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A Hierarchical Particle Swarm Optimizer
and Its Adaptive Variant
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Abstract—A hierarchical version of the particle swarm optimiza-
tion (PSO) metaheuristic is introduced in this paper. In the new
method called H-PSO, the particles are arranged in a dynamic hi-
erarchy that is used to define a neighborhood structure. Depending
on the quality of their so-far best-found solution, the particles move
up or down the hierarchy. This gives good particles that move up
in the hierarchy a larger influence on the swarm. We introduce
a variant of H-PSO, in which the shape of the hierarchy is dy-
namically adapted during the execution of the algorithm. Another
variant is to assign different behavior to the individual particles
with respect to their level in the hierarchy. H-PSO and its variants
are tested on a commonly used set of optimization functions and are
compared to PSO using different standard neighborhood schemes.

Index Terms—Author, please supply your own keywords or send
a blank e-mail to keywords@ieee.org to receive a list of suggested
keywords.

I. INTRODUCTION

THE particle swarm optimization (PSO) method for func-
tion optimization has been introduced by Kennedy and

Eberhart in [1] and is inspired by the emergent motion of a
flock of birds searching for food. Like in other optimization
metaheuristics ([2]), as simulated annealing ([3], [4]), evolu-
tionary algorithms ([5]–[8]), or ant colony optimization (ACO)
([9]–[11]), the search for an optimum is an iterative process
that is based on random decisions. Another similarity of PSO
to evolutionary algorithms and the population based version
of ACO ([12]) is that a population of solutions or agents is
used, which cooperate in finding better solutions. Evolutionary
algorithms use principles of natural evolution like mutation,
crossover and selection to obtain better solutions from the ac-
tual population of solutions. ACO is inspired by the foraging be-
havior of ants, which find short paths to food sources by marking
their paths with pheromones. In ACO, a new solution is cre-
ated by a simple agent, called ant, that uses a constructive solu-
tion generation method. The decisions of the ant are guided by
artificial pheromone information that stems from former ants
that have found good solutions. A PSO algorithm iteratively ex-
plores a multidimensional search space with a swarm of individ-
uals, that are referred to as particles, looking for the global min-
imum (or maximum). Each particle “flies” through the search
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space according to its velocity vector. In every iteration, the ve-
locity vector is adjusted so that prior personal successful po-
sitions (cognitive aspect) and the best position found by parti-
cles within a specific neighborhood (social aspect) act as attrac-
tors. In this paper we concentrate on PSO for continuous search
spaces but it should be mentioned that PSO has also been ap-
plied to discrete optimization problems (e.g., [13]).

In the original PSO algorithm, the neighborhood of a par-
ticle consists of all particles, so that the global best position,
i.e., the best solution found so far, directly influences its be-
havior. Several authors have investigated the use of restricted
neighborhoods. In [14], several fixed neighborhoods including
random neighborhoods have been studied. Dynamic neighbor-
hoods in which the neighborhood of a particle was defined as the

closest individuals in every iteration have been investigated in
[15]. The use of such a dynamic neighborhood is computation-
ally intensive because the neighborhood has to be determined
anew at every iteration. In [16], the particles have been clustered
in every iteration and the centroid of the cluster was used as an
attractor instead of using the position of a single individual.

In this paper, we propose a hierarchical version of PSO
(H-PSO). In H-PSO, a particle is influenced by its own so far
best position and by the best position of the particle that is
directly above it in the hierarchy. In H-PSO, all particles are
arranged in a tree that forms the hierarchy so that each node
of the tree contains exactly one particle. In order to give the
best particles in the swarm a high influence, particles move
up and down the hierarchy. If a particle at a child node has
found a solution that is better than the best so far solution of the
particle at the parent node, the two particles are exchanged. We
also introduce variants of H-PSO in which the structure of the
hierarchy is dynamically changed in order to further improve
the search success. Moreover, variants of H-PSO are described
in which the behavior of a particle is determined by its position
in the hierarchy.

The paper is organized as follows. The PSO method is ex-
plained in Section II. The hierarchical PSO algorithm and its
variants are described in Section III. In Section IV, the setup for
the experiments is described and in Section V, the results are
presented and discussed. A conclusion is given in Section VI.

II. PSO

In this section, we describe the PSO method for function opti-
mization (see also [1]). PSO is an iterative method that is based
on the search behavior of a swarm of particles in a multi-
dimensional search space. In each iteration the velocities and
positions of all the particles are updated. For each particle ,
its velocity vector is updated according to (1). The inertia
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weight controls the influence of the previous velocity
vector. The current position of the particle is denoted by . Pa-
rameter controls the impact of the personal best position

, i.e., the position where the particle found the smallest func-
tion value so far—assuming that the objective function has to be
minimized. Parameter determines the impact of the best

position that has been found so far by any of the particles in
the neighborhood of particle . Usually and are set to the
same value. Random values and are drawn with uniform
probability from [0,1] for each particle at every iteration.

After all the particles’ velocities have been updated, the par-
ticles move with their new velocity to their new positions (2).
Then, for each particle the objective function is evaluated
at its new position. If the personal best
position is updated accordingly, i.e., is set to

(1)

(2)

Several variations of this basic PSO scheme have been pro-
posed in the literature. Commonly used variations are to restrict
the velocity of a particle by a maximal value or to linearly
decrease over time [17]. This is done to adjust the swarm’s
behavior from exploration of the entire search space to exploita-
tion of promising regions.

Various mechanisms have been designed to increase the di-
versity among the particles of a swarm. In [18] a spatial exten-
sion is assigned to the particles and different collision strate-
gies are used to avoid crowding of the swarm. A charged swarm
(CPSO) is proposed in [19], where some or all the particles
hold a certain charge and a repulsion force is applied if two
particles get too close to each other. The ARPSO algorithm
[20] switches between phases of attraction and repulsion. If the
swarm becomes too tight, i.e., the diversity diminishes, the re-
pulsion phase is initiated and the swarm is scattered. In [21], a
predator particle is introduced that pursues the global best par-
ticle and thereby chases other particles away.

A. Neighborhood Topologies

Different neighborhood topologies have been investigated
for PSO. In the original PSO algorithm—here called the gbest
model—the swarm is guided by the current global best particle,

i.e., in (1) is the best solution found so far by the swarm. The
gbest model corresponds to a fully connected neighborhood.
In [22], other neighborhood topologies, varying the degree of
interconnections between the particles, have been introduced.

In this paper, we also consider the lbest model, that uses the
local neighborhood best position to update a particle’s velocity.
The local neighborhood is defined by a ring topology through
the particle’s index, so that particle is neighbored to particles

and , where is the total number
of particles. It has been shown [22] that the relative performance
of gbest and lbest depends on the type of the optimization func-
tion. In general, gbest performs better on unimodal functions, as
Sphere and Rosenbrock, whereas lbest is better suited for mul-
timodal functions, in which the optimization success relies on

the diversity of the algorithm to not being trapped in a local
minimum.

In [15], a neighborhood scheme has been explored that is de-
fined by a particle’s actual position in the search space. A certain
number of close particles are considered to be neighbors. This
method is computationally intensive, since in every iteration the
distances between all pairs of particles have to be calculated.

A fitness-distance-ratio PSO (FDR-PSO) has been proposed
in [23], in which each particle is not only influenced by the
personal and global best position but also by a close and good
neighbor. This neighbor is selected as the particle that maxi-
mizes the quotient of fitness improvement over the respective
distance. Thus, any nearby improving neighbor of a particle
can be preferred to the global best particle, provided it is close
enough.

In [14] and [24], several neighborhood topologies or “so-
ciometries” have been examined for the PSO algorithm. In [24]
these topologies have also been applied to the fully informed
PSO, in which each particle is influenced by all of its neigh-
bors and not only its best neighbor. The information flow within
the swarm is controlled by the two parameters and , where
gives the number of neighbors of a specific node in the neighbor-
hood graph and is used to measure the clustering among the
nodes in the neighborhood graph, i.e., to what extent the respec-
tive neighborhoods differ. The previously introduced neighbor-
hoods gbest and lbest, the star—one central node is connected
to all the other nodes—and other regular neighborhood graphs
have been compared to randomly created neighborhood graphs
with different values for and . The von Neumann neighbor-
hood on a two-dimensional (2-D) lattice performed very good
and also a three-dimensional (3-D) pyramid did perform reason-
ably well. The common gbest, lbest and star topologies all have
been rated worse.

III. HIERARCHICAL PSO

The hierarchical version of PSO (H-PSO) is introduced in this
section. In H-PSO, all particles are arranged in a hierarchy that
defines the neighborhood structure. Each particle is neighbored
to itself and its parent in the hierarchy. In this paper, we study
regular tree like hierarchies, i.e., the underlying topology is a
(nearly) regular tree. The hierarchy is defined by the height ,
the branching degree , i.e., the maximum number of children
of the inner nodes, and the total number of nodes of the corre-
sponding tree (for an example, see Fig. 1). In this paper we use
only hierarchies in which all inner nodes have the same number
of children, only the inner nodes on the deepest level might have
a smaller number of children so that the maximum difference
between the number of children of inner nodes on the deepest
level is at most one.

In order to give the best individuals in the swarm a high influ-
ence, particles move up and down the hierarchy. In every iter-
ation, after the evaluations of the objective function at the par-
ticles actual positions, but before the update of the velocities
and the determination of the new positions in the search space,
the new positions of the particles within the hierarchy are de-
termined as follows. For every particle in a node of the tree,
its own best solution is compared to the best solution found by
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Fig. 1. Example of a hierarchy defined by a regular tree with h = 3, d = 4,
m = 21.

the particles in the child nodes. If the best of these particles, say
particle , is better (i.e., ) then particles and
swap their places within the hierarchy. These comparisons are
performed starting from the top of the hierarchy and then pro-
ceed in a breadth-first manner down the tree. Observe that the
top-down approach implies that in one iteration an individual
can move down several levels in the hierarchy but it can move
up at most one level. The current global best particle will move
up one level of the hierarchy at every iteration. Hence, it will be
on top of the hierarchy after at most iterations—unless, a
better solution was found meanwhile.

For the update of the velocities in H-PSO, a particle is influ-
enced by its own so far best position and by the best position of
the individual that is directly above in the hierarchy. This means

that for particle the value of in (1) equals where is the
particle in the parent node of particle . Only when particle is

in the root of the tree, H-PSO uses .
Similar as in PSO, after the particles’ velocities are updated

and after the particles have moved in H-PSO, the objective func-
tion is evaluated at the new position. If the function value at this
position is better than the function value at the personal best po-
sition, the new position is stored in .

A. Neighborhood

We propose a new neighborhood scheme for PSO that uses
the particle’s so far best found function value to define the neigh-
borhood relations. This approach is similar to the lbest model in
the fact that only a certain fraction of the swarm is considered
for the velocity update of a particle. But in our algorithm the
neighborhoods are constantly changing, according to the fitness
development of the individuals.

The changing arrangement of the particles can help pre-
serving diversity in the search. In the described hierarchy
the arrangement of the particles leads to a different influence
for the particles at different positions. The particle with the
currently best found solution can (indirectly) influence all the
other particles after it has reached the top of the hierarchy. This
characteristic of H-PSO is similar to the gbest model.

B. Adapting the Hierarchy

It is to be expected that the structure of the hierarchy, i.e.,
the branching degree , has a significant influence on the opti-
mization behavior of H-PSO. For example, H-PSO with a high
branching degree might perform better in the beginning of the
optimization process because all particles are close to the top
particle in the hierarchy. Moreover, this tree topology has a small

Fig. 2. Example for adapting the hierarchy of AH-PSO (m = 20) from d = 4
to d = 3.

diameter similar to the gbest neighborhood, that, in general, op-
timizes faster than the PSO algorithm using the lbest neighbor-
hood. On the other hand, the quality increase of the best solu-
tions found by H-PSO with a smaller might be slower in the
beginning of the optimization process but it might improve the
objective function value further in the end of the optimization
process (see Section V-A).

These expectations have inspired the idea to dynamically
change the branching degree of the hierarchy during a run. A
related idea has been used in [15] where the neighborhood of
the particles was gradually increased from lbest to gbest. Sur-
prisingly, the opposite direction, which might be more effective,
has not been tested. In the Adaptive H-PSO (AH-PSO) algo-
rithm that is proposed here, the branching degree is gradually
decreased during a run of the algorithm. In order to decrease
the branching degree from to , the hierarchy is traversed
starting at the root node. This is done so that always one of
the direct subtrees below the considered node is removed, if
the number of children exceeds the new required branching
degree (see Fig. 2 and the next paragraph for an example). The
decision about which subtree to remove is based on the quality
of the particles in the topmost nodes of all subtrees of the
considered nodes, i.e., all children of the considered node. This
procedure is repeated for the entire tree. After this first phase
of the branching degree reduction procedure the remaining tree
is of branching degree but has fewer nodes than before.
The removed nodes are then evenly inserted at the bottom of
the hierarchy. Starting with the node on the second to last level
which has the least number of successors. The removed nodes
are appended one by one so that the number of children of
all nodes on the second last level differ by at most one. If all
of these nodes have children, a new level is added to
the hierarchy and the procedure is continued until all removed
nodes are reinserted.
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As an example, consider Fig. 2, where a hierarchy of 20
nodes and branching degree is shown before and after
the branching degree has been reduced to . The grey
nodes are those that have first been removed and then appended
at the bottom level. Note, that none of the leaves of the right
subtree have been removed since their parent node already has
branching degree 3.

In the test runs that have been done for this paper, the
branching degree reduction operation is performed every

-th iteration of AH-PSO. Parameter is called
the decrease frequency. At every branching degree reduction
operation the branching degree is decreased by . This
parameter is called decrease step size. For the re-
duction procedure is applied consecutively (i.e., the branching
degree is always reduced in steps of 1) until the hierarchy
has the required branching degree. This is done until a certain
minimum branching degree is reached.

In order to decrease the branching degree of a node, it has to
be decided which of its direct subtrees has to be removed. In
preliminary experiments, we tested two strategies: removing
the subtree with the worst root node or the one with the best
root node. Since removing the best successor always provided
better results in these preliminary tests, we use only this
strategy for the experiments that are described in this paper.
A possible explanation why it is worse to remove the subtree
with the worst root could be that in this case the removed
particles that are appended to the bottom of the hierarchy have
only small chances to ascend in the hierarchy. Therefore, it
is likely that they are not immediately useful for the further
optimization process. The particles in the subtree with the
best root node on the other hand are holding good personal
best positions already and can thus immediately contribute
to the collective search process.

C. Specialization

A common feature of self-organizing swarm behavior in na-
ture is the specialization of certain individuals to certain tasks.
In such systems, the selection of which task an individual is
working on is usually modeled to be triggered by an external
stimulus. The stimulus is typically filtered by a threshold value
that depends on the current state of the individual. In [25], a Di-
vision-of-Labor-PSO algorithm has been presented that identi-
fies two different tasks for the individuals: the regular explo-
ration task and a so called local search task. In the latter task,
a particle is placed on the current global best position with a
new random velocity vector. The general idea is that if a par-
ticle has not improved its fitness at an iteration, the threshold
for engaging in the local search task gradually decreases.

The H-PSO tree topology facilitates the assignment of dif-
ferent tasks to the individuals. The particles are roughly ordered
by fitness into the different levels of the hierarchy. This does re-
flect a current, relative state of the individuals and can thus be
used as a distinction for assigning different behaviors to the par-
ticles. Thus, instead of using a threshold based division of labor
approach, we associate various tasks to the particles in different
levels of the hierarchy.

It is a common modification of the basic PSO algorithm to
linearly decrease the value of parameter over time [17]. This

TABLE I
TEST FUNCTIONS

is done to adjust the behavior of the swarm from exploration of
the entire search space to exploitation of promising regions. We
identify different search tasks by different inertia weights .
Each level of the hierarchy is assigned a certain weight
and all particles in that level behave accordingly. The values
are determined using either (3) or (4), with level
(the root is on level 0) and the resulting . The
algorithm using (3) has the values decreasing, from bottom
to top of the hierarchy, with the root particle using . This
algorithm is denoted . The algorithm using (4) in-
verts this assignment with the root particle using and it is
denoted

(3)

(4)

Different behaviors, controlled by different values of the in-
ertia weight for each particle, have also been used by other
authors before. In [26], the PSO algorithm has been combined
with the concept of self-organized criticality. Each particle holds
a current critical value that increases when the neighboring par-
ticles get closer. If enough criticality is accumulated, this criti-
cality is dispersed, thereby maybe exceeding the criticality limit
of other particles, and a relocation scheme is initiated. Possible
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TABLE II
PARAMETERS FOR TEST FUNCTIONS

relocation schemes include resetting the personal best positions
or pushing the particle forward in its current direction of move-
ment. Another approach varied the inertia weight according
to the current criticality level of a particle.

IV. EXPERIMENTS

In this section, the experiments that have been done to com-
pare the different variants of PSO for continuous function opti-
mization are described. Since, in this paper, we are interested in
understanding whether the proposed modifications of the stan-
dard PSO algorithm can improve its performance, we focus our
experimental evaluation on the comparison with other PSO al-
gorithms. It should be noted however that PSO is known to be a
competitive method which often produces results that are com-
parable or even better than those produced by other metaheuris-
tics (e.g., see [27]). In all our experiments, the PSO algorithms
use the parameter values and
as recommended in [28], unless stated otherwise. Each run has
been repeated 100 times and average results are presented. The
particles have been initialized with a random position and a
random velocity where in both cases the values in every dimen-
sion have been randomly chosen according to a uniform distri-
bution over the initial range [ ; ]. The values
and depend on the objective function. During a run of an
algorithm, the position and velocity of a particle have not been
restricted to the initialization intervals, but a maximum velocity

has been used for every component of velocity
vector .

The set of test functions (see Table I) contains functions
that are commonly used in the field of continuous function
optimization. Table II shows the values that have been used for
the dimension of these functions, the range of the corresponding
initial position and velocities of the particles, and the goals that
have to be achieved by the algorithms. The first two functions
(Sphere and Rosenbrock) are unimodal functions (i.e., they
have a single local optimum that is also the global optimum)
and the remaining four functions are multimodal (i.e., they
have several local optima). All test runs have been run over
10 000 iterations.

When comparing different hierarchies for H-PSO, the swarm
size has been kept constant for all different values of

. The resulting hierarchies can then become irregular.

As was described before, we appended the additional (with
respect to the largest regular arrangement) nodes evenly below
the last level. For example, the regular H-PSO topology with

, has a resulting size of . For a swarm
of size the remaining 19 nodes are appended to the
16 nodes at the bottom level. Hence, each node receives one
successor and three nodes receive a second successor.

The H-PSO and AH-PSO algorithms have been compared
to the PSO algorithm using the gbest (PSO-g) and the lbest
(PSO-l) neighborhoods. The swarm size that has been used in
the experiments is . For H-PSO, the parameter values

and have been used. The branching degree of
AH-PSO started with and has been decreased until

. For the multimodal test functions, has been set to
the respective optimum branching degree for each test function
that was determined by comparing different values of . The
branching degree is decreased every iterations by
steps. Several combinations of values for these parameters have
been tested, but only the results for the combination with the
best values are reported for each function. The tested values
were all combinations of decrease step size
and decrease frequency .

In another experiment the number of iterations required to
reach a certain goal for each test function has been determined
comparing PSO-g, PSO-l, H-PSO, and .
The parameters values that have been used in this experiment
are , , and . A swarm size of
has been used in order to obtain a regular hierarchy for the
H-PSO variants and to stay close to the common swarm size
of that has been used, for example, in [28]. For

, the values of in the hierarchy varies from
to . Vice versa for the

parameter values vary from to .1 For
PSO-g, PSO-l and H-PSO 2 parameter sets have been used.
All algorithms have been tested with two different parameter
sets that were taken from the literature.

One parameter set is and as suggested
in [28] for a faster convergence rate. The other parameter set has
the common parameter values and .
Algorithms that use the first (second) set of parameter values are
denoted by appending “ a” (respectively “ b”) to the name,
e.g. PSO-g-a denotes PSO-g with the first parameter set.

A. Significance

In the experiments, the number of iterations required to reach
a specified goal for each function was recorded for each algo-
rithm. If the goal was not reached within the maximum number
of 10 000 iterations, the run was considered unsuccessful. The
success rate denotes the percentage of successful runs. For the
successful runs, the average, median, maximum, and minimum
number of iterations required to achieve the goal value was cal-
culated. The expected number of iterations has been determined
as (average/success rate). We also evaluated the significance of
observed differences between the algorithms.

1We also tried PSO-g, PSO-l and H-PSO with w = 0:4 which did
not produce competitive results.
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TABLE III
STEPS REQUIRED TO ACHIEVE A CERTAIN GOAL FOR PSO-g, PSO-l, H-PSO, H-PSO AND H-PSO. AVERAGE (AVG), MEDIAN (MED),

MAXIMUM (MAX), MINIMUM (MIN) AND EXPECTED (Exp := Avg/Succ) NUMBER OF ITERATIONS AND SIGNIFICANCE MATRIX; “�a”
AND “�b” DENOTE THE USED PARAMETER VALUES AS DESCRIBED IN SECTION IV

For evaluating the significance the Wilcoxon Rank Sum Test has
been used to compare the results for two algorithms. The results
of the 100 test runs for two algorithms form two independent

samples but only the successful runs are considered, thus the
used sample sizes can differ. For two algorithms (X and Y) the
distribution of their results, and , are compared using
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the null-hypothesis : and the one-sided alterna-
tive : . We performed the tests at a significance
level of . In the results section the significance com-
parison among a set of algorithms is displayed using a
matrix , in which an entry “X” at position
denotes that algorithm is significantly better, i.e., it provides
smaller values than algorithm (where and are the position
in the corresponding result table). For example, the leftmost X
in the first row of Table III indicates that algorithm PSO-g-a is
significantly better than algorithm PSO-l-a. An entry “-” at po-
sition indicates that algorithm is not significantly better
than algorithm . The entries on the main diagonal are left
empty. We call the corresponding matrix a significance matrix
(s-matrix).

B. Diversity

The hierarchy of H-PSO divides the swarm into several sub-
swarms of particles that are located in different subtrees. This di-
vision is not persistent, as the particles can move between these
subswarms. We study in this paper whether the different sub-
trees in a H-PSO hierarchy can still specialize to different re-
gions of the search space as intended by the design of H-PSO.
Therefore, the diversity of the particles in the subtrees has been
measured. The corresponding test runs were done with param-
eter values , , and . The resulting topology
consists of five subtrees below the root node, each subtree con-
taining six nodes. The diversity has been measured for each of
these five subtrees. Since the size of a particle set influences the
diversity values, we can not directly compare the diversity of the
particles within a subtree with the diversity of the whole swarm.
Therefore, the diversity within a subtree is also compared to the
diversity of a subset of six particles that have been selected ran-
domly with uniform probability from the whole swarm.

Determining the diversity within the swarm is based on
the “distance-to-average-point” measure given by
(5), where is a subset of the swarm and the size of .
The problem dimension is denoted by and is the -th
component of . The average point of the particles in at

iteration is given as

(5)

The “distance-to-average-point” measure returns an un-
bounded, absolute value that depends on the considered test
function and the current diameter of the swarm. For compar-
ison we want to use a measure that is independent of the test
function and the state of the optimization process. Therefore,

is scaled by the diameter of the swarm. The diameter
is determined as the maximum distance between any two
particles in the entire swarm (not just particles from subset

)—see (6)

(6)

Fig. 3. Average ranks for unimodal functions for H-PSO for different branch
levels (m = 40).

Fig. 4. Average ranks for multimodal functions for H-PSO for different branch
levels (m = 40).

As diversity measure of a subset of the swarm at
iteration measure is used.
Scaling by preserves the relations between dif-
ferent subsets, since all measures are scaled by the same value.

V. RESULTS

A. Branch Degree

The results of the experiment in which the influence of the
branch degree of the H-PSO hierarchy on the optimization
behavior has been investigated are shown in Fig. 3 (for the
unimodal test functions) and in Fig. 4 (for the multimodal
test functions). The branch degree varies over all values

. For every test function the solution qualities that
were achieved by the algorithms using the different parameter
settings have been ranked at each iteration and for each value
of the average rank (over the unimodal re-
spectively multimodal test functions) is shown. In the figures
the ranks for the different branch degrees are displayed for
iterations .



JANSON AND MIDDENDORF: A HIERARCHICAL PARTICLE SWARM OPTIMIZER AND ITS ADAPTIVE VARIANT 1279

Fig. 5. Sphere—solution quality for PSO-g, PSO-l, H-PSO (h = 3, d = 5)
and AH-PSO; swarm size m = 40.

Fig. 6. Rosenbrock—solution quality for PSO-g, PSO-l, H-PSO (h = 3, d =
5) and AH-PSO; swarm size m = 40.

The results for the two unimodal test functions show that
higher branch degrees lead to a better optimization behavior
over the entire duration of the test runs. Only for branching de-
grees higher than , the average ranks do not differ much
because for the hierarchies become very similar. For the
multimodal test functions, the results show a clearly different
behavior. In the beginning of the optimization process

again the H-PSO algorithms with higher branching degrees
achieved better ranks, but this tendency is inverted for later itera-
tions in which the smaller degrees are
better. This shows that a flexible topology in which the branch
degree changes during the optimization process might lead to
better results for multimodal test functions.

B. Topology

In this subsection, the H-PSO and AH-PSO algorithm (with
parameter values , ) are compared to PSO using the
two neighborhood topologies gbest (PSO-g) and lbest (PSO-l).
The swarm size that has been used is . As shown in
the last subsection, the optimization success of a neighborhood
topology (gbest, lbest) highly depends on the kind of function
to be optimized (unimodal or multimodal). For Sphere (Fig. 5)

Fig. 7. Rastrigin—solution quality for PSO-g, PSO-l, H-PSO (h = 3, d = 5)
and AH-PSO; swarm size m = 40.

Fig. 8. Griewank—solution quality for PSO-g, PSO-l, H-PSO (h = 3, d = 5)
and AH-PSO; swarm size m = 40.

Fig. 9. Schaffer—solution quality for PSO-g, PSO-l, H-PSO (h = 3, d = 5)
and AH-PSO; swarm size m = 40.

and Rosenbrock (Fig. 6) PSO-g performes better than PSO-l.
On the other hand, PSO-l achieves better results than PSO-g
for Rastrigin (Fig. 7), Griewank (Fig. 8), Schaffer (Fig. 9) and
Ackley (Fig. 10).
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Fig. 10. Ackley—solution quality for PSO-g, PSO-l, H-PSO (h = 3, d = 5)
and AH-PSO; swarm size m = 40.

The results show that the optimization behavior of H-PSO
does not depend so much on the specific function type. H-PSO
produces competitive results for all the considered functions,
regardless of whether they are unimodal or multimodal. For all
test functions, H-PSO performs clearly better than the worst
one of PSO-l and PSO-g. On some test functions (Rastrigin and
Schaffer), it performs even better than both PSO versions. It
should be noted that these results have been obtained with the
same fixed branch degree . Hence, the value can be
used as a recommendation for parameter choice. Nevertheless,
it can be expected that the results of H-PSO for a specific test
function can in general be improved by adapting the value
of .

Using the adaptive H-PSO (AH-PSO) algorithm the results of
H-PSO could be improved. For every test function the minimum
branch degree of AH-PSO is set to the optimal branch
degree of the respective function (determined by the experi-
ments in Section V-A). The AH-PSO parameters are displayed
as AH-PSO( , , ) for the minimum branch de-
gree , the decrease frequency and the decrease step
size .

For the unimodal test functions—Rosenbrock and
Sphere—the AH-PSO algorithm that decreased the branch
degree only every 1000 iterations by 1 performs best. The
branch degree is only reduced to until the end of the
algorithm. AH-PSO(2,1000,1) performs better than the best
performing H-PSO for the Rosenbrock function
and very similar to the best H-PSO for the Sphere
function. For all multimodal test problems, the best performing
AH-PSO algorithms reduce the branch degree to the optimum
degree very fast. In case the Rastrigin function AH-PSO(4,5,4)
reaches the optimum degree after 20 iterations and it
performs better than the best H-PSO . Also, for the
other multimodal test functions, AH-PSO performs better than
H-PSO with the optimum branch degree. It can be concluded
that a fast adaption of the hierarchy during the initial phase
of a run seems to be advantageous for multimodal functions,
whereas optimization of unimodal functions can benefit from a
slow decrease of over the entire running time.

C. Specialization

In this section, H-PSO and its weighted variants are com-
pared with PSO-l and PSO-g. The comparison is based on the
number of iterations required to reach a certain goal for each of
the test functions. The algorithms all used swarm size .
In Table III, the average, median, maximum and minimum it-
erations required to achieve the goal value are shown. Also, the
success rate and the expected number of iterations (average/suc-
cess rate) to reach the goal are given.

is always among the fastest algorithms to achieve
the desired goal. Only for the Rastrigin function, PSO-g-a does
require an average of 104.0 iterations, where takes
184.4. For all other test functions, obtains the lowest
average and expected number of iterations required to reach the
goal.

The success rate of and is in general
very high. An exception is the Ackley function for which

and (with ) achieve success rates of
only 0.01 and 0.13, respectively. Also, PSO-g has a very low
success rate for this function in contrast to PSO-l which has a
high success rate. Therefore, and have
also been tested for a small branching degree of (these
values are included in the table). For the small branching degree

has a very high success rate and finds a solution of
the required quality on average in less iterations than the PSO-l
algorithms.

The significance comparison shows that only for the Rast-
rigin function PSO-g-a is significantly better than .

performs better for the Sphere, Rosenbrock and
Griewank function and also for the Ackley function, considering
that PSO-g-a only reached the goal once in all 100 test runs.

The results show that can reach a required goal
significantly faster than PSO and H-PSO. This demonstrates that
H-PSO is a very promising algorithm. The results also indicate
that a heterogenous swarm of particles with different values for

seems advantageous.
In order to explain the different optimization behavior of

and , recall that the parameter values
of are ranging from 0.4 to 0.729. Since the majority of the
swarm is located in lower levels of the hierarchy, most of the
individuals of use . The average
for , with , and , is 0.692,
compared to 0.437 for . This smaller impact of
the previous velocity compared to the personal best and
neighborhood best attractors in could explain why

converges faster than .
Another possible explanation can be based on the investiga-

tions of the convergence behavior of a deterministic version of
PSO. In [29] it was shown for the deterministic PSO that the
update equation is stable only if . Thus,
for and , the particle tra-
jectory would diverge (respectively converge). Hence, must
be sufficiently large for a given value of and or the trajec-
tory is not stable. Assuming that the results of the deterministic
PSO can be transferred, the particle on top of would
not have a smooth trajectory but would jump around more ran-
domly compared to the top particle of . But care
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Fig. 11. Ratio of the number of swaps between level 0 and 1 to the number of
swaps between level 1 and 2 for H� PSO and H� PSO.

has to be taken with such an explanation since the stochastic
PSO variants use and with an expected value of

, for and , randomly
chosen from [ 0;1 ]. For the deterministic
PSO would converge. Our observations have shown that for the
test functions a more likely explanation is that the top particle
in tends to converge too early to the actual point of
attraction and is then replaced by a better individual (this might
also explain the higher number of swaps for ).

During a run of H-PSO, the individuals at different levels of
the hierarchy are swapped according to their current fitness. In

, the root particle uses and is thus slowed
down. In , on the other hand, the individuals on
the upper levels move faster. In order to investigate the conse-
quences, the number of swaps that occur during a run have been
measured. In most of the swaps take place at the
top of the hierarchy. In the test runs the ratio of swaps that occur
between levels 0 and 1 to swaps that occur between levels 1 and
2 is approximately 0.8 to 1, depending on the objective function.
The same ratio for is much lower and only approx-
imately 0.2 to 0.4. The ratio of swaps between level 0 and 1 to
swaps between 1 and 2 is displayed in Fig. 11 for
and .

D. Diversity

The results about the diversity within the different subswarms
of H-PSO are presented in this subsection. The diversity mea-
sure introduced in Section IV-B is taken for H-PSO with param-
eter values , and . The diversity that was
measured for the different test functions within the five subtrees
of the H-PSO and within a randomly selected subset is displayed
in Fig. 12 and Fig. 13.

For the unimodal test functions (Fig. 12), the diversity within
the randomly selected subset is almost identical to the diversity
within the subtrees. The diversity values are especially similar
for the Rosenbrock function. Since there is only one local op-
timum for these functions, the subswarms of H-PSO algorithm
do not concentrate on different regions of the search space. This
is clearly different for the multimodal functions in which the di-
versity among the particles in each subtree is distinctly smaller
than for particles in a random subswarm of the same size. This
demonstrates that the particles of different subtrees concentrate

Fig. 12. Diversity D(S; t) for H-PSO with m = 31, h = 3, d = 5 of the
five subtrees (grey) and random subset of 13 nodes (black) for the unimodal
functions Sphere, Rosenbrock (top to bottom).

Fig. 13. Diversity D(S; t) for H-PSO with m = 31, h = 3, d = 5 of the
five subtrees (grey) and random subset of 13 nodes (black) for the multimodal
functions Rastrigin, Griewank, Schaffer, Ackley (top to bottom).

their search effort to different areas of the search space—in mul-
timodal environments—as intended by the design of H-PSO.

The number of swaps that occurred anywhere in the hierarchy
over the entire run of 10 000 iterations has also been measured.
This number is significantly larger for the unimodal test func-
tions ( 8000) and the total number of swaps up to a certain
iteration increases almost linearly with the number of iterations.
For the multimodal functions, the observed total number of
swaps is less than 2200. Except for the Rastrigin function, the
main fraction of all swaps is done very early during a run [99%
of all swaps are been done until iteration 1680 (Griewank),
2470 (Schaffer), and 2240 (Ackley)]. Roughly speaking, at
these iterations the behavior of the diversity curves change (see
Fig. 13). For the Griewank and Ackley function, this behavior
looks very similar, the diversity distance between subtrees
and random subset increases, because the subtrees concentrate
on different parts of the search space after an initial phase.
Only very few particles move between subtrees then. For the
Rastrigin and Schaffer function, the subtrees concentrate the
search on different regions of the search space nearly right from
the start.
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VI. CONCLUSION

In this paper we have introduced a hierarchical version of
PSO, called H-PSO, in which the particles are arranged in a
dynamic hierarchy. This hierarchy gives the particles different
influence on the rest of the swarm with respect to their current
fitness. Hierarchies with different tree topologies have been
studied for a standard set of test functions (Sphere, Rosenbrock,
Rastrigin, Griewank, Schaffer’s f6, Ackley), and have been
compared to several variants of PSO. The H-PSO algorithm
performed good on all of the considered test functions regard-
less of their type (unimodal or multimodal).

Moreover, a variant of H-PSO (AH-PSO) with a dynamically
changing branching degree of the tree topology has been intro-
duced which could improve the performance of H-PSO. An-
other extension of H-PSO is to use different values for the inertia
weight of the particles according to their level in the hier-
archy. It has been shown that this algorithm is able to reach a
specified goal for every test function (except the Rastrigin func-
tion) faster than all other variants of PSO.

In order to better understand the observed optimization be-
havior of H-PSO, the diversity of different subswarms of H-PSO
and the number of swaps that occur within the hierarchy have
been examined. These observations indicate that, in spite of the
dynamic nature of the hierarchy, the subtrees are able to spe-
cialize to certain regions of the search space in case of multi-
modal functions.

One interesting topic for future research is to identify condi-
tions that could trigger the decrease of the branching degree for
AH-PSO so that it could autonomously adapt to the state of the
optimization process.
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