

Training Selection for Tuning Entity Matching
Hanna Köpcke

University of Leipzig, Germany

koepcke@informatik.uni-leipzig.de

Erhard Rahm
University of Leipzig, Germany

rahm@informatik.uni-leipzig.de

ABSTRACT
Entity matching is a crucial and difficult task for data integration.
An effective solution strategy typically has to combine several
techniques and to find suitable settings for critical configuration
parameters such as similarity thresholds. Supervised (training-
based) approaches promise to reduce the manual work for
determining (learning) effective strategies for entity matching.
However, they critically depend on training data selection which
is a difficult problem that has so far mostly been addressed
manually by human experts. In this paper we propose a training-
based framework called STEM for entity matching and present
different generic methods for automatically selecting training data
to combine and configure several matching techniques. We
evaluate the proposed methods for different match tasks and
small- and medium-sized training sets.

1. INTRODUCTION
Entity matching (also known as entity resolution, deduplication,
record linkage, object matching, fuzzy matching, similarity join
processing, reference reconciliation) is the task of identifying
object instances or entities referring to the same real-world object.
It is a crucial step in data cleaning and data integration. Entities to
be resolved may reside in distributed, typically heterogeneous
data sources or may be stored in a single data source, e.g., in a
database or search engine store. They may be physically
materialized or dynamically be requested from sources, e.g., by
database queries or keyword searches.

Entities from web data sources are particularly challenging to
match as they are often highly heterogeneous and of limited data
quality, e.g., regarding completeness and consistency of their
descriptions. Fig. 1 illustrates some of the problems for the
popular web entity search engine Google Scholar and five
duplicate entries for the same paper. The bibliographic entities
have automatically been extracted from web pages or PDF
documents and contain numerous quality problems such as
misspelled author names, different ordering of authors,
heterogeneous venue denominations etc.. Google Scholar
performs already an entity matching by clustering references to
the same publication to aggregate their citations and fulltext
sources. However as the duplicates in the example show, the

obtained results are far from perfect influenced by the mentioned
quality and heterogeneity problems. This illustrates that there is a
big potential for improving data quality by better entity matching
techniques. This would be critical for tasks requiring the
examination of all duplicates, e.g., to collect all citations of
publications for a citation analysis. Similar match problems
appear in many application domains, e.g., to compare prices for
equivalent products (DVDs, cameras, hotel rooms, etc.) offered in
the same or different web sites.

Numerous approaches have been proposed for entity matching
(EM) especially for structured data, e.g., in relational databases
[13]. Due to the large variety of data sources and entities to match
there is no single “best” solution. Instead it is often beneficial to
combine several algorithms for improved EM quality, e.g., to
consider the similarity of several attributes or related entities. The
need to support multiple approaches has led to the development of
several entity matching frameworks, e.g., [12], [27]. Such
frameworks allow the flexible combination and customization of
different methods to achieve good quality results for a given EM
task. Unfortunately, the flexibility comes at the price of requiring
the user to determine a suitable match strategy for a particular
problem. Key decisions to be made include

- Selecting the attributes to be used for matching,
- Choosing a similarity function to be applied, and
- Selecting a threshold for the similarity values above

which entities are considered to match.
The chosen configuration can have a large impact on the overall
quality but even experts will find it difficult and time-consuming
to determine a good selection. This is because there are typically
numerous possibilities for each decision resulting in a huge
number of possible combinations from which to choose for
configuring an entity matching strategy. We thus see a strong
need for self-tuning entity matching to largely automatically
determine an effective EM strategy for a given task.

While a number of previous studies has investigated training-
based (supervised) machine learning for entity matching (see
related work), the challenge of self-tuning entity matching is far
from solved. An important issue is how training data is selected.
Most previous studies on training-based entity matching have
provided little details on the selection and size of training data and
have not studied the influence of different training sets [5], [9]. In
other cases, the authors used a relatively large amount of training
data thus favoring good match quality however at the expense of a
high manual overhead for labeling [8], [21], [22]. In this study we
propose different generic methods for automatically selecting
training data to be labeled. The training selection methods are part
of a new generic framework that supports the automatic
construction of entity matching strategies. In this study the
proposed framework serves as an evaluation platform to compare

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’08, August 24-30, 2008, Auckland, New Zealand.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226138812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

different training selection methods and determine the impact of
different training sizes on EM accuracy.

The main contributions of this paper are:

- Presentation of a comprehensive, training-based
framework for automatically constructing (learning)
entity matching strategies called STEM for self-tuning
entity matching

- Description of methods to automatically generate
training data for entity matching.

- Comparative evaluation of the training selection
methods for different training sizes and four match tasks
of different application domains. We specifically
analyze the effectiveness for small training sizes which
incur only a modest effort for labeling.

In the next section we outline our framework for tuning entity
matching. We then propose two methods for selection of training
data. Section 4 provides a comprehensive evaluation of the
effectiveness of the methods for four match tasks. Related work is
reviewed in Section 5 before we conclude.

2. STEM: A TRAINING-BASED ENTITY
MATCHING FRAMEWORK
2.1 Problem definition
We assume the sets of entities to be resolved come from two
sources SA and SB. Entities are of a particular semantic entity type
(e.g., publication or product). Each entity is represented by a set
of attribute values. The entity matching problem is to find all
pairs of equivalent entities which refer to same real-world object.

Definition 1 (Entity match problem / match task): Entity matching
is a process which takes as input two sets of entities A ⊆ SA and
B ⊆ SB of a particular semantic entity type from data sources SA
and SB. The output is a subset of A x B containing all
correspondences between entities representing the same real-
world object.

Note that the inputs need not be entire sources but can be subsets
of them, e.g., the results of queries. Resolving entities within a
single source is supported as a special case (A=B, SA = SB).

To solve an entity matching problem we want to utilize several
matchers in combination. A matcher is defined as follows:

Definition 2 (Matcher): A matcher m takes as input two sets of
entities A ⊆ SA and B ⊆ SB of a particular semantic entity type
from data sources SA and SB. It produces as output a similarity
table T = {(a, b, s) | a ∈ A, b ∈ B, s ∈ [0,1]}. The similarity value
s indicates the strength of the similarity between two entities a ∈
A and b ∈ B.

Given a match task and a set of matchers the general objective of
our framework is to automatically find an optimal entity matching
strategy. An EM strategy defines a selection, configuration and
combination of matchers to solve an entity matching problem. It
can be defined as follows:

Definition 3 (EM strategy): An EM strategy (SA, SB, M, f) for two
data sources SA and SB of a particular semantic entity type
consists of a set M of matchers and a decision function f. For any
entity pair (a, b| a ∈ SA, b ∈ SB), f applies the matchers M and
assigns a label l ∈ {match, non-match}. For any subsets A ⊆ SA
and B ⊆ SB, the EM strategy returns as output a set of
correspondences C = {(a, b| a ∈ A, b ∈ B, f(a, b) = match)}
consisting of all entity pairs labeled with l = match by f.

The general tuning problem can be defined as follows:

Definition 4 (General tuning problem): Given two sets of entities
A ⊆ SA and B ⊆ SB of a particular semantic entity type from data
sources SA and SB, the general tuning problem is to find an
optimal EM strategy s* which maximizes a utility function U.

The utility function U may take diverse factors into account, in
particular matching accuracy and execution time. For the initial
evaluation of our framework we focus on the matching accuracy
measured in terms of precision, recall and F-measure (Section
4.1). We plan to consider more general utility functions including
execution time as future work.

2.2 Framework architecture
Fig. 2 illustrates the architecture and use of our generic entity
matching framework STEM. With generic we mean that the
framework should be applicable to different application domains,
to different data sources and to different subsets of a data source.

We distinguish two main processing phases or modes: 1) the
specification and 2) the application of an EM strategy. The
specification phase determines suitable strategies to solve a new
EM problem. This phase is typically determined offline, either
completely manually or largely automatically by machine
learning techniques based on training data. EM strategies
determined in the specification phase are stored in a repository
together with describing properties (input sources, entity type,
output characteristics, observed execution times, etc.).

In the application phase an EM strategy is selected from the
repository and applied to the input entities to be resolved. This
phase may be performed offline or online, e.g., for input data that
is derived at runtime by queries or other application processing
(e.g., mashups). The result of applying the EM strategy is a set of

Heterogeneous venue names
Extraction errors
Typos (author name)
Missing authors

3

3

4

4

2

2

2

1

1

1

1

Figure 1: Duplicate paper entities in Google Scholar

correspondences indicating matching entities, i.e. entities which
are considered to represent the same real-world object. The EM
strategy may be applied on the whole input data or on the result of
a blocking step. Blocking is needed for large inputs and reduces
the search space for entity matching from the Cartesian product SA
x SB to a small subset of the most likely correspondences. There
are many known algorithms for blocking [3] and we provide
several of them, e.g., to exclude all pairs with very low string
similarity.

The selection of an EM strategy is mainly determined by the
given input sources; in case of multiple choices the selection may
be controlled manually or based on statistical data from previous
use cases such as execution time or result quality. In this paper,
we manually specify the EM strategy to be applied since we want
to comparatively evaluate different strategies. In future work we
plan to automatically select from predefined EM strategies as an
additional kind of tuning. For example, this feature can be useful
to consider runtime constraints to select a fast EM strategy with
sufficient recall/precision.

In this paper we focus on the training-based generation of EM
strategies in the specification phase. This is performed offline
because it requires some manual guidance for labeling training
entities resulting in a semi-automatic generation of EM strategies.
The automatically executed steps can also be time-consuming
especially when we generate several strategies to choose from in
the application phase. The workflow of determining an EM
strategy is illustrated in the lower part of Fig. 2. It consists of
three main steps:

- Generation of training data. We do not require the
manual specification of training data but allow that
training data is automatically selected from the entity
sets to be matched or other data sets from the same
application domain. The result of this step is a set of

entity pairs T and a labeling. The labeling is determined
manually and indicates for each pair whether the two
entities match or not. The pairs to be labeled are
determined based on a training selection method.

- Similarity computation. Multiple matcher algorithms are
applied to determine the similarity for entity pairs in the
training data T. Either all supported matchers or a
specified subset of them is applied to the training input.
The result of this step is a similarity matrix indicating a
similarity value for each training pair and matcher.

- Learning. The final step is the adoption of a supervised
learner algorithm to determine the EM strategy. The
learner uses the similarity matrix and the manual
labeling as input. It determines the execution order and
weighting of the matchers and specifies how matchers
are combined.

For each of the three steps our framework provides several
methods to choose from as well as additional configuration
options. In particular we support several approaches for training
selection, for matching, and for learning. The approaches used in
our evaluation are (partially) indicated in Fig. 2. The modularity
of our framework allows adding further methods if necessary or
promising.

The methods for training selection are presented in the next
section. The matcher library provides different similarity
functions, in particular generic string similarity measures (edit
distance, q-grams, cosine, TF/IDF, etc), for defining attribute
matchers. An attribute matcher uses one of the similarity
functions and applies them to a pair of corresponding attributes of
the input entity sets for which the similarity is to be computed.
Additional matchers utilizing context information or auxiliary
information such as dictionaries can be added as needed.

E M s t r a t e g y
g e n e r a t i o n

S u p p o r t V e c to r M a c h i n e

D e c i s i o n T r e e

L e a r n e r L ib r a r y

L o g i s t i c R e g r e s s i o n

L a b e l i n g

T h r e s h o ld - R a n d o m

T h r e s h o l d - E q u a l

S i m i l a r i t y
c a l c u l a t i o n

S p e c i f i c a t io n

T r a i n in g d a t a

A p p l ic a t io n

S i m i l a r i t y m a t r ix

B lo c k i n g
M a tc h c a n d i d a t e s

E M s t r a t e g y

S A

S B

M a t c h e r L ib r a r y

C o r r e s p o n d e n c e s

S t r a t e g y
r e p o s i to r y

S t r a t e g y
a p p l i c a t o n

BA SSC ×⊆

J a c c a r d

E d i t D i s t a n c e
C o s i n e

T r i g r a m B l o c k i n g

B l o c k in g l i b r a r y

S o r t e d N e ig h b o u r h o o d

T r a i n i n g
s e l e c t io n

E n t i t y p a i r s

S e l e c t i o n m e t h o d s l ib r a r y

… … …

…

Figure 2: Overview of STEM

When all (attribute) matchers should be considered for
determining an EM strategy all applicable similarity functions are
employed for each attribute pair. We may also use a predefined
subset of the matchers to speed up the execution time for
matching both during the specification and application phase.
Moreover, a smaller number of matchers may require fewer
training data and still achieve sufficient EM quality.

The learner library provides several supervised machine learning
algorithms or learners, in particular decision tree, SVM (support
vector machine), logistic regression and their combination. The
learners treat the task of determining an EM strategy as a two-
class (match or non-match) classification problem. On the basis of
the similarity values for the training examples the learners
automatically determine the order and weighting of the matchers
and specify how they are combined. Fig. 3 shows a sample EM
strategy for a bibliographic match task as determined by the
decision tree learner. Each node of the decision tree contains a
test whether or not a certain similarity threshold is exceeded for a
selected matcher. The match decision is reached by starting with
the test of the root node and continuing with the further tests until
a leaf node is reached.

While the flexibility of the architecture allows the generation of
many strategies for different training selection methods, matcher
configurations, and learners, we will here use this flexibility
mainly for the comparative evaluation of different approaches.
The goal is to identify effective default methods so that only a
few EM strategies need to be generated for selection in the
application phase.

3. TRAINING DATA SELECTION
The effectiveness of supervised machine learning methods
critically depends on the size and quality of the available training
data. For entity matching it is important that the training data is
representative for the entities to be matched and exhibit the
variety and distribution of errors observed in practice.
Furthermore, the training data should allow the observation of
differences between the available matcher algorithms so that an
effective combination of different algorithms can be learned. This
requires that the training data contain a sufficient number of both
matching as well as non-matching entity pairs. On the other hand,
for tuning entity matching it is important to limit the manual
overhead for labeling. Hence, we wish to keep the number of
training entity pairs to be labeled manually as low as possible.

Most previous studies on training-based entity matching have
provided little details on the selection and size of training data and

have not studied the influence of different training sets [5], [9]. In
other cases, the authors used a relatively large amount of training
data thus favoring good match quality however at the expense of a
high manual overhead for labeling [8], [21], [22]. In this study we
propose different generic methods for automatically selecting
training data to be labeled. Furthermore, we want to use the
flexibility of our framework to evaluate these methods and
determine the impact of different training sizes on EM accuracy.

A naïve method for training selection is to randomly choose
entities from the sets of entities to be resolved for labeling.
However, this way it cannot be guaranteed that we obtain
representative training data. This is because for a given entity
from the first dataset, most entities from the second dataset are
most likely non-matches while only few will match. Hence, a
random selection of entity pairs will result in an imbalanced
training set where the non-matching entity pairs will heavily
outnumber the matching pairs. This phenomenon is known as the
class imbalance problem and has been reported as an obstacle to
the generation of good classifiers by supervised machine learning
algorithms [17].

A better training strategy is the so-called static-active selection of
entity pairs proposed in [6]. This method compares the entities to
be resolved with some state-of-the-art string similarity measure
and selects only pairs that are fairly similar according to this
measure, i.e. their similarity value meets a certain threshold. By
asking the user to label those entity pairs a training sample with a
high proportion of matching pairs can be obtained. At the same
time, non-matching entity pairs selected using this method are
likely to be “near-miss” negative examples that are more
informative for training than randomly selected pairs most of
which tend to be “easy” non-matches. The idea is easy to
implement and seems a reasonable way to obtain representative
training data. We thus want to further evaluate it as a strategy for
training selection. In particular, we want to empirically
investigate the following questions not considered in [6]:

• To what degree can we solve the class imbalance
problem, i.e. provide sufficient matching and non-
matching entity pairs?

• How influencing is the choice of the threshold for the
similarity measure above which pairs of entities are
selected for labeling? Is there a good default threshold?

• What is the influence of the training size on EM
accuracy, i.e. how few training pairs would be sufficient
to obtain good results?

For this study we propose and evaluate two strategies for
selecting entity pairs:

• Threshold-Random (n,m,t): n object pairs are randomly
selected among the ones satisfying a given minimal
threshold t applying a similarity measure m. This
approach is very simple but may be prone to the class
imbalance problem, e.g., for lower (higher) thresholds
the number of non-matching (matching) pairs may
dominate the training.

• Threshold-Equal (n,m,t): This strategy selects an equal
number (n/2) of matching and non-matching pairs from
the ones satisfying a given minimal threshold t applying

Cosine(title) > 0.629

Trigram(authors) > 0.7

match

Trigram(venue) > 0.197

+-

...
EditDistance(year) > 0.25 ...

- +

Non-match

-

...

+

Figure 3: Sample EM strategy for a bibliographic match

task generated by a decision tree learner

a similarity measure m. This approach may require a
higher manual overhead for labeling than Threshold-
Random because after n selections one of the two
classes (matching / non-matching) will most likely not
yet have n/2 training examples. Hence, we have to
select and label further pairs until n/2 examples are
available for both classes.

Alternatively to these two selection methods, entity pairs could be
selected using active learning methods [23], [26]. Active learning
methods attempt to iteratively identify those pairs leading to
maximal performance improvements when added to the training
set. These pairs are then presented to the user for labeling. The
system is re-trained on the training set including the newly added
labeled example. We plan to incorporate selection methods based
on active learning into our framework in the future and compare it
with the two selection methods proposed in this paper.

4. EXPERIMENTAL EVALUATION
We present a comprehensive evaluation of the proposed training
selection methods within the presented framework for real-life
datasets, including bibliographic references from Google Scholar.
We also investigate the impact of training size on the
effectiveness of different learners for automatically constructing
EM strategies.
We first outline the evaluation setting, in particular the chosen
datasets, match algorithms and learners. Section 4.2 evaluates the
Threshold-Random and Threshold-Equal approaches for training
selection. We then comparatively evaluate the effectiveness of the
learners (Section 4.3) and different match configurations (Section
4.4) for different training sizes.

4.1 Evaluation Setting
4.1.1 Datasets
We evaluate our approach for four match tasks for which the
perfect match result is known. Table 1 indicates for each task the
number of involved objects, the number of available attributes and
the number of correspondences in the perfect match result. The
two largest match tasks come from the bibliographic domain and
involve subsets of three real-life data sources: Google Scholar
(Scholar), DBLP and ACM Digital Library (ACM). We will
provide more details on the associated match tasks below. The
other (smaller) match tasks cover different domains and have
been taken from the RIDDLE repository1. The Parks task consists
of two data sources with names of parks; only one attribute is
provided per source. The Restaurant problem compares restaurant
listings from two restaurant guides. Both sources have four
attributes: name, address, city and cuisine. We applied our
framework to the remaining RIDDLE match tasks as well but
observed similar results than for two selected tasks.

The bibliographic tasks are significantly larger than the RIDDLE
tests and match publication sets between Scholar and DBLP
(Scholar-DBLP) and between ACM and DBLP (ACM-DBLP).
Scholar maintains a huge collection of publication entries
automatically extracted from documents. As illustrated in the
introduction this source has many data quality problems and

1 http://www.cs.utexas.edu/users/ml/riddle/

duplicates making it very challenging to perform entity matching.
DBLP and ACM focus on computer science publications and are
manually maintained. Compared to Scholar they are of higher
quality, especially DBLP. Since DBLP has almost no duplicates
the EM result between Scholar and DBLP can also be used for
determining the duplicates in Scholar. This is because all Scholar
entries matching the same DBLP publication can be considered
duplicates.

As shown in Table 1, our evaluation datasets cover 2,616
publications from DBLP, 2,294 publications from ACM and
64,263 publications from Google Scholar. We thus have up to 169
million entity pairs (Scholar-DBLP) in the Cartesian product
between these datasets. We applied a simple blocking strategy
based on a trigram similarity check with a low threshold to
eliminate most pairs which are clearly non-matches. The reduced
datasets contain about 607,000 (Scholar-DBLP) and 494,000
(ACM-DBLP) entity pairs. To determine the quality of the entity
matching strategies we manually determined the “perfect” EM
results mappings with the cardinalities shown in Table 1.

4.1.2 Match algorithms
For the evaluations we consider attribute matchers based on
generic string similarity measures. Each matcher thus specifies
one of the available string similarity functions as well as the pair
of attributes of the input datasets for which the similarity is
computed. The corresponding attributes from the input datasets
have been manually determined beforehand. Table 1 indicates that
between one and four attribute pairs could be used for matching
(e.g., the bibliographic attributes title, authors, venue, and year).
We use the following seven string similarity measures (for
detailed descriptions see, e.g., [10], [13]): EditDistance, Cosine,
Jaccard, Jaro-Winkler, Monge-Elkan, Trigram and TF/IDF.
Applying the seven similarity functions to the available attributes
gives a total of 28 attribute matchers for the bibliographic and
Restaurant test cases and 7 matchers for the Parks problem.

4.1.3 Learners
We evaluate three supervised learners which have been utilized
previously for entity matching, namely decision trees, logistic
regression and Support Vector Machine (SVM). In addition, we
evaluate a multiple learning approach combining the three single
learners through voting. Two entities are considered a match if at
least two of the three learners classify it as a match (majority
consensus). The motivation is that the combined approach may
compensate weaknesses of individual learners. For our
experiments we use the learner implementations provided by
RapidMiner, formerly Yale [20], a free open-source environment
for machine learning algorithms.

Table 1: Overview of evaluation match tasks

entities match
task source1 source2

attr. # corresp.

Scholar-
DBLP

64,263 2,616 4 5,347

ACM-
DBLP

2,294 2,616 4 2,224

Parks 258 396 1 250
Restaurant 533 331 4 112

4.1.4 Evaluation Measures
As in many other EM evaluations, we measure the quality of the
match strategies with the standard measures precision and recall,
and F-measure with respect to the manually determined “perfect”
mappings. The three measures are formally defined as follows:
Let Mp be the set of correspondences that an EM strategy
identifies. Let Ma be the set of all correct correspondences from
the set of entities to be resolved. Precision is defined as P = |Mp ∩
Ma| /| Mp| recall R = | Mp ∩ Ma |/| Ma|, and F-measure = (2P ⋅
R)/(P + R).

4.1.5 Manual baseline strategies
For comparison with the automatically generated match strategies
we manually configured a baseline strategy for each match task.
For the bibliographic match tasks we evaluated 14 configurations
(thresholds 0.5 and 0.8) for the seven similarity measures and 18
configurations using the trigram similarity measure for two
threshold values (0.5 and 0.8) either on one attribute (title or
authors) or using two attributes. The EM strategy using trigram
similarity on both title and authors with a threshold of 0.5
performed reasonably well on both EM tasks (F-measure 91.4%
for the ACM-DBLP task and 82.3% for Scholar-DBLP). We
therefore choose this strategy as a baseline strategy.
For each of the two simpler RIDDLE match tasks we evaluated
14 attribute configurations (thresholds 0.5 and 0.8 for each of the
seven similarity measures) and use the best configuration as the
baseline strategy. For the Parks problem MongeElkan with
threshold 0.8 performs best (92.3% F-measure) while on the
Restaurant task the best configuration is Trigram with threshold
0.8 (88.1% F-measure).

4.2 Evaluation of training selection methods
We evaluate the two methods proposed for selecting entity pairs
for labeling (Section 3.1), Threshold-Random (n,m,t) and
Threshold-Equal (n,m,t). Since we want to minimize the manual
labeling work as much as possible we focus on the selection of
only few training pairs (n = 20, 50, 100, and 500). The threshold t
is varied from 0.4 to 0.8.

Fig. 4 displays the F-measure results for the four match tasks
Scholar-DBLP, ACM-DBLP, Parks and Restaurant. The results
for Threshold-Random (Threshold-Equal) are shown in the top
(lower) four diagrams. The results are achieved with Trigram
attribute matchers and SVM as the learner. Other match
configurations and learners gave similar relative results. For
comparison the F-measure results for the manually determined
baseline match configurations are also shown.

We first observe that despite the use of very small training sets
the constructed EM strategies outperform the baseline strategy in
many cases. The simple Threshold-Random approach is
somewhat more dependent on the training size n and the choice of
the threshold than Threshold-Equal, especially for the ACM-
DBLP and Restaurant problems. As indicated in the top diagrams
of Fig. 4, the achieved F-measure results and thus the training
quality drop sharply for threshold values of 0.7 or higher for the
ACM-DBLP and the Restaurant problems. This is because the
ACM-DBLP and Restaurant problems all involve relatively clean
datasets for matching, thus high threshold values mainly select
matching entity pairs. Hence Threshold-Random runs into a class
imbalance problem with many matching and few non-matching
pairs. Additionally, the non-matching entity pairs selected with a
high threshold may be rare outliers and we risk that the learner is

threshold

0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

n = 20
n = 50
n = 100
n = 500
baseline strategy

threshold

0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

threshold

0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

threshold

0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Threshold-Random

Threshold-Equal

Scholar - DBLP ACM - DBLP

threshold

0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Parks

threshold

0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Restaurant

threshold

0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Scholar - DBLP ACM - DBLP Parks Restaurant

threshold

0.4 0.5 0.6 0.7 0.8

F-
m

ea
su

re

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 4: Comparison of Threshold-Random and Threshold-Equal training selection

overfitted to those special cases preventing to classify other entity
pairs correctly. For threshold values 0.4 to 0.6, Threshold-
Random achieves very good results for ACM-DBLP and
Restaurant. For Scholar-DBLP the training size n seems more
significant than the choice of threshold, but the best results are
again achieved for t between 0.4 and 0.6.

For all four match tasks, Threshold-Equal also performs best in
the threshold range 0.4 to 0.6. However, it is much more stable
than Threshold-Random with respect to different training sizes
and threshold values because it avoids the class imbalance
problem. This comes at the prize of a higher manual labeling
effort to guarantee equal numbers of matching and non-matching
entity pairs in the resulting training set. For example, for
obtaining 20 entity pairs with equal numbers of matching and
non-matching pairs for the Scholar-DBLP match problem using a
threshold of 0.4 we had to label 400 pairs, that is a 20 times
higher effort than with Threshold-Random. For the two smaller
problems, Parks and Restaurant, we could not even find the
required number of non-matches for Threshold-Equal and
threshold values of 0.7 or higher, indicating a limited applicability
of this method for small match tasks.

We also observe that Threshold-Equal and Threshold-Random
achieve similar maximal F-measure values of about 86% for
Scholar-DBLP, 96% for ACM-DBLP, 93% for Parks and 97% for
Restaurant (n=500). We therefore propose the cheap and more
general Threshold-Random approach with a threshold of 0.5 as
the default method for training selection and use it in our further
evaluation. We repeated the experiments for other similarity
measures than Trigram to select training samples. We found out
that TF/IDF performs similarly well and exhibits a comparable
behavior w.r.t. the training sizes and thresholds. Hence this
measure would be an alternative choice for use with Threshold-
Random.

4.3 Learner evaluation
Next, we want to evaluate the influence of the training size on the
relative quality of the four supervised learners: decision tree,
logistic regression, SVM and the multiple learning approach. We
used the same match configurations as for the evaluation of the
training selection methods in the previous section.

Fig. 5 shows the F-measure results for the four match tasks
achieved with the automatically generated EM strategies and
different training sizes (x-axis). Training sizes vary between 20
and 500 entity pairs. For the two smaller match problems the

near-optimal results are already achieved for 100 or fewer pairs.
We observe that all learners benefit from increasing the training
size especially for the more difficult Scholar-DBLP problem. For
this task choosing only 20 training entities is clearly insufficient
but all four learners match or exceed the baseline performance
already for 50 training pairs. For the ACM-DBLP and Restaurant
tasks only 20 training pairs were sufficient for SVM and the
multiple learner approach to outperform the manually determined
baseline approach. The Parks task offered little optimization
potential since its data sources provide only one attribute.
Furthermore, the chosen baseline configuration performed already
very well and could not be much improved by the consideration
of additional matchers on the attribute.

Altogether, we see that the multiple learner approach is especially
stable and among the top-performing approach for all four match
tasks. This shows that it is able to combine the advantages of the
different approaches. From the remaining learners, SVM
performed best in most cases.

Compared to the multiple learning and SVM approaches the
decision tree and logistic regression learners perform worse and
rather unstable. On the ACM-DBLP and the Restaurant match
tasks they both need a higher number of training examples to
construct an effective EM strategy. For less than 100 training
pairs the decision tree learner is clearly inferior to the other three
learners and even the baseline strategy on the ACM-DBLP match
task. The decision tree learner is among the best approaches for
two tasks (Scholar-DBLP, Parks) but performs worst for the two
other problems.

We therefore conclude that for a small amount of training data the
multiple learning approach or SVM can already be very effective
and outperform (many) manually configured EM strategies.
Furthermore, they are to be preferred to using the decision tree or
logistic regression learners.

4.4 Influence of match configuration
To examine the usefulness of using a greater selection of matchers
we now compare the performance of the four learners for two
match configurations. For this comparison we focus on the more
challenging match task Scholar-DBLP. In addition to the
previously considered configurations with the four trigram
matchers we now consider all (7) similarity measures resulting in
a total of 28 matchers for the four attributes.

Scholar - DBLP

number of training examples

20 50 100 500

F-
m

ea
su

re

0.6

0.7

0.8

0.9

1.0
Decision Tree
Logistic Regression
SVM
Multiple Learning
baseline strategy

ACM - DBLP

number of training examples

20 50 100 500

F-
m

ea
su

re

0.6

0.7

0.8

0.9

1.0

number of training examples

20 50 100

F-
m

ea
su

re

0.6

0.7

0.8

0.9

1.0

Parks

number of training examples

20 50 100

F-
m

ea
su

re

0.6

0.7

0.8

0.9

1.0

Restaurant

Figure 5: Comparison of different learners

Fig. 6 contains a separate diagram for each of the four learners
comparing the F-measure results for the two match configurations
and different training sizes. The curves indicate that for small
amounts of training examples the increased choice of matchers
does not significantly improve performance but mostly decreases
performance. This indicates that the learners need more training
to effectively deal with the much increased solution space for
selecting, ordering and weighting the applicable matchers. We
therefore studied additional training sizes of up to 10,000 training
pairs for this experiment. With more training, all learners
eventually benefit from the increased number of matchers and
outperform the EM strategies based on only four matchers. The
improvements are especially significant for the three learners
SVM, logistic regression and multiple learners for 500 and more
training samples. SVM achieves this already for 50 training
examples. The decision tree learner exhibits similar performance
for both match configurations so that it cannot effectively utilize
the additional matchers. On the other hand, it benefits the most
from increased training sizes, especially for the trigram matcher,
and achieves the absolute best F-measure (94.1% for n=10,000).
To summarize we observe that our tuning framework can utilize a
large choice of matchers to improve performance albeit at the
expense of more training. SVM needs the least training data to
utilize the increased optimization potential. For large training
sizes decision tree performed best.

4.5 Concluding remarks
Our findings so far suggest several default configurations and
alternatives for our framework to generate promising EM
strategies for a new match problem. For training selection, the
threshold-random method should be used to generate n training
samples. A good default seems n=100; fewer training samples
may suffice for small-sized match problems or comparatively
clean data sources (e.g., ACM-DBLP, Restaurant). The matcher
configuration may just apply all available matchers (default) or a
restricted set of matchers, e.g., with only a subset of string
similarity measures such as Trigram and TFIDF. As we have
seen, restricting the number of matchers reduces the dependency
on larger training sizes; it will also reduce the computational
overhead compared to the execution of all matchers. For the
learners, both SVM and multiple learning could be applied to
generate EM strategies. In future work we will study the tradeoffs
between match accuracy and execution time and how suitable
heuristics can consider these tradeoffs in choosing from several
EM strategies. We will also study methods to automatically

propose suitable match configurations, e.g., by using the training
samples to determine ineffective matchers beforehand and
eliminate them for learning EM strategies

5. Related work
There has been a large body of research on entity matching and its
variations. For a recent survey and tutorial see [13] and [18],
respectively. Most previous studies used a single match approach
like threshold-based attribute matching (similarity join [7]),
clustering [19], or context-based matching [1], [11], [29].

A single match approach typically performs very differently for
different domains and match problems. For example, it has been
shown that there is no universally best string similarity measure
[16], [24]. Hence, one needs to customize individual matchers
(e.g., selection of attributes and similarity functions) and/or
combine several matchers for improved accuracy. Several
toolboxes and frameworks support such customization to specify
an entity matching strategy, e.g., by a workflow or operator tree
of several matchers [14], [12], [25], [27]. However, these
specifications typically have to be performed manually which is a
very difficult and time-consuming administration task even for
tuning experts.

The main approach to automating the generation of entity
matching strategies is the use of supervised (training-based)
approaches or learners. They aim at adapting the matcher
configuration and combination to specific match problems
thereby supporting tuning. The learners supported in our
framework have already been investigated for entity matching in
several previous studies, namely decision trees [15], [23], [26],
[28], logistic regression [22], and Support Vector Machine [5],
[21], [23]. In addition, maximum entropy [9], and Naïve Bayes
[23] approaches have been considered.

Bilenko and Mooney have shown in an empirical evaluation [6]
that the Support Vector Machine is more accurate than a decision
tree learner. They used SVM at two levels. At the first level they
tune four matchers, namely edit distance applied to four attributes
of the evaluation dataset. At the second level they apply the
Support Vector Machine on the tuned matchers from the previous
step.

While the previous studies showed already the potential of
supervised methods for tuning, no comprehensive framework
such as ours has been studied so far. Our framework allows us to
utilize multiple training selection methods, matcher

Decision Tree

number of training examples

20 50 100 500 1000 500010000

F-
m

ea
su

re

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Trigram
all matchers
baseline strategy

Logistic Regression

number of training examples

20 50 100 500 1000 500010000

F-
m

ea
su

re

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SVM

number of training examples

20 50 100 500 1000 500010000

F-
m

ea
su

re

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Multiple Learning

number of training examples

20 50 100 500 1000 500010000

F-
m

ea
su

re

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 6: Evaluation of different matcher selections

configurations and learners and can easily add additional methods
for a comparative evaluation, e.g., like the proposed multiple
learner approach. As already discussed in Section 3, most
previous evaluations have provided only limited information on
how training examples where acquired and how many were
necessary to achieve the stated results making it difficult to judge
whether good results were due to the approach or clever (time-
consuming) manual training data selection.

Recently, Chaudhuri et. al. [8] presented a fast training-based
tuning approach for the combined use of several matchers. The
idea is to construct (match) operator trees, corresponding to the
Or-connection of several And-connected similarity predicates on
attributes. These predicates are automatically determined by a
recursive divide and conquer strategy on the labeled training data.
An implementation based on SQL-Server2005 achieved
significantly better execution times than for a standard SVM
implementation at a comparable accuracy. The authors do not
discuss how they selected the training data; the number of training
examples varied for different datasets. The study is
complementary to ours since their approach could be plugged into
our framework as a promising learner to generate EM strategies.

Most previous work focuses on maximizing the quality of entity
matching, in particular precision and recall. Supporting fast entity
matching is similarly important especially for large match
problems. Several approaches have been developed for blocking
(see [3] for an overview) to reduce the search space for entity
matching from the Cartesian product to a small subset of the most
likely correspondences. Such methods can be plugged into our
framework. Similarly we can incorporate proposed enhancements
to speed-up individual matchers and learners, e.g., by utilizing set
similarity join techniques [2] or the optimizations proposed in [4].

6. SUMMARY AND OUTLOOK
We proposed and evaluated two generic methods for
automatically selecting training data to be labeled. The training
selection methods are part of a powerful generic framework called
STEM that supports the automatic construction of entity matching
strategies. The framework addresses the problem of how to
automatically configure and combine several matchers within an
entity matching strategy.
Our evaluation on diverse datasets showed that automatically
constructed EM strategies using the proposed training selection
methods can significantly outperform manually configured
combined strategies. This is especially true for difficult match
tasks and often possible for small training sizes incurring a low
labeling effort. The evaluation of several learners revealed that
the SVM and the multiple learning approach produce the most
stable results even for small training sizes. By contrast decision
trees perform well only for large amounts of training data.

In future work, we will further investigate the new framework and
focus on both EM quality and runtime performance.

7. REFERENCES
[1] Ananthakrishna, R., Chaudhuri, S., and Ganti, V.:

Eliminating Fuzzy Duplicates in Data Warehouses. In Proc.
of VLDB, 2002.

[2] Arasu, A., Ganti, V. and Kaushik, R..: Efficient exact set-
similarity joins. In Proc. of VLDB, 2006.

[3] Baxter, R., Christen, P, and Churches, T.: A comparison of
fast blocking methods for record linkage. In Proc. of ACM
SIGKDD Workshop on Data Cleaning, Record Linkage, and
Object Consolidation, 2003.

[4] Benjelloun, O, Gracia-Molina H., Kawai, H., Larson, T. E.,
Minestrina, D., Su, Q., Thavisomboon, S., and Widom, J.:
Generic Entity Resolution in the SERF project. IEEE Data
Engineering Bulletin , Vol. 29, Number 2, 2006.

[5] Bilenko, M. and Mooney, R. J.: Adaptive duplicate detection
using learnable string similarity measures. In Proc. of ACM
SIGKDD, 2003.

[6] Bilenko, M. and Mooney, R. J.: On Evaluation and Training-
Set Construction for Duplicate Detection. In Proc. of the
KDD-2003 Workshop on Data Cleaning, Record Linkage,
and Object Consolidation, 2003..

[7] Chaudhuri, D., Ganti, V., and Kaushik, R.: A Primitive
Operator for Similarity Joins in Data Cleaning. In Proc. of.
ICDE, 2006.

[8] Chaudhuri, S., Chen, B.-C., Ganti,V., and Kaushik, R.:
Example-driven design of efficient record machting queries.
In Proc. of VLDB, 2007.

[9] Cohen, W. W. and Richman, J.: Learning to match and
cluster large high-dimensional data sets for data integration.
In Proc. of ACM SIGKDD, 2002.

[10] Cohen, W. W., Ravikumar, P., and Fienberg, S. E.: A
Comparison of String Distance Metrics for Name-Matching
Tasks. In Proc. of Workshop on Information Integration on
the Web (IIWeb), 2003.

[11] Dong, X., Halevy, A., and Madhavan, J.: Reference
reconciliation in complex information spaces. In Proc. of
ACM SIGMOD, 2005.

[12] Elfeky, M. G., Elmagarmid, A.K., and Verykios, V.S.:
TAILOR: A Record Linkage Tool Box. In Proc. of ICDE,
2002.

[13] Elmagarmid, A.K., Ipeirotis, P.G., and Verykios, V.S.:
Duplicate Record Detection: A Survey. IEEE Transactions
on Knowledge and Data Engineering 19(1), 2007.

[14] Galhardas, H., Florescu, D., Shash, D., and Simon, E.:
AJAX: An Extensible Data Cleaning Tool. In Proc. of ACM
SIGMOD, 2000.

[15] Ganesh, M., Srivastava, J., and Richardson, T.: Mining
entity-identification rules for database integration. In Proc.
of SIGKDD, 1996.

[16] Guha, S., Koudas, N., Marathe, A., and Srivastava, D.:
Merging the results of approximate match operations. In
Proc. of VLDB, 2004.

[17] Japkowicz, N. and Stephen, S.: The Class Imbalance
Problem: A Systematic Study. Intelligent Data Analysis
Journal 6(5), 2002.

[18] Koudas, N., Sarawagi, S., and Srivastava, D.: Record
linkage: Similarity measures and algorithms. In Proc. of
ACM SIGMOD, 2006.

[19] McCallum, A., Nigam, K., and Ungar, L. H.: Efficient
Clustering of High-Dimensional Data Sets with Application
to Reference Matching. In Proc. of ACM SIGKDD, 2000.

[20] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M, and
Euler, T.: Yale: Rapid Prototyping for Complex Data Mining
Tasks. In Proc. of ACM SIGKDD, 2006.

[21] Minton, S. N, Nanjo, C., Knobloch, C. A., Michalowski, M.,
and Michelson, M.: A Heterogeneous Field Matching
Method for Record Linkage. In Proc. IEEE International
Conference on Data Mining, 2005.

[22] Pinheiro, J. C., and Sun, D. X.: Methods for linking and
mining massive heterogeneous datasets. In Proc. of ACM
SIGKDD, 1998.

[23] Sarawagi, S., and Bhamidipaty, A.: Interactive deduplication
using active learning. In Proc. of ACM SIGKDD, 2002.

[24] Sarawagi, S. and Kirpal, A.: Efficient set joins on similarity
predicates. In Proc. of ACM SIGMOD, 2004.

[25] Shen, W., DeRose, R., Vu, L., Doan, A., and Ramakrishnan,
R.: Source-aware Entity Matching: A Compositional
Approach. In Proc. of ICDE, 2007.

[26] Tejada, S., Knoblock, C. A., and Minton, S.: Learning object
identification rules for information integration. Information
Systems Journal, 26(8), 2001.

[27] Thor, A., and Rahm, E.: MOMA - A Mapping-based Object
Matching System. In Proc. of CIDR, 2007.

[28] Verykios, V. S., Moustakides, G.V., and Elfeky, M. G.: A
Bayesian decision model for cost optimal record matching.
The VLDB Journal, 12(1), 2003.

[29] Weis, N., and Naumann, F.: DogmatiX tracks down
Duplicated in XML. In Proc. of ACM SIGMOD, 2005.

