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ABSTRACT 

 

Curcumin analogues are novel antineoplastic agents designed by structural modifications 

of the natural product curcumin to enhance its therapeutic effects. Various curcumin analogues 

displayed a significant cytotoxic effect towards different cancer cell lines including leukemia, 

melanoma, and colon cancer. In order to evaluate the safety, efficiency and metabolism of the 

new anticancer candidates, sensitive and high throughput analytical methods are needed. 

Thirteen curcumin analogues with the backbone structure of 3,5-bis(benzylidene)-4-piperidone 

were tested. The ionization behavior of curcumin analogues was investigated to reveal the 

possible mechanisms for the unusual formation of the positively charged [M-H]
+
 ions during 

single stage positive ion mode MALDI-MS analysis. Different ionization techniques (i.e., ESI, 

APCI, APPI, and MALDI) were used to evaluate this phenomenon. The results showed that 

curcumin analogues ionize into [M-H]
+
 along with the expected [M+H]

+
 species during MALDI 

and dopant free APPI-MS. In contrast, ESI, APCI and the dopant mediated APPI showed only 

the expected [M+H]
+
 peak. Our experiments revealed that photon energy triggers the ionization 

of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent 

or dopant. Three proposed mechanisms for the formation of [M-H]
+
 were evaluated, two of them 

are probably involved in the [M-H]
+
 formation: (i) hydrogen transfer from the analyte radical 

cation and (ii) hydride abstraction. 

In addition to the ionization behavior, the collision induced dissociation-tandem mass 

spectrometric (CID-MS/MS) fragmentation behavior of curcumin analogues was evaluated 

showing similar dissociation pathways that centered on the piperidone ring of the 3,5-

bis(benzylidene)-4-piperidone moiety. The presence of different substitutes on that moiety 

resulted in specific product ions for each curcumin analogue. The fragmentation patterns were 
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established to confirm the chemical structure of the tested compounds and identify the diagnostic 

product ions of each compound. Twelve common product ions were identified resulting from the 

breakage of various bonds within the piperidone moiety. There was a tendency for the formation 

of highly conjugated product ions that are stabilized via resonance. Common product ions were 

identified allowing for the establishment of a general MS/MS behavior for any curcumin 

analogue that belongs to the 3,5-bis(benzylidene)-4-piperidone structural family. The 

fragmentation routes and the genesis of the product ions were confirmed via MS
3
 and neutral 

loss analysis.  

In summary, the ionization of curcumin analogues provided insights into the formation of 

unique [M-H]
+
 ions which were linked to photo ionization of such compounds without the need 

for additives, such as matrix, dopant or solvent.  As such, curcumin analogues should be 

evaluated as MALDI matrices in the future. The CID-MS/MS analysis of curcumin analogues 

revealed a common fragmentation behavior of the tested compounds. It will be applied, in the 

future to determine metabolic by-products of the tested compounds as well as to develop targeted 

liquid chromatography (LC)-MS/MS methods.   
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CHAPTER 1                                                                                                                            

INTRODUCTION
1
 

 

Mass spectrometry (MS) is widely used in analytical chemistry based on its ability to analyze 

a wide range of compounds in complex matrices with high sensitivity, selectivity, and speed. MS 

is applied to both small drug molecules and macromolecules and is routinely used for qualitative 

and quantitative applications including drug discovery [1-3], proteomics [4], metabolomics [5], 

genomics [6], and lipidomics [7]. MS is able to detect and quantify analytes at the pg/ml levels 

[8-10], hence it is routinely applied in various disciplines such as forensic science [11], 

toxicology [12], food safety [13], and environmental science [14].  

The fast developments in MS instrumentation, including the introduction of soft ionization 

sources, high resolution mass analyzers, and hybrid MS instruments, allowed MS to be an ideal 

tool for meeting the needs of researchers in the biological and the pharmaceutical sciences. In 

drug discovery and development [1-3], MS identifies and structurally characterizes new drug 

candidates via accurate mass measurements as well as via tandem mass spectrometric (MS/MS) 

analysis. In addition, MS analysis is important for purity assessment of newly synthesized drug 

molecules and their pharmaceutical formulations [15, 16]. Such assessment allows for 

monitoring the synthetic process and establishing the degradation profile of the new formulation 

[15, 16]. In addition, MS is used to evaluate the safety and efficiency of new drug candidates 

during preclinical and clinical studies by monitoring their metabolic profile as well as their 

pharmacological and pharmacokinetic properties [1, 17].  

Among various therapeutic agents, anticancer drugs remain at the forefront of drug 

development efforts. Global investments in anticancer treatments are expected to reach $143.7 

                                                 
1
 Part of the thesis introduction was recently published as a review article “H. Awad, M. M. Khamis, and A. El-

Aneed, "Mass Spectrometry, Review of the Basics: Ionization," Applied Spectroscopy Reviews, vol. 50, pp. 158-175, 

2015”. 

http://pubs.rsc.org/en/content/articlehtml/2009/cs/b618553n


2 

 

billion by 2023 [18]. In 2013 alone, the US Food and Drug Administration (FDA) approved nine 

of 27 new molecular entities for oncology [19]. The design of new anticancer agents usually 

aims to improve potency, safety, and selective toxicity towards malignant cells rather than 

normal cells. One target is natural products; for example, several studies have been conducted to 

explore the anticancer properties of curcumin and showed anti-inflammatory, antioxidant, 

antiproliferative, and antiangiogenic activities, with a high safety profile [20]. Curcumin 

(Scheme 1.1) is a natural product derived from the dietary spice turmeric that has traditionally 

been used in Indian folk medicine [21]. Epidemiological studies attribute the low incidence of 

colon cancer in India to diets rich in curcumin [22]. However, the poor bioavailability of 

curcumin has hampered its wide use as an anticancer agent [23]. Several approaches have been 

adopted to improve curcumin potency, targeting, and bioavailability [23-28]; one of which is the 

synthesis of structurally related compounds, namely curcumin analogues [27-29]. 

 

 

 

 

                                            

Scheme1.1. Structure of curcumin 

 

A number of curcumin analogues showed promising in vivo anticancer properties including 

attacking cancer cells via multiple active sites and low toxicity towards normal cells [30]. All 

these observations support the notion that curcumin analogues are good anticancer candidates. 

Therefore, it is important to develop qualitative and quantitative methods for these compounds 

using high throughput technologies such as MS.     

O O

OH

O O

OH

CH3 CH3
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My proposed M.Sc. research is mainly focused on studying the MS behavior of novel 

curcumin analogues. The ionization behavior of curcumin analogues will be investigated to 

reveal the possible mechanisms for the unusual formation of the positively charged [M-H]
+
 ions 

during single stage positive ion mode matrix assisted laser desorption ionization-MS (MALDI-

MS) analysis of these compounds. Different ionization techniques namely, electrospray 

ionization (ESI), atmospheric pressure chemical ionization (APCI), atmospheric pressure 

photoionization (APPI), and MALDI were used. Understanding such unusual ionization behavior 

of curcumin analogues is important for the future development of MALDI-MS analytical 

methods that monitor the [M-H]
+
 ions of these compounds in positive ion mode. The 

investigated mechanisms for the [M-H]
+
 formation can also be applied to structurally-related 

compounds that may ionize in similar fashion.  

In addition, the fragmentation behavior of curcumin analogues will be investigated using ESI 

tandem mass spectrometry (MS/MS). The fragmentation pattern (i.e., fingerprint) of each 

curcumin analogue will be established and a universal MS/MS pattern will be developed 

allowing for future identification and quantification of curcumin analogues. 

 

1.1. Curcumin analogues  

As mentioned earlier, curcumin analogues are therapeutic agents designed by structural 

modification of the curcumin molecule to enhance its therapeutic effects [29]. Various newly 

designed curcumin analogues displayed a significant cytotoxic effect towards different cancer 

cell lines including leukemia, melanoma, and colon cancer [30-33]. The evaluated molecules are 

3,5-bis(benzylidene)-4-piperidone compounds, containing the 1,5-diaryl-3-oxo-1,4-pentadienyl 

pharmacophore (Scheme 1.2) with conjugated unsaturated ketones that act as thiol alkylators. 
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Since the nucleic acids are free of thiols, these compounds are targeting cellular proteins rather 

than attacking the nucleic acids, decreasing the possibility of mutagenicity and carcinogenicity 

that are usually induced by other anticancer agents [30, 32]. 

 

  

 

 

 

Scheme 1.2. General structure of the 3,5-bis(benzylidene)-4-piperidones (the 1,5-diaryl-

3-oxo-1,4-pentadienyl pharmacophore is in the box). 
 

 

The anticancer effect of curcumin analogues occurs through multiple modes of actions and 

multitarget sites [30]. One important cellular target for curcumin analogues is mitochondria [30]. 

These compounds can affect mitochondrial functions through increasing the cellular 

concentrations of reactive oxygen species, inhibiting oxygen consumption, and increasing the 

mitochondrial respiration rates, causing a decrease in its membrane potential [34].  

Despite the cytotoxic properties of the 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore 

(Scheme 1.2), challenges exist for the in-vivo use of these compounds as a result of the lipophilic 

nature of the 3,5-bis(benzylidene)-4-piperidone moiety [32]. This was controlled by adding 

substituents on the aryl groups, that in turn, changed the steric and hydrophobic properties of 

curcumin analogues (Scheme 1.3) [32]. Various substituents were also introduced to the 

piperidyl nitrogen atom of the 3,5-bis(benzylidene)-4-piperidones. The goal of N-substitution is 

to protect the piperidyl nitrogen atom from ionization at biological pH, since the ionized 

compounds cannot penetrate the membrane of the target cells [30]. In addition, N-substituents 

N

O

R

R
R
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introduce additional binding sites to the cellular target that may enhance the cytotoxicity of the 

drug [30, 31]. However, it is argued that such N-substituents may prevent the alignment of the 

1,5-diaryl-3-oxo-1,4-pentadienyl with its primary binding site, decreasing its potency [30, 31]. 

Therefore, various N-substituents were introduced, and based on the N-substituent, tested 

curcumin analogues in this study have been categorized into four subgroups: phosphoramidates, 

secondary amines, mixed amines/amides, and amides (Scheme 1.3).  

In addition to evaluating the cytotoxic and lipophilic properties of curcumin analogues, the 

photochemical properties of curcumin were also investigated. In 2013 [35], T. Qian et al. 

investigated the photolysis mechanisms of the curcumin molecule when exposed to a 355 nm 

laser using laser flash photolysis. The absorption spectrum of curcumin was recorded at different 

times after the laser pulse to monitor the generated transient species of curcumin. The results 

demonstrated the photoionization of curcumin (Cur) in ethanol/water mixtures producing a 

curcumin radical cation (Cur
•+

) that could be transferred into the neutral radical form (Cur
•
) by 

deprotonation. Curcumin could also be photo-excited to generate the excited singlet form (Cur
*
) 

that could be transferred into the excited triplet form (
3
Cur

*
). The ratio of photoionization to 

photoexcitation of curcumin in ethanol/water mixtures was 3.35, indicating that photoionization 

is the main mechanism of curcumin photolysis [35]. Such photoionization behavior theoretically 

could be applied to the curcumin analogues due to structural similarities.  
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Scheme 1.3. Structures and monoisotopic masses of the novel antineoplastic curcumin analogues 

categorized by the N-substituent into four structural families: phosphoramidates, secondary 

amines, mixed amines/amides, and amides. 
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1.2. Mass spectrometry (MS)  

MS is one of the most powerful analytical tools whose use is growing in numerous 

pharmaceutical and biological fields due to its high sensitivity, selectivity, accuracy, and high 

throughput capability. MS provides structural information of the analyte by measuring the mass-

to-charge ratio (m/z) values of the charged molecules and MS/MS fragments.  

 

1.2.1. MS ionization methods 

Various ionization techniques have been used with MS including: electrospray ionization 

(ESI) [36, 37], atmospheric pressure chemical ionization (APCI) [38, 39], atmospheric pressure 

photoionization (APPI) [40] and matrix assisted laser desorption ionization (MALDI) [41, 42]. 

ESI and MALDI are commonly used soft ionization techniques that are able to ionize analytes 

with little or no fragmentation [43, 44]. ESI and APCI are readily interfaced with high-

performance liquid chromatography (HPLC), therefore both are commonly used for liquid 

chromatography–mass spectrometry (LC-MS) [45] . Recently, APPI has been utilized in LC-MS 

to ionize compounds that are not well-ionized by APCI or ESI such as non-polar compounds 

[45]. The general principle of each ionization technique is discussed in the following sections.  

 

 

1.2.1.1. Electrospray ionization (ESI) 

In ESI [36, 37], the sample is introduced in solution at a typical flow rate of 1-1000 µL/min 

into a spray needle/capillary with a high voltage (e.g., 3–6 kV) being applied. The voltage can be 

either negative or positive based on the nature of the analyte, producing charged droplets that are 

sprayed out from the needle tip into the atmosphere (nebulization) [45]. The presence of a sheath 

gas (nitrogen) flowing around the needle during the nebulization process assists in directing the 
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droplets from the capillary tip. The charged droplets pass either through a curtain of heated inert 

gas (nitrogen), or through a heated capillary for complete solvent evaporation. Ions formed by 

ESI at atmospheric pressure pass through an orifice into the mass spectrometer for mass analysis 

as shown in Scheme 1.4 [45]. 

Two different mechanisms were proposed for ion generation in ESI, as illustrated in Scheme 

1.5 [44, 46-48]: The ion evaporation mechanism involves solvent evaporation and coulombic 

fissions of the charged droplets forming smaller droplets. The gas phase ions are directly 

released/desorbed from the surface of the small droplets when the repulsion between charges at 

the droplet surface overcomes the cohesive force of the surface tension [49]. In the charge 

residual model, the molecule will not desorb from the charged droplet but it will be freed by 

complete evaporation of the solvent and this is more likely to happen with large molecules [50].  

 

 

 

Scheme 1.4. A schematic diagram of an ESI source 
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Scheme 1.5. Proposed mechanisms of ion formation during electrospray ionization [44] 

 

ESI is suitable for a wide range of compounds with high to moderate polarity as well as 

varying molecular weight. For large molecules with several ionizable sites such as proteins, ESI 

produces multiply charged ions that allows for their analysis in mass analyzers with limited m/z 

range, such as quadrupoles [45, 51]. However, ion suppression is a major drawback when using 

ESI, as the presence of high concentration of analytes or salts may change the efficiency of 

droplet evaporation that in turns inhibit ion release into the gas phase [52, 53]. In high 

concentration samples, the competition between compounds for limited charges or space on the 

droplet surface can also decrease the efficiency of ion formation [52, 53]. To overcome ion 

suppression during ESI, several strategies have been applied:  

I) Performing sample purification such as solid phase extraction (SPE), liquid-liquid 

extraction (LLE), or protein precipitation (PPT) [54-56].  
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II) Altering the chromatographic conditions by modifying the mobile phase additives or 

shifting the retention times of the analytes away from the eluting region affected by 

ion suppression [54-56].  

III) Changing the ionization mode, such as switching to the negative ion mode where 

fewer compounds are ionized and matrix effect is inherently lower [54, 55]. 

Switching the ionization source from ESI to APCI or APPI has also been applied 

[57].  

IV) Reducing the amount of sample being introduced to the ionization chamber via 

sample dilution, reducing the injection volume, or reducing the ESI flow rate [54, 55]. 

Nano-ESI [58] is one approach in which flow rates are substantially reduced allowing 

less analyte and nonvolatile compounds to be injected into the source while 

enhancing the desolvation process of the droplets [54, 55].  

V) Using an internal standard (IS) especially an isotopically labelled IS that exhibits 

similar structural and physical properties to the analyte to compensate the matrix 

effect rather than eliminating it [54, 55].      

 

 

1.2.1.2.  Atmospheric pressure chemical ionization (APCI) 

In APCI [38, 39], the sample solution is introduced at a flow rate typically 200-2000 µL/min 

into a pneumatic nebulizer that sprays the solution under atmospheric pressure. The spray 

droplets pass through a heated quartz tube called a desolvation/vaporization chamber to allow for 

the vaporization of the solvent. After desolvation, the gas phase molecules of the analyte and 

solvent pass through a corona discharge electrode where ionization occurs. The ionization 

mechanism in APCI is similar to that of chemical ionization (CI) but occurs under atmospheric 

pressure [45, 59]. In APCI, the vapourized solvent (S) is ionized by the corona discharge 
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electrode to form reactant ions (eq 1) that in turn ionize the analyte (M) by charge exchange (eq 

2) or proton transfer (eq 3) as follows: 

S + e
-
  →  S

+•
 + 2e

-
       (1)                                                                   

S
+•

 + M → S + M
+•   

     (2) 

S
+•

 + S →  [S+H]
+  

+ S[-H] then  [S+H]
+  

+ M → S + [M+H]
+  

  (3) 

 

APCI is mainly applied to compounds of low to medium polarity with moderate molecular 

weight (up to ~1500 Da). However, it cannot be used with thermally liable compounds because 

of the application of heat [45] and as such is not suitable for the analysis of macromolecules such 

as proteins or DNA. Unlike ESI, APCI can achieve a good sensitivity at high flow rates (200 – 

2000 μL/min) and APCI has a better tolerance to salts and buffers [59, 60]. The matrix effect on 

the ionization performance of both ESI and APCI was investigated and revealed a higher 

tolerance of APCI to the sample matrices in comparison with ESI [61]. These differences 

between ESI and APCI are mainly based on ionization mechanism differences [53]. In ESI, the 

analyte is ionized in the liquid phase (charged droplets) then released into the gas phase. 

Therefore, ion formation in ESI is more susceptible to the nonvolatile matrix components that 

may change droplet properties or compete for the charge or the space on the droplet surface as 

mentioned earlier [52, 53]. However in APCI, the analyte is introduced to the gas phase in 

neutral form to be ionized via chemical reactions with the reactant ions (eqs. 1, 2 and 3). This 

mechanism does not involve droplet formation as in ESI and therefore ion suppression factors 

related to the droplet properties are not applicable to APCI [38, 39]. 
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1.2.1.3.  Atmospheric pressure photoionization (APPI) 

APPI is a modified form of an APCI source where the corona discharge electrode is replaced 

by a lamp emitting photons. In APPI [40], the sample solution is vaporized by a heated nebulizer 

forming gas phase molecules of the analyte and solvent that interact with the emitted photons by 

a discharge lamp producing the ions (Scheme 1.6). Different discharge lamps have been used 

with APPI; the krypton lamp is the commonly used one and generates two photon energy lines at 

10.0 and 10.6 eV [40]. To selectively ionize the analyte in APPI, the emitted photon energy 

should be higher than the ionization energy of the analyte and lower than that of air (i.e., nitrogen 

and oxygen) and the used solvents (i.e., methanol, water, and acetonitrile) [62]. Such selectivity 

makes APPI less susceptible to ion suppression and salt buffer effects than APCI and ESI [57]. 

In addition, APPI is very useful for the ionization of nonpolar compounds that are not ionizable 

by ESI or APCI, such as polycyclic aromatic hydrocarbons (PAHs) [63]. Ghislain et al. 

compared the performance of ESI, APCI and APPI in the detection of PAHs and oxy-PAHs by 

direct infusion using a quadrupole time-of-flight mass spectrometer (Q-TOF-MS). The 

experiments confirmed the suitability of APPI in the analysis of PAHs and oxy-PAHs with a 

wide mass range [64]. In contrast, ESI was not able to detect these compounds. APCI was also 

less efficient than APPI in detecting compounds with intermediate m/z values, probably due to 

the low polarity of the detected compounds within this range [64].  

Similarly, a wide range of lipids of Leishmania donovani were analyzed by normal phase-

LC-MS using the three ionization methods (i.e., ESI, APCI, and APPI). The study showed 

superior performance of APPI in terms of sensitivity, signal, and signal-to-noise (S/N) ratio in the 

analysis of non/low polar lipids while ESI and APCI were better suited for the polar ones [65]. 

APPI can also address the issue of matrix effects in comparison with ESI and APCI. During an 

LC-MS analysis of estradiol in human serum and endometrial tissue, ESI showed susceptibility 
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to ion suppression in contrast to APPI and APCI that exhibited more tolerance towards sample 

matrices. In terms of S/N ratio and background noise, APPI was superior to APCI [66]. 

 

 

 

 

 

 

 

 

Scheme 1.6. A schematic diagram of an APPI source [57] 

 

Ionization in APPI occurs in two ways; direct and indirect [57, 62, 67]. The analyte (M) in 

direct APPI directly absorbs the photon energy (hv) forming the radical cation (M
+•

) (eq 4), 

which reacts with a solvent molecule (S) to form the [M+H]
+
 ion by hydrogen atom abstraction 

in the positive ion mode (eq 5) as follows: 

M + hv  → M
+•

 + e
-                 

       (4)
    

M
+•

 + S → [M+H]
+ 

+
 
S[-H]      (5)

   
 

 

In 2004, Jack A. Syage investigated the above proposed mechanism of [M+H]
+
 formation 

during direct photoionization. In this study, Syage compared the relative abundance of [M]
+•

 and 

[M+H]
+
 ions during direct photoionization of different compounds as vapor (with no solvent) 

versus using different solvents (protic e.g., CH3OH, H2O and aprotic solvents e.g., CCl4). The 
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study confirmed the initial formation of an analyte radical ion followed by hydrogen atom 

abstraction from a protic solvent as a mechanism of [M+H]
+
 formation during direct APPI. The 

conclusion was based on several observations including; i) significant [M+H]
+
 formation during 

the photoionization of the analyte in the presence of protic solvents, but not in aprotic solvents, 

indicating that the protic solvents are the source of hydrogen atoms, in contrast, ii) [M]
+•

 was 

significantly formed in the absence of solvent [67]. 

 

Direct photoionization only happens with analytes of ionization energy (IE) lower than the 

emitted photon energy (hν). For example, analytes with IE < 10.2 eV can be directly 

photoionized by photons emitted from the krypton discharge lamp [40]. However, E. Marotta et 

al. reported unexpected photon-induced reactions during the direct APPI of furocumarins where 

acetonitrile participated in the [M+H]
+
 formation of tested compounds. Acetonitrile has an 

ionization energy higher than the emitted photon energy (12.2 eV > 10eV), which theoretically 

means that the photon energy cannot ionize acetonitrile molecules and in turn cannot work as an 

intermediate in the protonation of furocumarins. However, the authors suggested that photon-

induced isomerization of acetonitrile molecules occurred leading to the formation of other 

species with  IE < 10 eV that consequently were able to facilitate the photoionization of 

furocumarins [68]. 

For substances with high IE values, indirect APPI is applied. This type of photoionization 

involves the use of a dopant (D), which is a solvent with lower ionization energy (IE) than the 

emitted photon energy (e.g., acetone and toluene with IE= 9.7 and 8.83 respectively), that acts as 

intermediate between the photons and the analytes. The dopant absorbs the photons energy (hv) 

forming the radical cation (D
+•

) (eq 6), which in turn ionizes the analyte (M) forming the ion by 
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charge exchange (eq 7) or proton transfer (eq 8) depending on the ionization energies or proton 

affinities of both the analyte and the solvent: 

      D + hv  →  D
+•

 + e
-
       (6)                        

      D
+•

 + M → D + M
+•        

(7) 

    
   D

+•
 + S → [D-H] + [S+H]

+  
 then  [S+H]

+  
+ M → S + [M+H]

+  
  (8) 

 

1.2.1.4. Matrix assisted laser desorption ionization (MALDI)  

 MALDI is based on the desorption and ionization of analyte molecules incorporated into 

matrix crystals using a pulsed laser beam [41]. The crystals are formed by spotting a mixture of 

analyte/matrix solution on a sample plate to be dried by air or under vacuum. The type of matrix, 

technique of drying, and laser parameters are critical steps in MALDI, which may affect the 

analysis [69, 70]. After desorption and ionization of the analyte molecules, the formed ions are 

separated based on their m/z values in the mass analyzer. Although the detailed mechanism of 

ionization in MALDI is still unclear, two major models were proposed to explain the MALDI 

ionization process (Scheme 1.7): 

 

1.2.1.4.1. Gas phase protonation   

It was proposed that the production of analyte ions involves two steps; the first is 

photoionization of matrix molecules within the matrix-analyte crystals by the laser, producing 

matrix ions. The second step is the charge transfer from matrix ions to the neutral analytes [71-

73]. In this model, matrix molecules play a major role in the formation of analyte ions and the 

ionization process. Therefore, various matrices have been designed for a wide range of 

applications. Choosing the correct matrix that suits the target analyte as well as the right laser 

wavelength plays an important role in analytical results. For example; α-Cyano-4- 
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hydroxycinnamic acid (CHCA) is widely used for peptides analysis on UV-MALDI; 2,5-

Dihydroxybenzoic acid (DHB) for proteins, peptides, and carbohydrates on UV-MALDI; 3-

Hydroxy-picolinic acid for DNA on UV-MALDI; and succinic acid for proteins and peptides on 

IR-MALDI [70, 74]. A comparison between CHCA and DHB matrices was conducted to reveal 

the preferred matrix for peptide mass fingerprint MALDI-MS analysis [75]. The study showed 

that CHCA has better sensitivity for the detection of a high number of peptides in samples with 

low femtomole-peptide concentrations. In contrast, DHB was better suited for the highly 

concentrated samples by identifying more peptides than CHCA. By evaluating the m/z 

distribution of the detected peptides, peptides with low m/z range (up to ~1000) were better 

detected by DHB in comparison with CHCA, which showed more peptides at a high m/z range 

(≥1500). The performance of both matrices confirmed the complementary nature of MALDI-MS 

data obtained using CHCA and DHB in peptide mass fingerprinting [75].  

 

1.2.1.4.2. Lucky survivor model 

I. Original model: In 2000, Karas et al [76] proposed another ionization mechanism for MALDI 

that may occur in parallel with the gas phase protonation model. However, the model is 

dependent on the solvent used for sample preparation as well as the basicity of the analyte. In 

this model, the analyte is ionized during sample preparation and incorporated within the 

matrix/sample crystals with its corresponding counter ions (e.g., Cl
-
 or trifluoroacetic acid 

anions). The ablation/desorption of the matrix-analyte crystals by laser irradiation will release 

clusters of the analyte ions, counter ions and matrix molecules.  In the gas phase, quantitative 

charge neutralization between analyte, counter ions and electrons will produce the singly charged 

analyte ions (called lucky survivors) as a result of incomplete charge neutralization [76]. 
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II. Refined lucky survivor model: The same principles are applied as the original model where 

the analyte molecules are incorporated within the matrix/sample crystals as precharged species. 

However, in the refined model, matrix molecules are incorporated within the desorbed clusters as 

ionized molecules, contributing to the counter ion neutralization process, leading to the 

formation of singly charged analyte ions [77]. 

 

Scheme 1.7. Major proposed models for MALDI ionization; [I] Gas phase protonation, showing 

the charge transfer from the ionized matrix (mH
+
) to the analyte (A). [IIa] Lucky survivor 

model, showing the direct desorption of the preformed singly charged analyte (AH
+
). [IIb] 

Lucky survivor model for the multiply charged analyte (AHn
n+

), where incomplete neutralization 

by the counter ions (X
-
) or electrons occur in the gas phase producing the singly charged analyte 

ions (AH
+
). (A= analyte, m= matrix, x

-
 = counter ion) 

 

 

Both models, the gas phase protonation and the lucky survivor, highlight the importance of 

the matrix for analyte ionization in MALDI-MS. In 2011, T. W. Jaskolla and M. Karas 

experimentally proved the simultaneous occurrence of the two previously proposed mechanisms. 
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In this experiment, deuterated matrix has been used to detect and differentiate between the two 

mechanisms. In the gas phase protonation model, charge is transferred from the deuterated 

matrix ion [ma+D]
+
 to the neutral analyte, forming the deuterated analyte ion [A+D]

+
 instead of 

the protonated ion [A+H]
+
. However, the lucky survivor model indicates that the analyte 

molecules are already protonated during sample preparation as [A+H]
+
 [77]. Screening the mass 

spectra for the presence of either [A+H]
+ 

 and [A+D]
+
 showed the presence of both, which 

validated the two models.  

Other parameters can also determine the most prominent ionization mechanism including; 

pH of solvent, analyte basicity, and laser fluence [77]. A medium basic analyte (nicotinamide, 

m/z = 122.05) was investigated by MALDI-MS in different pH solutions using a deuterated 

matrix. The results showed that a decrease in the pH of a nicotinamide solution during sample 

preparation increases the [A+H]
+
 species at m/z = 123.06 in comparison to the [A+D]

+  
(Figure 

1.1A). This indicates that the lucky survivor model was the prominent ionization mechanism for 

nicotinamide in acidic solutions. In contrast, increasing the pH of a nicotinamide solution, 

activated the gas phase transfer during MALDI-MS generating significant [A+D]
+ 

ions at m/z = 

124.06 (Figure 1.1B). Laser fluence was also investigated showing a proportional relationship 

between laser fluence and nicotinamide ion formation via the gas phase transfer (i.e., [A+D]
+ 

ions), probably due to the enhanced ionization of matrix molecules [77]. 
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Figure 1.1. MALDI-MS spectra of nicotinamide prepared in (A) acidic solution and (B) basic 

solution using a deuterated matrix [77]. 

 

The type of ions generated during MS analysis is mainly based on the ionization technique, 

mode of ionization, and the nature of tested compounds. These ions could be protonated, 

deprotonated, radicals, adducts, singly charged, or multiply charged ions. The positively-charged 

[M-H]
+
 ion is an ion form that has been reported with various MS-ionization techniques with no 

detailed mechanism for its formation. The following section will present an overview about this 

ion and the proposed mechanisms for its formation with each MS ionization technique.  

 

1.2.2. [M-H]
+
 formation during MS analysis 

The positively-charged [M-H]
+
 ion was reported during chemical ionization (CI) [78, 79] and 

APCI-MS [39] analysis of various compounds, mainly alkanes. Later, this ion was detected  with 

other ionization techniques including; ESI [80, 81], MALDI [82-85], APPI [86], Desorption 

APPI (DAPPI) [87], Desorption ESI (DESI) [87], and direct analysis in real time (DART) [88]. 
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Various mechanisms were proposed to explain the [M-H]
+ 

formation however, the detailed 

mechanism and the factors influencing [M-H]
+ 

formation are still unclear. 

Generally speaking when using ESI or MALDI, basic compounds are expected to be ionized 

in the positive ion mode by protonation of the basic site, producing the [M+H]
+
 ions. However, 

several investigations [80-88] reported unexpected ionization behavior during the positive ion 

mode of MS analysis for some compounds where positively charged [M-H]
+
 ions were formed 

with or without the other expected species. The unusual formation of the [M-H]
+
 ion means that 

the molecules have lost in net one hydrogen atom instead of accepting a proton as shown in 

Scheme 1.8. 

 

 

 

Scheme. 1.8. The proposed structures of [M+H]
+
 and [M-H]

+
 ions of nitrogenous compounds 

 

[M-H]
+
 ions were observed with different MS-ionization techniques. In chemical 

ionization (CI), [M-H]
+
 was significantly detected with alkanes [89]. The proposed mechanism 

of [M-H]
+
 formation during CI was based on the dissociative proton transfer or hydride 

abstraction of the analyte by the reagent gas ions [78, 79, 90] (Scheme 1.9).  
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Scheme 1.9. [M-H]
+
 ion formation during chemical ionization by methane gas ions 

 

Similar to CI, [M-H]
+
 was commonly observed during APCI-MS analysis of alkanes 

[91-93] and the same mechanisms were applied to explain its formation (the loss of H2 from a 

protonated ion and hydride abstraction) by replacing the reagent gas ions (in CI) by other 

reactive ions such as protonated product ions of the solvent or the analyte (Scheme 1.10 A&B) 

[39, 91-94]. In addition, another mechanism was proposed for [M-H]
+
 formation during APCI-

MS involving the hydrogen transfer from the analyte radical cation to other molecules such as 

nitrogen [93] or oxygen species [91] (Scheme 1.10). 

 

 

 

 

CH4 + e
-
 → CH4

+•
 + 2e

- 

                                  CH4
+•

 + CH4 → CH5
+
 + CH3

 

                            CH5
+
 + M → CH 4 + [M+H]

+ 
 

                            [M+H]
+ 

→  [M-H]
+ 

+ H2     

 

                                   CH4
+•

 → CH3
+
  + H

• 

                             CH3
+
 + CH4 → C2H5

+
 + H2

 

                             C2H5
+
 + M → C2H6 + [M-H]

+   
(Hydride abstraction) 

 

 

 

(Protonation followed by H2 loss) 
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Scheme 1.10.  Proposed mechanisms for [M-H]
+
 ion formation during APCI-MS (RH

+ 
is a 

protonated product ion of solvent or analyte) 

 

A comparison between the sensitivity of APCI and APPI in the analysis of several 

neurotransmitters [86] showed that [M-H]
+
 was the most abundant ion in the positive ion mode 

of APPI-MS spectra of beta estradiole (Scheme 1.11), especially with two solvents; 

water/methanol/NH4OAc (50/50/0.1%) and water/methanol/NH4OH (50/50/0.1%). The same ion 

was also observed, albeit less abundant, with APCI-MS and the same solvents. The authors 

suggested the H2 loss from the [M+H]
+
 ion as well as the hydride abstraction as possible 

mechanisms of [M-H]
+
 formation [86]. 

 

 

 

 

 

 

 

Scheme 1.11. Structure of Beta-estradiol 

 

A) [M+H]
+ 

→  [M-H]
+ 

+ H2                             (Protonation followed by H2 loss) 

B) M + RH
+
  →  [M-H]

+  
+

  
RH2 

                         
(Hydride abstraction) 

C) M
+•

 + N
+•

  → [M-H]
+ 

 + N2H
+  

 

             M
+•

 + O2  → [M-H]
+ 

 + HO2
•   

 

 

(Hydrogen transfer) 
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Using ESI-MS, Orelli et al. [81] and Chai et al. [80] reported [M-H]
+
 ion formation during 

positive ion mode ESI-MS analysis of tertiary nitrogenous compounds and both proposed the 

hydride abstraction as a possible mechanism for [M-H]
+
 formation through the electrochemical 

oxidation process [80, 81]. Orelli et al. suggested that the increase in the positive charge on the 

droplet surface during desolvation in ESI increases the surface potential making the droplet 

surface act as an anode where hydride abstraction can occur [81]. In the same study, the authors 

compared the ionization behavior of ESI with electron ionization (EI) where [M-H]
+
 was 

detected with both techniques. For EI, a different mechanism was proposed for [M-H]
+
 

formation; the mechanism involved hydrogen transfer from the radical cations of the analyte 

[81]. 

In MALDI, Lou et al. [83] detected significant [M-H]
+
 ions during single stage positive ion 

mode MALDI-TOF-MS analysis of tertiary amines. However, these ions were barely detected 

with secondary amines. Two mechanisms for [M-H]
+
 formation were proposed: H2 loss from the 

[M+H]
+
 ion and hydrogen loss from the analyte radical cation [M]

+• 
(Scheme 1.12).  

 

                        A) 

 

                        B) 

 

Scheme 1.12. Proposed mechanisms for [M-H]
+
 formation during MALDI-TOF-MS [83] 
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More recently, C. Kang et al. [95] investigated the [M-H]
+
 formation using secondary and 

tertiary amines with N-benzyl groups in which the methylene of the N-benzyl is labeled with 

deuterium (Scheme 1.13). In this work, tertiary amines with an N-benzyl group showed high-

intensity of [M-D]
+
 and [M-H]

+
 ions in comparison with those of secondary amines that showed 

low abundant ions. In addition, the intensities of [M-D]
+
 and [M-H]

+
 and their ratios were 

dependent on the substituents on the N-benzyl group, for example electron donating groups (i.e., 

ethoxy group) showed a high level of dedeuteration of the methylene of the N-benzyl group. The 

authors proposed the same mechanism proposed by Lou et al. in Scheme 1.12B to explain the 

[M-H]
+
 formation. However, it was suggested that the radical cation of the analyte could be 

formed directly from the neutral molecule by losing an electron or from the protonated molecule 

by losing a hydrogen or deuterium atom. 

 

 

 

Scheme1.13. The secondary and tertiary amines with deuterated methylene of the N-benzyl 

group [95] 

 

The hydride abstraction was also proposed as a possible mechanism of [M-H]
+
 formation 

during MALDI-MS in several studies [84, 85]. Based on literature in the [M-H]
+
 ion and the 

suggested mechanisms for its formation, it can be concluded that there are three main proposed 

mechanisms for [M-H]
+
 formation; i) loss of H2 from the protonated ion, namely dissociative 

proton transfer, ii) hydride abstraction from the neutral molecule and iii) hydrogen abstraction 

from the radical cation.  
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1.2.3. Mass analyzers  

Ions entering a mass spectrometer pass through a mass analyzer to be separated based on 

their m/z values. There are six common types of mass analyzers that can be divided into trapping 

and non-trapping analyzers [45, 96].  Trapping analyzers include linear ion trap (LIT), Fourier 

transform ion cyclotron resonance (FTICR), and orbitrap. These analyzers are able to confine 

ions within the analyzing field for an indefinite time. Conversely, for non-trapping analyzers, 

such as quadrupole (Q), time of flight (TOF), and sector instruments, ions leave the ionization 

source and pass through the mass analyzer to the detector without trapping. The general 

principles of the commonly used mass analyzers in my research work (i.e., TOF, Q, LIT, and 

FTICR) will be outlined briefly in the following sections. 

 

1.2.3.1. Time-of-flight analyzer (TOF)  

In TOF, the expelled ions from the ionization source are subjected to a potential applied 

between an electrode and extraction grid in the acceleration region where all ions receive 

approximately the same kinetic energy. The accelerated ions are then allowed to travel through a 

field-free region with known length to reach the detector (Scheme 1.14).  

 

 

 

 

 

 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CDAQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFourier_transform_ion_cyclotron_resonance&ei=CwEIUdibC8aiiQKst4HoDA&usg=AFQjCNEV0bPsayXEmWHoQHAK-TmTUjyjyQ&sig2=iIQwXlMcU-kJdAb-i95z9w&bvm=bv.41642243,d.cGE
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CDAQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFourier_transform_ion_cyclotron_resonance&ei=CwEIUdibC8aiiQKst4HoDA&usg=AFQjCNEV0bPsayXEmWHoQHAK-TmTUjyjyQ&sig2=iIQwXlMcU-kJdAb-i95z9w&bvm=bv.41642243,d.cGE
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Scheme 1.14. A schematic diagram of a linear TOF-MS [97] 

 

 

The ions velocities in the field-free region between the ion source and the detector depend on 

their m/z values. Therefore, the m/z values of ions are determined by measuring the time (t) taken 

by the ions in the field-free region (L) as shown in the following equation [97-100]: 

 

                                          t
2
 =                                                       

 

Where: t = time of flight, m = ion mass, z = charge number of ion, L= length of the field-free region, e= 

charge of electron in coulombs (elementary charge), V= accelerating potential. 

 

The above equation shows the proportional relationship between the square of time of flight 

(t
2
) for an ion and its m/z value (i.e., the lower the m/z value of an ion, the faster it will reach the 

detector). This type of TOF analyzer is known as linear TOF analyzer [101]. 

To improve TOF performance, the reflectron TOF has been developed [102], where the ions 

after travelling through the tube flight, enter an electrostatic mirror (a reflectron) that reflects the 

ions and sends them again for a second flight distance towards the detector [102]. In this type, 
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the reflectron improves ion separation (resolution) by decreasing the kinetic energy variation 

among ions with the same m/z values. Ions with higher kinetic energy will enter and more deeply 

penetrate into the ion mirror than ions of same m/z values with lower kinetic energy. When the 

kinetic energies of the ions reach zero, ions are reaccelerated again by the reflectron electric field 

to be gradually repelled for another flight path to arrive at the detector at (almost) the same time 

[45, 97].  

In TOF, the detection of ions is only based on the time taken by the ions to reach the 

detector. As a result, a TOF mass analyzer has no theoretical upper detection limit for m/z values 

[97]. In addition, TOF is commonly used with pulsed-ionization sources such as MALDI 

because of its ability to analyze all ions in a single pulse [96, 103]. However, other continuous 

beam ionization sources such as ESI can also be used with TOF mass analyzers via orthogonal 

acceleration where the continuous ion beam is transformed into discrete pulses of ions [104]. 

 

1.2.3.2. Quadrupole mass analyzer (Q) 

The quadrupole mass analyzer consists of four parallel circular rods. Each opposing pair of 

rods is electrically connected by a combination of a constant direct current (DC) and alternating 

radio-frequency (RF) potentials. The applied potentials produce an opposite voltage polarity to 

the adjacent rods. Ions entering the quadrupole will show oscillatory movement between the rods 

based on their m/z values. Ions of a certain m/z value with stable trajectories will reach the 

detector while other ions with unstable trajectories will collide with the rods. Mathematically, 

calculations of which ions of given masses will have a stable trajectory can be done by using the 

Mathieu equations [45].   

Quadrupole-based instruments are relatively low cost and small in size, utilizing low voltages 

for ion acceleration (2–50 V versus kV in TOF). Despite being optimal for quantification, the 



28 

 

sensitivity in a quadrupole mass analyzer is mass dependent and decreases with high m/z values. 

Therefore, it has a limited mass range (up to ~4000 Da) [45, 96].  

 

1.2.3.3. Linear ion trap mass analyzer (LIT) 

LIT has the basic structure of a quadrupole mass analyzer with extra trapping end cap 

electrodes. However, instead of detecting ions that have stable trajectories through the rods, ions 

are trapped in an electric field to be mass selected for detection. Ions are trapped in a LIT 

radially by the 2 dimensional RF quadrupole field and axially by the potentials applied to the end 

caps [45, 105]. Mass selective ejection of trapped ions from LIT is performed either axially or 

radially. Ions are expelled axially by applying alternating current (AC) voltages between the 

quadrupole rods and the exit lens. Ions are expelled radially by applying an appropriate AC 

voltage on two opposite rods with slots to eject ions out from them [45]. 

 

1.2.3.4. Fourier transform ion cyclotron resonance (FTICR) 

In FTICR [106, 107], ions are trapped in a magnetic field with electric trapping plates. The 

trapped ions exhibit circular motions perpendicular to the magnetic field producing cyclotron 

frequencies that depend on their m/z values. Ions to be detected are excited by alternating current 

(AC) to increase the radius of their circular motions to be closer to the detection plates. When 

ions pass by the detection plates, an alternating current (named the image current) is generated 

producing a time domain signal that consists of all the characteristic frequencies of the measured 

ions. The Fourier transform operation converts the time domain signal into a frequency domain 

signal that results in a mass spectrum. FTICR is still the technique of choice for accurate mass 

measurements with mass accuracy < 1 PPM and resolution > 500,000 [45, 51]. However, the 

scan speed of this analyzer at high resolving power is slow as ~1 second is needed to acquire a 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CDAQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFourier_transform_ion_cyclotron_resonance&ei=CwEIUdibC8aiiQKst4HoDA&usg=AFQjCNEV0bPsayXEmWHoQHAK-TmTUjyjyQ&sig2=iIQwXlMcU-kJdAb-i95z9w&bvm=bv.41642243,d.cGE
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high resolution spectrum, unlike TOF that is able to acquire thousands of spectra in one second 

[45, 108, 109].   

 

1.2.3.5. Tandem mass spectrometry  

Tandem mass spectrometry performs multiple consecutive mass-analyzing steps. It is also 

known as MS/MS based on the number of mass analyzing stages [96, 110]. MS/MS instruments 

are classified into two categories: tandem-in-space and tandem-in-time instruments. In tandem-

in-space instruments, MS/MS analyses are performed sequentially in separate mass analyzers, 

the non-trapping mass analyzers such as Q and TOF are usually used in designing such 

instruments [96]. The most commonly used tandem-in-space instruments are triple quadrupole 

mass spectrometers (QqQ), hybrid quadrupole time-of-flight mass spectrometers (Q-TOF) and 

tandem time-of-flight mass spectrometers (TOF/TOF).  

QqQ is composed of two quadrupole mass analyzers separated by a quadrupole unit that acts 

as a collision cell where fragmentation occurs by low energy collision induced dissociation 

(CID) in the presence of an inert gas [111]. In most QqQ instruments, the second quadrupole is 

an hexapole or an octopole [45, 111]. Q-TOF is similar to QqQ but the third quadrupole analyzer 

is substituted by a time-of-flight mass analyzer [45, 111], allowing for accurate mass 

measurements. Both QqQ and Q-TOF perform low energy CID in contrast to TOF/TOF 

instruments that perform high energy CID [97]. In TOF/TOF, one of the common configurations 

currently used is the combined system of a short linear TOF, an ion deflection gate, a collision 

cell and a reflectron TOF [111]. The ion gate is a timed ion selector that allows the passage of 

selected ions to the collision cell where high energy CID is performed. The product ions then 

enter a longer field free region for separation producing an MS/MS spectrum [45, 97, 111].  
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Each tandem mass spectrometer has its own advantages, for example Q-TOF and TOF/TOF 

have high mass accuracy and a wide mass range [45, 111]. On the other hand, QqQ is better 

suited for quantification [111]. It also has the ability to perform precursor ion and neutral loss 

scans that allow for the confirmation of the precursor ion’s structure and its fragmentation 

pathway [111].  

In tandem-in-time instruments, trapping mass analyzers are used, such as LIT and FTICR 

where various MS/MS stages are performed successively in the same mass analyzer but 

separated in time. The main advantage of tandem-in-time instruments is their ability to perform 

multiple stages of fragmentation (MS
n
). For MS/MS analysis, ions within a specific m/z range 

are trapped to be fragmented while other ions are ejected, and the resulted product ions are 

directly monitored. However, in MS
3
 analysis, a specific product ion will be selected for further 

fragmentation and monitoring. This procedure could be repeated (i.e., MS
n
 analysis) [45, 111]. 

LIT is one of the most popular mass analyzers based on its small size, low price and high MS
n
 

capability [110, 111]. However, its poor performance in quantitative applications and inability to 

perform precursor ion and neutral loss scans are its main drawbacks [110, 111]. These limitations 

have been overcome by introducing hybrid Qq-LIT by replacing the third Q in QqQ with a LIT 

allowing for all scan modes to be performed by conventional QqQ while adding the advantages 

of LIT [110]. 
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1.3. Research hypotheses and objectives  

The main purpose of my M.Sc. project is to investigate the ionization and tandem mass 

spectrometric behavior of novel antineoplastic curcumin analogues. The goal is to assess the 

dissociation behavior and ion formation mechanisms for curcumin analogues during MS-

analysis.  

1.3.1. Evaluating the ionization behavior of novel curcumin analogues using different 

ionization techniques; ESI, APCI, MALDI, and APPI-MS. 

1.3.1.1. Hypothesis  

Curcumin analogues will ionize forming [M+H]
+
 in the positive mode and [M-H]

-
 in the negative 

ion mode regardless of the type of the ionization technique and the experimental condition. 

1.3.1.2. Objective  

The ionization behavior of curcumin analogues using various MS ionization techniques, namely 

ESI, APCI, APPI (with and without dopant) and MALDI-MS will be evaluated. The ionization 

study will mainly involve explaining an unusual phenomenon of the predominant formation of 

[M-H]
+
 species during single stage positive ion mode MALDI-MS and dopant free-APPI-MS 

analysis. 

 Specific aim-1: Evaluate the ionization behavior of 13 curcumin analogues (Scheme 

1.3) with ESI, APCI and MALDI-MS. 

 Specific aim-2: Perform accurate mass measurements of [M-H]
+
 and [M+H]

+
 of all 

tested compounds using MALDI-FTICR-MS instrument. 

 Specific aim-3: Evaluate the influence of various factors, namely laser intensity, the 

type of mass analyzer, the matrix, and the solvent in the formation of [M-H]
+
 ions 

during MALDI-MS. 
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 Specific aim-4: Apply APPI-MS (with and without dopant) to assess the role of direct 

photoionization in the formation of [M-H]
+
 ions. 

 Specific aim-5: Identify the possible mechanisms for [M-H]
+
 formation. 

 

1.3.2. Establishment of the fragmentation patterns (i.e., fingerprints) of curcumin 

analogues using ESI-MS/MS. 

1.3.2.1. Hypothesis  

Structurally similar compounds will show similar fragmentation behavior using the same 

ionization technique, allowing for the establishment of a general MS/MS fragmentation pattern 

for the 13 tested curcumin analogues.  

1.3.2.2. Objective 

Establishment of the fragmentation patterns of the tested curcumin analogues using ESI-MS/MS.   

 Specific aim-1: Confirm the molecular structure of tested curcumin analogues using 

MS, MS/MS and MS
3
 analysis. 

 Specific aim-2: Establish universal MS/MS (fingerprints) for the identification of tested 

compounds. 
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CHAPTER2                                                                                                                                       

THE UNEXPECTED FORMATION OF [M-H]
+
 SPECIES DURING MALDI AND 

DOPANT FREE-APPI MS ANALYSIS OF NOVEL ANTINEOPLASTIC CURCUMIN 

ANALOGUES 

 

 

H. Awad, M. J. Stoudemayer, L. Usher, I. J. Amster, A. Cohen, U. Das, R. M. Whittal, J. 

Dimmock, A. El-Aneed
 

 

In this work, I evaluated the ionization behavior of thirteen curcumin analogues using 

different ionization techniques and experimental conditions. The evaluated curcumin analogues 

were synthesized by co-authors Dr. Das and Dr. Dimmock at University of Saskatchewan as per 

Dr. El-Aneed’s request. I synthesized the deuterated curcumin analogue. I designed all the 

ionization studies in consultation with my supervisor Dr. El-Aneed.  In addition, I performed all 

MALDI experiments using the ABI 4800 MALDI TOF/TOF
™

 instrument. I performed various 

experiments to evaluate the role of laser intensity, ionization mode, solvent, and matrix. In 

addition, I analyzed all the data provided by Dr. El-Aneed’s collaborators. I evaluated three 

proposed mechanisms to explain the [M-H]
+
 formation including loss of H2 from the protonated 

[M+H]
+
 species, hydrogen transfer from the analyte radical cation and hydride abstraction from 

the neutral analyte molecule. I drafted various versions of the published manuscript under the 

supervision of Dr. El-Aneed who revised the various versions of the manuscript.  

I visited the University of Alberta working with co-author Dr. Whittal for obtaining high 

resolution MS data (i.e. MALDI-FTICR-MS). In addition, an APPI-TOF-MS experiment was 

performed, based on my suggestions by Dr. Whittal at the University of Alberta to evaluate the 

role of photon energy and dopant in the ionization of curcumin analogues.  

The first MALDI experiment in this work was conducted in 2010 by Dr. Cohen at NRC-

Halifax and Ms. L. Usher worked under the supervision of Dr. El-Aneed to theoretically study 

http://www.ualberta.ca/
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this unique ionization mechanism focusing on four curcumin analogues. At the University of 

Georgia, M. J. Stoudemayer under the supervision of Dr. Amster evaluated the ionization 

behavior of one of the curcumin analogues (i.e. NC2138) using different MALDI-FTICR-MS 

experimental conditions. Ms. Stoudemayer also performed the butylated hydroxytoluene (BHT) 

experiments, based on my suggestion, on NC2138 and NC2144 to evaluate the radical formation 

mechanism using the butylated hydroxytoluene as a radical scavenger: these results were not 

conclusive. In addition, they provided suggestions regarding changing some of the experimental 

conditions such as using different solvents and various laser intensities.  All co-authors were 

given the opportunity to provide suggestions for the final version of the manuscript I drafted 

under the supervision of Dr. El-Aneed.  
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INTRODUCTION 

Qualitative and quantitative analysis of drug molecules is a crucial step during the drug 

development process that requires the use of various analytical tools such as mass spectrometry 

(MS). Various ionization techniques have been used with MS including electrospray ionization 

(ESI) [1, 2], atmospheric pressure chemical ionization (APCI) [3], atmospheric pressure 

photoionization (APPI) [4] and matrix assisted laser desorption ionization (MALDI) [5, 6]. ESI 

and MALDI are the most widely used soft ionization techniques, based on their ability to ionize 

a wide range of biomolecules as well as small organic compounds, with minimum in-source 

fragmentation [7, 8]. MALDI can offer great tolerance towards contaminants, easy sample 

preparation and mass spectra with predominantly singly charged ions [9, 10]. For LC-MS 

analysis, ESI and APCI are the most widely used ionization techniques [10]. However, APPI has 

recently been utilized due to its ability to ionize non polar compounds that are not well-ionized 

by APCI or ESI [10].  

In this study, we used different MS-ionization techniques to analyze some curcumin 

analogues that are novel drug molecules designed as anticancer agents [11, 12]. The evaluated 

molecules are 3,5-bis(benzylidene)-4-piperidones, containing the 1,5-diaryl-3-oxo-1,4-

pentadienyl pharmacophore (Scheme 2.1) which is considered to act at a primary binding site. 

This group was designed to alkylate cellular thiols rather than interacting with amino or hydroxyl 

groups present in nucleic acid [11, 12]. In addition, substituents have been placed on the 

piperidyl nitrogen atom to align at auxiliary binding sites thereby increasing the cytotoxic 

potential of the compounds [13]. Based on the nature of the N-substituents, the curcumin 

analogues have been categorized into four groups: phosphoramidates, secondary amines, amides 

and mixed amines/amides (Scheme 2.2).  
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Scheme 2.1. General structure of the 3,5-bis(benzylidene)-4-piperidones (the 1,5-diaryl-

3-oxo-1,4-pentadienyl pharmacophore is in the box). 
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Scheme 2.2. Structures and monoisotopic masses of the novel antineoplastic curcumin analogues 

categorized by the N-substituent into four structural families: phosphoramidates, secondary 

amines, amides and mixed amines/amides. 
 



49 

 

The curcumin analogues are nitrogenous compounds that are expected to ionize in the 

positive ion mode by protonation of the basic site, producing the [M+H]
+
 ions. Unexpectedly 

during single stage MALDI-MS analysis, [M-H]
+
 ions were formed along with the expected 

[M+H]
+
 species (Scheme 2.3). In addition, three curcumin phosphoramidate analogues ionized 

solely as [M-H]
+
.  

 

 

 

 

 

 

 

 

 

Scheme 2.3. The proposed general structures of 3,5-bis(arylidene)-4-piperidone; [M+H]
+
 and 

[M-H]
+
 ions. 

 

The formation of positively-charged [M-H]
+
 ions was reported significantly with alkanes 

during chemical ionization (CI) [14, 15] and APCI-MS [3]. Subsequently, [M-H]
+
  ion formation 

has been detected with a wide range of compounds with various ionization techniques, such as 

ESI [16, 17], MALDI [18-22], APPI [23], Desorption APPI (DAPPI) [24], Desorption ESI 

(DESI) [24] and direct analysis in real time (DART) [25]. Several mechanisms have been 

proposed to explain the formation of [M-H]
+ 

during MS-analysis that could be summarized into 

three main mechanisms; i) loss of hydrogen molecule from the protonated [M+H]
+
 ion, ii) 

hydrogen transfer from the analyte radical cation or iii) hydride abstraction from the neutral 

analyte  molecule [14-23, 26-28] (Scheme 2.4).  
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Scheme 2.4. The three general proposed mechanisms for [M-H]
+
 formation during MS analysis. 

 

In MALDI-MS, Lou et al. [19] detected significantly [M-H]
+
 ions during single stage 

positive ion mode MALDI-TOF-MS analysis of tertiary amines. However, [M-H]
+
 was barely 

detected with secondary amines. Two mechanisms for [M-H]
+
 formation were proposed in this 

study: H2 loss from the [M+H]
+
 ion and hydrogen loss from the analyte radical cation [M]

+•
 

(Scheme 2.4 I&II respectively). In 2013, Kang et al. [20] investigated the [M-H]
+
 formation 

using secondary and tertiary amines. The study showed high-intensities of [M-H]
+
 ion peaks with 

tertiary amines in comparison to secondary amines that showed low intensity peaks. The study 

proposed the mechanism shown in Scheme 2.4 II to explain the [M-H]
+
 formation that involves 

hydrogen loss from the analyte radical cation [20]. Few papers, however, suggested the hydride 

abstraction of the analyte (Scheme 2.4 III) to explain the [M-H]
+
 formation during MALDI-MS 

[21, 22]. 

In our work, the ionization behavior of biologically active curcumin analogues (Scheme 2.2) 

were studied using various ionization techniques, namely ESI, APCI, APPI (with and without a 

dopant), and MALDI. Significant [M-H]
+ 

peaks were detected with MALDI and dopant free 

APPI-MS. Therefore, we investigated the role of the matrix and the solvent in [M-H]
+
 formation 

by applying laser desorption ionization (LD)-MS and solvent free LD-MS. In addition, the 

I)     [M+H]
+   →  [M-H]

+
        (Protonation followed by H2 loss) 

II)     M
+•

  →  [M-H]
+               

(Hydrogen atom transfer) 

III)   M  
 
 → [M-H]

+ 
  

             
(Hydride abstraction) 

              

 

-H2 

-H 

-H
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influence of laser intensity, the type of mass analyzer and the ionization mode were evaluated. 

Our aim is to expand on the previously reported formation of the [M-H]
+ 

ion and understand the 

various factors that may contribute to its formation.  

Understanding the unusual ionization behavior of curcumin analogues is important for the 

future development of qualitative and quantitative MS based methods to analyze these drug 

candidates or any structurally-related compounds that may behave in a similar way. In addition, 

the unusual ionization behavior of curcumin analogues revealed interesting observations that 

may contribute in understanding the detailed mechanism of MALDI that is currently still not 

totally clear.  

 

EXPERIMENTAL 

Curcumin analogues were synthesized by the methods described previously [12, 13]. The 

compounds are categorized by the N-substituent as phosphoramidates, secondary amines, amides 

and mixed amines/amides (Scheme 2.2).  

 

ESI-MS analysis 

ESI-MS analysis was conducted on an AB SCIEX 4000 QTRAP
®
 instrument (Qq-LIT-MS).  

Samples were prepared in concentration of 0.2 mg/mL in 100% acetonitrile (ACN). Samples 

were directly injected at a flow rate of 10 µL/min using a Harvard syringe pump. The instrument 

was operated in the positive ion mode with ion spray voltage 5500 V at room temperature and a 

declustering potential of 100V.  
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APCI-MS analysis 

Samples with a concentration of 0.2 mg/mL in water: acetonitrile (50:50, v/v) were injected 

into an AB SCIEX 4000 QTRAP
®
 instrument (Qq-LIT-MS) by switching the ionization source 

from ESI into APCI.  The instrument was operated in the positive ion mode with a APCI probe 

temperature at 200°C, nebulizer current of 3 µA and a declustering potential of 100 V. 

 

APPI-MS analysis 

Samples were injected into an Agilent 6220 orthogonal time-of-flight-MS equipped with an 

APPI source.  The instrument was operated in the positive ion mode with a krypton lamp 

generating two photon energy lines at 10.0 and 10.6 eV.  The vaporizer was set to 350°C while 

the drying gas was set at 10L/min with the gas heater set to 300°C. The carrier solvent was 100% 

acetonitrile for the no dopant samples (0.2 mg/mL dissolved in 100% ACN) and 95% ACN/5% 

acetone for the dopant samples (0.001 mg/mL dissolved in 100% ACN) at a flow rate of 0.2 

mL/min.   

  

MALDI-MS analysis  

Samples were prepared at a concentration of 1µg/mL by dissolving the curcumin analogue in 

100% ACN. 2,5-Dihydroxybenzoic acid (DHB) was used as a matrix with a concentration of 10 

mg/mL in H2O:ACN:TFA (50:50:0.1, v/v/v). Samples were prepared by mixing the above 

working solutions of analyte and matrix in a ratio of 1:1 (v/v). Samples were spotted on MALDI 

stainless steel plate, dried and introduced into an ABI 4800 MALDI TOF/TOF
™

 instrument 

equipped with a Nd:YAG laser, 355 nm wavelength, 3 to 7 ns pulse width and a 200 Hz firing 

rate. The laser intensity was set at 4200, delay time 25 ns and the accelerating voltage at 20 kV. 

Mass spectra were acquired in the reflector positive ion mode by summing the spectra of 800 
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laser shots. For investigating the possible mechanism of [M-H]
+ 

formation during MALDI-MS 

analysis, samples were run under different conditions including negative ion mode and different 

laser intensities (4000-5000). 

 

LD-MS and solvent free LD-MS analysis 

In LD-MS analysis, curcumin analogues were dissolved in 100% ACN at a concentration of 

0.2 mg/ml and introduced into an ABI 4800 MALDI TOF/TOF
™

 instrument without using a 

matrix. In solvent-free LD-MS, powders of curcumin analogues were smeared on a MALDI 

stainless steel plate with no matrix or solvent and introduced into the ABI 4800 MALDI 

TOF/TOF
™

 instrument. In both LD-MS and solvent free LD-MS, samples were run under the 

same instrument parameters described above for the MALDI-MS analysis. 

The solvent free LD-MS analysis experiment was duplicated using MALDI-FTICR-MS 

(Bruker 9.4T Apex-Qe FTICR-MS) to investigate the influence of the mass analyzer on [M-H]
+
 

formation in the absence of other factors such as matrix and solvent.  The FTICR instrument was 

equipped with a 355 nm Nd:YAG laser and operated in the positive ion mode with laser power 

range 45-75%. Mass spectra were acquired by summing the spectra of 25 laser shots. Exact mass 

measurements of the curcumin analogues were performed after externally calibrating the FTICR 

instrument with polyethylene glycol 600 and DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene]malononitrile). 
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RESULTS AND DISCUSSION  

Ionization of curcumin analogues  

The curcumin analogues showed various ionization behaviors based on the ionization 

methods. In the single stage positive ion mode ESI-MS and APCI-MS, all curcumin analogues 

were ionized as expected yielding the protonated ion, [M+H]
+
. Interestingly, in the single stage 

positive ion mode of MALDI-MS, curcumin analogues were ionized in two forms showing both 

[M-H]
+
 and [M+H]

+
 species. Figure 2.1 shows the MALDI-MS spectrum for one of the 

curcumin analogues (NC 2067 will be used as a representative structure with a monoisotopic 

mass of 466.2 Da) showing two major peaks [M-H]
+
 and [M+H]

+
 at m/z = 465.2 and 467.1 

respectively. The authenticity of the observed [M-H]
+
 and [M+H]

+
  ions was verified via exact 

mass measurements using an FT-ICR-MS instrument (Table 2.1).  A peak at m/z = 269.1 was 

also observed representing a [M+3H]
+
 ion. An [M+3H]

+
 ion has been reported and investigated 

by Calba et al. during MALDI-MS studies [29, 30], and they proposed that hydrogen atoms 

transfer from the matrix to the analyte molecule as a possible mechanism for its formation. The 

[M+3H]
+
 ion was not observed with all tested curcumin analogues and since our aim is to 

evaluate the formation of [M-H]
+
; therefore, it will not be discussed further in this work.  
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Figure 2.1. MALDI-MS spectrum of curcumin analogue (NC 2067 with monoisotopic mass= 

466.2 Da) showing two forms of ions [M-H]
+
 and [M+H]

+
 (m/z 465.2 and 467.1, respectively). 

 

 

Table 2.1. The mass accuracy of [M-H]
+
 and [M+H]

+
 ions for each curcumin analogue using 

Bruker 9.4T Apex-Qe MALDI-FTICR-MS. 

 



56 

 

To explain the detailed mechanism of [M-H]
+
 formation during MALDI-MS, several 

experiments were conducted to explore the factors that may influence the formation of [M-H]
+
 

ions including laser intensity, the type of the mass analyzer, ionization mode, matrix and solvent. 

Monitoring the change in [M-H]
+
 formation with the change in laser intensity, vacuum 

pressure or length of time between formation and detection can be explored with different mass 

analyzers (trapping or non-trapping analyzer). For example, in the Fourier transform ion 

cyclotron resonance (FT-ICR) instrument, ions are formed at a vacuum pressure of 

approximately 1.5 Torr and stored in an external hexapole for several milliseconds prior to 

injection to the low pressure region of the ICR cell.  In comparison, ions are formed in the 

TOF/TOF at less than µTorr pressures and the time from ion formation to detection is on the µs 

time scale.  Changes in pressure and time may influence the relative abundance of the ion types 

observed. By using different mass analyzers (i.e. FTICR instead of TOF) and changing the laser 

intensity of MALDI-TOF-MS within the range (4000 - 5000) did not alter the results, as both 

[M-H]
+ 

and
 
[M+H]

+ 
ions were observed, indicating that neither the laser intensity (within the 

tested range) or the mass analyzer has a significant role in [M-H]
+ 

formation. In addition, 

changing the mode of ionization to the negative ion mode was investigated to monitor any 

unusual ion formation. However, the negative ion mode of MALDI-MS resulted in the formation 

of the radical anion [M]
-•
 and the expected [M-H]

- 
of all tested compounds with no unusual 

formation of other ions (data not shown).  

In order to study the influence of the matrix on the [M-H]
+
 ion formation, MALDI-MS 

experiment was repeated with two different matrices (i.e. α-Cyano-4-hydroxycinnamic acid and 

3-Hydroxy-4-Nitrobenzoic acid) for NC2138 as a representative compound. The experiments 

showed the same results of 2,5-dihydroxybenzoic acid as both [M-H]
+
 and [M+H]

+
 ions were 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CDAQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFourier_transform_ion_cyclotron_resonance&ei=CwEIUdibC8aiiQKst4HoDA&usg=AFQjCNEV0bPsayXEmWHoQHAK-TmTUjyjyQ&sig2=iIQwXlMcU-kJdAb-i95z9w&bvm=bv.41642243,d.cGE
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CDAQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFourier_transform_ion_cyclotron_resonance&ei=CwEIUdibC8aiiQKst4HoDA&usg=AFQjCNEV0bPsayXEmWHoQHAK-TmTUjyjyQ&sig2=iIQwXlMcU-kJdAb-i95z9w&bvm=bv.41642243,d.cGE
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CDkQFjAB&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fc8982%3Flang%3Den%26region%3DUS&ei=fPM9U4H8BYm6yAGVkIGoAw&usg=AFQjCNH6po2mx2FTJlkSKXo-FfrkYdzltQ&sig2=uHDvKufQ5Z_0sXG7NKj0Fw&bvm=bv.64125504,d.aWc
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observed (data not shown).  Interestingly, the formation of [M-H]
+
 and [M+H]

+
 ions were not 

changed even in the absence of matrix during an LD-MS experiment of all tested curcumin 

analogues except the disappearance of [M+3H]
+
 peak (Figure 2.2).  

 

Figure 2.2. LD-MS spectrum of curcumin analogue (NC2067) showing two forms of ions [M-

H]
+
 and [M+H]

+
 (m/z 465.1 and 467.1 respectively). 

 

LD-MS experiment supported the significant role of matrix in [M+3H]
+
 formation as 

previously described by Calba et al. [29, 30]. In contrast, matrix was not significant for the [M-

H]
+
 and [M+H]

+
 formation. The relative intensity of [M+H]

+
 was, however, increased, as 

expected, when using a matrix (Figures 2.1 & 2.2). Two more ratios of analyte: matrix were 

investigated in our MALDI-MS experiments (1:100 and 1:1000 molar ratios) in order to monitor 

the change in [M+H]
+
/[M-H]

+
 relative peak intensities. The results showed significant increase in 

the [M+H]
+
/[M-H]

+
 intensities with the higher ratio of analyte: matrix due to increase in the 

protonated ion form [M+H]
+
 of our compounds (data not shown). 
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Based on the lucky survivor model of MALDI [31, 32], the solvent may also play a role in 

ion formation by ionizing the analyte during sample preparation. Therefore, we investigated 

different solvent mixtures during sample and matrix preparations in MALDI-MS. For example 

100%ACN or H2O:ACN:TFA (50:50:0.1) were applied for sample preparation while  ACN:H2O 

(50:50) and H2O:ACN:TFA (50:50:0.1) for matrix solution. Changing the solvent system of both 

sample and matrix solutions did not change the MALDI-MS results as both ions [M-H]
+
 and 

[M+H]
+ 

were formed. However, as expected, the [M+H]
+ 

peak intensity was enhanced by using a 

proton donor solvent such as TFA. To further evaluate the role of the solvent in the [M-H]
+
 ion 

formation, solvent free LD-MS was applied. In this method, the curcumin analogue powder was 

smeared on a stainless steel MALDI plate without a solvent or a matrix. Interestingly, both [M-

H]
+
 and [M+H]

+
 ions were formed (Figure 2.3), indicating that neither the matrix nor the solvent 

play a decisive role for the formation of [M-H]
+
 or [M+H]

+
 ions of the tested compounds.  

 

Figure 2.3. Solvent free LD-MS spectrum of curcumin analogue (NC2067) showing two forms 

of ions [M-H]
+
 and [M+H]

+
 (m/z 465.1 and 467.1 respectively). 
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The above findings indicate that the two major models that explain the ionization mechanism 

of MALDI; gas phase protonation [33-35], and lucky survivor model [31, 32], cannot explain the 

[M-H]
+
 or [M+H]

+
 formation of the tested curcumin analogues, as both models highlighted the 

importance of the matrix and solvent, respectively, for analyte ionization during MALDI-MS. 

 

The unusual formation of [M-H]
+
 ions during the positive ion mode of MALDI-MS means 

that the curcumin analogues have lost in net one hydrogen atom instead of accepting a proton. It 

can be argued that ring fusion may be occurring during ionization and the observed [M-H]
+
 is 

simply [M-2H+H]
+
. Therefore, we analyzed a newly designed deuterated curcumin analogue in 

which 10 hydrogen atoms of the two benzene rings were replaced with deuterium atoms giving 

MW = 285 Da (Figure 2.4). During the positive ion mode LD-MS of the deuterated compound, 

two major peaks were observed at 284.1 and 286.1 Da, indicating that the tested compound was 

ionized as proposed in Scheme 2.3 by losing a hydrogen in net forming the [M-H]
+ 

and by 

accepting a proton forming the [M+H]
+ 

respectively (Figure 2.4). This experiment confirmed that 

the major peak of [M-H]
+ 

at m/z 284.1 was formed by double bond formation between the 

nitrogen atom and the adjacent carbon atom rather than any possible ring fusion. However, a 

minor peak was detected at m/z 283.1 which is probably the protonated form of the ring fused 

structure [M-D-H+H]
+
 (Figure 2.4). 
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Figure 2.4. LD-MS spectrum of the deuterated NC compound showing two forms of ions [M-

H]
+
 and [M+H]

+
 (m/z 284.1 and 286.1 respectively). 

 

By excluding all the factors (i.e. matrix, solvent, laser intensity and analyzer type) that 

evidently did not significantly contribute to the formation of [M-H]
+
 or [M+H]

+
 ions, it was 

important to investigate direct photoionization as a possible factor of such unusual ionization 

behavior. Therefore, another ionization technique that depends on photoionization was used, 

namely APPI. During APPI-MS, the ionization behavior of the curcumin analogues was dopant-

dependent. In the presence of dopant (5% acetone in ACN), curcumin analogues were mainly 

ionized as [M+H]
+ 

as in ESI and APCI (Figure 2.5A). However, in the absence of a dopant, the 



61 

 

ionization behavior was similar to that observed during MALDI-MS producing the two forms of 

ions [M-H]
+
 and [M+H]

+ 
(Figure 2.5B). An explanation for such APPI-dopant related behavior is 

detailed later.  

 

Figure 2.5: APPI-MS spectrum of curcumin analogue (NC2067) using 5% acetone as a dopant 

showing only [M+H]
+ 

ion (A). APPI-MS spectrum of curcumin analogue (NC2067) without a 

dopant showing two forms of ions [M-H]
+ 

and [M+H]
+
 (B). 

 

Proposed mechanisms for [M-H]
+
 and [M+H]

+
ion formation 

The above experiments showed that tested curcumin analogues were able to ionize in two 

forms as [M-H]
+
 and [M+H]

+
 even in the absence of any ionization enhancer such as a matrix or 

a solvent in MALDI; or a dopant in APPI. Such ionization behavior may indicate the 

involvement of direct photoionization as a possible mechanism for the formation of both ions. 
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The formation of the [M+H]
+ 

ion by direct photoionization is expected with compounds of low 

ionization energy that are able to absorb the photon energy [36-38], as follows: 

 

 

 

The analyte molecule (M) absorbs the photon energy (hv) forming the radical cation (M
+•

) 

(eq 1), which in turn reacts with a solvent molecule (S) to form the [M+H]
+
 ion by hydrogen 

atom transfer (eq 2). This mechanism could explain the [M+H]
+
  formation during dopant free 

APPI-MS and LD-MS. However, in the absence of a solvent (S) (i.e. solvent free LD-MS), the 

most likely reaction could be a hydrogen atom transfer from another neutral analyte molecule 

instead of the solvent as illustrated in (eq 3).  

 

M
+•

 + M → [M+H]
+
 + M [-H]     (3)        

 

As illustrated in equations (1), (2) and (3), radicals play an important role in [M+H]
+
 ion 

formation by direct photoionization. Radicals were significantly observed with all curcumin 

analogues, except one, during dopant free APPI-MS; whereas in MALDI-MS, only a few 

compounds showed such radicals. The absence of radicals during MALDI-MS could be 

explained by the fast conversion of these species into the more stable protonated form [M+H]
+
 or 

that the laser photon energy was not sufficient to generate the radicals in the positive ion mode 

H

  
M

+•
 + S → [M+H]

+ 
+

 
S[-H]        (2)  

 

M + hv  → M
+•

 + e
-                              

(1) 

H
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and the excited state of the analyte (M
*
) was formed instead of the radicals (eq 4) to be followed 

by proton transfer (eq 5). 

 

 

M
*
 + M → [M-H]

-
 + [M+H]

+
    (5)       

   

The proposed mechanisms for the direct photoionization of the curcumin analogues during 

MALDI, LD, and solvent free LD-MS is similar to the principles that govern the ionization of a 

matrix [33]. The matrix is directly photoionized by the laser producing the matrix radicals or the 

excited state of the matrix molecules, which in turn ionize the analyte in the gas phase [33]. 

Therefore, we explored the curcumin analogues as matrix candidates. However the curcumin 

analogues remained able to self-ionize without the ionization of the other tested analytes 

(tetracycline and prednisolone were tested; data not shown). 

 

In the above proposed mechanisms, we explained the [M+H]
+ 

formation of the tested 

curcumin analogues by direct photoionization during LD-MS, solvent free LD-MS, and dopant 

free-APPI-MS. However, the above explanations do not explain the unusual formation of [M-H]
+
 

and its possible mechanism. As mentioned, [M-H]
+ 

ions were previously reported with various 

ionization techniques including MALDI [18-22] and APPI [23]. Most publications focused on 

three mechanisms to explain the [M-H]
+ 

formation; i) loss of H2 from the protonated analyte, ii) 

hydrogen atom transfer from the analyte radical cation or iii)  hydride abstraction from the 

H+  

M + hv  → M
*
                           (4) 
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neutral analyte molecule (Scheme 2.4). For the curcumin analogues, conversion of the [M+H]
+ 

ion
 
into [M-H]

+ 
via H2 loss (Scheme 2.4I) could be rationalized by the fact that [M-H]

+ 
ions are 

highly conjugated species and therefore are more stable in comparison to [M+H]
+
 (Scheme 2.3). 

However, this proposed mechanism was not completely supported by our experimental results 

for three reasons; i) the conversion of [M+H]
+ 

into
 
[M-H]

+ 
 was not detected with all tested 

compounds during MALDI-MS as three compounds (NC2313, NC2314 and NC2315) were only 

detected as [M-H]
+ 

with no [M+H]
+ 

formation
 
(Figure 2.6). ii) Such conversion was not detected 

with dopant mediated-APPI-MS experiment; however, it was detected with the same technique 

in the absence of a dopant, acknowledging that the [M+H]
+ 

ion was formed in both experiments. 

iii) The fragmentation spectra of [M+H]
+ 

ions of all tested curcumin analogues using ESI-

MS/MS at various collision energies did not show [M-H]
+ 

as a possible product ion via H2 loss 

(data not shown). Such observations do not support the proposed H2 loss mechanism (Scheme 

2.4I); however it cannot be completely excluded as multiple mechanisms may be occurring 

simultaneously.     
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Figure 2.6. Formation of [M-H]
+ 

in absence of [M+H]
+
 during the solvent free LD-MS analysis 

of NC 2313 (A), NC2314 (B) & NC2315 (C). 
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The disappearance of [M+H]
+ 

ions with the three curcumin analogues (NC2313, NC2314 and 

NC2315) was surprising as these three compounds were substituted with multiple methoxy 

groups (Scheme 2.2). The methoxy groups in the three tested compounds are electron donating 

groups which can theoretically increase the ability of the nitrogen to share its lone pairs of 

electrons, making them more susceptible to accept a proton; hence, forming the [M+H]
+ 

ions. 

Conventional chemistry may not be sufficient to explain the reason behind such observation as 

the rules governing gas-phase chemistry may be different than those governing bench-based 

chemical reactions. At this stage, we are not able to explain the reason behind such an 

observation.   

Another proposed mechanism for [M-H]
+ 

ion formation includes hydrogen atom transfer 

from the analyte radical cation into other molecules such as oxygen [26] or nitrogen species [27]  

(Scheme 2.4II). This mechanism is similar to the previously proposed mechanism of [M+H]
+ 

formation by direct photoionization (eq 1, 2 & 3) except that the analyte radical cation (M
+•

) will 

lose a hydrogen atom instead of accepting one to form the [M-H]
+ 

ion. The hydrogen transfer 

mechanism may explain the change in the ionization behavior of the curcumin analogues during 

APPI-MS based on the use of a dopant as illustrated in Scheme 2.5. In the absence of a dopant, 

the analyte is directly photoionized forming both [M+H]
+ 

and
 
[M-H]

+
 by hydrogen transfer 

from/to the analyte radical cation (M
+•

) (Scheme 2.5A). However in the presence of a dopant, 

such as acetone or toluene that has low ionization energy in comparison to the tested analytes, 

the dopant will be more susceptible to photoionization forming the dopant radical cation (D
+•

), 

which acts as an intermediate between the photons and the analyte forming the [M+H]
+ 

ion
 
by 

proton transfer (indirect photoionization) (Scheme 2.5B) [36]. This could explain the 

disappearance of [M-H]
+
 ions during the dopant-APPI-MS.  
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Scheme 2.5. Summary of direct (A) and indirect (B) photoionization during APPI-MS analysis 

of curcumin analysis (M = analyte, S = Solvent, D = Dopant and hv = Photon energy). 

 

 

The last possible mechanism for [M-H]
+
 formation is hydride abstraction (Scheme 2.4III) . In 

this mechanism, the curcumin analogue is probably photo-excited by the photon energy 

producing the excited molecular state (M
*
), followed by a hydride abstraction by a protonated 

molecule (RH
+
) such as a protonated product ion of analyte or solvent (eq 6).  

 

M
*
 + RH

+
  →  [M-H]

+  
+

  
RH2                (6) 

 

It was suggested that [M-H]
+
 formation during MALDI-MS is a result of a reaction involving 

the analyte and the matrix resulting in the hydride abstraction [21]. However in our work, [M-

H]
+ 

ions were formed even in the absence of a matrix (i.e., LD-MS) indicating that other ions 

could be involved in this mechanism. 

H-  
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The unique chemical structures of the curcumin analogues should also be considered to 

facilitate the hydride abstraction reaction, particularly when no matrix or solvent were used. The 

backbone structure of curcumin analogues is based on the 3,5-bis(benzylidene)-4-piperidyl group 

(Scheme 2.1), which shows active sites that are able to perform a redox reaction with another 

curcumin analogue via hydride abstraction. Scheme 2.6 shows how hydrogen abstraction could 

occur between two curcumin analogues and the corresponding formed ions including the [M-H]
+
 

ion. 

 

Scheme 2.6. Formation of [M-H]
+
 by hydrogen abstraction between two curcumin analogues. 

 

CONCLUSION  

 Curcumin analogues that belong to the 3,5-bis(benzylidene)-4-piperidone structural family 

showed diverse ionization behaviors in the positive ion mode of various MS-ionization 

techniques. The four tested categories of curcumin analogues (phosphoramidates, secondary 

amines, amides and mixed amines/amides) showed an unusual significant peak of [M-H]
+ 

with 

MALDI and dopant free-APPI-MS in contrast to ESI, APCI, and dopant mediated APPI that 

showed no, or barely detected, a [M-H]
+ 

peak. Interestingly, the tested compounds were able to 

form both [M-H]
+
 and

 
[M+H]

+
 ions even in the absence of a matrix and solvent during solvent 
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free LD-MS analysis. Evidence indicated that photon energy during MALDI, LD, solvent free 

LD and dopant free-APPI-MS was the trigger for the ionization of the tested curcumin 

analogues. However, several publications reported the [M-H]
+
 formation with other compounds 

using non-photoionization based techniques such as CI, APCI and ESI, indicating that the trigger 

of such ion formation is dependent on the structural features of the analyte .  

In this study, the [M-H]
+
 structure of the tested compounds was established by analyzing a 

specially designed deuterated compound to confirm the double bond formation between the 

nitrogen atom and the adjacent carbon atom. The three main proposed mechanisms for the [M-

H]
+
 formation were investigated showing opposing observations to the H2 loss mechanism (i) 

that states the [M-H]
+
 is formed via the H2 loss from [M+H]

+
 species. However the other two 

proposed mechanisms namely the hydrogen transfer from the analyte radical cation (ii) and 

hydride abstraction from the neutral analyte molecule (iii) were still applicable. 

The ionization behavior of the curcumin analogues and structurally-related compounds 

should be taken into account during the development of MS-based qualitative or quantitative 

analytical methods. In addition, studying the ionization behavior of curcumin analogues with 

various ionization techniques and under different conditions improves our knowledge on ion 

formation mechanisms during MS-analysis including the unexpected formation of [M-H]
+
 

species.   

 

 

 

 

 



70 

 

REFERENCES  

1. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM: Electrospray ionization for 

mass spectrometry of large biomolecules. Science 1989, 246:64-71. 

2. Mann M, Meng CK, Fenn JB: Interpreting mass spectra of multiply charged ions. 

Analytical Chemistry 1989, 61:1702-1708. 

3. Carroll D, Dzidic I, Stillwell R, Haegele K, Horning E: Atmospheric pressure ionization 

mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass 

spectrometer-computer analytical system. Analytical Chemistry 1975, 47:2369-2373. 

4. Robb DB, Covey TR, Bruins AP: Atmospheric pressure photoionization: an ionization 

method for liquid chromatography-mass spectrometry. Analytical Chemistry 2000, 

72:3653-3659. 

5. Karas M, Bachmann D, Bahr U, Hillenkamp F: Matrix-assisted ultraviolet laser 

desorption of non-volatile compounds. International Journal of Mass Spectrometry and 

Ion Processes 1987, 78:53-68. 

6. Karas M, Hillenkamp F: Laser desorption ionization of proteins with molecular masses 

exceeding 10,000 daltons. Analytical chemistry 1988, 60:2299-2301. 

7. Domon B, Aebersold R: Mass spectrometry and protein analysis. Science's STKE 2006, 

312:212. 

8. El-Aneed A, Cohen A, Banoub J: Mass spectrometry, review of the basics: Electrospray, 

MALDI, and commonly used mass analyzers. Applied Spectroscopy Reviews 2009, 

44:210-230. 

9. Han X, Aslanian A, Yates III JR: Mass spectrometry for proteomics. Current opinion in 

chemical biology 2008, 12:483-490. 

10. Hoffmann E, Stroobant V: Mass spectrometry: Principles and applications. third edn. The 

Atrium, Southern Gate, Chichester, West Sussex, England  J. Wiley; 2007. 

11. Das U, Sharma RK, Dimmock JR: 1, 5-Diaryl-3-oxo-1, 4-pentadienes: A case for 

antineoplastics with multiple targets. Current Medicinal Chemistry 2009, 16:2001. 

12. Das S, Das U, Selvakumar P, Sharma RK, Balzarini J, De Clercq E, Molnár J, Serly J, 

Baráth Z, Schatte G: 3, 5‐Bis (benzylidene)‐4‐oxo‐1‐phosphonopiperidines and related 

diethyl esters: Potent cytotoxins with multi‐drug‐resistance reverting properties. 

ChemMedChem 2009, 4:1831-1840. 



71 

 

13. Das U, Alcorn J, Shrivastav A, Sharma RK, De Clercq E, Balzarini J, Dimmock JR: 

Design, synthesis and cytotoxic properties of novel 1-[4-(2-alkylaminoethoxy) 

phenylcarbonyl]-3, 5-bis (arylidene)-4-piperidones and related compounds. European 

Journal of Medicinal Chemistry 2007, 42:71-80. 

14. Munson MS, Field F-H: Chemical ionization mass spectrometry. I. General introduction. 

Journal of the American Chemical Society 1966, 88:2621-2630. 

15. Field FH: Chemical ionization mass spectrometry. Accounts of Chemical Research 1968, 

1:42-49. 

16. Orelli LR, García MB, Perillo IA, Tonidandel L, Traldi P: A comparison of the electron 

ionization and electrospray behaviour of some N, N′‐disubstituted hexahydropyrimidines. 

Rapid Communications in Mass Spectrometry 2006, 20:823-828. 

17. Chai Y, Sun H, Wan J, Pan Y, Sun C: Hydride abstraction in positive-ion electrospray 

interface: oxidation of 1, 4-dihydropyridines in electrospray ionization mass 

spectrometry. Analyst 2011, 136:4667-4669. 

18. Cox FJ, Johnston MV, Dasgupta A: Characterization and relative ionization efficiencies 

of end-functionalized polystyrenes by matrix-assisted laser desorption/ionization mass 

spectrometry. Journal of the American Society for Mass Spectrometry 2003, 14:648-657. 

19. Lou X, Spiering AJH, de Waal BFM, van Dongen JLJ, Vekemans JAJM, Meijer EW: 

Dehydrogenation of tertiary amines in matrix‐assisted laser desorption/ionization time‐of‐

flight mass spectrometry. Journal of Mass Spectrometry 2008, 43:1110-1122. 

20. Kang C, Zhou Y, Du Z, Bian Z, Wang J, Qiu X, Gao L, Sun Y: Dehydrogenation and 

dehalogenation of amines in MALDI‐TOF MS investigated by isotopic labeling. Journal 

of Mass Spectrometry 2013, 48:1318-1324. 

21. Yang H-J, Lee A, Lee M-K, Kim W, Kim J: Detection of small neutral carbohydrates 

using various supporting materials in laser desorption/ionization mass spectrometry. 

Bulletin of the Korean Chemical Society 2010, 31:35. 

22. Nuutinen JM, Purmonen M, Ratilainen J, Rissanen K, Vainiotalo P: Mass spectrometric 

studies on pyridine‐piperazine‐containing ligands and their complexes with transition 

metals formed in solution. Rapid Communications in Mass Spectrometry 2001, 15:1374-

1381. 

23. Kauppila T, Nikkola T, Ketola R, Kostiainen R: Atmospheric pressure photoionization‐

mass spectrometry and atmospheric pressure chemical ionization‐mass spectrometry of 

neurotransmitters. Journal of Mass Spectrometry 2006, 41:781-789. 



72 

 

24. Suni NM, Aalto H, Kauppila TJ, Kotiaho T, Kostiainen R: Analysis of lipids with 

desorption atmospheric pressure photoionization‐mass spectrometry (DAPPI‐MS) and 

desorption electrospray ionization‐mass spectrometry (DESI‐MS). Journal of Mass 

Spectrometry 2012, 47:611-619. 

25. Cody RB: Observation of molecular ions and analysis of nonpolar compounds with the 

direct analysis in real time ion source. Analytical Chemistry 2008, 81:1101-1107. 

26. Marotta E, Paradisi C: A mass spectrometry study of alkanes in air plasma at atmospheric 

pressure. Journal of the American Society for Mass Spectrometry 2009, 20:697-707. 

27. Hourani N, Kuhnert N: Development of a novel direct-infusion atmospheric pressure 

chemical ionization mass spectrometry method for the analysis of heavy hydrocarbons in 

light shredder waste. Analytical Methods 2012, 4:730-735. 

28. Gao J, Owen BC, Borton II DJ, Jin Z, Kenttämaa HI: HPLC/APCI mass spectrometry of 

saturated and unsaturated hydrocarbons by using hydrocarbon solvents as the APCI 

reagent and HPLC mobile phase. Journal of The American Society for Mass 

Spectrometry 2012, 23:816-822. 

29. Calba P, Muller J, Inouye M: H‐atom transfer following analyte photoionization in 

matrix‐assisted laser desorption/ionization processes. Rapid Communications in Mass 

Spectrometry 1998, 12:1727-1731. 

30. Calba P, Muller J, Hachimi A, Lareginie P, Guglielmetti R: Spirooxazines as a molecular 

probe for the study of matrix‐assisted laser desorption/ionization processes. Part I: Study 

of the interaction effect between the molecular probe and the matrix. Rapid 

Communications in Mass Spectrometry 1997, 11:1602-1611. 

31. Karas M, Glückmann M, Schäfer J: Ionization in matrix‐assisted laser 

desorption/ionization: singly charged molecular ions are the lucky survivors. Journal of 

Mass Spectrometry 2000, 35:1-12. 

32. Jaskolla TW, Karas M: Compelling evidence for lucky survivor and gas phase 

protonation: the unified MALDI analyte protonation mechanism. Journal of the American 

Society for Mass Spectrometry 2011, 22:976-988. 

33. Zenobi R, Knochenmuss R: Ion formation in MALDI mass spectrometry. Mass 

Spectrometry Reviews 1998, 17:337-366. 

34. Knochenmuss R, Zenobi R: MALDI ionization: the role of in-plume processes. Chemical 

Reviews-Columbus 2003, 103:441-452. 

35. Knochenmuss R: Ion formation mechanisms in UV-MALDI. Analyst 2006, 131:966-986. 



73 

 

36. Syage JA: Mechanism of [M+H]
+
 formation in photoionization mass spectrometry. 

Journal of the American Society for Mass Spectrometry 2004, 15:1521-1533. 

37. Fesenko T, Laguta I, Kuzema P, Stavinskaya O: Laser desorption/ionization time-of-

flight mass spectrometric analysis of some synthetic flavonoids and their complexes with 

Zn and Fe. Journal of Materials Science (Lithuanian version) 2010, 16:272-277. 

38. Kamel A, Jeanville P, Colizza K: Mechanism of [M+H]
+
 formation in atmospheric 

pressure photoionization mass spectrometry: Identification of propionitrile in acetonitrile 

with high mass accuracy measurement and tandem mass spectrometry and evidence for 

its involvement in the protonation phenomenon. Journal of the American Society for 

Mass Spectrometry 2008, 19:1579-1589. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 

 

CHAPTER3                                                                                                                                       

ESTABLISHMENT OF TANDEM MASS SPECTROMETRIC FINGERPRINT OF 

NOVEL ANTINEOPLASTIC CURCUMIN ANALOGUES USING ELECTROSPRAY 

IONIZATION 

 

 

H.Awad
1
, U. Das

1
, J. Dimmock

1
, A. El-Aneed

1* 

 

 

In this work, I investigated, under the supervision of Dr. El-Aneed, the CID-MS/MS 

fragmentation behavior of thirteen curcumin analogues using tandem ESI-Qq-LIT-MS. I 

established the fragmentation pattern of each compound, which was confirmed by the MS
3
 

experiments and neutral loss scans. The molecular structures of the tested compounds were 

confirmed and the diagnostic product ions were identified to be used for qualitative and 

quantitative analysis of these compounds. Similar fragmentation behavior was observed among 

the thirteen curcumin analogues that mainly centered on the cleavage of the piperidone ring of 

the 3,5-bis(benzylidene)-4- piperidone allowing for establishing a general MS\MS pattern for 

these compounds. I performed all the MS experiments in this work. I also drafted the manuscript 

with Dr. El-Aneed who revised the various versions of the paper. Drs. Das and Dimmock 

synthesized the tested curcumin analogues based on Dr. El-Aneed’s request.  
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INTRODUCTION 

In the last few decades, the anticancer drug market showed significant growth due to the 

constant and crucial need for more selective, potent and, safe anticancer agents. Natural products 

represent one of the valuable sources for the development of novel anticancer agents [1, 2]. 

Biologically active compounds can either be extracted from its natural source or designed as 

structural analogues for naturally existing compounds [1, 2]. For example, curcumin is a natural 

component of the spice turmeric that showed various biological activities including anticancer, 

anti-inflammatory, antioxidant, and anti-microbial effects [3, 4]. The poor bioavailability of 

curcumin has limited its efficiency as anticancer agent [5]. Consequently, curcumin analogues 

were designed by structural modification of the curcumin molecule to enhance bioavailability 

and potency [6, 7].  

A number of curcumin analogues showed promising anticancer properties towards different 

cancer cell lines including melanoma and colon and pancreatic cancer cells [8-11]. The evaluated 

curcumin analogues in this study are 3,5-bis(benzylidene)-4-piperidone compounds, containing 

the 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore (Scheme 3.1) that acts as thiol alkylator and 

responsible for the selective antitumor effect of these compounds [11-14]. For more effective 

antitumor activity, a series of novel curcumin analogues were designed with various substituents 

on the aryl groups and the piperidyl nitrogen atom of the 3,5-bis(benzylidene)-4-piperidone 

(Scheme 3.2). The aryl substituents were added to change the steric and hydrophobic properties 

of curcumin analogues in order to enhance their in-vivo use [14]. On the other hand, the N-

substituents were introduced to enhance the drug penetration to target cells by protecting the 

piperidyl nitrogen atom from ionization at biological pH as the ionized molecules cannot 
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penetrate the cell membrane [12]. In addition, N-substituents represent additional binding sites to 

the target cells that may enhance the cytotoxicity of the drug candidate [12, 13].  

 

 

 

 

 

 

 

 

 

Scheme 3.1. Schematic representation of the 3,5-bis(benzylidene)-4-piperidone with the N-substituent 

as side chain (1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore highlighted in bold red) 
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Scheme 3.2. Structures and monoisotopic masses of the novel antineoplastic curcumin analogues 

categorized by the N-substituent into four structural families: phosphoramidates, secondary 

amines, mixed amines/amides and amides. 
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To evaluate the safety and efficiency of the newly designed compounds during preclinical 

and clinical studies, efficient analytical methods are required. Mass spectrometry (MS) is widely 

used in the drug discovery and development process based on its sensitivity, selectivity and high 

throughput capability [15, 16]. MS structurally characterizes the target analytes via accurate 

mass measurements (single stage MS analysis) as well as via collision-induced dissociation 

tandem mass spectrometric (CID-MS/MS) analysis [17]. The establishment of CID-MS/MS 

fragmentation patterns for structurally-related compounds allow for the confirmation of their 

molecular structure and the identification of diagnostic product ions to be used subsequently for 

qualitative and quantitative analysis. For example, our research group illustrated a universal 

MS/MS dissociation behavior of a series of structurally-related cationic surfactants used as drug 

delivery agents [18, 19]. The data was subsequently used to develop targeted MS-based 

quantification methods that were employed within cellular lysate to assess the uptake and 

removal of these cationic lipids [20, 21]. In fact, the development of a general MS/MS 

dissociation behavior will allow for the prediction of the fragmentation patterns of newly 

synthesized compounds with structural similarities.  

Recently, we investigated the ionization behavior of 13 curcumin analogues (Scheme 3.2) 

illustrating a unique ionization mechanism that resulted in the formation of what we proposed to 

be positively charged [M-H]
+
 ions during single stage matrix assisted laser desorption ionization-

MS (MALDI-MS) and atmospheric pressure photo ionization (APPI)-MS analysis [22]. 

Conversely, only the expected [M+H]
+
 species were observed during electrospray (ESI) and 

atmospheric pressure chemical ionization (APCI) [22]. In this subsequent study, we are 

evaluating the CID-ESI-MS/MS fragmentation behavior of the [M+H]
+
 species of curcumin 

analogues (Scheme 3.2). Due to the wide array of structures for currently investigated curcumin 
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analogues in the literature [23-26], our main aim is to identify common CID-MS/MS 

fragmentation patterns among diverse structures. We identified for the first time a general 

MS/MS dissociation behavior that will allow for the analysis of other structurally-related 

compounds. In addition, our data will facilitate future studies, concerning metabolite 

identification as well as the development of multiple reaction monitoring (MRM) quantification 

methods.  

 

EXPERIMENTAL 

Materials 

Curcumin analogues were synthesized by using previously reported synthetic methods [13, 

14]. The compounds are categorized based on the nature of the N-substituent as 

phosphoramidates, secondary amines, mixed amines/amides and, amides (Scheme 3.2). 

 

Mass spectrometric analysis 

Single-stage MS analysis 

Stock solutions of each curcumin analogue were prepared to a concentration of 1mg/mL in 

100% acetonitrile (ACN). Each sample was further diluted by 500–1000× prior to single stage 

and tandem MS analysis. Curcumin analogues were analyzed using an Applied Biosystems API 

QSTAR
®
 XL instrument, which is a quadrupole time-of-flight hybrid mass spectrometer (Qq-

TOF-MS) equipped with ESI source.  

Samples were injected into the Qq-TOF-MS at flow rate of 10 µL/min using a Harvard 

Syringe Pump. The system was operated in the positive ion mode with an ionspray voltage of 
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5000 V, a declustering potential of 40 V and, a focusing potential of 120 V. Exact mass 

measurements of the curcumin analogues were performed using the Qq-TOF-MS with a two 

point external calibration. External calibration was performed prior to analyzing the curcumin 

analogues. Two singly charged calibration standards were used; Cesium iodide (CsI, purity 

99.9%, [M]
+
 m/z 132.9055, CAS Number 7789-17-5, Sigma-Aldrich, Oakville, ON, Canada) and 

Sex pheromone inhibitor iPD1 (C39H72N8O11, purity >94%, [M+H]
+
 m/z 829.5320, CAS 

Number 120116-56-5, Bachem Bioscience Inc., PA, USA).  

 

Tandem MS analysis 

Tandem mass spectrometric analysis of curcumin analogues was conducted on the AB 

SCIEX 4000 QTRAP
®
 instrument, which is a hybrid triple quadrupole–linear ion trap mass 

spectrometer (Qq-LIT-MS). The MS/MS, multi-stage-MS (MS
3
), enhanced product ion scan and, 

neutral loss scan analysis were performed for each sample to confirm the precursor ion’s 

structure and its fragmentation pathway. MS/MS was also acquired using the QSTAR® system 

(Qq-TOF-MS); however, the data was not as informative as minor fragmentation was observed 

in the QSTAR in comparison to the rich MS/MS data obtained by the QTRAP. This is due to the 

fact that the Qq-LIT-MS allows for the accumulation of ions in the linear ion trap when applying 

the “enhanced” product ion scan. Such capabilities are not possible with the Qq-TOF-MS 

instrument.  

In both instruments, collision induced dissociation (CID) was conducted in the positive ion 

mode with an ionspray voltage of 5500 V, a declustering potential of 40-70 V and, a collision 

energy (CE) of 20-35 V using nitrogen as a collision gas. Parameters of the MS/MS analysis 

http://www.sigmaaldrich.com/catalog/search?term=7789-17-5&interface=CAS%20No.&lang=en&region=CA&focus=product
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were optimized to ensure the formation of the product ions while maintaining the presence of the 

precursor ion. The exact collision energy used for each analyte is shown in Appendix B.  

 

RESULTS AND DISCUSSION 

Single-stage MS analysis  

In positive ion full scan ESI-MS analysis, curcumin analogues showed an abundant 

protonated ion, [M+H]
+
. The exact masses of curcumin analogues were measured using the ESI-

Qq-TOF-MS, showing mass accuracies of less than 6 ppm mass error using the two point- 

external calibration (Table 3.1). This confirms the molecular structure of tested compounds, 

particularly when combined with MS/MS analysis, detailed below. The ability to achieve such 

high mass accuracy was attributed to applying external calibration of the instrument directly 

prior to analyzing tested compounds. In fact, such results were comparable to recent structural 

work in which internal calibration was employed showing mass accuracy of less than 5 ppm 

when analyzing cationic surfactants using the QSTAR system [19].  
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Compound 
Molecular 

formula 

Mono-

isotopic mass 

[M+H]
+
 m/z, 

theoretical 

[M+H]
+
 m/z, 

observed 

Mass 

accuracy 

(ppm) 

NC2311 C23H26NO4P 411.1599 412.167223 412.1679 1.64 

NC2313 C25H30NO6P 471.1811 472.188353 472.1894 2.22 

NC2314 C27H34NO8P 531.2022 532.209482 532.2084 2.03 

NC2315 C29H38NO10P 591.2233 592.230612 592.234 5.72 

NC2128 C19H17NO3 307.1208 308.12812 308.1278 1.04 

EF-24 C19H15F2NO 311.1122 312.119447 312.1203 2.73 

NC2453 C21H21NO3 335.1521 336.15942 336.1581 3.93 

NC2454 C23H25NO5 395.1733 396.18055 396.1798 1.89 

NC2067 C30H30N2O3 466.2256 467.23292 467.2336 1.46 

NC2081 C32H32N2O4 508.2362 509.243484 509.2441 1.21 

NC2144 C27H23NO3 409.1678 410.17507 410.1756 1.29 

NC2138 C27H23NO3 409.1678 410.17507 410.1752 0.32 

NC2094 C31H31NO3 465.2304 466.237671 466.2383 1.35 

 

Table 3.1. The mass accuracy of [M+H]
+ 

ions of the tested curcumin analogues using ESI-Qq-

TOF-MS 

 

 

 

Tandem MS analysis 

The fragmentation behavior of curcumin analogues was evaluated using low-energy collision 

induced dissociation (CID) of ESI-Qq-LIT-MS in the positive ion mode. All tested curcumin 

analogues have the same backbone structure of 3,5-bis(benzylidene)-4-piperidone (Scheme 3.1) 

that showed similar fragmentation behavior with bond cleavage occurring at the piperidone ring 

during the MS/MS analysis. The differences among curcumin analogue structures was based on 

the difference in the substituents of the aryl groups and the piperidyl nitrogen atom of the 3,5-
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bis(benzylidene)-4-piperidone (Scheme 3.2). Such differences resulted in specific product ions 

during MS/MS analysis that could be used as diagnostic product ions for the qualitative and 

quantitative MS/MS-analysis of these compounds. The side chain of curcumin analogues (N-

substituents) was also dissociated during the low energy CID-MS/MS analysis. However, the 

side chain fragmentation did not follow a general pattern due to the dramatic differences in their 

chemical structures. 

The detailed general fragmentation behavior of curcumin analogues was discussed in two 

sections; 3,5-bis(benzylidene)-4-piperidone fragmentation and side chain fragmentation to 

highlight the common MS/MS pathways among various curcumin analogues. It should be 

emphasized that we are identifying common dissociation behavior among various structures of 

curcumin analogues that can allow for the analysis of other compounds.  

 

3,5-bis(benzylidene)-4-piperidone fragmentation 

NC 2067 will be used as a representative model for curcumin analogue MS/MS analysis as 

this compound showed the highest number of common product ions generated via the 

fragmentation of the 3,5-bis(benzylidene)-4-piperidone moiety. NC2067 showed 11 product ions 

(F1-11) produced during the ESI-Qq-LIT-MS/MS analysis (Figure 3.1). The fragmentation 

centered on the piperidone ring (highlighted in bold blue in Figure 3.1A) of the 3,5-

bis(benzylidene)-4-piperidone moiety and each detected product ion was formed by breaking 

specific bonds of that ring as illustrated in the structure within Table 3.2. Table 3.2 shows the 12 

common product ions detected during the MS/MS analysis of the 13 curcumin analogues 

(NC2067 showed 11 out of the 12 identified common product ions). 
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Figure 3.1. The proposed fragmentation pattern (A) and the ESI-Qq-LIT-MS/MS spectrum (B) 

of NC2067 (the piperidone ring of NC2067 is highlighted in bold blue and the side chain bond is 

identified with an arrow) 
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Table 3.2.  The fragmentation sites in the 3,5-bis(benzylidene)-4-piperidone and the 

corresponding product ions during the ESI-MS/MS of the tested curcumin analogues. 

 

Initial dissociation of the piperidone ring occurs via a cleavage of the bonds (1 and 3). Two 

mechanisms can occur at the same time producing either the minor product ion observed at 351.1 

(F1) or the highly abundant product ion observed at 117 (F3). The proposed two mechanisms are 

shown in Scheme 3.3 in which the charge is presumably localized on the nitrogen atom. The first 

mechanism involves the neutral loss of C9H8 (116 Da) (Scheme 3.3A). This occurs via electron 

movements resulting in the species observed at 351.1 where the positive charge is relocalized to 

the carbon of the carbonyl functional group while a neutral species is eliminated. However, F1 

ion is quickly converted into the more abundant highly conjugated stable diagnostic product ion 

at m/z 349.1 (F2) by losing a hydrogen molecule (Figure 3.1A).  

Precursor ion [M+H]
+
 Product ions Broken Bonds 

 F1 1 & 3 

F2 1 & 3 

F3 1 & 3 

F4 1 & 5 

F5 1 & 4 

F6 2 & 4 

F7 1, 2, 4 & 6 

F8 1, 2, 5 & 6 

F9 3 & 4 

F10 1, 3, 4 & 6 

F11 1, 3, 4 & 6 

F12 1 & 2 

O R1

R2

R3

R4

R2

R3

R4

N

R1

R5

H
+

1 
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3 4 
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The second mechanism involving cleavages of bonds 1 and 3 of the piperidone ring (Scheme 

3.3B) involves the production of the product ion F3 observed at m/z 117.0. In this mechanism, 

hydrogen rearrangement occurs; however, charge localization is directed towards the smaller 

species while the relatively large 350 Da species is eliminated as a cyclized neutral moiety. The 

F3 ion is one of the most abundant product ions that has been detected with all curcumin 

analogues (Table 3.3). This could be due to the stable conjugated structure of this small ion that 

enables it to resist additional fragmentation. The mechanism shown in Scheme 3.3 that includes 

rearrangement, electron movements and cyclization is the driving principle for the formation of 

the majority of the piperidone-driven fragmentation.  
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Scheme 3.3.  The two proposed mechanisms for the formation of the product ions F1 at m/z 

351.1 (A) and F3 at m/z 117.0 (B). 
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In addition to F3, two other product ions that were observed among most compounds are ions 

observed at m/z 131.1 (F4) and 143.1 (F5) by breaking the piperidone bonds at (1 and 5) and (1 

and 4) respectively (Tables 3.2 and 3.3). Similar to F3, both F4 and F5 are small ions with high 

conjugation within their structures (Figure 3.1A).  

The product ion F6 observed at m/z 247.1 is formed through cleavage of bonds (2 and 4), 

followed by a sequential elimination of a carbonyl group CO and methylene CH2 resulting in the 

formation of ions, F7 at m/z 219.1 and F8 at m/z 205.1. Another sequential fragmentation that 

was observed in eight curcumin analogues includes the formation of the ion designated F9 

observed at m/z 259, which in the case of NC2067 was formed by breaking bonds (3 and 4) and 

cyclization (Figure 3.1A & Tables 3.2 and 3.3). F9 ion usually loses a carbonyl group to form 

another product ion (F10) at m/z 231.1 that in turns losses a hydrogen molecule to generate F11 

at m/z 229.1. As it can be seen among the majority of observed product ions, the dissociation 

behavior is driven by the formation of highly conjugated structures during the CID-MS/MS 

analysis of curcumin analogues. 

The same fragmentation behavior of the 3,5-bis(benzylidene)-4-piperidone moiety of 

NC2067 was detected with other curcumin analogues (Table 3.3). This behavior enables the 

establishment of a general fragmentation pattern for these compounds based on the CID-MS/MS 

of the 3,5-bis(benzylidene)-4-piperidone moiety as shown in Table 3.3. However, the number of 

detected product ions varied between curcumin analogues based on their structural differences. It 

can be speculated that the difference in the substituents of the aryl groups and the piperidyl 

nitrogen atom between curcumin analogues affect the stability of the piperidone ring and make it 

more or less susceptible to dissociation. For example, product ion designated as (F12) was 

detected with few curcumin analogues (not with NC2067) by breaking the piperidone ring bonds 
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at (1 and 2). The absence of few product ions within some curcumin analogues could also be due 

to the fast conversion of these product ions into more stable species. For example, in Table 3.3, 

the product ion (F10) was not detected with NC2315 curcumin analogue however, the product 

ion (F11) which is generated from (F10) by the loss of hydrogen molecule was detected with this 

compound. This indicates that the product ion (F10) was formed during the fragmentation of 

NC2315 and completely converted into F11. 

To confirm the sequence of the proposed fragmentation (Figure 3.1B), MS
3
 analysis was 

performed. Table 3.4 shows a summary for MS
3
 experiments of NC2067; illustrating that one 

product ion could be formed from different sources. For example, the product ion observed at 

m/z 143.1 was formed from two other product ions (m/z 259.1 and 247.1) in addition to its 

possible direct formation from the precursor ion. On the other hand, a unique product ion has 

been formed only during the MS/MS analysis of NC2067 (not shown in Table 3.3) with m/z 

value= 189.1. MS
3
 analysis confirmed that this ion is produced from the ion observed at m/z 

349.1 via serial fragmentation (Figure 3.1A).  

 

 

 

 

 

Table 3.4. Summary of MS
3
 experiments for NC2067 

 

Precursor ion I Precursor ion II MS/MS/MS product ions 

467.1 349.1 189.1, 147.1 

259.1 231.1, 229.1, 143.1 

247.1 219.1, 205.1, 143.1 

231.1 229.1 

192.1 147.1 
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In addition to MS
3
 experiments, neutral loss scans were performed to confirm the precursor 

ion’s structure and the proposed fragmentation pathway. For example, the product ion (F3) was 

proposed to be directly formed by neutral loss of 350 Da from the precursor ion (467.1 Da) 

(Figure 3.1A). This pathway was confirmed by scanning the neutral loss of 350 Da during the 

MS/MS analysis of NC2067, showing the 467.1 as a precursor ion for the product ion (F3).  The 

purpose of this work is to develop a general fragmentation behavior of all tested curcumin 

analogues. However, a relatively detailed MS/MS fragmentation, primary focusing on the 

abundant ions, along with the associated spectrum of all curcumin analogues are shown in 

Appendix B. We underlined the product ions that can serve as diagnostic species during 

qualitative/quantitative analysis of these compounds.  

The fragmentation of curcumin analogues with secondary amines (i.e. NC2453, NC2454, 

EF24, NC2128) (Scheme 3.2) partially followed the general pathway presented in Table 3.3 by 

showing mainly the product ions of F3, F4 and F5. The absence of the side chain in these 

compounds may have resulted in the observed variations in their MS/MS dissociation behavior. 

The CID-MS/MS fragmentation of the secondary amine curcumin analogues also centered on the 

piperidone ring but in a different fashion than other compounds with side chains (Table 3.5). 
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Table 3.5.  The fragmentation sites in the 3,5-bis(benzylidene)-4-piperidone and the 

corresponding product ions during the ESI-MS/MS of the secondary amine curcumin analogues. 
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In Figure 3.2, the MS/MS spectrum of NC 2128 was used as a representative compound 

showing the direct loss of the amino and the carbonyl groups from the precursor ion m/z 308.0 

via breaking the bonds (3 and 4) and bonds (1 and 6) resulting in the product ions F1' and F2’ 

observed at m/z 291.0 and 280.0 respectively. The product ion F2' showed sequential elimination 

of the amino group forming F3' observed at m/z 263.0 that in turns loses acetylene group to yield 

F4' at m/z 237.0.  

In addition, two unique product ions (i.e. F5' and F6') were detected, generated by the 

fragmentation of the benzylidene group of the 3,5-bis(benzylidene)-4-piperidone moiety via 

breaking the bonds (I and II) (Table 3.5). Curcumin analogues can exist in resonance forms as 

the double bond designated I (Table 3.5) can resonate as shown in Figure 3.2A. In effect, bond I 

is converted from a double bond into a single bond that can be easily dissociated into the product 

ion F5' at m/z 107.0 (Figure 3.2A). Unlike F5', product ion F6' at m/z 214.1 can undergo 

additional dissociating via the loss of the amino group producing F7' at m/z 197.1 which in turns 

loses the carbonyl group forming F8' at m/z 169.1.  

Similar to F6', in which dissociation occurred at bond II, F9' at m/z 201.1 is another product 

ion that was formed by the cleavage of the bond II. The loss of the aryl substituent (RH) is one of 

the common product ions that have been detected with the MS/MS analysis of the secondary 

amines curcumin analogues. In the case of NC2128, such a loss constitutes a loss of water 

producing F10’ at m/z 290.0. There are two possible mechanisms that explain the formation of 

F10’ presented in Figure 3.2. The proposed mechanisms are dependent on the site of protonation 

of the precursor ion that may take place either on the amino group or the hydroxyl group of 

NC2128. In the latter case, the loss of water yields to production of F10’ species in which the 

positive charge is localized within the aromatic ring, enhancing the stability of this ion via 
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resonance. Other structures were proposed in case the charge was localized on the secondary 

amine functional group (Figure 3.2). Other product ions are self-explanatory and are shown in 

Figure 3.2A such as ions observed at m/z 273.0 and 245.1. Table 3.6 illustrates the performed 

MS
3
 and neutral loss experiments confirming the proposed fragmentation pathway as presented 

in Figure 3.2.  The detailed fragmentation and associated spectrum of curcumin analogues 

bearing secondary amine functional groups are shown in Appendix B. 
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Figure 3.2. The proposed fragmentation pattern (A) and the ESI-Qq-LIT-MS/MS spectrum (B) 

of NC 2128 secondary amine curcumin analogue. 
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Table 3.6. Summary of MS
3
 and neutral loss experiments for NC2128 

 

 

Side chain fragmentation 

The side chain dissociation behavior of the tested curcumin analogues was based on the 

structural features of each side chain. In Figure 3.1A, the side chain fragmentation of NC2067 

was focused on the amide bond (bond is identified with an arrow) with the neutral loss of the 

3,5-bis(benzylidene)-4-piperidone moiety (275 Da), generating the ion of the side chain (FI) at 

m/z = 192.1. Other side chain product ions (FII and FIII) were observed at m/z 147.1 and 72.0, 

respectively, as shown in Figure 3.1A. The MS
3
 and the neutral loss scan experiments were 

performed to confirm the fragmentation pathway of these ions. For example, the product ion (FII) 

at m/z 147.1 was formed from the ion (FI) at m/z 192.1 and also from (F2) at m/z 349.1 (Table 

3.4). On the other hand, a neutral loss of 395 Da was investigated, confirming the proposed 

direct formation of the product ion (FIII) at m/z 72 from the precursor ion (Figure 3.1A).  

MS
3 

analysis 

Precursor ion I Precursor ion II MS
3
 product ions 

308.0 291.0 273.0, 263.0, 245.1, 197.1, 169.1, 159.1, 147.1 

273.0 245.1 

280.0 263.0, 245.1, 237.0, 235.1 

263.0 245.1, 237.0, 235.1 

214.1 197.1 

197.1 169.1 

Neutral loss scan 

Neutral loss Precursor ion 

201 (forming product ion F5’) 308.0 

94 (forming product ion F6’) 308.0 
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The same fragmentation behavior of the side chain of NC2067 was also observed with other 

curcumin analogues that belong to amides and mixed amine/amide categories as presented in 

Table 3.7A. The generated (FI) from NC2067 and NC2094 at m/z 192 and 191 respectively were 

characteristic to their precursor ions and with good ion count to possibly serve as diagnostic 

product ions for these compounds. Another abundant (FI) product ion was detected at m/z 135 

during the MS/MS analysis of NC2144 and NC2138 (Table 3.7A). However, this ion cannot be 

used to differentiate between NC2144 and NC2138 since an identical product ion at m/z 135 is 

formed.  

In the phosphoramidate curcumin analogues, the side chain product ions were formed in 

different fashion than the previously discussed compounds (Table 3.7B). In this group, the 

product ion (Fi) was formed via the loss of the ethylene group from the side chain of the 

precursor ion, followed by sequential loss of other ethylene group to form the (Fii) ion. The 

dissociation was ended by the neutral loss of water molecule forming (Fiii) ion (Table 3.7B). In 

addition to the proposed side chain fragmentation, another structure was proposed for the (Fi) ion 

through the neutral loss of carbonyl group from the 3,5-bis(benzylidene)-4-piperidone moiety 

instead of side chain fragmentation (shown in Appendix B). 

 

 

 

 

 



98 

 

 

The side chain fragmentation 

A) Amides and mixed amines/amides curcumin analogues 
 

 

 

 

 

 

 
Compound Precursor ion  FI              FII FIII 

P = [M+H]
+
 [R5]

+ 
= (P- C19H17NO)   

2067 467.2 192 (FI - C2H7N) = 147 (FI - C7H4O2) = 72 

2081 509.2 234 (FI - C4H9NO) = 147 (FI - C7H4O2) = 114 

2094 466.2 191 (FI - C5H10) = 121 - 

2144 410.2 135 - - 

2138 410.2 135 - - 

B) Phosphoramidate curcumin analogues 
 

 

 

 

 

 

 

 
Compound Precursor ion  Fi            Fii Fiii 

P = [M+H]
+
 (P-C2H4) (Fi-C2H4) (Fii-H2O) 

2311 412.2 384 356 338 

2313 472.2 444 416 - 

2314 532.2 504 - - 

2315 592.2 564 - - 

 

Table 3.7.  The product ions of the curcumin analogues’ side chains during their ESI-MS/MS (A) 

amides and mixed amines/amides categories, showing the structures of (FI) product ion (B) 

phosphoramidate curcumin analogues, showing the fragmentation pathway of the  

phosphoramidate side chain. 
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The protonation site 

The presence of different substituents on the aryl groups and the piperidyl nitrogen atom of 

curcumin analogues resulted in change in the basic properties of each atom in the structures of 

these compounds. It was not conclusive to determine which atom will show high electron density 

and will be able to accept a proton during the single stage positive ion mode MS analysis. 

However, during CID-MS/MS analysis of curcumin analogues such as NC2311 with precursor 

ion [M+H]
+ 

= 412.1, a minor product ion at m/z 394.1 was observed (shown in Appendix B). 

This fragment was a result of direct loss of water molecule (18 Da) from the precursor ion, 

indicating that the precursor ion has a hydroxyl group which is only possible if the protonation 

site was the oxygen atom as presented in Scheme 3.4. This observation was detected with 

NC2311, NC2314 and NC2315 proving that oxygen atom is a possible site for protonation 

during curcumin analogues ionization. 
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Scheme 3.4. The direct loss of water molecule from the precursor ion of NC2311 (412) and the 

formation of a product ion with m/z value at 394. 
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CONCLUSION 

In this work, exact mass measurement confirmed the elemental composition of the 13 novel 

antineoplastic curcumin analogues with mass accuracy <6 ppm. The Qq-LIT-MS/MS 

fragmentation pattern was established for each compound confirming its chemical structure and 

revealing its diagnostic product ions that are characteristic for each compound. The established 

fragmentation patterns were confirmed via MS
3
 and neutral loss experiments that confirmed the 

proposed chemical structure of product ions and fragmentation pathway. A similar fragmentation 

behavior was observed among all tested curcumin analogues that mainly centered on the 

cleavage of the piperidone ring. However, such behavior was affected by the different 

substituents on curcumin analogues.  

The fragmentation similarity allowed for the establishment of a general fragmentation pattern 

for these compounds that will be beneficial in future quantitative and qualitative analysis. This 

pattern is a MS-fingerprint pattern that can be used for the identification of these compounds or 

other compounds belonging to the 3,5-bis(benzylidene)-4-piperidone structural family. In 

addition, the use of the diagnostic product ions in quantification of curcumin analogues via 

multiple-reaction monitoring (MRM) analysis will ensure selectivity especially in the presence 

of complex matrices during preclinical and clinical studies.   
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CHAPTER 4                                                                                                                             

GENERAL DISCUSSION 

 

4.1.    General discussion 

A variety of curcumin analogues have been designed over the last decade with promising 

pharmacological effects including anticancer [1], anti-inflammatory [2], and antioxidant effects 

[3]. The recent progress in the curcumin analogues research requires the use of sensitive, fast, 

and accurate analytical tools to evaluate potency, selectivity, and safety of the newly designed 

agents during preclinical and clinical studies. Mass spectrometry is an ideal analytical platform 

that can achieve the desired analysis of these compounds especially in complex biological 

matrices [4-6]. In our work, thirteen curcumin analogues with the 3,5-bis(benzylidene)-4-

piperidone backbone structure (Scheme 1.3) were designed as anticancer agents and provided by 

Dr. Dimmock and his research team [7, 8]. These novel curcumin analogues showed cytotoxic 

effects against different cancer cell lines and are being evaluated as potential anticancer 

candidates [8-10]. Current evaluation studies include pharmacokinetic and metabolic studies that 

are important to determine effective drug concentrations, route of administration, and metabolic 

fate of these bioactive compounds [11, 12]. To my knowledge, there is only one LC-ESI-MS/MS 

that has been developed to characterize the pharmacokinetic and metabolic properties of one of 

the thirteen curcumin analogues, namely EF-24 [11]. In this study, the EF-24 plasma stability, 

protein binding, and pharmacokinetics were characterized. In addition, the in-vitro metabolism of 

the EF24 was evaluated in mouse liver microsomes showing the hydroxylated and reduced forms 

of EF24 as metabolites. This method was based on identifying the protonated ion form [M+H]
+
 

of EF-24 at m/z 312 and applying the multiple reaction monitoring (MRM) mode by monitoring 

the m/z 312 → 149 transition of EF-24 [11].  
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The development of MS based analytical methods for the analysis of the tested curcumin 

analogues requires studying the ionization and the CID-MS/MS behavior of such compounds. 

MS analysis allows for the selective identification and accurate quantification of the target 

analyte(s) in low concentrations within complex biological matrices. In my work, the ionization 

and the CID-MS/MS behavior of the thirteen curcumin analogues were investigated aiming to 

improve knowledge of the MS behavior of these compounds for future MS method development. 

 

4.1.1. The ionization behavior of thirteen curcumin analogues during single stage positive 

ion mode using different ionization techniques 

Curcumin analogues were unusually ionized during the single stage positive ion mode of 

MALDI-MS, showing two forms of ions; [M-H]
+
 and [M+H]

+
. The mass accuracy of both ions 

was measured using a MALDI-FTICR-MS instrument, showing mass accuracies of < 2 ppm 

(Table 2.1). The unexpected formation of [M-H]
+
 was investigated over three different research 

streams: 1) Proposing a structure for the [M-H]
+
 ion of curcumin analogues; 2) Evaluating the 

ionization behavior of curcumin analogues using various MALDI experimental conditions and 

other ionization techniques; 3) Proposing mechanisms for the [M-H]
+
 and [M+H]

+
formation.  

             Proposed structure of [M-H]
+ 

The [M-H]
+ 

chemical structure (Scheme 2.3) was proposed by double bond formation 

between the nitrogen atom and the adjacent carbon atom while the positive charge is localized on 

the nitrogen atom.
 
The proposed structure was confirmed by analyzing a deuterated curcumin 

analogue with 10 deuterium atoms in the two benzyl rings that allowed for monitoring the site of 

hydrogen release.  
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Ionization behavior of curcumin analogues using various MALDI experimental 

conditions and other ionization techniques 

The [M-H]
+
 ions were not detected during the single stage positive ion mode of ESI and 

APCI-MS analyses of curcumin analogues, indicating that the [M-H]
+
 phenomenon is related to 

the MALDI ionization mechanism. Different MALDI experimental conditions were evaluated 

including different solvents, matrices, matrix/analyte ratios, mass analyzer (i.e., FTICR instead 

of TOF), ionization mode (i.e., negative mode), and laser intensities (i.e., 4000-5000 arb. unit). 

All experiments showed both ions [M-H]
+
 and [M+H]

+
 during MALDI-MS indicating that the 

ionization of curcumin analogues is not significantly affected via varying MALDI conditions. 

Two more experiments were performed; LD-MS and solvent free LD-MS to explore the role of 

solvent and matrix in the [M-H]
+
 formation. Both experiments revealed that neither solvent nor 

matrix play a significant role in the formation of such ions.  Finally, another photoionization 

based technique was used (i.e., APPI) to evaluate the role of photoionization in the [M-H]
+
 

formation showing that the [M-H]
+
 formation is significantly affected by photon energy. The 

ionization behavior of curcumin analogues during APPI-MS was dopant dependent where [M-

H]
+
 formed in absence of dopant and disappeared with dopant mediated APPI-MS (Scheme 2.5). 

 Proposed mechanisms for the [M-H]
+ 

and
 
[M+H]

+
 formation  

Three proposed mechanisms for [M-H]
+
 formation (Scheme 2.4) were evaluated showing 

opposing observations to one of these mechanisms (i.e., loss of H2 from the protonated analyte). 

However, the other two proposed mechanisms (hydrogen atom transfer from the analyte radical 

cation and hydride abstraction) were still applicable as possible mechanisms for the [M-H]
+ 

formation. On the other hand, the detailed mechanism of [M+H]
+
 formation of curcumin 

analogues in the absence of solvent and matrix during solvent free LD-MS was explained. This 
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mechanism was based on direct photoionization or photo-excitation of curcumin analogue 

molecules forming the radical cation or excited state of the analyte, followed by hydrogen 

subtraction or proton transfer respectively as presented in equations (1-5) on pages (61-62).  

In summary, the formation of [M-H]
+
 was primarily dependent on photoionization/photo-

excitation using either MALDI or APPI.  On the other hand, the formation of the expected 

[M+H]
+
 was generally present in all evaluated ionization mechanisms including ESI, APCI, 

MALDI and APPI. The formation of radical ions (M
+•

) was confined to APPI-MS, providing 

insights into the mechanism that lead to the formation of [M-H]
+
 ions.  To advance the 

development of MS-based analytical methods for curcumin analogues, CID-MS/MS behavior of 

each species must be evaluated.  In this work, I focused on assessing the CID-MS/MS 

dissociation behavior of curcumin analogues during ESI-MS/MS analysis using a Qq-LIT-MS 

instrument.  

 

4.1.2. Tandem mass spectrometric analysis of the thirteen curcumin analogues 

MS single stage analysis allowed for the identification of the thirteen curcumin analogues 

by measuring their exact masses. The molecular formula of the thirteen curcumin analogues were 

confirmed by monitoring the [M+H]
+
 ions in the single stage positive ion mode of ESI-Qq-TOF-

MS. The mass accuracy error was less than 6 ppm for all tested compounds using a two point- 

external calibration (Table 3.1).  

In addition to single stage-MS, the structural features of curcumin analogues were 

evaluated by investigating their ESI-Qq-LIT-MS/MS fragmentation behavior. In this work, the 

CID-MS/MS fragmentation pattern of each curcumin analogue was established and the 

diagnostic product ions were identified to be used sequentially for qualitative and quantitative 
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analysis of these compounds (Appendix B-Schemes 1-13). Similar CID-MS/MS dissociation 

behavior was observed with all tested curcumin analogues that was mainly based on the cleavage 

of the piperidone ring of the 3,5-bis(benzylidene)-4- piperidone moiety. As a result, a general 

fragmentation pattern was established for the thirteen curcumin analogues, presenting twelve 

common product ions (Table 3.3). The number of detected product ions varied between 

curcumin analogues as a result of the difference in the substituents on the aryl and the piperidyl 

nitrogen atom of the 3,5-bis(benzylidene)-4- piperidone. For example, the absence of the 

substitution on the piperidyl nitrogen atom in the case of the secondary amine curcumin 

analogues (Scheme 1.3) resulted in less detected common product ions (3 out of 12). However, 

other product ions were detected with these compounds that also centered on the cleavage of the 

piperidone ring but in different fashion as presented in Table 3.5. Side chain fragmentation of 

curcumin analogues showed characteristic product ions with good intensities that could serve as 

diagnostic ions (Table 3.7). The established MS/MS pathways were confirmed via MS
3
 analysis 

and neutral loss scans. 

In summary, MS analysis confirmed the molecular structures of the tested compounds as 

well as established a universal MS/MS dissociation behavior. The reported data will serve as a 

foundation allowing for method development as well as metabolite identification of curcumin 

analogues.  

 

4.2. Summary 

Studying the MS ionization and MS/MS dissociation behaviors of the thirteen curcumin 

analogues allowed for a better understanding of the ionization mechanism and MS/MS 

fragmentation behaviors of tested compounds.  The data can be applied in the development of 
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MS-based analytical methods. In this work, the unexpected ionization behavior of curcumin 

analogues was investigated to demonstrate the factors involved in the [M-H]
+
 and [M+H]

+
 ion 

formation and their proposed formation mechanisms. We provided a detailed mechanism study 

evaluating the roles of the matrix/dopant, solvents/additives, and laser energy. Photon energy 

was crucial for the observed unique ionization behavior. Studying the ionization of curcumin 

analogues with various ionization techniques and under different conditions improves knowledge 

regarding ion formation mechanisms during MS-analysis including the unexpected formation of 

[M-H]
+
 species. The ionization behavior of the curcumin analogues and structurally-related 

compounds should be taken into account during the development of MS-based qualitative or 

quantitative analytical methods. 

In addition, the MS/MS fragmentation patterns of the tested curcumin analogues were 

established confirming their chemical structures and providing fingerprint MS/MS patterns with 

diagnostic product ions that can be used for selective identification and quantification of these 

compounds. A general MS/MS fragmentation pattern was established based on the similar 

fragmentation behavior of the tested curcumin analogues. It can serve as a benchmark for 

metabolite identification and to predict the MS/MS of structurally related compounds [13-16]. 

 

4.3. Future directions 

4.3.1. Investigating curcumin analogues as possible MALDI matrices 

The ability of the evaluated curcumin analogues to self-ionize by direct absorption of the 

photon energy during MALDI-MS as well as APPI-MS may indicate that these compounds can 

be used as possible future MALDI matrices. Recently, a curcumin molecule was successfully 

applied as a MALDI matrix for the analysis of several different analytes (i.e., drugs, lipids, 
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peptides, and proteins) as well as for MALDI imaging applications [17]. The evaluated curcumin 

analogues in this study were designed by structural modification of the curcumin molecule 

showing the same conjugated unsaturated ketone structure. Such structural similarity may 

indicate that these compounds can also, similar to curcumin, be used as MALDI matrices.  

 

4.3.2. Qualitative and quantitative analysis of the tested curcumin analogues and 

structurally-related compounds 

MALDI based analytical methods can be developed for the analysis of the thirteen 

curcumin analogues by monitoring the [M-H]
+
 ions instead of the [M+H]

+
. As [M-H]

+
 ions were 

detected with high intensities in comparison to the [M+H]
+
, this may help enhance the 

sensitivity/selectivity of the developed method as well as the limit of detection/quantification. In 

addition, three curcumin analogues were ionized only as [M-H]
+
 without the formation of the 

[M+H]
+
 ions which means that MALDI-based identification and quantification of these 

compounds cannot be achieved by monitoring [M+H]
+
 ions (Figure 2.6).  

The established ESI-MS/MS fingerprints of the tested curcumin analogues can be used 

for the identification of these compounds during their preclinical and clinical evaluation. In 

addition, the general fragmentation pattern can be applied to other curcumin analogues recently 

designed by other research groups and belonging to the 3,5-bis(benzylidene)-4-piperidone 

structural family [13-16]. The identified diagnostic product ions from the established MS/MS 

pattern of each curcumin analogue are important for the quantification of these compounds via 

multiple-reaction monitoring (MRM) analysis. Using unique transitions during the MRM-

quantification ensures selectivity of the method especially in the presence of complex matrices. 
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APPENDIX A                                                                                                                                      

THE SYNTHESIS OF THE DEUTERATED NC CURCUMIN ANALOGUE (3,5-

BIS(BENZYLIDENE)-4-PIPERIDONE-D10) 

 

The synthesis followed a general scheme previously published by Dr. Dimmock et al [1] . 

The non-deuterated form of the target compound (3,5-bis(benzylidene)-4-piperidone) was first 

synthesized to adjust the method condition, followed by the synthesis of the deuterated form by 

the acid-catalyzed condensation between benzaldehyde-d5 and 4-piperidoine (Appendix A-

Scheme 1) as follows: 

1. One gram of benzaldehyde-d5 (99.7 atom % D, CAS Number 14132-51-5, C/D/N 

Isotopes, Pointe-Claire, Quebec, Canada) was mixed with 12.32 ml of acetic acid 

followed by the addition of 721.1 mg of 4-piperidone.  

2. Dry HCl air was passed through the mixture with stirring for 30 minutes till clear solution 

was formed. Then the mixture stirred for 24 hours at room temperature. 

3. A precipitate was collected by vacuum filtration and washed with ether then mixed with 

25% w/v potassium carbonate in water (2.5gm K2CO3 in 10ml water).  

4. The mixture was stirred for 30 minutes and the precipitate was collected by vacuum 

filtration and washed with water and dried. 

N
H

O

+

O

D

D

D

D

4-piperidone benzaldehyde-d
5

D N
H

O

D

D

D

D

D D

D

D

D

D

Deuterated NC compound      
285 Da

acid-catalyzed condensation
2

 

Appendix A-Scheme 1: The synthetic process of the 3,5-bis(benzylidene)-4-piperidone-d10 (the 

dueterated NC curcumin analogue) 

http://www.sigmaaldrich.com/catalog/search?term=7789-17-5&interface=CAS%20No.&lang=en&region=CA&focus=product
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The yield% of the deuterated final product was 83.19%. This compound was confirmed 

by NMR, showing the complete disappearance of the 10 hydrogen atoms of the two benzyl 

groups in comparison to the NMR of the non-deuterated NC curcumin analogue. The exact mass 

of the deuterated compound was measured using the ESI-Qq-TOF-MS under the previously 

mentioned operating condition on pages (79-80), showing the [M+H]
+
 ion at m/z 286.2 with 

mass accuracy of 5.73 ppm (Appendix A-Figure 1A). No other peaks were detected during the 

ESI-Qq-TOF-MS analysis of the deuterated compound. As illustrated in Appendix A-Figure 1B, 

the background at m/z values (0 - 285) show signals with maximum intensity of 5.6 ion counts. 

References:   

[1] U. Das, J. Alcorn, A. Shrivastav, R. K. Sharma, E. De Clercq, J. Balzarini, et al., "Design, 

synthesis and cytotoxic properties of novel 1-[4-(2-alkylaminoethoxy) phenylcarbonyl]-3, 5-bis 

(arylidene)-4-piperidones and related compounds," European journal of medicinal chemistry, 

vol. 42, pp. 71-80, 2007. 
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APPENDIX B                                                                                                                              

THE FRAGMENTATION PATTERNS AND SPECTRA OF THE [M+H]
+
 IONS OF 

CURCUMIN ANALOGUES DURING ESI-MS/MS ANALYSIS 

 

(The m/z values of the diagnostic product ions of each curcumin analogue were underlined) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B-Scheme 1. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2311 
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Appendix B-Scheme 2. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2313 
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Appendix B-Scheme 3. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2314 
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Appendix B-Scheme 4. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2315 
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Appendix B-Scheme 5. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2067 
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Appendix B-Scheme 6. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2081 

 

CH2

+

N
H

O
117

509

O

O

CH
+

147

234

CH
+

O

259

229

N

O

O

OH

H2

143

C
+

O

CH
+

231

co

C
+

391

[M+H]+
O

N

O

O

O

N

O

N

O

O

O

NH
+

O

C
+

O

O

N

O

CH2

+

N

O

CH2

N

O

O

N

O

NH2

O

O

N

O

NH

O

O

N

O
NH

C
+

205

CH2

+

O

247

CH2

co

CH2

+

O
NH

+

86

N

O

O

O

CH3

O

N

O

O

O

N

O
NH

+

84

H2

219

H2

H
+

F2

F3

F5

F6

F7

F8

F9

F10

F11

F
i

F
ii

F
iii

114

CE=35 



122 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B-Scheme 7. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2144 
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Appendix B-Scheme 8. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2138 
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Appendix B-Scheme 9. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2094 
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Appendix B-Scheme 10. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2453 
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Appendix B-Scheme 11. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2454 
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Appendix B-Scheme 12. ESI-MS/MS fragmentation pattern of [M+H]

+
 of EF24 
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Appendix B-Scheme 13. ESI-MS/MS fragmentation pattern of [M+H]
+
 of NC2128 
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