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Abstract. Ontologies are heavily used in life sciences so that there is increasing 
value to match different ontologies in order to determine related conceptual 
categories. We propose a simple yet powerful methodology for instance-based 
ontology matching which utilizes the associations between molecular-biological 
objects and ontologies. The approach can build on many existing ontology as-
sociations for instance objects like sequences and proteins and thus makes 
heavy use of available domain knowledge. Furthermore, the approach is flexi-
ble and extensible since each instance source with associations to the ontologies 
of interest can contribute to the ontology mapping. We study several ap-
proaches to determine the instance-based similarity of ontology categories. We 
perform an extensive experimental evaluation to use protein associations for 
different species to match between subontologies of the Gene Ontology and 
OMIM. We also provide a comparison with metadata-based ontology matching.  

Keywords: Ontology matching, instance-based matching, match evaluation 

1 Introduction 

Ontologies become increasingly important in life sciences application domains. Typi-
cally, they are used to semantically describe molecular-biological objects, e.g., to 
annotate genes and proteins with information on the functions and processes they are 
involved in. Ontologies also provide controlled vocabularies for a uniform naming of 
concepts to help reduce variations in terminology. Within an ontology, concepts are 
usually interrelated with is-a and part-of relationships resulting in specialization/ 
generalization and aggregation hierarchies (trees) or complex graphs of concepts. A 
very popular ontology is the Gene Ontology (GO) consisting of three (sub-) ontolo-
gies on molecular functions, biological processes and cellular components [7]. Ge-
netic disorders are structured in Online Mendelian in Man (OMIM) [17]. 

The rapid increase in the number of life science data sources is accompanied by a 
similar growth in the number of ontologies and mappings between data sources and 
ontologies. This makes it increasingly valuable to match or align ontologies with each 
other to determine which of their concepts are semantically related. The resulting 
ontology mappings can be useful in many ways, in particular for enhanced analysis 
and annotation of genes, proteins or other objects of interest. For example, such ob-
jects may only be assigned to one particular ontology, say GO functions. An ontology 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226138875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mapping between GO functions and GO processes can then be useful to newly assign 
the objects to the second (process) ontology. Curators could thus use ontology map-
pings to find missing ontology annotations and get recommendations for possible 
ontology associations. Conversely, existing ontology associations could be validated 
against a newly determined ontology mapping in order to locate potential mis-associa-
tions reducing data quality. Ontology mappings are also helpful for explorative data 
analysis, e.g., to find objects with similar ontological properties as interesting targets 
for a comparative analysis.   

Ontology matching is a general problem not limited to life sciences and has be-
come an active research area (see Related Work section).  Most previously proposed 
approaches to determine ontology mappings are metadata-based, i.e., they use the 
ontology representations themselves to find related concepts, in particular the names 
of concepts and contextual information like the names of the predecessor and succes-
sor concepts within the ontologies. Typically, name similarity is determined using 
generic (syntactical) string similarity functions on the names. However, in the absence 
of a globally standardized naming scheme such metadata-based approaches are of 
potentially little usefulness, especially for life science applications. This is because 
the same names may refer to completely different concepts while different names may 
describe the same concept. Furthermore, the concept granularities of different ontolo-
gies may widely differ so that comparing names may easily lead to correlations be-
tween incomparable concepts. 

Figure 1 illustrates some of the problems for sample entries of the GO subontolo-
gies on molecular functions (MF) and biological processes (BP). We observe that in 
both subontologies there are highly similar concept names with partially opposite 
semantics, e.g., Ion transporter activity and Anion transport or Organic anion trans-
porter activity and Inorganic anion transport. A name-based matching between mo-
lecular functions with biological processes would probably match these concepts 
despite potentially opposite semantics, e.g., Ion vs. Anion and Organic vs. Inorganic.  
This fact is also supported by [16] showing that nearly 65% of all concepts found in 
GO subontologies contain another GO concept as a proper substring. While more 
sophisticated matchers using helper ontologies like thesauri may somewhat reduce 
these problems there is no general solution due to the inherent difficulty to agree on 
common terms and constant creation of new terms.  

We therefore advocate for instance-based match approaches which utilize existing 
associations between ontology concepts and instances, i.e., molecular–biological 
objects like proteins or genes that are described or annotated by the ontology con-
cepts. This assumes that the real semantics of a concept is often better expressed by 
such existing object associations rather than metadata like the concept name. The 
example of Figure 1 shows such associations between species-specific proteins of the 
Ensembl data source [5] and describing concepts of the GO subontologies MF and BP 
and genetic disorders (GD) of OMIM. Intuitively, we assume that two concepts of 
different ontologies are related if their associated instances overlap, i.e., when the 
same instances are associated to them. The degree of concept similarity should take 
into account the number of shared associated objects or the relative size of the in-
stance overlap.  



We make the following contributions:  
• We propose a simple yet powerful methodology for instance-based matching for 

life science ontologies utilizing existing associations between object data sources 
and ontologies. We outline several alternatives to determine the instance-based 
similarity between ontology concepts based on which the ontology mappings are 
determined. Each data source with associations to the ontologies to match can be 
used to derive a new ontology mapping. This way the domain-specific knowledge 
represented by the associations can be utilized to determine semantically meaning-
ful ontology mappings.  

• Our approach is flexible and extensible as several mappings between the same 
ontologies can be combined, e.g., mappings obtained for different data sources, 
species or similarity metrics. A combination with metadata-based match results is 
also feasible in order to improve recall and/or precision. Different ways for com-
bining ontology mappings can be employed, e.g., based on intersection or union.  

• We provide an extensive experimental evaluation for matching real ontologies, 
namely the three GO subontologies and OMIM, based on instance data for three 
species (human, mouse, rat). We consider direct associations between instances 
and concepts as well as indirect associations which take intra-ontology relation-
ships into account. We also provide a comparison with metadata-based ontology 
matching. The evaluation utilizes new approximate recall and precision metrics in 
order to deal with the problem that the perfect ontology mappings are generally 
unknown.  
The rest of the paper is organized as follows. Section 2 introduces the ontologies 

and instance associations used for our match evaluation. Section 3 presents the simi-
larity metrics we use to derive and evaluate ontology mappings. In Section 4 we dis-
cuss the experimental results for instance-based ontology matching while Section 5 
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Figure 1: Sample ontology entries and protein associations 



provides an experimental comparison with metadata-based ontology matching. Sec-
tion 6 overviews related work and Section 7 concludes. 

2 Match Scenario: Ontologies and Instance Associations  

For our study, we assume that ontologies form a directed acyclic graph of concept 
nodes. The directed edges between concept nodes represent either is-a or part-of 
relationships. Concepts can have multiple associated instances, i.e., objects that are 
described or classified by the concept. An instance can be associated with multiple 
concepts, both leaf-level concepts but also to inner concepts of the ontology graph.  
Hence, the associations between objects (instances) and ontology concepts are of 
cardinality n:m.  
Our experimental evaluation covers four popular life science ontologies: the three 
Gene Ontology (GO) subontologies on molecular functions, biological processes and 
cellular components, and genetic disorders of OMIM1. To match these ontologies 
with each other we use protein associations for three species: Homo Sapiens (human), 
Mus Musculus (mouse) and Rattus Norvegicus (rat). The protein data and ontology 
associations are obtained from the Ensembl data source (www.ensembl.org).  

                                                           
1 OMIM was not originally developed as an ontology but provides a comprehensive set of 

terms (including term definitions, comments and associated literature) describing genetic dis-
orders which are frequently associated with objects of other data sources. Therefore, OMIM 
plays an ontology-like role in our evaluation study. 

Table 1 provides base statistics on the considered ontologies, species-specific in-
stance data sources and protein-concept associations. The number of concepts per 
ontology is shown on top, the number of proteins per species on the left. For instance, 

Table 1: Quantity structure of utilized ontologies and instance sources* 

 #concepts  Gene Ontology OMIM** 
#proteins #assoc. 
  

 Molecular 
Functions 

Biological 
Processes 

Cellular 
Components 

Genetic 
Disorders 

   7,514 12,555 1,848 6,535 
 34%  24%  34%  25% Homo 

Sapiens 43,605 52% 58,539 45% 52,536 44% 37,640 4% 2,618 
 31%  22%  32%  0% Mus 

Musculus 32,078 61% 57,997 53% 47,646 54% 36,288 0% 0 
 29%  22%  29%  0% (d

ire
ct

 a
ss

oc
.) 

Rattus 
Norvegicus 33,745 38% 29,665 33% 25,703 31% 18,519 0% 0 

 39%  35%  43%  25% Homo 
Sapiens 43,605 52% 164,014 45% 209,283 44% 149,548 4% 2,618 

 36%  33%  40%  0% Mus 
Musculus 32,078 61% 145,646 53% 181,583 54% 139,841 0% 0 

 34%  32%  37%  0% 

En
se

m
bl

 
(in

di
re

ct
 a

ss
oc

.)  

Rattus 
Norvegicus 33,745 38% 85,429 33% 107,022 31% 75,919 0% 0 

 
* Release states: GO 01/20/2007, OMIM 01/28/2007, Ensembl Release 42 Dec. 2006 
** We focus on phenotype descriptions, i.e., entries marked with #, % and without a mark. Please see 

http://www.ncbi.nlm.nih.gov/Omim/mimstats.html for more details. 



there are 7,514 molecular function concepts in GO and 43,605 human proteins in 
Ensembl. Furthermore, Table 1 contains the number of associations between proteins 
and ontology concepts which we separate in direct and indirect associations. Direct 
associations refer to the original associations recorded in Ensembl and assign objects 
to the most specific concept of an ontology. For example, there are 58,539 direct 
associations between human proteins and molecular functions and covering 52% of 
the human proteins and 34% of the functions. Hence, human protein associations 
support instance-based matching for up to 34% of the MF concepts. To increase the 
number of concepts that may be matched we also consider indirect associations which 
take into account the intra-ontology relationships between concepts. For this we sim-
ply assign the direct instances of a concept c also to its parents and grandparents 
within the ontology graph. In the example this provides human protein instances to 
39% of the function concepts, however at the expense of a massive increase in the 
number of object associations (164,014). 

We observe that the available object associations cover significant portions of the 
ontologies (25-39%) so that instance-based matching promises to provide many cor-
respondences between concepts. While OMIM has associations only for human pro-
teins, the GO ontologies are well connected to all three species. There is a similar 
number of object associations for human and mouse proteins while the coverage for 
rat is somewhat reduced. On average, an Ensembl protein is directly assigned to 1.5-
3.0 concepts of the GO subontologies. The average number of directly associated 
proteins per GO concept varies between 9 and 62 per species.  

Figure 2 illustrates the species-specific distribution of object associations for the 
three GO subontologies. For example, we observe that 1,954 molecular functions 
have protein associations to all three species, whereas merely 86 functions are exclu-
sively associated with mouse proteins. On average over 80% of the matched concepts, 
i.e., functions, processes, or components, are assigned to all three species. Consider-
ing species-specific associations is also helpful to determine species-specific ontology 
mappings. Furthermore, analysis tasks can benefit from focusing on species-specific 
concepts, e.g., to analyze an ontology mapping for the 86 mouse-specific GO func-
tions with respect to the 110 mouse-specific processes. 
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Figure 2: Quantity structure of ontology concepts with at least one associated protein in
three selected species 



3 Similarity and Evaluation Metrics 

In order to match two ontologies O1 and O2 we need metrics to determine the simi-
larity between O1 concepts and O2 concepts. All pairs of concepts from O1 and O2 for 
which the similarity exceeds a certain minimal threshold are called correspondences 
and included in the match result (ontology mapping). The key idea of our instance-
based approach to ontology matching is to derive the similarity between concepts 
from the number of shared instances, i.e., the number of instances associated to both 
concepts. An important advantage for instance-based ontology matching is that the 
number of instance associations is typically higher than the number of concepts. This 
way the match accuracy of the approach can become rather robust against some 
wrong instance classifications. As discussed, another key advantage is that the in-
stance-based approach is independent from concept names and other metadata. 

In the following we first present the used instance-based similarity metrics. We 
then discuss how to assess the quality of a match result in the absence of a perfect 
mapping.   

3.1 Instance-based similarity metrics 

In this paper we study four metrics for determining the instance-based similarity be-
tween concepts c1∈CO1 and c2∈CO2 of different ontologies O1 and O2, namely base-
line, minimum, dice, and kappa similarity. Most of these metrics are well-know and 
have already been used in previous match studies (e.g., [8, 21]) however, not yet for 
an instance-based matching of life science ontologies.  To define the similarity of two 
concepts c1 and c2 we use the number of instances that are (or are not) associated to c1 
and c2. Figure 3 illustrates all relevant combinations for the instance cardinalities.  

For example,         is the number of instances which are associated to c1 but not as-
sociated to c2. Furthermore,             is the total number of instances that are (not) as-
sociated to c1. Note that these numbers may be used either for directly associated 
instances as well as for indirectly associated instances.  

The baseline similarity metric already matches two concepts c1 and c2 if they share 
at least one object.  
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The baseline approach poses minimal requirements to match two concepts so that it 
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Figure 3: Matrix of all possible combinations for the number of shared in-
stances i for two concepts c1∈CO1 and c2∈CO2. 
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can be expected to provide the maximal number of correspondences for instance-
based matching. To focus on concept combinations with a higher instance overlap it is 
necessary to take into account the number of instances per concept.  
The dice similarity metric [19] considers the concept cardinalities and the number of 
shared instances:  
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A high dice value indicates a significant instance overlap w.r.t. to both concepts.  
A potential limitation of the dice metric is that it can become quite small in case of 
larger cardinality differences, even if all instances of the smaller concept match to 
another concept. This aspect is taken care of by the minimum similarity metric which 
determines the relative instance overlap with respect to the smaller-sized concept: 
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Our last metric – the kappa similarity – is somewhat more complex and adopted from 
Cohen’s kappa coefficient [6]; it has also been adopted in [8] for an e-commerce 
application. The kappa coefficient measures the agreement of two raters classifying 
items (e.g., instances) into categories (e.g., concepts). We adopt the kappa coefficient 
to calculate two probabilities P and P’. P is the agreement among both concepts, i.e., 
the relative number of shared instances combined with the number of instances that 
do not appear in any of the two concepts. P’ is the probability that the agreement that 
one instance is assigned to both concepts is due to chance. Therefore P and P’ are 
defined as follows: 
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The kappa similarity for two concepts c1 and c2 is then defined as:  
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To test the significance of a match between the two concepts c1∈CO1 and c2∈CO2, we 
can utilize a test distribution Z as proposed in [8]. Z is defined as follows: 
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Z follows a normal distribution so that it can be compared with the standard normal 
distribution. A significant match correspondence can be assumed if Z exceeds the 
percentile of the standard distribution for a given significance level. 

It can easily been shown that for all correspondences between concepts c1 and c2, it 
holds: 

),(),(),( 212121 ccSimccSimccSim BaseMINDICE ≤≤  and 
),(),( 2121 ccSimccSim BaseKappa ≤  

3.2 Evaluation metrics 

To evaluate the quality of a match result and thus the effectiveness of a match ap-
proach it is necessary to determine whether all real correspondences have been deter-



mined (completeness, high recall) and whether all determined correspondences are 
real correspondences (correctness, high precision). Exactly determining recall and 
precision thus requires the perfect match result to be known. Unfortunately, the per-
fect match result is generally unknown for large real-life match problems, especially 
for life science ontologies. A manual construction of a perfect match is also too labo-
rious and extremely difficult for broad ontologies such as the Gene Ontology. For our 
evaluation we therefore focus on the relative quality of the differently obtained match 
results and use rough approximations for recall and precision.  

With respect to recall or completeness we consider the so-called match coverage, 
i.e., the share of concepts that is covered by an ontology mapping, i.e., for which there 
is at least one correspondence in the match result. Let CO1-Match (CO2-Match) be the set of 
matched concepts of ontology O1 (O2) and CO1 (CO2) the set of all concepts of ontol-
ogy O1 (O2). We then define the match coverage of ontology O1 (O2) as follows: 
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Match coverage can be determined for any match approach, in particular both meta-
data-based and instance-based schemes. For instance-based approaches the maximal 
coverage is limited by the number of concepts which have at least one associated 
instance (w.r.t. the considered instance data source). To take this into account we 
additionally determine the instance match coverage which is defined as the ratio of 
the matched concepts w.r.t. to the concepts having at least one associated instance. 
Let CO1-Inst (CO2-Inst) be the set of concepts of ontology O1 (O2) having at least one 
associated instance. We then define the O1-specific and O2-specific instance match 
coverage as follows: 
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In addition, we can define the combined instance match coverage for a match result: 

||||
||||

21

1 2

InstOInstO

MatchOMatchO

CC
CC

overageInstMatchC
−−

−−

+

+
=  

For estimating the precision of a match approach we determine the so-called match 
ratio, i.e., the ratio between the number of found correspondences and the number of 
matched concepts:   
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Analogously we define the combined match ratio. 
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In the above formulas, CorrO1-O2 denotes the set of found correspondences in a 

match result. The intuition is that the precision (and thus value) of a match result is 
better if a concept is not loosely matched to many other concepts but only to fewer 
(preferably the most similar) ones. The match ratio for the baseline matcher is ex-
pected to provide a worst-case value for instance-based matching and can thus be 
used as a yardstick. 
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Figure 4: Combined Instance Match Coverage 
of GO ontology mappings (direct associations) 

Table 2: Match Ratios of GO ontology 
mappings (direct associations; Homo 
Sapiens) 

 
MF – BP MF – CC BP – CC  

MF BP MF CC BP CC 
Base 20.4 17.0 7.6 28.6 9.8 46.3 
Min 4.4 4.0 2.2 7.8 2.4 8.6 
Dice 1.3 1.2 1.0 1.3 1.0 1.3 
Kappa 2.0 2.0 1.9 2.7 1.7 2.6  

4 Instance-based Match Results 

We first analyze different instance-based match results using direct association. We 
then study the impact of combining different match results (mappings) and the use of 
indirect associations. 

4.1 Match results using direct association 

We applied the introduced instance-based similarity metrics to determine ontology 
mappings between the three GO ontologies on molecular functions (MF), biological 
processes (BP), cellular components (CC) and genetic disorders (GD) of OMIM. We 
thus solved six match tasks: three to match between the GO subontologies (MF-BP, 
MF-CC, BP-CC) and three GO-OMIM match tasks (MF-GD, BP-GD, CC-GD). As 
discussed in Section 2, we utilize the Ensembl protein associations for the three spe-
cies Homo Sapiens, Mus Musculus and Rattus Norvegicus and first focus on direct 
associations. The three similarity metrics SimBase, SimMin, and SimDice are evaluated 
with a high similarity threshold of 1.0; for SimKappa we applied a significance level of 
95%.   

Figure 4 illustrates the obtained values for combined instance match coverage for 
the three GO match tasks and the three considered species. Table 2 shows the corre-
sponding match ratios for Homo Sapiens; the match ratios for the other species are 
similar and omitted due to space constraints. We observe that there are big differences 
between the considered similarity metrics while the match coverage results are very 
similar for the three species. The latter is because the species-specific proteins match 
the same concepts to a large degree (as noted in Section 2) so that the derived ontol-
ogy mappings are also very similar for a given similarity metric and match task. As 
expected the baseline similarity metric SimBase achieved the best coverage (recall) and 
worst match ratios (precision) for all match tasks. Its instance match coverage is up to 
99% (for Homo Sapiens and the MF – BP match) so that almost every concept with 
an associated instance is matched. On the other hand, match ratios achieve values 
between about 8 and 46, i.e., concepts are mapped to many other concepts indicating 
a low precision. On the other hand, SimDice and SimKappa turn out to be very restrictive 
with match ratios close to 1.0. This is they focus on the best matching concepts. Un-
fortunately this is only achieved for very few correspondences so that the match cov-
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Figure 5: Instance Match Coverage of GO-GD 
mappings (direct associations; Homo Sapiens) 

Table 3: Match Ratios of GO-GD mappings 
(direct associations; Homo Sapiens) 

 
MF – GD BP – GD CC – GD  
MF GD BP GD CC GD 

Base 7.1 4.3 2.5 6.3 2.5 3.4 
Min 5.9 3.5 2.5 4.6 1.7 3.4 
Dice 1.6 1.5 1.1 1.5 1.4 1.4 

Kappa 1.4 1.2 1.1 1.2 1.1 1.2  

 

erage remains rather low (around 5-10% for SimDice and 10-20% for  SimKappa). For all 
match tasks the metric SimMin achieves very promising precision/recall values which 
lie between the extreme cases discussed so far. In particular instance match coverage 
is as good as between 60-80% while match ratios are significantly lower than for 
SimBase. On average, a concept is matched with 2–9 concepts of another ontology 
which is still a reasonably low number, e.g., to be checked by a biologist.  

The GO-OMIM match tasks are only performed for the species Homo Sapiens 
since there are no protein associations to OMIM for the other two species. Figure 5 
shows the instance match coverage for the three match tasks; Table 3 illustrates the 
corresponding match ratios. For these experiments (and in contrast to the previous 
match tasks) we observed substantial coverage differences for the individual ontolo-
gies so that we indicate the ontology-specific coverage values in Figure 5. We ob-
serve that for both SimBase and SimMin the instance match coverage of the GO ontolo-
gies is only about half of the instance coverage of GD (40-50% vs. more than 88%). 
The reasons are twofold. On the one hand, many proteins are associated with concepts 
of the GO ontologies but have no correspondence to OMIM. On the other hand, if a 
protein is associated with OMIM then it is mostly also connected with a concept of 
the GO ontologies. For instance, there are 20,936 proteins of the Homo Sapiens that 
have at least one molecular function, but only 1,581 of these proteins are associated 
with a genetic disorder. Conversely, only 110 human proteins are described by a ge-
netic disorder but not by a molecular function. 

The relative outcome for the different similarity metrics is in agreement with the 
observations made for the previous match tasks. While SimBase and SimMin have a 
relatively high recall (instance match coverage), the metrics SimDice and SimKappa are 
very restrictive but precise (only about 1 to 2 correspondences per matched concept 
on average).   

4.2 Combining ontology mappings  

The match results discussed so far were each derived for a certain similarity metric 
and a species-specific set of instances. Combining several such ontology mappings 
for a given match task is a promising way to obtain an improved ontology mapping, 
e.g., with improved recall and/or precision.  For example, taking the union of two 
independently derived ontology mappings is likely to improve recall (coverage) while 



building the intersection can improve precision. Other combination strategies are also 
conceivable (e.g., weighted or majority-based selection of correspondences) but are 
not further considered in this paper.   

To illustrate the idea we analyze the combination of mappings obtained for differ-
ent similarity metrics. This is not useful for all metrics since according to Section 3 all 
instance-based similarity measures generate subsets of correspondences of the base-
line approach and SimDice produces a subset of correspondences of SimMin  . Therefore, 
we comparatively study the intersection and union of the ontology mappings gener-
ated by SimDice (SimMin) and SimKappa.  

Fig. 6 depicts the instance match coverage of the combined mappings between GO 
ontologies, while Table 4 shows the corresponding match ratios (for Homo Sapiens). 
We observe that the union mappings for SimMin and SimKappa only slightly improve 
coverage (84%) compared to SimMin (81%). The match ratios are also not signifi-
cantly higher than for SimMin alone (Table 2). This is because SimMin alone achieved 
already a high coverage so that SimKappa could add only few new correspondences. On 
the other hand, the union mapping between SimDice and SimKappa is very effective and 
more than doubles coverage (30%) compared to SimDice alone (12%). The match ratio 
still remains low (1.8–2.6) indicating a high-quality ontology mapping.   

4.3 Match results using indirect instance associations 

Another way to improve match coverage is to not only consider direct but also indi-
rect object associations. As already discussed in Section 2 (Table 1), this increases the 
number of concepts for which instance-based matching can be applied (e.g., the num-
ber of GO processes with associated instances is increased by 45%). Although we 
restrict the propagation of object associations to two levels (parents, grandparents) the 
number of object associations is increased by almost a factor of 3 compared to direct 
associations.   

Figure 7 shows the instance match coverage results for the GO match tasks using 
indirect associations; Table 5 illustrates the corresponding match ratios (for the spe-
cies Homo Sapiens). The coverage for SimBase was already high for direct associa-
tions; the use of indirect associations primarily is thus little helpful but leads to ex-
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tremely high match ratios (27–210). For SimMin, on the other hand, the instance match 
coverage improvement is substantial, e.g., from 61% (direct) to 86% (indirect) for the 
match BP - CC. However, match ratios are also increased, e.g., from 6 (direct, MF) to 
almost 17 (indirect, MF) for matching MF with BP using SimMin and human proteins.   

The results suggest that the use of indirect associations can be helpful but also be 
harmful. Hence we see a need for more sophisticated approaches to intelligently make 
use of intra-ontology relationships in combination with instance-based matching. One 
idea is to restrict the use of indirect associations to concepts that remain otherwise 
unmatched.  Another option is to use direct associations to determine instance-based 
concept similarities which are then propagated along intra-ontology relationships by a 
context matcher [18].   

5 Metadata-based Match Results   

5.1 Metadata match results using concept names 

For comparison purposes we also use a simple metadata-based matcher to determine 
mappings between the considered ontologies. We apply a name matcher based on 
trigram similarity for comparing pairwise the concept names of different ontologies. 
Table 6 shows the name matcher results for the six match tasks by using the trigram 
similarity and different thresholds (≥ 0.5). Note that the match coverage values refer 
to all concepts not only to the ones with instances.  

We observe a rather low number of correspondences especially for a similarity 
threshold of 0.7 or higher. This indicates a high diversity in the concept names so that 
name matching is not very effective. There are no correspondences with a threshold 
of 0.9 or greater (not shown in Table 6). The match coverage and match ratios grow 
for smaller similarity thresholds but probably due to many wrong correspondences.  

Most correspondences are found between molecular functions and biological proc-
esses which are the largest ontologies considered (Table 1). As already indicated by 
the examples in Figure 1 many similar terms only differ in pre-/suffixes or an addi-
tional word, such as activity for naming a function. Moreover, in many cases concepts 
inherit their name from their parents and use an additional term representing the spe-
cialization, such as transport, anion transport (both BP), transporter activity and 
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Figure 7: Combined Instance Match Coverage 
of GO ontology mappings (indirect associations)

Table 5: Match Ratios of GO ontology 
mappings (indirect associations; Homo 
Sapiens) 

MF – BP MF – CC BP – CC  
MF BP MF CC BP CC 

Base 90.2 60.4 27.2 96.2 38.8 210.2 
Min 16.6 10.9 7.4 23.3 6.6 33.9 
Dice 1.9 1.3 1.2 1.7 1.6 1.8 
Kappa 6.7 5.1 5.5 7.6 6.3 11.7  



anion transporter activity (both MF). Hence, if the additional word is short enough 
then concepts from different levels are matched, e.g., anion transport with transport 
activity. Of course, a low threshold (e.g., 0.5) can lead to the generation of false corre-
spondences, e.g., between the function Inorganic anion transporter activity (MF) and 
the process Organic anion transport (BP) due to a trigram similarity of 0.66. 

Most correspondences for OMIM GD are found for the GO subontology on bio-
logical processes. The reason is that some genetic disorders refer to biological proc-
esses, such that their names only differentiate in modified suffixes or additional 
words. For instance, the concepts vitamin A metabolism (BP) and vitamin A metabolic 
defect (GD) are matched with a trigram similarity of 0.72. Of course, low threshold 
values also lead to false positives matches, such as betaine transport (BP) and citrul-
line transport defect (GD) with a trigram similarity of 0.5. 

5.2 Comparison between metadata and instance-based matching 

To study the relationship between metadata- and instance-based matchers, we analyze 
the union and intersection (overlap) of the generated ontology mappings. For this 
purpose, we combine the name matcher results (threshold ≥ 0.5) with the instance-
based results using the similarity metric SimMin (similarity threshold = 1) and direct 
instance associations. Figure 8 shows the match coverage per ontology for the union 
results (species Homo Sapiens). The highest coverages are achieved for molecular 
functions (approx. 60%) in the combined MF–BP match result and for cellular com-
ponents (54%) in the BP–CC result, both when using a trigram similarity of 0.5. 
These high coverage values are mainly due to the name matcher. According to Table 
6, the name-based correspondences for threshold 0.5 cover already 47% of the func-
tions (match MF-BP) and 40% of the components (match BP-CC). For trigram 
thresholds of 0.6 and higher, match coverage is primarily influenced by instance-
based matching using SimMin. This is also the case for the unified match results be-
tween GO subontologies and OMIM; around 22% of the genetic disorders and be-

Table 6: Name matching results between selected ontologies 
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tween 11% (MF, BP) and 15% (CC) of GO subontology concepts are covered by 
using SimMin.  

The match coverage of the intersection results is in most cases only 1% or less (and 
therefore not shown in an extra plot). This is because the name-based and instance–
based match results have only a very low number of correspondences in common. 
Especially for a lower trigram threshold (0.5) the vast majority of name correspon-
dences has no corresponding instance similarity. 

Table 7 illustrates the achieved match ratios for both, the union and intersection of 
the ontology mappings generated by the name matcher (similarity threshold = 0.7) 
and SimMin. We observe a moderate ratio (mostly less then 6) for the union results 
while the ratios for  mapping intersection is seldom larger than 1.0. This is influenced 
by the fact that the number of correspondences is very low. The intersection of the 
mappings between genetic disorders and biological processes (cellular components) is 
even empty, therefore the match ratios also equal zero. 
  The experiment shows that simple name matching is not very effective and less 
promising than the proposed instance-based approaches. Still we believe that more 
sophisticated metadata-based matchers may be helpful to complement instance-based 
matching and leave the investigation of such combined approaches for future work.   

6 Related Work 

Overviews of approaches for ontology matching in general are given in [18, 10, 2, 
20]. Typically, matching utilizes metadata, associated instances or both. The match 
approaches [13, 15, 12, 1] are based on metadata, such as concept names, synonyms 
and descriptions, and applied in different domains. More specific to bioinformatics, 
[4] utilizes a metadata matcher to link GO with ChEBI, an ontology of chemical enti-
ties for biological interest.   

Instance-based ontology matching is investigated in [8, 9, 3, 11]. They follow sta-
tistical or machine learning approaches and apply them in different application do-
mains. [8] focuses on integrating internet catalogs, represented by hierarchical collec-
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Table 7: Match Ratios of combined 
ontology mappings between SimName 
(0.7) and SimMin  (Homo Sapiens) 

Match ∪ ∩ 
MF 4.1 1.0 MF-BP BP 3.7 1.0 
MF 2.2 1.0 MF-CC CC 6.7 1.0 
BP 2.4 1.0 BP-CC CC 7.6 1.3 
MF 5.8 1.0 MF-GD GD 3.4 1.0 
BP 5.4 0.0 BP-GD GD 4.5 0.0 
CC 12.9 0.0 CC-GD GD 2.5 0.0  



tions of web links. Similar to our study, it applies the Kappa similarity metric includ-
ing a significance test. [9] applies decision trees and Bayesian networks to create 
matches between GO subontologies that is different to our approach. It uses available 
annotations (instances) of two species (mouse and human) as training data and for 
cross validation to test the models. In contrast to our approach using the proposed 
evaluation metrics, the predicted match result is evaluated by a manual selection of 
100 correspondences which are then validated by an expert (41 judged to be true, 42 
judged to be plausible). [3] utilizes three non-lexical approaches to create ontology 
matches, namely a vector space model, a statistical co-occurrence analysis and asso-
ciation rule mining. In contrast to our match application where we are interested in 
correspondences between GO ontologies, they associate GO concepts without a dis-
tinction whether the concept is a function, process or component. Therefore, the result 
can also contain associations between concepts of the same GO subontology, e.g., 
between two functions. [11] applies association rule mining and formal ontological 
concepts to create mappings between the GO subontologies whereas we use simple 
and comprehensible metrics for ontology matching.  

[14] is a mixed match approach, i.e., it follows lexicographic and instance-based 
approaches, with the goal to create a second ontology layer that maps the GO sub-
ontologies. Instead of using complete concepts names as we have applied they create 
specific patterns for the metadata-based matching such that ontology-specific words 
(e.g., activity for molecular functions) are ignored. Moreover, it applies association 
rule mining by using available gene annotations and reuses existing associations to 
metabolic pathways to create ontology matches. In contrast to our match scenario, the 
generated matches are validated by human experts. 

Conclusions   

We proposed the use of simple instance-based approaches for matching life science 
ontologies. The idea is to utilize the domain knowledge expressed in existing object-
ontology associations for finding related concepts in different ontologies. The ap-
proach is extensible as ontology mappings obtained for different match approaches or 
different instance sources (e.g., different species) can be combined to improve overall 
recall or precision. We experimentally evaluated four alternatives for instance-based 
matching and one metadata-based approach for six match tasks involving the GO 
subontologies and OMIM. We observed that instance-based matching using the 
Sim Min metric achieves a high match coverage while limiting the number of corre-
spondences per matched concept. 

In future work, we will further study combined approaches for ontology matching 
and the interplay between instance-based and metadata-based matching in life sci-
ences. We also plan applications that utilize the computed ontology mappings and 
gather user feedback to help validate the proposed match correspondences. 
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