
The Interchange of (Meta)Models between MetaEdit+
and Eclipse EMF Using M3-Level-Based Bridges

Heiko Kern
Business Information Systems, University of Leipzig

Johannisgasse 26, 04103 Leipzig, Germany

kern@informatik.uni-leipzig.de

Abstract
Nowadays there are powerful tools for Domain-Specific Mod-
eling. An ongoing problem is the insufficient tool interoper-
ability which complicates the development of complete tool
chains or the re-use of existing metamodels, models, and
model operations.

In this paper we present the approach of M3-Level-Based
Bridges and apply this approach to enable the interoperabil-
ity between two selected tools. The first tool is MetaEdit+
with strengths in (meta)modeling and the second tool is the
Eclipse Modeling Framework with advantages in model pro-
cessing by transformation and generation tools.

General Terms Model-Driven Engineering, Metameta-
model, Domain-Specific Language, Interoperability

Keywords Tool Interoperability, MetaEdit+, Eclipse Mod-
eling Framework, Model Transformation, M3-Level-Based
Bridge

1. Introduction
Domain-Specific Modeling (DSM) is a software develop-
ment approach which basically uses the following two con-
cepts. First, DSM applies special-purpose languages cover-
ing the domain concepts of the problem space. Second, DSM
uses model operations such as generators or transformations
working on domain-specific models to automate the devel-
opment of executable software (Kelly and Tolvanen 2008).
Similar to other development approaches, the tool support is
a crucial factor for the success of DSM. Fortunately, powerful
tools are available that support typical DSM tasks such as
language definition, modeling, and model processing. Some
of these tools are, the Microsoft DSL Tools (Cook et al.
2007), MetaEdit+ (MetaCase 2008), Generic Modeling En-
vironment (Ledeczi et al. 2001), Eclipse Graphical Model-
ing Framework (GMF 2008), openArchitectureWare (oAW
2008) or the AMMA Platform (AMM 2008).

But an ongoing problem is the insufficient tool interoper-
ability. This lack of interoperability complicates the develop-
ment of complete tool chains or the re-use of existing meta-
models, models, and model operations (Bézivin et al. 2005a;
Karsai et al. 2003). In this article, we present the approach
of M3-Level-Based Bridges to achieve tool interoperability
between different DSM tools. We apply this approach to re-
alize the interchange of metamodels and models between two
selected tools: MetaEdit+ (abbreviated MetaEdit) and the
Eclipse Modeling Framework (abbreviated Eclipse EMF).

MetaEdit from MetaCase is a widely-used commercial
DSM tool which supports the developer during the definition

of Domain-Specific Languages (DSLs) and allows modeling
with these DSLs. Further, the tool includes a code generator.
In addition to the DSM functionality, MetaEdit provides an
extensive model repository with multi-user functionality.

The second tool that supports typical DSM tasks is given
by the Eclipse Modeling Framework and by tools based
on this framework. Eclipse EMF allows the definition of
domain-specific metamodels and provides basic functional-
ity such as an API to access (meta)models, a serialization
function to XMI/XML, and a generator language. Based on
Eclipse EMF, the selection of tools is diverse, ranging from
model transformation tools (Jouault and Kurtev 2005; Law-
ley and Steel 2005)and tools for DSL modeling (GMF 2008;
Grundy et al. 2008)to other model processing tools (Fabro
et al. 2005; EMF 2008).

The approach of M3-Level-Based Bridges will be applied
on MetaEdit and Eclipse EMF because both tool spaces can
benefit from the created interoperability. While MetaEdit
has advantages in (meta)modeling, Eclipse EMF provides a
wide range of model processing tools.

The paper is structured as follows: in the subsequent
section, we will give a conceptual overview of M3-Level-
Based Bridges. As the bridge is based on the mapping
between metametamodels, we will explore the metamodeling
language of MetaEdit and the metametamodel of Eclipse
EMF in section 3.1 and 3.2, respectively. In section 4 we
will present the development of the bridge. In section 5 we
will describe the implementation of the bridge and will show
an example in section 6. Lastly, we will summarize the article
and will conclude with future challenges.

2. M3-Level-Based Bridges
2.1 Conceptual Overview

The idea of M3-Level-Based Bridges is to achieve interoper-
ability between different tools by transforming models and
metamodels. This approach is well-established and has been
successfully applied in building bridges between MetaGME
and Eclipse EMF (Bézivin et al. 2005b), Microsoft DSL
Tools and Eclipse EMF (Bézivin et al. 2005c), ARIS Toolset
and Eclipse EMF (Kern and Kühne 2007), or Meta Object
Facility and Eclipse EMF (Duddy et al. 2003). Although the
implementation of such bridges can differ in technical terms,
the conceptual approach is the same.

A prerequisite to construct bridges is the existence of
a metamodel hierarchy (Kühne 2006; Atkinson and Kühne
2003; Gitzel and Hildenbrand 2005) consisting of three lev-
els. At the lowest level (M1-level) are models which describe
a software system. The structure of these models and the

M1 M2 M3 M4

MM1

MMM

MM2

M1' M2' M3' M4'

MM1'

MMM’

MM2'

M1

M2

M3
Mapping

Transformation

Transformation

conform to

conform to conform to

conform to

Figure 1. Conceptual Approach of M3-Level-Based
Bridges.

available concepts that can be instantiated in models are
defined by a metamodel at M2-level. Finally the structure
and the available concepts of the metamodels are defined
by a metametamodel at M3-level. Such a M3-level hierar-
chy often occurs in DSM tools because it easily enables the
development of DSLs.

Based on the existence of such hierarchies, the basic step
to build M3-Level-Based Bridges is the mapping between the
metametamodels (see Fig. 1). The mapping consists of dif-
ferent mapping rules specifying the relation between seman-
tically equivalent concepts. Semantically equivalent means,
for instance, that concepts at M3-level expressing relation-
ships at M2-level are mapped onto each other. Based on
the mapping specification the transformation of metamod-
els and models can be derived. To create the transforma-
tions, it is necessary to know how the instance relationship
is realized between each level. The M2-level transformation
maps metamodels between hierarchies. These metamodels
are isomorphic. Analogous to the M2-Level transformation,
the M1-level transformation enables the mapping of models.
These models are also isomorphic.

2.2 Typical Metamodeling Concepts

The M3-level mapping is the basic concept of M3-Level-
Based Bridges. Many metametamodels have similar con-
cepts for metamodeling that can be mapped on each other.
In this section we want to describe these typical metamod-
eling concepts (i. e. a kind of equivalence classes for meta-
modeling concepts) to provide an assistance for the latter
M3-level mapping between MetaEdit and Eclipse EMF (in
Sec. 4.2). Moreover, these general concepts can be helpful to
build other M3-level mappings.

We have analyzed the following metametamodels: Ecore
from Eclipse EMF (Budinsky et al. 2004), GOPRR from
MetaEdit (Kelly and Tolvanen 2008; Kelly 1997; Tolvanen
1998), A3 from ARIS Toolset (Kern and Kühne 2007), MOF
(version 1.4) (Obj 2002), and the metametamodel from
Microsoft DSL Tools (Bézivin et al. 2005c; Cook et al. 2007).
As a result, we suggest the following classes of metamodeling
concepts:

Object type An object type is a concept to define a set or
a class of objects with equal features. Other names for
object type can be class, metaclass, entity, or object.

Relation type A relation type defines a set of relations
between objects. Other notations are relationship, ref-
erence, connection, or association.

Attribute type Attribute types define features for meta-
model elements such as object types or relation types.
Another name can be property type.

Data type A data type specifies the range of values in
attributes. Typical data types are, for instance, integer,
string, or date. But it can also be object types or
relationship types.

Model type A model type is a concept to define a set of
models consisting of defined metamodel elements. Other
notations are graph type, domain model or metamodel.

Inheritance This concept can be used to relate metamodel
elements in a inheritance relationship. Usually this con-
cept can be interpreted like the inheritance in object ori-
entation programming languages.

Partitioning This concept allows the (logical) structuring
of metamodels in defined parts. Other names can be
namespace or package.

Depositation A depositation often specifies a relation be-
tween metamodel elements (such as object type or rela-
tion type) and model types. Other designations are ex-
plosion, decomposition or assignment.

Constraint Constraints enable the specification of condi-
tions which have to be fulfilled during or after modeling.

The results of the study are intentionally abstract be-
cause a detailed metametamodel comparison is not the focus
of this paper.

3. (Meta)Modeling with MetaEdit and
Eclipse EMF

3.1 Domain-Specfic Modeling in MetaEdit

MetaEdit is an established DSM environment which pro-
vides a powerful language for metamodeling. The concepts
of this (meta)language are defined in the GOPRR model.
GOPRR is the abbreviation for Graph, Object, Property,
Role and Relationship and is shown in Figure 2.

A graph type (instance of Graph) specifies a model type
that contains the modeling concepts: object types (instances
of Object), relationship types (instances of Relationship),
and role types (instances of Role). An object type describes
a class of model elements which can exist on their own. Ob-
ject types can be connected by relationship types, whereby
the role type specifies how an object type participates in a
relationship type. Relations can be defined by the concept
of Binding. A binding connects a relationship type, two or
more role types, and one or more object types for each role
type in a graph type. Each previously described language
concept, except for the Binding concept, can have property
types (instances of Property) to characterize language con-
cepts. The values of property types can be different data
types such as a string, text, number, boolean, collection,
or a link to other modeling language concepts. Other con-
cepts supported in GOPRR are Inheritance that makes the
creation of subtypes possible, Decomposition which enables
object types to have subgraph types, and Explosion which
allows object types, relationship types, or role types to be
linked to other graph types.

The notation or concrete syntax of a modeling language
can be defined with the help of a symbol editor. The editor
supports the creation of symbols for object types, relation-
ship types, and role types. It is possible to place a textual
representation of property types in symbols.

After describing the language definition, we need to know
the structure of the model repository in order to build the
bridge. “GOPRR has been designed to be applicable in the

typeName

Concept

dataType

Property**

propertyCollection

RelationshipRoleObject

bindingSet

1
*

1

*

relationshiprole

*

1objectSet

*

* *

*

roleSet*

*
objectSet

relationSet

*

*

connectionCollection 1

*

Graph

NonProperty

Binding

Connection

Figure 2. Snippet of GOPRR (Kelly 1997).

same way on both the type and instance levels [...]” (Kelly
1997). That is, the model repository (instance level) is al-
most equal with the GOPRR model shown in Figure 2. A
graph (instance of a graph type) owns a set of relationships
(instances of a relationship type), objects (instances of an
object type), roles (instances of a role type), and bindings
(instances of a binding). A binding stores the combination
of a relationship connected with objects and roles. Further-
more, all property values are stored in a value field of the
property (instance of property type). All model and meta-
model elements are stored in projects. Thus, the GOPRR
model contains a project class referencing a graph set.

3.2 Metamodels and Models in Eclipse EMF

Contrary to MetaEdit, developed especially for DSM, Eclipse
EMF is designed to support the development of (Eclipse)
applications. One reason for this statement is the missing
of special metamodeling concepts such as Model type or
Depositation in Ecore. Models (data models) describing
Eclipse EMF applications can be regarded as metamodels
and instance data of these metamodels as models.

A simplified subset of Ecore is shown in Figure 3 and
a detailed description of Ecore is given in Budinsky et al.
(2004). The main elements of Ecore are EClass, EReference
and EAttribute. An EClass (instance of EClass) defines an
EMF metamodel element that represents a set of similar
model entities. EClasses can have EReferences (instances of
EReference) which express unidirectional relationships be-
tween two EClasses. An EClass can additionally have EAt-
tributes (instances of EAttribute) to express properties of
the EClass. The range of the attribute values are specified
by a data type such as int, string or date. A further meta-
modeling concept is the inheritance between EClasses.

Analogous to the structure of the MetaEdit model repos-
itory, we need to know the structure of the model repos-
itory in order to build the M1-level transformation. Ev-
ery model element in Eclipse EMF is an EObject speci-
fied by a Java interface. The EObject interface provides
different methods which enable the navigation in models
and allow the query of metatype information. For instance,
the EObject.eGet(EStructuralFeature) method returns ei-
ther all EObjects referenced by a certain EReference or
values of the EAttributes. Further, the EObject.eClass()
method returns the EClass of a model element.

EClass

EReference EDataType

EAttribute

eReferenceType

eAttributeType

EStructuralFeature

EClassifierETypedElement
eType

ENamedElement

eStructuralFeatures

eSuperTypes

Figure 3. Snippet of Ecore.

4. MetaEdit to Eclipse EMF Bridge
4.1 Overview of the Bridge

MetaEdit and Eclipse EMF can be structured into three
levels: M3 (GOPRR and Ecore), M2 (GOPRR metamod-
els and EMF metamodels), and M1 (GOPRR models and
EMF models). Based on this level structure, we apply the
approach of M3-Level-Based Bridge (see Fig. 4).

The M3-level mapping specifies a unidirectional mapping
from GOPRR to Ecore. Using this mapping, we can derive
the transformation rules at M2-level which export MetaEdit
metamodels to Eclipse EMF. Several transformation rules
map different GOPRR concepts onto one Ecore concept.
To distinguish the different GOPRR concepts in Ecore,
we introduce an abstract EMF metamodel (see Fig. 5)
that approximates the structure of GOPRR. All exported
metamodel elements are inherited from a corresponding
abstract metamodel element.

For our purpose, the export of MetaEdit metamodels is
sufficient and we do not consider importing EMF metamod-
els to MetaEdit. But this would also be possible on the con-
dition that all metamodel elements are inherited from an
abstract metamodel element.

Based on the M3-level mapping and M2-level transfor-
mation, we can derive the M1-level transformation which
enables the export and re-import of MetaEdit models.

4.2 M3-Level Mapping

We propose the following mappings:

Object 7→ EClass: In MetaEdit an object type can define
a set of model entities. The corresponding concept in
Ecore is the EClass concept which can also define a set
of model entities. Therefore, we map Object onto EClass.
The typename of Object maps onto name of EClass.

Relationship 7→ EClass: A relationship type between ob-
ject types is expressed by Relationship in GOPRR. In
Ecore the EReference concept can be used to describe re-
lationship types between EClasses. The problem is that
relationship types in MetaEdit can have property types.
But EReferences cannot have their own EAttributes.
Hence, we cannot map Relationship onto EReference,
but we can map Relationship onto EClass whereby
typename of Relationship maps onto name of EClass.

Role 7→ EClass: A Role type defines how an object type
takes part in a relationship type. No direct equivalent
concept exists in Ecore. Hence, we map Role onto the
EClass concept. The typename of Role maps onto name
of EClass.

Eclipse EMF

Ecore

conforms to

conforms to

Model

conforms to

M3

M2

M1

MetaEdit

GOPRR

conforms to

GOPRR

Metamodel

Metamodel

generalization

M2-level
transformation

M1-level
transformation

M3-level
mapping

based
on

Model

Metamodel

MetaEdit
repository

EObject

determinates determinates

instance of instance of

based
on

Figure 4. Overview of the MetaEdit to EMF Bridge.

RelationshipRoleObject

GraphProject

DiagramSymbol

*

conGraphs

*

conSymbols

*
conRoles *

conRelationships

* conObjects

*

conDiagrams

2..*

roles

*

objects

1 object

Figure 5. Simplified GOPRR as EMF Metamodel.

Graph 7→ EClass: An equivalent concept for Graph does not
exist in Ecore. Hence, we map a Graph onto EClass
whereby the typename maps onto name.

Property 7→ {EAttribute, EReference}: We map the Prop-
erty concept onto EAttribute or EReference. The deci-
sion whether it is an EReference or an EAttribute de-
pends on the data type of a property type. If the data
type is a simple type such as string, int or text, then we
map Property onto EAttribute. If the data type is a link
to other modeling concepts, then we map Property onto
EReference. The typename maps onto name.

Inheritance 7→ eSuperType: We map Inheritance onto
eSuperType whereby the related metamodel elements
are equal.

4.3 M2-Level Transformation

The M2-level transformation consists of transformation
statements which are derived from the M3-level mapping
specification. For instance, the mapping rule Object 7→
EClass transforms all object types in EClasses. These
EClasses are inherited from the abstract EClass ’Object’
(see Fig. 5) because we need to distinguish those from other
EClasses. A further mapping rule Relationship 7→ EClass
transforms all relationship types in EClasses which are all
inherited from the abstract EClass ’Relationship’.

4.4 M1-Level Transformation

The M1-level transformation consists of transformation
statements which are also derived from the M3-level map-
ping specification. For instance, the mapping rule Object 7→
EClass creates the transformation of all MetaEdit objects
(instances of a certain object type) to EObjects (instances
of the EClass corresponding to the object type). Another
example is the rule Relationship 7→ EClass which creates
the transformation of all MetaEdit relationships (instances
of a certain relationship type) to EObjects (instances of the
EClass corresponding to the relationship typ).

Moreover, model data such as symbol position or diagram
name is transformed into EMF models. Hence, the abstract
EMF metamodel contains EClasses such as ’Symbol’ or
’Diagram’.

5. Implementation of the Bridge
We have prototypically realized the bridge in Java as an
Eclipse plug-in. This bridge mainly consists of three parts.
The first part is the M2-level transformation which cre-
ates EMF metamodels from MetaEdit language definitions.
MetaEdit provides an XML export for the language def-
inition. The schema of these XML files is vendor-specific
and described in the tool documentation1. We have imple-
mented a GOPRR-Reader which can query the XML export
and return, for instance, all graph types, object types, and
relationship types. Furthermore, we have implemented the
transformation rules in Java by using the EMF API. The
implementation builds an in-memory object model and se-
rializes the objects as an XMI file in Ecore format.

The second part of the bridge is the M1-level transfor-
mation which transforms MetaEdit models to EMF mod-
els. MetaEdit provides two possibilities to access model
data, (1) an XML format being similar to the metamodel
XML format, (2) a Simple Object Access Protocol (SOAP)
API. We use the SOAP API because it provides methods
such as objectSet() or relationshipSet() in order to query
model elements, and methods such as type() to get the cor-
responding metamodel elements. The transformation navi-
gates through the MetaEdit model and creates EMF model
elements, whereby the EMF model element is an instance of
the EMF metamodel element corresponding to the MetaEdit
metamodel element. Analogous to the M2-level transforma-
tion, an EMF model is created in a dynamic way (i.e. in-
memory) and is serialized as an XMI file.

The third part of the bridge is the M1-level transfor-
mation which transforms EMF models to MetaEdit mod-
els. The transformation also uses the EMF API to navi-
gate through the EMF models and creates a corresponding
MetaEdit model element for each EMF model element by
using the SOAP API.

6. Application of the Bridge
A concrete example will allow to demonstrate how we can re-
use validation rules of Event-Driven Process Chains (EPC)
(Nüttgens and Rump 2002) which were already implemented
as part of a validation approach for business process models
(Kühne et al. 2008).

EPC is a graphical modeling language to describe busi-
ness processes. EPC models consist of nodes and arcs. Nodes
can be functions (activities which need to be executed, de-
picted as rounded boxes), or events (representing pre- and

1 http://www.metacase.com/support/45/manuals/mwb/Mw.html

Figure 6. EPC Metamodel in MetaEdit-specific Notation.

Figure 7. Incorrect EPC Model in MetaEdit.

postconditions of functions, depicted as hexagons), or con-
nectors. Arcs between these elements represent the con-
trol flow. Connectors are used to model parallel (AND-
connectors

V

) and alternative (XOR-connector X and OR-
connector V) executions. Figure 6 shows the correspond-
ing EPC metamodel in a MetaEdit-specific notation. There
are the following objects types: ’Node’, ’Event’, ’Function’,
’Connector’, ’AND’, ’XOR’ and ’OR’. The arc concept is re-
alized by a relationship type ’Arc’ which is connected with
’Node’ by the role types: ’From’ and ’To’. Furthermore, the
types ’Event’ and ’Function’ have a property type ’Name’.

After describing the EPC language definition in MetaEdit,
we can create EPC models which are to be checked later.
Figure 7 shows such an EPC model which is incorrect be-
cause of the mismatch between the type of the first connector
and the type of the second connector. This construct will
always result in a deadlock because the XOR-split starts
only one control flow and the AND-join waits for both flows
to be completed.

Now, we can export the metamodel and model from
MetaEdit to Eclipse EMF by using the bridge. Afterwards,
we need to transform the exported EMF-MetaEdit models
to EMF models conforming to an EPC metamodel used by
the validation rules. This transformation is easy to realize
by a model-to-model transformation in Eclipse EMF.

Thereafter, we can apply the validation rules to check the
models. The rules are expressed in the Check language from
openArchitectureWare. Listing 1 shows an example rule. A
rule is introduced by a context and an optional if-clause
specifying a set of model elements that should be validated.
The ERROR keyword and the following message signal a
violated validation rule. The boolean expression after the
colon provides a validation assertion which holds for valid

models. In the given case, the rule in Listing 1 detects the
mismatch of the connectors from Figure 7 and creates an
error message. Currently, the error messages are displayed in
the Eclipse workbench but it is also possible to create error
messages in the MetaEdit workbench by using the SOAP
API.

// XOR−AND−Mismatch
context epc::Connector if (this.isAndJoin())

ERROR ”Mismatched XOR−split ...”
this.allPredessesors().notExists(p| p.isXorSplit()
&& p.seseMatch(this));

Listing 1. XCheck Rule: Mismatched XOR-Split/AND-
Join

The above example is very specific but it is also possible
to use other EMF tools. Furthermore, the usage of other
bridges from Eclipse EMF to other metamodel hierarchies
enables the usage of further tools. For instance, the Eclipse
EMF to Web Ontology Language bridge, implemented in the
EODM project2, enables the application of typical ontologies
tools such as reasoner.

7. Summary and Conclusion
In this paper, we developed an interface for the exchange
of metamodels and models between MetaEdit and Eclipse
EMF by applying the concept of M3-Level-Based Bridges.
For this purpose, we explored the MetaEdit language defini-
tion concepts and the underlying repository structure. Fur-
thermore, we described the metametamodel Ecore and the
generic model storage structure of Eclipse EMF. Based on
this information, we specified a M3-level mapping and de-
rived a M2-level and M1-level transformation implemented
as an Eclipse plug-in. After, we demonstrated the bridge
by an example of EPC validation. The example showed the
modeling of EPCs and the application of validation in Check.

M3-Level-Based Bridges have already been used repeat-
edly to achieve (meta)model interchange between different
tools based on metamodel hierarchies. As a result of the de-
velopment and the study of this bridge and other bridges,
we can say that this approach is useful to build tool chains
and to re-use models and model operations. But we also
identified the following typical problems that need further
research:

Expressive power Often, the metametamodels are differ-
ent, i.e., they provide different metamodeling concepts
to express metamodels. For instance, some metameta-
models support the Model type concept, others do not
support this concept natively. Hence, the mapping be-
tween metametamodels can be very complex or even im-
possible.

Synchronization The synchronization of models and meta-
models during the exchange is important in real-world
use cases. Therefore, we need approaches for traceability
links, model differences and model merging.

In the future work, we want to solve the problems men-
tioned above. Moreover, we want to develop further M3-
Level-Based Bridges and want to explicit our experience
in terms of a guide which helps with the development of
bridges.

2 http://www.eclipse.org/modeling/mdt/

References
The AMMA Platform. http://www.sciences.univ-

nantes.fr/lina/atl/AMMAROOT/, 2008.

Eclipse Modeling Framework Technology (EMFT).
http://www.eclipse.org/modeling/emft/, 2008.

Eclipse Graphical Modeling Framework.
http://www.eclipse.org/gmf/, 2008.

openArchitectureWare. http://www.openarchitectureware.org/,
2008.

Colin Atkinson and Thomas Kühne. Model-Driven Development:
A Metamodeling Foundation. IEEE Software, 20(5):36–41,
September 2003.

Frank Budinsky, David Steinberg, Ed Merks, Ray Ellersick, and
Timothy J. Grose. Eclipse Modeling Framework. The Eclipse
Series. Addison Wesley, 2004. ISBN 01311425420.

Jean Bézivin, Hugo Brunelière, Frédéric Jouault, and Ivan
Kurtev. Model Engineering Support for Tool Interoperabil-
ity. In Proceedings of the 4th Workshop in Software Model
Engineering (WiSME), 2005a.

Jean Bézivin, Christian Brunette, Régis Chevrel, Frédéric
Jouault, and Ivan Kurtev. Bridging the Generic Modeling
Environment (GME) and the Eclipse Modeling Framework
(EMF). In Proceedings of the Best Practices for Model Driven
Software Development at OOPSLA’05, San Diego, California,
USA, 2005b.

Jean Bézivin, Guillaume Hillairet, Frédéric Jouault, Ivan Kurtev,
and William Piers. Bridging the MS/DSL Tools and the
Eclipse Modeling Framework. In Proceedings of the Interna-
tional Workshop on Software Factories at OOPSLA 2005, San
Diego, California, USA, 2005c.

Steve Cook, Gareth Jones, Stuart Kent, and Alan Cameron Wills.
Domain Specific Development with Visual Studio DSL Tools
(Microsoft .Net Development). Addison-Wesley Longman,
2007. ISBN 0321398203.

Keith Duddy, Anna Gerber, and Kerry Raymond. Eclipse Mod-
elling Framework (EMF) import/export from MOF / JMI.
Technical report, CRC for Enterprise Distributed Systems
Technology (DSTC), 2003.

Marcos Didonet Del Fabro, Jean Bézivin, Frédéric Jouault, Erwan
Breton, and Guillaume Gueltas. AMW: A Generic Model
Weaver. In Proceedings of the 1ère Journée sur l’Ingénierie
Dirigée par les Modèles (IDM05), 2005.

Ralf Gitzel and Tobias Hildenbrand. A Taxonomy of Meta-
model Hierarchies. Working papers / Lehrstuhl für ABWL
und Wirtschaftsinformatik, 2005.

John Grundy, John Hosking, Jun Huh, and Karen Li. Marama: an
Eclipse meta-toolset for generating multi-view environments.
IEEE/ACM International Conference on Software Engineer-
ing, 2008.

Frédéric Jouault and Ivan Kurtev. Transforming Models with
ATL. In Proceedings of the Model Transformations in Practice
Workshop at MoDELS 2005, Montego Bay, Jamaica, 2005.

Gabor Karsai, Andras Lang, and Sandeep Neema. Tool Inte-
gration Patterns. Workshop on Tool Integration in System
Development (TIS), 2003.

Steven Kelly. Towards a Comprehensive MetaCASE and CAME
Environment: Conceptual, Architectural, Functional and Us-
ability Advances in MetaEdit+. PhD thesis, University of
Jyväskylä, 1997.

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Model-
ing: Enabling Full Code Generation. John Wiley & Son, Inc.,
2008. ISBN 0470036664.

Heiko Kern and Stefan Kühne. Model Interchange between ARIS
and Eclipse EMF. In Juha-Pekka Tolvanen, Jeff Gray, Matti
Rossi, and Jonathan Sprinkle, editors, 7th OOPSLA Workshop
on Domain-Specific Modeling at OOPSLA 2007, 2007.

Stefan Kühne, Heiko Kern, Volker Gruhn, and Ralf Laue. Busi-
ness Process Modelling with Continuous Validation. In Cesare
Pautasso and Jana Köhler, editors, 1st International Workshop
on Model-Driven Engineering for Business Process Manage-
ment, 2008.

Thomas Kühne. Matters of (Meta-) Modeling. Software and
Systems Modeling, 5(4):369–385, 2006. doi: 10.1007/s10270-
006-0017-9.

Michael Lawley and Jim Steel. Practical Declarative Model
Transformation With Tefkat. Satellite Events at the MoDELS
2005 Conference, LNCS Vol. 3844, 2005.

Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Ja-
son Garrett, Charles Thomason, Greg Nordstrom, Jonathan
Sprinkle, and Peter Volgyesi. The Generic Modeling Environ-
ment. In IEEE International Workshop on Intelligent Signal
Processing, 2001.

MetaCase. MetaEdit+. http://www.metacase.com/, 2008.

Markus Nüttgens and Frank J. Rump. Syntax und Semantik
Ereignisgesteuerter Prozessketten (EPK). In Promise 2002 -
Prozessorientierte Methoden und Werkzeuge für die Entwick-
lung von Informationssystemen, pages 64–77, 2002.

Meta Object Facility (MOF) Specification 1.4. Object Manage-
ment Group, 2002. URL http://www.omg.org/docs/omg/03-
06-01.pdf.

Juha-Pekka Tolvanen. Incremental Method Engineering with
Modeling Tools: Theoretical Principles and Empirical Evi-
dence. PhD thesis, University of Jyväskylä, 1998.

