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Abstract
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1 Introduction

Weighted finite automata over the tropical semiring (for short WFA) are of great theoretical and

practical interest in computer science. They play a crucial role in the structure theory of recog-

nizable languages in free monoids and trace monoids [9, 18, 28]. However, they have also practical

applications in speech recognition, image compression, and database theory [3, 6, 7, 8, 16, 17, 29].

Consequently, weighted finite automata over the tropical semiring and the more particular class of

distance automata have been extensively studied by many researchers, e.g., [10, 11, 20, 21, 24, 27,

31, 34, 35, 36].

To achieve efficient implementations, one is interested in utilizing subsequential (deterministic)

WFA [29]. In contrast to unweighted automata, there are WFA which do not admit a subsequential

equivalent. Mohri developed an algorithm which determinizes WFA [29]1. which is implemented

within the AT&T FSM Library TM. This algorithm is not perfect, e.g., there are WFA on which

Mohri’s algorithm does not terminate despite there are subsequential equivalents. Nevertheless,

his algorithm is very successful on WFA which occur in speech recognition.

Mohri raised the question whether it is decidable whether his algorithm terminates on a given

WFA [1, 29]. For trim, unambiguous WFA, he gave a decidable characterization of the WFA on

which his algorithm terminates [29]. This characterization is based on the so-called twins property.

In general, Mohri’s question remains open.

A WFA is called polynomially ambiguous if the number of accepting paths (computations) for

some word w is polynomially bounded in the length of w. We present a polynomially ambiguous

WFA which does not admit an equivalent, finitely ambiguous one. As a main result of this paper,

we show that it is decidable whether Mohri’s algorithm terminates on a given trim, polynomially

ambiguous WFA.

We will consider some examples of WFA to explain the inadequacy of the notion of the twins

property for WFA over the tropical semiring, and we will develop a more appropriate notion which

will be called the clones property. The main result of the paper states that the clones property is

a decidable, sufficient, and necessary condition for the termination of Mohri’s algorithm on trim,

polynomially ambiguous WFA (Theorem 3.4, Corollary 3.7). To prove that the clones property is

sufficient, we need involved tools as Simon’s factorization forest theorem and we develop a Burnside

type characterization. This Burnside type characterization says that Mohri’s algorithm terminates

on trim, polynomially ambiguous WFA iff it terminates on every sequence of the form (vwk)k≥1.

We also provide an example which shows that our Burnside type characterization does not hold for

arbitrary WFA.

For trim, finitely ambiguous WFA, the clones property coincides with the twins property. Hence,

we can generalize a characterization by Mohri from unambiguous to finitely ambiguous WFA

(Theorem 3.6). We also show that if Mohri’s algorithm terminates on some WFA A, then it

terminates on the trim part of A.

The paper is organized as follows. In Section 2, we explain our notation. Section 3, gives an

overview. In Section 3.1, we introduce the concept of weighted finite automata over the tropical

semiring and give some historical background. In Section 3.2, we give an example of a polynomially

ambiguous WFA and prove that it does not admit an equivalent, finitely ambiguous WFA. In

Section 3.3, we present Mohri’s algorithm. In Section 3.4, we explain and discuss the notion of the

twins property. We present out main results in Section 3.5, and in Section 3.6, we try to evaluate

our contribution and state some open problems. To keep Section 3 as a lucid survey, the main

proofs are shifted to Section 4.

1There is an electronic version of [29] on Mohri’s homepage which contains several corrections
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2 Notations

Let N = {0, 1, . . . }. For finite sets M , we denote by |M | the number of elements in M .

A semigroup (S, ·) consists of a set together with a binary associative operation · which is often

denoted by juxtaposition. Some e ∈ S is called idempotent if ee = e. The set of all idempotents of

S is denoted by E(S). A monoid (M, ·, 1) consists of a semigroup (M, ·) and some element 1 ∈ M

which is an identity for ·.

A semiring (K,+, ·, 1, 0) consists of a set K together with two binary operations +, and · such

that + is commutative, (K,+, 0) is a monoid, (K, ·, 1) is a monoid which distributes over (K,+),

and 0 acts as a zero for all elements.

Let (K,+, ·, 1, 0) and (K′,+, ·, 1′, 0′) be two semirings. A mapping ϕ : K → K′ is called a

homomorphism if ϕ preserves the operations + and · and ϕ(1) = 1′ and ϕ(0) = 0′. Homomorphisms

between semigroups and between monoids are defined similarly.

We denote algebraic structures as semigroups, monoids or semirings just by their set as long as

no confusion arises.

The Boolean semiring (B,∨,∧, 1, 0) consists of the set B = {1, 0} whereas the operations are

forced by the definition of a semiring.

Let Z := {. . . ,−1, 0, 1, . . . ,∞}. We extend the ordering ≤ and the addition of integers to Z by

setting for every z ∈ Z, z ≤ ∞ and z + ∞ = ∞ + z := ∞. Then, (Z,min,+, 0,∞) is a semiring

which is called the tropical semiring . In the same way, one defines a semiring (Zmax,max,+, 0,−∞)

whereas Zmax = {−∞, . . . ,−1, 0, 1, . . . }. The mapping which maps every z ∈ Z to −z is an

isomorphism (bijective homomorphism) between Z and Zmax.

The mapping α : Z → B defined by α(∞) = 0 and α(z) = 1 for z ∈ Z\{∞} is a homomorphism.

Let Q be a finite set and K be a semiring. We denote by KQ×Q the set of all Q×Q-matrices over

K. For A ∈ KQ×Q and i, j ∈ Q, we denote the entry in the i-the row and j-th column by A[i, j].

The set KQ×Q equipped with matrix multiplication is a monoid. We extend the homomorphism α

componentwise to matrices.

Let B,B′ ∈ KQ and A ∈ KQ×Q. We understand the product BA as a product of a 1×Q-matrix

(row matrix) and a Q×Q-matrix. We understand the product AB′ as a product of a Q×Q-matrix

and a Q × 1-matrix (column matrix). In the same way, the product BAB′ yields a member of K.

We identify the members of BQ with subsets of Q. For example, for C ⊆ Q and A ∈ BQ×Q,

we can write CA, and we can regard the result of the product CA as a subset of Q but also as a

member of BQ.

We have to explain our notations concerning matrix multiplication in the tropical semiring.

Although the multiplication in the tropical semiring is denoted by +, the multiplication of matrices

over Z is denoted by juxtaposition. We define a product ⊕ : Z × ZQ → ZQ by setting for every

z ∈ Z, B ∈ ZQ, i ∈ Q, (z ⊕B)[i] := z + B[i]. Essentially, ⊕ is the multiplication of a 1× 1-matrix

and a 1×Q-matrix. Hence, we have for every z, z′ ∈ Z, B ∈ ZQ, A ∈ ZQ×Q, (z⊕B)A = z⊕ (BA)

and z⊕ (z′⊕B) = (z + z′)⊕B which allows us to shorten notations to z⊕BA resp. z⊕ z′⊕B. We

do not write ⊕ by juxtaposition, because it yields misleading notations like z(z′B) = (z + z′)B.

Let Σ be a finite set of symbols within the entire paper. We denote by Σ∗ the free monoid over

Σ, i.e., Σ∗ consists of all words over Σ with concatenation as operation. We denote the empty word

by ε. We denote by Σ+ the free semigroup over Σ, i.e., Σ+ := Σ∗ \ ε. For every w ∈ Σ∗, we denote

by |w| the length of w. We call a word u a factor (resp. prefix ) of a word w if w ∈ Σ∗uΣ∗ (resp.

w ∈ uΣ∗).
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3 Overview

3.1 Weighted Finite Automata

A weighted finite automaton over Z (for short WFA over Z or WFA) is a tuple A = [Q, θ, λ, ̺]

whereas

1. Q is a non-empty, finite set of states,

2. θ : Σ∗ → ZQ×Q is a homomorphism, and

3. λ, ̺ ∈ ZQ, whereas we consider λ (resp. ̺) as a 1 × Q-matrix (resp. Q × 1-matrix).

Let A be a WFA over Z. It computes a mapping |A| : Σ∗ → Z by |A|(w) := λθ(w)̺ for w ∈ Σ∗.

The mappings computed by WFA are often called recognizable formal power series. For an overview

on formal power series, the reader is referred to [2, 22, 23, 30].

In the literature, one often considers WFA over Zmax. Since, Zmax and Z are isomorphic, one

can easily carry over results from Zmax to Z and vice versa.

We call two WFA A1 and A2 over Z equivalent iff they compute the same mapping.

We call a state q ∈ Q accessible if there are words u, v ∈ Σ∗ such that (λθ(u))[q] 6= ∞ and

(θ(v)̺)[q] 6= ∞. We call A trim if every q ∈ Q is accessible.

It is well-known that for every WFA one can construct in polynomial time an equivalent trim

WFA. We need to recall this construction in Section 4.7.

Let I := { q ∈ Q |λ[q] 6= ∞} and F := { q ∈ Q | ̺[q] 6= ∞}. We call the states in I resp. F the

initial states resp. accepting states of A.

Let p, q ∈ Q and a ∈ Σ. If θ(a)[p, q] 6= ∞, then we call
(

p, a, θ(a)[p, q], q
)

a transition in A.

Let m ≥ 0 and π = (q0, a1, k1, q1)(q1, a2, k2, q2) . . . (qm−1, am, km, qm) be a sequence of transitions

in A. We call π a path from q0 to qm or for short a path. We call a1 . . . am the label of π. We call

π accepting if q0 ∈ I and qm ∈ F .

Let p, q ∈ Q and w ∈ Σ∗. We denote by p
w
; q the set of all paths from p to q which are labeled

by w. For R,R′ ⊆ Q, we denote by R
w
; R′ the union of r

w
; r′ for every r ∈ R, r′ ∈ R′.

Let k ≥ 1. If for every w ∈ Σ∗, there are at most k paths in I
w
; F , then we call A k-ambiguous.

If A is 1-ambiguous, then we call A unambiguous. If A is k-ambiguous for some k ≥ 1, then we

call A finitely ambiguous.

The classes of mappings which are computable by k-ambiguous WFA for k = 1, 2, . . . form a

strict hierarchy. Obviously, this hierarchy exhausts the class of mappings which are computable

by finitely ambiguous WFA. The latter class is a proper subclass of the class of all recognizable

formal power series over Z. For the strictness of these inclusions and other interesting subclasses

of WFA the reader is referred to the excellent survey [20].

Let P : N → N be some polynomial. If for every w ∈ Σ∗, there are at most P (|w|) paths in

I
w
; F , then we call A polynomially ambiguous.

Polynomially ambiguous (unweighted) automata have been studied by various authors, e.g.,

[14, 15, 25]. The following characterization is shown implicitly in [14, 15] (cf. Proof of Theorem 3.1

in [15] or Lemma 4.3 in [14]). Although [14, 15] deal with unweighted automata, the construction

carries over to WFA over Z in a straightforward way.

Theorem 3.1. Let A = [Q, θ, λ, ̺] be a trim WFA over Z. The following assertions are equivalent.

1. The WFA A is polynomially ambiguous.
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2. For every q ∈ Q and every w ∈ Σ∗, there is at most one path in q
w
; q.

A WFA which satisfies condition (2) in Theorem 3.1 is called cycle-unambiguous in [1].

It is undecidable whether two given WFA over Z are equivalent [21]. Using Theorem 3.1 one

can deduce from [21] that the same problem is undecidable for polynomially ambiguous WFA over

Z. However, the equivalence of finitely ambiguous WFA is decidable [12].

A subsequential WFA is a tuple A = [Q, δ, σ, q0, k0, ̺] such that:

• Q is a finite set of states,

• δ : Q × Σ → Q and σ : Q × Σ → Z,

• q0 ∈ Q, k0 ∈ Z, and

• ̺ : Q → Z is a mapping.

We extend δ and σ to words w ∈ Σ∗ as follows: for every q ∈ Q, we set δ(q, ε) := q and σ(q, ε) := 0.

For q ∈ Q, w ∈ Σ∗, and a ∈ Σ, we set δ(q, wa) := δ(δ(q, w), a) and σ(q, wa) := σ(q, w)+σ(δ(q, w), a).

A subsequential WFA defines a mapping |A| : Σ∗ → Z by |A|(w) := k0 +σ(q0, w)+̺(δ(q0, w)).

The mappings of subsequential WFA are called subsequential formal power series. They are a strict

subclass of the mappings of unambiguous WFA [19, 20].

In the literature, one often allows in the definition of a subsequential WFA that δ and σ are

partial mappings. However, this does not really extend our definition, since one can achieve totally

defined mappings δ and σ by introducing a sink state.

3.2 An Example of a Polynomially Ambiguous WFA

It raises the question whether there are meaningful examples of polynomially ambiguous WFA

over Z, or whether the class of mappings which are computable by polynomially ambiguous WFA

coincides with the class of mappings of some well-known class of WFA. The largest subclass of

polynomially ambiguous WFA found in the literature are the finitely unambiguous WFA [12, 20, 36].

Let Σ = {a, b}. We consider the WFA A0 = [Q0, θ0, λ0, ̺0] whereas λ0 = (0,∞,∞,∞) and

̺0 = (∞,∞,∞, 0).

A0
1 2 3

a, 0 b, 0 a, 1 a, 0 b, 0

b, 0 b, 0

The drawings should be understood as follows. The arrow in A0 from state 1 to state 2 with the

label b, 0 means θ0(b)[1, 2] = 0. The absence of some arrow A1 from 1 to 2 with some label a means

θ0(a)[1, 2] = ∞. The incoming unlabeled arrow at state 1 means λ0[1] = 0. Similarly, the outgoing

unlabeled arrow at 3 means ̺0[3] = 0.

For every w ∈ Σ∗, q ∈ Q0, every path in q
w
; q visits only the state q. Hence, there is exactly

one path in q
w
; q. By Theorem 3.1, A0 is polynomially ambiguous.

For every w ∈ Σ∗, |A0|(w) is the least ℓ ≥ 0 such that baℓb is a factor of w. If w does not admit

a factor of the form ba∗b, then |A0|(w) = ∞.

Proposition 3.2. There is a polynomially ambiguous WFA over Z which does not admit an equiv-

alent, finitely ambiguous WFA.
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Proof. It remains to show that A0, above, does not admit an equivalent, finitely ambiguous WFA.

By contradiction, let k ≥ 1 and A = [Q, θ, λ, ̺] be a k-ambiguous WFA satisfying |A| = |A0|.

To derive a contradiction by showing |A| 6= |A0|, we introduce an equivalent way to define the

semantics of A. Let m ≥ 0 and π = (q0, a1, k1, q1)(q1, a2, k2, q2) . . . (qm−1, am, km, qm) be a path in

A. We define σ0(π) :=
∑

i=1,...,m ki and σ̄(π) := λ[q0]+σ(π)+̺[qm]. By an induction on the length

of w, we can show for every p, q ∈ Q, w ∈ Σ∗,

θ(w)[p, q] = min
π ∈ p

w
; q

σ(π) and |A|(w) = min
π∈ I

w
; F

σ̄(π).

Let n := |Q| and L :=
(

bank

a∗
)k+1

b. Let k′ be the maximum of the number of accepting paths in

A for some word in L and let w ∈ L such that there are exactly k′ accepting paths for w.

Let π1, . . . , πk′ the accepting paths of w. We factorize w into w = u0v1u1 . . . vk+1uk+1 whereas

u0, . . . , uk+1 ∈ a∗ba∗ and v1, . . . , vk+1 ∈ a+.

We factorize π1, . . . , πk′ into paths which are labeled by u0, v1, u1, . . . , vk+1, uk+1, respectively.

For every 1 ≤ m ≤ k′, there are paths ξm,0, . . . , ξm,k+1 and νm,1, . . . , νm,k+1 such that πm =

ξm,0νm,1ξm,1 . . . νm,k+1ξm,k+1 and ξm,0, . . . , ξm,k+1 and νm,1, . . . , νm,k+1 are labelled with u0, . . . ,

uk+1 and v1, . . . , vk+1, respectively.

By a counting argument, we can assume that for every 1 ≤ m ≤ k, 1 ≤ i ≤ k + 1, the path νm,i

is a cycle. If there are some 1 ≤ m ≤ k′, 1 ≤ i ≤ k + 1 such that σ(νm,i) < 0, then we can iterate

νm,i in πm and construct an accepting path π′ such that σ(π̄′) < 0 which is a contradiction.

For every 1 ≤ m ≤ k′, there is some 1 ≤ i ≤ k + 1 such that σ(νm,i) > 0. Just assume the

contrary. By iterating the cycles σ(νm,i) in πm, we can construct for every w′ ∈ u0v
+
1 u1 . . . v+

k+1uk+1

an accepting path π′ such that σ̄(π′) = σ̄(πm), i.e., |A|(w′) ≤ σ′(πm), which is a contradiction.

Let I ( {1, . . . , k+1} such that for every 1 ≤ m ≤ k′, there is some i ∈ I such that σ(νm,i) > 0.

Let 1 ≤ j ≤ k + 1, j /∈ I. Let ℓ such that baℓb is a factor of uj−1vjuj.

For every 1 ≤ i ≤ k + 1 let v′i := vℓ+1
i if i ∈ I and let v′i := vi, otherwise. Let w′ :=

u0v
′
1u1 . . . v′k+1uk+1.

Let 1 ≤ m ≤ k′. By iterating for i ∈ I the cycles πm,i in πm ℓ + 1 times, we obtain some

accepting path π′
m which is labeled with w′ and σ̄(π′

m) ≥ σ̄(πm) + ℓ > ℓ. In this way, we can

construct k′ distinct accepting paths π′
1, . . . , π

′
k′ which are labeled with w′ and σ̄(π′

m) > ℓ for

1 ≤ m ≤ k′. Since, w′ ∈ L and by the choice of k′, there are no other accepting paths beside

π′
1, . . . , π

′
k′ . Hence, |A|(w′) > ℓ. However, since baℓb is a factor of w′, we have |A0|(w

′) ≤ ℓ. This

contradicts |A| = |A0|.

3.3 Mohri’s algorithm

In practical applications as speech processing, the implementation of subsequential WFA is more

efficient than the implementation of arbitrary WFA [29]. Hence, one is interested in an algorithm

which transforms a given WFA over Z into an equivalent subsequential WFA if an equivalent

subsequential WFA exists. In [29], Mohri presented the following algorithm. We explain his

algorithm just in the tropical semiring. Let A = [Q,E, λ, ̺] be a WFA over Z. Let n := |Q| and

assume Q = {1, . . . , n}.

We want to construct an equivalent, subsequential WFA A′ = [Q′, δ, σ, q0, k0, ̺
′]. The states Q′

are a subset of Zn.

For every tuple B ∈ Zn, let min(B) := min1≤i≤n B[i]. For every B ∈ Zn \ {(∞, . . . ,∞)}, let

nf(B) ∈ Zn be defined by nf(B) := (−min(B)) ⊕ B, and let nf
(

(∞, . . . ,∞)
)

= (∞, . . . ,∞).
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We show some basic properties of the mapping nf before we explain the algorithm.

For every B ∈ Zn, we have B = min(B) ⊕ nf(B).

Let k ∈ Z and B ∈ Zn. We have min(k ⊕ B) = k + min(B).

For k 6= ∞ and B ∈ Zn, can easily show

nf(k ⊕ B) = nf(B). (3.1)

Indeed, if B 6= (∞, . . . ,∞), then nf(k⊕B) = (−min(k⊕B))⊕(k⊕B) =
(

−k−min(B)
)

⊕(k⊕B) =

(−min(B)) ⊕ B = nf(B). If B = (∞, . . . ,∞), then B = k ⊕ B, and hence, nf(B) = nf(k ⊕ B).

Let B ∈ Zn and A ∈ Zn×n. If B 6= (∞, . . . ,∞), then nf
(

nf(B)A
)

= nf
(

(−min(B)) ⊕ B A
)

=

nf(BA). If B = (∞, . . . ,∞), then nf(B) = B, and hence, nf
(

nf(B)A
)

= nf(BA). Consequently, we

have for every B ∈ Zn, A ∈ Zn×n,

nf
(

nf(B)A
)

= nf(BA). (3.2)

We construct A′. For every B ∈ Zn and every a ∈ Σ, we define

• δ(B, a) := nf
(

Bθ(a)
)

and

• σ(B, a) := min
(

Bθ(a)
)

.

We show that for every B ∈ Zn, w ∈ Σ+, we have

δ(B,w) = nf(Bθ(w)). (3.3)

For w ∈ Σ, (3.3) is the definition of δ. Let w ∈ Σ+, a ∈ Σ and assume by induction that (3.3) is

true for w (for every B ∈ Zn). We obtain δ(B,wa) = δ
(

δ(B,w), a
)

=

= nf
(

δ(B,w)θ(a)
)

= nf
(

nf(Bθ(w))θ(a)
) (3.2)

= nf
(

Bθ(w)θ(a)
)

= nf(Bθ(wa)).

For every B ∈ Zn, a ∈ Σ, we have σ(B, a) ⊕ δ(B, a) = Bθ(a). We generalize this equation by

an induction to words, i.e., we show for every w ∈ Σ∗ and B ∈ Zn

σ(B,w) ⊕ δ(B,w) = Bθ(w). (3.4)

We have σ(B, ε) ⊕ δ(B, ε) = 0 ⊕ B = Bθ(ε). For w ∈ Σ∗, a ∈ Σ, and B ∈ Zn, we get

σ(B,wa) ⊕ δ(B,wa) =
(

σ(B,w) + σ
(

δ(B,w), a
)

)

⊕ δ
(

δ(B,w), a
)

=

= σ(B,w) ⊕
(

σ
(

δ(B,w), a
)

⊕ δ
(

δ(B,w), a
)

)

= σ(B,w) ⊕
(

δ(B,w)θ(a)
)

=

=
(

σ(B,w) ⊕ δ(B,w)
)

θ(a) =
(

Bθ(w)
)

θ(a) = Bθ(wa).

We set k0 := min(λ), q0 := nf(λ), and ̺′(B) = B̺ for B ∈ Zn. As a conclusion from (3.4), we get

for every w ∈ Σ∗

k0 + σ(q0, w) + ̺′
(

δ(q0, w)
)

= k0 + σ(q0, w) + δ(q0, w)̺ = k0 +
(

σ(q0, w) ⊕ δ(q0, w)
)

̺ =

= k0 + q0θ(w)̺ = min(λ) + nf(λ)θ(w)̺ =
(

min(λ) ⊕ nf(λ)
)

θ(w)̺ = λθ(w)̺ = |A|(w). (3.5)

Let Q′ :=
{

δ(q0, w)
∣

∣ w ∈ Σ∗
}

. Clearly, Q′ is the least subset of Zn which contains q0 and is closed

under δ, i.e., for every B ∈ Q′ and every a ∈ Σ, we have δ(B, a) ∈ Q′.
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The set Q′ is not necessarily finite, even if there is some subsequential WFA which is equivalent

to T . If Q′ is finite, then we define A′ =
[

Q′, δ|Q′×Σ, σ|Q′×Σ, q0, k0, ̺′|Q′

]

.

By equation (3.5), A and A′ are equivalent. In [29], Mohri gives an algorithm which computes

the WFA A′. This algorithm terminates iff Q′ is finite.

We say that Mohri’s algorithm terminates on A if the Q′ is finite.

Let (wk)k≥1 be some sequence of words in Σ∗. We say that Mohri’s algorithm terminates on

(wk)k≥1 on A if the set
{

δ(q0, wk)
∣

∣ k ≥ 1
}

is finite.

3.4 On the Twins Property

The twins property was introduced by Choffrut in 1977 [5] in the framework of string-to-string

transducers. In 1997 [29, 1], Mohri generalized the twins property to WFA over the tropical

semiring as follows.

Let A = [Q, θ, λ, ̺] be a WFA over Z. Two states q, q′ ∈ Q are called siblings if there exists

some u ∈ Σ∗ such that λθ(u)[q] 6= ∞ and λθ(u)[q′] 6= ∞. Two siblings q, q′ ∈ Q are called twins if

they satisfy the following condition (TW):

TW. For every v ∈ Σ∗ satisfying θ(v)[q, q] 6= ∞ and θ(v)[q′, q′] 6= ∞, we have

θ(v)[q, q] = θ(v)[q′, q′].

The WFA A has the twins property iff every siblings are twins.

In [29], it is shown that the twins property is a sufficient condition for the termination of

Mohri’s algorithm. Moreover, we have the following theorem:

Theorem 3.3 ([29, Theorem 12]). Let A be a trim, unambiguous WFA over the tropical semiring.

Mohri’s algorithm terminates on A iff A satisfies the twins property.

The main weakness of the concept of the twins property is that the twins property is not

necessary for the termination of Mohri’s algorithm.

Example 3.1. Let Σ = {a, b}. We consider the WFA A1 = [Q, θ1, λ, ̺] (left) and A2 = [Q, θ2, λ, ̺]

(right) whereas λ = (0,∞,∞,∞) and ̺ = (∞,∞,∞, 0).

A1

1

2

3

4

a, 5

a, 0

a, 2

b, 0

a, 0

a, 0

a, 0

a, 0

a, 2

a, 1

A2

1

2

3

4

a, 5

a, 0

a, 2

b, 0

b, 0

a, 0

a, 0

a, 0

a, 0

a, 2

a, 1

Note that A2 was constructed by inserting a transition (1, b, 3) into A1.

Let w ∈ Σ∗ and q ∈ Q. Every path in q
w
; q does only visit the state q. Hence, there is at most

one path in q
w
; q. By Theorem 3.1, both A1 and A2 are polynomially ambiguous.
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We apply Mohri’s algorithm to A1. We get q0 = nf(λ) = λ. We examine the set Q′
1 =

{δ1(q0, w) |w ∈ Σ∗}. It is easy to see that for every word w ∈ Σ+bΣ∗, we have λθ1(w) =

(∞,∞,∞,∞), and hence, δ1(q0, w) = (∞,∞,∞,∞). Let k ∈ N and w = bak. We obtain

λθ1(w) = (∞,∞,∞, k), and by equation (3.3), δ1(q0, w) = (∞,∞,∞, 0). Finally, we calculate

δ1(q0, a
k) for k = 1, 2, . . . We obtain δ1(q0, a) = (∞, 5, 0, 2), i.e., (∞, 5, 0, 2) belongs to Q′

1. By

continuing for k = 2, 3, . . . , we figure out that (∞, 5, 2, 0), (∞, 4, 4, 0), (∞, 3, 3, 0), (∞, 2, 2, 0),

(∞, 1, 1, 0), (∞, 0, 0, 0) belong to Q′
1. For k ≥ 7, we obtain δ1

(

q0, a
k
)

= (∞, 0, 0, 0). To sum up,

Q′
1 consists of 10 states, i.e, Mohri’s algorithm terminates on A1.

Now, we apply Mohri’s algorithm to A2. For every k ≥ 0, we get λθ2(ba
k) = (∞,∞, 2k, k),

and thus, δ2(q0, ba
k) = (∞,∞, k, 0). Thus, Q′

2 is infinite, i.e., Mohri’s algorithm does not terminate

on A2.

Both A1 and A2 have the same siblings: (1, 1) and {2, 3, 4} × {2, 3, 4}. Both A1 and A2 do not

satisfy the twins property, e.g., we have θi(a)[2, 2] = 0 6= 2 = θi(a)[3, 3] for i ∈ {1, 2}.

The key question is how to define a variant of the twins property which allows to distinguish

between A1 and A2. Let us try an approach which relies on some comparison of siblings, i.e., we

try to establish some condition (TW’) which is similar to the above condition (TW), and we define

that some WFA satisfies the (TW’)-twins property if every siblings satisfy (TW’).

Now, consider the siblings (2, 3) in A1 and A2. For every p ∈ Q and every w ∈ Σ∗, we have

θ1(w)[2, p] = θ2(w)[2, p] and θ1(w)[3, p] = θ2(w)[3, p]. Consequently, if (TW’) is somehow defined by

a comparison of siblings, then (2, 3) satisfies (TW’) in A1 iff (2, 3) satisfies (TW’) in A2. Henceforth,

(TW’) cannot distinguish between (2, 3) in A1 and (2, 3) in A2.

Unfortunately, the same effect happens for every pair of siblings in {2, 3, 4} × {2, 3, 4}. There

is still one more pair of siblings: (1, 1). If (TW’) is somehow defined by a comparison of siblings,

then (TW’) should be satisfied for sibling pairs of the form (q, q) since it means to compare a state

to itself.

As a conclusion, it seems to be impossible to define (TW’) in way that A1 satisfies the (TW’)-

twins property but A2 does not. �

3.5 Main Results

Let A = [Q, θ, λ, ̺] be a WFA over Z. Set n := |Q| and assume Q = {1, . . . , n}.

We call some set C ⊆ Q a clone if there is some word w ∈ Σ∗ such that

C =
{

q ∈ Q
∣

∣λθ(w)[q] 6= ∞
}

.

We denote the set of all clones of A by Clones(A) ⊆ 2Q.

Let p, q ∈ Q. Clearly, p and q are siblings iff there exists some C ∈ Clones(A) such that p, q ∈ C.

Let C ⊆ Q and A ∈ Zn×n, and assume α(A) ∈ E(Bn×n). We say that C is stable on A if

Cα(A) = C. Assume that C is stable on A. Let q ∈ C. We say that q has a minimal cycle in

C and A if A[q, q] = min
{

A[p, p]
∣

∣ p ∈ C
}

. We say that C and A have the clones property if for

every p ∈ C satisfying A[p, p] 6= ∞, there is some q ∈ C such that q has a minimal cycle in C and

A[q, p] 6= ∞.

If C = ∅, then C and A satisfy the clones property by definition.

We say that A has the clones property if for every C ∈ Clones(A) and every w ∈ Σ∗, C and

θ(w) have the clones property, provided that α(θ(w)) ∈ E(Bn×n) and θ(w) is stable on C.

Our main result is the following equivalence:
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Theorem 3.4. Let A = [Q, θ, λ, ̺] be a trim, polynomially ambiguous WFA over Z. The following

assertions are equivalent:

1. Mohri’s algorithm terminates on A.

2. For every v,w ∈ Σ∗, Mohri’s algorithm terminates on the sequence (vwk)k≥1 on A.

3. The WFA A satisfies the clones property.

Note that (1) ⇒ (2) in Theorem 3.4 is obvious.

To show (2) ⇒ (3), we assume that (3) is false. There are C ∈ Clones(A) and w ∈ Σ∗ such that

C and θ(w) do not satisfy the clones property. Let v ∈ Σ∗ such that C =
{

q ∈ Q
∣

∣λθ(v)[q] 6= ∞
}

.

We can then show that Mohri’s algorithm does not terminate on the sequence (vwk)k≥1 which

disproves (2) in Theorem 3.4 (Section 4.3).

The proof of (3) ⇒ (1) in Theorem 3.4 leads us to a Burnside type problem which requires

ambitious algebraic tools as Simon’s factorization forest theorem (Section 4.4 and 4.5).

Example 3.1 (continued). We continue the examination of A1 and A2 from Section 3.4. We

have Clones(A1) =
{

∅, {1}, {4}, {2, 3, 4}
}

and Clones(A2) =
{

∅, {1}, {3, 4}, {2, 3, 4}
}

. Thus, A1

and A2 have different sets of clones, although they have the same siblings.

In Section 3.4, we have seen that Mohri’s algorithm does not terminate on the sequence

(bak)k≥1 on A2. We utilize this sequence to show that A2 does not satisfy the clones property.

We consider the clone C := {q ∈ Q
∣

∣λθ2(b)[q] 6= ∞
}

= {3, 4} and θ2(a). It is easy to see that

α(θ2(a)) ∈ E(B4×4). If A2 reads a starting in some state in C, then it can change the state to 3 or

4. Hence, C is stable on θ2(a).

Since, θ2(a)[3, 3] = 2 and θ2(a)[4, 4] = 1, the state 4 has a minimal cycle in C and θ2(a). The

state 3 has not a minimal cycle in C and θ2(a). We have θ2(a)[4, 3] = ∞. Consequently, C and

θ2(a) do not have the clones property, and hence, A2 does not satisfy the clones property.

In Section 3.4, we have seen that Mohri’s algorithm terminates on A1. By Theorem 3.4, A1

satisfies the clones property. �

We show some connections between the clones property and the twins property.

Theorem 3.5. Let A be a WFA over Z. If A has the twins property, then A has the clones

property.

Proof. Let A = [Q, θ, λ, ̺]. Let C ∈ Clones(A) and w ∈ Σ∗ such that α(θ(w)) ∈ E(Bn×n) and

α(θ(w)) is stable on C. We show that C and θ(w) have the clones property. If C = ∅, then we

are done. Assume C 6= ∅. Let C ′ := {q ∈ C | θ(w)[q, q] 6= ∞}. Since, A has the twins property, we

have θ(w)[p, p] = θ(w)[q, q] for every p, q ∈ C ′. Hence, every q ∈ C ′ has a minimal cycle in C and

θ(w). Let p ∈ C ′ be arbitrary. We have to show some q ∈ C ′ such that q has a minimal cycle in C

and θ(w) and θ(w)[q, p] 6= ∞. We can set q := p.

For finitely ambiguous WFA, we have a stronger property.

Theorem 3.6. Let A = [Q, θ, λ, ̺] be a trim, finitely ambiguous WFA over Z. The following

assertions are equivalent:

1. The WFA A satisfies the clones property.

2. The WFA A satisfies the twins property.
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3. Mohri’s algorithm terminates on A.

Note that (1) ⇔ (3) follows from directly from Theorem 3.4 and (2) ⇒ (1) follows from Theorem 3.5.

Moreover, (2) ⇒ (3) follows from a result by Mohri in [29] as seen in Section 3.4.

From Theorem 3.4, we get the following result:

Corollary 3.7. There is an algorithm which decides whether Mohri’s algorithm terminates on a

given trim, polynomially ambiguous WFA over Z.

Proof. The algorithm consists of two simultaneous processes. The first process generates Q′. It

terminates iff Q′ is finite.

The second process generates the set Clones(A) and checks for every word w ∈ Σ∗ whether

α(θ(w) ∈ E(Bn×n) and whether C is stable on α(θ(w)). If so, it checks whether C and θ(w) satisfy

the clones property. It terminates iff C and θ(w) do not satisfy the clones property. Hence, the

second process terminates iff A does not satisfy the clones property.

By Theorem 3.4(1)⇔(3), exactly one of the processes terminates, and Mohri’s algorithm ter-

minates on A iff the first process terminates.

Our main results are restricted to trim, polynomially ambiguous WFA over Z. It raises the

question whether one generalize our results to other WFA over Z. We prove the following result in

Section 4.7.

Theorem 3.8. Let A = [Q, θ, λ, ̺]. If Mohri’s algorithm terminates on A, then Mohri’s algo-

rithm terminates on the trim part of A.

If we are interested in applying Mohri’s algorithm to some WFA A, then we rather apply

Mohri’s algorithm to the trim part of A. We can construct the trim part of A in polynomial time.

The trim part has less or as many states as A. If A is polynomially ambiguous, then so is the trim

part of A. Moreover, if Mohri’s algorithm terminates on A, then it terminates on the trim part

of A. Henceforth, the restriction to trim WFA is not really a restriction.

3.6 Conclusions and Open Questions

We can decide whether Mohri’s algorithm terminates on a given polynomially ambiguous WFA.

It is quite interesting to have a decidability result for a class of WFA for which the equivalence

problem is undecidable [21].

In the tropical semiring, the twins property was a suitable concept just for unambiguous WFA.

By introducing the clones property, we came over the disadvantages of the twins property for the

class of polynomially ambiguous WFA. Remarkably, the twins and the clones property coincide for

finitely ambiguous WFA.

The equivalence (2) ⇔ (3) in Theorem 3.6 generalizes Theorem 3.3 by Mohri from unambiguous

WFA to finitely unambiguous WFA.

It raises the question whether one can generalize Theorem 3.4 and Corollary 3.7 to trim WFA

which are not necessarily polynomially ambiguous. Let us consider an example.

Example 3.2. Let Σ = {a, b}. We examine the WFA A3 shown below whereas λ3 = (0, 0, 0) and

̺3 = (∞,∞, 0).
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A3
1 2 3

a, 0 b, 0 a, 1 a, 0 b, 1

b, 0

For every w ∈ Σ∗, we have λ3θ3(w)[1] = 0. We can imagine A3 as a machine which reads words

and manipulates two counters which correspond to the states 2 and 3. We do not imagine state 1

as a counter, since such a counter is just a constant zero.

The counter 3 counts the number of b’s in the input word. When A3 reads the letter a, it

increments the counter 2, but when it reads b, it sets counter 2 to zero. Thus, counter 2 counts

the number of trailing a’s in the input word. More precisely, we have for every k ≥ 0, w ∈ Σ∗,

λ3θ3(wbak)[2] = k.

We modify A3 by inserting two transitions between the states 2 and 3 and obtain an WFA A4

shown below whereas λ4 = λ3 and ̺4 = ̺3.

A4
1 2 3

a, 0 b, 0 a, 1 a, 0 b, 1

b, 0
b, 1

a, 0

For every w ∈ Σ∗, we have λ4θ4(w)[1] = 0, λ4θ4(w)[2] ≥ 0, and λ4θ4(w)[3] ≥ 0. Hence, we have

min(λ4θ4(w)) = 0 and nf(λ4θ4(w)) = λ4θ4(w).

The WFA A4 is not polynomially ambiguous, because there are two different cycles at the state

3 which are labeled with ab.

When A4 reads the letter b, it increments the counter 3 and sets counter 2 to zero. However,

when reading b, A4 increments counter 3 at most to the value of counter 2 plus 1.

When A4 reads the letter a, it does not change the counter 3. It increments the counter 2, if

counter 2 is less than counter 3.

We verify condition (2) in Theorem 3.4 for A4. Let v,w ∈ Σ∗.

Assume w ∈ a∗. It is easy to see that for every k ≥ 1, we have λ4θ4(v)[3] = λ4θ4(vwk)[3]. More-

over, we have 0 ≤ λ4θ4(vwk)[2] ≤ λ4θ4(vwk)[3] = λ4θ4(v). Consequently, the set {λ4θ4(vwk) | k ≥

1} is finite, i.e., Mohri’s algorithm terminates on the sequence λ4θ4(vwk).

Now, assume w /∈ a∗. Let m ≥ 0 such that for every k ≥ 1, the word am+1 is not a factor of

vwk. Let k ≥ 1 and u be a prefix of vwk. If u ∈ a∗, then u = aℓ for some ℓ ≤ m, and hence,

λ4θ4(u)[2] = ℓ ≤ m. If u /∈ a∗, then there are u′ ∈ Σ∗, ℓ ≤ m such that u = u′baℓ. We have

λ4θ4(u
′b)[2] = 0 and θ4(a

ℓ) = ℓ ≤ m, and hence, λ4θ4(u)[2] ≤ m.

There are some u ∈ Σ∗ and ℓ ≤ m such that vwk = ubaℓ. We have

λ4θ4(ubaℓ)[3] ≤ λ4θ4(u)[2] + θ4(b)[2, 3] + θ4(a
ℓ)[3, 3] ≤ m + 1 + 0.

Thus, we have for every k ≥ 1, λ4θ4(vwk) ∈ {0} × {0, . . . ,m} × {0, . . . ,m + 1}. Consequently,

Mohri’s algorithm terminates on the sequence (vwk)k≥1, i.e., A4 satisfies (2) in Theorem 3.4.

Now, we consider the sequence defined by w1 := ba and wk+1 := wkba
k+1 for k ≥ 1. We

have λ4θ4(w1) = (0, 1, 1). By an induction on k, one can easily show λ4θ4(wkb) = (0, 0, k + 1)

and λ4θ4(wk+1) = (0, k + 1, k + 1). Thus, we have λ4θ4(wℓ) 6= λ4θ4(wk) for every 1 < ℓ < k.

Consequently, Mohri’s algorithm does not terminate on A4. �
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By A4 in Example 3.2, (2) ⇒ (1) in Theorem 3.4 is not true for arbitrary WFA over Z.2

It is an interesting open question whether one can achieve a characterization similar to Theo-

rem 3.4 for arbitrary WFA over Z, maybe by utilizing Hashiguchi’s k-expressions which provide

a nested pumping technique and turned out to be very useful in the theory of WFA [10, 18, 26, 34].

Another open problem is to develop a practical algorithm to decide whether a given, polyno-

mially ambiguous WFA satisfies the clones property.

4 The Main Proofs

4.1 On Boolean Matrices

Let n ≥ 1 for this section. Let e ∈ E(Bn×n). We associate a binary relation ≤e on {1, . . . , n} to e

by setting i ≤e j iff e[i, j] = 1.

Lemma 4.1. Let e ∈ E(Bn×n).

1. The relation ≤e is transitive.

2. For every 1 ≤ i, j ≤ n satisfying i ≤e j, there is some 1 ≤ k ≤ n such that i ≤e k, k ≤e k,

and k ≤e j.

Proof. (1) Let 1 ≤ i, j, k ≤ n such that i ≤e j and j ≤e k, i.e., e[i, j] = 1 = e[j, k]. Consequently,

1 = e2[i, k] = e[i, k]. Hence, i ≤e k.

(2) Let 1 ≤ i, j ≤ n satisfying i ≤e j, i.e., e[i, j] = 1. Since, B is an idempotent semiring and

e = en+2, there are i = i0, . . . , in+1 = j such that 1 = en+2[i, j] = e[i0, i1] ∧ · · · ∧ e[in+1, in+2].

By a counting argument, there are 1 ≤ p < q ≤ n such that ip = iq. We set k = ip. Since,

1 = e[i0, i1] ∧ · · · ∧ e[ip−1, ip], we obtain 1 = ep[i0, ip] = e[i, k], i.e., i ≤e k, and similarly, k ≤e k,

and k ≤e j.

Let S be a subsemigroup of Bn×n for the rest of this section. We call S polynomially ambiguous

(resp. finitely ambiguous) if there is some polynomial P : N → N (resp. constant P ∈ N) such that

for every k ≥ 1, p1, . . . , pk ∈ S, and every 1 ≤ i, j ≤ n, there are at most P (k) (resp. P ) tuples

(i0, . . . , ik) ∈ {1, . . . , n}k+1 which satisfy the conditions i0 = i, ik = j, and

p1[i0, i1] ∧ · · · ∧ pk[ik−1, ik] = 1.

Let p ∈ S and 1 ≤ i, j ≤ n satisfying p[i, j] = 1. We call (i, j) unambiguous in p if for every

r, s ∈ S satisfying p = rs, there is exactly one 1 ≤ k ≤ n such that r[i, k] ∧ s[k, j] = 1.

Assume that (i, j) is unambiguous in p. Let k ≥ 1, p1, . . . , pk ∈ S satisfying p = p1 · · · pk. There

are unique i = i0, . . . , ik = j such that p1[i0, i1]∧ · · · ∧ pk[ik−1, ik] = 1 and for every 1 ≤ ℓ ≤ k, the

pair (iℓ−1, iℓ) is unambiguous in pℓ.

Lemma 4.2. Let S ⊆ Bn×n be a subsemigroup. The following conditions are equivalent.

1. For every p ∈ S and every i, j satisfying p[i, i] = p[i, j] = p[j, i] = p[j, j] = 1, we have i = j.

2. For every p ∈ S and every i satisfying p[i, i] = 1, the pair (i, i) is unambiguous in p.

2In the published version of the paper, it will be shown that A4 satisfies the clones property, and hence, (3) ⇒ (1)

in Theorem 3.4 is not true for arbitrary WFA over Z.
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Moreover, if S is polynomially ambiguous, then both conditions are satisfied.

Proof. (2)⇒(1) We have p2[i, i] = 1. By (2) on p2 and (i, i), there is a unique k such that p[i, k] =

p[k, i] = 1. Thus, we have i = k but also j = k.

(1)⇒(2) Let p ∈ S and i satisfying p[i, i] = 1. Let r, s ∈ S such that p = rs. Let k, ℓ such that

r[i, k] = s[k, i] = 1 and r[i, ℓ] = s[ℓ, i] = 1. We have to show k = ℓ. Since s[ℓ, i] = r[i, k] = 1, we

have sr[ℓ, k] = 1, and similarly, sr[k, k] = sr[k, ℓ] = sr[ℓ, ℓ] = 1. By applying (1) for sr and k, ℓ, we

observe k = ℓ.

Finally, assume that S is a polynomially ambiguous subsemigroup of Bn×n. We show (1). Let

p and i, j as in (1). Let k ≥ 1 and consider the product pk. According to the definition of a

polynomially ambiguous subsemigroup, the number of tuples in {i} × {i, j}k−1 × {j} is bounded

polynomially in k. Hence, {i, j} is a singleton set, i.e., i = j.

Let us mention that it was shown implicitly in [15, 13, 14] in an automata theoretic frame-

work that every subsemigroup of Bn×n which satisfies condition (2) in Lemma 4.2 is polynomially

ambiguous (cf. Proof of Theorem 3.1 in [15] or Lemma 4.3 in [14]).

Assume that S is polynomially ambiguous and let e ∈ E(T ). By Lemma 4.2(1), ≤e is antisym-

metric. However, ≤e is not necessarily reflexive or irreflexive.

Lemma 4.3. Let S be a polynomially ambiguous subsemigroup of Bn×n. Let C ⊆ {1, . . . , n} and

let e ∈ E(S), and assume that e is stable on C. For every i ∈ C which is minimal for ≤e in C, we

have e[i, i] = 1.

Proof. Let i ∈ C be minimal. Since, e is stable on C, we have (Ce)[i] = 1, and hence, there is some

j ∈ C such that e[j, i] = 1. It follows j ≤e i, and since i is minimal, we have j = i. Consequently,

we have e[i, i] = 1.

An important consequence from Lemma 4.3 is that for every i ∈ C, there exists some j ∈ C

such that j ≤e i. Just assume that such a j does not exist. Then, i is minimal for ≤e, and by

Lemma 4.3, we have j ≤e i for j := i.

Lemma 4.4. Let S ⊆ Bn×n be a finitely ambiguous subsemigroup. For every p ∈ S and every i, j

satisfying p[i, i] = p[i, j] = p[j, j] = 1, we have i = j.

Proof. By contradiction, let p ∈ S and i 6= j such that p[i, i] = p[i, j] = p[j, j] = 1. Let k ≥ 1. We

apply the definition of a finitely ambiguous semigroup to the entry (i, j) in the k-th power of p.

For every 1 ≤ ℓ ≤ k, consider the tuple {i}ℓ ×{j}k+1−ℓ. Hence, there are at least k tuples, i.e., the

number of tuples is not bounded by a constant.

Lemma 4.5. Let A = [Q, θ, λ, ̺] be a trim WFA over Z. The following assertions are equivalent.

1. The WFA A is polynomially (resp. finitely) ambiguous.

2. The subsemigroup α(θ(Σ∗)) ⊆ BQ×Q is polynomially (resp. finitely) ambiguous.

Proof. Let n := |Q| and assume Q = {1, . . . , n}.

At first, we show the equivalence for the case of polynomial ambiguity.

(2) ⇒ (1) Let P : N → N be the polynomial from the definition of a polynomially ambiguous

subsemigroup for α(θ(Σ∗)). Let I (resp. F ) be the initial (resp. accepting) states of A. Clearly, for

every word w ∈ Σ∗ there are at most |I| · P (|w|) · |F | ≤ n2P (|w|) accepting paths for w.
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(1) ⇒ (2) Let P : N → N be a polynomial such that every word w ∈ Σ∗ has at most P (|w|)

accepting paths in A. We assume that P is monotonic, i.e., for every k ≤ k′, we have P (k) ≤ P (k′).

For every k ∈ N, let P ′(k) := P
(

2n2

k + 2n
)

. Clearly, P ′ : N → N is a polynomial.

Let S := α(θ(Σ∗)). For every p ∈ S, there is some w ∈ Σ∗ such that |w| ≤ |S| ≤ 2n2

and

α(θ(w)) = p.

Let k ≥ 1, p1, . . . , pk ∈ S, and 1 ≤ i, j ≤ n such that (p1 . . . pk)[i, j] = 1.

Let w1, . . . , wk ∈ Σ∗ such that for every 1 ≤ ℓ ≤ k, |w|ℓ ≤ 2n2

and α(θ(wℓ)) = pℓ.

Since, A is trim, there are w0, wk+1 ∈ Σ∗ such that α(λθ(w0))[i] = 1 and α(θ(wk+1)̺)[j] = 1.

We can assume |w0| ≤ n and |wk+1| ≤ n.

Let i = i0, . . . , ik = j such that p1[i0, i1] ∧ · · · ∧ pk[ik−1, ik] = 1. For every 1 ≤ ℓ ≤ k, there is

some path in A from iℓ−1 to iℓ which is labeled with wℓ. Moreover, there is some path in A from an

initial state to i which is labeled with w0, and there is a path in A from j to some accepting state

which is labeled with wk+1. Consequently, we can associate to each tuple i0, . . . , ik an accepting

path in A which is labeled with w0 . . . wk+1. Clearly, this association is injective. Thus, the number

of tuples is less than the number of accepting paths of w0 . . . wk+1 in A, i.e., the number of tuples

is at most

P (|w0 . . . wk+1|) ≤ P
(

2n2

k + 2n
)

= P ′(k).

To show the equivalence for the case of finite ambiguity, we proceed in the same way by con-

sidering P : N → N as a constant. In particular, we can set P ′ := P in (1) ⇒ (2).

4.2 On the Span of Tuples

Let A = [Q, θ, λ, ̺] be a polynomially ambiguous WFA over Z for this section. Let n := |Q| and

assume Q = {1, . . . , n}.

Let T := θ(Σ∗) ⊆ Zn×n and S := α(θ(Σ∗)) = α(T ) ⊆ Bn×n. By Lemma 4.5, S is polynomially

ambiguous.

Let C ⊆ Q and A ∈ Zn×n. By an abuse of notation, we define a product CA ∈ Zn, by setting

for every 1 ≤ i ≤ n, (CA)[i] = minℓ∈C A[ℓ, i].

In Section 3.3, we already defined min(B) := min1≤i≤n B[i] for B ∈ Zn. For every B ∈

Zn \ {(∞, . . . ,∞)}, let

1. max(B) := max1≤i≤n, B[i] 6=∞ B[i],

2. span(B) := max(B) − min(B), and span
(

(∞, . . . ,∞)
)

:= 0.

We show some connections between span, nf and the termination of Mohri’s algorithm.

Remark 4.1. Let B ∈ Zn \ {(∞, . . . ,∞)} and k ∈ Z \ {∞}. We have:

1. min(k ⊕ B) = k + min(B), max(k ⊕ B) = k + max(B)

2. span(k ⊕ B) = k + max(B) − (k + min(B)) = span(B)

3. min(nf(B)) = min
(

(−min(B)) ⊕ B
)

= −min(B) + min(B) = 0

4. span(nf(B)) = max(nf(B)) − min(nf(B)) = max(nf(B))

5. span(nf(B)) = span
(

(−min(B)) ⊕ B
)

= span(B)
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The equations (3) and (4) are not well-defined for B = (∞, . . . ,∞). However, the important

claim (5) in Remark 4.1 is obviously true for B = (∞, . . . ,∞).

In Section 3.3, we explained that Mohri’s algorithm produces the set Q′ =
{

δ(q0, w)
∣

∣ w ∈ Σ∗
}

.

For every w ∈ Σ+, we have

δ(q0, w)
(3.3)
= nf

(

q0θ(w)
)

= nf
(

nf(λ)θ(w)
) (3.2)

= nf
(

λθ(w)
)

,

and δ(q0, ε) = q0 = nf(λ) = nf(λθ(ε)). Consequently, we have

Q′ =
{

nf(λθ(w))
∣

∣ w ∈ Σ∗
}

. (4.1)

Lemma 4.6. The following assertions are equivalent.

1. Mohri’s algorithm terminates on A.

2. There is some K ∈ N such that span(λθ(w)) ≤ K for every w ∈ Σ∗.

Proof. (1) ⇒ (2) Since, Mohri’s algorithm terminates, Q′ is finite. Since, Q′ 6= ∅, we can set

K := maxB∈Q′ span(B). For every w ∈ Σ∗, have nf(λθ(w)) ∈ Q′, and hence,

span(λθ(w))
Rem. 4.1(5)

= span(nf(λθ(w))) ≤ max
B∈Q′

span(B) = K.

(2) ⇒ (1) We show that Q′ is finite. Let B ∈ Q′ \ {(∞, . . . ,∞)}. There is some w ∈ Σ∗

such that B = nf(λθ(w)). By Remark 4.1(4)(5), we have max
(

nf(λθ(w))
)

= span(λθ(w)) ≤ K.

By Remark 4.1(3), we get min
(

nf(λθ(w))
)

= 0. Thus, B = nf(λθ(w)) ∈ {0, . . . ,K,∞}n, i.e.,

Q′ ⊆ {0, . . . ,K,∞}n. Hence, Q′ is finite.

4.3 The Proof of (2) ⇒ (3) in Theorem 3.4

Proof of (2) ⇒ (3) in Theorem 3.4. By contradiction, we assume that condition (3) is false, and

we show words u, v ∈ Σ∗ which violate condition (2).

Since, A does not satisfy (3), there are some C ∈ Clones(A) and some word w ∈ Σ∗ such that

(a) e := α(θ(w)) ∈ E(Bn×n),

(b) e is stable on C, and

(c) there is some p ∈ C such that θ(w)[p, p] 6= ∞, and every state p′ ∈ C satisfying θ(w)[p′, p] 6= ∞

does not have a minimal cycle in C and θ(w).

Let p′ ∈ C such that p′ is minimal for ≤e and p′ ≤e p. Such a p′ exists by Lemma 4.3. By

Lemma 4.3, we have e[p′, p′] = 1 and θ(w)[p′, p′] 6= ∞.

Let q ∈ C, such that q has a minimal cycle at C and θ(w). We have θ(w)[q, q] 6= ∞.

By (c) above, we have θ(w)[p′, p′] > θ(w)[q, q].

Let v ∈ Σ∗ such that C = α(λθ(v)). Let k ≥ 1. We examine λθ(vwk) = λθ(v)
(

θ(w)
)k

.

At first, we consider λθ(vwk)[p′]. We have

λθ(vwk)[p′] =
(

(

λθ(v)
)(

θ(w)
)k

)

[p′] = min
r∈Q

(

(

λθ(v)
)

[r] +
(

θ(w)
)k

[r, p′]
)

=
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For every i ∈ Q \ C, we have (λθ(v))[i] = ∞. Since, p′ is minimal in C for ≤e, we have for every

i ∈ C \ {p′}, e[i, p′] = 0, i.e., θ(w)[i, p′] = ∞. Hence,

=
(

λθ(v)
)

[p′] +
(

θ(w)
)k

[p′, p′].

Since, α(θ(Σ∗)) is polynomially ambiguous, the entry (p′, p′) is unambiguous in e by Lemma 4.2(2).

Consequently, there are unique p′ = i0, . . . , ik = p′ such that e[i0, i1] ∧ · · · ∧ e[ik−1, ik] = 1. For

every 0 < ℓ < k, we can have p′ ≤e iℓ and iℓ ≤e p′, and hence, p′ = iℓ. Thus, (θ(w))k[p′, p′] =

k ·
(

θ(w)[p′, p′]
)

. To sum up,

(

λθ(vwk)
)

[p′] =
(

λθ(v)
)

[p′] + k ·
(

θ(w)[p′, p′]
)

.

On the other hand, we have

(

λθ(vwk)
)

[q] ≤
(

λθ(v)
)

[q] + k ·
(

θ(w)[q, q]
)

6= ∞.

From θ(w)[p′, p′] > θ(w)[q, q], it follows that for increasing integers k, the difference
(

λθ(vwk)
)

[p′]−
(

λθ(vwk)
)

[q] tends to infinity. Consequently, Mohri’s algorithm does not terminate on the se-

quence (vwk)k≥1.

4.4 The Side Entry Bound

Lemma 4.7. Let B ∈ Zn and A ∈ Zn×n. We have span(BA) ≤ span(B) + span
(

α(B)A
)

.

Proof. If BA = (∞, . . . ,∞), then the claim is obvious. We assume BA 6= (∞, . . . ,∞) in the rest

of the proof. There are 1 ≤ i, j ≤ n such that

∞ ≥ min(BA) = B[i] + A[i, j] ≥ min(B) + min
(

α(B)A
)

. (4.2)

Now, let 1 ≤ j′ ≤ n such that max(BA) = BA[j′]. Let i′ ∈ α(B) such that A[i′, j′] =
(

α(B)A
)

[j′] ≤

max
(

α(B)A
)

. Hence,

max(BA) = BA[j′] ≤ B[i′] + A[i′, j′] ≤ max(B) + max
(

α(B)A
)

. (4.3)

By combining (4.2) and (4.3), we obtain

span(BA) = max(BA) − min(BA) ≤

≤ max(B) + max
(

α(B)A
)

− min(B) − min
(

α(B)A
)

= span(B) + span
(

α(B)A
)

.

Let C ∈ Clones(A) and A ∈ T . We denote the side entry bound of C and A by seb(C,A) and

define it as the least integer which satisfies seb(C,A) ≥ span(CA) and the following condition:

For every i ∈ C and 1 ≤ j ≤ n such that (i, j) is unambiguous in α(A), we have

if there is some i′ ∈ C \ {i} such that A[i′, j] 6= ∞, then there is some î ∈ C \ {i} such

that

A[̂i, j] ≤ min(CA) + seb(C,A).

Lemma 4.8. Let A1, A2 ∈ T and C1 ∈ Clones(A) and set C2 := α(C1A1) ∈ Clones(A).
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1. If C1A1A2 6= (∞, . . . ,∞), then min(C1A1A2) ≥ min(C1A1) + min(C2A2).

2. span(C1A1A2) ≤ span(C1A1) + span(C2A2)

3. seb(C1, A1A2) ≤ seb(C1, A1) + seb(C2, A2)

Proof. (1) If C1A1A2 6= (∞, . . . ,∞), then there are i ∈ C1, j ∈ C2, and 1 ≤ ℓ ≤ n such that

∞ 6= min(C1A1A2) = C1A1A2[ℓ] = A1[i, j] + A2[j, ℓ].

Thus, A1[i, j] 6= ∞ and A2[j, ℓ] 6= ∞, and hence, C1A1 6= (∞, . . . ,∞) and C2A2 6= (∞, . . . ,∞). We

have A1[i, j] ≥ C1A1[j] ≥ min(C1A1) and A2[j, ℓ] ≥ C2A2[ℓ] ≥ min(C2A2), and (1) follows.

(2) Since, C2 = α(C1A1) claim (2) follows from Lemma 4.7.

(3) To shorten our notation, we denote b := seb(C1, A1) + seb(C2, A2), i.e., we have to show

seb(C1, A1A2) ≤ b. Above, seb(C1, A1A2) was defined as the least number which satisfies two

conditions. We show that b satisfies these two conditions, and henceforth, seb(C1, A1A2) ≤ b.

More precisely, we have to show the following two claims:

(3a) b ≥ span(C1A1A2)

(3b) Let i ∈ C1 and 1 ≤ j ≤ n such that (i, j) is unambiguous in α(A1A2). We have to show that

if there is some i′ ∈ C1 \ {i} such that A1A2[i
′, j] 6= ∞, then there is some î ∈ C1 \ {i} such

that A1A2 [̂i, j] ≤ min(C1, A1A2) + b.

By the definition of seb(C1, A1), seb(C2, A2), and (2), we have b ≥ span(C1A1) + span(C2A2) ≥

span(C1A1A2) which proves (3a).

To show (3b), let i ∈ C1 and 1 ≤ j ≤ n such that (i, j) is unambiguous in α(A1A2). Let

1 ≤ ℓ ≤ n such that A1A2[i, j] = A1[i, ℓ] + A2[ℓ, j]. Since, (i, j) is unambiguous in α(A1A2), (i, ℓ)

(resp. (ℓ, j)) is unambiguous in α(A1) (resp. α(A2)). Let i′ ∈ C1 \ {i} such that A1A2[i
′, j] 6= ∞. If

such an i′ does not exist, we are done.

Case 1: For every ℓ′ ∈ C2 \ {ℓ}, we have A2[ℓ
′, j] = ∞.

We have C2A2[j] = A2[ℓ, j], and hence A2[ℓ, j] ≤ min(C2A2) + span(C2A2).

Moreover, we have A1[i
′, ℓ] 6= ∞. By the definition of seb(C1, A1), there is some î ∈ C1 \ {i}

such that A1[̂i, ℓ] ≤ min(C1A1) + seb(C1, A1). To sum up,

A1A2 [̂i, j] ≤ A1 [̂i, ℓ] + A2[ℓ, j] ≤ min(C1A1) + seb(C1, A1) + min(C2A2) + span(C2A2) ≤

≤ min(C1A1A2) + seb(C1A1) + seb(C2, A2).

Case 2: There is some ℓ′ ∈ C2 \ {ℓ} such that A2[ℓ
′, j] 6= ∞.

By the definition of seb(C2, A2), there is some ℓ̂ ∈ C2 \ {ℓ} such that A2[ℓ̂, j] ≤ min(C2A2)+

seb(C2, A2). By the definition of span(C2A2), there is some î ∈ C1 such that A1 [̂i, ℓ̂] ≤

min(C1A1) + span(C1A1). Hence,

A1A2 [̂i, j] ≤ A1 [̂i, ℓ̂] + A2[ℓ̂, j] ≤ min(C1A1) + span(C2A2) + min(C2A2) + seb(C2, A2) ≤

≤ min(C1A1A2) + seb(C1, A1) + seb(C2, A2).

It remains to show î 6= i. We have α(A1)[̂i, ℓ̂]∧α(A2)[ℓ̂, j] = 1 and α(A1)[i, ℓ]∧α(A2)[ℓ, j] = 1.

Since, ℓ̂ 6= ℓ and (i, j) is unambiguous in α(A1A2), we have î 6= i.
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Lemma 4.9. Assume that A satisfies the clones property. Let k ≥ 1 and A1, . . . , Ak ∈ T such that

α(A1) = · · · = α(Ak) ∈ E(S). Let C ∈ Clones(A) such that α(A1) is stable on C.

1. span(CA1 · · ·Ak) ≤ 2(n − 1)max1≤ℓ≤k seb(C,Aℓ)

2. seb(C,A1 · · ·Ak) ≤ 2n max1≤ℓ≤k seb(C,Aℓ)

Note that the bound on span(CA1 · · ·Ak) in Lemma 4.9(1) depends on the side entry bound of

C and Aℓ for 1 ≤ ℓ ≤ k. As the following example shows, it is not possible to show an upper bound

on span(CA1 · · ·Ak) which is independent on the side entry bound of C and Aℓ.

Example 4.1. Let S :=

{

0

B

B

@

1 1

0 1

1

C

C

A

}

. Let C = {1, 2}, b ≥ 1, and A1 =

0

B

B

@

0 b

∞ 1

1

C

C

A

∈ T .

Let k ≥ b and Aℓ = A1 for 1 ≤ ℓ ≤ k.

For every 1 ≤ ℓ ≤ k, we have span(CAℓ) = span
(

( 0 1 )
)

= 1 and seb(C,Aℓ) = b.

However, we have A1 · · ·Ak =

0

B

B

@

0 b

∞ k

1

C

C

A

and hence, span(CA1 · · ·Ak) = span
(

( 0 b )
)

= b.

Consequently, we cannot derive an upper bound on span(CA1 · · ·Ak) which is independent of

seb(C,Aℓ) for 1 ≤ ℓ ≤ k.

Proof of Lemma 4.9. Denote e := α(A1) and A := A1 . . . Ak.

We assume C 6= ∅ since otherwise, the claim is obvious.

Assume k = 1. Claim (2) is obvious. If n > 1, then claim (1) is obvious. Moreover, we have

claim (1) for n = 1 because span(CA1) = 0. We assume k ≥ 2 in the rest of the proof.

Let p ∈ C be minimal for ≤e. By Lemma 4.3, we have e[p, p] = 1, and hence, Aℓ[p, p] 6= ∞ for

every 1 ≤ ℓ ≤ k. Since, p is minimal, we have for every 1 ≤ ℓ ≤ k,

(CA1 · · ·Aℓ)[p] = (A1 · · ·Aℓ)[p, p] =
∑

1≤ℓ′≤ℓ

Aℓ′ [p, p]. (4.4)

Since, A satisfies the clones property, we have for every 1 ≤ ℓ ≤ k and q ∈ C, Aℓ[p, p] ≤ Aℓ[q, q].

To shorten out notations, let mxspan := max1≤ℓ≤k span(CAℓ) and mxseb := max1≤ℓ≤k seb(C,Aℓ).

By definition, mxspan ≤ mxseb.

In the first part of the proof, we show the following two claims (C1) and (C2). Finally, we

derive claims (1) and (2) of the lemma from (C1) and (C2).

(C1) For every j ∈ C, we have CA[j] ≥ CA[p] − (n − 1)mxspan.

(C2) For every 1 ≤ ℓ ≤ k, j ∈ C, we have (CA1 · · ·Aℓ)[j] ≤ (CA1 · · ·Aℓ)[p] + (n − 1)mxseb.

We show (C1). Let j ∈ C be arbitrary. Let 1 ≤ i0, . . . , ik ≤ n, ik = j such that for every

1 ≤ ℓ ≤ k, we have Aℓ[iℓ−1, iℓ] 6= ∞. For every 1 ≤ ℓ ≤ k, we have e[iℓ−1, iℓ] = 1, i.e., i0 ≤e i1 ≤e

. . . ≤e ik. Since, e is stable on C, we have i0, . . . , ik ∈ C.

For every 1 ≤ ℓ ≤ k, we have e[iℓ−1, iℓ] = 1, i.e., i0 ≤e i1 ≤e . . . ≤e ik. Since, e is stable on C,

we have i0, . . . , ik ∈ C.

Let 1 ≤ ℓ ≤ k such that iℓ−1 6= iℓ. Since p is minimal, we have CAℓ[p] = Aℓ[p, p]. By the

definition of span(CAℓ), we have Aℓ[iℓ−1, iℓ] ≥ CAℓ[p] − span(CAℓ) = A[p, p] − span(CAℓ).



4.4 The Side Entry Bound 19

Let 1 ≤ ℓ ≤ k such that iℓ−1 = iℓ. As seen above, we have Aℓ[iℓ−1, iℓ] ≥ Aℓ[p, p] for every

1 ≤ ℓ ≤ k.

From these bounds on Aℓ[iℓ−1, iℓ], we obtain

∑

1≤ℓ≤k

Aℓ[iℓ−1, iℓ] ≥
∑

1≤ℓ≤k

Aℓ[p, p] −
∑

1≤ℓ≤k, iℓ−1 6=iℓ

span(CAℓ)

Since, S is polynomially ambiguous, ≤e is antisymmetric and transitive, and hence, there are

at most n − 1 integers 1 ≤ ℓ ≤ k such that iℓ−1 6= iℓ. Hence, we have

∑

1≤ℓ≤k

Aℓ[iℓ−1, iℓ] ≥ A[p, p] − (n − 1)mxspan,

and thus, CA[j] ≥ CA[p] − (n − 1)mxspan.

In the next part, we show (C2). Let j ∈ C. We define ind(j) :=
∣

∣{i ∈ C | i ≤e j, i 6= j}
∣

∣. We

have 0 ≤ ind(j) < n. For every i ≤e j satisfying i 6= j, we have ind(i) < ind(j).

To show (C2), we show that for every j ∈ C, 1 ≤ ℓ ≤ k, we have

(CA1 · · ·Aℓ)[j] ≤ (CA1 · · ·Aℓ)[p] + ind(j)mxseb. (4.5)

We show (4.5) by an induction on j via ≤e.

Let j ∈ C be minimal for ≤e, i.e., ind(j) = 0. Since, A satisfies the clones property, we have for

every 1 ≤ ℓ′ ≤ k, Aℓ′ [j, j] = Aℓ′ [p, p]. Moreover, we have for every 1 ≤ ℓ ≤ k

(CA1 · · ·Aℓ)[j] = (A1 · · ·Aℓ)[j, j] =
∑

1≤ℓ′≤ℓ

Aℓ′ [j, j].

In combination with (4.4), we obtain (CA1 · · ·Aℓ)[j] = (CA1 · · ·Aℓ)[p] which proves (4.5) for j.

Now, let j ∈ C and assume by induction, that (4.5) holds for every 1 ≤ ℓ ≤ k, i ≤e j, i 6= j.

Moreover, assume that j is not minimal for ≤e in C, i.e., ind(j) ≥ 1.

Next, we show that there exists some i ∈ C such that i 6= j, i ≤e j, and Aℓ[i, j] ≤ Aℓ[p, p] +

seb(C,Aℓ). For this, we distinguish two cases.

Case 1. e[j, j] = 0

We have Aℓ[j, j] = ∞. Let i ∈ C such that Aℓ[i, j] = CAℓ[j]. We have CAℓ[j] ≤ CAℓ[p] +

span(CAℓ), i.e., Aℓ[i, j] ≤ Aℓ[p, p] + span(CAℓ) ≤ Aℓ[p, p] + seb(C,Aℓ). Since Aℓ[i, j] 6= ∞, we

have e[i, j] = 1, and hence, i 6= j and i ≤e j.

Case 2. e[j, j] = 1

By Lemma 4.2, (j, j) is unambiguous in e. We utilize the notion of the side entry bound. Since,

j is not minimal for ≤e in C, there is some i′ such that e[i′, j] = 1, i.e., Aℓ[i
′, j] 6= ∞. By the

definition of seb(C,Aℓ), there is some i ∈ C \{j} such3 that Aℓ[i, j] ≤ min(CAℓ)+ seb(C,Aℓ),

i.e., Aℓ[i, j] ≤ Aℓ[p, p] + seb(C,Aℓ). Obviously, i 6= j and since, Aℓ[i, j] 6= ∞, we have

e[i, j] = 1, i.e., i ≤e j, which closes the case e[j, j] = 1.

We show (4.5) for ℓ = 1. We have

(CA1)[j] ≤ A1[i, j] ≤ A1[p, p] + seb(C,A1) ≤ (CA1)[p] + seb(C,A1) ≤

≤ (CA1)[p] + ind(j)mxseb.

3The state i was called î in the definition of seb(C, Aℓ).
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Now, we show (4.5) for 2 ≤ ℓ ≤ k. By induction, (4.5) holds for i, i.e.,

(CA1 · · ·Aℓ−1)[i] ≤ (CA1 · · ·Aℓ−1)[p] + ind(i)mxseb. (4.6)

We have

(CA1 · · ·Aℓ)[j] ≤ (CA1 · · ·Aℓ−1)[i] + Aℓ[i, j] ≤

and by (4.6) and the bound on Aℓ[i, j] shown above,

≤ (CA1 · · ·Aℓ−1)[p] + ind(i)mxseb + Aℓ[p, p] + seb(C,Aℓ) ≤

and since, ind(i) < ind(j)

≤ (CA1 · · ·Aℓ)[p] + ind(j)mxseb

which proves (4.5) for j.

By combining (C1) and (C2) for ℓ = k, we obtain for every j ∈ C,

CA[p] − (n − 1)mxseb ≤ CA[j] ≤ CA[p] + (n − 1)mxseb.

Consequently, we have span(CA) ≤ (n − 1)(mxspan + mxseb) which proves claim (1) of the lemma.

We show claim (2) of the lemma. Let i ∈ C and 1 ≤ j ≤ n such that (i, j) is unambiguous in

e. Let i′ ∈ C \ {i} such that A[i′, j] 6= ∞. If such an i′ does not exist, then we are done.

Let 1 ≤ ℓ ≤ n such that (A1 · · ·Ak−1)[i, ℓ] + Ak[ℓ, j] 6= ∞. Since (i, j) is unambiguous, ℓ is

unique and A[i, j] = (A1 · · ·Ak−1)[i, ℓ] + Ak[ℓ, j].

By contradiction, assume that there is exactly one ℓ′ ∈ C such that e[ℓ′, j] = 1. Hence, there is

exactly one ℓ′ ∈ C such that A[ℓ′, j] = 1. Consequently, i = i′ which is a contradiction.

Thus, there is some ℓ′ ∈ C \ {ℓ} such that e[ℓ′, j] = 1.

By the definition of seb(C,Ak), there is some ℓ̂ ∈ C \ {ℓ} such that Ak[ℓ̂, j] ≤ min(CAk) +

seb(C,Ak) ≤ Ak[p, p] + seb(C,Ak).

By applying (C2) on CA1 · · ·Ak−1, we obtain some î ∈ C such that

(A1 · · ·Ak−1)[̂i, ℓ̂] ≤ (CA1 · · ·Ak−1)[p] + (n − 1)mxseb.

To sum up,

A[̂i, j] ≤ (A1 · · ·Ak−1)[̂i, ℓ̂] + Ak[ℓ̂, j] ≤

≤ (CA1 · · ·Ak−1)[p] + (n − 1)mxseb + Ak[p, p] + seb(C,Ak) ≤

≤ (CA)[p] + nmxseb

(C1)

≤ min(CA) + (n − 1)mxspan + nmxseb ≤ min(CA) + 2nmxseb.

It remains to show i 6= î. We have e[i, ℓ] ∧ e[ℓ, j] = 1 and e[̂i, ℓ̂] ∧ e[ℓ̂, j] = 1. Since, ℓ 6= ℓ̂ and (i, j)

is unambiguous in e, we have i 6= î.

4.5 The Proof of (3) ⇒ (1) in Theorem 3.4

To derive the proof of (3) ⇒ (1) in Theorem 3.4 from Lemmas 4.8 and 4.9, we need the following

important theorem due to Simon.

Theorem 4.10 (factorization forest theorem [32, 33, 4]). Let S be a finite semigroup and h : Σ∗ →

S be a homomorphism. There is a mapping d : Σ∗ → {1, . . . , 7|S|} such that every w ∈ Σ∗ satisfies

the following two conditions:
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1. if d(w) = 1, then |w| ≤ 1, and

2. if d(w) ≥ 2, then there are some k ≥ 2, w1, . . . , wk ∈ Σ+ such that

(a) w1 . . . wk = w,

(b) for every 1 ≤ ℓ ≤ k, d(wℓ) < d(w), and

(c) if k ≥ 3, then h(w1) = · · · = h(wk) = h(w) ∈ E(S).

Simon’s original version of the factorization forest theorem from 1990 [32] utilized a mapping

d : Σ∗ → {1, . . . , 9|S|}. The improvement on the range of d to {1, . . . , 7|S|} and a simplified proof

are due to Chalopin and Leung [4].

Proof of (3) ⇒ (1) in Theorem 3.4. We utilize the factorization forest theorem on the homomor-

phism α ◦ θ : Σ∗ → S. Let d : Σ∗ → {1, . . . , 7|S|} be a mapping from Theorem 4.10.

We denote mxseb := maxC∈Clones(A), a∈Σ seb(C, θ(a)).

We show the following claim by an induction on d(w):

(C1) For every C ∈ Clones(A) and every w ∈ Σ∗, we have seb(C, θ(w)) ≤ (2n + 1)d(w)−1 · mxseb.

By Lemma 4.6, (C1) is sufficient for the termination of Mohri’s algorithm on A.

Let w ∈ Σ∗ such that d(w) = 1, i.e., w is a letter. (C1) follows from the definition of mxseb.

Now, let w ∈ Σ∗ such that d(w) > 1 and assume by induction, that claim (C1) is true for every

w′ ∈ Σ∗ satisfying d(w′) < d(w).

We distinguish two cases according to Theorem 4.10(2).

Case 1. There are w1, w2 ∈ Σ+ such that w = w1w2, d(w1) < d(w), and d(w2) < d(w).

Let C ∈ Clones(A) be arbitrary and let C ′ := Cα(θ(w1)). By Lemma 4.8(3) and the inductive

hypothesis, we have

seb(C, θ(w1w2)) ≤ seb(C, θ(w1)) + seb(C ′, θ(w2)) ≤ 2 · (2n + 1)d(w)−2mxseb.

Case 2. There are k ≥ 2 and w0, . . . , wk ∈ Σ+ such that w = w0 . . . wk, and for every 0 ≤ ℓ ≤ k,

we have d(wℓ) < d(w) and α(θ(w0)) = α(θ(wℓ)) ∈ E(S).

Let C ∈ Clones(A) and C ′ := Cα(θ(w0)).

We have C ′α(θ(w1)) = Cα(θ(w0))α(θ(w1)) = Cα(θ(w0)) = C ′, i.e., C ′ is stable α(θ(w0)).

From Lemma 4.9(2) on C ′ and θ(w1), . . . , θ(wk), we obtain

seb(C ′, θ(w1 . . . wk)) ≤ 2n max
1≤ℓ≤k

seb(C ′, θ(wℓ)). (4.7)

By applying Lemma 4.8(3) on C, θ(w0) and C ′, θ(w1 . . . wk), and using (4.7), we obtain

seb(C, θ(w)) ≤ seb(C, θ(w0)) + 2n max
1≤ℓ≤k

seb(C ′, θ(wℓ)) ≤

and by the inductive hypothesis,

≤ (2n + 1)d(w)−2mxseb + 2n(2n + 1)d(w)−2mxseb

and (C1) follows.
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4.6 The Proof of Theorem 3.6

Proof of Theorem 3.6. It remains to show (1) ⇒ (2). Let q, q′ ∈ Q be siblings. Let C ∈ Clones(A)

such that q, q′ ∈ C. Let w ∈ Σ∗ such that θ(w)[q, q] 6= ∞ and θ(w)[q′, q′] 6= ∞.

There is some k ≥ 1 such that (θ(w))k = θ(wk) ∈ E(Bn×n).

By Lemma 4.5, α(θ(Σ∗)) is finitely ambiguous. Since, finitely ambiguous semigroups are poly-

nomially ambiguous, we can apply Lemma 4.2 on α(θ(Σ∗)). From (2) in Lemma 4.2, we can derive

θ(wk)[q, q] = k · θ(w)[q, q] and θ(wk)[q′, q′] = k · θ(w)[q′, q′].

Let C ′ := Cα(θ(wk)). We have C ′ ∈ Clones(A). Since, α(θ(wk)) is idempotent, C ′ is stable on

α(θ(wk)). By (1), C ′ and θ(wk) have the clones property. Consequently, there is some p ∈ C ′ such

that p has a minimal cycle in C ′ and θ(wk) and θ(wk)[p, q] 6= ∞. By Lemma 4.4, we have p = q.

Thus, q has a minimal cycle in C ′ and θ(wk). In the same way, q′ has a minimal cycle in C ′ and

θ(wk). Hence, θ(wk)[q, q] = θ(wk)[q′, q′], i.e., θ(w)[q, q] = θ(w)[q′, q′].

4.7 Trimming and Mohri’s Algorithm

Let A = [Q, θ, λ, ̺] be a WFA over the tropical semiring. Let R ⊆ Q be the accessible states of A.

Let θR : Σ∗ → ZR×R be defined by θR(w)[i, j] := θ(w)[i, j] for every w ∈ Σ∗, i, j ∈ R. Let

λR, ̺R ∈ ZR be the restriction of λ (resp. ̺) to R.

Clearly, θR(ε) is the identity matrix in ZR×R. Let u, v ∈ Σ∗, i, j ∈ R be arbitrary. We have

(

θR(u)θR(v)
)

[i, j] = min
ℓ∈R

(

θR(u)[i, ℓ] + θR(v)[ℓ, j]
)

= min
ℓ∈R

(

θ(u)[i, ℓ] + θ(v)[ℓ, j]
)

=

Let ℓ ∈ Q and assume θ(v)[i, ℓ] 6= ∞ and θ(v)[ℓ, j] 6= ∞. Since, i ∈ R, there is some u′ ∈ Σ∗

such that λθ(u′)[i] 6= ∞, and hence, λθ(u′u)[ℓ] 6= ∞. Similarly, there is some v′ ∈ Σ∗ such that

θ(vv′)̺[ℓ] 6= ∞. Thus, ℓ ∈ R. Consequently, we have for every ℓ ∈ Q \ R, θ(v)[i, ℓ] = ∞ and

θ(v)[ℓ, j] = ∞. Hence, we can then extend the range of ℓ from R to Q and obtain

= min
ℓ∈Q

(

θ(v)[i, ℓ] + θ(v)[ℓ, j]
)

=
(

θ(u)θ(v)
)

[i, j] =
(

θ(uv)
)

[i, j] =
(

θR(uv)
)

[i, j].

Consequently, θR is a homomorphism and AR := [R, θR, λR, ̺R] is a WFA.

Let w ∈ Σ∗. Let i, j ∈ Q such that λ[i] + θ(w)[i, j] + ̺[j] 6= ∞. We can easily conclude that

λθ(w)[j], θ(ε)̺[j], λθ(ε)[i], and θ(w)̺[i] are different from ∞. Hence, i, j ∈ R. Consequently, we

obtain for every w ∈ Σ∗

|A|(w) = min
i,j∈Q

(

λ[i] + θ(w)[i, j] + ̺[j]
)

= min
i,j∈R

(

λ[i] + θ(w)[i, j] + ̺[j]
)

=

= min
i,j∈R

(

λR[i] + θR(w)[i, j] + ̺R[j]
)

= |AR|(w).

Thus, A and AR are equivalent.

Let w ∈ Σ∗ and i ∈ R. We have

λθ(w)[i] = min
ℓ∈Q

(

λ[ℓ] + θ(w)[ℓ, i]
)

= min
ℓ∈R

(

λ[ℓ] + θ(w)[ℓ, i]
)

= λRθR(w)[i]. (4.8)

Proof of Theorem 3.8. Assume that Mohri’s algorithm terminates on A. Hence, the set Q′ =

{nf(λθ(w)) |w ∈ Σ∗} is finite. We have to show that the set R′ = {nf(λRθR(w)) |w ∈ Σ∗} is finite.

For this, we show that for every words u, v ∈ Σ∗ satisfying nf(λθ(u)) = nf(λθ(v)), we have

nf(λRθR(u)) = nf(λRθR(v)). Let u, v ∈ Σ∗ satisfying nf(λθ(u)) = nf(λθ(v)).
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If λθ(u) = (∞, . . . ,∞), then λθ(v) = (∞, . . . ,∞), and hence, nf(λRθR(u)) = (∞, . . . ,∞) =

nf(λRθR(v)). We assume λθ(u) 6= (∞, . . . ,∞) in the rest of the proof.

Clearly, nf(λθ(u)), nf(λθ(v)), and λθ(v) are different from (∞, . . . ,∞).

Let ku := min(λθ(u)) and kv := min(λθ(v)). By the definition of nf, we have nf(λθ(u)) =

(−ku)⊕(λθ(u)) and nf(λθ(v)) = (−kv)⊕(λθ(v)). Consequently, (−ku)⊕(λθ(u)) = (−kv)⊕(λθ(v)),

and hence, (λθ(u)) = (ku − kv)⊕ (λθ(v)). By (4.8), we have λRθR(u) = (ku − kv)⊕ (λRθR(v)). As

seen in (3.1) in Section 3.3, we have nf(λRθR(u)) = nf(λRθR(v)).
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