
DOL: An Interoperable Document Server

Sergey Melnik*, Erhard Rahm, Dieter Sosna

University of Leipzig, Germany
http://dbs.uni-leipzig.de

∗ Current address: Stanford University, Stanford CA 94305 USA

Abstract

We describe the design and experiences gained with the
database- and web-based document server DOL, which
we developed at the University of Leipzig
(http://dol.uni-leipzig.de). The server provides a central
repository for a variety of fulltext documents. In Leip-
zig, it has been used since 1998 as a university-wide
digital library for documents by local authors, in par-
ticular Ph.D. theses, master theses, research papers,
lecture notes etc., offering a central access point to the
university’s research results and educational material.
Decentralized administration and different workflows
are supported to meet organizational and legal re-
quirements of specific document types (e.g., Ph.D. the-
ses). All documents are converted into several formats,
and can be downloaded or viewed online in a page-
wise fashion. The documents are searchable in a flexi-
ble way using fulltext and bibliographic queries. More-
over, a multi-level navigation interface is provided,
supporting browsing along several dimensions. DOL is
interoperable with global digital libraries such as
NCSTRL and can be ported to the needs of different
organizations. It is also in use at Stanford University.

1. Introduction

In the last decade, we have observed a proliferation of
digital libraries accessible over the web [5]. A large
variety of such libraries has emerged, ranging from
centralized document collections to truly global librar-
ies that interconnect collections from many sites. Com-
panies, universities, and other institutions offer their
own digital libraries containing documents of their em-
ployees, authors etc., which are accessible either within
an intranet or globally over the Internet. Many collec-
tions focus on specific document types, such as re-
search papers or Ph.D. theses. Such a focus makes it
easier to interconnect collections from different sites.

NCSTRL (Networked Computer Science Technical
Reference Library) is a well-known example of such a
global library of research papers. It is based on a dis-

tributed architecture where participating institutions can
maintain their own collections and provide biblio-
graphic metadata to achieve interoperability and acces-
sibility over a central interface [8]. Many national and
international efforts are under way to provide either
centralized or distributed collections of Ph.D. theses
from different universities, e.g., NDLTD (Networked
Digital Library of Theses and Dissertations) or the
German DissOnline [9,4].

We describe the design of and experiences with the
database- and web-based document server DOL, which
we developed at the University of Leipzig
(http://dol.uni-leipzig.de). Its development started in
1998 and was motivated by the fact that commercially
available solutions and other document servers at the
time did not provide sufficient ease of use and flexibil-
ity to cope with the diverse requirements of a university
environment. In particular, there is a strong need to
support different workflows for bringing in different
types of documents such as Ph.D. theses, master theses,
research papers, educational material etc. These work-
flows may differ from department to department, e.g.,
in the case of master theses, and contribute to the need
of a decentralized administration where subcollections
are controlled by different persons.

Another distinctive feature of DOL is support for a
high degree of interoperability by providing open inter-
faces for search engines, taking part in the NCSTRL
network, and exporting metadata in Dublin Core, a
widely accepted standard for bibliographic metadata
[2]. Furthermore, DOL offers multi-lingual web inter-
faces and is controlled by an XML configuration file
permitting easy adaptation to different organizational
structures, document types, etc. At the university of
Leipzig, DOL is in operation as a university-wide digi-
tal library since July 1998. It is part of the NCSTRL
network since May 1999. At Stanford university, a
DOL installation has been used since March 2000 for
managing the publications of the database research
group (http://dbpubs.stanford.edu).

In the following, we briefly outline the major re-
quirements that influenced the design of the DOL
document server (Section 2) and highlight the capabili-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226138624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ties of DOL with respect to its end-users (information
users, authors, and administrators). In Section 4 we
describe the architecture and implementation of DOL.
Section 5 discusses the architectural choices we made
and the lessons learned so far.

2. Requirements and objectives

The design of DOL was influenced by general require-
ments for digital libraries as well as specific considera-
tions from a university environment. Of course, the
system had to be internet-based to permit access to all
documents in the collection at any time from any ma-
chine in the world running a web browser, independ-
ently of the hardware or operating system in use, and
without having to install special software. All docu-
ments should be accessible from a central interface de-
spite the fact that they are from different departments
and covering different subjects.

To easily determine the documents relevant to a
particular user, flexible navigation and search facilities
are to be provided including bibliographic queries and
fulltext retrieval with good precision and recall. To at-
tract local and international users, multi-lingual user
interfaces are needed (in our case, at least German and
English). Also important is the provision of widely ac-
cepted document formats permitting a high quality for
online viewing and printing.

The system should make it easy for authors to
submit their documents and to make them accessible
worldwide. Authors should provide the bibliographic
data including optional keywords themselves to avoid
the expensive and time-consuming involvement of li-
brarians to classify and index documents. The docu-
ment server has to guarantee the persistence and stabil-
ity of a document and its citation data, so that it can be
referenced in other publications and can be electroni-
cally accessed at a stable Web URL.

Administration of the document collection is nec-
essary in order to provide a high quality service. In par-
ticular, it must be ensured that only authorized users
can store documents in the system and that the authors
agree with the online publication of their documents.
Furthermore, copyright violations should be prevented.
The system should also support specific workflows for
documents such as master or Ph.D. theses to permit
their electronic dissemination while guaranteeing con-
formance to local regulations. Finally, the system
should be easily adaptable to changes in the organiza-
tional structures, supported document types, etc. More-
over, it should be interoperable with other digital librar-
ies.

3. Overview of Capabilities of DOL

In this section we briefly summarize the functionality
and the capabilities of DOL from the perspective of its
end-users. The exposition shows how we addressed the
requirements discussed above and motivates the im-
plementation details presented in the next section. The
end-users of the server can be divided into the follow-
ing four groups: authors, readers, collection administra-
tors, and system administrators.

Readers, or information consumers, are users who
access the document collection to satisfy their informa-
tion needs. DOL offers them multi-lingual navigational
browsing, bibliographic field search and fulltext search.
Browsing can be performed along five dimensions in
arbitrary order: organizational unit, subject area, publi-
cation language, document type and publication year
(see Section 4.2). Each document can be downloaded
and viewed online in one of several formats, currently
PDF, Postscript, or ASCII. Additionally, documents can
be viewed page-wise either in ASCII/HTML or in a
“graphical mode”. In the latter case a GIF image per
document page is displayed guaranteeing a high presen-
tation quality for images, formulas, etc. A page-wise
preview allows to check the contents of a document
before downloading which may be especially valuable
for users with low-bandwidth connections.

DOL provides information about the total number
of documents in the system and its sub-categories,
about the most recently added documents and the most
frequently accessed documents (“top hits”). Moreover,
DOL supports a query interface that can be used in
other web pages to dynamically determine commonly
needed collections, e.g., all Ph.D. theses of a specific
department or all documents of a given author*. Indi-
vidual documents have a stable URL so that informa-
tion users can use them in their reference lists, etc.

Authors, or information providers, want to make
their (typically scientific) publications available on the
Web with little effort. They want to reach broad audi-
ence and have their work preserved for a long period of
time. DOL offers a simple form-based procedure for
providing complete bibliographic information and for
uploading the publications by the authors to the server
either in PDF or Postscript. DOL copies the input file
and automatically generates and stores the additional
formats mentioned above to offer for all documents the
same presentation and download formats. Moreover the
document is indexed to support fulltext retrieval, and is
assigned a stable and simple URL containing the publi-

* For instance, the query / URL “http://dol.uni-
leipzig.de/pub/search?AUTHOR=Rahm&lang=en” re-
turns an English list of all DOL documents at the Leip-
zig server authored by Rahm.

cation year and a relative number per year (e.g.,
http://dol.uni-leipzig.de/pub/1998-43).

There are different workflows for bringing in a
new document depending on the document type and
organizational unit, e.g. department. A workflow in-
volves the author, a collection administrator and possi-
bly other persons. For instance, in the case of a Ph.D.
thesis it must be checked that the author has already
passed certain steps in her procedure, that the electronic
version is identical to the final printed version, etc. To
help ensure the quality of the documents, collection
administrators verify the content, metadata, and the
authorship of documents. Authors have to provide a
signed permission and copyright statement to ensure
that they agree that their document is (non-exclusively)
kept in the document server and to confirm that there
are no conflicting copyrights, e.g. by publishers. DOL
offers a standard copyright notice to be displayed with a
document which may be changed by the author when
specifying the bibliographic metadata. DOL automati-
cally generates e-mail notifications to inform authors
and administrators about the current document state, or
to request further action.

To make new documents known worldwide, DOL
(a) provides a specialized interface that allows the
crawlers like Google, AltaVista etc. to index of the col-
lection; (b) supports a Dienst interface that allows the
documents to be found in the NCSTRL system, and (c)
exports document metadata in DublinCore. DOL facili-
tates backup of the entire collection to ensure the per-
sistence of the documents.

Collection administrators are responsible for main-
taining certain kinds of publications, for example, those
of a Civil Engineering Department. Often, the collec-
tion administrators are committed to document mainte-
nance by organizational structures and guidelines. For
instance, the Libraries of Leipzig University are com-
mitted to managing all Ph.D. and professorial (habilita-
tion) theses available both electronically and on paper.
As another example, the rules of procedure of the Math
& CS Dept. in Leipzig require all Master’s theses to be
received and archived in a digital format before the
M.S. degree is awarded.

The server supports the needs of collection admin-
istrators by offering a capability of decentralized online
administration that supports automatic format conver-
sion, basic workflows, keeping the history of document
processing etc. Moreover, DOL provides explicit sup-
port for gathering permission and copyright forms from
the authors, and gives the administrator an instrument
for enforcing copyright statements, if required.

The server administrator deals with the technical
maintenance and physical preservation of the collec-
tion. Furthermore, he or she determines the privileges
of collection administrators depending on their roles.

4. Architecture and Implementation

This section highlights the implementation details of
the DOL document server. Its architecture is based on
the layered model for cellular document repositories
proposed by Crespo et al [1]. The key idea of this
model is to organize the components of a document
repository into layers that offer well-defined interfaces
to the layers above. The implementation of each layer
can be exchanged without affecting the other layers.

As shown in Figure 1, a Document Server site
comprises several loosely coupled components and
systems. The central component of the server site is a
Java servlet that implements most management and
presentation functions. The servlet is executed by a
Web server, e.g. Apache. The documents are stored in a
Data Store in several presentation and download for-
mats. Along with the fulltext, the bibliographic and
administrative metadata of the documents is stored in
the Data Store. The metadata is indexed using an SQL
database to support field search, workflow, and access
authorization. Fulltext indexing is done using a stand-
alone fulltext-indexing engine, currently htDig1. The
arrows in Figure 1 indicate major data flows.

Document fulltext and metadata are stored persis-
tently using a so-called Data Store component. The
Data Store provides basic methods for managing
opaque data objects associated with a document identi-
fier. For instance, the Data Store is capable of opening
input/output streams for a given type of data object like
“PDF”, or it can return the list of all document identifi-
ers in use. Currently, the Data Store is backed by a file
system, but can be easily replaced by an alternative
implementation that, for instance, stores BLOBs in a
database (this flexibility is the primary benefit of using
a layered approach mentioned above). Currently sup-
ported fulltext formats are uncompressed and com-
pressed PostScript, PDF, and ASCII, and GIF images
supporting page-wise preview of documents. There are
two metadata files per document for bibliographic and
administrative information, respectively (see below).

The Document component is used to access the
document metadata. For minimizing Data Store access,
which typically results in read/write operations on the
file system, it caches document metadata in memory
using the LRU (Least Recently Used) caching policy.
For efficient querying of document metadata, the
Metadata Indexing component extracts metadata
relevant for queries, and replicates it in a SQL database.

The Workflow Component captures the logic of
document submission and admininistration. It uses the
Metadata Indexing component for answering queries

1 htDig is a moderate-scale search engine, which is
available without charge from www.htdig.org.

Dienst
Interface

Converter Metadata
Indexing

Logging

Crawler
Interface

SQL Database

Field
Search

User
access

Robot
access

NCSTRL Google,
AltaVista,

...

Collection
Summary

(JavaScript DB)

Workflow

Administration

File System

Document

Data Store

Browsing

Presentation & Authorization

Fulltext
Indexing
Engine

Fulltext Search

Document Server Site

Servlet

Figure 1: Functional diagram and components of Document Server

that involve more than one document like listing of all
documents to be processed by a given collection
administrator. The workflow component relies on
Converter for automatic conversion between document
formats.

The Document Server provides several interfaces
that are tailored for readers, administrators, search en-
gines and services such as NCSTRL. These interfaces
are backed by the aforementioned servlet components.
The Presentation component takes care of generating
HTML pages shown to readers and administrators. The
crawler interface is used by the on-site search engine for
building a fulltext index of the collection.

The following sections describe the various compo-
nents of the server introduced above in more detail.

4.1 XML-based Configuration

To facilitate the configuration and maintenance of the
Document Server, most of configuration options of the
server have been made explicit and are kept in an XML
file. This file contains the following information:

- Definitions of bibliographic fields
- Multilingual textual elements
- Authorization information (Section 4.4)
- Workflow and conversion parameters (Section 4.5)

- Miscellaneous system parameters such as database
configuration, maximal number of search results
shown, NCSTRL parameters, locations of log files
etc.

The example below shows a portion of the defini-

tion of the bibliographic field “ORGANIZATION” used
in the Leipzig server:

<field bib=”ORGANIZATION”

 type=”enumeration”
 presence=”required”
 card=”multiple”>

 <name xml:lang=”de”>Organisation</name>
 <name xml:lang=”en”>Organization</name>
 <values>
 <value id=”LEI.12”>
 <name xml:lang=”de”>Fakultät für

 Physik und Geowissenschaften</name>
 <name xml:lang=”en”>Faculty of

 Physics and Geosciences</name>
 <desc href=”http://www.uni-
leipzig.de/physik/”/>
 </value>
 ...
 </values>
</field>

In the above example, the bibliographic field
“ORGANIZATION” is defined as a required field with
an enumerated range of values that may occur multiple
times. The identifier “LEI.12” denotes one of the valid
values for the field that corresponds to the Faculty of
Physics and Geosciences. Controlled vocabularies or
classification schemes used for enumerated bibliographic
fields are specified in a similar fashion. For instance, the
server in Leipzig uses the subject list of the German Na-
tional Library (that includes entries like “Fine Arts”,
“Pollution control” etc.), whereas the server in Stanford
uses the subject list defined by the members of the Stan-
ford Database Group (“Databases and the Web”, “Data
Integration and Mediation” etc.). Furthermore, instead of
categorizing the publications by organization, the server
in Stanford classifies the documents according to pro-
jects like TSIMMIS, Lore etc. The definitions of biblio-
graphic fields may include JavaScript code necessary to
validate the syntactic constraints for the fields that are
checked during document submission.

The names of all textual elements that appear on the
HTML pages generated by the server are contained in
the configuration file. This approach allows porting the
server for any international installation easily. Currently
supported are interfaces for English and German.

4.2 Browsing and Navigation

Browsing is aimed at giving the users a quick overview
of the content and extent of the document collection. The
browsing in the Document Server is realized as a client-
based JavaScript application. The JavaScript application
supports drilling-down of the collection according to the
dimensions defined by the enumerated fields. As an ad-
ditional dimension, the server uses the date of publica-
tion. An example of the browsing user interface is shown
in Figure 2. In the example, the first dimension that the
user selected was organization. At the second navigation
level, which is shown in the figure, the user is presented
with further options of restricting the scope of browsing
along the remaining dimensions like document type,
subject group etc.

Notice that along any navigation path the user is
presented with the number of the documents in the cor-
responding document subspace. As the figure suggests,
there are 75 conference or journal papers that belong to
the Math & CS Dept. A click on the corresponding
folder symbol lists these 75 documents.

The statistical information about the collection is
gathered by the server periodically, and is used for gen-
erating a compact JavaScript database that is shipped to
the client when browsing is invoked. This small database
contains exactly one record for any permutation of at-
tributes at a given navigation depth. For instance, the
number of documents (like 75 in above example) is re-

corded only once for the given document type and or-
ganization. If the user selected “Conference of Journal
Paper” at the first level of navigation, she would be pre-
sented with 75 hits for Math & CS Dept that originate
from the same single row in the JavaScript database.

Figure 2: Client-based navigation gives an overview
of the document collection

The size of the JavaScript database grows combina-
torially with the navigation depth and the number of pos-
sible values for a given field. For example, for maximal
navigation depth 2, the size of the JavaScript database
generated by the server in Leipzig is 12KB. For depth 3,
the database size amounts to 35KB.

4.3 Document Metadata Files and Metadata
Indexing

Each document stored on the Document Server, com-
prises several fulltext versions and two metadata files.
One of the metadata files is a so-called BIB file [6] that
contains the bibliographic metadata of the document.
The other metadata file contains the administrative and
workflow metadata stored in XML.

As an example, consider a publication with the title
“S-layer reconstitution at phospholipid monolayers”
stored on the Document Server in Leipzig with identifier
1998-43. Compressed PostScript and PDF are saved in
the DataStore as files 43.ps.gz and 43.pdf.gz, respec-
tively. The bibliographic data is contained in the file
43.bib, which has the following content:

BIB-VERSION:: CS-TR-v2.1
ID:: 1998-43
AUTHOR:: Wetzer, Barbara;
 Pfadler, Alexander; Györvary, Erika;
 Pum, Dietmar; Lösche, Mathias;
 Sleytr, Uwe B.

TITLE:: S-layer reconstitution at phos-
pholipid monolayers
CITATION:: Langmuir, 14 (1998),
 6899-6906
PAGES: 21
LANGUAGE:: en
ORGANIZATION:: LEI.12
TYPE:: LEI-Preprint
DISCIPLINE:: DNB-5-29;DNB-5-30
...

The organization, type and discipline codes shown

above are defined in the server configuration file as de-
scribed above. A portion of the workflow data of the
document stored as an XML file is shown below:

<state version="1.0"
 contact-email="loesche@physik.uni-
leipzig.de"
 submission-date="1998-10-23">
 <converted PDF="yes" PS="original"
 ASCII="yes" graphics="yes"
 reverse="no" color="yes"/>
 <workflow state="legitimate"/>
 <copyright
 submission-date="1998-11-09"/>
 <history>
 ...
</state>

The above metadata indicates that the document was

submitted on October 23, 1998 in PostScript format and
is in a “legitimate” state, i.e. the copyright statement for
the document has been received by the administrator.
The PostScript file has been converted to PDF, ASCII
and graphics, as stated by the XML tag <converted>.
The Document Server records the complete document
processing history, which includes conversion informa-
tion, correspondence with the author(s) and descriptions
of other management operations performed on docu-
ments. An example of the administration interface that
shows an excerpt of the document history is displayed in
Figure 4. Decentralized administration is addressed be-
low in Section 4.4.

The metadata-indexing component extracts a portion
of the bibliographic and administrative metadata of each
document and stores it in a relational database. The
amount of replicated metadata determines the query ca-
pabilities of the server. The indexer runs as a separate
thread, which periodically calls the DataStore to deter-
mine which documents have been changed. Besides the
“pull” mode, the indexer supports “push”, i.e. can be
invoked explicitly. The changes of the document meta-
data are typically due to document submissions and ad-
ministrator activities. From time to time, the indexer
rescans the whole collection to make sure that the meta-
data replicated in the SQL database is consistent with
that in the DataStore.

The administrative metadata collected by the in-
dexer is primarily used for deciding which documents
are public, i.e. can be found during search and browsing.
For efficiency purposes, the metadata-indexing compo-
nent is heavily used by all components that access meta-
data of more than one document at a time. Such compo-
nents include user search, Dienst and crawler interface
etc. (compare Figure 1). The indexer communicates with
the SQL database using JDBC.

4.4 Administration and Authorization

Decentralized administration is one of the key features of
DOL. The tasks of an administrator include verification
of the authorship of publications, checking success of the
format conversion, and copyright management. The as-
signment of an administrator to a document is based on
the metadata of the document. The document collection
can be viewed as a multidimensional space, whose indi-
vidual dimensions are associated with the enumerated
metadata fields like document type, organization, or sub-
ject. For example, all documents with the
ORGANIZATION field carrying the value “LEI.10”
form a document subspace that corresponds to the publi-
cations of the Math & CS Department of Leipzig Uni-
versity.

Using a combination of field values across different
dimensions allows dividing the collection in a granular
fashion and tailoring it to the administrative structures of
the university. For example, the Libraries of Leipzig
University exclusively maintain and preserve all Ph.D.
and professorial (habilitation) theses available both on
paper and electronically. Therefore, the privileges of the
administrator of say the Math & CS Dept. are defined in
the way that allows her to manage all documents pub-
lished by the department except those that have a value
“LEI-Diss” or “LEI-Habil” in the TYPE field (see Figure
3).

ORGANIZATION

TYPE

LEI.10

LE
I-D

is
s

LE
I-H

ab
il

CS & Math Department

University Libraries

Figure 3: Example of division of administrative

privileges

Figure 4: Administrator has access to the history recorded during the lifetime of a document

Using the XML configuration described above, the

administrative privileges of the Math & CS Dept. admin-
istrator are encoded in the following way:

<user id=”ifi” role=”legitimator”

email=”doladmin@informatik.uni-
leipzig.de”>

 <subspace type=”include”>
 <dim field=”ORGANIZATION”
 value=”LEI.10”/>
 </subspace>
 <subspace type=”exclude”>
 <dim field=”TYPE”
 value=”LEI-Diss,LEI-Habil”/>
 </subspace>
</user>

Upon submission, every document whose

ORGANIZATION field contains “LEI.10” and whose
field TYPE does not contain any of “LEI-Diss” or “LEI-
Habil” appears in the Inbox of the Math & CS Dept.
administrator. The author and the administrator are noti-
fied by email about the successful submission.

4.5 Workflow and Format Conversion

During its lifetime, a document changes several work-
flow states. The main workflow states of a document are
summarized in Figure 5. The workflow information is
kept in the XML metadata file. A newly submitted
document is marked as “new”. Immediately, an auto-
matic conversion process is initiated in the background.
The converter attempts to generate the missing fulltext
formats of the document. For example, if the document
arrives in PostScript format, the converter tries to create
a PDF version, and the other way around. It is notewor-
thy that since PostScript is a programming language, the
conversion tools that we are using sometimes run into
endless loops. In such cases, the conversion processes
are forcefully terminated after a timeout interval.

Once the authorship of the document and the con-
version status have been verified by the administrator,
the document changes its workflow state to “plausible”.
After the permission and copyright statement has been
received from the author by regular mail, the document
becomes “legitimate”. In any state except “legitimate”
the document may expire either due to negligence of the
administrator or a missing copyright statement from the
author. Expired documents are deleted, but are not

physically erased for a long period of time to enable a
possible recovery of the document.

Further workflow operations used in the server in-
clude disabling/enabling individual documents and acti-
vating modification privileges for the authors when, for
example, the fulltext version of the document turns out
to be corrupt and needs to be resubmitted (see states
marked as “resubm.” in Figure 5). The ability to resub-
mit just the fulltext saves the authors from tedious rein-
put of the bibliographic metadata.

new plausible legitimate

deleteddeleted

enabled

resubm. resubm.

disabled

deleted

erased

check:
- author
- organization
- successful convertion,
 . . .

copyright statement
received

expiry, intensional deletionexpiry, intensional deletion intensional deletion

Substates:

Figure 5: Summary of workflow states of a document

(conversion omitted for brevity)

The sketched document workflow is part of larger

workflows that can be defined for specific document
types and organizational units. These workflows are de-
fined and enforced outside the document server involv-
ing the author and collection administrator. For instance,
the collection administrator can decide when a new
document is made public, e.g. in the document state
“plausible”, in state “legitimate” or when additional real-
world constraints are satisfied, e.g. a passed examination
needed for a master’s degree.

4.6 Fulltext Indexing and Export Interfaces

The fulltext indexing of the document collection is done
using a loosely coupled external fulltext search engine.
In both Leipzig and Stanford sites, we use htDig. The
crawler interface of the server (see Figure 1) is designed
to export the bibliographic metadata and the fulltext of
each document in ASCII format to the crawler engines.
Whenever a document is accessed, the “Agent” field of
the HTTP request is evaluated to determine whether the
request is coming from a browser of a search robot. If a
search robot like htDig, Googlebot (Google), or Scooter

(AltaVista) is detected, the crawler is presented the com-
bined metadata and fulltext content instead of the Web
page shown to human users.

The same approach is used both for driving the on-
site search engine as well as the external ones. The on-
site engine is invoked periodically, typically several
times a day, as a separate process that reindexes the
whole collection. That is, a newly submitted document
usually becomes available for fulltext search after a de-
lay of several hours.

Besides the crawling interface, the Document Server
offers two other ways of accessing the document meta-
data. First, the HTML pages presenting the document
descriptions as human-readable HTML pages contain
embedded DublinCore metadata that is encoded in
RDF/XML. This feature is provided to anticipate meta-
data-aware crawlers.

A more interactive interface for accessing document
metadata is offered via the Dienst protocol, which pro-
vides metadata-querying capabilities [3]. The Dienst
protocol is used in the NCSTRL system. Dienst supports
incremental indexing of documents residing at multiple
participating sites. The Dienst component used in the
server deploys the metadata-indexing component for
reporting the incremental changes in the collection.

5. Discussion and Lessons Learned

In this section we summarize the technical decisions
made in the Document Server and the lessons that we
learned by deploying two sites in Leipzig and in Stan-
ford.

One of the non-traditional decisions that we made
was to store all document metadata in the file system
(strictly speaking, in a Data Store with voluntarily lim-
ited access capabilities), and use the SQL database only
for indexing purposes. That is, the file system is the pri-
mary source of document metadata, whereas the SQL
database holds a partial replica. The necessity of this
architecture was partly caused by the desire to use for-
mat conversion and presentation tools developed at
Karlsruhe University [10]. These tools rely on the avail-
ability of fulltext and BIB metadata in the file system.
The desire to use these components also prompted us to
keep bibliographic metadata in BIB files instead of en-
coding everything in XML.

The upside of relying on a SQL database just for in-
dexing is the reduction of database maintenance effort
and the dependency on the database as a point of failure.
In fact, the server offers limited functionality even if the
SQL database is down (fulltext search still works fine,
individual documents referenced directly can be dis-
played). Writing tools for migrating the SQL database to
a new format is unnecessary, since its content can be

scrapped and restored from the file system. Furthermore,
backup of fulltexts and metadata is simplified. The main
downside of replicating a portion of the metadata is due
to the required synchronization of the database content
and the metadata in the file system.

For fulltext indexing, we are using a loosely coupled
fulltext search engine. While this approach guarantees
maximal vendor independence and flexibility, its major
disadvantage is the decreased freshness of the fulltext
index. However, due to the incremental nature of our
document collections, typically only newly submitted
documents are affected by the indexing latency, which is
not dramatic.

Another experience that we gained is that using a
presentation format like PostScript for ASCII text ex-
traction is a painful and error-prone task. Often, the ex-
traction tools fail due to the fact that some PostScript
generating programs produce graphics instead of keeping
the text characters. Furthermore, special care was re-
quired for designing a robust conversion subsystem that
does not get stuck when a PostScript interpreter runs into
an endless loop. We anticipate that using comprehensive
OCR tools may be a better alternative. OCR tools have
another serious advantage in that they facilitate process-
ing of documents for which electronic versions are not
available.

Recall that the Document Server supports a page-
wise preview feature that allows the users to skim
through a document using GIF images generated for
each page. This feature is primarily targeted at low-
bandwidth users. By analyzing the server logs, we found
that despite increased bandwidth available to the users,
page-wise preview is still helpful. For example, in Leip-
zig for each download of a fulltext version, three docu-
ment pages are viewed as images (averaged across all
documents). In Stanford, this figure is substantially
lower; only one page is viewed per download.

An apparent reason for this difference is that on av-
erage, the documents in Leipzig are five times larger
than the ones in Stanford. The Stanford server mostly
contains conference publications, which were originally
written in LaTeX. In contrast, a significant portion of the
collection in Leipzig are theses, lecture notes, and book
contributions, many of which were authored using
WYSIWYG editors like MS Word. The average sizes of
compressed fulltext files in Leipzig are 1 MB for
gzipped PostScript, and 700KB for PDF. In Stanford, the

respective figures are 150KB and 180KB. These differ-
ences in the content of the collections may also partially
account for the skewed download figures; in Leipzig,
38% of accesses to document metadata result in down-
load of any of the fulltext versions. In Stanford, 63% of
accesses lead to downloads (the above numbers exclude
hits made by crawlers).

Despite expectations, client-based browsing proved
to be not all too useful. In fact, in a year of deploying the
server in Stanford, the browsing feature was used only
around 1500 times, i.e. less than 2% of the number of
downloads of fulltext versions of documents. Thus, the
savings in terms of server load by using client-side proc-
essing were minimal. This figure also suggests that
browsing in an online document collection seems much
less important for the users than, for example, fulltext
search.

6. Conclusions

We have presented the design of the document server
DOL providing flexible and powerful management for a
variety of documents. It supports decentralized admini-
stration, different workflows and a high degree of inter-
operability. Furthermore, DOL offers multi-lingual web
interfaces and is controlled by an XML configuration file
permitting easy adaptation to different needs. The ex-
periences so far are very positive and show that DOL is a
robust service which is heavily used, especially by in-
formation users.

We have received numerous requests from people of
other institutions who are interested in running a DOL
installation and we thus plan to make the implementation
publicly available in the near future. We further plan to
extend the DOL functionality by supporting multi-part
documents and additional interfaces, e.g. to global Ph.D.
collections.

Acknowledgements

The development of the document server was supported
by the Ministry of Culture and Science of the Free State
of Saxony within the HSP3 program. We thank Günther
Radestock, Karlsruhe University, for providing us the
Pscript tool used for document format conversion.

7. References

[1] A. Crespo and H. Garcia-Molina. Archival Storage for Digital Libraries. Third ACM
Conf. on Digital Libraries, Pittsburgh, PA, USA, 1998

[2] DublinCore Home Page. http://dublincore.org/ , 2001

[3] Dienst Overview and Introduction.
http://www.cs.cornell.edu/cdlrg/dienst/DienstOverview.htm 2001

[4] DissOnline Home Page, http://www.dissonline.de/ , 2001

[5] CACM, Vol. 44(5), Special Issue on Digital Libraries, May 2001

[6] R. Lasher and D. Cohen. A Format for Bibliographic Records, RFC 1807, June 1995

[7] I.H. Witten, R. J. McNab, S. J. Boddie and D. Bainbridge. Greenstone: a Comprehensive
Open-Source Digital Library Software System. Proc. Fifth ACM Conf. on Digital Librar-
ies, San Antonio, Texas, pp 113-121, 2000

[8] NCSTRL Home Page. http://cs-tr.cs.cornell.edu/ , 2001

[9] NDLTD Home Page, http://www.ndltd.org/, 2001

[10] G. Radestock. The Pscript Home Page.
http://www.ubka.uni-karlsruhe.de/~guenter/pscript/ , 2001

