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Abstract: We present a combinatorial method for discoveringcis-regulatory modules
in promoter sequences. Our approach combines “sliding window” approaches with a
scoring function based on the so-called Tanimoto score. This allows to identify sets of
binding sites that tend to occur preferentially in the vicinity of each other in a given
set of promoter sequences belonging to co-expressed or orthologous genes. We bench-
mark our method on a data set derived from muscle-specific genes, demonstrating that
our approach is capable of identifying modules that were identified as functional in
previous studies.

1 Introduction

Understanding the mechanisms of transcription regulationand gene expression is still a
major challenge of current genomics research. Many computational tools have been de-
veloped for processing DNA sequences to recognize the players of transcription regula-
tion, in particular individual transcription factor binding sites (TFBS), and their functional
combinations, so-called cis-regulatory modules (CRM). A major problem in this context
is that TFBS are typically short while still allowing some sequence variation. Hence the
TFBS patterns collected in various databases over the past decade [HWR+98,SPEWL04]
typically have very low specificity and, consequently, scanning large genomic regions for
occurrences of these profiles necessarily leads to a large number of false positive matches.
To address this issue, studying combinations of binding sites rather than occurrences of
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individual binding sites has attracted major attention in recent years. The biological mo-
tivation behind these approaches is that in many cases, complexes of several transcription
factors are observed to regulate gene expression by bindingto their respective binding
sites. Consequently, these binding sites constituting CRMs tend to be located closely to-
gether on the genome, see [SvNS03,SBHLO04,PHB05,BBC+06,FPB+07] and the refer-
ences therein. Many well-characterized examples of CRMs have can comprise more than
a dozen of binding sites, typically occur several hundreds to a few thousands of base pairs
upstream of the transcription start site, and have a length in the range from a few hundred
to about a thousand nucleotides [FPB+07].

While some insight has been gained on conservation and loss of regulatory sequences, the
mechanisms underlying their evolution are largely enigmatic. In fact, sequence conserva-
tion is a suitable indicator of conserved regulatory function. Conversely, the absence of
sequence conservation does not indicate loss of regulatoryfunction [TRS05]. Recent ob-
servations [CKN+00,SKC+06] indicate explicitly that shuffling of conserved elements is
a major mode of evolution forcis-regulatory elements. Such observations lay out the ba-
sis for computational procedures for discovering regulatory active elements when dealing
with collections of promoters belonging to orthologous genes.

In another scenario, one is interested in understanding common regulatory elements of co-
regulated genes within one species. Here, one typically drops constraints on the order of
binding sites assuming that complexes of transcription factors can bind to the correspond-
ing cis-regulatory module with some or all of the binding sites having changed their order
or orientation. Although binding site shuffling cannot be expected to be arbitrary, there is
no detailed model on eventual constraints to date. Hence, aswell as for the sake of compu-
tational practicability, many discovery procedures (including the one proposed here) drop
all constraints on the order and orientation of binding sites that comprise a CRM.

The outline of this paper is as follows: After dealing with related work, we sketch a generic
“sliding window” approach developed in [MBPS04] that re-phrases regulatory module
discovery in terms of certain set systems. On the basis of this framework, we propose an
improved scoring scheme that is finally evaluated on real data sets.

2 Related Work

Typically, CRM discovery methods rely on binding site predictions derived from binding
site databases such as TRANSFAC or JASPAR, taking into account binding site predic-
tions in one or several promoter sequences. Kel-Margouliset al. [KMIWK02] proposed
a method based on identifying clusters with the property that pairwise distances between
occurrences of TFBSs range within certain bounds; sets of binding sites that maximize
a certain cluster score are searched by the means of a geneticalgorithm. Other meth-
ods are based on probabilistic models [PHB05] or require (only sparsely and available)
knowledge about interactions between transcription factors such as the algorithm pre-
sented in [SvNS03].

Among the more established methods, Sharanet al. proposed an approach realized in the



programCREME[SBHLO04], which detects repeated occurrences of binding sites inde-
pendent of their order. Recently, Blanchetteet al. [BBC+06] conducted a genome-wide
survey of CRMs based on regions observed to be conserved in genome-wide alignments.
They employ a scoring scheme based on co-occurrences of non-overlapping sites and un-
veil a large number of statistically significant putative regulatory modules that are con-
served between human, mouse and rat. A statistical approachtowards detecting CRMs
and assessing their significance is described in [SSZ07,NC07].

Another different class of approaches identifies regulatory modules without a sliding win-
dow approach. These methods do not take proximity into account and identify sets of
binding sites that are present anywhere in the promoter sequences under consideration.
Such methods typically yield reasonable results if appliedon short upstream regions, but
they lose significance if considering sequences reaching upstream in the order of thou-
sands of nucleotides. Among these approaches, Percoet al. [PKM+05] devised a method
based on the so-calledTanimoto-scoreas a similarity measure between sets of binding-
sites. Our approach generalizes this approach to incorporate proximity between binding
sites through a sliding window approach, replacing the genetic algorithm approach by
enumerative methods.

3 Regulatory Module Discovery

3.1 A general framework for CRM discovery

As motivated above, a common scenario in regulatory module discovery is the following:
we are given a set of promoter sequences, typically a few thousand nucleotides upstream
from the respective transcription start site, of co-regulated or orthologous genes. Further-
more, we employ a database of transcription factor binding sites as the building blocks of
the regulatory modules to be unveiled. In addition, we assume an upper boundL on the
length of a CRM, e.g.,L = 200.

The database of TFBS is used to determine matches of potential binding sites using any
of the established methods for matching position-specific weight matrices against the nu-
cleotide sequence. Given these matches, a “sliding window”approach yields all possible
sets of binding sites that co-occur within a window of lengthL. In other words, each pro-
moter sequence is transformed into a set system, i.e., a set of sets of transcription factors
(or their respective binding sites). Given the promoter regions ofK co-regulated (or ho-
mologous) genes, we therefore have to considerK corresponding set systems rather than
the sequence data themselves. Formally, givenK sequencesS1, . . . , SK , we denote the
set system derived fromSi as byBi = {Bi,1, . . . , Bi,λi

}, whereBi,j , andλi denotes the
number of sets contained inBi. With m denoting the number of binding site profiles under
consideration, we can represent each binding site by one integer between1 andm, so that
eachBi,j is a subset of[1 : m] (writing [a : b] for the closed integer interval betweena
andb). The setBi,j contains the binding motifs ofjth candidate interval of sequenceSi.

Regulatory modules can be identified with transcription factor binding motifs that tend



Figure 1: Illustration of the “best barbecue” approach for discovering CRMs of fixed lengthL
[MBPS04]. For each input sequence, one arrangement of colored intervals is constructed. For each
transcription factor, one color is introduced; for each occurrence of the transcription factor’s binding
sites, on interval of lengthL − |s|, associated with the corresponding color, is introduced, ending
at the location of the occurrence. The equivalence classes induced by the interval arrangement yield
set systems, i.e., sets of colors (or integers associated with these).

to occur together within a set in several of these set systemsBi. In the simplest case,
CRMs are defined as maximal sets of TFBS that occur in all upstream regions. In the
language of our set systems, we say thatA ⊆ [1 : m] is a (B1, . . . ,BK)-barbecueif for
eachi ∈ [1 : K], there is an integerνi such thatA ⊆ Bi,νi

. In [MBPS04] we develop a
theory for such configurations, which we dubbed “barbecues”as they derive from a certain
class of stabbing problems, as illustrated in Fig. 1. In the context of CRMs, the barbecue
A corresponds to a set of cooperating transcription factors (or, rather, their co-occurring
binding motifs). Naturally, CRMs are identified as“best barbecues”which maximize the
cardinality ofA [MBPS04].

3.2 Discovering CRMs using Tanimoto scores

Instead of searching for a“Best Barbecue”, which requires that every member of a CRM
is actually present in all instances of the CRM, it seems prudent to use a “weaker” formu-
lation. We may, for example, allow the loss of individual binding sites in a CRM, as long
as the sets of binding motifs remains sufficiently similar.

The similarity between sets of binding sites is conveniently defined in terms of theTani-
moto score

tnm2(X, Y ) = |X ∩ Y |/|X ∪ Y |, (1)

where|X | denotes the cardinality of a setX . By construction, the scoretnms(X, Y )
describes the ratio between the number of elements common inboth sets and the number
of all distinct elements found in both sets. The classical Tanimoto coefficient of two sets,
equ.(1), always lies in the interval[0 : 1] and reaches1.0 iff both sets are equal.

Beside this “classical” Tanimoto scoring function, we alsouse variants with different prop-



erties that have already been explored in the context of CRM discovery in [PKM+05]:

tnm1(X, Y ) = |X ∩ Y |/|X △ Y |, (2)

with X △Y denoting the symmetric difference betweenX andY . In equation 2 the score
denotes the fraction of elements common in both setsX andY and elements occurring
either (exclusively) inX or Y ; as a third variant, we used

tnm3(X, Y ) = |X ∩ Y |4/|X ∪ Y |2, (3)

which tends to favor sets with a large intersection. Note that the score values are not
necessarily contained in the interval[0, 1] anymore.

While these scoring functions only measure the similarity between two sets, they can be
readily employed to yield a score for an arbitrary setA ⊆ [1 : m] of binding sites by
simply calculating the sum of the Tanimoto scores over all sequences. Furthermore, we
normalize the score by dividing the overall score by the number of sequencesK. This
normalization step allows to compare the results between data sets of different size. In
other words, in order to assign a score to a set of binding setsS, we set

Tnm(A) =
1

K

∑

i∈[1:K]

max
B∈Bi

tnm(A, B) (4)

Our goal is thus to determine the set of binding sitesA that maximizesTnm(A). In
order to handle the limit the number of2m sets of binding sites to be tested, we limit
our considerations to all setsA with |A| ≤ θ, for θ typically ranging between2 and5; in
general, large values ofθ potentially yield higher scores, and an upper bound for the choice
of θ is imposed by constraints on computation time. Limiting thevalueθ only slightly
sacrifices a major advantage of this approach, namely being free of further parameters,
such as the minimum number of sequences in which the module needs to occur (which is
a common parameter for several other methods). While the authors in [PKM+05] relied
on a genetic algorithm for their window-less approach, we use enumerative techniques
to enumerate all sets of binding sites with cardinalityθ on the basis of arevolving door
algorithm [Knu05]. In order to obtain more than just one optimal solution, we remove
all binding sites occurring within the sequence intervals constituting the optimal solution,
and determine the optimal solution in this reduced instanceto obtain a second solution.
This procedure can obviously be repeated until a desired number of solutions has been
obtained.

Note that the running time of our approach is essentially exponential in either the number
of overall binding sites, or at least exponential in the target module sizeθ. This trait, shared
with other CRM discovery procedures, appears to be justifiedin the light of the hardness
result of the “best barbecue problem” discussed in [MBPS04].

4 Results

As a major benchmark, we applied our method to a set of promoters derived from muscle-
specific genes, which was also used in [PKM+05] as benchmark data. Muscle-specific
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Figure 2: “Alignment” of a putative CRM of length500 comprising3 TFBSs (seecommon labels
indicated in lower left part) predicted from muscle specificgenes. Among the46 sequences under
consideration, only those19 are shown which exhibit at least two of the three binding sites.

genes are known to be regulated by several transcription factors which interact coopera-
tively at multiple sites in regulatory regions. The most important factors are:Myf, Mef-2,
SRF, Tef-1, and the general transcription factorSp-1. Wassermanet al. [WF98] published
a set consists of 46 DNA sequences. These promoter and enhancer regions were derived
from 39 distinct human genes; the average sequence length is333nt, with a minimum of
61nt and maximum of1029nt.

We tested the performance of the Tanimoto scores on this set of muscle-specific regu-
latory regions. Position weight matrices for the five known factors are taken from this
publication, ensuring a high specificity of the pattern search. In addition,Homo sapiens
PWMs with an an information content above11 were selected from the JASPAR CORE
set [SPEWL04] and added to the the motif set. Overall, PWMs of33 distinct transcription
factor binding sites were used. No single sequence containsthe combination of all five
experimentally verified TFBS.

In order to test our approach, we used all three Tanimoto-style scoring functions, minimum
module sizes from2 to 5, minimum weights of0.85, 0.875 and0.9 as well as module
lengths of200, 500 and1000. For each run, we retained the three best-scoring solutions.

Table 1 shows the top scoring modules using all three Tanimoto variants and a module
length of500 with varying match thresholds0.85, 0.875 and0.9. Note that the occurrence
(occ.) columns lists the number of occurrences of the respective motif set in the highest
scoring cells in each sequence, which can differ between results from the Tanimoto score
variants. The three combinations of{MYF, SP1}, {MEF2, SP1} and{SP1, SRF} are the
top scoring modules of size2, but only{MEF2, SP1} and{SP1,SRF} occur within all



Table 1: Highest scoring modules with match threshold of0.85, 0.875, and0.90 and a window
length ofL = 500 in the muscle gene data set. The columns labeled # list the number of sequences
in which all binding sites of the module co-occur; note that this number may eventually be0.

size Tnmi Motifs score # score # score #
0.85 0.875 0.9

2 1 MEF2,SP1 0.893 7 0.811 5 0.746 4
2 2 MYF,SP1 0.440 7 — —

MEF2,SP1 — 0.403 5 0.367 4
2 3 SP1,SRF 0.802 9 0.704 8 0.506 5
3 1 MEF2,MYF,SP1 0.893 4 — —

MEF2,SP1,SRF — 0.766 2 0.641 1
3 2 MEF2,MYF,SP1 0.386 4 0.340 3 —

MEF2,SP1,SRF — — 0.302 1
3 3 E2F,MYF,SP1 0.938 4 — —

MEF2,MYF,SP1 — 0.711 3 —
MYF,SP1,SRF — — 0.500 1

4 1 E2F,MEF2,MYF,SP1 0.769 1 — —
MEF2,MYF,SP1,TEF — 0.630 1 —
MEF2,MYF,SP1,SRF — — 0.510 0

4 2 E2F,MEF2,MYF,SP1 0.364 1 — —
MEF2,MYF,SP1,SRF — 0.305 1 0.264 0

4 3 HFH-3,MEF2,MYF,SP1 1.235 2 — —
MEF2,MYF,SP1,SRF — 0.921 1 —
Irf-1,MEF2,SP1,SRF — — 0.551 1

5 1 E2F,MEF2,MYF,SP1,USF 0.710 0 — —
MEF2,MYF,RORalfa-1,SP1,SRF — 0.563 0 —
Irf-1,MEF2,MYF,SP1,SRF — — 0.400 0

5 2 E2F,MEF2,MYF,SP1,SRF 0.345 1 — —
MEF2,MYF,SP1,SRF,TEF — 0.282 1 0.234 0

5 3 E2F,MEF2,MYF,SP1,SRF 1.462 1 — —
MEF2,MYF,SP1,SRF,TEF — 1.079 1 —
Irf-1,MEF2,MYF,SP1,SRF — — 0.500 0

three match thresholds. Tanimoto variant3 favours{SP1, SRF} over{SP1, MEF2} be-
cause the former occurs four times and the latter only three times in a sequence containing
the same cell (with match threshold0.9). These cells get an unweighted score of4, which
results in a higher overall score when appearing four times instead of three. Generally Tan-
imoto variant3 favours candidates with most occurrences in the sequences.Top scoring
modules of size3 are{MEF2, SP1, SRF}, {MYF, SP1, SRF} and{MEF2, MYF, SP1}.

With a match threshold of0.875 we find a module containing all five known factors of size
5 occurring in one sequence. Both Tanimoto variants2 and3 find this module as a Best
Barbecue whereas variant1 finds it as third best hit.

Comparison with Perco’s GA. The GA [PKM+05] found the modules of size2 {SP1,



MEF2}, {SP1, MYF} and{MYF, MEF2}. Additionally, {SP1, MEF2, MYF} was de-
tected as best scoring module of size3. This module was also found by the Tanimoto
bbq algorithm, as well as{SP1, MEF2} and{SP1, MYF}. The combination of{MYF,
MEF} was not recognised as a high scoring module, because of the dominance of SP1,
which occurs in more sequences than the other TFs. Using a match threshold of0.85, SP1
occurs in 33, MEF2 in 15 and MYF in 18 sequences. When removingSP1 from the set
of transcripton factors, the module{MEF2, MYF} is found as highest scoring module of
size2 with all three Tanimoto variants.

For further experimental exploration of our method, we refer to the more extensive inves-
tigations in the MSc thesis of the first author [Men06], whichincludes tests of the Best
Barbecue algorithms with Tanimoto scores on artificial datasets as well as a study on
β-actin related gene expression [KFW02].

5 Discussion

The Best-Barbecue approach translates the detection ofcis-regulatory modules into a com-
binatorial “stabbing” problem, which consists in finding a maximal set of distinct TFBS
that appear within an interval of given length ineachof the input sequences [MBPS04].
While highlighting the combinatorial structure of the problem and its relationships to mul-
tiple sequence alignment problems, this strict form of the Best-Barbecue Problem (BBQ)
has substantial shortcomings in practise. Most importantly, it is unlikely that every true
TFBS can be detected in real sequence data: missing sequencedata, binding site turnover,
or simply inaccuracies in the PWMs may cause false negatives. In the strict BBQ setting,
this implies that TFBS will be missing from the inferred CRMs. In fact, whenever the
number of sequences is in the order of dozens (such as considered above) it becomes un-
likely that the BBQ has a non-trivial solution at all, at least when realistic interval lengths
are required.

In this contribution we therefore generalized the problem to using Tanimoto scores, i.e.,
we are attempting to stab pairwise similar sets (rather thansets that all contain the same
subset) in most (rather than all) input sequences. This generalization combines the ad-
vantages of the parameter-free Tanimoto scoring scheme with the efficiency of the com-
binatorial stabbing approach. It increases the sensitivity of the method while retaining
the specificity of sliding-window approaches on longer promoter sequences. Our compu-
tational experiments demonstrate that “Tanimoto-BBQ” is computationally feasible and
produced meaningful results on data sets of practical interest.

The implementation will be publicly available with the nextrelease of thebbq package.
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[MBPS04] A. Mosig, T. Bıyıkoğlu, S. J. Prohaska und P. F. Stadler. Detecting Phylogenetic
Footprint Clusters by Optimizing Barbeques.Theor. Comp. Sci., 2004. Preprint ver-
sion: Univ. Leipzig, BIOINF 04-020,http://www.bioinf.uni-leipzig.
de/˜axel/bbq.pdf .

[Men06] P. Menzel. BBQ in Tanimoto Scores. Diplomarbeit, University of Leipzig, Germany,
2006.

[NC07] K. Noto und M. Craven. Learning probabilistic modelsof cis-regulatory modules that
represent logical and spatial aspects.Bioinformatics, 23:e156–e162, 2007.

[PHB05] A. A. Philippakis, F. S. He und M. L. Bulyk. Modulefinder: a tool for computational
discovery ofcis regulatory modules. InProc. Pac. Symp. Biocomput., Seiten 519–30,
2005.

[PKM+05] P. Perco, A. Kainz, G Mayer, A Lukas, R Oberbauer und B. Mayer. Detection of
coregulation in differential gene expression profiles.Biosystems, 82:235–247, 2005.

[SBHLO04] R. Sharan, A. Ben-Hur, G. G. Loots und I. Ovcharenko. CREME: Cis-Regulatory
Module Explorer for the human genome.Nucleic Acids Res., 32:W253–W256, 2004.

[SKC+06] R. Sanges, E. Kalmar, P. Claudiani, M. D’Amato, F. Mullerund E. Stupka. Shuffling
of cis-regulatory elements is a pervasive feature of the vertebrate lineage.Genome
Biol., 7:R56, 2006.

[SPEWL04] A. Sandelin, W. A. Pär Engström, W. Wasserman und B. Lenhard. JASPAR: an open
access database for eukaryotic transcription factor binding profiles. Nucleic Acids
Res., 32:D91–D94, 2004.

[SSZ07] D. E. Schones, A. D. Smith und M. Q. Zhang. Statistical significance of cis-regulatory
modules.BMC Bioinformatics, 8:19, 2007.



[SvNS03] S. Sinha, E. van Nimwegen und E.D. Siggia. A probabilistic method to detect regula-
tory modules.Bioinformatics, 19:i292–i301, 2003.

[TRS05] A. Tanay, A. Regev und R. Shamir. Conservation and evolvability in regulatory net-
works: the evolution of ribosomal regulation in yeast.Proc. Natl. Acad. Sci. USA,
102:7203–7208, 2005.

[WF98] W. W. Wasserman und J. W. Fickett. Identification of regulatory regions which confer
muscle-specific gene expression.J. Mol. Biol., 278:167–181, 1998.


