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ABSTRACT 
Entity matching is a crucial and difficult task for data integration. 
An effective solution strategy typically has to combine several 
techniques and to find suitable settings for critical configuration 
parameters such as similarity thresholds. Supervised (training-
based) approaches promise to reduce the manual work for 
determining (learning) effective strategies for entity matching. 
However, they critically depend on training data selection which 
is a difficult problem that has so far mostly been addressed 
manually by human experts. In this paper we propose a training-
based framework called STEM for entity matching and present 
different generic methods for automatically selecting training data 
to combine and configure several matching techniques. We 
evaluate the proposed methods for different match tasks and 
small- and medium-sized training sets.    

1. INTRODUCTION 
Entity matching (also known as entity resolution, deduplication, 
record linkage, object matching, fuzzy matching, similarity join 
processing, reference reconciliation) is the task of identifying 
object instances or entities referring to the same real-world object. 
It is a crucial step in data cleaning and data integration. Entities to 
be resolved may reside in distributed, typically heterogeneous 
data sources or may be stored in a single data source, e.g., in a 
database or search engine store. They may be physically 
materialized or dynamically be requested from sources, e.g., by 
database queries or keyword searches. 

Entities from web data sources are particularly challenging to 
match as they are often highly heterogeneous and of limited data 
quality, e.g., regarding completeness and consistency of their 
descriptions. Fig. 1 illustrates some of the problems for the 
popular web entity search engine Google Scholar and five 
duplicate entries for the same paper. The bibliographic entities 
have automatically been extracted from web pages or PDF 
documents and contain numerous quality problems such as 
misspelled author names, different ordering of authors, 
heterogeneous venue denominations etc.. Google Scholar 
performs already an entity matching by clustering references to 
the same publication to aggregate their citations and fulltext 
sources. However as the duplicates in the example show, the 

obtained results are far from perfect influenced by the mentioned 
quality and heterogeneity problems. This illustrates that there is a 
big potential for improving data quality by better entity matching 
techniques. This would be critical for tasks requiring the 
examination of all duplicates, e.g., to collect all citations of 
publications for a citation analysis. Similar match problems 
appear in many application domains, e.g., to compare prices for 
equivalent products (DVDs, cameras, hotel rooms, etc.) offered in 
the same or different web sites.  

Numerous approaches have been proposed for entity matching 
(EM) especially for structured data, e.g., in relational databases 
[13]. Due to the large variety of data sources and entities to match 
there is no single “best” solution. Instead it is often beneficial to 
combine several algorithms for improved EM quality, e.g., to 
consider the similarity of several attributes or related entities. The 
need to support multiple approaches has led to the development of 
several entity matching frameworks, e.g., [12], [27]. Such 
frameworks allow the flexible combination and customization of 
different methods to achieve good quality results for a given EM 
task. Unfortunately, the flexibility comes at the price of requiring 
the user to determine a suitable match strategy for a particular 
problem. Key decisions to be made include  

- Selecting the attributes to be used for matching,  
- Choosing a similarity function to be applied, and  
- Selecting a threshold for the similarity values above 

which entities are considered to match.  
The chosen configuration can have a large impact on the overall 
quality but even experts will find it difficult and time-consuming 
to determine a good selection. This is because there are typically 
numerous possibilities for each decision resulting in a huge 
number of possible combinations from which to choose for 
configuring an entity matching strategy. We thus see a strong 
need for self-tuning entity matching to largely automatically 
determine an effective EM strategy for a given task.  

While a number of previous studies has investigated training-
based (supervised) machine learning for entity matching (see 
related work), the challenge of self-tuning entity matching is far 
from solved. An important issue is how training data is selected. 
Most previous studies on training-based entity matching have 
provided little details on the selection and size of training data and 
have not studied the influence of different training sets [5], [9]. In 
other cases, the authors used a relatively large amount of training 
data thus favoring good match quality however at the expense of a 
high manual overhead for labeling [8], [21], [22]. In this study we 
propose different generic methods for automatically selecting 
training data to be labeled. The training selection methods are part 
of a new generic framework that supports the automatic 
construction of entity matching strategies. In this study the 
proposed framework serves as an evaluation platform to compare 
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different training selection methods and determine the impact of 
different training sizes on EM accuracy.  

The main contributions of this paper are:  

- Presentation of a comprehensive, training-based 
framework for automatically constructing (learning) 
entity matching strategies called STEM for self-tuning 
entity matching  

- Description of methods to automatically generate 
training data for entity matching.  

- Comparative evaluation of the training selection 
methods for different training sizes and four match tasks 
of different application domains. We specifically 
analyze the effectiveness for small training sizes which 
incur only a modest effort for labeling.  

In the next section we outline our framework for tuning entity 
matching. We then propose two methods for selection of training 
data. Section 4 provides a comprehensive evaluation of the 
effectiveness of the methods for four match tasks. Related work is 
reviewed in Section 5 before we conclude. 

2. STEM: A TRAINING-BASED ENTITY 
MATCHING FRAMEWORK 
2.1 Problem definition 
We assume the sets of entities to be resolved come from two 
sources SA and SB. Entities are of a particular semantic entity type 
(e.g., publication or product). Each entity is represented by a set 
of attribute values. The entity matching problem is to find all 
pairs of equivalent entities which refer to same real-world object.  

Definition 1 (Entity match problem / match task): Entity matching 
is a process which takes as input two sets of entities A ⊆ SA and  
B ⊆ SB of a particular semantic entity type from data sources SA 
and SB. The output is a subset of A x B containing all 
correspondences between entities representing the same real-
world object. 

Note that the inputs need not be entire sources but can be subsets 
of them, e.g., the results of queries. Resolving entities within a 
single source is supported as a special case (A=B, SA = SB). 

To solve an entity matching problem we want to utilize several 
matchers in combination. A matcher is defined as follows:  

Definition 2 (Matcher): A matcher m takes as input two sets of 
entities A ⊆ SA and B ⊆ SB of a particular semantic entity type 
from data sources SA and SB. It produces as output a similarity 
table T = {(a, b, s) | a ∈ A, b ∈ B, s ∈ [0,1]}. The similarity value 
s indicates the strength of the similarity between two entities a ∈ 
A and b ∈ B.  

Given a match task and a set of matchers the general objective of 
our framework is to automatically find an optimal entity matching 
strategy. An EM strategy defines a selection, configuration and 
combination of matchers to solve an entity matching problem. It 
can be defined as follows: 

Definition 3 (EM strategy): An EM strategy (SA, SB, M, f) for two 
data sources SA and SB of a particular semantic entity type 
consists of a set M of matchers and a decision function f. For any 
entity pair (a, b| a ∈ SA, b ∈ SB), f applies the matchers M and 
assigns a label l ∈ {match, non-match}. For any subsets A ⊆ SA 
and B ⊆ SB, the EM strategy returns as output a set of 
correspondences C = {(a, b| a ∈ A, b ∈ B, f(a, b) = match)} 
consisting of all entity pairs labeled with l = match by f. 

The general tuning problem can be defined as follows: 

Definition 4 (General tuning problem): Given two sets of entities 
A ⊆ SA and B ⊆ SB of a particular semantic entity type from data 
sources SA and SB, the general tuning problem is to find an 
optimal EM strategy s* which maximizes a utility function U.  

The utility function U may take diverse factors into account, in 
particular matching accuracy and execution time. For the initial 
evaluation of our framework we focus on the matching accuracy 
measured in terms of precision, recall and F-measure (Section 
4.1). We plan to consider more general utility functions including 
execution time as future work. 

2.2 Framework architecture 
Fig. 2 illustrates the architecture and use of our generic entity 
matching framework STEM. With generic we mean that the 
framework should be applicable to different application domains, 
to different data sources and to different subsets of a data source. 

We distinguish two main processing phases or modes: 1) the 
specification and 2) the application of an EM strategy. The 
specification phase determines suitable strategies to solve a new 
EM problem. This phase is typically determined offline, either 
completely manually or largely automatically by machine 
learning techniques based on training data. EM strategies 
determined in the specification phase are stored in a repository 
together with describing properties (input sources, entity type, 
output characteristics, observed execution times, etc.). 

In the application phase an EM strategy is selected from the 
repository and applied to the input entities to be resolved. This 
phase may be performed offline or online, e.g., for input data that 
is derived at runtime by queries or other application processing 
(e.g., mashups). The result of applying the EM strategy is a set of 
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Figure 1: Duplicate paper entities in Google Scholar  



 

 

correspondences indicating matching entities, i.e. entities which 
are considered to represent the same real-world object. The EM 
strategy may be applied on the whole input data or on the result of 
a blocking step. Blocking is needed for large inputs and reduces 
the search space for entity matching from the Cartesian product SA 
x SB to a small subset of the most likely correspondences. There 
are many known algorithms for blocking [3] and we provide 
several of them, e.g., to exclude all pairs with very low string 
similarity.  

The selection of an EM strategy is mainly determined by the 
given input sources; in case of multiple choices the selection may 
be controlled manually or based on statistical data from previous 
use cases such as execution time or result quality. In this paper, 
we manually specify the EM strategy to be applied since we want 
to comparatively evaluate different strategies. In future work we 
plan to automatically select from predefined EM strategies as an 
additional kind of tuning. For example, this feature can be useful 
to consider runtime constraints to select a fast EM strategy with 
sufficient recall/precision.  

In this paper we focus on the training-based generation of EM 
strategies in the specification phase. This is performed offline 
because it requires some manual guidance for labeling training 
entities resulting in a semi-automatic generation of EM strategies. 
The automatically executed steps can also be time-consuming 
especially when we generate several strategies to choose from in 
the application phase. The workflow of determining an EM 
strategy is illustrated in the lower part of Fig. 2. It consists of 
three main steps:  

- Generation of training data. We do not require the 
manual specification of training data but allow that 
training data is automatically selected from the entity 
sets to be matched or other data sets from the same 
application domain. The result of this step is a set of 

entity pairs T and a labeling. The labeling is determined 
manually and indicates for each pair whether the two 
entities match or not. The pairs to be labeled are 
determined based on a training selection method.  

- Similarity computation. Multiple matcher algorithms are 
applied to determine the similarity for entity pairs in the 
training data T. Either all supported matchers or a 
specified subset of them is applied to the training input. 
The result of this step is a similarity matrix indicating a 
similarity value for each training pair and matcher.  

- Learning. The final step is the adoption of a supervised 
learner algorithm to determine the EM strategy. The 
learner uses the similarity matrix and the manual 
labeling as input. It determines the execution order and 
weighting of the matchers and specifies how matchers 
are combined.  

For each of the three steps our framework provides several 
methods to choose from as well as additional configuration 
options. In particular we support several approaches for training 
selection, for matching, and for learning. The approaches used in 
our evaluation are (partially) indicated in Fig. 2. The modularity 
of our framework allows adding further methods if necessary or 
promising.  

The methods for training selection are presented in the next 
section. The matcher library provides different similarity 
functions, in particular generic string similarity measures (edit 
distance, q-grams, cosine, TF/IDF, etc), for defining attribute 
matchers. An attribute matcher uses one of the similarity 
functions and applies them to a pair of corresponding attributes of 
the input entity sets for which the similarity is to be computed. 
Additional matchers utilizing context information or auxiliary 
information such as dictionaries can be added as needed.  
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Figure 2: Overview of STEM 



 

  

When all (attribute) matchers should be considered for 
determining an EM strategy all applicable similarity functions are 
employed for each attribute pair. We may also use a predefined 
subset of the matchers to speed up the execution time for 
matching both during the specification and application phase. 
Moreover, a smaller number of matchers may require fewer 
training data and still achieve sufficient EM quality. 

The learner library provides several supervised machine learning 
algorithms or learners, in particular decision tree, SVM (support 
vector machine), logistic regression and their combination. The 
learners treat the task of determining an EM strategy as a two-
class (match or non-match) classification problem. On the basis of 
the similarity values for the training examples the learners 
automatically determine the order and weighting of the matchers 
and specify how they are combined. Fig. 3 shows a sample EM 
strategy for a bibliographic match task as determined by the 
decision tree learner. Each node of the decision tree contains a 
test whether or not a certain similarity threshold is exceeded for a 
selected matcher. The match decision is reached by starting with 
the test of the root node and continuing with the further tests until 
a leaf node is reached. 

While the flexibility of the architecture allows the generation of 
many strategies for different training selection methods, matcher 
configurations, and learners, we will here use this flexibility 
mainly for the comparative evaluation of different approaches. 
The goal is to identify effective default methods so that only a 
few EM strategies need to be generated for selection in the 
application phase. 

3. TRAINING DATA SELECTION 
The effectiveness of supervised machine learning methods 
critically depends on the size and quality of the available training 
data. For entity matching it is important that the training data is 
representative for the entities to be matched and exhibit the 
variety and distribution of errors observed in practice. 
Furthermore, the training data should allow the observation of 
differences between the available matcher algorithms so that an 
effective combination of different algorithms can be learned. This 
requires that the training data contain a sufficient number of both 
matching as well as non-matching entity pairs. On the other hand, 
for tuning entity matching it is important to limit the manual 
overhead for labeling. Hence, we wish to keep the number of 
training entity pairs to be labeled manually as low as possible.  

Most previous studies on training-based entity matching have 
provided little details on the selection and size of training data and 

have not studied the influence of different training sets [5], [9]. In 
other cases, the authors used a relatively large amount of training 
data thus favoring good match quality however at the expense of a 
high manual overhead for labeling [8], [21], [22]. In this study we 
propose different generic methods for automatically selecting 
training data to be labeled. Furthermore, we want to use the 
flexibility of our framework to evaluate these methods and 
determine the impact of different training sizes on EM accuracy.  

A naïve method for training selection is to randomly choose 
entities from the sets of entities to be resolved for labeling. 
However, this way it cannot be guaranteed that we obtain 
representative training data. This is because for a given entity 
from the first dataset, most entities from the second dataset are 
most likely non-matches while only few will match. Hence, a 
random selection of entity pairs will result in an imbalanced 
training set where the non-matching entity pairs will heavily 
outnumber the matching pairs. This phenomenon is known as the 
class imbalance problem and has been reported as an obstacle to 
the generation of good classifiers by supervised machine learning 
algorithms [17].  

A better training strategy is the so-called static-active selection of 
entity pairs proposed in [6]. This method compares the entities to 
be resolved with some state-of-the-art string similarity measure 
and selects only pairs that are fairly similar according to this 
measure, i.e. their similarity value meets a certain threshold. By 
asking the user to label those entity pairs a training sample with a 
high proportion of matching pairs can be obtained. At the same 
time, non-matching entity pairs selected using this method are 
likely to be “near-miss” negative examples that are more 
informative for training than randomly selected pairs most of 
which tend to be “easy” non-matches. The idea is easy to 
implement and seems a reasonable way to obtain representative 
training data. We thus want to further evaluate it as a strategy for 
training selection. In particular, we want to empirically 
investigate the following questions not considered in [6]:  

• To what degree can we solve the class imbalance 
problem, i.e. provide sufficient matching and non-
matching entity pairs?  

• How influencing is the choice of the threshold for the 
similarity measure above which pairs of entities are 
selected for labeling? Is there a good default threshold?  

• What is the influence of the training size on EM 
accuracy, i.e. how few training pairs would be sufficient 
to obtain good results?  

For this study we propose and evaluate two strategies for 
selecting entity pairs:  

• Threshold-Random (n,m,t): n object pairs are randomly 
selected among the ones satisfying a given minimal 
threshold t applying a similarity measure m. This 
approach is very simple but may be prone to the class 
imbalance problem, e.g., for lower (higher) thresholds 
the number of non-matching (matching) pairs may 
dominate the training.  

• Threshold-Equal (n,m,t): This strategy selects an equal 
number (n/2) of matching and non-matching pairs from 
the ones satisfying a given minimal threshold t applying 
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a similarity measure m. This approach may require a 
higher manual overhead for labeling than Threshold-
Random because after n selections one of the two 
classes (matching / non-matching) will most likely not 
yet have n/2 training examples. Hence, we have to 
select and label further pairs until n/2 examples are 
available for both classes.  

Alternatively to these two selection methods, entity pairs could be 
selected using active learning methods [23], [26]. Active learning 
methods attempt to iteratively identify those pairs leading to 
maximal performance improvements when added to the training 
set. These pairs are then presented to the user for labeling. The 
system is re-trained on the training set including the newly added 
labeled example. We plan to incorporate selection methods based 
on active learning into our framework in the future and compare it 
with the two selection methods proposed in this paper. 

4. EXPERIMENTAL EVALUATION 
We present a comprehensive evaluation of the proposed training 
selection methods within the presented framework for real-life 
datasets, including bibliographic references from Google Scholar. 
We also investigate the impact of training size on the 
effectiveness of different learners for automatically constructing 
EM strategies.  
We first outline the evaluation setting, in particular the chosen 
datasets, match algorithms and learners. Section 4.2 evaluates the 
Threshold-Random and Threshold-Equal approaches for training 
selection. We then comparatively evaluate the effectiveness of the 
learners (Section 4.3) and different match configurations (Section 
4.4) for different training sizes.  

4.1 Evaluation Setting 
4.1.1 Datasets 
We evaluate our approach for four match tasks for which the 
perfect match result is known. Table 1 indicates for each task the 
number of involved objects, the number of available attributes and 
the number of correspondences in the perfect match result. The 
two largest match tasks come from the bibliographic domain and 
involve subsets of three real-life data sources: Google Scholar 
(Scholar), DBLP and ACM Digital Library (ACM). We will 
provide more details on the associated match tasks below. The 
other (smaller) match tasks cover different domains and have 
been taken from the RIDDLE repository1. The Parks task consists 
of two data sources with names of parks; only one attribute is 
provided per source. The Restaurant problem compares restaurant 
listings from two restaurant guides. Both sources have four 
attributes: name, address, city and cuisine. We applied our 
framework to the remaining RIDDLE match tasks as well but 
observed similar results than for two selected tasks.  

The bibliographic tasks are significantly larger than the RIDDLE 
tests and match publication sets between Scholar and DBLP 
(Scholar-DBLP) and between ACM and DBLP (ACM-DBLP). 
Scholar maintains a huge collection of publication entries 
automatically extracted from documents. As illustrated in the 
introduction this source has many data quality problems and 

                                                                 
1 http://www.cs.utexas.edu/users/ml/riddle/ 

duplicates making it very challenging to perform entity matching. 
DBLP and ACM focus on computer science publications and are 
manually maintained. Compared to Scholar they are of higher 
quality, especially DBLP. Since DBLP has almost no duplicates 
the EM result between Scholar and DBLP can also be used for 
determining the duplicates in Scholar. This is because all Scholar 
entries matching the same DBLP publication can be considered 
duplicates. 

As shown in Table 1, our evaluation datasets cover 2,616 
publications from DBLP, 2,294 publications from ACM and 
64,263 publications from Google Scholar. We thus have up to 169 
million entity pairs (Scholar-DBLP) in the Cartesian product 
between these datasets. We applied a simple blocking strategy 
based on a trigram similarity check with a low threshold to 
eliminate most pairs which are clearly non-matches. The reduced 
datasets contain about 607,000 (Scholar-DBLP) and 494,000 
(ACM-DBLP) entity pairs. To determine the quality of the entity 
matching strategies we manually determined the “perfect” EM 
results mappings with the cardinalities shown in Table 1.  

4.1.2 Match algorithms 
For the evaluations we consider attribute matchers based on 
generic string similarity measures. Each matcher thus specifies 
one of the available string similarity functions as well as the pair 
of attributes of the input datasets for which the similarity is 
computed. The corresponding attributes from the input datasets 
have been manually determined beforehand. Table 1 indicates that 
between one and four attribute pairs could be used for matching 
(e.g., the bibliographic attributes title, authors, venue, and year). 
We use the following seven string similarity measures (for 
detailed descriptions see, e.g., [10], [13]): EditDistance, Cosine, 
Jaccard, Jaro-Winkler, Monge-Elkan, Trigram and TF/IDF. 
Applying the seven similarity functions to the available attributes 
gives a total of 28 attribute matchers for the bibliographic and 
Restaurant test cases and 7 matchers for the Parks problem. 

4.1.3 Learners 
We evaluate three supervised learners which have been utilized 
previously for entity matching, namely decision trees, logistic 
regression and Support Vector Machine (SVM). In addition, we 
evaluate a multiple learning approach combining the three single 
learners through voting. Two entities are considered a match if at 
least two of the three learners classify it as a match (majority 
consensus). The motivation is that the combined approach may 
compensate weaknesses of individual learners. For our 
experiments we use the learner implementations provided by 
RapidMiner, formerly Yale [20], a free open-source environment 
for machine learning algorithms.  

Table 1: Overview of evaluation match tasks 

# entities match 
task source1 source2 

# attr. # corresp. 

Scholar-
DBLP 

64,263 2,616 4 5,347 

ACM-
DBLP 

2,294 2,616 4 2,224 

Parks 258 396 1 250 
Restaurant 533 331 4 112 

 



 

 

4.1.4 Evaluation Measures 
As in many other EM evaluations, we measure the quality of the 
match strategies with the standard measures precision and recall, 
and F-measure with respect to the manually determined “perfect” 
mappings. The three measures are formally defined as follows: 
Let Mp be the set of correspondences that an EM strategy 
identifies. Let Ma be the set of all correct correspondences from 
the set of entities to be resolved. Precision is defined as P = |Mp ∩ 
Ma| /| Mp| recall R = | Mp ∩ Ma |/| Ma|, and F-measure = (2P ⋅ 
R)/(P + R).  

4.1.5 Manual baseline strategies 
For comparison with the automatically generated match strategies 
we manually configured a baseline strategy for each match task.  
For the bibliographic match tasks we evaluated 14 configurations 
(thresholds 0.5 and 0.8) for the seven similarity measures and 18 
configurations using the trigram similarity measure for two 
threshold values (0.5 and 0.8) either on one attribute (title or 
authors) or using two attributes. The EM strategy using trigram 
similarity on both title and authors with a threshold of 0.5 
performed reasonably well on both EM tasks (F-measure 91.4% 
for the ACM-DBLP task and 82.3% for Scholar-DBLP). We 
therefore choose this strategy as a baseline strategy. 
For each of the two simpler RIDDLE match tasks we evaluated 
14 attribute configurations (thresholds 0.5 and 0.8 for each of the 
seven similarity measures) and use the best configuration as the 
baseline strategy. For the Parks problem MongeElkan with 
threshold 0.8 performs best (92.3% F-measure) while on the 
Restaurant task the best configuration is Trigram with threshold 
0.8 (88.1% F-measure). 

4.2 Evaluation of training selection methods 
We evaluate the two methods proposed for selecting entity pairs 
for labeling (Section 3.1), Threshold-Random (n,m,t) and 
Threshold-Equal (n,m,t). Since we want to minimize the manual 
labeling work as much as possible we focus on the selection of 
only few training pairs (n = 20, 50, 100, and 500). The threshold t 
is varied from 0.4 to 0.8.  

Fig. 4 displays the F-measure results for the four match tasks 
Scholar-DBLP, ACM-DBLP, Parks and Restaurant. The results 
for Threshold-Random (Threshold-Equal) are shown in the top 
(lower) four diagrams. The results are achieved with Trigram 
attribute matchers and SVM as the learner. Other match 
configurations and learners gave similar relative results. For 
comparison the F-measure results for the manually determined 
baseline match configurations are also shown.  

We first observe that despite the use of very small training sets 
the constructed EM strategies outperform the baseline strategy in 
many cases. The simple Threshold-Random approach is 
somewhat more dependent on the training size n and the choice of 
the threshold than Threshold-Equal, especially for the ACM-
DBLP and Restaurant problems. As indicated in the top diagrams 
of Fig. 4, the achieved F-measure results and thus the training 
quality drop sharply for threshold values of 0.7 or higher for the 
ACM-DBLP and the Restaurant problems. This is because the 
ACM-DBLP and Restaurant problems all involve relatively clean 
datasets for matching, thus high threshold values mainly select 
matching entity pairs. Hence Threshold-Random runs into a class 
imbalance problem with many matching and few non-matching 
pairs. Additionally, the non-matching entity pairs selected with a 
high threshold may be rare outliers and we risk that the learner is 
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Figure 4: Comparison of Threshold-Random and Threshold-Equal training selection 



 

 

overfitted to those special cases preventing to classify other entity 
pairs correctly. For threshold values 0.4 to 0.6, Threshold-
Random achieves very good results for ACM-DBLP and 
Restaurant. For Scholar-DBLP the training size n seems more 
significant than the choice of threshold, but the best results are 
again achieved for t between 0.4 and 0.6.  

For all four match tasks, Threshold-Equal also performs best in 
the threshold range 0.4 to 0.6. However, it is much more stable 
than Threshold-Random with respect to different training sizes 
and threshold values because it avoids the class imbalance 
problem. This comes at the prize of a higher manual labeling 
effort to guarantee equal numbers of matching and non-matching 
entity pairs in the resulting training set. For example, for 
obtaining 20 entity pairs with equal numbers of matching and 
non-matching pairs for the Scholar-DBLP match problem using a 
threshold of 0.4 we had to label 400 pairs, that is a 20 times 
higher effort than with Threshold-Random. For the two smaller 
problems, Parks and Restaurant, we could not even find the 
required number of non-matches for Threshold-Equal and 
threshold values of 0.7 or higher, indicating a limited applicability 
of this method for small match tasks.  

We also observe that Threshold-Equal and Threshold-Random 
achieve similar maximal F-measure values of about 86% for 
Scholar-DBLP, 96% for ACM-DBLP, 93% for Parks and 97% for 
Restaurant (n=500). We therefore propose the cheap and more 
general Threshold-Random approach with a threshold of 0.5 as 
the default method for training selection and use it in our further 
evaluation. We repeated the experiments for other similarity 
measures than Trigram to select training samples. We found out 
that TF/IDF performs similarly well and exhibits a comparable 
behavior w.r.t. the training sizes and thresholds. Hence this 
measure would be an alternative choice for use with Threshold-
Random.  

4.3 Learner evaluation 
Next, we want to evaluate the influence of the training size on the 
relative quality of the four supervised learners: decision tree, 
logistic regression, SVM and the multiple learning approach. We 
used the same match configurations as for the evaluation of the 
training selection methods in the previous section.  

Fig. 5 shows the F-measure results for the four match tasks 
achieved with the automatically generated EM strategies and 
different training sizes (x-axis). Training sizes vary between 20 
and 500 entity pairs. For the two smaller match problems the 

near-optimal results are already achieved for 100 or fewer pairs. 
We observe that all learners benefit from increasing the training 
size especially for the more difficult Scholar-DBLP problem. For 
this task choosing only 20 training entities is clearly insufficient 
but all four learners match or exceed the baseline performance 
already for 50 training pairs. For the ACM-DBLP and Restaurant 
tasks only 20 training pairs were sufficient for SVM and the 
multiple learner approach to outperform the manually determined 
baseline approach. The Parks task offered little optimization 
potential since its data sources provide only one attribute. 
Furthermore, the chosen baseline configuration performed already 
very well and could not be much improved by the consideration 
of additional matchers on the attribute.  

Altogether, we see that the multiple learner approach is especially 
stable and among the top-performing approach for all four match 
tasks. This shows that it is able to combine the advantages of the 
different approaches. From the remaining learners, SVM 
performed best in most cases.  

Compared to the multiple learning and SVM approaches the 
decision tree and logistic regression learners perform worse and 
rather unstable. On the ACM-DBLP and the Restaurant match 
tasks they both need a higher number of training examples to 
construct an effective EM strategy. For less than 100 training 
pairs the decision tree learner is clearly inferior to the other three 
learners and even the baseline strategy on the ACM-DBLP match 
task. The decision tree learner is among the best approaches for 
two tasks (Scholar-DBLP, Parks) but performs worst for the two 
other problems. 

We therefore conclude that for a small amount of training data the 
multiple learning approach or SVM can already be very effective 
and outperform (many) manually configured EM strategies. 
Furthermore, they are to be preferred to using the decision tree or 
logistic regression learners.  

4.4 Influence of match configuration  
To examine the usefulness of using a greater selection of matchers 
we now compare the performance of the four learners for two 
match configurations. For this comparison we focus on the more 
challenging match task Scholar-DBLP. In addition to the 
previously considered configurations with the four trigram 
matchers we now consider all (7) similarity measures resulting in 
a total of 28 matchers for the four attributes.  
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Figure 5: Comparison of different learners 



 

 

Fig. 6 contains a separate diagram for each of the four learners 
comparing the F-measure results for the two match configurations 
and different training sizes. The curves indicate that for small 
amounts of training examples the increased choice of matchers 
does not significantly improve performance but mostly decreases 
performance. This indicates that the learners need more training 
to effectively deal with the much increased solution space for 
selecting, ordering and weighting the applicable matchers. We 
therefore studied additional training sizes of up to 10,000 training 
pairs for this experiment. With more training, all learners 
eventually benefit from the increased number of matchers and 
outperform the EM strategies based on only four matchers. The 
improvements are especially significant for the three learners 
SVM, logistic regression and multiple learners for 500 and more 
training samples. SVM achieves this already for 50 training 
examples. The decision tree learner exhibits similar performance 
for both match configurations so that it cannot effectively utilize 
the additional matchers. On the other hand, it benefits the most 
from increased training sizes, especially for the trigram matcher, 
and achieves the absolute best F-measure (94.1% for n=10,000).  
To summarize we observe that our tuning framework can utilize a 
large choice of matchers to improve performance albeit at the 
expense of more training. SVM needs the least training data to 
utilize the increased optimization potential. For large training 
sizes decision tree performed best.  

4.5 Concluding remarks 
Our findings so far suggest several default configurations and 
alternatives for our framework to generate promising EM 
strategies for a new match problem. For training selection, the 
threshold-random method should be used to generate n training 
samples. A good default seems n=100; fewer training samples 
may suffice for small-sized match problems or comparatively 
clean data sources (e.g., ACM-DBLP, Restaurant). The matcher 
configuration may just apply all available matchers (default) or a 
restricted set of matchers, e.g., with only a subset of string 
similarity measures such as Trigram and TFIDF. As we have 
seen, restricting the number of matchers reduces the dependency 
on larger training sizes; it will also reduce the computational 
overhead compared to the execution of all matchers. For the 
learners, both SVM and multiple learning could be applied to 
generate EM strategies. In future work we will study the tradeoffs 
between match accuracy and execution time and how suitable 
heuristics can consider these tradeoffs in choosing from several 
EM strategies. We will also study methods to automatically 

propose suitable match configurations, e.g., by using the training 
samples to determine ineffective matchers beforehand and 
eliminate them for learning EM strategies 

5. Related work  
There has been a large body of research on entity matching and its 
variations. For a recent survey and tutorial see [13] and [18], 
respectively. Most previous studies used a single match approach 
like threshold-based attribute matching (similarity join [7]), 
clustering [19], or context-based matching [1], [11], [29].  

A single match approach typically performs very differently for 
different domains and match problems. For example, it has been 
shown that there is no universally best string similarity measure 
[16], [24]. Hence, one needs to customize individual matchers 
(e.g., selection of attributes and similarity functions) and/or 
combine several matchers for improved accuracy. Several 
toolboxes and frameworks support such customization to specify 
an entity matching strategy, e.g., by a workflow or operator tree 
of several matchers [14], [12], [25], [27]. However, these 
specifications typically have to be performed manually which is a 
very difficult and time-consuming administration task even for 
tuning experts.  

The main approach to automating the generation of entity 
matching strategies is the use of supervised (training-based) 
approaches or learners. They aim at adapting the matcher 
configuration and combination to specific match problems 
thereby supporting tuning. The learners supported in our 
framework have already been investigated for entity matching in 
several previous studies, namely decision trees [15], [23], [26], 
[28], logistic regression [22], and Support Vector Machine [5], 
[21], [23]. In addition, maximum entropy [9], and Naïve Bayes 
[23] approaches have been considered.  

Bilenko and Mooney have shown in an empirical evaluation [6] 
that the Support Vector Machine is more accurate than a decision 
tree learner. They used SVM at two levels. At the first level they 
tune four matchers, namely edit distance applied to four attributes 
of the evaluation dataset. At the second level they apply the 
Support Vector Machine on the tuned matchers from the previous 
step. 

While the previous studies showed already the potential of 
supervised methods for tuning, no comprehensive framework 
such as ours has been studied so far. Our framework allows us to 
utilize multiple training selection methods, matcher 
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configurations and learners and can easily add additional methods 
for a comparative evaluation, e.g., like the proposed multiple 
learner approach. As already discussed in Section 3, most 
previous evaluations have provided only limited information on 
how training examples where acquired and how many were 
necessary to achieve the stated results making it difficult to judge 
whether good results were due to the approach or clever (time-
consuming) manual training data selection.  

Recently, Chaudhuri et. al. [8] presented a fast training-based 
tuning approach for the combined use of several matchers. The 
idea is to construct (match) operator trees, corresponding to the 
Or-connection of several And-connected similarity predicates on 
attributes. These predicates are automatically determined by a 
recursive divide and conquer strategy on the labeled training data. 
An implementation based on SQL-Server2005 achieved 
significantly better execution times than for a standard SVM 
implementation at a comparable accuracy. The authors do not 
discuss how they selected the training data; the number of training 
examples varied for different datasets. The study is 
complementary to ours since their approach could be plugged into 
our framework as a promising learner to generate EM strategies. 

Most previous work focuses on maximizing the quality of entity 
matching, in particular precision and recall. Supporting fast entity 
matching is similarly important especially for large match 
problems. Several approaches have been developed for blocking 
(see [3] for an overview) to reduce the search space for entity 
matching from the Cartesian product to a small subset of the most 
likely correspondences. Such methods can be plugged into our 
framework. Similarly we can incorporate proposed enhancements 
to speed-up individual matchers and learners, e.g., by utilizing set 
similarity join techniques [2] or the optimizations proposed in [4]. 

6. SUMMARY AND OUTLOOK  
We proposed and evaluated two generic methods for 
automatically selecting training data to be labeled. The training 
selection methods are part of a powerful generic framework called 
STEM that supports the automatic construction of entity matching 
strategies. The framework addresses the problem of how to 
automatically configure and combine several matchers within an 
entity matching strategy.  
Our evaluation on diverse datasets showed that automatically 
constructed EM strategies using the proposed training selection 
methods can significantly outperform manually configured 
combined strategies. This is especially true for difficult match 
tasks and often possible for small training sizes incurring a low 
labeling effort. The evaluation of several learners revealed that 
the SVM and the multiple learning approach produce the most 
stable results even for small training sizes. By contrast decision 
trees perform well only for large amounts of training data.  

In future work, we will further investigate the new framework and 
focus on both EM quality and runtime performance.  
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