brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by Qucosa - Publikationsserver der Universitat Leipzig

Tanimoto’'s Best Bar becue:

Discovering Regulatory Modules using Tanimoto Scores

Peter Menzét?, Peter F. Stadlér-4, and Axel Mosig'%*
IDivision of Genetics and Bioinformatics, IBHV, Universiof Copenhagen,
Grgnnegardsvej 3, DK-1870 Frederiksberg, Denmark
2Bioinformatics Group, Department of Computer Science,
and Interdisciplinary Center for Bioinformatics,
University of Leipzig, Hartelstrasse 16-18, D-04107 L& Germany.
3Institute for Theoretical Chemistry, University of Vienna
Wahringerstrasse 17, A-1090 Vienna, Austria
4The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, Newddexi
5Department of Combinatorics and Geometry (DCG),
MPG/CAS Partner Institute for Computational Biology (PICB
Shanghai Institutes for Biological Sciences (SIBS) Cam@hsinghai, China
6Max Planck Institute for Mathematics in the Sciences,
Inselstrasse 22, D-04103 Leipzig, Germany
*Corresponding Author

Abstract: We present a combinatorial method for discoveringregulatory modules
in promoter sequences. Our approach combines “sliding evificapproaches with a
scoring function based on the so-called Tanimoto scores dllows to identify sets of
binding sites that tend to occur preferentially in the vigirof each other in a given
set of promoter sequences belonging to co-expressed alagthus genes. We bench-
mark our method on a data set derived from muscle-specifiegelfemonstrating that
our approach is capable of identifying modules that weratifled as functional in
previous studies.

1 Introduction

Understanding the mechanisms of transcription reguladioth gene expression is still a
major challenge of current genomics research. Many contiput tools have been de-
veloped for processing DNA sequences to recognize the dayfetranscription regula-
tion, in particular individual transcription factor bindj sites (TFBS), and their functional
combinations, so-called cis-regulatory modules (CRM). &jaon problem in this context
is that TFBS are typically short while still allowing somegsence variation. Hence the
TFBS patterns collected in various databases over the paatlé [HWR 98, SPEWL04]
typically have very low specificity and, consequently, stag large genomic regions for
occurrences of these profiles necessarily leads to a laméeof false positive matches.
To address this issue, studying combinations of bindireggiather than occurrences of
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individual binding sites has attracted major attentiondoent years. The biological mo-
tivation behind these approaches is that in many cases,legegof several transcription
factors are observed to regulate gene expression by biriditigeir respective binding
sites. Consequently, these binding sites constituting €Rd to be located closely to-
gether on the genome, see [SYNS03, SBHLO04, PHBO5, BlCFPB"07] and the refer-
ences therein. Many well-characterized examples of CRMs han comprise more than
a dozen of binding sites, typically occur several hundredsfew thousands of base pairs
upstream of the transcription start site, and have a lemgthe range from a few hundred
to about a thousand nucleotides [FRE].

While some insight has been gained on conservation and fesgwatory sequences, the
mechanisms underlying their evolution are largely enigmah fact, sequence conserva-
tion is a suitable indicator of conserved regulatory fuoicti Conversely, the absence of
sequence conservation does not indicate loss of regulfitocgion [TRS05]. Recent ob-
servations [CKN 00, SKCF06] indicate explicitly that shuffling of conserved elen®ist

a major mode of evolution faris-regulatory elements. Such observations lay out the ba-
sis for computational procedures for discovering regulasztive elements when dealing
with collections of promoters belonging to orthologous ggn

In another scenario, one is interested in understandingreammregulatory elements of co-
regulated genes within one species. Here, one typicallgsloonstraints on the order of
binding sites assuming that complexes of transcriptiotofaccan bind to the correspond-
ing cis-regulatory module with some or all of the binding sites Imgwthanged their order
or orientation. Although binding site shuffling cannot beested to be arbitrary, there is
no detailed model on eventual constraints to date. Henaeelhas for the sake of compu-
tational practicability, many discovery procedures (irtkhg the one proposed here) drop
all constraints on the order and orientation of bindingssiteat comprise a CRM.

The outline of this paper is as follows: After dealing wittated work, we sketch a generic
“sliding window” approach developed in [MBPSO04] that rerpbes regulatory module
discovery in terms of certain set systems. On the basis sfithimework, we propose an
improved scoring scheme that is finally evaluated on rea dats.

2 Reated Work

Typically, CRM discovery methods rely on binding site piitins derived from binding
site databases such as TRANSFAC or JASPAR, taking into atdnading site predic-
tions in one or several promoter sequences. Kel-Margetla. [KMIWKO02] proposed
a method based on identifying clusters with the property plagrwise distances between
occurrences of TFBSs range within certain bounds; setsrafilhg sites that maximize
a certain cluster score are searched by the means of a gaitgtiithm. Other meth-
ods are based on probabilistic models [PHBO5] or requirdy(sparsely and available)
knowledge about interactions between transcription factuch as the algorithm pre-
sented in [SYNSO03].

Among the more established methods, Shaxtzal. proposed an approach realized in the



programCREMHESBHLO04], which detects repeated occurrences of binditeg snde-
pendent of their order. Recently, Blancheiteal. [BBCT06] conducted a genome-wide
survey of CRMs based on regions observed to be conservedchongewide alignments.
They employ a scoring scheme based on co-occurrences dfvertapping sites and un-
veil a large number of statistically significant putativguétory modules that are con-
served between human, mouse and rat. A statistical apptoachrds detecting CRMs
and assessing their significance is described in [SSZ077NCO

Another different class of approaches identifies regujateodules without a sliding win-
dow approach. These methods do not take proximity into atcand identify sets of
binding sites that are present anywhere in the promoteresemps under consideration.
Such methods typically yield reasonable results if applirghort upstream regions, but
they lose significance if considering sequences reachistregm in the order of thou-
sands of nucleotides. Among these approaches, R¢mo[PKM*05] devised a method
based on the so-calléetanimoto-scoreas a similarity measure between sets of binding-
sites. Our approach generalizes this approach to incompraximity between binding
sites through a sliding window approach, replacing the tiersgorithm approach by
enumerative methods.

3 Regulatory Module Discovery
3.1 A general framework for CRM discovery

As motivated above, a common scenario in regulatory modstmdery is the following:
we are given a set of promoter sequences, typically a fewstdnodi nucleotides upstream
from the respective transcription start site, of co-retpdeor orthologous genes. Further-
more, we employ a database of transcription factor binditeg ®s the building blocks of
the regulatory modules to be unveiled. In addition, we agsamupper bound on the
length of a CRM, e.g.[. = 200.

The database of TFBS is used to determine matches of pdteimithng sites using any
of the established methods for matching position-speciéight matrices against the nu-
cleotide sequence. Given these matches, a “sliding windggptoach yields all possible
sets of binding sites that co-occur within a window of lengithin other words, each pro-
moter sequence is transformed into a set system, i.e., d setsof transcription factors
(or their respective binding sites). Given the promoteiaoeg of K co-regulated (or ho-
mologous) genes, we therefore have to considarorresponding set systems rather than
the sequence data themselves. Formally, gikegequences’, ..., Sk, we denote the
set system derived frorfi; as byB;, = {B 1, ..., B; », }, whereB, ;, and); denotes the
number of sets contained . With m denoting the number of binding site profiles under
consideration, we can represent each binding site by oegenbetween andm, so that
eachB; ; is a subset ofl : m| (writing [a : b] for the closed integer interval between
andb). The setB; ; contains the binding motifs gth candidate interval of sequensg

Regulatory modules can be identified with transcriptiortdabdinding motifs that tend



[ — L= e —
¥
1+
Do g l,=xz=.l g
] oo
I o e ° -
3_w———f= - — o

Figure 1: lllustration of the “best barbecue” approach fegscdvering CRMs of fixed lengtiL
[MBPSO04]. For each input sequence, one arrangement ofambiatervals is constructed. For each
transcription factor, one color is introduced; for eachuweence of the transcription factor’s binding
site s, on interval of lengthL, — |s|, associated with the corresponding color, is introducedijrey

at the location of the occurrence. The equivalence classieséed by the interval arrangement yield
set systems, i.e., sets of colors (or integers associatixdhése).

to occur together within a set in several of these set systémdn the simplest case,
CRMs are defined as maximal sets of TFBS that occur in all eastrregions. In the
language of our set systems, we say that [1 : m]is a(Bi, ..., Bk)-barbecuef for
eachi € [1 : K], there is an integey; such thatd C B, ,,. In [MBPS04] we develop a
theory for such configurations, which we dubbed “barbecasghey derive from a certain
class of stabbing problems, as illustrated in Fig. 1. In thietext of CRMs, the barbecue
A corresponds to a set of cooperating transcription factarsréther, their co-occurring
binding motifs). Naturally, CRMs are identified dsest barbecueswhich maximize the
cardinality of A [MBPS04].

3.2 Discovering CRMsusing Tanimoto scores

Instead of searching for‘®@est Barbecue’, which requires that every member of a CRM
is actually present in all instances of the CRM, it seems @ntitb use a “weaker” formu-
lation. We may, for example, allow the loss of individual diimg sites in a CRM, as long
as the sets of binding motifs remains sufficiently similar.

The similarity between sets of binding sites is convenjedéfined in terms of th@ani-
moto score
tnma(X,Y) = [ X NY|/|XUY], Q)

where|X | denotes the cardinality of a s&f. By construction, the scorenm,(X,Y)
describes the ratio between the number of elements commuotinsets and the number
of all distinct elements found in both sets. The classicaimato coefficient of two sets,
equ.(1), always lies in the intervdl : 1] and reaches.0 iff both sets are equal.

Beside this “classical” Tanimoto scoring function, we alse variants with different prop-



erties that have already been explored in the context of CRlgbslery in [PKM05]:
tnm (X,Y) =|XNY|/|X AY], 2

with X A'Y denoting the symmetric difference betweErandY . In equation 2 the score
denotes the fraction of elements common in both $étandY and elements occurring
either (exclusively) inX orY’; as a third variant, we used

tnms(X,Y) = X N Y[/|X UY], 3)

which tends to favor sets with a large intersection. Notd tha score values are not
necessarily contained in the intery@) 1] anymore.

While these scoring functions only measure the similargyneen two sets, they can be
readily employed to yield a score for an arbitrary getC [1 : m] of binding sites by
simply calculating the sum of the Tanimoto scores over ajuseices. Furthermore, we
normalize the score by dividing the overall score by the nendf sequence&’. This
normalization step allows to compare the results betweea skets of different size. In
other words, in order to assign a score to a set of binding$etse set

Tnm(A) = % max tnm (A4, B) 4)
i€[1:K]

Our goal is thus to determine the set of binding siteshat maximizesTnm(A4). In
order to handle the limit the number af* sets of binding sites to be tested, we limit
our considerations to all setswith |A| < 6, for 6 typically ranging betweef and5; in
general, large values éfpotentially yield higher scores, and an upper bound for tiwae
of # is imposed by constraints on computation time. Limiting tiadue 6 only slightly
sacrifices a major advantage of this approach, namely begggdf further parameters,
such as the minimum number of sequences in which the modeldsrte occur (which is
a common parameter for several other methods). While theoasiin [PKM™05] relied
on a genetic algorithm for their window-less approach, we @sumerative techniques
to enumerate all sets of binding sites with cardinafitgn the basis of aevolving door
algorithm [Knu05]. In order to obtain more than just one ol solution, we remove
all binding sites occurring within the sequence intervalsstituting the optimal solution,
and determine the optimal solution in this reduced instaonaabtain a second solution.
This procedure can obviously be repeated until a desiredoeurof solutions has been
obtained.

Note that the running time of our approach is essentiallyoexemtial in either the number
of overall binding sites, or at least exponential in the¢trgodule sizé. This trait, shared
with other CRM discovery procedures, appears to be justifigtle light of the hardness
result of the “best barbecue problem” discussed in [MBPS04]

4 Resaults

As a major benchmark, we applied our method to a set of prammdtrived from muscle-
specific genes, which was also used in [PK05S] as benchmark data. Muscle-specific
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Figure 2: “Alignment” of a putative CRM of length00 comprising3 TFBSs (seeommon labels
indicated in lower left part) predicted from muscle specfenes. Among thé6 sequences under
consideration, only thosed are shown which exhibit at least two of the three bindingssite

genes are known to be regulated by several transcriptidor&evhich interact coopera-
tively at multiple sites in regulatory regions. The most orjant factors areMyf, Mef-2,
SRE, Tef-1, and the general transcription fac®p-1 Wassermaet al.[WF98] published
a set consists of 46 DNA sequences. These promoter and earhragons were derived
from 39 distinct human genes; the average sequence leng83is, with a minimum of
61nt and maximum of029nt.

We tested the performance of the Tanimoto scores on thisfseiuscle-specific regu-
latory regions. Position weight matrices for the five knovastbrs are taken from this
publication, ensuring a high specificity of the pattern skarln addition Homo sapiens
PWMs with an an information content aboVé were selected from the JASPAR CORE
set [SPEWLO04] and added to the the motif set. Overall, PWN&3adistinct transcription
factor binding sites were used. No single sequence contiagnsombination of all five
experimentally verified TFBS.

In order to test our approach, we used all three Tanimotie-storing functions, minimum
module sizes fron2 to 5, minimum weights 0f0.85, 0.875 and 0.9 as well as module
lengths 0200, 500 and1000. For each run, we retained the three best-scoring solutions

Table 1 shows the top scoring modules using all three Tamimatiants and a module
length of500 with varying match thresholds85, 0.875 and0.9. Note that the occurrence
(occ.) columns lists the number of occurrences of the raggemotif set in the highest
scoring cells in each sequence, which can differ betwearitsssom the Tanimoto score
variants. The three combinations@¥YF, SP1}, {MEF2, SP1 and{SP1, SRF are the
top scoring modules of sizg, but only{MEF2, SP2 and{SP1,SRF occur within all



Table 1: Highest scoring modules with match threshold.86, 0.875, and0.90 and a window
length of L = 500 in the muscle gene data set. The columns labeled # list thdauaf sequences
in which all binding sites of the module co-occur; note thé$ humber may eventually ke

size  Tnm | Motifs score  #| score #| score #
0.85 0.875 0.9
2 1 MEF2,SP1 0.893 7| 0811 5| 0.746 4
2 2 MYF,SP1 0.440 7| — —
MEF2,SP1 — 0.403 5| 0.367 4
2 3 SP1,SRF 0.802 9| 0.704 8| 0506 5
3 1 MEF2,MYF,SP1 0.893 4| — —
MEF2,SP1,SRF — 0.766 2| 0641 1
3 2 MEF2,MYF,SP1 0.386 4| 0.340 3| —
MEF2,SP1,SRF — — 0.302 1
3 3 E2F,MYF,SP1 0.938 4| — —
MEF2,MYF,SP1 — 0.711 3| —
MYF,SP1,SRF — — 0.500 1
4 1 E2F,MEF2,MYF,SP1 0.769 1| — —
MEF2,MYF,SP1,TEF — 0630 1| —
MEF2,MYF,SP1,SRF — — 0510 O
4 2 E2F,MEF2,MYF,SP1 0.364 1| — —
MEF2,MYF,SP1,SRF — 0.305 1] 0.264 O
4 3 HFH-3,MEF2,MYF,SP1 1.235 2| — —
MEF2,MYF,SP1,SRF — 0921 1| —
Irf-1,MEF2,SP1,SRF — — 0551 1
5 1 E2F,MEF2,MYF,SP1,USF 0.710 0| — —
MEF2,MYF,RORalfa-1,SP1,SRF — 0563 0| —
Irf-1, MEF2,MYF,SP1,SRF — — 0.400 O
5 2 E2F,MEF2,MYF,SP1,SRF 0345 1| — —
MEF2,MYF,SP1,SRF,TEF — 0282 10234 0
5 3 E2F,MEF2,MYF,SP1,SRF 1462 1| — —
MEF2,MYF,SP1,SRF,TEF — 1.079 1| —
Irf-1,MEF2,MYF,SP1,SRF — — 0500 O

three match thresholds. Tanimoto varidnfavours{SP1, SRF over {SP1, MEF2 be-
cause the former occurs four times and the latter only thinreesin a sequence containing
the same cell (with match threshdld). These cells get an unweighted score ofvhich
results in a higher overall score when appearing four timstead of three. Generally Tan-
imoto variant3 favours candidates with most occurrences in the sequeogsscoring
modules of siz& are{MEF2, SP1, SRF, {MYF, SP1, SRF and{MEF2, MYF, SP1.

With a match threshold df.875 we find a module containing all five known factors of size
5 occurring in one sequence. Both Tanimoto varighénd3 find this module as a Best
Barbecue whereas variahfinds it as third best hit.

Comparison with Perco's GA. The GA [PKM'05] found the modules of siz2 {SP1,



MEF2}, {SP1, MYR and{MYF, MEF2}. Additionally, {SP1, MEF2, MYF was de-
tected as best scoring module of size This module was also found by the Tanimoto
bbq algorithm, as well a§SP1, MEF2 and{SP1, MYF. The combination of MYF,
MEF} was not recognised as a high scoring module, because of thindoce of SP1,
which occurs in more sequences than the other TFs. Usingahrtraeshold 0f).85, SP1
occurs in 33, MEF2 in 15 and MYF in 18 sequences. When remd8Riy from the set
of transcripton factors, the modu8MEF2, MYF} is found as highest scoring module of
size2 with all three Tanimoto variants.

For further experimental exploration of our method, we rééethe more extensive inves-
tigations in the MSc thesis of the first author [Men06], whiohludes tests of the Best
Barbecue algorithms with Tanimoto scores on artificial dsdts as well as a study on
(-actin related gene expression [KFWO02].

5 Discussion

The Best-Barbecue approach translates the detectitis-tggulatory modules into a com-
binatorial “stabbing” problem, which consists in finding aximal set of distinct TFBS
that appear within an interval of given lengtheachof the input sequences [MBPS04].
While highlighting the combinatorial structure of the pkeim and its relationships to mul-
tiple sequence alignment problems, this strict form of tlestEBarbecue Problem (BBQ)
has substantial shortcomings in practise. Most imponaittls unlikely that every true
TFBS can be detected in real sequence data: missing sequ&ac®inding site turnover,
or simply inaccuracies in the PWMs may cause false negatimehe strict BBQ setting,
this implies that TFBS will be missing from the inferred CRMk fact, whenever the
number of sequences is in the order of dozens (such as coedgidieove) it becomes un-
likely that the BBQ has a non-trivial solution at all, at leaden realistic interval lengths
are required.

In this contribution we therefore generalized the problenusing Tanimoto scores, i.e.,
we are attempting to stab pairwise similar sets (rather ges that all contain the same
subset) in most (rather than all) input sequences. Thisrgération combines the ad-

vantages of the parameter-free Tanimoto scoring schentethat efficiency of the com-

binatorial stabbing approach. It increases the sensitdfitthe method while retaining

the specificity of sliding-window approaches on longer poben sequences. Our compu-
tational experiments demonstrate that “Tanimoto-BBQ”asnputationally feasible and

produced meaningful results on data sets of practicalester

The implementation will be publicly available with the negtease of thébg package.
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