥2) = (0.5,1). According to dynamic Routh’s stability criterion, 𝐾𝑝 does 

not affect the stability of this particular example. The stability only depends on the value of 𝛼. 

For example, the stability of the nonlinear dynamic system Eq. (3.17) is guaranteed for various 

values of variable velocity feedback parameters 𝛼 = 1, 𝛼 = 1.5, and 𝛼 = 2 if and only if |𝑥1| >

1, |𝑥1| > √1.5, and |𝑥1| > √2, respectively.  

 

Example 3.3: 

 

Consider a second-order nonlinear system with a nonlinear spring, 

 

 𝑥̈ + 0.6𝑥̇ + (3 + 𝑥)𝑥 = 0 (3.18) 

 

The state-space model of this nonlinear dynamic system is, 

 

 𝑥1̇ = 𝑥2 
(3.19) 

 𝑥2̇ = −(3 + 𝑥1) − 0.6𝑥2 
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where  𝑥1 and 𝑥2 are states of the dynamic system. The system matrix 𝐀(𝐱, 𝑡) of this state-space 

model is given by 

 

 
𝐴 = [

0 1
−(3 + 𝑥1) −0.6

] 
(3.20) 

 

The dynamic characteristic equation 𝐝𝐞𝐥(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 of the Eq. (3.18) is, 

 

 𝑔2 + 0.6𝑔 + (3 + 𝑥1) = 0 (3.21) 

 

where 𝑔 is a differential operator, 
𝑑

𝑑𝑡
. The dynamic Routh’s array of the dynamic characteristic 

equation, Eq. (3.21), is, 

 

 𝑔2 1 (3 + 𝑥1) 

 𝑔1 0.6 0 

 𝑔0 (3 + 𝑥1) 0 
 

(3.22) 

 

 Applying the dynamic Routh’s stability criterion to this dynamic Routh’s array, we can 

finalize some conclusive deduction. For 𝑥1 < −3, the second-order nonlinear system Eq. (3.18) 

has one of its conjugate dynamic poles located on the right-hand side of the complex 𝑔 −plane 

and another is located on the left-hand side. With the increased value of the system state 𝑥1, both 

dynamic poles move towards each other. When 𝑥1 = −3, one of the dynamic pole is located on 

the origin (0,0). Both conjugate poles are located on the left-hand side of the complex 𝑔 −plane 

if 𝑥1 > −3.  If the system state 𝑥1 is increased still further, then both dynamic poles keep 

traveling to infinity after creating a breakaway point at (−0.3,0). Figure 3.14 shows a three-

dimensional plot of the dynamic root locus in the complex 𝑔 −plane varying the system states 

𝑥1. A two-dimensional graphical representation of the same plot is shown in Figure 3.15. The 

third axis represents the system state 𝑥1. 
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Figure 3.14. A three-dimensional sketch of the dynamic root locus of the characteristic equation 

𝑔2 + 0.6𝑔 + (3 + 𝑥1) = 0. The third axis represents the system state 𝑥1. The left-half side 

(LHS) is a stable region, and the right-half side (RHS) is an unstable region. 

 

 

 

Figure 3.15. A two-dimensional projection of the three-dimensional dynamic root locus of the 

characteristic equation, 𝑔2 + 0.6𝑔 + (3 + 𝑥1) = 0. The horizontal axis is the real axis, the 
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vertical axis is the imaginary axis, and the third axis represents system state 𝑥1. The left-half side 

(LHS) is the stable region, and the right-half side (RHS) is an unstable region.  

 

Example 3.4:   

 

Sometimes more than one parameter may affect the behavior of the dynamic poles in the 

design problems [5].  The dynamic root locus technique can also investigate such realism. If 

more than one parameter (one at a time keeping other parameters constant) is varied from a zero 

to infinity, respectively, the corresponding dynamic root locus is called dynamic root contour.  

Consider the state-space representation of a second-order nonlinear system, 

 𝑥1̇ = 𝜇𝑥1
2𝑥2 − 𝑥2sin 𝑥1 

(3.23) 
 𝑥2̇ = −𝑥1 − 𝜇𝑥1

2𝑥2 + 𝑥2 

and the output is, 

 𝑦 = 𝑥1 

 

where 𝑥1 and 𝑥2 are system states and 𝜇 is a positively valued gain parameter.  

 

 

 

Figure 3.16. The block diagram representation of the second-order nonlinear system, 

𝑥1̇ = 𝜇𝑥1
2𝑥2 − 𝑥2𝑠𝑖𝑛𝑥1, 𝑥2̇ = −𝑥1 − 𝜇𝑥1

2𝑥2 + 𝑥2. 

 

The block diagram illustration of the nonlinear dynamic system Eq. (3.23) is shown in 

Figure 3.16. The system characteristics are involved to two variable parameters, the system state 

𝑥1, and the gain parameter 𝜇. For some known values of 𝜇, the effects on the dynamic poles can 
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be studied from the dynamic characteristic equation of the system. The dynamic characteristic 

equation, 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0, is given by 

 

 𝑔2 + (𝜇𝑥1
2 − 1)𝑔 + (𝜇𝑥1

2 − 𝑠𝑖𝑛𝑥1) = 0  (3.24) 

 

where 𝑔 is a differential operator, 
𝑑

𝑑𝑡
. The dynamic Routh’s array is, 

 

 𝑔2 1 𝜇𝑥1
2 − 𝑠𝑖𝑛𝑥1 

 𝑔1 𝜇𝑥1
2 − 1 0 

 𝑔0 𝜇𝑥1
2 − 𝑠𝑖𝑛𝑥1 0 

 

(3.25) 

 

Applying the dynamic Routh’s stability criterion and from the first column of the dynamic 

Routh’s array, we can conclude that the nonlinear second-order system Eq. (3.23) is stable, 

if 𝜇𝑥1
2 − 𝑠𝑖𝑛𝑥1 and 𝜇𝑥1

2 − 1, both are positive definite at any condition. However, since 𝑠𝑖𝑛𝑥1 ≤

1, so the stability is guaranteed if and only if 𝜇𝑥1
2 > 1. A similar result of stability requirement 

can be achieved from a dynamic root contour plot of the same nonlinear system. 

 

The roots of the dynamic characteristic equation, Eq. (3.24), is, 

 

 
𝑔1,2 = −

𝜇𝑥1
2 − 1

2
±

1

2
√(𝜇2𝑥1

4 + 4 sin 𝑥1 + 1) − 6𝜇𝑥1
2  (3.26) 

 

The location of the dynamic conjugate poles 𝑔1,2 is on either the right-hand side or left-hand side 

of the complex 𝑔 −plane depending on the real part of Eq. (3.26), −
𝜇𝑥1

2−1

2
. If 𝜇𝑥1

2 − 1 is −𝑣𝑒, 

then both dynamic conjugate poles are located on the right-hand side of the complex 𝑔 −plane, 

i.e., unstable region. On the other hand, if 𝜇𝑥1
2 − 1 is +𝑣𝑒 then both dynamic conjugate poles are 

on the left-hand side of the complex 𝑔 −plane and system is stable. Both dynamic conjugate 

poles are located on the imaginary axis if 𝜇𝑥1
2 − 1 = 0.  
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The dynamic root contour of the nonlinear dynamic system Eq. (3.23) can be constructed 

from the dynamic characteristic equation, Eq. (3.24), by following the general procedure for 

creating dynamic root locus; varying 𝑥1 and 𝜇, respectively, from a zero to infinity. One of the 

parameters, e.g., 𝜇 is kept in constant value at a time and another parameter, e.g., 𝑥1 is varied 

from a zero to infinity, and dynamic root locus is sketched. Next, the value of the first parameter, 

i.e., 𝜇 is varied while another parameter, i.e., 𝑥1 is kept constant and sketching the dynamic root 

locus is repeated. Figure 3.17 and 3.18 presents the dynamic root contours of the dynamic 

characteristic equation, Eq. (3.24), for three different values of 𝜇 (𝜇 = 1, 𝜇 = 2, 𝜇 = 3). Figure 

3.17 shows a two-dimensional plot and Figure 3.18 shows a three-dimensional plot. The dynamic 

root contours start from the initial poles (𝑔1 = 0,𝑔2 = 1) and terminate at the zeros. The dotted 

arrowheads on the dynamic root contours plot show the direction of increase of the value of 

system state 𝑥1. 

 

 

 

Figure 3.17. A two-dimensional plot of the dynamic root contour of the dynamic characteristic 

equation 𝑔2 + (𝜇𝑥1
2 − 1)𝑔 + (𝜇𝑥1

2 − 𝑠𝑖𝑛𝑥1) = 0 for three different values of 𝜇: 𝜇 = 1, 𝜇 =

2, 𝜇 = 3. The horizontal axis represents the real axis, the vertical axis represents the imaginary 

axis, and the third axis represents the system state 𝑥1. 
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Figure 3.18. A three-dimensional sketch of dynamic root contour plot of the characteristic 

equation 𝑔2 + (𝜇𝑥1
2 − 1)𝑔 + (𝜇𝑥1

2 − 𝑠𝑖𝑛𝑥1) = 0 for three different values of 𝜇: 𝜇 = 1, 𝜇 =

2, 𝜇 = 3. The third axis represents the system state 𝑥1. 

 

The dynamic natural frequency 𝜔𝑛(𝑡) and dynamic damping ratio 𝜉(𝑡) of the second-

order nonlinear system Eq. (3.23) is, 

 𝜔𝑛
2(𝑡)  = 𝑘𝑝(𝑒, 𝑡) = 𝜇𝑥1

2 − sin 𝑥1  

(3.27)  
𝜉(𝑡) = 𝑘𝑣(𝑒, 𝑡) =

𝜇𝑥1
2 − 1

2√𝜇𝑥1
2 − sin 𝑥1

 
 

 

where 𝑘𝑝(𝑒, 𝑡) and 𝑘𝑣(𝑒, 𝑡) are the time 𝑡 dependent position and velocity feedback, 

respectively. Both natural frequency 𝜔𝑛(𝑡) and the damping ratio 𝜉(𝑡) are a function of 𝜇 and 

system state 𝑥1 explicitly, while time 𝑡 implicitly. Because of the dynamic nature of the natural 

frequency 𝜔𝑛(𝑡) and the damping ratio 𝜉(𝑡) of the second-order nonlinear system and their 

dependency on the sinusoidal function sin 𝑥1, both dynamic poles 𝑔1 and 𝑔2 oscillates on the 

real axis for small values of 𝑥1, i.e., 𝑥1 ≪ 1. An increased value of 𝑥1 will eventually cause both 

dynamic conjugate poles 𝑔1, and 𝑔2 to shift on the left-hand side of the complex 𝑔 −plane and 

confirms the stability of the system. 
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Example 3.5:  

 

Consider a second-order nonlinear system is represented by the state-space equations, 

 

 𝑥1̇ = 𝑥2 − 𝑎𝑥1(𝑥1
2 + 𝑥2

2)  
(3.28) 

 𝑥2̇ = −𝑥1 − 𝑎𝑥2(𝑥1
2 + 𝑥2

2)  

 

where 𝑎 is a positive real number. The system matrix 𝐀(𝐱, 𝑡) of this nonlinear system Eq. (3.28) 

is, 

 

 
𝐀(𝐱, 𝑡)  = |

−𝑎𝑥1
2 1 − 𝑎𝑥1𝑥2

−1 − 𝑎𝑥1𝑥2 −𝑎𝑥2
2 | (3.29) 

 

The dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡) ) = 0 is, 

 

 𝑔2 + 𝑎(𝑥1
2 + 𝑥2

2)𝑔 + 1 = 0 (3.30) 

 

where 𝑔 is a differential operator, 
𝑑

𝑑𝑡
. The dynamic Routh’s array of this dynamic characteristic 

equation, Eq. (3.30), is, 

 

 𝑔2 1 1 

 𝑔1 𝑎(𝑥1
2 + 𝑥2

2) 0 

 𝑔0 1 0 
 

(3.31) 

 

 According to the dynamic Routh’s stability criterion, nonlinear system Eq. (3.28) is 

stable if and only if, the first column of the dynamic Routh’s array, Eq. (3.31), has no sign 

change, i.e.,  𝑎(𝑥1
2 + 𝑥2

2) should be positive definite for any values of 𝑥1 and 𝑥2. As 𝑎 is a 

positive real number, 𝑎(𝑥1
2 + 𝑥2

2) is also always positive definite, because it is a summation of 

two real numbers. So, we can conclude that according to the dynamic Routh’s stability criterion 
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nonlinear system Eq. (3.28) is always stable, i.e., system dynamic will always converge to 

equilibrium for any initial condition of 𝑥1 and 𝑥2. A similar result can be obtained by using 

Lyapunov’s stability method. 

 

Example 3.6:   

 

The dynamic Routh’s stability criterion is also applicable to the time-varying dynamic 

system. Consider a first-order linear time-varying dynamic system, 

 

 𝑥1̇ = (4𝑡 sin 𝑡 − 2𝑡)𝑥1 (3.32) 

 

 It can be shown very quickly using the dynamic Routh’s stability criterion that time-

varying linear system Eq. (3.32) is stable if and only if (4𝑡 sin 𝑡 − 2𝑡) is negative definite at any 

condition. Figure 3.19 illustrates the dynamic root locus of the same time-varying system. The 

existence of time 𝑡 dependent sinusoidal term, sin 𝑡, in Eq. (3.32) makes the system dynamic 

pole to oscillate over the real axis from a stable region to an unstable region and vice versa, with 

an increase of time 𝑡. When 𝑡 = 0s, the dynamic pole is located at the origin (0,0). With the 

increase of time 𝑡, the dynamic pole moves to the left-hand side of the complex 𝑔 −plane and 

stays on the left-half side of the 𝑔 −plane till 𝑡 ≈ 0.53s. When 𝑡 > 0.53s, dynamic pole moves 

to the right-hand side of the complex 𝑔 −plane again and stays in the right-half side of the 

𝑔 −plane till 𝑡 ≈ 2.62s. For 𝑡 > 2.62s, the dynamic pole again moves to the left-half side of the 

complex 𝑔 −plane and so on.  
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Figure 3.19. The dynamic Root locus of the first-order time-varying dynamic system  

𝑥1̇ = (4𝑡 sin 𝑡 − 2𝑡)𝑥1. The third axis is representing time 𝑡. 

 

From our knowledge of the study of the linear dynamic system that the transient response 

of a dynamic system can be described by examining the location of poles, and farther the pole is 

located from the imaginary axis, the faster the transient system response [4, 5]. As in this 

particular time-varying dynamic system example, the pole itself is dynamic and each time 

interval pole moves far from the imaginary axis than before. So the dynamic transient response 

of each time interval is faster than the previous time interval. 
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Figure 3.20. The stable and unstable region of the time-varying linear system 𝑥1̇ = (4𝑡 sin 𝑡 −

2𝑡)𝑥1. A positive value of (4𝑡 sin 𝑡 − 2𝑡) defines the stability, and a negative value of 

(4𝑡 sin 𝑡 − 2𝑡) defines the instability situation. 

 

Figure 3.20 shows the stability region of the first-order linear time-varying dynamic 

system Eq. (3.32). According to the dynamic Routh’s stability criterion, the stable region is 

defined for the values of 𝑡 so that (4𝑡 sin 𝑡 − 2𝑡) is negative definite, and the unstable region is 

defined for the values of 𝑡 so that  (4𝑡 sin 𝑡 − 2𝑡) is positive definite. For instance, first-order 

linear time-varying dynamic system Eq. (3.32) is stable between the time span 0𝑠 < 𝑡 < 0.52𝑠, 

and unstable between the time span 0.53𝑠 < 𝑡 < 2.62𝑠. It becomes stable again between 

2.63𝑠 < 𝑡 < 6.80𝑠, and unstable between 6.81𝑠 < 𝑡 < 8.90𝑠 and so on.  

 

 

 

Figure 3.21. System response for the initial condition 𝑥1 = 1 of the first-order time-varying 

linear system 𝑥1̇ = (4𝑡 sin 𝑡 − 2𝑡)𝑥1. The response has two unstable peaks between 0.53𝑠 < 𝑡 <

2.62𝑠 and  6.81𝑠 < 𝑡 < 8.90𝑠. 

 

Figure 3.21 shows the first-order time-varying linear system response for the initial 

condition 𝑥1 = 1. According to the stability region illustrated in Figure 3.20, the system dynamic 

pole oscillates between the unstable right-hand side and stable left-hand side on the real 

horizontal axis of the complex 𝑔 −plane. For a 10s simulation time span, dynamic pole stays on 
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the right-hand side of the complex 𝑔 −plane between 0.53𝑠 < 𝑡 < 2.62𝑠 and 6.81𝑠 < 𝑡 <

8.90𝑠. Similarly, we can see two unstable peaks between the time range  0.53𝑠 < 𝑡 < 2.62𝑠 and 

6.81𝑠 < 𝑡 < 8.90𝑠 in Figure 3.21. Each of this unstable peak is higher in magnitude than the 

preceding peak, as dynamic pole moves far from the imaginary axis of the complex 𝑔 −plane as 

time 𝑡 increases.  

 

 

3.3 Development of the dynamic Nyquist Stability Criterion 

 

 In this section, the dynamic Nyquist stability criterion is developed for relative stability 

analysis of a nonlinear dynamic system in the frequency domain. The interrelationships between 

the dynamic Root Locus, dynamic Nyquist and Bode plots for a nonlinear dynamic system is 

also discussed. 

 

 Recalling the dynamic characteristic equation, Eq. (2.16), 

 

 
1 + 𝐾(𝐱, 𝑡)

(𝑔 + 𝑧1(𝐱, 𝑡))(𝑔 + 𝑧2(𝐱, 𝑡))⋯ (𝑔 + 𝑧𝑚(𝐱, 𝑡))

(𝑔 + 𝑝1(𝐱, 𝑡))(𝑔 + 𝑝1(𝐱, 𝑡))⋯ (𝑔 + 𝑝𝑛(𝐱, 𝑡))
= 0 (3.33) 

 

(𝑔 + 𝑝𝑖(𝐱, 𝑡)), 𝑖 = 1,2, … . , 𝑛, gives the locations of dynamic poles in the complex 𝑔 −plane and 

(𝑔 + 𝑧𝑘(𝐱, 𝑡)), 𝑘 = 0,1,2,… ,𝑚, gives the locations of dynamic zeros. 𝐾(𝐱, 𝑡) is the system state 

𝐱 and time 𝑡 dependent dynamic gain and determines the path of dynamic roots in the complex 

𝑔 −plane. 

 

Equation (3.33) can also be written as 

 

 1 + 𝐋(𝑔) = 0 (3.34) 

 

with 

 
𝐋(𝑔) = 𝐾(𝐱, 𝑡)

(𝑔 + 𝑧1(𝐱, 𝑡))(𝑔 + 𝑧2(𝐱, 𝑡))⋯ (𝑔 + 𝑧𝑚(𝐱, 𝑡))

(𝑔 + 𝑝1(𝐱, 𝑡))(𝑔 + 𝑝1(𝐱, 𝑡))⋯ (𝑔 + 𝑝𝑛(𝐱, 𝑡))
 (3.35) 
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𝑔 ≜ 𝑗𝜔 and 𝜔 is in rad/s. The function 𝐋(𝑔) can be written 

 

 𝐋(𝑔) = |𝐋(𝑔)|∠𝐋(𝑔)  

  
= 𝐾(𝐱, 𝑡)

|(𝑔 + 𝑧1(𝐱, 𝑡))|⋯ |(𝑔 + 𝑧𝑚(𝐱, 𝑡))|

|(𝑔 + 𝑝1(𝐱, 𝑡))|⋯ |(𝑔 + 𝑝𝑛(𝐱, 𝑡))|
(∠(𝑔 + 𝑧1(𝐱, 𝑡)) + ⋯

+ ∠(𝑔 + 𝑧𝑚(𝐱, 𝑡)) − ∠(𝑔 + 𝑝1(𝐱, 𝑡))⋯

− ∠(𝑔 + 𝑝𝑛(𝐱, 𝑡))) 

(3.36) 

 

 The dynamic poles and dynamic zeros of 𝐋(𝑔) are (assumed that 𝐋(𝑔) has four dynamic 

poles and a dynamic zero) shown in Figure 3.22(a).  

 

 

(a) 

 

 

(b) 
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Figure 3.22: (a) Dynamic pole-zero configuration of 𝐋(𝑔) and an arbitrary 𝑔 −plane trajectory 

ɼ𝑔 . (b) 𝐋(𝑔) −plane locus, ɼ, which corresponds to the ɼ𝑔  locus of (a) through one to one 

mapping. 

 

Figure 3.22(a) shows an arbitrarily chosen trajectory ɼ𝑔  in 𝑔 −plane with an arbitrary point 𝑔1 on 

the path. The dynamic poles of  𝐋(𝑔) correspond to a negative phase angle, and the dynamic 

zeros correspond to a positive phase angles in the Eq. 3.36.  

  

 If 𝑁 is the number of encirclement of the origin made by the 𝐋(𝑔) −plane locus ɼ, 𝑍 is 

the number of dynamic zeros of 𝐋(𝑔) encircled by the 𝑔 −plane locus ɼ𝑔  in the 𝑔 −plane, and 𝑃 

is the number of dynamic pols of the 𝐋(𝑔) encirclement by the 𝑔 −plane locus ɼ𝑔  in the 

𝑔 −plane, then according to the principle of the argument,  

 

 𝑁 = 𝑍 − 𝑃 (3.37) 

 

If 𝑍 > 𝑃 then 𝑁 is positive (𝐋(𝑔) −plane locus will encircle the origin of the 𝐋(𝑔) −plane 𝑁 

times in the same direction as that of ɼ𝑔). If 𝑍 = 𝑃 then 𝑁 is zero (there is no encirclement to the 

origin of the 𝐋(𝑔) −plane). If 𝑍 < 𝑃 then 𝑁 is negative ((𝐋(𝑔) −plane locus will encircle the 

origin of the 𝐋(𝑔) −plane 𝑁 times in the opposite direction as that of ɼ𝑔).  

  

 If there are 𝑁 more dynamic zeros than dynamic poles of 𝐋(𝑔), encircled by the 𝑔-plane 

locus ɼ𝑔  in a prescribed direction, the net angle traveled by the 𝐋(𝑔) −plane locus as the 𝑔-plane 

locus is equal to 

 

 2𝜋(𝑍 − 𝑃) = 2𝜋𝑁 (3.38) 

 

If 𝑔 −plane locus ɼ𝑔  is a Nyquist path in counterclockwise direction, then the stability of a 

nonlinear dynamic system can be determined by plotting the 𝐋(𝑔) locus for each value of the 

dynamic gain K(𝐱, 𝑡), when 𝑔 takes the values along the Nyquist path, and investing the behavior 
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of the 𝐋(𝑔) plot with respect to the (−1, 𝑗0) point of the 𝐋(𝑔) −plane. It is called the dynamic 

Nyquist plot of 𝐋(𝑔). 

 

 Dynamic Nyquist stability criterion is stated by 

 

 For a nonlinear dynamic system to be stable, the dynamic Nyquist plot of 𝐋(𝑔) must be 

 encircled the (−1, 𝑗0) point in 𝐋(𝑔) −plane as many times as the number of dynamic 

 poles of 𝐋(𝑔) that are in the right half of the 𝑔 −plane, and the encirclement, if any, must 

 be made in the clockwise direction.  

 

 Dynamic gain margin: The dynamic gain margin is a measure of the closeness of the 

dynamic phase-crossover point 𝜔𝑐(𝑡) to the (−1, 𝑗0) point in the  𝐋(𝑗𝜔) −plane, and is given by 

  

 Dynamic gain margin = 20 log10
1

|𝐋(𝑗𝜔𝑐(𝑡))|
 dB (3.39) 

 

 Dynamic phase margin: The dynamic phase margin is the angle in the degree through 

which the 𝐋(𝑗𝜔) plot must be rotated about the origin so that the dynamic gain-crossover point 

𝜔𝑔(𝑡) on the 𝐋(𝑗𝜔) locus passes through (−1, 𝑗0) point in the  𝐋(𝑗𝜔) −plane, and is given by 

 

 Dynamic phase margin = ∠𝐋(𝑗𝜔𝑔(𝑡)) − 1800 (3.40) 

 

The concept is further illustrated by using the following example. 

 

Example 3.7 

 

 Consider a third-order dynamic system with a nonlinear spring (6 + 𝑥) is, 

 

 𝑥 + 6𝑥̈ + 11𝑥̇ + (6 + 𝑥)𝑥 = 𝑢(𝑡) (3.41) 

 

The state-space model of this system is, 
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 𝑥1̇ = 𝑥2 

(3.42) 

 𝑥2̇ = 𝑥3 

 𝑥3̇ = −(6 + 𝑥1)𝑥1 − 11𝑥2 − 6𝑥3 

and the output is, 

 𝑦 = 𝑥1 

 

The System matrix 𝐀(𝐱, 𝑡) = |
0 1 0
0 0 1

−(6 + 𝑥1) −11 −6
|, the input matrix 𝐁(𝑡) = |

0
0
1
|, and the 

output matrix 𝐂(𝐱, 𝑡) = |1 0 0|. 

 

The input-output relation regarding 𝑔 −transfer function is, 

 

 
𝑦(𝑡) =

𝑢(𝑡)

𝑔3 + 6𝑔2 + 11𝑔 + (6 + 𝑥1)
 (3.43) 

 

The dynamic characteristic equation is defined as 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0, and given by 

 

 𝑔3 + 6𝑔2 + 11𝑔 + (6 + 𝑥1) = 0 (3.44) 

 

 

 The roots of this dynamic characteristic equation, Eq. (3.44), are a function of the system 

state 𝑥1. Rearranging Eq. (3.44), 

 

 1 +
𝑥1

(𝑔 + 1)(𝑔 + 2)(𝑔 + 3)
= 0 (3.45) 

 

The locations of the dynamic poles in the complex 𝑔 −plane are a function of the system state 

𝑥1. A three-dimensional dynamic root locus in the complex 𝑔 −plane is given in Figure 3.23, and 

a two-dimensional projection of Figure 3.23 is shown in Figure 3.24. For 𝑥1 = 0, the dynamic 

poles are located at −3, −2, and −1. With an increased value of 𝑥1, a dynamic pole moves to the 
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left of the 𝑗𝜔 −axis, and the conjugate dynamic poles move towards each other creating a break-

away point at −1.4 on the 𝜎(𝑡) −axis and then move towards the 𝑗𝜔(𝑡) −axis, as indicated by 

the arrowheads in Figures 3.23 and 3.24. For 𝑥1 < 60, all the dynamic poles are located on the 

left-hand side of the 𝑔 −plane. When 𝑥1 = 60, the conjugate dynamic poles are on the 

𝑗𝜔(𝑡) −axis. If 𝑥1 is increased still further, the conjugate dynamic poles are kept on the right-

hand side of the complex 𝑔 −plane.  

 

 Applying the dynamic Routh’s stability criterion discussed in Section 3.1, the stability of 

the nonlinear system, Eq. (3.42), can be examined for the various values of state 𝑥1 in a time 

domain. For instance, the nonlinear system is stable for 𝑥1 < 60, have oscillatory dynamic 

conjugate poles on the 𝑗𝜔(𝑡) −axis for 𝑥1 = 60 and have unstable dynamic conjugate poles on 

the right-hand side of the 𝑗𝜔(𝑡) −axis for 𝑥1 > 60.  

 

 

 

Figure 3.23:  A three-dimensional dynamic root locus of the nonlinear system  

𝑥 + 6𝑥̈ + 11𝑥̇ + (6 + 𝑥)𝑥 = 𝑢(𝑡). The dynamic poles are on the left-hand side of the complex 

𝑔 −plane for 𝑥1 < 60. For 𝑥1 = 60, the dynamic conjugate poles are on the 𝑗𝜔(𝑡) −axis. The 

dynamic conjugate poles are on the right-hand side of the complex 𝑔 −plane for 𝑥1 > 60. 
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Figure 3.24: A two-dimensional projection of the three-dimensional dynamic root locus Figure 

3.23. The location of the dynamic poles changes with the increased value of 𝑥1. For instance, (a) 

for 𝑥1 = 25, poles are at −5.03 and −4.08 ± 𝑗2.43, (b) for 𝑥1 = 60, poles are at −6.0, and 

±𝑗3.31, (c) for 𝑥1 = 100, poles are at −6.7, and 0.35 ± 𝑗3.95. 

 

 The relative stability of the nonlinear system in the frequency domain can be measured 

by means of the dynamic Nyquist plot. The closeness of the dynamic Nyquist plot in the 

dynamic polar coordinates to the (−1, 𝑗0) point, indicates how stable or unstable the nonlinear 

system is.  

 

From Eq. (3.45), the function 𝐋(𝑔) of the nonlinear system Eq. 3.42 can be written as 

 

 𝐋(𝑔) =
𝑥1

(𝑔 + 1)(𝑔 + 2)(𝑔 + 3)
  

  =
𝑥1

𝑔3 + 6𝑔2 + 11𝑔 + 6
 (3.46) 

 

Putting 𝑔 = 𝑗𝜔, we have 

 



69 
 

 𝐋(𝑔) =
𝑥1

(𝑗𝜔)3 + 6(𝑗𝜔)2 + 11𝑗𝜔 + 6
  

  =
𝑥1

(6 − 6𝜔2) + 𝑗(11𝜔 − 𝜔3)
 (3.47) 

 

Multiplying the numerator and the denominator with (6 − 6𝜔2) − 𝑗(11𝜔 − 𝜔3), 

 

 
𝐋(𝑔) =

𝑥1{(6 − 6𝜔2) − 𝑗(11𝜔 − 𝜔3)}

(6 − 6𝜔2)2 + (11𝜔 − 𝜔3)2
 (3.48) 

 

From Eq. (3.48), the dynamic Nyquist plot crosses the real axis of 𝐋(𝑔) −plane when 

 

 −𝑥1(11𝜔 − 𝜔3)}

(6 − 6𝜔2)2 + (11𝜔 − 𝜔3)2
= 0 (3.49) 

 

Solving Eq. (3.49), the dynamic Nyquist plot crosses the real axis of the 𝐋(𝑔) −plane when 𝜔 =

0 rad/s and 𝜔 = ±3.31 rad/s. 

 

From Eq. (3.48), the dynamic Nyquist plot crosses the imaginary axis of 𝐋(𝑔) −plane when 

 

 𝑥1(6 − 6𝜔2)

(6 − 6𝜔2)2 + (11𝜔 − 𝜔3)2
= 0 (3.50) 

 

Solving Eq. (3.50), the dynamic Nyquist plot crosses the imaginary axis of the 𝐋(𝑔) −plane 

when 𝜔 = ±1.0 rad/s. 

 

 The correspondent dynamic Nyquist plot, step responses, and dynamic magnitude 

frequency and phase frequency responses to the dynamic root locus, Figures 3.23 and 3.24, for 

three different values of system state 𝑥1 = 25, 𝑥1 = 60, and 𝑥1 = 100, are shown in Figures 

3.25, 3.26, 3.27, 3.28, and 3.29, respectively.  
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 For 𝑥1 = 25, the dynamic Nyquist plot intersects the real axis (i.e., dynamic phase 

crossover point, 𝜔𝑐(𝑡)) at a point quite far away from (−1, 𝑗0) point, and all the dynamic poles 

are on the left-hand side of the complex 𝑔 −plane (as shown in Figures 3.23 and 3.24, for 𝑥1 =

25), and an equilibrium condition on the response is achieved (as shown in the step response in 

Figure 3.27, for 𝑥1 = 25). As 𝑥1 is increased, the dynamic phase crossover point 𝜔𝑐(𝑡) moves 

closer to (−1, 𝑗0) point. For 𝑥1 = 60, the nonlinear system has conjugate dynamic poles on the 

𝑗𝜔 −axis, and the dynamic Nyquist plot intersects the (−1, 𝑗0) point, and the system response 

has a constant amplitude oscillation in the step response (as shown in the step response in Figure 

3.27, for 𝑥1 = 60). If 𝑥1 is increased still further, for instance, 𝑥1 = 100, the dynamic conjugate 

poles move to the right-hand side of the 𝑔 −plane, and the dynamic Nyquist plot encloses the 

(−1, 𝑗0) point. The nonlinear dynamic system becomes unstable in this case with an unbounded 

response (as shown in the step response in Figure 3.27, for 𝑥1 = 100), and the nonlinear system 

has a negative gain margin and a negative phase margin (as shown in The dynamic magnitude 

and phase frequency response in Figure 3.28 and 3.29, for 𝑥1 = 100).  

 

 

 

Figure 3.25: The dynamic Nyquist plot of the system defined by Eq. (3.42) for three different 

values of the system state, (a) 𝑥1 = 25, (b) 𝑥1 = 60 and (c) 𝑥1 = 100. The dotted arrowhead 

indicates the direction of the increased value of system state 𝑥1. 
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Figure 3.26: A magnified sketch of the dynamic Nyquist plot, Figure 3.25, for three different 

values of system state (a) 𝑥1 = 25, (b) 𝑥1 = 60 and (c) 𝑥1 = 100. 
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Figure 3.27: The step response of the nonlinear system defined by Eq. (3.42) at three different 

values of the system state, (a) 𝑥1 = 25, (b) 𝑥1 = 60 and (c) 𝑥1 = 100. 

 

 

 

Figure 3.28: The dynamic magnitude and phase frequency response of the nonlinear system 

defined by Eq. (3.42) for three different values of the system state, (a) 𝑥1 = 25, (b) 𝑥1 = 60 and 

(c) 𝑥1 = 100. 
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Figure 3.29: A magnified sketch of The dynamic magnitude and phase frequency response, 

Figure 3.28, for three different values of the system state, (a) 𝑥1 = 25, (b) 𝑥1 = 60 and (c) 𝑥1 =

100, to show the dynamic gain margin and dynamic phase margin. 

 

 Figure 3.28 plots the dynamic magnitude and phase frequency response of the nonlinear 

system defined by Eq. (3.42) for three different values of the system state, (a) 𝑥1 = 25, (b) 𝑥1 =

60 and (c) 𝑥1 = 100. A magnified sketch of the same plot is given in Figure 3.29. The phase 

crossover frequency is the same for the phase frequency response plot of all three values of the 

state 𝑥1 and is 𝜔𝑐(𝑡) = 3.3 rad/s. The magnitude of 𝐋(𝑗𝜔) at this frequency is about −7.56dB 

for 𝑥1 = 25, 0dB for 𝑥1 = 60, and 4.5dB for 𝑥1 = 100. It means that for 𝑥1 = 25, if the 

dynamic gain of the system is increased by 7.5dB, then the magnitude curve will cross the 0dB 

axis at the phase crossover frequency 𝜔𝑐(𝑡) = 3.3 rad/s. Therefore the gain margin for 𝑥1 = 25 

is 7.5dB. Similarly, for 𝑥1 = 60 and 𝑥1 = 100, the nonlinear system has a gain margin of 0dB 

and −4.5dB, respectively. A 0dB gain margin means that system is already is the margin of 

instability, and the dynamic gain can no longer be increased (situation (b) in Figures 3.24 and 

3.27). A negative gain margin implies an unstable situation and the dynamic poles are in the 

right-hand side of the complex 𝑔 −plane (situation (c) in Figures 3.24 and 3.27). 
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The dynamic gain crossover and phase crossover frequency are same (𝜔𝑔(𝑡)= 𝜔𝑔(𝑡)=3.31 rad/s) 

for 𝑥1 = 60, as dynamic poles are located on the margin of instability. The dynamic gain 

crossover frequency 𝜔𝑔(𝑡) is at 2.1 rad/s and 4.2 rad/s, for 𝑥1 = 25 and 𝑥1 = 100, respectively. 

The dynamic phase margin is 340,  00 and −14.70 for 𝑥1 = 25, 𝑥1 = 60, and 𝑥1 = 100, 

respectively.  

 

 The above discussion can be summarized as, for 𝑥1 < 60, the nonlinear system dynamic 

poles are on the left-hand side of the complex 𝑔 −plane and stability is guaranteed. For 𝑥1 = 60 

dynamic poles are on the margin of instability, and for 𝑥1 > 60, dynamic poles are on the right-

hand side of the complex 𝑔 −plane creating an unstable situation on the response. 

 

 

3.4 Summary 

 

In this Chapter 3, an extensive numerical analysis of the stability analysis of a nonlinear 

dynamic system was studied. A nonlinear system has dynamic poles, and their movement in the 

complex 𝑔 −plane is a function of states 𝐱 explicitly, while time 𝑡 implicitly. The stability of a 

nonlinear system was established applying the dynamic Routh’s stability criterion of [6] on the 

location of the dynamic poles. The location of the dynamic poles in the complex 𝑔 −plane was 

determined from the dynamic Routh’s array which was constructed from the dynamic 

characteristic equation of the nonlinear system. A phase plane analysis was also presented by 

applying the dynamic Routh’s stability criterion on it to define the stability region. It is proved 

that a negative value of acceleration creates stability in the 1st quadrant of a phase plane, and a 

positive value of acceleration creates stability in the 3rd quadrant.   

 

The dynamic Nyquist plot was developed to study the stability of a nonlinear system in the 

frequency domain. A dynamic characteristic equation can also be written as 

 

 1 + 𝐋(𝑔) = 0 (3.51) 
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where 

 
𝐋(𝑔) = 𝐾(𝐱, 𝑡)

(𝑔 + 𝑧1(𝐱, 𝑡))(𝑔 + 𝑧2(𝐱, 𝑡))⋯ (𝑔 + 𝑧𝑚(𝐱, 𝑡))

(𝑔 + 𝑝1(𝐱, 𝑡))(𝑔 + 𝑝1(𝐱, 𝑡))⋯ (𝑔 + 𝑝𝑛(𝐱, 𝑡))
 (3.52) 

 

According to the dynamic Nyquist stability criterion, a nonlinear dynamic system is 

stable, if the dynamic Nyquist plot of 𝐋(g) encircles the (−1, j0) point in 𝐋(g) −plane, in the 

clockwise direction, as many times as the number of dynamic poles of 𝐋(g) that are in the right 

half of the complex 𝑔 −plane, and inside the encirclement, if any.  

 

An interrelationship between the dynamic root locus and the dynamic Nyquist and Bode 

plots was also presented. Several examples were taken from literature, and numerical simulation 

studies were done to show the efficiency and effectiveness of the proposed dynamic pole 

movement based nonlinear system stability analysis. 
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Chapter 4 

The Design of a Neuro-controller using 𝒈 −Plane Approach 

 

 

Dynamic system behavior can be described regarding its dominant parameters [4, 5]. For 

a second-order system, the dominant parameters are natural frequency 𝜔𝑛(𝑡) and damping 

ratio 𝜉(𝑡). It is possible to change the location of the system poles in the complex 𝑔 −plane by 

changing the values of the dominant parameters. The dynamic poles change the characteristics of 

the system response. For example, depending on the location of dynamic poles on 𝑔 −plane a 

second-order system exhibits the characteristics much like a first-order system or a damped or an 

oscillation in its transient response. Indeed, by changing the parameters 𝜔𝑛(𝑡) and 𝜉(𝑡), all 

possible step responses to a second-order system can be obtained, i.e., undamped (𝜉(𝑡) = 0), 

under-damped (0 < 𝜉(𝑡) < 1), critically-damped (𝜉(𝑡) = 1) and over-damped (𝜉(𝑡) > 1). An 

under-damped system yields a faster response, i.e., smaller rise time 𝑇𝑟, with a larger 

overshoot 𝑀𝑝 and a larger settling time 𝑇𝑠 [4, 5]. On the other hand, an over-damped system 

yields a slower response, i.e., smaller rise time 𝑇𝑟, with a zero overshoot 𝑀𝑝 = 0 [4, 5].  

 

This chapter is devoted to the design of the dynamic pole motion based neuro-controllers. The 

original works to determine of the neuro-controller parameters were done in [7, 8, 11]. This 

chapter gives an extensive exploration of various characteristics in the neuro-controller design 

process.  The neuro-controller concept is explained at the beginning of the chapter, and several 

examples were taken to do a simulation-based study to illustrate the concept. Details of the 

Simulink models are given in Appendix C. 

 

 

4.1 Neuro-controller Concept 

 

 A controller determines the response of a dynamic system by adjusting the overall 

dynamics to reach the ideal performance, i.e., fast transient response and nearly zero overshoot. 

The overall dynamics means the dynamics of a plant along with its controller. The neuro-
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controller is a highly nonlinear error-based adaptive controller. A neuro-controller learns from 

the overall response and adapts its parameters to get the best overall response. Figure 4.1 

explains the overall motivation of a neuro-controller. For a large initial error, the overall system 

exhibits an under-damped and a fast transient response, while for a small error, the overall 

system exhibits an over-damped and a zero overshoot transient response [7]. 

 

 

 

(a) A comparison among (i) an under-damped, (ii) an over-damped and (iii) the desired 

response curve. 
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(b) A comparison among (i) an under-damped, (ii) an over-damped and (iii) a desired error 

response curve of the system. 

 

Figure 4.1. System responses to a unit step input with two different pole locations: (i) under-

damped situation (ξ < 1), and (ii) over-damped situation (ξ > 1). Initially, for a large error, the 

desired response curve follows an under-damped curve and then settles down to a steady-state 

value for decreasing errors, i.e., following an over-damped curve. The desired response curve is 

a marriage between an under-damped and an over-damped response curve [7]. 

 

 To control the overall system dynamics towards the desired response, parameters of the 

neuro-controller need to be represented as a function of the overall system error 𝑒(𝑡). The design 

methodology developed in this paper is based on: for an initial large error 𝑒(𝑡) the overall system 

will follow an under-damped system dynamics with a larger bandwidth, i.e., a smaller 𝜉(𝑡) and a 

larger 𝜔𝑛(𝑡), while for a small error 𝑒(𝑡) the overall system will follow an over-damped system 

dynamics with a smaller bandwidth, i.e., a larger 𝜉(𝑡) and a smaller 𝜔𝑛(𝑡) [7]. Since 𝜉(𝑡) and 

𝜔𝑛(𝑡) depend on the velocity feedback 𝐾𝑣 and position feedback 𝐾𝑝, respectively, a fast 

transient response with no overshoot can be achieved if 𝐾𝑝 and 𝐾𝑣 are defined as a proper 

function of the overall system error 𝑒(𝑡).  

  

4.2 Neuro-controller Design Criteria 

 

 The above discussion is summarized to some certain observations by deriving the 

following design criteria of a neuro-controller [7, 8]. 

 

Design criteria I (determination of the overall system response behavior): 

(1) If the system error 𝑒(𝑡) is large, then make the damping ratio 𝜉(𝑡) very small and the 

natural frequency 𝜔𝑛(𝑡) very large. 

(2) If the system error 𝑒(𝑡) is small, then make the damping ratio 𝜉(𝑡) very large and the 

natural frequency 𝜔𝑛(𝑡) very small. 
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Design criteria II (determination of the parameters of a neuro-controller): 

(1) Position feedback 𝐾𝑝(𝑒, 𝑡) controls the speed of response, i.e., the natural frequency 

𝜔𝑛(𝑡) of a system (notice: the bandwidth of the system is determined by the natural 

frequency 𝜔𝑛(𝑡) of a system specifically). 

 

𝐾𝑝(𝑒, 𝑡) = 𝜔𝑛
2(𝑡) (4.1) 

 

(2) Velocity feedback 𝐾𝑣(𝑒, 𝑡)  controls the brake of response, i.e., the damping ratio 𝜉(𝑡) of 

a system specifically. 

𝐾𝑣(𝑒, 𝑡) = 2𝜉(𝑡)𝜔𝑛(𝑡) (4.2) 

 

The position feedback 𝐾𝑝(𝑒, 𝑡) and velocity feedback 𝐾𝑣(𝑒, 𝑡) are the neuro-controller 

parameters, and they are a function of the error 𝑒(𝑡). As error 𝑒(𝑡) changes from a large value to 

a small value, 𝐾𝑝(𝑒, 𝑡) is varied from a large value to a small value, and simultaneously 𝐾𝑣(𝑒, 𝑡) 

is varied from a small value to a large value. 

 

 To keep the response in an admissible range, the above design procedure introduces a 

controlled dynamic pole motion of the overall system. The controller parameters are chosen to 

such an extent that the overall system dynamic poles move as a function of the error 𝑒(𝑡) in the 

complex 𝑔 −plane to reach a designated response. This controlled way of pole motion is called 

dynamic pole motion (DPM) in the complex 𝑔 −plane [7, 8]. The proposed neuro-controller is 

shown in Figure 4.2. 
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Figure 4.2. A graphical representation of the proposed neuro-controller where 𝑥2 = 𝑥1̇. 𝐾𝑝(𝑒, 𝑡) 

and 𝐾𝑣(𝑒, 𝑡) are defined according to the design criteria I and II [7, 8]. 

 

 

 

 (a) Pole locations on a complex 𝑔 −plane 

with a real axis, 𝜎(𝑡) and an imaginary 

axis 𝑗𝜔(𝑡) 

 

(b) Time response 

 

 

Figure 4.3. The explanation of the dynamic pole motion (DPM) concept. Section 1, 2, 3 shows 

the dynamic pole locations in the complex 𝑔 −plane in (a), and the correspondent time response 

of the overall system is shown in (b).  
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 The DPM concept is illustrated graphically in Figure 4.3. The locations of dynamic poles 

in the complex 𝑔 −plane are shown in Figure 4.3(a) and the correspondent overall time response 

is given in Figure 4.3(b). Initially, for a large error 𝑒(𝑡) a faster response is achieved by making 

the damping ratio 𝜉(𝑡) very small, and the natural frequency 𝜔𝑛(𝑡) very large and system 

performs as an under-damped system. It is shown in Section 1 of Figure 4.3. As the error 𝑒(𝑡) 

decreases, the damping ratio 𝜉(𝑡) increases and the natural frequency 𝜔𝑛(𝑡) decreases, and the 

system dynamics behave more like to an over-damped system than an under-damped system.  It 

is accomplished by changing the locations of dynamic poles as a function of the system error 

𝑒(𝑡) in the complex 𝑔 −plane and shown in Section 2 of Figure 4.3. When the response reaches 

the desired value, the dynamic poles settle down to a steady-state location exhibited in Section 3 

of Figure 4.3. 

 

 Several typical step responses of a second-order dynamic system with a neuro-controller 

for the variation of 𝐾𝑝 and 𝐾𝑣 are shown in Figure 4.4. 

 

 

(a) System responses of a typical second-order system with a variable value of  𝐾𝑝 and a 

constant 𝐾𝑣=5 [10, 7]. 
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(b) System responses of a typical second-order system with a variable value of  𝐾𝑣 and a 

constant 𝐾𝑝=3 [7, 10]. 

 

Figure 4.4. Step responses of a typical second-order system with a neuro-controller for the 

variation of 𝐾𝑝 and 𝐾𝑣, one at a time. 

 

4.3 Controller Design 

 

4.3.1 Determination of Position Feedback 𝑲𝒑(𝒆, 𝒕) and Velocity Feedback 𝑲𝒗(𝒆, 𝒕) 

  

 Various types of functions can be designed for the position feedback 𝐾𝑝(𝑒, 𝑡) and 

velocity feedback 𝐾𝑣(𝑒, 𝑡) of a neuro-controller by following the design criteria presented in 

Section 4.2. For example,  

 

 𝐾𝑝(𝑒, 𝑡) = 𝐾𝑝𝑓 + 𝛼𝑒2 
(4.3) 

 𝐾𝑣(𝑒, 𝑡) = 𝐾𝑣𝑓exp (−𝛽𝑒2) 
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where 𝑒 = 𝑟(𝑡) − 𝑦(𝑡) is the error signal. 𝛼 and 𝛽 are the gain constants and determine the slope 

of the functions 𝐾𝑝(𝑒, 𝑡) and 𝐾𝑣(𝑒, 𝑡) as illustrated in Figure 4.5. 𝐾𝑝𝑓 and 𝐾𝑣𝑓 are the final 

steady-state values of  𝐾𝑝(𝑒, 𝑡) and 𝐾𝑣(𝑒, 𝑡), respectively.  

 

 

 

Figure 4.5. Effect of the variation of 𝛼 and 𝛽 on the function 𝐾𝑝(𝑒, 𝑡) and 𝐾𝑣(𝑒, 𝑡), respectively 

[8]. 

 

Several other possible examples are given in Table 4.1. 

 

Table 4.1: Various types of possible functions and their graphical representations for  

the position feedback 𝐾𝑝(𝑒, 𝑡) and velocity feedback 𝐾𝑣(𝑒, 𝑡) of a neuro-controller [7, 8, 11]. 

 

 𝑲𝒑(𝒆, 𝒕) 𝑲𝒗(𝒆, 𝒕) 

1 𝐾𝑝𝑓(1 + 𝛼|𝑒|) 

 

𝐾𝑣𝑓

1

1 + 𝛽|𝑒|
 

 

2 𝐾𝑝𝑓(1 + 𝛼𝑒2) 

 

𝐾𝑣𝑓

1

1 + 𝛽𝑒2
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3 𝐾𝑝𝑓 + 𝛼𝑒2 

 

 𝐾𝑣𝑓exp (−𝛽𝑒2) 

 

 

 

4.3.2 Determination of 𝑲𝒑𝒇, 𝑲𝒗𝒇, 𝜶, and 𝜷 

 

 As discussed earlier, to achieve a fast response, the overall system must have a larger 

bandwidth 𝜔𝐵𝑊(𝑡) for the large error 𝑒(𝑡). Position feedback 𝐾𝑝(𝑒, 𝑡) determines the bandwidth 

of a system and is a function of system error 𝑒(𝑡). A zero overshoot response is achieved by 

continuously adjusting the overall system damping ratio 𝜉(𝑡) as a function of the system error 

𝑒(𝑡). The position feedback 𝐾𝑝(𝑒, 𝑡) and velocity feedback 𝐾𝑣(𝑒, 𝑡) are determined in such a 

way that the overall system has a small damping ratio 𝜉(𝑡) with a large bandwidth 𝜔𝐵𝑊(𝑡) for a 

large error 𝑒(𝑡) and a large damping ratio 𝜉(𝑡) with a small bandwidth 𝜔𝐵𝑊(𝑡) for a small error 

𝑒(𝑡).  From Figure 4.2, the control input 𝑢(𝑡) of the overall system is, 

 

 𝑢(𝑡) = 𝑟(𝑡) − [𝐾𝑝(𝑒, 𝑡)𝑥1 + 𝐾𝑣(𝑒, 𝑡)𝑥2]  (4.4) 

 

with  

the position feedback gain 𝐾𝑝(𝑒, 𝑡) = 𝐾𝑝𝑓 + 𝛼𝑒2,  

the velocity feedback gain 𝐾𝑣(𝑒, 𝑡) = 𝐾𝑣𝑓𝑒𝑥𝑝[−𝛽𝑒2], and  

the error 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡).  

 

 From Eq. 4.4, four parameters 𝐾𝑝𝑓, 𝐾𝑣𝑓, 𝛼 and 𝛽 need to be adjusted to get the desired 

response of a system by continually adjusting the overall system dynamics. These four 

parameters are chosen using the following criteria [7, 8], 

 

(1)  𝛼 and 𝛽: the initial position of the poles should have a very small damping 𝜉(𝑡) and a 

larger bandwidth 𝜔𝐵𝑊(𝑡). 



85 
 

(2) 𝐾𝑝𝑓 and 𝐾𝑣𝑓: the final position of the poles should have a large damping 𝜉(𝑡) and a 

smaller bandwidth 𝜔𝐵𝑊(𝑡). 

(3) To ensure the stability of the system, all the dynamic poles of the overall system must 

have to keep on the left-half side of the complex 𝑔 −plane at any condition. 

 

The following equations calculate the natural frequency 𝜔𝑛(𝑡) and damping ratio 𝜉(𝑡) of the 

neuro-controller, 

 

 
𝜔𝑛(𝑡)  = √𝐾𝑝𝑓 + 𝛼{𝑟(𝑡) − 𝑥1}2  

(4.5) 
 

𝜉(𝑡) =
𝐾𝑣𝑓𝑒𝑥𝑝[−𝛽{𝑟(𝑡) − 𝑥1}

2]

2√𝐾𝑝𝑓 + 𝛼{𝑟(𝑡) − 𝑥1}2
  

 

It can be noted from Eq. 4.5 that the bandwidth 𝜔𝐵𝑊(𝑡) and the damping ratio 𝜉(𝑡) of the overall 

system change with the change of the system error 𝑒(𝑡) and this dynamic behavior are called 

dynamic bandwidth and dynamic damping ratio, respectively. 

 

4.4 Illustrative Numerical Examples 

  

In the preceding sections, the design of a neuro-controller for a dynamic system based on the 

concept of the dynamic pole motion in the complex 𝑔 −plane to achieve a faster transient 

response with zero overshoot was discussed. In this section, several examples will be discussed, 

and the neuro-controller parameters will be determined according to the design criteria described 

in Section 4.2. Simulation works are performed by using the software packages MATLAB 

r2016a, and SIMULINK v8.7. The dynamic Routh’s stability criterion is used to ensure the 

stability of the overall neuro-controlled system. 

 

Example 4.1: 

 

 Consider a linear time-invariant second-order system with a single input 𝑢(𝑡) presented 

by 
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 𝑥̈ + 2𝑥̇ + 6𝑥 = 6𝑢(𝑡)  (4.6) 

 

The state-space model of the system is, 

 

 𝐱̇(𝑡) = 𝐀(𝐱, 𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡) 
(4.7) 

 𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱(𝑡) 

 

where 

𝐱 ∈ ℜ𝑛 : the state vector, 

𝐱̇ ∈ ℜ𝑛 : the derivation of the state vector 𝐱 to time 𝑡, 

𝐲 ∈ ℜ𝑝  : the output vector, and 

u∈ ℜ𝑚 : the control input. 

System matrix 𝐀(𝐱, 𝑡) = |
0 1

−6 −2
|. 

Input matrix 𝐁(𝑡) = |
0
6
|. 

Output matrix 𝐂(𝐱, 𝑡) = |1 0|. 

 

As discussed in Chapter 2, the elements of the system matrix 𝐀(𝐱, 𝑡) can be constant (e.g., linear 

system), or a function of system states 𝐱 and/or time 𝑡 (e.g., nonlinear time-variant system). In 

this particular linear time-invariant system, Eq. 4.6, the elements of the system matrix 𝐀(𝐱, 𝑡) are 

constant. The elements of the input matrix 𝐁(𝑡) are constant (e.g., a step input), or a function of 

amplitude and frequency (e.g., a periodic input). 

 

 The neuro-controller parameters 𝐾𝑝𝑓 = 40, 𝐾𝑣𝑓 = 6.5, 𝛼 = 18, and 𝛽 = 12 are 

determined according to the design procedure explained in Section 4.2 and Section 4.3. The 

neuro-controlled system respond initially as an under-damped system 𝜉(𝑡) < 1 for a larger error 

𝑒(𝑡) with a higher bandwidth 𝜔𝐵𝑊(𝑡), and continuously moves towards the characteristics of an 

over-damped system 𝜉(𝑡) > 1 with a smaller bandwidth 𝜔𝐵𝑊(𝑡) as system error 𝑒(𝑡) decreases. 

The position feedback 𝐾𝑝(𝑒, 𝑡) and velocity feedback 𝐾𝑣(𝑒, 𝑡) of the neuro-controller are, 
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 𝐾𝑝(𝑒, 𝑡) = 40 + 18𝑒2  
(4.8) 

 𝐾𝑣(𝑒, 𝑡) = 6.5 exp[−12𝑒2]  

 

The overall response to a step input is shown in Figure 4.6. Initially, at 𝑡 = 0s and the error 

𝑒(𝑡) = 100%, the system starts with a smaller damping ratio 𝜉(𝑡) = 0.036, i.e., an under-

damped system and the bandwidth is 𝜔𝐵𝑊(𝑡) =42.95. As time 𝑡 increases and error 𝑒(𝑡) 

decreases, system response follows more to an over-damped system than an under-damped 

system. For instance, at 𝑡 = 0.63𝑠, the error is 𝑒(𝑡) ≈ 2%, and the overall system has a damping 

ratio 𝜉(𝑡) = 0.62 and a bandwidth 𝜔𝐵𝑊(𝑡) = 7.5. The controlled system response is fast with 

zero overshoot 𝑀𝑝 = 0%. The rise time 𝑇𝑟 = 0.11s and the settling time 𝑇𝑠 = 0.63s. In 

comparison with the neuro-controlled system, the uncontrolled system has an overshoot 𝑀𝑝 =

24.56% with a larger rise time 𝑇𝑟 = 0.6s and a larger settling time  𝑇𝑠 > 5s. A detail of the 

Simulink model is given in Appendix C (Figure C.1). 

 

 

 

 

Figure 4.6. The neuro-controlled response of the system 𝑥̈ + 2𝑥̇ + 6𝑥 = 6𝑢(𝑡) to a unit step 

input. Rise time 𝑇𝑟 = 0.11s and settling time 𝑇𝑠 = 0.63s. the neuro-controller parameters are 

 𝐾𝑝𝑓 = 40, 𝐾𝑣𝑓 = 6.5, 𝛼 = 18 and 𝛽 = 12. Blue dotted line is the uncontrolled response of the 

system. 
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 Figure 4.7 illustrates the overall system dynamic pole motion in the complex 𝑔 −plane 

for the decreasing of error 𝑒(𝑡). The dynamic poles are located at −1.0 ± 𝑗27.6 and −4.2 ±

𝑗5.28 for 𝑡 = 0s and 𝑡 = 5s, respectively. Figure 4.7(a) shows a three-dimensional motion of 

dynamic poles in the complex 𝑔 −plane and Figure 4.7(b) sketches a two-dimensional projection 

of pole motion in the complex 𝑔 −plane. The third axis is representing the system error 𝑒(𝑡), and 

the location of the dynamic poles are changed in the complex 𝑔 −plane as a function of error 

𝑒(𝑡) to achieve fast response and zero overshoot. 

 

 

(a) Three-Dimensional motion of dynamic poles. 
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(b) A two-dimensional projection of the three-dimensional dynamic pole motion. 

 

Figure 4.7. Dynamic pole motion of the system 𝑥̈ + 2𝑥̇ + 6𝑥 = 6𝑢(𝑡) with a neuro-controller in 

the complex 𝑔 −plane for a decreasing error 𝑒(𝑡). The dynamic poles are located at −1.0 ±

𝑗27.6 and −4.2 ± 𝑗5.28 for 𝑡 = 0s and 𝑡 = 5s, respectively.   

 

 

 

(a) (i) The damping ratio 𝜉(𝑡) vs. time 𝑡 and (ii) the natural frequency 𝜔𝑛(𝑡) vs. time 𝑡. 
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(b) The natural frequency 𝜔𝑛(𝑡) vs. the damping ratio 𝜉(𝑡). 

 

Figure 4.8. A graphical representation of the natural frequency 𝜔𝑛(𝑡) vs. the damping ratio 𝜉(𝑡) 

with the increase of time 𝑡 and the decrease of error 𝑒(𝑡) of the system 𝑥̈ + 2𝑥̇ + 6𝑥 = 6𝑢(𝑡) 

with a neuro-controller. 

 

 Figure 4.8 illustrates the relationship of the overall system natural frequency 𝜔𝑛(𝑡) and 

damping ratio 𝜉(𝑡) graphically with the increase of time 𝑡 and a decrease of error 𝑒(𝑡) of the 

system 𝑥̈ + 2𝑥̇ + 6𝑥 = 6𝑢(𝑡) with a neuro-controller. It is observed that the relation between 

overall system natural frequency 𝜔𝑛(𝑡) and damping ratio 𝜉(𝑡) is inversely proportional and it is 

a function of time 𝑡 and error 𝑒(𝑡). The natural frequency 𝜔𝑛(𝑡) regulates the speed of the 

response, and the damping ratio 𝜉(𝑡) regulates the brake on the response. It is somewhat like 

‘driving a car.' When the destination is far, and the error 𝑒(𝑡) is large then put more gas on the 

accelerator with no brake, i.e., higher the natural frequency 𝜔𝑛(𝑡) and smaller the damping ratio 

𝜉(𝑡). On the other hand, if the destination is closer and error 𝑒(𝑡) is small then put more brake 

with no gas, i.e., lower the natural frequency 𝜔𝑛(𝑡) and higher the damping ratio 𝜉(𝑡). 

 

 Figure 4.9 demonstrates the natural frequency 𝜔𝑛(𝑡) and the damping ratio 𝜉(𝑡) at 

various time 𝑡 and locations of the neuro-controlled response of the system  

𝑥̈ + 2𝑥̇ + 6𝑥 = 6𝑢(𝑡). 
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Figure 4.9. The natural frequency 𝜔𝑛(𝑡) and the damping ratio 𝜉(𝑡) at various time 𝑡 and 

locations of a unit step response of the system 𝑥̈ + 2𝑥̇ + 6𝑥 = 6𝑢(𝑡). 

 

Example 4.2: 

 

 Consider a second-order system with a nonlinear damping (1 − 𝑥2) and an input 𝑢(𝑡) 

presented by a differential equation, 

 

 𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡)  (4.9) 

 

where 𝑥 is system state. The state-space representation of this nonlinear time-invariant system is, 

 

 𝐱̇(𝑡) = 𝐀(𝐱, 𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡)  
(4.10) 

 𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱(t)  

 

where  
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𝐱 ∈ ℜ𝑛 : the state vector, 

𝐱̇ ∈ ℜ𝑛 : the derivation of the state vector 𝐱 to time 𝑡, 

𝐲 ∈ ℜ𝑝 : the output vector, and  

u∈ ℜ𝑚 : the control input.  

System matrix, 𝐀(𝐱, 𝑡) = |
0 1

−1 −(1 − 𝑥1
2)|. 

 

Input matrix, 𝐁(𝑡) = |
0
1
|.  

Output matrix, 𝐂(𝐱, 𝑡) = |1 0|.  

 

 The block diagram representation of the state-space model of the nonlinear system Eq. 

4.10 is given in Figure 4.10. 

 

 

 

Figure 4.10. Block diagram representation of the state-space model of the nonlinear dynamic 

system 𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡). 

 

 As discussed in Chapter 2 and 3, the dynamic characteristic equation a nonlinear time-

invariant system is calculated from 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 where 𝑔 is a differential operator 

(𝑔 ≜
𝑑

𝑑𝑡
). 𝐈 is a 𝑛 × 𝑛 identity matrix. The elements of the system matrix 𝐀(𝐱, 𝑡) are function of 

states 𝐱 and time 𝑡, and the coefficients of the dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 −

𝐀(𝐱, 𝑡)) = 0 contain all the state 𝐱 and time 𝑡 dependent terms. 𝑑𝑖𝑚[𝐀(∙)] = 𝑛 × 𝑛, 𝑛 is the 

order of the differential equation. 

 

The dynamic characteristic equation of the nonlinear time-invariant second-order system 

Eq. 4.9 is, 
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 𝑔2 + (1 − 𝑥1
2)𝑔 + 1 = 0  (4.11) 

 

The dynamic root locus can be obtained by sweeping through every point in the complex 

𝑔 −plane to locate the dynamic roots of the dynamic characteristic equation as system states are 

varied from a zero to infinity, one at a time. Figure 4.11 gives the dynamic root locus of the 

dynamic characteristic equation, Eq. 4.11 as system state 𝑥1 is varied. The arrowheads indicate 

the increased value of 𝑥1. 

 

 

 

Figure 4.11. Dynamic root locus of the dynamic characteristic equation  𝑔2 + (1 − 𝑥1
2)𝑔 + 1 =

0 as system state 𝑥1 is varied from a zero to infinity. 

 

For −1 < 𝑥1 < 1, the conjugate dynamic poles are located on the left-half side of the complex 

𝑔 −plane. With the increases of system state 𝑥1, both dynamic poles start moving toward the 

right-half side of the 𝑔 −plane, i.e., unstable region. To ensure the stability of the neuro-

controlled system and according to the dynamic Routh’s stability criterion presented in Chapter 

3, neuro-controller parameters 𝐾𝑝𝑓, 𝐾𝑣𝑓, 𝛼, and 𝛽 must be determined in such a way that the 

dynamic poles are always kept on the left-half side of the complex 𝑔 −plane at any conditions. 
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 According to the design procedure described in Section 4.2 and 4.3, the designed neuro-

controller parameters of the nonlinear system, Eq. 4.9, are 𝐾𝑝𝑓 = 24, 𝐾𝑣𝑓 = 12, 𝛼 = 150 and 

𝛽 = 40. The neuro-controlled response to a step input is shown in Figure 4.12. The rise time 

𝑇𝑟 = 0.19s and the settling time 𝑇𝑠 = 0.49s. For 𝑡 = 0s, the dynamic poles are located at −0.5 ±

𝑗13.2. When 𝑡 = 3s, the dynamic poles move to −10.65 + 𝑗0.0 and −2.34 + 𝑗0.0, respectively, 

in the complex 𝑔 −plane. The dynamic pole motion of the overall neuro-controlled system with 

the increase of time 𝑡 and the decrease of error 𝑒(𝑡) in the complex 𝑔 −plane is plotted in Figure 

4.13. A detail of the Simulink model is given in Appendix C (Figure C.2). 

 

 

 

 

Figure 4.12. Neuro-controlled response of the system 𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡) to a step input. 

The rise time 𝑇𝑟 = 0.19s and the settling time 𝑇𝑠 = 0.49s. The neuro-controller parameters are 

 𝐾𝑝𝑓 = 24, 𝐾𝑣𝑓 = 12, 𝛼 = 150 and 𝛽 = 40. The green dotted line is the system error 𝑒(𝑡). 
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Figure 4.13. Dynamic pole motion of the system 𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡)  with a neuro-

controller in the complex 𝑔 −plane for a decreasing error 𝑒(𝑡). For 𝑡 = 0s, the dynamic poles are 

located at −0.5 ± 𝑗13.2. When 𝑡 = 3s, the dynamic poles move to −10.65 + 𝑗0.0 and −2.34 +

𝑗0.0, respectively. 

 

 The position feedback 𝐾𝑝(𝑒, 𝑡) and velocity feedback 𝐾𝑣(𝑒, 𝑡) of the neuro-controller is, 

 

 𝐾𝑝(𝑒, 𝑡) = 24 + 150 × 𝑒2  
(4.12) 

 𝐾𝑣(𝑒, 𝑡) = 12 exp[−40𝑒2] + 𝑥1
2  

 

where 𝑒(𝑡) is the error signal and exp [∙] is an exponential function. Figure 4.14 plots the position 

feedback 𝐾𝑝(𝑒, 𝑡) and the velocity feedback 𝐾𝑣(𝑒, 𝑡) of the neuro-controller along with system 

error 𝑒(𝑡). For a large error 𝑒(𝑡), the neuro-controller has a higher 𝐾𝑝(𝑒, 𝑡) and lower 𝐾𝑣(𝑒, 𝑡), 

or vice versa. At steady-state situation, 𝐾𝑝(𝑒, 𝑡), and 𝐾𝑣(𝑒, 𝑡) settle themselves to a final value 

of 𝐾𝑝𝑓 = 24 and 𝐾𝑣𝑓 = 12, respectively. Gain constant 𝛼 = 150 and 𝛽 = 40 determine the rate 

of increasing or decreasing of 𝐾𝑝(𝑒, 𝑡), and 𝐾𝑣(𝑒, 𝑡) to the system error 𝑒(𝑡), respectively. 
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Figure 4.14. The neuro-controller parameters vs. error 𝑒(𝑡). (i) The position feedback 𝐾𝑝(𝑒, 𝑡) 

vs. error 𝑒(𝑡) and (ii) the velocity feedback 𝐾𝑣(𝑒, 𝑡) vs. error 𝑒(𝑡). 

 

 Figure 4.15 plots the damping ratio 𝜉(𝑡) of the overall system along with the system error 

𝑒(𝑡) and time 𝑡. As the system dynamics change with time 𝑡 and error 𝑒(𝑡), the damping ratio 

𝜉(𝑡) also changes to get a fast transient response, i.e., very low 𝑇𝑟 and 𝑇𝑠 with no overshoot 

𝑀𝑝 = 0. When 𝑡 = 0s, damping ratio is 𝜉(𝑡) =0.037, and the system follows an under-damped 

and fast response. As the error 𝑒(𝑡) is decreased with the increase of time 𝑡, the damping ratio 

𝜉(𝑡) is also increased, and the bandwidth 𝜔𝐵𝑊(𝑡) is decreased, and the system started following 

to an over-damped system to achieve a zero overshoot 𝑀𝑝 = 0 in the response. At 𝑡 = 3s, the 

damping ratio is 𝜉(𝑡) =1.30. The plot of the dynamic damping ratio 𝜉(𝑡) along with time 𝑡 and 

the error 𝑒(𝑡)  is shown graphically in Figure 4.15.  
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Figure 4.15. The dynamic damping ratio 𝜉(𝑡) along with time 𝑡 and the error 𝑒(𝑡) of the neuro-

controlled system 𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡). 

 

The overall dynamics of the system, Eq. 4.9, with the neuro-controller is,  

 

 𝒙̈ + {(1 − 𝑥1
2) + 12 exp[−40𝑒2] + 𝑥1

2}𝒙̇ + {1 + [24 + 150𝑒2]}𝒙 = 𝒖(𝑡) (4.13) 

 

The magnitude of the closed-loop frequency response 𝑀(𝑡) of the overall neuro-controlled 

system Eq. 4.13 is, 

 

 
𝑀(𝑡) =

𝐾𝑝𝑜(𝑒, 𝑡)

√(𝐾𝑝𝑜(𝑒, 𝑡) − 𝜔2)2 + (𝜔𝐾𝑣𝑜(𝑒, 𝑡))2
 (4.14) 

 

where 𝜔 is the frequency in rad/s. 

The overall system position feedback 𝐾𝑝𝑜(𝑒, 𝑡) = 1 + {24 + 150𝑒2}, 
 

The overall system velocity feedback 𝐾𝑣𝑜(𝑒, 𝑡) = (1 − 𝑥1
2) + {12 exp[−40𝑒2] + 𝑥1

2}.  

 

Squaring both sides of Eq. 4.14 and then differentiating with 𝜔2 and setting the derivative equals 

to zero gives the maximum resonance value 𝑀𝑝(𝑡) [4]. 
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for 0 ≤ 𝜉(𝑡) ≤ 0.707, 𝑀𝑝(𝑡) =
1

2𝜉(𝑡)√1 − 𝜉(𝑡)2
  

(4.15) 

for 𝜉(𝑡) > 0.707, 𝑀𝑝(𝑡) = 1  

 

where the dynamic damping ratio 𝜉(𝑡) = 𝑘𝑣𝑜(𝑒, 𝑡) 2√𝑘𝑝𝑜(𝑒, 𝑡)⁄ . From Eq. 4.15, the maximum 

magnitude of the frequency response curve 𝑀𝑝(𝑡) is inversely related to the dynamic damping 

ratio 𝜉(𝑡), and as 𝜉(𝑡) approaches to zero, 𝑀𝑝(𝑡) approaches to infinity. There will not be a peak 

at frequencies above zero if 𝜉(𝑡) > 0.707. The relationship between 𝑀𝑝(𝑡) and 𝜉(𝑡) is shown in 

Figure 4.16. 

 

 

 

Figure 4.16. The relationship among the maximum magnitude of the frequency response curve 

𝑀𝑝(𝑡) and dynamic damping ratio 𝜉(𝑡). 

 

 The variation of the bandwidth of the overall system 𝜔𝐵𝑊(𝑡) with time 𝑡 is shown in 

Figure 4.17. Figure 4.17(a) displays the overall system bandwidth for three different time 𝑡 =

0.0s, 𝑡 = 0.25s and 𝑡 = 0.4s. As the error 𝑒(𝑡) decreases, the dynamic damping ratio 𝜉(𝑡) 

increases. Because of the inverse relationship among the damping ratio and bandwidth, the 

dynamic bandwidth 𝜔𝐵𝑊(𝑡) will also decrease with the increase of the dynamic damping ratio 

𝜉(𝑡). For instance, at time 𝑡 = 0.0s, 𝑡 = 0.25s and 𝑡 = 0.4s, the overall system has a bandwidth 
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of 𝜔𝐵𝑊 = 20 rad/s, 𝜔𝐵𝑊 = 20 rad/s and 𝜔𝐵𝑊 = 20 rad/s, respectively. Figure 4.17(b) exhibits 

the relationship of the dynamic bandwidth 𝜔𝐵𝑊(𝑡) with the error 𝑒(𝑡) and time 𝑡. Figure 4.17(c) 

gives a three-dimensional dynamic magnitude frequency plot of the overall neuro-controlled 

system. 

  

 

 

(a) The bandwidth 𝜔𝐵𝑊(𝑡) of the overall system at 𝑡 = 0.0s, 𝑡 = 0.25s and 𝑡 = 0.4s. 

 

 

 

(b) The bandwidth 𝜔𝐵𝑊(𝑡) of the overall system to the error 𝑒(𝑡) and time 𝑡. 
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(c) Three-dimensional sketch of the dynamic magnitude frequency plot.  

 

Figure 4.17. The variation of the dynamic bandwidth 𝜔𝐵𝑊(𝑡) of the overall neuro-controlled 

system at each time interval. 

 

 According to the dynamic Routh’s stability criterion (discussed in Chapter 3), the 

stability is guaranteed for a dynamic system (linear, nonlinear, time-invariant or time-variant) if 

and only if all the dynamic roots of the dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 

are kept on the left-half side of the complex 𝑔 −plane [6]. I is an 𝑛 × 𝑛 identity matrix, and 

A(𝐱, 𝑡) is the system matrix.  

 

The dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 of the overall nonlinear system, Eq. 

4.13, is given by 

 

 𝑔2 + {(1 − 𝑥1
2) + 12 exp[−40𝑒2] + 𝑥1

2}𝑔 + {1 + [24 + 150𝑒2]} = 0 (4.16) 

 

where 𝑔 is a differential operator (𝑔 ≜
𝑑

𝑑𝑡
). The dynamic Routh’s array of the dynamic 

characteristic equation Eq. 4.16 is, 

 



101 
 

𝑔2 1 {1 + [24 + 150𝑒2]} 

𝑔1 {(1 − 𝑥1
2) + 12 exp[−40𝑒2] + 𝑥1

2} 0 

𝑔0 {1 + [24 + 150𝑒2]} 0 
 

(4.17) 

 

Examining the dynamic Routh’s array, Eq. 4.17, we can list the overall neuro-controlled system 

stability. 

 

 The overall neuro-controlled system, Eq. 4.13, is stable if and only if  {(1 − 𝑥1
2) +

12 exp[−40𝑒2] + 𝑥1
2}  > 0 and {1 + [24 + 150𝑒2]} > 0. Both of the elements of the first 

column of the dynamic Routh’s array are positive definite for any values of 𝑥1 and 𝑒(𝑡), 

ensuring that both the dynamic poles are always kept on the left-half side of the complex 

𝑔 −plane. So the stability of the proposed neuro-controlled system, Eq. 4.13, is guaranteed 

according to the dynamic Routh’s stability criterion.  

 

Example 4.3: 

 A nonlinear time-invariant second-order system is, 

 

 𝑥1̇ = 𝑥2 − 𝑎𝑥1(𝑥1
2 + 𝑥2

2) 

(4.18) 
 𝑥2̇ = −𝑥1 − 𝑎𝑥2(𝑥1

2 + 𝑥2
2) 

and the output, 

 𝑦 = 𝑥1 

 

where 𝑎 is a positive definite real number. The system matrix 𝐀(𝐱, 𝑡) is given by 

 

 
𝐀(𝐱, 𝑡)  = |

−𝑎(𝑥1
2 + 𝑥2

2) 1

−1 −𝑎(𝑥1
2 + 𝑥2

2)
| (4.19) 

 

The elements of matrix 𝐀(𝐱, 𝑡) are a function of system states 𝑥1 and 𝑥2, and the states are 

implicitly time 𝑡 dependent. The block diagram representation of the state-space model is, 
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Figure 4.18. Block diagram representation of the state-space model of the nonlinear system,  

𝑥1̇ = 𝑥2 − 𝑎𝑥1(𝑥1
2 + 𝑥2

2), 𝑥2̇ = −𝑥1 − 𝑎𝑥2(𝑥1
2 + 𝑥2

2), and 𝑦 = 𝑥1. 

  

The input-output relationship in terms of 𝑔 −transfer matrix of the nonlinear time-

invariant second-order system Eq. 4.18 is, 

 

 
y(𝑡) = [

1

𝑔2 + 2𝑎(𝑥1
2 + 𝑥2

2)𝑔 + 𝑎2(𝑥1
2 + 𝑥2

2)2 + 1
]𝑢(𝑡) (4.20) 

 

Solving the numerator of Eq. 4.20 for 𝑔 gives the dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 −

𝐀(𝐱, 𝑡)) = 0 of the nonlinear system, Eq. 4.18. From the Eq. 4.20, the system has a conjugate 

dynamic pole in the complex 𝑔 −plane. 

 

𝑎 is chosen 1. The designed neuro-controller parameters are 𝐾𝑝𝑓 = 85, 𝐾𝑣𝑓 = 23, 𝛼 = 50, and 

𝛽 = 5. The overall response to a step input is shown in Figure 4.19. At time 𝑡 = 0s, the error is 

𝑒(𝑡) = 100%, and the neuro-controlled system starts with a damping ratio 𝜉(𝑡) = 0.006, i.e., an 

under-damped system with a larger bandwidth. At time 𝑡 = 0.29𝑠, the error is 𝑒(𝑡) ≈ 2%, and 

the overall system has a damping ratio 𝜉(𝑡) = 1.23. The neuro-controlled response is fast with 

zero overshoot 𝑀𝑝 = 0%. The rise time 𝑇𝑟 = 0.13s and the settling time  𝑇𝑠 = 0.29s. A detail of 

the Simulink model is given in Appendix C (Figure C.3). 
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Figure 4.19. The neuro-controlled response of the system defined by Eq. 4.18 to a unit step input. 

The rise time 𝑇𝑟 = 0.13s and the settling time 𝑇𝑠 = 0.29s. the neuro-controller parameters are 

 𝐾𝑝𝑓 = 85, 𝐾𝑣𝑓 = 23, 𝛼 = 50 and 𝛽 = 5. The green dotted line is the system error 𝑒(𝑡). 

 

Figure 4.20 demonstrates the natural frequency 𝜔𝑛(𝑡) and the damping ratio 𝜉(𝑡) at various time 

𝑡 and locations of the neuro-controlled response to a step input of the system defined by Eq. 

4.18. 
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Figure 4.20. The natural frequency 𝜔𝑛(𝑡) and the damping ratio 𝜉(𝑡) at various time 𝑡 and 

locations of a unit step neuro-controlled response of the system defined by Eq. 4.18. 

 

 Figure 4.21 displays a three-dimensional pole motion plot in the complex 𝑔 −plane of the 

overall system for a decreasing error 𝑒(𝑡). The third axis of the complex 𝑔 −plane is 

representing the system error 𝑒(𝑡). When 𝑡 = 0s and 𝑒(𝑡) = 100%, the dynamic conjugate poles 

are located at −0.07 ± 𝑗11.6. When 𝑡 = 2𝑠 and 𝑒(𝑡) = 0%, dynamic poles are at −18.3 + 𝑗0.0, 

and −4.69 + 𝑗0.0 in the complex 𝑔 −plane.  

 

 

 

Figure 4.21. The dynamic pole motion of the neuro-controlled system response defined by Eq. 

4.18 on the three-dimensional complex 𝑔 −plane. At 𝑡 = 0s, dynamic poles are at −0.07 ±

𝑗11.6 and at t=2s poles are at −18.3 + 𝑗0.0 and −4.69 + 𝑗0.0. 

 

 The motion of the dynamic poles of the neuro-controlled system in the complex 𝑔 −plane 

is determined by the system error 𝑒(𝑡). The neuro-controller ensures initial lower damping 𝜉(𝑡) 

and higher bandwidth 𝜔𝐵𝐴(𝑡) of the overall system to achieve a fast response at 𝑡 = 0𝑠. With the 

increase of time 𝑡, neuro-controller keeps updating overall system dominant parameters 𝜔𝑛(𝑡) 

and 𝜉(𝑡), as a function of the error 𝑒(𝑡), to move the system dynamic poles in the complex 

𝑔 −plane such that there is zero overshoot 𝑀𝑝 = 0% on the response. In other words, higher the 
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damping ratio 𝜉(𝑡) and lower the bandwidth 𝜔𝐵𝐴(𝑡) as time 𝑡 increases and the error 𝑒(𝑡) 

decreases. Figure 4.22 plots the overall system dynamic natural frequency 𝜔𝑛(𝑡) and dynamic 

damping ratio 𝜉(𝑡) with the increase of time 𝑡.  

 

 

 

Figure 4.22. A graphical representation of the natural frequency 𝜔𝑛(𝑡) vs. damping ratio 𝜉(𝑡) 

with the increase of time 𝑡 of the neuro-controlled system defined by Eq. 4.18. 

 

 

The position feedback 𝐾𝑝(𝑒, 𝑡) and the velocity feedback 𝐾𝑣(𝑒, 𝑡) of the neuro-controller 

is, 

 

 𝐾𝑝(𝑒, 𝑡)  = 85 + 50𝑒2  
(4.21) 

 𝐾𝑣(𝑒, 𝑡) = 23 exp[−5𝑒2]  

 

Figure 4.23 plots the position feedback 𝐾𝑝(𝑒, 𝑡) and the velocity feedback 𝐾𝑣(𝑒, 𝑡) to the system 

error 𝑒(𝑡). For a large error 𝑒(𝑡), the overall system has a higher 𝐾𝑝(𝑒, 𝑡) and lower 𝐾𝑣(𝑒, 𝑡), or 

vice versa. When 𝑒(𝑡) becomes zero, 𝐾𝑝(𝑒, 𝑡), and 𝐾𝑣(𝑒, 𝑡) settle themselves to a final steady-

state value of  𝐾𝑝𝑓 = 85 and 𝐾𝑣𝑓 = 23, respectively. Gain constant 𝛼 = 50, and 𝛽 = 5 

determines the rate of increasing or decreasing of 𝐾𝑝(𝑒, 𝑡), and 𝐾𝑣(𝑒, 𝑡), respectively. 
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Figure 4.23. The neuro-controller parameters plot to the system error 𝑒(𝑡). (i) The position 

feedback 𝐾𝑝(𝑒, 𝑡) vs. error 𝑒(𝑡) and (ii) the velocity feedback 𝐾𝑣(𝑒, 𝑡) vs. error 𝑒(𝑡). 

 

 The bandwidth of the overall neuro-controlled system is dynamic. As discussed earlier, 

the dynamic bandwidth 𝜔𝐵𝑊(𝑡) of a second-order system depends on the dynamic damping ratio 

𝜉(𝑡). The variation of the bandwidth of the overall neuro-controlled system 𝜔𝐵𝑊(𝑡) over time 𝑡 

is shown in Figure 4.24.  Figure 4.24(a) displays a dynamic bandwidth 𝜔𝐵𝑊(𝑡) of the overall 

system for a three different time intervals 𝑡 = 0s, 𝑡 = 0.10s, and 𝑡 = 0.15s. Figure 4.24(b) plots 

a three-dimensional view of the dynamic magnitude frequency response. 
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(a) The variation of the bandwidth 𝜔𝐵𝑊(𝑡) of the overall neuro-controlled system at 𝑡 =

0.0s, 𝑡 = 0.10s, and 𝑡 = 0.15s.  

 

 

 

(b) Three-dimensional sketch of the dynamic magnitude frequency plot. 

 

Figure 4.24. The variation of the bandwidth 𝜔𝐵𝑊(𝑡) of the overall neuro-controlled system 

defined by Eq. 4.18 at each time interval. 
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The neuro-controlled response of the system defined by Eq. 4.18 for a periodic input 

reference 𝑢(𝑡) = sin
𝑡

2
+

1

2
sin 2𝑡 is given in Figure 4.25. 

 

 

 

Figure 4.25. The neuro-controlled response for a periodic input reference 𝑢(𝑡) = sin
𝑡

2
+

1

2
sin 2𝑡 

of the system defined by Eq. 4.18. 

 

 According to the dynamic Routh’s stability criterion, a second-order differential equation 

𝒙̈ + 𝑎𝒙̇ + 𝑏𝒙 = 𝒖(𝒕) is stable if and only if coefficient a and b are positive definite, where a and 

b can be a constant, or a function of system states 𝐱 and/or time 𝑡 [6]. 

Now, overall dynamics of the neuro-controlled system, Eq. 4.18, is,  

 

 𝒙̈ + 𝐾𝑣𝑜(𝑒, 𝑡)𝒙̇ + 𝐾𝑝𝑜(𝑒, 𝑡)𝒙 = 𝒖(𝒕)  (4.22) 

 

with 

The overall system position feedback 𝐾𝑝𝑜(𝑒, 𝑡) = 1 + 𝑎2(𝑥1
2 + 𝑥2

2)2 + [85 + 50𝑒2]  

The overall system velocity feedback 𝐾𝑣𝑜(𝑒, 𝑡) = 2𝑎(𝑥1
2 + 𝑥2

2) + 23 exp[−5𝑒2]  
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𝐾𝑝𝑜(𝑒, 𝑡) and 𝐾𝑣𝑜(𝑒, 𝑡) are positive definite for any values of error 𝑒(𝑡) and states 𝑥1, 𝑥2 and the 

stability of our designed neuro-controlled system Eq. 4.22 is guaranteed according to the 

dynamic Routh’s stability criterion.  

 

Example 4.4: 

 

 Consider a nonlinear time-invariant second-order system with an input 𝑢(𝑡) is presented 

by 

 

 𝑥1̇ = 𝑥2  

(4.23) 

 𝑥2̇ = −(sin 𝑥1)𝑥2 + 𝑥3  

 𝑥3̇ = −(30 + 𝑥2
2)𝑥1 − (17 + 𝑥1

2)𝑥2 − 8𝑥3 + 𝑢(𝑡)  

and the output,  

 𝑦 = 5𝑥1 + 𝑥2  

 

where 𝑥1 = 𝑥, 𝑥2 = 𝑥̇, and 𝑥3 = 𝑥̈ are the states of the dynamic system. 𝑦 is the output. The 

system matrix 𝐀(𝐱, 𝑡) = [

0 1 0
0 −sin 𝑥1 1

−(30 + 𝑥2
2) −(17 + 𝑥1

2) −8
]. The input matrix 𝐁(𝑡) = [

0
0
1
], and 

the output matrix 𝐂(𝐱, 𝑡) = [5 1 0]. The state 𝑥1 and 𝑥2 dependent nonlinear elements in the 

system matrix 𝐀(𝐱, 𝑡) create the nonlinearity. The equivalent block diagram is, 

 

 

 

Fig 4.26. The block diagram representation of the state-space model of the nonlinear dynamic 

system defined by Eq. 4.23. 
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The input-output relationship regarding the 𝑔 −transfer matrix of the nonlinear system, 

Eq. 4.23, is given by 

 

 
y(𝑡) = [

𝑔 + 5

𝑔3 + (8 + sin 𝑥1)𝑔2 + (17 + 𝑥1
2 + 8 sin 𝑥1)𝑔 + (30 + 𝑥2

2)
] u(𝑡) (4.24) 

 

Solving the numerator of Eq. 4.24 for 𝑔 gives the dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 −

𝐀(𝐱, 𝑡)) = 0 of the nonlinear system, Eq. 4.23. This nonlinear system has three dynamic poles, 

two of them are conjugate, and a dynamic zero in the complex 𝑔 −plane. 

 

The neuro-controller parameters are determined according to the design procedure 

described in Section 4.2 and 4.3. The position feedback 𝐾𝑝(𝑒, 𝑡), the velocity feedback 𝐾𝑣(𝑒, 𝑡) 

and the acceleration feedback 𝐾𝑎(𝑒, 𝑡) of the neuro-controller are, 

 

 𝐾𝑝(𝑒, 𝑡) = 650 + 600𝑒2  

(4.25)  𝐾𝑣(𝑒, 𝑡) = 250exp[−6𝑒2]  

 𝐾𝑎(𝑒, 𝑡) = 25 + 𝑒2  

 

When error 𝑒(𝑡) is large, the neuro-controlled ensures that the overall system has a higher 

𝐾𝑝(𝑒, 𝑡) and lower 𝐾𝑣(𝑒, 𝑡), or vice versa. Acceleration feedback 𝐾𝑎(𝑒, 𝑡) ensures initial higher 

acceleration for large error 𝑒(𝑡). 𝐾𝑝(𝑒, 𝑡), 𝐾𝑣(𝑒, 𝑡) and 𝐾𝑎(𝑒, 𝑡) settles themselves to a final 

steady-state value of 𝐾𝑝𝑓 = 650, 𝐾𝑣𝑓 = 250 and 𝐾𝑎𝑓 = 25, respectively. Gain constant 𝛼 =

600, 𝛽 = 6, and 𝛾 = 1 determine the rate of increasing or decreasing of 𝐾𝑝(𝑒, 𝑡), 𝐾𝑣(𝑒, 𝑡) and 

𝐾𝑎(𝑒, 𝑡), respectively. A detail of the Simulink model is given in Appendix C (Figure C.4). 

 

The neuro-controlled system response to a step input is shown in Figure 4.27. The rise 

time 𝑇𝑟 = 0.14s and the settling time 𝑇𝑠 = 0.31s. For 𝑡 = 0s, the conjugate dynamic poles are 

located at 0.28 ± 𝑗6.07, and the final locations are at −5.26 + 𝑗1.58. The third dynamic pole 

moves from −34.5 to −22.4 on the real axis of the complex 𝑔 −plane, and the dynamic zero is 

located at −5. A three-dimensional sketch of the dynamic pole motion of the overall system with 
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the increase of time 𝑡 and decrease of the error 𝑒(𝑡) in the complex 𝑔 −plane is plotted in Figure 

4.28. The arrowhead indicates the decreased value of the error 𝑒(𝑡). 

 

 

 

Figure 4.27. The neuro-controlled response of the system defined by Eq. 4.23 to a unit step input. 

The rise time 𝑇𝑟 = 0.19s and the settling time 𝑇𝑠 = 0.49s. The neuro-controller parameters are 

 𝐾𝑝𝑓 = 650, 𝐾𝑣𝑓 = 250, 𝐾𝑎𝑓 = 25, 𝛼 = 18, 𝛽 = 12 and 𝛾 = 1. The green dotted line is the 

system error 𝑒(𝑡). 
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Figure 4.28. The dynamic pole motion of the neuro-controlled system defined by Eq. 4.23 in the 

complex 𝑔 −plane. 

 

A two-dimensional projection of the three-dimensional dynamic root locus Figure 4.28 is shown 

in Figure 4.29. 

 

 

 

Figure 4.29. A two-dimensional projection of Figure 4.28. When 𝑡 = 0s, the conjugate dynamic 

poles are located at 0.28 ± 𝑗6.07, and the final locations are at −5.26 + 𝑗1.58. The third 

dynamic pole moves from −34.5 to −22.4 on the real axis of the complex 𝑔 −plane. 

 

 Figure 4.30 plots the position feedback 𝐾𝑝(𝑒, 𝑡) and the velocity feedback 𝐾𝑣(𝑒, 𝑡) 

regarding the system error 𝑒(𝑡). 
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Figure 4.30. The neuro-controller parameters plot to the system error 𝑒(𝑡). (i) The position 

feedback 𝐾𝑝(𝑒, 𝑡) vs. error 𝑒(𝑡), and (ii) velocity feedback 𝐾𝑣(𝑒, 𝑡) vs. error 𝑒(𝑡). 

  

Figure 4.31 is showing the relationship of the dynamic natural frequency 𝜔𝑛(𝑡) and the 

dynamic damping ratio 𝜉(𝑡) of the neuro-controlled system with the increase of time 𝑡. Figure 

4.32 gives the plot of the dynamic damping ratio 𝜉(𝑡) of the overall system regarding the system 

error 𝑒(𝑡) and time 𝑡. When time 𝑡 = 0s, dynamic damping ratio is 𝜉(𝑡) = −0.046, and the 

neuro-controlled system follows an under-damped system to get a fast response. As the error 

𝑒(𝑡) decreases and time 𝑡 increases, the dynamic damping ratio 𝜉(𝑡) also increases and the 

dynamic bandwidth 𝜔𝐵𝑊(𝑡) decreases to achieve a zero overshoot 𝑀𝑝 = 0% in the response. At 

𝑡 = 2s, dynamic damping ratio is 𝜉(𝑡) =0.957. 
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Figure 4.31. A graphical representation of the natural frequency 𝜔𝑛(𝑡) vs. damping ratio 𝜉(𝑡) 

with the increase of time 𝑡 of the system defined by Eq. 4.23 with a neuro-controller. 

 

 

 

Figure 4.32. The dynamic damping ratio 𝜉(𝑡) vs. error 𝑒(𝑡) and time 𝑡 of the system defined by 

Eq. 4.23 with a neuro-controller. 

 

The variation of the bandwidth of the overall system 𝜔𝐵𝑊(𝑡) at time 𝑡 is shown in Figure 

4.33. Figure 4.33(a) displays the overall system bandwidth for three different time 𝑡 = 0.0s, 𝑡 =

0.07s and 𝑡 = 0.2s. As error 𝑒(𝑡) decreases, the dynamic damping ratio 𝜉(𝑡) increases. Because 

of the inverse relationship among the damping ratio and the bandwidth, the dynamic bandwidth 

𝜔𝐵𝑊(𝑡) will decrease with the increase of the dynamic damping ratio 𝜉(𝑡). For example, at time 

𝑡 = 0.0s, 𝑡 = 0.07s, and 𝑡 = 0.2s, the overall system has a bandwidth 𝜔𝐵𝑊 = 9.5 rad/s, 𝜔𝐵𝑊 =

8.1 rad/s, and 𝜔𝐵𝑊 = 3.7 rad/s, respectively. Figure 4.16(c) presents a three-dimensional 

magnitude frequency response plot of the overall neuro-controlled system. 
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(a) The bandwidth 𝜔𝐵𝑊(𝑡) of the neuro-controlled system at 𝑡 = 0.0s, 𝑡 = 0.07s and 𝑡 =

0.2s. 

 

 

(b) Three-dimensional sketch of the dynamic magnitude frequency response. 

 

Figure 4.33. The variation of the dynamic bandwidth 𝜔𝐵𝑊(𝑡) of the overall system at each time 

interval of the overall neuro-controlled system Eq. 4.23. 

 

The neuro-controlled response for a periodic input reference 𝑢(𝑡) = sin
𝑡

2
+

1

2
sin

3

4
𝑡 +

1

2
sin 𝑡 is 

given in Figure 4.34. 
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Figure 4.34. The neuro-controlled response for a periodic input reference 𝑢(𝑡) = sin
𝑡

2
+

1

2
sin

3

4
𝑡 +

1

2
sin 𝑡 of the nonlinear system defined by Eq. 4.23. 

 

The dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0 of the overall nonlinear system is, 

 

 𝑔3 + {33 + sin 𝑥1 + 𝑒2}𝑔2 + {(17 + 𝑥1
2 + 8 sin 𝑥1) + 250exp[−6𝑒2]} 𝑔 +

{680 + 𝑥2
2 + 600𝑒2}=0 

(4.26) 

 

According to the dynamic Routh’s stability criterion, a third-order differential equation 

𝒙⃛ + 𝑎𝒙̈ + 𝑏𝒙̇ + 𝑐𝒙 = 𝒖(𝒕) is stable if and only if coefficient a, 𝑏, and c are positive definite and 

𝑎𝑏 > 𝑐. a, b and c can be a constant, or a function of system states 𝐱 and/or time 𝑡. 

The overall dynamics of the neuro-controlled system is,  

 

 𝒙⃛ + 𝑘𝑎𝑜(𝑒, 𝑡)𝒙̈ + 𝐾𝑣𝑜(𝑒, 𝑡)𝒙̇ + 𝐾𝑝𝑜(𝑒, 𝑡)𝒙 = 𝒖(𝒕)  (4.27) 

 

with 

The overall system position feedback 𝐾𝑝𝑜(𝑒, 𝑡) = 680 + 𝑥2
2 + 600𝑒2  

The overall system velocity feedback 𝐾𝑣𝑜(𝑒, 𝑡) = (17 + 𝑥1
2 + 8 sin 𝑥1) + 250exp[−6𝑒2]}  

The overall system acceleration feedback 𝐾𝑎𝑜(𝑒, 𝑡) = 33 + sin 𝑥1 + 𝑒2  
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It is visible that 𝐾𝑝𝑜(𝑒, 𝑡), 𝐾𝑣𝑜(𝑒, 𝑡) and 𝐾𝑎𝑜(𝑒, 𝑡), are positive definite for any values of error 

𝑒(𝑡) and system states 𝑥1 and 𝑥2. When 𝑒 → 0, 𝑘𝑎𝑜 × 𝑘𝑣𝑜 > 𝑘𝑝𝑜 and stability of our designed 

neuro-controlled system of the nonlinear equation, Eq. 4.23, is guaranteed according to the 

dynamic Routh’s stability criterion.  

 

4.5 Summary 

 

 In this Chapter, a dynamic pole motion in the complex 𝑔 −plane based neuro-controller 

was designed for a dynamic system to achieve a faster transient response and a zero overshoot on 

the system response. The neuro-controller is a highly nonlinear controller, and the controller 

parameters are the position feedback 𝐾𝑝(𝑒, 𝑡), and the velocity feedback 𝐾𝑣𝑜(𝑒, 𝑡). 𝐾𝑝(𝑒, 𝑡) and 

𝐾𝑣(𝑒, 𝑡) are a function of the system error 𝑒(𝑡), and various types of possible functions are given 

at Table 4.1. 𝐾𝑝(𝑒, 𝑡) controls the speed of the response, whereas 𝐾𝑣(𝑒, 𝑡) controls the brake. The 

concepts of a neuro-controller were illustrated with the help of four numerical examples.  

 The neuro-controlled response is very faster without overshoot compared to the 

uncontrolled response in those four examples. A neuro-controller ensures a smaller damping 

ratio 𝜉(𝑡) with a larger bandwidth 𝜔𝐵𝑊(𝑡) for a large error 𝑒(𝑡), and a larger damping ratio 𝜉(𝑡) 

with a smaller bandwidth 𝜔𝐵𝑊(𝑡) for a small error 𝑒(𝑡). 

 Finally, the stability of the designed neuro-controlled systems was established by 

applying the dynamic Routh’s stability criterion. 
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Chapter 5 

Concluding Remarks and Future Work 

 

 

5.1 Overview and Conclusions 

 

In this thesis, the concepts of dynamic poles, dynamic characteristic equation, dynamic 

Routh’s stability criterion, dynamic Bode and Nyquist plots, for the stability analysis and the 

neuro-controller design of nonlinear systems, are presented. A dynamic Nyquist criterion is 

developed to analyze the relative stability as well as the frequency domain characteristics. This 

research leads us to originate a unifying novel methodology based upon pole motion for the 

stability analysis and the design of feedback controllers for both linear and nonlinear systems. 

 

A comprehensive numerical analysis is presented. System characteristics, e.g., the 

stability of the system and the quality of the response, depends on the location of dynamic 

dominant poles in the complex 𝑔 −plane. Besides, the location of the dynamic poles in the 

complex 𝑔 −plane is a function of system parameters, e.g., system states 𝐱. The system states 𝐱 

depend on time 𝑡 implicitly and the input signal 𝐮(𝑡) explicitly. The input signal 𝐮(𝑡) is a 

function of amplitude and frequency. Thus, time 𝑡, the system states 𝐱, and the input signal 𝐮(𝑡) 

are responsible for the stability and the quality of response of a nonlinear dynamic system.  

 

The accomplishments of this thesis are summarized below: 

 

(1) A mathematical background on the representation of a nonlinear system and their 

characteristics in the complex 𝑔 −plane are presented in Chapter 2.  The primary work done at 

[6] is extended with the inclusion of a general state-space representation of a nonlinear system 

and its graphical representation, the derivation of the relation among the output vector 𝐲(𝑡) to the 

input vector 𝐮(𝑡) through the 𝑔 −transfer matrix, the formation of the dynamic characteristic 

equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0, dynamic poles and zeros in the complex 𝑔 −plane, and the 
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sketching procedure of dynamic root locus and dynamic root contour from the dynamic 

characteristic equations. 

 

The state and output equations of any nonlinear system are represented by  

 

 𝐱̇(𝑡) = 𝐀(𝐱, 𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡) , 

𝐲(𝑡) = 𝐂(𝐱, 𝑡)𝐱(𝑡) + 𝐃(𝑡)𝐮(𝑡) 

𝐱(0) 

 
(5.1) 

 

The elements of the system matrix  𝐀(𝐱, 𝑡) are the function of states 𝐱 and/or time 𝑡. The system 

states 𝐱 are a function of input 𝐮(𝑡) in both amplitude and frequency. The state-space 

representation of a linear time-invariant system is a subset of the general state-space 

representation of a nonlinear system, Eq. 5.1. The input 𝐮(𝑡) and output 𝐲(𝑡) relation through 

the 𝑔 −transfer matrix of a nonlinear system is, 

 

 
𝐲(𝑡) = [

𝐂(𝐱, 𝑡)𝐚𝐝𝐣(𝑔𝐈 − 𝐀(𝐱, 𝑡))𝐁(𝑡) + 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡))𝐃(𝑡)

𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡))
] 𝐮(𝑡) (5.2) 

 

Solving the denominator of the 𝑔 −transfer matrix for 𝑔 gives the location of dynamic poles in 

the complex 𝑔 −plane whereas solving the numerator gives the location of dynamic zeros. The 

dynamic roots of the dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) are [6], 

 

 𝑔(𝑡)  = 𝜎(𝑡) + 𝑗𝜔(𝑡) (5.3) 

 

where 𝜎(𝑡) and 𝑗𝜔(𝑡) are the state 𝐱 and time 𝑡 dependent real parts and imaginary parts of the 

dynamic roots 𝑔(𝑡), respectively. It is also discussed that 𝑠 (≜
𝑑

𝑑𝑡
) operator is used only for a 

linear time-invariant system and is a subset of 𝑔 operator. 𝑔 operator is applicable to linear, 

nonlinear, time-variant, or time-invariant dynamic systems, simultaneously.  

 

 Rearranging the dynamic characteristic equation 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)), 
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1 +

K(𝐱, 𝑡)(𝑔 + 𝑧1(𝐱, 𝑡))(𝑔 + 𝑧2(𝐱, 𝑡))⋯ (𝑔 + 𝑧𝑚(𝐱, 𝑡))

(𝑔 + 𝑝1(𝐱, 𝑡))(𝑔 + 𝑝1(𝐱, 𝑡))⋯ (𝑔 + 𝑝𝑛(𝐱, 𝑡))
= 0 (5.4) 

 

(𝑔 + 𝑝𝑖(𝐱, 𝑡)), 𝑖 = 1,2, … . , 𝑛, gives the locations of dynamic poles in the complex 𝑔 −plane and 

(𝑔 + 𝑧𝑘(𝐱, 𝑡)), 𝑘 = 0,1,2,… ,𝑚, gives the locations of dynamic zeros. K(𝐱, 𝑡) is the system state 

𝐱 and time 𝑡 dependent dynamic gain, and determines the path of dynamic roots in the complex 

𝑔 −plane. 

 

The dynamic root contour of a nonlinear and/or time-variant system is sketched on the 𝑔 −plane 

by varying multiple parameters, respectively, from zero to infinity.   

 

(2) The stability of a nonlinear system depends on the location of dynamic poles in the 

complex 𝑔 −plane. At least one of the dynamic poles on the right-hand side of the complex 

𝑔 −plane makes the system unstable with an increasing amplitude to the response, with a 

variation of system parameters. The dynamic poles located on the 𝑗𝜔 −axis create an oscillatory 

response, and the dynamic poles on the left-hand side create a stable equilibrium to the response.  

 

 The initial work on the construction of a dynamic Routh’s array from a dynamic 

characteristic equation, 𝐝𝐞𝐭(𝑔𝐈 − 𝐀(𝐱, 𝑡)) = 0, and the absolute stability analysis of a nonlinear 

system using the dynamic Routh’s stability criterion was carried out in [6]. The concept is 

elaborated for the relative stability analysis in the frequency domain of a nonlinear system with 

the development of the dynamic Nyquist criterion. The dynamic Nyquist and Bode plots, 

dynamic gain and phase margins are also introduced in Chapter 3. The dynamic Routh’s stability 

analysis is also applied to do a phase plane analysis of a second-order system to define the 

stability region. 

 

 Dynamic Routh’s stability criterion gives a quantitative measure of the locations and 

number of dynamic poles in the complex 𝑔 −plane. The elements of the dynamic Routh’s array 

contains the state 𝐱 and time 𝑡 dependent nonlinear terms. The stability analysis of a linear time-

invariant dynamic system using Routh’s stability criterion is a subset of the stability analysis of a 

nonlinear system having dynamic poles. 
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 The stability is guaranteed for a nonlinear system if all the elements of the first column of 

the dynamic Routh’s array have a positive non-zero value [6]. A zero at any rows of the first 

column of the dynamic Routh's array means an oscillatory dynamic pole on the 𝑗𝜔 −axis. The 

number of dynamic poles located on the right-half side of the complex 𝑔 −plane is equal to the 

number of sign changes in the first column of the dynamic Routh’s array [6].  

 

 Besides, the stability of a nonlinear dynamic system not only depends on the system 

parameters but also depends on the input signals. The input signals are a function of amplitude 

and frequency. For instance, a nonlinear is stable for low frequencies and high frequencies but 

can be unstable for a range of frequencies. 

 

 A dynamic Nyquist criterion is developed in this thesis to study the stability of the 

nonlinear systems in the frequency domain. In the frequency domain, 𝑔 ≜ 𝑗𝜔 where 𝜔 is in 

rad/s. The dynamic characteristic equation, Eq. 5.4, can also be written as 

 

 1 + 𝐋(𝑔) = 0 (5.5) 

 

where 

 
𝐋(𝑔) =

K(𝐱, 𝑡)(𝑔 + 𝑧1(𝐱, 𝑡))(𝑔 + 𝑧2(𝐱, 𝑡))⋯ (𝑔 + 𝑧𝑚(𝐱, 𝑡))

(𝑔 + 𝑝1(𝐱, 𝑡))(𝑔 + 𝑝1(𝐱, 𝑡))⋯ (𝑔 + 𝑝𝑛(𝐱, 𝑡))
 (5.6) 

 

The dynamic Nyquist criterion is stated by  

 

 A nonlinear dynamic system is stable, if the dynamic Nyquist plot of 𝑳(𝑔) encircles the 

(−1, 𝑗0) point in 𝑳(𝑔) −plane, in the clockwise direction, as many times as the number of 

dynamic poles of 𝑳(𝑔) that are in the right half of the complex 𝑔 −plane, and inside the 

encirclement, if any.  
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(3) The characteristics of a transient response of a nonlinear system also depend on the 

location of dynamic poles in the complex 𝑔 −plane. For instance, a second-order system 

response can be over-damped, under-damped, critically-damped, or undamped based on the 

location of dynamic poles in the complex 𝑔 −plane. Chapter 3 is devoted to making a more 

comprehensive descriptions and analysis of the neuro-controller design techniques primarily 

developed in [7], with the help of several nonlinear dynamic system examples. 

 

The neuro-controller determines the transient response of a system by adjusting its 

parameters to locate the dynamic poles in the complex 𝑔 −plane by changing the overall 

dynamics of the controlled system. The neuro-controller parameters are position feedback 

𝐾𝑝(𝑒, 𝑡) and velocity feedback 𝐾𝑣(𝑒, 𝑡), and they are not constant rather function of system error, 

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡).  

 

 As error changes from a large value to a small value, 𝐾𝑝(𝑒, 𝑡) is varied from a very large 

value to a small value, and simultaneously 𝐾𝑣(𝑒, 𝑡) is varied from a very small value to large 

value, letting for a larger bandwidth for a large error and a smaller bandwidth for a small error 

[7]. Various types of functions can be designed for 𝐾𝑝(𝑒, 𝑡) and 𝐾𝑣(𝑒, 𝑡) by following the design 

criteria. A typical example is,  

 

 𝐾𝑝(𝑒, 𝑡) =  𝐾𝑝𝑓 + 𝛼𝑒2(𝑡) 
(5.7) 

 𝐾𝑣(𝑒, 𝑡) = 𝐾𝑣𝑓exp (−𝛽𝑒2(𝑡)) 

 

𝛼 and 𝛽 are gain constants which determines the slope of the functions  𝐾𝑝(𝑒, 𝑡) and 𝐾𝑣(𝑒, 𝑡). 

𝐾𝑣𝑓 and 𝐾𝑝𝑓 are the final steady-state values. 

 

 A proper selection of the controller parameters 𝐾𝑝(𝑒, 𝑡) and 𝐾𝑣(𝑒, 𝑡) guarantee that the 

location of the dynamic poles is always kept on the left-hand side of the complex 𝑔 −plane 

ensuring the stability of the overall controlled system according to the dynamic Routh’s stability 

criterion, discussed in Chapter 3. 

 



123 
 

5.2 Future Works 

 

In this thesis, we have successfully established the proof-of-concept of the dynamic pole 

motion in the complex 𝑔 −plane based stability analysis and neuro-controller design through the 

modeling and simulation of some complex nonlinear dynamic systems. Some contentions can be 

undertaken to extend this research in the future. 

 

(1) We have determined the neuro-controller parameters for the systems with a known 

dynamics. Neuro-controller design can be extended for partially known dynamic 

systems with uncertain situations.  

 

(2) The dynamic pole motion based stability analysis and neuro-control concept 

presented in this thesis can be extended for the efficient optimization and control of 

the interconnected nonlinear systems with multiple numbers of feedback loops, 

which usually appears in the field of robotics, traffic, transportation, power, and 

ecosystem, etc. As the 𝑔 −transfer matrix is a summation of several rational 

functions and the dynamic poles and zeros may be unknown.  However, a systematic 

approach based on the pole motion can be carried out to study the multi-loop 

nonlinear systems.  

 

(3) Throughout this thesis, the optimization and stability properties were discussed for a 

continuous system without delays. However, the dynamic Routh’s stability criterion 

for the stability analysis and the neuro-controller design for a continuous system can 

be extended for the discrete systems and the systems with time delays, as well. 

 

(4) The theoretical studies can be applied to create an efficient and adaptive learning 

algorithm in the disciplines of neural optimization, and neuro-vision systems for their 

applications to industrial, socio-economical, group decision making and robotic 

systems. 
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(5) The neuro-controller designed in this thesis is only for single-input-single-output 

(SISO) systems. It can be propagated for multi-input-multi-output (MIMO) system, 

as well. 
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Appendix A 

Verification of Examples 

 

 

The verification of the examples presented in this thesis is done by the simulation of a 

nonlinear system. Two steps are followed. 

 

Step 1:  

(a) The nonlinear system is simulated for various inputs, e.g. a small positive step input, a 

large positive step input, a negative step input, and periodic oscillations with various 

amplitude and frequency, and output response is then plotted using Simulink software. 

(b) As nonlinear system dynamics vary with the change of system states and time, the 

location of poles will also change in the complex plane with the change of system states 

and time. The system pole locations are drawn by collecting the data from step 1(a) and 

writing codes in MATLAB software. 

Step 2:  

(a) A Dynamic characteristic equation is constructed, and dynamic root locus is plotted in the 

complex 𝑔 −plane varying system states and using the approach presented in Chapter 2. 

(b) A comparison of system response for various inputs from step 1(a) and system pole 

location plots from step 1(b) and dynamic root locus plots from step 2(a) is done. A 

uniformity of two root locus plots from step 1(b) and step 2(a), and system responses 

from step 1(a) and root locus plots from step 2(a) confirms the validity of the examples 

solved in Chapter 2 and Chapter 3, respectively. 

 

Consider a second-order nonlinear system with a nonlinear spring (12 + 𝑥), 

 

 𝑥̈ + 8𝑥̇ + (12 + 𝑥)𝑥 = 𝑢(𝑡) 

(A.1) and, output 

 𝑦 = 𝑥 
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System dynamics of this nonlinear equation change with the variation of system state 𝑥. The 

steady-state response of is a function of system states. The steady state response of this nonlinear 

system is given by 

 

 
𝑦 =

𝑢(𝑡)

12 + 𝑥
 (A.2) 

 

The state-space representation is given by 

 

 𝑥1̇ = 𝑥2 
(A.3) 

 𝑥2̇ = −(12 + 𝑥1)𝑥1 − 8𝑥2 − 𝑢(𝑡) 

 

where 𝑥1 and 𝑥2 are the system states.  

 

A.1. Simulation 

 

A.1.1. Simulation for Various Inputs 

 

 The nonlinear system Eq. (A.3) is simulated for various inputs, e.g. a small positive step 

input 𝑢(𝑡) = +50, a large positive step input 𝑢(𝑡) = +200, a negative step input 𝑢(𝑡) = −50, 

and periodic oscillations with various amplitude and frequency 𝑢(𝑡) = 75 sin 𝑡, 𝑢(𝑡) = 10 sin 𝑡, 

𝑢(𝑡) = 75sin 0.8𝑡, and output response is then plotted using Simulink software. 

 

Simulation 1: Input Step 𝑢(𝑡) =  +50 

 

 The Simulink model of the nonlinear system Eq. (A.3) with step input 𝑢(𝑡) = +50 is 

shown in Figure A.1, and the response is overdamped as shown in Figure A.2. The system has a 

stable response, and steady-state output is 3.274, as calculated from Eq. (A.2). The system states 

vary from 0~3.274. 
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Figure A.1. Simulink model of the nonlinear system Eq. (A.3) with a step input 𝑢(𝑡) = +50. 

 

 

 

Figure A.2. The overdamped response of the nonlinear system for a step input 𝑢(𝑡) = +50. 
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 As the system dynamics changes with the variation of system states, the location of poles 

in the complex plane is plotted by collecting data from Simulink simulation. The locations of the 

poles of the system in the complex plane are plotted by running the following code in MATLAB 

and taking the values of position feedback 𝐾𝑝𝑠 and velocity feedback 𝐾𝑣𝑠 to form Simulink 

model (Figure A.1). A three-dimensional plot of the location of roots is shown in Figure A.3, and 

a two-dimensional plot is given in Figure A.4. 

 

MATLAB code for drawing the root locus from Simulink model (Figure A.1): 

______________________________________________________________________________ 

clc 

kp=kps.data; %% Position feedback from simulink 

kv=kvs.data; %% velocity feedback from simulink 

x1=x1s.data; %% state x1 from simulink 

t=kps.time; 

  

%% 

for i=1:size(kv) 

    num=[1]; % num=1 

    Den=[1 kv(i) kp(i)]; %Denominator at each interval 

    G(i)=tf(num,Den); %% Transfer function at each interval 

    i=i+1;    

end 

%% 

i=1; 

for i=1:size(kv)  

    rt(i,:)=pole(G(i)); % dynamic Poles of the transfer function at each time 

interval 

    re1(i)=real(rt(i,1));% real part of the dynamic pole 1 

    im1(i)=imag(rt(i,1));% imaginary part of dynamic pole 1 

    re2(i)=real(rt(i,2));% real part of the dynamic pole 2 

    im2(i)=imag(rt(i,2)); % imaginary part of dynamic pole 2 

end 

%% 

figure(1) 

plot(re1,im1,'xr');hold on; % plot pole 1 on the complex g-plane 

plot(re2,im2,'xg');hold on; % plot pole 2 on the complex g-plane 

xlabel('\fontsize{30}\fontname{Times}\bf\sigma(t)'); 

ylabel('\fontsize{30}\fontname{Times}\bfj\omega(t)') 

grid on 

hAxis = gca; 

hAxis.XRuler.FirstCrossoverValue  = 0; % X crossover with Y axis 

hAxis.YRuler.FirstCrossoverValue  = 0; % Y crossover with X axis 
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%% 

figure(2) 

plot3(x1,re1,im1,'xr');hold on; % plot pole 1 on the 3D complex g-plane 

plot3(x1,re2,im2,'xg');hold on; % plot pole 2 on the 3D complex g-plane 

xlabel('\fontsize{20}\fontname{Times}\bfx_1(t)'); 

ylabel('\fontsize{20}\fontname{Times}\bf\sigma(t)'); 

zlabel('\fontsize{20}\fontname{Times}\bfj\omega(t)') 

grid on 

set(gca,'XDir','reverse'); 

set(gca,'YDir','reverse'); 

hAxis = gca; 

hAxis.XRuler.FirstCrossoverValue  = 0; % X crossover with Y axis 

hAxis.YRuler.FirstCrossoverValue  = 0; % Y crossover with X axis 

hAxis.ZRuler.FirstCrossoverValue  = 0; % Z crossover with X axis 

hAxis.ZRuler.SecondCrossoverValue = 0; % Z crossover with Y axis 

hAxis.XRuler.SecondCrossoverValue = 0; % X crossover with Z axis 

hAxis.YRuler.SecondCrossoverValue = 0; % Y crossover with Z axis 

 

______________________________________________________________________________ 

 

 

Figure A.3. A three-dimensional plot of the location of poles in the complex plane of the 

nonlinear system for step input 𝑢(𝑡) = +50. 
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Figure A.4. A two-dimensional projection of the three-dimensional dynamic root locus plot 

Figure A.3. 

 

It is noted that all poles are located on the left-hand side real axis of the complex plane and 

system response is overdamped as shown in Figure A.2. 

 

Simulation 2: Input Step 𝑢(𝑡) =  +200 

 

 The step input is increased to 𝑢(𝑡) = +200 as shown in Simulink model Figure A.5 and 

the response is shown in Figure A.6. The system has an underdamped response, and the steady-

state output is 9.362. The system states vary from 0~9.362. The system has complex poles in the 

left-hand side of the complex plane, and pole locations are plotted in the Figures A.7 and A.8. 
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Figure A.5. Simulink model of the nonlinear system Eq. (A.3) with a step input 𝑢(𝑡) = +200. 

 

 

Figure A.6. The underdamped response of the nonlinear system for a step input 𝑢(𝑡) = +200. 
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Figure A.7. A three-dimensional plot of the location of poles in the complex plane of the 

nonlinear system for step input 𝑢(𝑡) = +200. 

 

 

Figure A.8. A two-dimensional projection of the three-dimensional root locus Figure A.7. 
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Simulation 3: Input Step 𝑢(𝑡) = −50 

 

 The step input is decreased to 𝑢(𝑡) = −50 as shown in Simulink model Figure A.9, and 

the system response is shown in Figure A.10. The system has an unstable response, and the pole 

locations are plotted in the Figures A.11 and A.12. The system states vary from −inf  ~ 0. One 

of the system poles moves to the right-hand side of the complex plane for system state 𝑥1 <

−12. 

 

 

 

Figure A.9. Simulink model of the nonlinear system Eq. with step input 𝑢(𝑡) = −50. 
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Figure A.10. The unstable response of the nonlinear system for a step input 𝑢(𝑡) = −50. 
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Figure A.11. A three-dimensional plot of the location of poles in the complex plane of the 

nonlinear system for step input 𝑢(𝑡) = −50. 

 

 

  

Figure A.12. A two-dimensional projection of the three-dimensional root locus Figure A.11. 

 

Simulation 4: Periodic Input 𝑢(𝑡) = 75 sin 𝑡 

 

 The output response for a sinusoidal input with an amplitude A = 75 and an angular 

frequency 𝜔 = 1 rad/s, i.e., 𝑢(𝑡) = 75 sin 𝑡 is shown in Figure A.14. The Simulink model is 

shown in Figure A.13. The system states vary from −9.9~ + 4.42. The output response is stable 

and periodic but highly distorted because of the state dependency on the output response as given 

by Eq. (A.2). 
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Figure A.13. Simulink model of the nonlinear system Eq. (A.3) with an input 𝑢(𝑡) = 75 sin 𝑡. 

 

 

 

Figure A.14. The stable response of the nonlinear system for an input 𝑢(𝑡) = 75sin 𝑡. 

Input 𝑢(𝑡) = 75 sin 𝑡 

Distorted output 
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Figure A.15 gives a root locus vs. time 𝑡(𝑠) plot whereas Figure A.16 gives a root locus vs. 

system state 𝑥1 plot. The roots are on the left half of the complex plane showing the stability of 

the system for an input 𝑢(𝑡) = 75 sin 𝑡. 

 

Figure A.15. The location of poles vs. time 𝑡(𝑠) in the complex plane of the nonlinear system for 

an input 𝑢(𝑡) = 75sin 𝑡. 
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Figure A.16. The location of poles vs. system state 𝑥1 in the complex plane of the nonlinear 

system for an input 𝑢(𝑡) = 75sin 𝑡. 
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Figure A.17. A two-dimensional projection of the three-dimensional dynamic root locus Figures 

A.15 and A.16. 

 

Simulation 5: Periodic Input 𝑢(𝑡) = 10 sin 𝑡 

 

 The input amplitude is reduced to 𝐴 = 10, but the angular frequency is kept 𝜔 = 1, i.e. 

input 𝑢(𝑡) = 10 sin 𝑡. The output response is stable and periodic but less distorted compared to 

the Figure A.14 (𝑢(𝑡) = 75 sin 𝑡). The system states vary from −0.766~ + 0.712. 

 

 

 

Figure A.18. Simulink model of the nonlinear system Eq. (A.3) with an input 𝑢(𝑡) = 10 sin 𝑡. 
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Figure A.19. The stable response of the nonlinear system Eq. (A.3) for an input  𝑢(𝑡) = 10sin 𝑡. 

 

 Figure A.20 gives a root locus vs. time 𝑡(𝑠) plot whereas Figure A.21 gives a root locus 

vs. system state 𝑥1 plot. The roots are on the left-hand side real axis of the complex plane 

showing the stability of the system for an input 𝑢(𝑡) = 10sin 𝑡. 

 

 

Input 𝑢(𝑡) = 10 sin 𝑡 

Less distorted output 
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Figure A.20. The location of poles vs. time 𝑡(𝑠) in the complex plane of the nonlinear system for 

an input 𝑢(𝑡) = 10sin 𝑡. 

 

Figure A.21. The location of poles vs. system state 𝑥1 in the complex plane of the nonlinear 

system for an input 𝑢(𝑡) = 10sin 𝑡. 
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Figure A.22. A two-dimensional projection of the three-dimensional dynamic root locus Figures 

A.20 and A.21. 

 

Simulation 6: Periodic Input 𝑢(𝑡) = 75 sin 0.8𝑡 

 

 The input amplitude is kept constant 𝐴 = 75, but the angular frequency is reduced to 

𝜔 = 0.8, i.e. 𝑢(𝑡) = 75 sin 0.8𝑡. The output response is unstable is shown in Figure A.24, 

because of the low pass filter effect of the nonlinear system. The roots move to the right-hand 

side of the complex plane showing the unstable condition in Figures A.25, A.26, and A.27. The 

system states vary from −inf~ + 04.47. 

 

 

 

Figure A.23. Simulink model of the nonlinear system Eq. (A.3) with an input 𝑢(𝑡) = 75sin 0.8𝑡. 
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Figure A.24.  The unstable response of the nonlinear system Eq. (A.3) for an input 𝑢(𝑡) =

75sin 0.8𝑡. 

 

 

Input 𝑢(𝑡) = 75 sin 0.8𝑡 

Unstable output 
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Figure A.25. The location of poles vs. time 𝑡(𝑠) in the complex plane of the nonlinear system for 

an input 𝑢(𝑡) = 75sin 0.8𝑡. 

 

Figure A.26. The location of poles vs. system state 𝑥1 in the complex plane of the nonlinear 

system for an input 𝑢(𝑡) = 75sin 0.8𝑡. 
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Figure A.27. A two-dimensional projection of a three-dimensional dynamic root locus plots 

Figures A.25 and A.26. 

 

 

A.1.2. Dynamic Characteristic Equation and Dynamic Root Locus Plot 

 

 In this section, the dynamic characteristic equation of the nonlinear system is constructed, 

and dynamic root locus is plotted according to the dynamic root locus drawing techniques 

presented at Chapter 2. A dynamic Routh’s table as given in Chapter 3 is then created to show 

the stability region. The results are then compared with the simulation results presented at 

Section A.1.1 to show the validity of the proposed stability approach. 

 

According to the techniques presented in Section 2.2, the dynamic characteristic equation of the 

nonlinear system Eq. (A.3) is  

 

 𝑔2 + 8𝑔 + (12 + 𝑥1) = 0  (A.4) 

 

The dynamic Routh’s table is given by 

 

 𝑔2 1 12 + 𝑥1 

 𝑔1 8 0 

 𝑔0 12 + 𝑥1 0 
 

(A.5) 

 

According to the dynamic Routh’s criterion presented in Chapter 3, the nonlinear system Eq. 

(A.3) is stable, if and only if 12 + 𝑥1 > 0, or, 𝑥1 < −12. 

 

Rearranging Eq. (A.4), 

 

 1 +
𝑥1

𝑔2 + 8𝑔 + 12
= 0 (A.6) 
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or, 

 

 1 +
𝑥1

(𝑔 + 2)(𝑔 + 6)
= 0 (A.7) 

 

As given in Section 2.3, the dynamic root locus starts from 𝑔1,2 = −2 & − 6, and the dynamic 

pole locations are changed in the complex 𝑔 −plane with the variation of system states 𝑥1.   

 

The MATLAB code for drawing the dynamic root locus from the dynamic characteristic 

equation Eq. (A.6) varying system state 𝑥1 is given below: 

______________________________________________________________________________ 

clc 

clear all 

i=1; 

for x1=0:.01:3.27 %% value of system state x1 

    rt(i,:)=roots([1 8 (x1+12)]); %% dynamic roots of the dynamic 

characteristic equation 

    re1(i)=real(rt(i,1)); %% real part of the dynamic pole 1 

    im1(i)=imag(rt(i,1)); %  imaginary part of the dynamic pole 1 

    re2(i)=real(rt(i,2)); %  real part of the dynamic pole 2 

    im2(i)=imag(rt(i,2)); %  imaginary part of the dynamic pole 1 

    y(i)=x1; 

    i=i+1;    

end 

  

figure(1) 

plot3(y,re1,im1,'rx');hold on; % plot dynamic pole 1 on the 3D complex g-

plane 

plot3(y,re2,im2,'gx');hold on; % plot dynamic pole 2 on the 3D complex g-

plane 

xlabel('\fontsize{20}\fontname{Times}\bf\itx_1'); 

ylabel('\fontsize{20}\fontname{Times}\bf\sigma(t)'); 

zlabel('\fontsize{20}\fontname{Times}\bfj\omega(t)') 

grid on 

set(gca,'XDir','reverse'); 

set(gca,'YDir','reverse'); 

hAxis = gca; 

hAxis.XRuler.FirstCrossoverValue  = 0; % X crossover with Y axis 

hAxis.YRuler.FirstCrossoverValue  = 0; % Y crossover with X axis 

hAxis.ZRuler.FirstCrossoverValue  = 0; % Z crossover with X axis 

hAxis.ZRuler.SecondCrossoverValue = 0; % Z crossover with Y axis 

hAxis.XRuler.SecondCrossoverValue = 0; % X crossover with Z axis 

hAxis.YRuler.SecondCrossoverValue = 0; % Y crossover with Z axis 
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%% 

figure(2) 

plot(re1,im1,'rx');hold on; % plot pole 1 on the complex g-plane 

plot(re2,im2,'gx');hold on; % plot pole 2 on the complex g-plane 

xlabel('\fontsize{20}\fontname{Times}\bf\sigma(t)'); 

ylabel('\fontsize{20}\fontname{Times}\bfj\omega(t)') 

grid on 

hAxis = gca; 

hAxis.XRuler.FirstCrossoverValue  = 0; % X crossover with Y axis 

hAxis.YRuler.FirstCrossoverValue  = 0; % Y crossover with X axis 

 

______________________________________________________________________________ 

 

 

Simulation 7: Dynamic Root Locus Plot for 𝑥1 = 0~3.274 

 

 For a step input 𝑢(𝑡) = +50, the system states vary from 0~3.274 (Section A.1.1 

Simulation 1). A three-dimensional dynamic root locus of the characteristic equation 𝑔2 + 8𝑔 +

(12 + 𝑥1) = 0 is shown in Figure A.28 varying system state 𝑥1 from 0~3.274. The horizontal 

axis is the real axis 𝝈(𝒕), the vertical axis is the imaginary axis 𝒋𝝎(𝒕), and the third axis 

represents the system state 𝑥1. The dynamic poles are on the real axis of the left-hand side of the 

complex 𝑔 −plane, similar to the root locus drawing at Section A.1.1 Simulation 1. 
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Figure A.28. A three-dimensional dynamic root locus of the characteristic equation 𝑔2 + 8𝑔 +

(12 + 𝑥1) = 0  varying the system state 𝑥1 from 0~3.274. 
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Figure A.29. A two-dimensional projection of a three-dimensional dynamic root locus plot 

Figure A.28 varying the system state 𝑥1 from 0~3.274. 

 

 The Dynamic root locus starts from 𝜎(𝑡) = −2 and (𝑡) = −6, and as system states, 𝑥1 

increases dynamic poles move towards each other, and they are located on the real axis similar to 

Figure A.4 at Section A.1.1. Nonlinear dynamic system response is overdamped. 

 

Simulation 8: Dynamic Root Locus Plot for 𝑥1 = 0~9.362 

 

 For a step input 𝑢(𝑡) = +200, the system states vary from 0~9.362 (Section A.1.1 

Simulation 2). A three-dimensional dynamic root locus of the characteristic equation 𝑔2 + 8𝑔 +

(12 + 𝑥1) = 0 varying System state 𝑥1 from 0~9.362 is shown in Figure A.30. The horizontal 

axis is the real axis 𝝈(𝒕), the vertical axis is the imaginary axis 𝒋𝝎(𝒕), and the third axis 

represents the system state 𝑥1. The dynamic poles are on the left-hand side of the complex 

𝑔 −plane, similar to the root locus drawing at Section A.1.1 Simulation 2. 
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Figure A.30. A three-dimensional dynamic root locus of the characteristic equation 𝑔2 + 8𝑔 +

(12 + 𝑥1) = 0  varying System state 𝑥1 from 0~9.362. 

 

 

Figure A.31. A two-dimensional projection of a three-dimensional dynamic root locus Figure 

A.30. 

 

 

 The dynamic root locus starts from 𝝈(𝒕) = −2 and 𝝈(𝒕) = −6, and as system states 𝑥1 

increases dynamic poles moves towards each other and creates a breakaway point at 𝝈(𝒕) = −4 

on the real axis similar to Figures A.7 and A.8 at Section A.1.1 Simulation 2. Nonlinear dynamic 

system response is an underdamped system.  

 

Simulation 9: Dynamic Root Locus Plot for 𝑥1 = −inf~0  

 

 For a step input 𝑢(𝑡) = −50, the system states vary from −inf~0 (Section A.1.1 

Simulation 3). A three-dimensional dynamic root locus of the characteristic equation 𝑔2 + 8𝑔 +

(12 + 𝑥1) = 0 varying System state 𝑥1 from −400~0 is shown in Figure A.32. The horizontal 
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axis is the real axis 𝝈(𝒕), the vertical axis is the imaginary axis 𝒋𝝎(𝒕), and the third axis 

represents the system state 𝑥1. 

 

 

Figure A.32. A three-dimensional dynamic root locus of the dynamic characteristic equation 

𝑔2 + 8𝑔 + (12 + 𝑥1) = 0  varying the system state 𝑥1 from -400~0. 

 

 

Figure A.33. A two-dimensional projection of the three-dimensional dynamic root locus Figure 

A.32. 
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The dynamic root locus starts from 𝝈(𝒕) = −2 and 𝝈(𝒕) = −6,  and as system states 𝑥1 

decreases dynamic poles moves from each other and crosses the imaginary axis for 𝑥1 = −12 on 

the real axis similar to Figures A.11 and A.12. Nonlinear dynamic system response is unstable. 

 

Simulation 10: Dynamic Root Locus Plot for 𝑥1 = −9.9~ + 4.42  

 

 For a periodic input 𝑢(𝑡) = 75 sin 𝑡 , the system states vary from −9.9~ + 4.42 (Section 

A.1.1 Simulation 4). A three-dimensional dynamic root locus of the characteristic equation 𝑔2 +

8𝑔 + (12 + 𝑥1) = 0 varying system state 𝑥1 from −9.9~ + 4.42 is shown in Figure A.34. The 

horizontal axis is the real axis 𝝈(𝒕), the vertical axis is the imaginary axis 𝒋𝝎(𝒕), and the third 

axis represents the system state 𝑥1. 

 

 

Figure A.34. A three-dimensional dynamic root locus of the dynamic characteristic equation 

𝑔2 + 8𝑔 + (12 + 𝑥1) = 0  varying the system state 𝑥1 from −9.9~ + 4.42. 
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Figure A.35. A two-dimensional projection of the three-dimensional dynamic root locus Figure 

A.33. 

 

The dynamic poles oscillate on the real axis and are kept on the left-hand side of the complex 

𝑔 −plane similar to Figures A.15, A.16, and A.17. Nonlinear dynamic system response is stable.  

 

Simulation 11: Dynamic Root Locus Plot for 𝑥1 = −0.766~ + 0.712   

 

 For a periodic input 𝑢(𝑡) = 10 sin t, the system states vary from −0.766~ + 0.712 

(Section A.1.1 Simulation 5). A three-dimensional dynamic root locus of the characteristic 

equation 𝑔2 + 8𝑔 + (12 + 𝑥1) = 0 varying system state 𝑥1 from −0.766~ + 0.712 is shown in 

Figures A.35 and A.36. 
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Figure A.36. A three-dimensional dynamic root locus of the dynamic characteristic equation 

𝑔2 + 8𝑔 + (12 + 𝑥1) = 0  varying the system state 𝑥1 from −0.766~ + 0.712 . 
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Figure A.37. A two-dimensional projection of the three-dimensional dynamic root locus Figure 

A.35. 

 

The value for the system states 𝑥1 varies from −0.766~ + 0.712 the dynamic poles are kept on 

the left-hand side of the complex 𝑔 −plane and the real axis similar to Figures A.20, A.21, and 

A.22. Nonlinear dynamic system response is stable.  

 

Simulation 12: Dynamic Root Locus Plot for 𝑥1 = −inf~ + 04.47    

 

 For a periodic input 𝑢(𝑡) = 75 sin 0.8t , the system states vary from −inf~ + 04.47 

(Section A.1.1 Simulation 6). A three-dimensional dynamic root locus of the characteristic 

equation 𝑔2 + 8𝑔 + (12 + 𝑥1) = 0 varying system state 𝑥1 from −20~ + 4.47 is shown in 

Figure A.37. For 𝑥1 < −12, one of the dynamic poles moves to the right-hand side of the 

complex 𝑔 −plane and the nonlinear system Eq. (A.3) becomes unstable.  

 

 

Figure A.38. A three-dimensional dynamic root locus of the dynamic characteristic equation 

𝑔2 + 8𝑔 + (12 + 𝑥1) = 0  varying the system state 𝑥1 from −20~ + 4.47. 
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 From the above discussion, it can be concluded that the performance of a nonlinear 

system, i.e. stability and transient response depends on the system states. System states are a 

function of the input signal, and the input signal is a function of amplitude and frequency. So, 

nonlinear system performance depends on the amplitude and frequency of the input signal 𝑢(𝑡).   

 

 At Section A.1.1, a nonlinear system represented by 𝑥̈ + 8𝑥̇ + (12 + 𝑥) = 𝑢(𝑡) is 

simulated for various inputs, e.g. a small positive step input 𝑢(𝑡) = +50, a large positive step 

input 𝑢(𝑡) = +200, a negative step input 𝑢(𝑡) = −50, and a periodic oscillations with various 

amplitude and frequency 𝑢(𝑡) = 75 sin 𝑡, 𝑢(𝑡) = 10 sin 𝑡, 𝑢(𝑡) = 75sin 0.8𝑡, and the output 

response is then plotted using the Simulink software. At Section A.1.2, a dynamic characteristic 

equation is constructed, and dynamic root locus is plotted in the complex 𝑔 −plane varying 

system states using the approach presented in Chapter 2. The nonlinear system responses and the 

system pole location plot from Section A.1.1, and the dynamic root locus plot from Section A.1.2 

is identical, and a uniformity confirms the validity of the examples solved in this thesis. 

 

 



157 
 

Appendix B 

Linearization vs. Dynamic Pole Motion Approach 

 

 

 Linearization of a nonlinear system to an operating point is an approximate model of a 

nonlinear system, and it gives a good estimate when the perturbations around the operating point 

is very small or the system is almost linear [2]. But linearization fails to give the correct result 

always e.g. a highly nonlinear system where a small perturbation can create a large displacement 

or if perturbations are not small. But the dynamic pole motion approach, presented in Chapters 2 

and 3, give the exact scenario of the system performance. 

 

Consider the example from Appendix A, Eq. (A.1), again, 

 

 𝑥̈ + 8𝑥̇ + (12 + 𝑥)𝑥 = 𝑢(𝑡) 

(B.1) and, output 

 𝑦 = 𝑥 

 

The state-space representation is given by 

 

 𝑥1̇ = 𝑥2 
(B.2) 

 𝑥2̇ = −(12 + 𝑥1)𝑥1 − 8𝑥2 − 𝑢(𝑡) 

 

where 𝑥1 and 𝑥2 are the system states.  

 

For 𝑢(𝑡) = +50, the equilibrium point is (𝑥1, 𝑥2) = (3.2736,0). The linearized model of the 

nonlinear system Eq. (B.2) on the equilibrium point (3.2736,0) is, 

 

 
[
𝛿𝑥1

𝛿𝑥2
] = 𝐀 [

𝛿𝑥1

𝛿𝑥2
] + 𝐁 𝛿𝑢 

(B.3) 

and, output 
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𝑦 = 𝐂 [

𝛿𝑥1

𝛿𝑥2
] + 𝐃 𝛿𝑢 

 

where, the linearized system matrix 𝐴 = [
0 1

−18.5472 −8
], the linearized input matrix 𝐵 = [

0
1
], 

the linearized output matrix 𝐶 = [1 0], and the linearized feed-forward matrix 𝐷 = [0]. 

 

The MATLAB code for performing the linearization is: 

______________________________________________________________________________ 

clc 

clear 

syms x1 x2 u 

f1=x2;                 %% x1dot= x2 

f2=-(12+x1)*x1-8*x2+u; %% x2dot= -(12+x1)*x1-8*x2+u 

g1=x1;                 %% y=x1 

g2=0; 

A=jacobian([f1,f2],[x1,x2]) %% Jacobian of system matrix A 

B=jacobian([f1,f2],[u]);%% Jacobian of input matrix B 

C=jacobian([g1,g2],[x1]);C=C'; %%Jacobian of output matrix C 

D=jacobian([g1 g2],[u]);D=D'; %%Jacobian of feed-forward matrix D 

  

x1=3.2736  %% Equilibrium point 

A=eval(A)  %% Evaluate matrix A at Equilibrium 

 

 

And the output is: 
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 The linearized model is simulated the operating point 𝑢(𝑡) = +50, and at the operating 

point it gives the same steady-state output as the nonlinear system as shown in Figure B.2. The 

Simulink model is given in the Figure B.1. 
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Figure B.1. Simulink model of the nonlinear system Eq. (B.2) and its linearized model Eq. (B.3) 

at the operating point 𝑢(𝑡) = +50. 
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Figure B.2. The output of the nonlinear system Eq. (B.2) and its linearized model Eq. (B.3) at the 

operating point 𝑢(𝑡) = +50. 

 

 The location of the poles of the linearized model and the locations of the dynamic poles 

of the actual nonlinear system is given in the Figure B.3. The linearized model has a complex 

pole whereas the original system has a dynamic real pole on the complex 𝑔 −plane. The pole 

location of the linearized model is fixed but for the actual nonlinear system, it moves with the 

change system states. 

Linearized system response 

Actual nonlinear system response 
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Figure B.3. The pole locations of the nonlinear system Eq. (B.2) and its linearized model Eq. 

(B.3) at the operating point 𝑢(𝑡) = +50. 

 

 When the perturbation increases, the error of the output of the linearization model than 

the actual nonlinear system also increases. For example, Figure B.4 shows the output response of 

the linearized model and the actual nonlinear system for a small perturbation 𝛿𝑢 = 0.5 i.e. 

𝑢(𝑡) = +50.5. 

 

Linearized system response 

Actual nonlinear system response 

Linearized system Poles 

Actual nonlinear system 

dynamic poles 
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Figure B.4. The output of the nonlinear system Eq. (B.2) and its linearized model Eq. (B.3) with 

a step input 𝑢(𝑡) = +50.5. 

 

 The location of the poles of the linearized model does not depend on the system states or 

input. So for a certain input, the linearized system may be stable, i.e., poles are on the left-hand 

side of the complex plane, but the actual nonlinear system could be unstable, i.e., it may have 

unstable dynamic poles on the right-hand side of the complex 𝑔 −plane. For example, when 

input 𝑢(𝑡) = −50, the linearized model is stable as shown in Figure B.5 but the actual nonlinear 

system is unstable. 

 

 

 

Figure B.5. The output of the nonlinear system Eq. (B.2) and its linearized model Eq. (B.3) with 

a step input 𝑢(𝑡) = −50. 

 

 The pole locations of the linearized model and the nonlinear system for a step input 

𝑢(𝑡) = −50 is shown in Figure B.6. The poles of the linearized model are on the right hand side 

Actual nonlinear system response 

Linearized system response 
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of the complex 𝑔 −plane, but the actual nonlinear system has an unstable dynamic poles as 

shown in Figure B.5. 

 

Figure B.6. The dynamic pole locations of the nonlinear system Eq. (B.2), and its linearized 

model Eq. (B.3) for a step input 𝑢(𝑡) = −50. 

 

 From the above discussion, it is clear that linearization of a nonlinear system gives an 

approximate result on system performances whereas the dynamic pole motion approach gives the 

exact scenario of the system performances.  

 

  

Linearized system Poles 

Actual nonlinear system 

dynamic poles 
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Appendix C 

Details of the Simulink Models 

The neuro-controller is a highly nonlinear error-based adaptive controller. A neuro-

controller learns from the overall response and adapts its parameters to get the best overall 

response. For a large initial error, the overall system exhibits an under-damped and a fast 

transient response, while for a small error, the overall system exhibits an over-damped and a zero 

overshoot transient response.  

The details of the Simulink models of the examples in Chapter 4 are presented here. 

Example 4.1 

𝑥̈ + 2𝑥̇ + 6𝑥 = 6𝑢(𝑡) (C.1) 

The position feedback 𝐾𝑝(𝑒, 𝑡) and velocity feedback 𝐾𝑣(𝑒, 𝑡) of the neuro-controller are,

𝐾𝑝(𝑒, 𝑡) = 40(1 + 18𝑒2)
(C.2) 

𝐾𝑣(𝑒, 𝑡) = 6.5 exp[−12𝑒2]

The Simulink model is given in Figure C.1. 

Example 4.2 

𝑥̈ + (1 − 𝑥2)𝑥̇ + 𝑥 = 𝑢(𝑡) (C.3) 

The position feedback 𝐾𝑝(𝑒, 𝑡) and velocity feedback 𝐾𝑣(𝑒, 𝑡) of the neuro-controller is,

𝐾𝑝(𝑒, 𝑡) = 24 + 150 × 𝑒2

(C.4) 
𝐾𝑣(𝑒, 𝑡) = 12 exp[−40𝑒2] + 𝑥1

2
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The Simulink model is given in Figure C.2. 

Example 4.3: 

𝑥1̇ = 𝑥2 − 𝑎𝑥1(𝑥1
2 + 𝑥2

2)
(C.5) 

𝑥2̇ = −𝑥1 − 𝑎𝑥2(𝑥1
2 + 𝑥2

2)

The position feedback 𝐾𝑝(𝑒, 𝑡) and the velocity feedback 𝐾𝑣(𝑒, 𝑡) of the neuro-controller is,

𝐾𝑝(𝑒, 𝑡)  = 85 + 50𝑒2

(C.6) 
𝐾𝑣(𝑒, 𝑡) = 23 exp[−5𝑒2]

The Simulink model is given in Figure C.3. 

Example 4.4: 

𝑥1̇ = 𝑥2 

(C.7) 
𝑥2̇ = −(sin 𝑥1)𝑥2 + 𝑥3

𝑥3̇ = −(30 + 𝑥2
2)𝑥1 − (17 + 𝑥1

2)𝑥2 − 8𝑥3 + 𝑢(𝑡)

𝑦 = 5𝑥1 + 𝑥2 

The position feedback 𝐾𝑝(𝑒, 𝑡), the velocity feedback 𝐾𝑣(𝑒, 𝑡) and the acceleration feedback

𝐾𝑎(𝑒, 𝑡) of the neuro-controller are, 

𝐾𝑝(𝑒, 𝑡) = 650 + 600𝑒2

(C.8) 𝐾𝑣(𝑒, 𝑡) = 250exp[−6𝑒2]

𝐾𝑎(𝑒, 𝑡) = 25 + 𝑒2

The Simulink model is given in Figure C.4. 
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