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ABSTRACT 

Ovulation–inducing factor (OIF) is a seminal plasma protein that has been found in the 

ejaculate of different species. Evidence suggests that OIF and its function may be 

conserved among species. Our general objective was to develop a rabbit model for the 

study of OIF in seminal plasma. In the first study, we conducted two experiments to 

validate the use of ultrasound biomicroscopy as a method for assessing ovarian structures 

in rabbits, and to develop a method that permits serial noninvasive repetitive ultrasound 

evaluation of ovarian structures in vivo in rabbits. In Experiment 1, the number and size 

of follicles ≥ 0.6 mm and corpora lutea (CL) detected by ultrasound biomicroscopy 

(UBM) ex situ were correlated with those detected by histology in each pair of ovaries 

from 4 female New Zealand White rabbits (5-5.5 months old) given an ovulation-

inducing treatment. In Experiment 2, we translocated the ovaries of female New Zealand 

white rabbits (n=12; 5 months old) to a subcutaneous position in order to develop a 

method that permits serial UBM evaluation of ovarian structures in vivo in rabbits. 

Results showed strong correlations (P < 0.05) between UBM and histology in all the 

ovarian variables evaluated in Experiment 1, and also showed that ovarian structures are 

easily identified using UBM in vivo in the rabbits submitted to the surgical approach 

performed in Experiment 2. In the second study, we conducted two experiments to test 

the hypothesis that llama and rabbit seminal plasma elicits a surge of LH release and is 

responsible for inducing ovulation in rabbits. In Experiment 1, we compared the effect of 

an intramuscular administration of saline, GnRH, llama or rabbit seminal plasma in 

female New Zealand White rabbits (n=4-6 per group, 5.5 months old) that were group-

housed. In Experiment 2, we compared the effects of the same treatments in rabbits (n=5-
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7 per group, 5.5 months old) that were individually caged. Ovulation and CL formation 

occurred in most rabbits regardless of the treatment given when animals were group 

housed, while rabbits given similar treatment but individually housed did not ovulate. In 

the GnRH group, a surge in plasma LH concentrations was observed in all the rabbits, 

followed by CL formation and an increase in plasma progesterone concentrations. In 

summary, we developed a rabbit model for the study of OIF, where ovarian structures can 

be evaluated in vivo by UBM. Results did not support the hypothesis that OIF in seminal 

plasma elicits ovulation in rabbits. Further studies are needed to determine the effects of 

dose and route of administration of seminal plasma in rabbits. 
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1.0. GENERAL INTRODUCTION 

 

Ovulation-inducing factor (OIF) is a protein found in the ejaculate of camelids and other 

species (Chen et al., 1985; Zhao et al., 2001; Adams et al., 2005; Ratto et al., 2005; 2006b; 

2010; Bogle et al., 2011). This protein has been isolated from the seminal plasma of llamas and 

alpacas and has been shown to have a potent ovulatory effect when given to females of these 

species (Ratto et al., 2010, 2011; Tanco et al., 2011). South American camelids are induced 

ovulators; i.e., they ovulate only after an external stimulus is given. Since ovulation is a pivotal 

event for successful reproduction in mammals, the discovery of OIF has broad implications and 

the development of models for studying the effects of OIF is important. In addition, OIF may 

also be applied in the development of products that can be used for research or therapeutic 

purposes involved with ovulation induction. 

Using female camelids as animal models, investigators documented that a single 

intramuscular administration of camelid seminal plasma or purified OIF elicits a preovulatory 

surge of LH and induces high percentages of ovulation in llamas and alpacas (Adams et al., 

2005; Ratto et al., 2005; 2011; Bogle et al., 2011). However, the mechanism of action and 

biological pathways of OIF are poorly understood. The use of large animals as models for the 

study of OIF (i.e., camelids) carries the disadvantages of their large size and weight, cost of 

maintenance, genetic variability, and practical issues regarding evaluation of post-mortem 

tissues.  

Given the need for increasing knowledge about OIF, new animal models are required. 

When considering animal models for the study of OIF we need to ask whether we can truly 

determine if ovulation occurred as a consequence of the treatment given. In this regard, 
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spontaneous ovulators (i.e. no external stimulus is required to initiate ovulation) such as mice are 

not the most appropriate model to investigate about OIF. Conversely, rabbits are a promising 

animal model because they are induced ovulators - ovulation occurs only after an external 

stimulus is given. Unlike camelids, the genetic uniformity in laboratory rabbits will facilitate the 

reproducibility of experimental results. Furthermore, rabbits are small, docile, easy to handle, 

readily available, and relatively inexpensive to maintain. Unlike mice, some experimental 

procedures are more easily performed in rabbits; e.g., ultrasonography and serial blood sampling. 

Moreover, smaller animals require a lower absolute treatment dose. 

There is growing evidence that the biological activity of OIF is conserved in the other 

mammals (e.g. bovine, equine, porcine; Ratto et al., 2006b; Bogle et al., 2011), and questions 

associated with the role of OIF in the seminal plasma of induced ovulators like the rabbit arise. Is 

the biological activity of OIF conserved in seminal plasma of rabbits? Is the OIF in the seminal 

plasma of llamas able to induce ovulation in rabbits? Is a single administration of seminal plasma 

enough to induce ovulation in rabbits? Can ovulation be easily evaluated in live rabbits? These 

are some of the questions that can help us to decide whether or not the rabbit is a suitable animal 

model for the study of OIF in the seminal plasma. 

The following literature review provides general information about the reproductive 

physiology in rabbits, and is focused on the event of ovulation in rabbits and other induced 

ovulators, and our knowledge of the role of seminal plasma and/or purified OIF on induction of 

ovulation. 
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1.1. Reproductive physiology of the female rabbit  

Mammalian species are classified as spontaneous or induced ovulators (Conaway, 1971). 

Spontaneous ovulators (e.g., cattle, pigs, sheep, humans) display a cyclical increase of estradiol 

which triggers GnRH release from the hypothalamus, LH release from the pituitary, and 

ultimately ovulation regardless of mating activity (Wettemann et al., 1972; Kelly et al., 1988; 

Brooks and McNeilly, 1994). Induced ovulators (e.g., rabbits, camelids, cats), however, require 

stimulation associated with mating to provoke GnRH release and then the surge of LH which is 

necessary to elicit ovulation (Bakker, 2000). 

Female rabbits are classified as induced or reflex ovulators because ovulation takes place 

after mating (Heape et al., 1905; Friedman et al., 1929; Spies et al., 1997; Harkness et al., 2010); 

hence, rabbits do not have a regular estrous cycle (Harkness et al., 2010) as in other domestic 

species (e.g., cattle). Rabbits display periods of sexual receptivity and non receptivity. 

Investigators have reported that the period of receptivity lasted about 5 to 6 days (Myers and 

Poole, 1962; Stein and Walshaw, 1996) or 7 to 10 days (Harkness et al., 2010) in the absence of 

mating. This period was followed by 1 to 2 days (Harkness et al., 2010) or 4 days (Alvariño, 

1993) of non receptivity. Sexual receptivity, or the willingness of the female rabbit to allow 

mating (Tsiligianni et al., 2004), involved the adoption of a lordosis posture (Beyer et al., 2007). 

In female rabbits, lordosis is usually displayed in response to male pelvic thrusting (Moralí et al., 

2003; cited in Beyer et al., 2007). In females that are willing to accept mating, it is more likely to 

observe an enlarged reddish-purple vulva as a result of high concentrations of estrogens; 

however, some females accepted mating when the vulva was small and pale (Beyer et al., 2007). 

The color of the vulva has been considered useful to estimate receptivity at the time of artificial 
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insemination (Leyún et al., 1982; Torres et al., 1984; Roca et al., 1986; Abdel-Ghaffar and 

Agag, 1994; Morura et al., 2003; Vicente et al., 2008), but some authors reported no clear 

relationship between this external sign and subsequent occurrence of ovulation or pregnancy 

(Adams, 1983). The display of chin-scent marking (“chinning”, “a scent marking behavior in 

which the female rubs the undersurface of her chin on objects in order to deposit scent gland 

secretions”) has also been observed in some receptive female rabbits. In a study was reported 

that post-mating administration of estradiol prevented the decline in chinning and receptivity 

(Hoffman et al., 2010).  

Sexual behavior in female rabbits has been studied during pregnancy, pseudopregnancy, 

and post partum. Some pregnant rabbits accepted mating, but release of gonadotropins and 

ovulation did not occur (Mills and Gerardot, 1984). Sexual behavior in pregnant rabbits was 

markedly reduced compared to that in non pregnant rabbits and ended by the final third of 

pregnancy (Beyer and Rivaud, 1969; Stoufflet and Caillol, 1988). Likewise, sexual behavior or 

receptivity was reduced in pseudopregnant rabbits but increased again by the end of the 

pseudopregnant period when progesterone concentration returned to basal levels (Caillol et al., 

1983). During the post partum period, rabbits were found to be highly receptive on the day and 

the following day of parturition and after weaning (Day 28 of lactation), when they were able to 

ovulate (Beyer and Rivaud, 1969). Receptivity also has been found to vary depending on parity 

(i.e., primipara are less receptive than nullipara) and stage of lactation (i.e., lactating are less 

receptive than non-lactating) and receptivity may also influence reproductive performance 

(reviewed by Theau-Clément, 2007).  
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In general, female rabbits reach puberty (i.e., the onset of sexual receptivity and 

ovulation) at around 14 weeks of age (Hulot et al., 1982; Diaz et al, 1988, Rommers et al., 

2001), although the age at first mating depends upon the breed of rabbit (Harkness et al., 2010). 

In the Californian and New Zealand breeds, the females are sexually receptive and achieve high 

reproductive performance (ovulation and in litter size) by 17-20 weeks of age (Hulot et al., 1982; 

Gosálvez et al., 1994; Rommers et al., 2001). Different feeding systems (ad libitum vs 

restrictive) will affect reproductive performance in rabbits (Rommers et al., 2001), and some 

researchers recommended that breeding begin when the female rabbit reaches about 75% of its 

adult weight (Gosálvez et al., 1994). Better litter size was observed in rabbits with higher body 

weights (i.e., fed ad libitum) at first insemination (Rommers et al., 2002). In modern 

management schemes, however, young does are not inseminated at a fixed body weight but at a 

fixed age (Rommers et al., 2002). 

Ovarian function in rabbits is not well understood. Unlike South American camelids (i.e., 

induced ovulating species in which follicular wave activity has been well documented), the 

pattern of follicle development in rabbits has not been established. Unlike most other mammals, 

the formation, activation and development of ovarian follicles occurred entirely postnatally in 

rabbits, with primordial follicle assembly presumably completed between 2 and 4 weeks of age 

(Hutt et al., 2006). With the onset of puberty, follicles reached ovulatory status and were related 

with sexual behavior. For instance, some authors have indicated that follicles with a diameter 

>1.8 mm were present only in receptive females (Lefèvre and Caillol, 1979). However, there is 

no clear understanding of the relationship between follicle diameter and ovulatory capability in 

rabbits. Preovulatory follicles were also referred as those >800 to 900 um in diameter 

(Kranzfelder et al., 1984). Others have reported that preovulatory follicles are those that are >1.5 
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mm or > 2 mm in diameter (Parkes, 1931; Hunzicker-Dunn et al., 1979; Marongiu and Gulinati, 

2008). A continuous growth and regression of follicles appears to occur in receptive rabbits and 

investigators in an early study suggested that follicles able to ovulate remain for about 7 to 10 

days and then regress (Hill and White, 1933). Follicular development is thought to be supported 

by the growth of 5 to 10 follicles on each ovary at any one time. Once follicles reach an 

ovulatory size, they secrete estrogens in increasing amounts and rabbits show sexual receptivity 

for a period of time. When those follicles degenerate, secretions of estrogen decline and females 

rabbits become non receptive (Harcout-Brown, 2002). Likewise, results of others have shown 

that receptive rabbits had more large follicles and a higher concentration of estradiol in the 

follicular fluid than those of non receptive rabbits (Lefèvre and Caillol, 1979). Additionally, the 

ability to ovulate in response to mating was suggested to differ between receptive (accepted 

mating) and non receptive rabbits (refused mating and were subjected to assisted mating); and 12 

h post-mating, ovulations were detected in 4/6 vs 0/4 rabbits, respectively (Boumahdi-Merad et 

al., 2011). Findings from others (Hulot et al., 1988) have suggested that failure to ovulate in 

rabbits may be caused by a lack of discharge of LH rather than to a lack of mature follicles in the 

ovaries. 

Pseudopregnancy occurs after a sterile mating or after hormonal induction of ovulation in 

rabbits and lasts about 16-18 days (Scott and Rennie, 1970; Kelley and Brinkley, 1971; 

Dharmarajan et al., 1988; Harcourt-Brown, 2002). An average of 8 to 10 corpora lutea developed 

after induction of ovulation in rabbits mated with vasectomised males (Browning et al., 1980) or 

after intravenous administration of hCG (Hulot et al., 1988). During development of the corpora 

lutea, the theca interna takes part in the active growth of each CL, while the theca externa takes 

part in the vascularisation and forms the sheath of the fully-grown CL (Deanesly, 1930). In 
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addition, LH causes the differentiation of granulosa cells to luteal cells (Labib et al., 1978). The 

growth and subsequent regression of CL resulted primarily from changes in the volume rather 

than changes in the number of individual luteal cells (Dharmarajan et al., 1988). In one study 

(Kelley and Brinkley, 1971), corpora lutea reached maximum size by Day 9 (Day 0 = Day of 

mating), started to regress by Day 15, and were significantly reduced in size by Day 21. In 

another study (Dharmarajan et al., 1988a), CL volume decreased after Day 11. The progesterone 

concentrations were found to be high (13.4ng/ml) on Day 10 and low (1.5ng/ml) by Day 18 

(Miller and Keyes, 1976). Similar results (Browning et al., 1980) documented high progesterone 

concentrations on Days 10-12, followed by a steady decline till less than 1 ng/ml on Days 16-18. 

By using an ovarian in vivo perfusion method, results (Dharmarajan et al., 1988b) showed a 

significant rise in progesterone secretion from Day 1 to Day 11, a decline by Day 18. 

Interestingly, when pseudopregnant rabbits were hysterectomized on Day 1 and treated with 

estradiol, the progesterone concentrations remained elevated (around 11 ng/ml) at least until Day 

28 (last day of observation) (Miller and Keyes, 1976). In addition, when pseudopregnant rabbits 

were hysterectomized on Day 4 and treated with LH on Day 9, life span of corpora lutea was 

prolonged to Day 24 (Kelley and Brinkley, 1971). Results of the latter studies suggested that the 

uterus has a role in limiting the life span of the CL in pseudopregnant rabbits (Kelley and 

Brinkley, 1971; Miller and Keyes, 1976). Prostaglandin F2 secretion by the uterine 

endometrium has been suggested to have a direct luteolytic effect on the rabbit CL (Scott and 

Rennie, 1970; Koering, 1974).  

In pregnant rabbits, the maximum mass of CL was reached on Days 16 to 20 and then 

declined gradually to Day 28, near term (Abdul-Karim and Bruce, 1973). The progressive 

reduction in luteal cell numbers was related to the gradual decline in mass of CL, but a clear 
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structural regression of CL (i.e., reduction in surface area of capillaries per CL, decline in CL 

blood flow) was observed by Day 28-30 (Dharmarajan et al., 1989). In an early study, 

investigators reported that serum progesterone concentrations from CL declined after Day 16 

(Hilliard et al., 1968) in pregnant rabbits. Results of later studies showed that highest values of 

serum progesterone concentrations were reached on Days 10-12 and were similar to those found 

during pseudopregnancy, then progesterone declined slightly but remained elevated through Day 

28 (Browning et al., 1980). Similar results were described by others (Egea del Prado et al., 

1984), who found maximum progesterone concentrations by Days 11 to 13 (10.8-11.8 ng/ml), 

followed by a slightly decrease but elevated progesterone until Day 25 to 28 (7.15 ng/ml). 

Maintenance of pregnancy (30 to 32 days) in rabbits requires progesterone production by CL 

(Greewald and Rothchild, 1968; Rashwan et al., 2003), and the maintenance of the CL function 

is dependent on the presence of the conceptus and estradiol (Greep, 1941; Holt, 1989). A critical 

period for the CL appeared to be days 5 to 6 after mating, during which presence of estradiol is 

essential for continued luteal development and secretion of progesterone (Miller and Keyes, 

1978).  

1.2. Mechanism of ovulation in rabbits  

Ovulation is induced by copulation in rabbits (Heape et al., 1905; Friedman et al., 1929; 

Spies et al., 1997; Harkness et al., 2010). In studies involving direct and histological 

examinations of the ovaries at different times post-mating, ovulation was detected 10 to 13 h 

after mating (Walton and Hammond, 1928; Fee and Parkes, 1929). A neuro-endocrine reflex is 

thought to provoke a surge of LH within 1-2 h post-mating (Hilliard et al., 1974; Jones et al., 

1976; Meunier et al., 1983; Spies et al., 1997). Authors of an early study (Hammond and Asdell, 
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1926) reported that artificial insemination followed by sterile mating resulted in higher 

percentages of conception than after artificial insemination alone (20/22 [91%] vs 1/28 [4%]). 

There is, however, no clear evidence to support that the mechanical stimulus of the penis or the 

presence of semen in the vagina initiates ovulation (Walton and Hammond, 1928). Results of 

another study showed that repetitive intravenous or intraperitoneal administration of rabbit 

spermatozoa or fresh testicular extracts into female rabbits delayed the return of successful 

fertility after mating, because animals failed to become pregnant during 6 to 25 weeks even after 

being repeatedly mated (Pommerenke, 1928). This may imply that antibodies directed against 

spermatozoa antigens have been produced in those rabbits, which then can cause infertility. 

While after repetitive intravenous administration of rabbit seminal plasma, fertility was not 

altered (Weil and Roberts, 1965; Menge, 1971). The primary trigger for inducing ovulation in 

rabbits is not well understood, but the pituitary gland plays a major role in the occurrence of 

ovulation; its surgical removal within 1 h after copulation inhibited ovulation (Fee and Parkes, 

1929), while tissue pituitary extracts produced ovulation in hypophysectomized rabbits (Hill and 

Parkes, 1931).  

Evidence has suggested that copulation in rabbits induces activation of GnRH cells in the 

hypothalamus and results in a GnRH surge and then in a LH surge (Spies et al., 1997; Blaustein 

and Ershine, 2002). An investigator indicated that hypothalamus may influence the activity of 

the pituitary by a humoral mechanism (Harris, 1948). However, some others showed that 

electrical stimulation of central nervous system (cerebral and spinal) induced ovulation in rabbits 

(Marshall and Verney, 1936), and surgical transection of the pituitary stalk (connection between 

pituitary and hypothalamus) prevented ovulation after mating-related stimulation in rabbits 
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(Brooks and Lambert, 1939). Likewise, vaginal stimulation in rabbits has been reported to 

increase electrical activity in hypothalamic neurons (Vincent et al., 1970).  

In rabbits, ovulation can also be induced by exogenous administration of hormones 

(Harkness et al., 2010). The occurrence of ovulation by direct examination of the ovaries was 

detected between 10 and 14 h after intravenous administration of LH (Harper, 1961) or LH-RH 

(Kanematsu et al., 1974; Carlson and Perrin, 1979). Ovulation was also detected after 

intravenous administration of hCG (Kobayashi et al., 1981; Molina et al., 1987) and 

intramuscular administration of GnRH (Rodríguez et al., 1988). In commercial rabbit production 

systems, GnRH has been used after insemination to stimulate ovulation, given intramuscularly or 

intravaginally added to the seminal dose (Ondruška et al., 2008; Quintela et al., 2008). 

1.3. Ovulation in other induced ovulators 

In other induced ovulators, such as the discussed in this review, the mechanism 

underlying the ovulatory process remains unclear. As in rabbits, there is evidence that a release 

of LH occurs after copulation or administration of exogenous gonadotropin hormones.  

In South American camelids (i.e., llamas, alpacas), ovulation was detected 26 h after 

mating by post-mortem examination (San Martín et al., 1968) and at 30 h after mating by 

laparoscopic examination (Sumar et al., 1993). Using ultrasonography, ovulation was detected 1-

3 days (mean, 1.8 days, Adams et al., 1989; mean, 2 days, Adams et al., 1990, 1991), or 30.0 ± 

0.5 h after mating (Mean ± SEM, Ratto et al., 2006a). Ovulation was also detected 24-30 h after 

intramuscular administration of hCG, LH or GnRH (San Martín et al., 1968; Huanca et al., 2001; 

Ratto et al., 2006a). Plasma LH concentrations increased after mating, reaching maximum 
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concentrations (3-8 ng/ml) after 2 h, then decreasing and returning to basal levels (0.96 ng/ml) 

after 7 h (Bravo et al., 1992). Similarly, a rise in plasma LH concentration has also been 

documented after administration of GnRH (Bravo et al., 1992); maximum concentrations were 

observed at 1.4 ± 0.2 h, began to decrease at 5 h, and returned to basal levels by 5.5 h (Mean ± 

SEM, Adams et al., 2005). After mating, if ovulation occurs, a corpus luteum (CL) develops and 

produces progesterone (England et al., 1969; Fernandez-Baca et al., 1970a; Adams et al., 1990, 

1991; Vaughan et al., 2003; Ratto et al., 2006a). When a functional CL is present this period is 

referred as luteal phase (Adams et al., 1991). Maximum plasma progesterone concentrations for 

non pregnant females occurred on Days 8 to 9 (Day 0 = Day of mating) (Adams et al., 1991; Aba 

et al., 1995; Ratto et al., 2006a), followed by a sharp decrease starting between Days 12 to 13 

(Fernandez-Baca et al., 1970a; Ratto et al., 2006a), and reached a nadir on Days 14 to 15 

(Fernandez-Baca et al., 1970a; Adams et al., 1991). In pregnant llamas, a transient decrease in 

plasma progesterone concentration occurred between Days 10 and 12, then increased and 

remained above 2 ng/ml after Day 12 (Adams et al., 1991). Progesterone produced by CL is 

necessary for the maintenance of pregnancy (11 months) in camelids (San Martin et al., 1968; 

Sumar et al., 1988; Leon et al., 1990) and was found to remain elevated during the whole 

pregnancy (Leon et al., 1990; Aba et al., 1995). By the time of parturition, luteolysis occurred 

and progesterone concentrations declined dramatically (Bravo et al., 1991b). Five days after 

parturition, females were receptive to males and ovulation and fertilization was achieved (Sumar 

et al., 1972), but greater percentages of successful ovulation were obtained 20 days after 

parturition (Bravo et al., 1995). Studies related to ovarian follicular dynamics have shown a 

wave-like pattern of follicular development in llamas (Adams et al., 1990; Bravo et al., 1990; 

Chaves et al., 2002) and alpacas (Bravo and Sumar, 1989; Vaughan et al., 2004). Some authors 
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(Adams et al., 1990) have suggested that a growing or regressing follicle of at least 6 mm was 

expected to be found at any given time due to the occurrence of successive follicular waves in 

camelids.  Growing follicles ≥ 6 mm had the ability to ovulate (Adams et al., 1990) while those 

regressing lost that ability (Bravo et al., 1991a). Ovulatory capability depends of the ovarian 

follicular size at the time of mating (Adams et al., 1990; Bravo et al., 1991a); release of LH 

surge occurred but did not elicit ovulation in alpacas and llamas unless a growing or mature 

follicle ≥ 6mm in diameter was present (Bravo et al., 1991a). 

In Old World camels (ie., dromedary camel, Bactrian camel), ovulation was detected by 

rectal palpation 36-48 h after mating (Xu et al., 1985), or after insemination (Chen et al., 1985). 

Intramuscular administration of LH, hCG and LH-RH also was shown to induce ovulation (Chen 

et al., 1985). An increase in LH concentrations was found within 1 h of mating and reached 

maximum concentrations 2-4 h later, and decreased 6-8 h after mating (Xu et al., 1985; Marie 

and Anouassi, 1986). The pattern of plasma progesterone concentrations (Xu et al., 1985; Marie 

and Anouassi, 1986, 1987; Skidmore et al., 1996) was reported to be similar to the one described 

above in South American camelids, although the duration of the luteal phase in non pregnant 

females was indicated to be shorter. 

In ferrets, ovulation occurred 30-40 h after mating and after sufficient LH release (3- to 

4-fold elevation compared to basal levels) (Hammond and Walton, 1934; Carroll et al., 1985). 

Failure to ovulate was found when copulation did not lead to an increase in LH, which was 

suggested to be due to incomplete coitus (Carroll et al., 1985); considering that copulation in 

ferrets lasts on average 1-2 h (Hammond and Walton, 1934; reviewed by Lindeberg, 2008). 

Although, vagino-cervical stimulation even after 1 min of copulation induced an LH surge 

(Carroll et al., 1985). The lifespan of CL was reported to be 40-42 days, regardless of whether 
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fertilization occurred (Chang and Yanagimachi, 1963) and progesterone concentrations were 

detected to decline progressively between days 24 and 42 (Blatchley and Donovan, 1976). 

Pregnancy lasted about 41 days (reviewed by Lindeberg, 2008). 

In cats, a linear relationship was found between the number of sexual contacts, the 

magnitude and duration of LH release, and the occurrence of successful ovulation (Concannon et 

al., 1980). After a single mating in late estrus, ovulation occurred but conception rates were low 

(25%) (Glover et al., 1985). Whereas repeated matings in mid-estrus were related to high plasma 

LH concentrations, which stimulated ovulation and provided high (> 80%) conception rates 

(Tsutsui et al., 2009). In general, LH increases were detected within 5 to 10 min after coitus. The 

LH surge occurred within 1 h of coitus (Johnson and Gay, 1981; Tsutsui et al., 2009), and 

remained higher than basal levels for about 8-16 h (Banks and Stabenfeldt, 1982; Shille et al., 

1983). If fertilization does not occur, the luteal phase of non pregnant cats has been indicated to 

be half as long as pregnancy (Brown et al., 1994). Pregnancy lasted about 62 to 71 days (Root et 

al., 1995). 

In koalas, a full copulatory stimulus from the male has been shown to be required for 

ovulation, formation of CL and secretion of progesterone (Johnston et al. 2000a). The full 

copulation was thought traditionally to induce ovulation due to the neural excitation of the 

female urogenital system, but later studies found evidence that this ovulation-induction may be 

related to a component of the semen (Johnston et al., 2004). Mechanical stimulation of the 

urogenital sinus with a glass rod failed to induce a luteal phase (Johnston et al., 2004). As in 

other species, elevated LH concentrations were observed after mating (about 24–32 h) (Johnston 

et al., 2004). The duration of the luteal phase and the concentration and profiles of fecal 
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progestagen (term used in recognition that the assay system may overestimate the absolute value 

of progesterone in the samples) during pregnancy were found to be similar to those during non 

pregnancy, with high progestagen concentrations for 36 to 38 days (Kusuda et al., 2009). 

Pregnancy lasted about 34 to 49 days (Johnston et al. 2000b). 

1.4. Effect of seminal plasma on ovulation in induced ovulators  

Seminal plasma is the fluid and noncellular component of the semen (reviewed by 

Leibfried-Rutledge et al., 1997). This fluid is produced mainly by the male accessory sex glands 

and the epididymis (Mann, 1964; Foxcroft et al., 2008). It contains a variety of components such 

as amino acid, lipids, fatty acids, peptides and proteins (reviewed by Jonakova et al., 2010), as 

well as other factors such as prostaglandins, proteases, immunoglobulins (Alexander and 

Anderson, 1987 cited by Croy and Whitelaw, 1998) and cytokines (reviewed by Hedger and 

Hales, 2006).  The contribution of accessory glands to seminal plasma is variable from specie to 

specie (reviewed by Liebfried-Rutledge et al., 1997). 

Seminal plasma components have been thought to play a role in the maintenance, 

function and transportation of spermatozoa (Mann, 1964; Lindholmer, 1974; Jones and López, 

2006; Pesch et al., 2006).  However, , investigators have revealed that seminal plasma also has a 

role in female reproductive function in both spontaneous ovulators (e.g., pig; reviewed by 

Maxwell and Johnson, 1999; O’Leary et al., 2006; Robertson et al., 2007) and induced ovulators 

(e.g., camelids; Adams et al., 2005). 

Early investigators demonstrated that ovulation (detected by rectal palpation) in female 

Bactrian camels without any physical contact with males was induced by camel or bovine 
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seminal plasma when given intravaginally (Chen et al., 1985). They suggested that seminal 

plasma in this species contains an ovulation-inducing factor (OIF). Additionally, ovulation 

occurred after intramuscular administration of camel seminal plasma, but the methodology or 

data analysis was not presented in the study. In another study (Xu et al., 1985), intravaginal 

administration of bactrian camel semen in female bactrians resulted in a peak in plasma LH 

concentrations at 4 h and increased plasma progesterone concentrations at 3 days. A fraction 

(“L3”) isolated from camel seminal plasma caused LH release from in vitro rat pituitary tissue 

culture and in vivo after intramuscular administration in female camels (Zhao et al., 2001). Pan et 

al. (2001) reported that purified OIF from seminal plasma of camels was a novel hormone 

different from LH-RH, LH, hCG, PMSG, and PGF, according to the analysis of amino acid 

components and the partial amino acid sequence of aminated N-terminus,. In addition, when 

“L3” from seminal plasma of camels was fractionated into four subfractions, “F3-3” still 

stimulated the in vivo release of LH; however, later attempts to further purify OIF from “F3-3” 

were not successful (Li and Zhao, 2004). 

In South American camelids, earlier investigators evaluated ovulation by direct 

inspection of the ovaries and by flushing of the oviducts (ova collection), and concluded that 

mating accompanied by penile intromission was necessary for induction of ovulation 

(Fernandez-Baca et al., 1970b). In a later study (Rios et al., 1985) using laparoscopic 

examination of the ovaries, ovulation occurred in alpacas after intravaginal insemination of 

alpaca and bovine semen (53% and 67%, respectively). A lower ovulation rate (8%), however, 

was reported after intravaginal insemination of alpaca seminal plasma vs alpaca or bovine 

semen. It is plausible that the disparity in the ovulation rates after administration of seminal 

plasma and semen of alpaca may be explained by the samples used (e.g., pool samples vs 
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individual samples), differences in the insemination procedure (e.g., degree of vaginal 

stimulation) or other factors. The induction of ovulation in alpacas by insemination in the study 

by Rios (1985) led to a proposition that semen in this species may contain an ovulation-inducing 

factor (OIF), similar to Bactrian camels.  In addition, intravaginal insemination of alpaca semen 

stimulated ovulation in 6/10 alpacas and 5/8 llamas. (Sumar, 1994), and progesterone secretion 

occurred after insemination, albeit for a period 1-2 days shorter than that after mating. Another 

study investigated the effect of alpaca seminal plasma on LH release using a bioassay of rat 

pituitary cells, and documented that a stimulating effect of seminal plasma could be mediated by 

a factor chemically different from GnRH (Paolicchi et al. 1999). The findings of further studies 

reinforced the existence of a potent ovulatory factor in the seminal plasma in camelids. An  

intramuscular administration of seminal plasma of alpacas and llamas was clearly documented to 

elicit 30 h after a surge in circulating concentrations of LH, and to induce high percentages of 

ovulation as detected by transrectal ultrasonography in 13/14 alpacas and 6/6 llamas (Adams et 

al., 2005). In the same study, intrauterine administration of seminal plasma without curettage did 

not induce ovulation. In a follow-up study on the effects of seminal plasma in alpacas (Ratto et 

al., 2005), higher ovulation rate occurred when females were treated with an intramuscular 

administration of seminal plasma compared to intrauterine administration of seminal plasma 

without curettage (93% vs 41%). An intermediate ovulation rate occurred when females were 

treated with endometrial curettage following intrauterine administration of seminal plasma 

(67%), while no ovulation occurred in alpacas treated with endometrial curettage following 

intrauterine administration of saline (negative control group) (Ratto et al., 2005). The disparity 

between the  effects of intrauterine administration of seminal plasma in noncurettaged alpacas on 

ovulation (41% vs 0%, respectively) in the Ratto (2005) and Adams (2005) studies may be 
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attributed to the dose of seminal plasma used (i.e., 2 ml vs 1 ml) and/or site of deposition of 

seminal plasma  which may have  disrupted the endometrial mucosa. In general, (Ratto et al., 

2005) concluded that OIF in seminal plasma effects ovulation via a systemic rather than a local 

route, curettage disrupted the endometrial mucosa and facilitated the absorption of OIF into the 

circulatory system, and ovulation was not associated with physical stimulation of the genital tract 

alone. The effects of different doses of purified OIF from llama seminal plasma given 

intramuscularly to llamas was investigated, and was concluded that the effects of OIF on 

ovulation as well as the development and function of corpus luteum are dose-dependent(Tanco et 

al., 2011). Purified OIF from llama seminal plasma was also evaluated using an in vitro bioassay 

of llama and bovine pituitary cells (Bogle, 2009). Results revealed a dose-related effect on LH 

release from the llama pituitary cell, documenting that OIF stimulated LH release directly from 

the pituitary in camelids (Bogle, 2009). Conversely, a recent study has suggested that the 

preovulatory LH surge induced by OIF is mediated primarily by a direct or indirect effect of OIF 

on hypothalamic GnRH neurons since OIF did not induce ovulation in llamas pre-treated with a 

GnRH antagonist (cetrorelix; Silva et al., 2011). 

OIF in llama seminal plasma has been identified as a protein molecule with a molecular 

mass of approximately 14-30 kDa (Ratto et al., 2010, Ratto et al., 2011), which is able to elicit a 

preovulatory LH surge followed by ovulation and CL formation in llamas. It is speculated that 

the 14 kDa protein identified in the latter study may be a part of a larger protein complex or 

represented a bioactive prohormone. Future research is required to confirm the structure of OIF 

in order to fully understand its function and underlying mechanism of action. 
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In koalas, elevated progesterone concentrations were detected when koala semen was 

inseminated with and without subsequent urogenital stimulation with a glass rod (7/9 vs 4/9, 

respectively) (Johnston et al., 2004). Unlike seminal plasma, the physical stimulation with a 

glass rode alone did not elicit an LH surge or effect ovulation, nor was it associated with a 

subsequent rise in plasma progesterone concentration. Authors of this study suggested that koala 

semen contains a factor or factors that induce the development of a functional CL (luteal phase).  

The authors speculated, however, that the glass rod stimulation method used in their study 

probably did not mimic the stimulation provoked by the koala penis. With regard to this, they 

suggested that their findings should not be used to conclude that ovulation is not associated with 

physical stimulation of the genital tract in the koala. 

In rabbits, few studies about the effect of semen on female function have been reported. 

(Walton and Hammond, 1928) suggested that ovulation is not initiated by the deposition of 

semen in the vagina. (Pommerenke, 1928) indicated that repetitive intravenous or intraperitoneal 

administration of rabbit spermatozoa or fresh testicular extracts into female rabbits may delay the 

return of successful fertile mating, and females failing to become pregnant during 6 to 25 weeks 

even after repetitive mating. This may imply that antisperm antibodies were produced in those 

female rabbits, a condition that can decrease fertility (Naz et al., 1986). When seminal plasma 

was administered, fertility was not altered (Weil and Roberts, 1965). No studies have been 

reported on the effects of seminal plasma on ovulation in rabbits, but (Silva et al., 2010) 

demonstrated that OIF is present in the seminal plasma of rabbits. 

Evidence for the presence of OIF in seminal plasma was also found in spontaneous 

ovulators, including cattle, horses and pigs, suggesting that OIF may be a conserved molecule 
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among species (Ratto et al., 2005, 2006b; Bogle et al., 2011). Interestingly, there is some 

evidence that OIF affects ovarian function in spontaneous ovulators such as mice (Bogle et al., 

2011) and cattle (Van Steelandt et al., 2008). 

1.5. Ultrasonographic assessment of the effect of seminal plasma on induced ovulators 

In camelids, transrectal ultrasonography has been successfully used to detect and confirm 

ovulation in live females treated with seminal plasma and/or purified OIF (Adams et al., 2005; 

Ratto et al., 2005, 2010, 2011; Bogle et al., 2011; Tanco et al., 2011; Silva et al., 2011).  

Ultrasonic examinations have been carried out using a real-time, B-mode scanner equipped with 

either a 5.0 or 7.5 MHz linear-array transducer. Ovulation in llamas and alpacas was defined 

ultrasonographically as the sudden disappearance of a large (≥ 7 mm) follicle from one day to the 

next, and confirmed by the subsequent detection of a corpus luteum (Adams et al., 1989; Adams 

et al., 1991; Vaughan et al., 2003). A corpus luteum was characteristically circular and 

hypoechogenic relative to the surrounding tissues, often with an indistinct horizontal white 

(echogenic) area traversing the center of the corpus luteum (Adams et al., 1989).  

While transrectal and transcutaneous ultrasonography (5.0 or 7.5 MHz) have been used 

successfully to assess ovarian structures in large animals, ovarian structures could not be reliably 

imaged by conventional ultrasonography in small animals (Kahn et al., 1992). To date, the 

resolution of conventional ultrasonography is inadequate for the study of structures ≤2 mm; i.e., 

ovarian structures in small laboratory species (Pallares and Gonzalez-Bulnes, 2008). In rabbits, 

however, the use of ultrasonography with a 7.5 MHz linear-array transducer was described for 

the examination of ovarian structures in female rabbits prior to and after intravenous 
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administration of hCG (Marongiu and Gulinati, 2008). The authors referred to the ultrasound 

images of follicles as well-defined anechogenic circular areas, and the CL as hyperechogenic 

structures (Marongiu and Gulinati, 2008). To our knowledge, there are no reports about 

ultrasonographic characterization of ovarian dynamics in rabbits, or for assessment of response 

to treatment with seminal plasma and/or OIF. 

The advancement of ultrasound technologies has permitted the development of high-

frequency ultrasound systems for imaging structures <1 mm (http://www.visualsonics.com). This 

technology is often referred as ultrasound biomicroscopy (UBM) and involves a single crystal to 

emit a sound wave with frequencies of 20–70 MHz, providing resolution to 30 μm 

(http://www.visualsonics.com). The UBM characteristics have enabled in vivo study of 

embryogenesis (Turnbull and Foster, 2002) and ovarian follicular dynamics in mice (Jaiswal et 

al., 2009). The use of UBM to examine ovarian structures in mice (Pallares and Gonzalez-

Bulnes, 2008; Mircea et al., 2009) has offered several advantages over traditional methods used 

previously. Methods of a terminal or invasive nature (e.g., histology or laparoscopy) involve 

laborious and time-consuming procedures and limit the number of examinations possible in the 

same animal. Studies of ovarian function in rabbits using UBM have not been reported.   
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2. 0. OBJECTIVES & HYPOTHESIS  

The general objective of this research project was to develop a rabbit model for the study of 

ovulation-inducing-factor (OIF).  

The specific objectives were: 

Objective 1: To validate ultrasound biomicroscopy (UBM) as a tool for assessing ovarian 

follicles and corpora lutea in rabbits (Chapter 3) 

Objective 2: To determine if surgical translocation of the ovaries to a subcutaneous 

position will permit serial in vivo transcutaneous imaging by UBM (Chapter 3). 

Objective 3: To test the hypothesis that llama and rabbit seminal plasma elicits a surge of 

LH release and is responsible for inducing ovulation in rabbits (Chapter 4). 
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3.0. SURGICAL TRANSLOCATION AND ULTRASOUND BIOMICROSCOPY OF THE 

OVARIES IN RABBITS 

3.1. Abstract 

Two experiments were designed to determine the efficacy of ultrasound biomicroscopy 

(UBM) for assessing ovarian structures in rabbits. Experiment 1 was designed to validate the use 

of UBM as a method for assessing ovarian structures in rabbits. Four female New Zealand White 

rabbits (5-5.5 months old) were given ovulation-inducing treatments. The ovaries were examined 

ex situ by UBM using a 25 MHz oscillating sector transducer, and then ovaries were processed 

for histology. Follicles ≥ 0.6 mm and corpora lutea (CL) were counted and measured by scrolling 

through the UBM cine-loops and the serial micrographs. Pairwise correlations between variables 

were examined by Pearson’s correlation coefficient (r). Results show strong correlations (P < 

0.05) between UBM and histology in the number (mean ± SEM) of follicles ≥ 0.6 mm (17.3 ± 

2.3 vs 19.0 ± 1.6, respectively; r = 0.96; P = 0.040), and follicle diameter (1.1 ± 0.05 vs 1.1 ± 

0.03 mm, respectively; r = 0.96; P = 0.035), as well as in the number of CL (8.5 ± 2.9 vs 8.8 ± 

3.0, respectively; r = 0.99; P = 0.003) and the diameter of CL (2.1 ± 0.7 vs 1.8 ± 0.6mm, 

respectively; r = 0.99; P < 0.001). Experiment 2 was conducted to develop a method that permits 

serial evaluation of ovarian structures in vivo in rabbits, involving surgical translocation of the 

ovaries to a subcutaneous position. Twelve female New Zealand white rabbits (5 months old) 

were successfully submitted to surgery, without intra- or post-operative complications. Results 

show that by using serial UBM in vivo, ovarian structures were easily and consistently identified 

in the rabbits submitted to the surgical approach. The mean number of follicles ≥0.6 mm and the 

mean diameter of the largest 7 follicles per pair of ovaries were similar in three successive daily 

examinations. Follicles >2 mm in diameter were detected in 3/12 rabbits on the first and second 
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days, and in 5/12 on the third day. Rabbits were not treated with ovulation-inducing agents, but 

one or more corpora lutea were detected consistently in 2 of the 12 rabbits, and suggested the 

occurrence of spontaneous ovulation. There were no apparent effects of surgical translocation on 

ovarian function. Interestingly, rabbit cumulus-oocyte complexes (COC) were clearly visualized 

using UBM ex situ and in vivo. In conclusion, results document the efficacy of UBM as a method 

for assessing rabbit ovaries ex situ and in vivo. 

3.2. Introduction 

Rabbits have been used as a research model for human and other mammals in a variety of 

areas (e.g., physiology, toxicology, biomedical research, placentation) (Kaplan and Timmons, 

1979, Foote and Carney, 2000, reviewed by Brewer, 2006, Bõsze and Houdebine, 2006; Carter, 

2007) because they are medium size, readily accessible, easy to handle, and easy to maintain 

(Manning et al., 1994). Study of ovarian function in the rabbit has been based on findings at 

post-mortem examination and histology (Deanesly, 1930; Armstrong et al., 1978; Kranzfelder et 

al., 1989; Agrawal and Jose, 2011), laparotomy (Marshall and Verney, 1939; Kauffman et al., 

1998; Agrawal and Jose, 2011), laparoscopy (Blasco et al., 1994; Argente et al., 2010), and 

based on endocrinological findings (Miller and Keyes, 1978; Labib et al., 1978; Caillol et al., 

1983; Mills and Gerardot, 1984). The terminal or invasive methods, however, provide little or no 

opportunity for serial examination and restrict progress in our understanding of follicle 

development and ovulation in rabbits.  

The advent of real-time B-mode ultrasonography resulted in rapid advancement of our 

understanding of ovarian follicular and luteal dynamics in every species in which it has been 

used, including cattle (Pierson and Ginther, 1984; Adams and Pierson, 1995), horse (Ginther and 
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Pierson, 1984), camelids (Adams et al., 1989), sheep (Ravindra et al., 1994) and humans 

(Queenan et al., 1980; Pierson et al., 1990). Conventional ultrasonography, using frequencies of 

5-7.5 MHz, has been used widely for ovarian studies in large species, but resolution is 

inadequate for detailed study of small structures ≤2 mm; i.e., for visualization of ovarian 

structures in small laboratory species (Pallares and Gonzalez-Bulnes, 2008). Based on a report in 

which conventional ultrasonography (using a 7.5 MHz transducer) was described as a method of 

evaluating follicular dynamics in rabbits (Marongiu and Gulinati, 2008), we initiated preliminary 

studies to examine the effects of ovulation-inducing treatments in rabbits in vivo using 

conventional transabdominal ultrasonography with a 12 MHz transducer (Cervantes et al., 

unpublished data). The images obtained, however, were inadequate for resolving dynamic 

changes in follicular development or for evaluating ovarian response to treatments in the rabbits. 

High frequency ultrasound systems (ultrasound biomicroscopy) have provided the 

technological basis for imaging tissue at the cellular level (Czarnota et al, 1997). Ultrasound 

biomicroscopy (UBM), using frequencies of 20-55 MHz, has enabled the in vivo study of 

embryogenesis in mice (Turnbull and Foster, 2002), as well as ovarian follicular dynamics at the 

level of the theca / granulosa cell layer, and visualization of cumulus-oocyte complex in mice 

(Singh et al., 2003) and in humans ovaries in vitro (Baerwald et al., 2009). Recent studies 

documented the feasibility of UBM for imaging ovarian structures in mice (Pallares and 

Gonzalez-Bulnes, 2008; Mircea et al., 2009). In one study, serial in vivo UBM was used to 

characterize ovarian dynamics in mice using a transcutaneous approach; however, a similar 

approach was not successful in rats (Jaiswal et al., 2009). In addition, UBM may have better 

resolution than conventional ultrasonography to distinguish more clearly ovarian structures in 
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rabbits, as reported in humans (Baerwald et al., 2009). To date, studies of ovarian function in 

rabbits using UBM have not been reported.  

The objectives of the present study were to validate the use of ultrasound biomicroscopy 

as a method for assessing ovarian structures in rabbits, and to develop a method that permits 

serial noninvasive evaluation of ovarian structures in vivo in rabbits.  

 3.3. Materials and methods 

New Zealand White rabbits were housed under controlled environmental conditions (20.2 

± 2°C, 14:10-h light:dark cycle) and were allowed ad libitum access to food and water. The 

experimental protocol was approved by the University of Saskatchewan's Animal Research 

Ethics Board, in accordance with guidelines of the Canadian Council on Animal Care. 

3.3.1. Experiment 1 

The experiment was conducted to validate the use of ultrasound biomicroscopy (UBM) as 

a method for assessing follicles and corpora lutea in rabbit ovaries. Four female rabbits (5-5.5 

months old) were given 20 µg of GnRH (Fertagyl; Intervet Canada Ltd., Whitby, Ontario, 

Canada) intramuscularly as an ovulation-inducing treatment. The day of treatment was 

designated Day 0. Rabbits were euthanized on Day 8 by an overdose of sodium pentobarbital, 

and the ovaries were removed for evaluation ex situ. Immediately following removal, each ovary 

was imaged in a saline bath using a high-resolution ultrasound biomicroscope (UBM; Vevo 660 

Imaging System™, Visual Sonics Inc., Toronto, Ontario, Canada) equipped with a 25 MHz 

oscillating sector transducer (RMV 704; Fig. 3.1). The measured lateral resolution of the 
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transducer was 75 μm, the axial resolution was 40 μm, and the depth range of imaging was 1.5 to 

10 mm with a focal length of 6 mm (http://www.visualsonics.com). The saline bath was placed 

on a manually operated mechanical stage and moved through two horizontal axes (forward-to-

back and side-to-side). The transducer was placed in a stationary holder and the plane of the 

beam was oriented transverse to the long axis of the ovary. The stage was moved until the ovary 

was visualized from one end to the other, and images were recorded in cine-loops (300 frames in 

10 seconds). Following UBM imaging, the ovaries were cleaned of adhering connective tissue 

and fat, fixed in 10% formaldehyde, and stored at room temperature until histological processing.  

Individual follicles ≥0.6 mm and corpora lutea were identified, counted and measured by 

scrolling through the digital UBM cine-loops frame-by-frame. Two orthogonal diameter 

measurements were taken from images that contained the greatest cross-sectional area of the 

structure in question. The overall diameter (mm) of the structure was taken as the average of the 

two measurements. 

Standard histological procedures were used to prepare ovarian sections. In brief, the 

ovaries were dehydrated, embedded in paraffin wax, serially sectioned at 10 μm thicknesses, 

dewaxed, hydrated, and stained with Masson's trichrome. Stained slides were examined with 

conventional light
 
microscopy, and digital photomicrographs of every 3

rd
 section (i.e., at 30 μm 

intervals) of each ovary were taken. Photomicrographs were sequentially loaded into Image J 

NIH Software System (National Institutes of Health, Bethesda, Maryland, USA), and individual 

follicles ≥ 0.6 mm and corpora lutea were identified, counted and measured by scrolling through 

the serial digital images. The procedure to measure the structures of interest was similar that 
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described for assessing UBM images. All UBM and histological measurements and counts were 

performed by a single observer.  

 

Figure 3.1. Ultrasound imaging of rabbit ovaries ex situ by ultrasound biomicroscopy (UBM) 

using a 25 MHz transducer. (A) The saline bath containing the ovary was placed on a manually 

operated mechanical stage with the transducer on a stationary holder. (B) Ovarian imaging was 

recorded in UBM cine-loops. 

 

 

3.3.2. Experiment 2 

Attempts were made in Experiment 1 to assess ovarian structures in vivo by 

transabdominal UBM, but the acoustic impedance of the body wall prevented acquisition of 

high-quality ovarian images. Therefore, a novel approach to enable in vivo imaging by UBM was 

developed in Experiment 2, which involved surgical translocation of the ovaries to a 

subcutaneous position. 
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Twelve 5-month-old female rabbits were housed in individual cages under controlled 

conditions, as described in Experiment 1. Sedation was induced by intramuscular administration 

of a combination of Butorphanol (0.5 mg/kg, Torbugesic, Wyeth Animal Health, Guelph, 

Ontario, Canada), Medetomidine (70 ug/kg, Domitor, Pfizer Animal Health, Kirkland, Quebec), 

and Ketamine (3.5 mg/kg, Vetalar, Bioniche, Bellevielle, Ontario, Canada), and the left and right 

lateral abdominal walls were shaved. Rabbits were positioned in the lateral recumbency position, 

anesthetized with isoflurane (Isoflo, Abbott Laboratories, LH, St. Laurent, Quebec, Canada) and 

given supplemental oxygen via a facemask. Lack of muscle tone and loss of ear pinch reflex 

were used as indicators of anesthetic depth. An ophthalmic gel (Refresh lacri-lube, Allergan Inc, 

Markham, Ontario, Canada) was applied to the eyes to prevent corneal desiccation. The surgical 

area was prepared for aseptic surgery with multiple scrubs of chloroxylenol 2% (Vetoquinol Inc., 

Lavaltrie, Quebec, Canada), and was draped using sterile technique. The heart and respiratory 

rates were monitored during the anesthetic period.  

A lateral flank approach to each ovary was used. A vertical skin incision (2-3 cm long) 

was made 2 cm cranial to the anticipated site of muscle incision so that the sutured skin-wound 

would not directly overlie the translocated ovary. The muscle incision was done approximately 

half way between the last rib and the cranial border of the thigh. The external abdominal oblique 

muscle was incised and a grid-approach (blunt dissection) was used to go through the internal 

oblique and transversus muscles. The peritoneum was lifted with thumb forceps and incised 

carefully to give access to the peritoneal cavity. The ovary was exteriorized gently on the 

respective side, without interrupting its blood supply (i.e., ovarian attachments remained intact). 

The mesovarium was transfixed to the muscle layers of the abdominal wall at cranial and caudal 

poles of the ovary using an interrupted vertical mattress suture of 3-0 polydioxanone (PDS; 
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Ethicon, Markham, Ontario, Canada) such that the ovary remained superficial to the external 

abdominal oblique muscle (Fig. 3.2). An additional interrupted vertical mattress suture was 

placed carefully beneath the middle of the ovary to ensure that the ovary remained superficial to 

the external abdominal oblique muscle, taking care not to strangulate the ovarian blood supply. 

The muscle layers beyond the transfixation points were closed with simple interrupted sutures 

using 3-0 PDS. The subcutaneous layer was closed with simple continuous sutures of 3-0 PDS. 

The skin incision was closed using an interrupted cruciate pattern with 4-0 Novafil (Tyco 

Healthcare group, St. Laurent, Quebec, Canada) (Fig. 3.2). The surgical procedure was 

performed without intra- or immediate post-operative complications. 

After surgery, topical antibacterial ointment (Furacin, Vetoquinol, Joliette, Quebec, 

Canada) and gauze pad (Primapore, Smith & Nephew, China) were applied to the incision site. 

The rabbits were returned to their cages, kept warm, and monitored until they recovered from 

anesthesia. Postoperative analgesia consisted of buprenorphine (30 ug/kg im, Vetergesic 

Multidose, Alstoe Animal Health Inc., Whitby, Ontario, Canada) given 12 and 24 h after surgery, 

and melaxicam (0.2 mg/kg sc, Metacam; Boehringer Ingelheim, Burlington, Ontario, Canada) 

given daily for 3 days after surgery. Delayed wound healing was observed in two rabbits, but 

both healed progressively over time; all other rabbits recovered uneventfully post surgery. 

 Daily transcutaneous ultrasound biomicroscopic examinations of the ovaries were 

initiated when wound closure was complete and the sutures were removed (≥2 weeks after 

surgery). Before ultrasound examination, both flanks of the rabbit were shaved; i.e., an area of 

about 8 × 8 cm on each side. A towel was wrapped around the forelimbs and the head for 

physical restraint during the scanning period. Rabbits were placed in lateral recumbency and 
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remained calm without the need for sedation or anesthesia. Acoustic gel (Eco Gel 200™, Eco-

Med Pharmaceutical Inc., Mississauga, Ontario, Canada) was applied to the skin over the area to 

be scanned. The same UBM equipment was used as in Experiment 1 (Fig. 3.3). The transducer 

was moved gently over the skin surface, and ovarian images were recorded in cine-loops, as 

described in Experiment 1. Evaluations were performed for three consecutive days to determine 

consistency in detection of ovarian structures (i.e., CL and follicles ≥0.6 mm), to detect changes 

in follicular size, and to evaluate ovarian functionality. 

 

 

Figure 3.2. Surgical translocation of the ovary to a subcutaneous position in rabbits. (A) The 

ovary was transfixed to the superficial surface of the muscle layers of the abdominal wall. (B) 

The skin incision was closed such that the suture line was not directly over the translocated 

ovary.  
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Figure 3.3. Ultrasound imaging of rabbit ovaries by transcutaneous ultrasound biomicroscopy in 

vivo using a 25 MHz transducer.  The head and forelimbs of the rabbit were wrapped in a towel 

for physical restraint; sedation was not necessary. 

 

3.3.3. Statistical analysis 

In Experiment 1, Pearson’s correlation coefficient (r) was used to assess the pairwise 

correlation between UBM and histological data. Values are expressed as mean ± SEM. Data in 

Experiment 2 were analyzed by one-way ANOVA. 

3.4. Results 

3.4.1. Experiment 1  

Follicles ≥0.6 mm and corpora lutea were clearly distinguished from the ovarian stroma 

by UBM and histology (Fig. 3.4). By UBM, antral ovarian follicles were identified as spherical 
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anechoic structures, varying in diameter from 0.6 to 1.7 mm. Corpora lutea were identified as 

relatively well circumscribed spherical hyperechoic structures, varying in diameter from 2.2 to 

3.1 mm. The presence and location of ovarian structures were confirmed by histological 

examination of the corresponding ovaries (Fig. 3.4).  

The number and size of follicles ≥0.6 mm and corpora lutea per rabbit (i.e., per pair of 

ovaries) were recorded using both UBM and histology and all endpoints were positively and 

strongly correlated (Table 3.1).   

Figure 3.4. Representative paired images of single sections of rabbit ovaries showing antral 

follicles (F) and corpora lutea (CL) by ultrasound biomicroscopy ex situ (left) and histology 

(right). Note cumulus-oocyte complexes (COC) within the follicular antrum.  
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Table 3.1. Correlation between ex situ ultrasound biomicroscopy (UBM) and histology of rabbit 

ovarian structures (n = 4 rabbits [4 pairs of ovaries]; mean ± SEM; r = Pearson correlation 

coefficient; Experiment 1). 

 

Endpoint UBM Histology r P value 

Number of follicles ≥0.6 mm 17.3 ± 2.3 19.0 ± 1.6 r = 0.96 P = 0.040 

Diameter of follicles ≥0.6 mm  1.1 ± 0.05 1.1 ± 0.03 r = 0.96 P = 0.035 

Number of CL 8.5 ± 2.9 8.8 ± 3.0 r = 0.99 P = 0.003 

Diameter of CL (mm) 2.1 ± 0.7 1.8 ± 0.6 r = 0.99 P < 0.001 

 

 

3.4.2. Experiment 2 

Ovarian imaging was performed about 2 weeks after surgery. Well circumscribed, 

spherical, anechoic structures were recognized as antral follicles ranging in diameter from 0.6 to 

3.1 mm, and were easily distinguished in 9 of 12 rabbits using transcutaneous UBM in vivo (Fig. 

3.5). A second surgery was performed to determine the cause of our inability to obtain clear 

ovarian images of one ovary in three rabbits. In two rabbits, the affected ovary appeared to be 

embedded in a thin layer of connective tissue, while in the third, a thick layer of fatty tissue 

encapsulated the ovary. The connective tissue and fat were easily removed and ovarian imaging 

improved markedly in all three of the rabbits. In a fourth rabbit, not submitted to corrective 

surgery, only a portion of one ovary was imaged by UBM apparently because the ovary was 

partially buried within the abdominal muscle layers. 

The number of follicles ≥0.6 mm per pair of ovaries ranged from 7 to 18. The mean 

number of follicles ≥0.6 mm and the mean diameter of the largest 7 follicles per pair of ovaries 
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were similar in three successive daily examinations (Table 3.2). However, follicles >2 mm in 

diameter were detected in 3/12 rabbits on the first and second days, and in 5/12 on the third day. 

One or more corpora lutea were detected in 2/12 rabbits during each of three daily examinations; 

i.e., the same 2 rabbits each day (Table 3.2, Fig. 3.5). 

 

Figure 3.5. Rabbit ovaries imaged in vivo by transcutaneous ultrasound biomicroscopy showing 

follicles (arrowheads; A, B) and corpora lutea (arrowheads; C, D). Numbers on the scales to the 

right are in millimetres, with 0.1 mm increments 



35 
 

 

Table 3.2. Number and size (mean ± SEM) of ovarian structures detected per rabbit by 

transcutaneous ultrasound biomicroscopy (UBM) in vivo on 3 consecutive days beginning at 

least two weeks after surgical ovarian translocation (n= number of rabbits; Experiment 2).  

Endpoint Day 1 Day 2 Day 3 

Number of follicles ≥ 0.6 mm 
11.0 ± 0.82 

(n = 12) 

11.8 ± 0.85 

(n = 12) 

12.3 ± 0.75 

(n = 12) 

Diameter of the largest follicle 
1.8 ± 0.10 

(n = 12) 

1.9 ± 0.12 

(n = 12) 

2.0 ± 0.13 

(n = 12) 

Mean diameter of the 7 largest follicles 
1.5 ± 0.09 

(n = 12) 

1.6 ± 0.09 

(n = 12) 

1.6 ± 0.08 

(n = 12) 

Proportion of rabbits with a CL 2/12 2/12 2/12 

Number of CL per rabbit 
3.1 ± 1.00 

(n = 2) 

3.5 ± 1.50 

(n = 2) 

3.5 ± 1.50 

(n = 2) 

Diameter of CL (mm) 
2.6 ± 0.11 

(n = 2) 

2.5 ± 0.01 

(n = 2) 

2.4 ± 0.13 

(n = 2) 

Changes in the number or size of the ovarian follicles were observed in all the 12 animals. In 

addition, the presence of CL was distinguished in two animals.  These findings may indicate that 

there was no apparent effect of the surgical procedure on ovarian function (i.e., necrosis, atrophy, 

lack of ovarian structures).  

 

Two months after surgery, ovarian structures were clearly discernible by UBM in 11 of 

24 translocated ovaries. Imaging was still possible in the remaining 13 ovaries by re-directing the 

UBM beam in different planes around the ovary or by gently pulling or stretching the skin and 

subcutaneous tissue of the rabbit from the underlying translocated ovary. Ovarian follicles ≥ 0.6 

mm were detected in the ovaries of all rabbits. Image deterioration was attributed to attenuation 

of sound waves associated with increased skin thickness and growth of subcutaneous fat and 

connective tissue around the ovary, assessed at necropsy.  
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3.5. Discussion 

The present study documented the efficacy of UBM for assessing ovarian follicles and 

corpora lutea in rabbits. After in vitro (Experiment 1) or in vivo examinations (Experiment 2), 

ovarian structures were clearly differentiated from ovarian stroma by using UBM. Results in 

Experiment 1 demonstrated that UBM is a feasible and reliable technique to examine follicles 

and corpora lutea in rabbits. The use of UBM provided similar data to histological analysis of the 

same samples, thus validating UBM as a tool to quantify and measure follicles ≥ 0.6 mm and CL 

in ex situ rabbit ovaries (Table 3.1). These results agree with those reported in mice (Pallares and 

Gonzalez-Bulnes, 2008; Mircea et al., 2009) who found agreement among counts of follicles and 

corpora lutea by comparing UBM and histology. Therefore, we propose the use of UBM for the 

examination of serial ovarian imaging considering that evaluation of each ovary ex situ, required 

on average, 2 hr by UBM compared to 30 hr by histology. Histological assessment of ovarian 

structures has been used as an accurate technique for reproductive studies in small species 

(Kranzfelder et al., 1989; Singh and Gouraya, 1993; Myers et al., 2004; Agrawal and Jose, 

2011). However, histology is a time-consuming method, which commonly is based on one time 

examination of the ovaries and that requires procedures of terminal nature. 

The use of UBM has also been shown to be a useful tool for in vivo evaluation of ovarian 

structures in mice (Jaiswal et al., 2009). However, in vivo imaging of ovarian structures by 

transabdominal UBM failed in rabbits (preliminary results), similar to results reported in rats 

(Jaiswal et al., 2009), due to the low penetration of high-frequency sound waves and to the high 

impedance of the body wall. Given these findings, it was thought that the translocation of ovaries 

to a more superficial position without altering blood supply would favor the penetration of the 
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high-frequency transducer, facilitating ovarian imaging. In sheep, it was reported that ovarian 

function can be preserved after relocation of the ovary to the vagina (Dierschke and Williams, 

1970); while in monkeys, the transposition of the ovary from the pelvis into the vaginal fornix 

did not affect severely ovarian function and most ovaries were functional for 2–5 months, despite 

some evidence of infection (Iffy et al., 1978). In addition, based on evaluations of size and 

morphological characteristics (e.g., such as growth of follicles and vascularisation of ovarian 

tissue), survival of the grafts of mice, rabbits, and bovine under the kidney capsules of athymic 

nude mice was reported (Hosoe et al., 2008). 

In Experiment 2, we demonstrated that the translocation of ovaries to a subcutaneous 

position as a previous step to UBM examination enabled the imaging the ovarian structures in 

live rabbits. The feasibility of the surgical approach without major complications and apparent 

maintenance of ovarian function was important for preliminary in vivo examination of the rabbit 

ovaries. This is especially important for studies of normal ovarian function and studies oriented 

to investigate ovarian response to particular treatments. An additional benefit of UBM is that it 

does not harm the rabbits and there is no need to apply anesthesia or sedatives. Until now, rabbit 

ovaries have been mainly examined at a single time in a terminal way (e.g., histology) or in a 

serial manner using an invasive method (e.g., laparoscopy). To our knowledge, this is the first 

study that reports the use of real-time ultrasound biomicroscopy to identify the number of 

follicles and corpora lutea present in the ovaries of rabbits submitted to one time ovarian 

translocation. Therefore, UBM provides a non-terminal alternative for noninvasive repetitive 

examination on the ovaries of rabbits once their ovaries have been translocated. During the serial 

post-surgical UBM examinations, the detection of ovarian structures (i.e., CL and follicles ≥0.6 
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mm) was consistent, and the variations in size and numbers in all ovaries indicated that there was 

no apparent effect on ovarian functionality.  

The mean number of CL detected per rabbit after the ovulation-inducing treatment in 

Experiment 1 (Table 3.1) was similar to that reported in previous rabbit studies based on post 

mortem, laparoscopic or laparotomy examination (Scott and Rennie, 1970; Rodriguez et al., 

1988; Hulot et al., 1988). Detection of CL in non-treated rabbits in Experiment 2 (Table 3.2) was 

not expected as rabbits are induced ovulators; however, CL were only detected in 2/12 rabbits 

and in low numbers (i.e., 2 and 5 per rabbit) and represent spontaneous ovulation by unknown 

factors. The ability to distinguish follicles ≥0.6 mm using UBM is an important finding. 

Investigators have reported preovulatory follicular diameters ranging from >800 um to >2 mm 

(Parkes, 1931; Hunzicker-Dunn et al., 1979; Kranzfelder et al., 1984; Marongiu and Gulinati, 

2008), but the size at which follicles gain ovulatory capability in rabbits is not known. 

Evaluation of ovarian status prior to treatment is therefore, critical in any experimental design in 

which determination of ovulatory response is required (i.e, preovulatory follicular size ≥ 7 mm in 

llamas, Bravo et al., 1991).  

Rabbits are accessible, easy to handle and relatively inexpensive to maintain. In addition, 

these animals have been used successfully to address several reproductive research questions in 

the past without the use of serial in vivo imaging technology. Thus, at the present the possibility 

to include UBM in rabbit studies gives major advantages for the evaluation of ovarian function 

and ovulation, and also for the evaluation of diverse ovulatory inducing-treatments; allowing 

determining their effects in a non-terminal way. In addition, this approach could reduce the 
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number of research animals because allow serial ovarian examinations of same individuals 

during one and subsequent studies. 

In summary, results of the present study validate UBM as a valuable tool to 

determine/quantify the number and size of follicles ≥ 0.6 mm and corpora lutea on the ovaries of 

rabbits. This is a considerable advance because histological methods are labor intensive and 

require much more time to analyze. Ovarian imaging by UBM is relatively fast and accurate.  

Translocation of the ovaries to a subcutaneous position without altering blood supply is safe and 

with no apparent effect on ovarian function. With this method, in vivo transcutaneous UBM 

assessment of the ovaries is facilitated in rabbits and ovarian images are obtained without 

deterioration for at least 2 months. Therefore, consecutive UBM might be helpful to efficiently 

monitor the ovaries to assess the ovarian response to treatments, will be particularly 

advantageous in ovulation induction follow-up experiments, and can likely be applied to the  

study of ovarian dynamics in rabbits. 
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4.0. EFFECT OF SEMINAL PLASMA ON OVULATION IN RABBITS  

4.1. Abstract 

Ovulation–inducing factor (OIF) is a protein found in the seminal plasma of different 

species. This protein has a potent ovulatory effect in female camelids. Evidence suggests that 

biological activity of OIF may be conserved among species. Although OIF has been identified in 

seminal plasma of rabbits, there are no reports about the role of seminal plasma on ovulation in 

rabbits. Two experiments were conducted to test the hypothesis that llama and rabbit seminal 

plasma elicits a surge release of LH and is responsible for inducing ovulation in rabbits. In 

Experiment 1, mature female New Zealand White rabbits were group-housed and treated 

intramuscularly with saline, GnRH, or llama or rabbit seminal plasma (n = 4 to 6 per group). The 

day of treatment was designated Day 0. Rabbits were euthanized on Day 8 to evaluate ovarian 

response by ultrasound biomicroscopy ex situ. Ovulation was detected in >80% of rabbits in all 

groups. There were no differences among groups in the proportion of rabbits that ovulated or in 

the number and size of corpora lutea in the ovaries 8 days after treatment. Group housing of 

female rabbits was associated with a high incidence of ovulation and confounded the detection of 

an ovulation-inducing effect of seminal plasma. In Experiment 2, mature female New Zealand 

White rabbits were caged individually, and were treated as in Experiment 1 (n = 5 to 7 per 

group). The ovarian response was evaluated in vivo by transcutaneous ultrasound biomicroscopy. 

Ovulation was detected only in rabbits given GnRH (5/5, 100%; P < 0.05) and the number (mean 

± SEM) of corpora lutea was 7.0 ± 0.50 per rabbit. Increases in plasma concentrations of LH and 

progesterone, and the formation of corpora lutea were observed only in the GnRH-treated group. 
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In conclusion, no clear evidence was found to support the hypothesis that seminal plasma elicits 

a surge of LH release and stimulates ovulation in rabbits. 

4.2. Introduction 

In rabbits, coitus has been reported to be the main factor to induce ovulation (Spies et al., 

1997). Authors of an early study (Hammond and Asdell, 1926) reported that artificial 

insemination followed by sterile mating resulted in higher percentages of conception than after 

artificial insemination alone (20/22 [91%] vs 1/28 [4%]). There is, however, no clear evidence to 

support that the mechanical stimulus of the penis or the presence of semen in the vagina initiates 

ovulation (Walton and Hammond, 1928). Although the primary trigger for inducing ovulation in 

rabbits is not well understood, it is clear that stimulation of the pituitary gland (Fee and Parkes, 

1929; Hill and Parkes, 1931) results in a rise in circulating luteinizing hormone (LH) 

concentration after coitus (Brambell and Parkes, 1932; Spies et al., 1997) to cause ovulation.  

In alpacas and llamas, results of more recent studies have challenged the traditional idea 

that physical stimulation of the genital tract during coitus triggers ovulation in these species and 

have shown that seminal plasma plays a role in the induction of ovulation (Adams et al., 2005, 

Ratto et al., 2005). Intramuscular administration of seminal plasma resulted in a surge release of 

LH followed by ovulation (Adams et al., 2005; Ratto et al., 2005; 2011). Results of studies in 

other species have also shown that administration of seminal plasma of bactrian camels (Chen et 

al., 1985; Zhao et al., 2001) and koalas (Johnston et al., 2004) induces ovulation in their 

corresponding females. All of these studies suggested the presence of a factor in the seminal 

plasma which induces ovulation in species considered to be induced ovulators. 
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Ovulation–inducing factor (OIF) is a seminal plasma protein that has been found in the 

ejaculates of alpacas and llamas (Adams et al., 2005; Ratto et al., 2005; 2006b; 2010). This 

protein was initially isolated from llama seminal plasma as a molecule with a molecular mass of 

about 30 kDa (Ratto et al., 2010). However, the same researchers reported more recently that 

OIF is a 14 kDa protein molecule responsible for eliciting a preovulatory LH surge and ovulation 

when administered in llamas (Ratto et al., 2011). Additionally, administration of purified OIF in 

llamas influenced ovulation and corpus luteum (CL) form and function in a dose-dependent 

manner (Tanco et al., 2011). OIF has been detected in the ejaculates of bactrian camels, cattle, 

horses and pigs (Chen et al., 1985; Zhao et al., 2001; Ratto et al., 2006b; Bogle et al., 2011). 

Furthermore, biological activity of OIF has been reported in seminal plasma from different 

species by using the llama as an in vivo ovulation bioassay, and has suggested that OIF molecule 

and its functions may be conserved among species (Ratto et al., 2006b; Bogle et al., 2011).  

Studies in llamas and alpacas confirmed that ovulatory capacity depends on follicular 

maturity at the time of mating (Bravo et al., 1991); that is, animals with an ovarian follicle <6 

mm or with follicle that has entered the regressing phase did not ovulate. This supports the 

notion that the effectiveness of an ovulatory treatment depends of the presence of a follicle of 

ovulatory size at the time of treatment. The lack of suitable methods for monitoring the ovaries 

in live rabbits has provided little or no opportunity for assessing the size of follicles in the 

ovaries at the time of treatment. Indeed, ovarian characteristics are usually evaluated only post 

treatment either after using terminal (Deanesly, 1930; Guraya et al., 1968; Kranzfelder et al., 

1989) or invasive procedures (Marshall and Verney, 1936; Kauffman et al., 1998; Agrawal and 

Jose, 2011). High frequency (i.e. 25 MHz), high resolution (<100 um) ultrasound biomicroscopy 

(UBM; Jaiswal et al., 2009) has been developed as a tool for imaging the ovaries of small 
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species (e.g. mice) in vivo. . Furthermore, UBM has recently been developed and validated as a 

feasible and reliable tool to examine ovarian structures in rabbits (Cervantes et al., 2011).  

Conventional ultrasonography (i.e., 5 to 7.5 MHz) has been useful for detecting ovulation 

in llamas and alpacas treated with seminal plasma and/or purified OIF (Adams et al., 2005; Ratto 

et al., 2005, 2010, 2011; Bogle et al., 2011; Tanco et al., 2011; Silva et al., 2011). 

Ultrasonography using higher frequencies (e.g. > 10 MHz) may be useful for study of ovulation 

induction in rabbit in which ovarian structures are smaller and require better resolution. 

Development of an in vivo UBM approach offers the important advantage of allowing serial 

examination compared to an ex vivo UBM approach, thus permitting an opportunity to evaluate 

different treatments in the same animal. 

The presence of OIF in the seminal plasma of rabbits has been reported recently (Silva et 

al., 2010); however, the role of OIF in female rabbits has not been determined. The objective of 

the present study was to test the hypothesis that llama and rabbit seminal plasma elicits a surge 

release of LH and is responsible for inducing ovulation in rabbits. Experiments were designed to 

determine the effects of seminal plasma (llama or rabbit), GnRH, and saline on group-housed 

rabbits ex vivo (Experiment 1), and on individually housed rabbits in vivo (Experiment 2). 

4.3. Materials and Methods 

New Zealand White rabbits were housed under controlled environmental conditions (20.2 

± 2°C, 14:10-h light:dark cycle) and were allowed ad libitum access to food and water. The 

experimental protocol was approved by the University of Saskatchewan's Animal Research 

Ethics Board and procedures were done in accordance with guidelines of the Canadian Council 
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on Animal Care. 

4.3.1. Experiment 1.  

Llama semen was collected from five adult males once a week for 3 months by artificial 

vagina (Huanca and Adams, 2007). Ejaculates were diluted 1:1 (v:v) with phosphate buffered 

saline (PBS, Invitrogen, Grand Island, New York, USA), drawn back-and-forth through an 18-

guage needle attached to a 10 ml syringe as previously described (Adams et al., 2005). Seminal 

plasma was separated from the cellular components of the ejaculate by double centrifugation at 

1500 x g (Sorvall Legend RT, Mandel Scientific Co Ltd, Guelph, Ontario, Canada) for 30 min, 

and sperm-free samples were stored at -80°C. Upon thawing, the diluted seminal plasma samples 

from all 5 males were pooled. Rabbit semen was collected from two adult males twice a day, two 

times a week for 4 months by artificial vagina (adapted from Naughton et al., 2003). An interval 

of 10-15 min between the first and the second ejaculates per day was permitted. Undiluted semen 

was centrifuged as described above and seminal plasma was separated from sperm and gel 

fraction of the semen and was stored at -80°C. Upon thawing, the seminal plasma samples from 

both males were pooled. For both species, 1% penicillin/streptomycin (v/v; 10 000 units/ml 

penicillin and 10 mg/ml streptomycin; Sigma-Aldrich) was added to the pooled semen.  

Mature female rabbits (5.5 months old; n=22) were housed together in a single room. An 

acclimation period of 7 days was allowed before ovarian examinations were initiated. Imaging of 

the ovaries was performed daily using transabdominal ultrasonography (MyLab
TM

 Five, Esaote, 

Ajax, Ontario, Canada) with a 12 MHz linear-array probe to ensure the presence of follicles ≥1.5 

mm in diameter prior to treatment, large follicle diameter detected in all the rabbits. Before 

ultrasound examination, both flanks of the rabbit were shaved. A towel was wrapped around the 



45 
 

forelimbs and the head of the rabbit for restraint during examination. Rabbits were placed in 

lateral recumbency and remained calm without the need for sedation or anesthesia (Cervantes et 

al., Chapter 3). Acoustic gel (Eco Gel 200™, Eco-Med Pharmaceutical Inc., Mississauga, 

Ontario, Canada) was applied to the skin over the area to be scanned. Rabbits were divided 

randomly into four groups and given an intramuscular dose of: (1) 1.5 ml of saline (negative 

control), (2) 0.02 mg GnRH (Fertagyl, Intervet, City, Province, Canada; positive control), (3) 2 

ml of llama seminal plasma (1:1 dilution with PBS) or (4) 1.5 ml of rabbit seminal plasma 

(undiluted). The day of treatment was designated Day 0. Injection sites were monitored post-

treatment. No swelling or redness was noted at the injection site in the rabbits, although a 

transient limp was clinically apparent in animals administrated with rabbit seminal plasma. All 

animals were normal within 30 min after treatment. 

On Day 8, females were euthanized with an overdose
 
of sodium pentobarbital, and the 

ovaries were removed for evaluation ex situ. Each ovary was imaged in a saline bath using a 

high-resolution ultrasound biomicroscope (UBM; Vevo 660 Imaging System, Visual Sonics Inc., 

Toronto, Ontario, Canada) equipped with a 25 MHz oscillating sector transducer (RMV 704), as 

described previously (Cervantes et al., 2011). Ovarian images were recorded in cine-loops for 

further analysis. Individual corpora lutea were identified, counted and measured by scrolling 

through the digital UBM cine-loops frame-by-frame as described in Chapter 3 (Experiment 1). 

4.3.2. Experiment 2.  

Given the unexpected results of group-housed rabbits in Experiment 1, female rabbits 

(5.5 months old, n=13) were housed individually in stainless steel cages for Experiment 2. 

Surgical translocation of the ovaries to a subcutaneous position in the flank region was 
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performed to permit in vivo ovarian imaging by transcutaneous UBM, as previously described 

(Chapter 3). Transcutaneous UBM (Vevo 660; 25 MHz probe) of the ovaries was done daily for 

at least four days before treatment to confirm the presence of follicles ≥1.8 mm in diameter (i.e., 

sufficiently large to respond to an ovulatory stimulus; Parkes, 1931), and for 8 days after 

treatment to detect ovulation and the development of corpora lutea. Rabbits were restrained and 

prepared for ultrasound examination as in Experiment 1. Follicles were more clearly 

distinguished in vivo by UBM compared to conventional ultrasonography used in Experiment 1, 

and greater precision was possible in assessing follicle diameter before treatment. When 6 to 10 

ovarian follicles ≥1.8 mm were detected, each rabbit was assigned randomly to one of four 

groups (n= 5 to 7 per group) and given an intramuscular dose of 1) 1.5 ml of saline (negative 

control), 2) 0.02 mg GnRH (Fertagyl; positive control), 3) 2 ml of llama seminal plasma (1:1 

dilution with PBS), or 4) 1.5 ml of rabbit seminal plasma (undiluted). The same pool of 

llama/rabbit seminal plasma collected during Experiment 1 was used in Experiment 2. The day 

of treatment was designated Day 0. As in Experiment 1, no inflammatory reaction was observed 

at the injection site, but a transient limp was clinically apparent in all animals given rabbit 

seminal plasma. The limp disappeared in all rabbits within 20-30 min after treatment. Rabbits 

were examined daily by transcutaneous UBM after treatment to detect ovulation and on Day 8, to 

detect presence of corpora lutea (CL). Ovulation was not defined by the sudden disappearance of 

large follicles (≥ 1.8 mm) that were detected during the previous examination. Ovulation was 

confirmed by subsequent detection of CL. Individual CL were counted and measured as 

described in Experiment 1. 

For measurement of plasma progesterone concentration, blood samples were collected 

from the marginal ear vein or the lateral saphenous vein every-other-day from Day 0 to Day 8. A 
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topical lidocaine-prilocaine 5% cream (EMLA, AstraZeneca Canada Inc., Mississauga, Ontario, 

Canada) was applied over the vein at least 15 min before blood sampling. Blood samples were 

centrifuged at 1700 x g for 30 min and the plasma was stored at -20°C. Plasma progesterone 

concentrations were determined using a commercial, double-antibody radioimmunoassay kit 

(Coat-a-Count progesterone; Siemens Medical Solutions Diagnostics, Los Angeles, California, 

USA). All samples and standards (100 ul) were assayed in duplicate in a single assay. The intra-

assay coefficients of variations were 9.7%, 6.5% and 6.3%, respectively, for reference plasma 

progesterone concentrations of 1.99, 3.47, and 17.06 ng/ml. 

For measurement of plasma LH concentration, blood samples were taken at 0, 1, 2, 3 and 

6 hours after treatment. Topical lidocaine-prilocaine 5% cream was applied over the vein before 

blood sampling and samples were centrifuged and stored as described above. Plasma LH 

concentrations were determined using an specific homologous double antibody 

radioimmunoassay for Rabbit LH (A.F. Parlow, National Hormone and Peptide Program, 

Harbor-UCLA Medical Center, Torrance, CA, USA) (Brecchia et al., 2006).  Concentrations of 

LH are expressed in terms of NIDDK-RbLH (AFP-7818C).  The standard curve ranged from 0.5 

ng/ml (90% ligand labelled LH) to 16.0 ng/ml (20% ligand labelled LH).  The primary antibody 

(AFP3120489) was raised in guinea pigs, and the anti-guinea pig secondary antibody was raised 

in sheep (kindly provided by Susan Cook and Dr B. Laarveld, Animal and Poultry Science, 

University of Saskatchewan, Saskatoon, SK Canada).   All samples and LH standards (50 ul) 

were assayed in duplicate in a single assay. The intra-assay coefficient of variation was 3.9% for 

the high reference plasma LH concentration (6.33 ng/ml). The intra-assay coefficient of variation 

was 10.9% for the medium reference plasma LH concentration (0.83 ng/ml). Values that 
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exceeded more than three standard deviations from the mean for the respective group were 

considered outliers and removed from further analysis. 

4.3.3. Statistical analysis 

Analysis of variance was used to compare non-serial data (i.e., number of follicles at the 

time of treatment, number and size of corpora lutea on Day 8) among groups. Analysis of 

variance for repeated measures (Proc-mixed in SAS; Enterprise Guide 4.2, Statistical Analysis 

System Institute Inc., Cary, North Carolina, USA) was used to compare serial data (i.e., plasma 

progesterone and LH concentrations) to determine the effects of treatment, day, and treatment-

by-day interaction. Tukey’s multiple comparison was used as a post-hoc test when a main effect 

of treatment or a treatment-by-day interaction was detected. Ovulation rates were compared 

among groups by Fisher's exact test. P < 0.05 was considered statistically significant. For the 

purposes of analysis and illustration, hormonal data were centralized to Day 0 (day of treatment).  

 

4.4. Results 

4.4.1. Experiment 1  

The mean number of follicles ≥1.5 mm at the time of treatment did not differ among 

groups (P = 0.25), nor did the proportion of rabbits that ovulated (P= 1.0; Table 4.1). 

Conventional transabdominal ultrasonography was inadequate for evaluating the ovarian 

response to treatment because corpora lutea were not clearly differentiated from the surrounding 

tissue. Corpora lutea were clearly distinguishable in the ovaries ex situ by UBM. In rabbits that 
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ovulated, no differences were detected among groups in the number (P = 0.51) and size (P = 

0.82) of CL (Table 4.1). 

Table 4.1. Number and diameter (mean±SEM) of follicles and corpora lutea (CL) in rabbits 

treated with saline, GnRH, or seminal plasma of llamas or rabbits (Day 0 = day of treatment). 

(n= rabbits per group; Experiment 1). Ovarian structures were assessed in vivo prior to treatment 

by transabdominal ultrasonography (12 MHz) and ex vivo after treatment, by ultrasound 

biomicroscopy (25 MHz). 

Endpoint* 
Saline 

 

GnRH 

 

Llama SP 

 

Rabbit SP 

 

Number of follicles ≥ 1.5 mm at Day 0 15.0 ± 1.96 13.5 ± 0.96 17.3 ± 1.31 14.5 ± 1.25 

Proportion of rabbits that ovulated 5/6 4/4 5/6 6/6 

Number of CL on Day 8 
10.6 ± 0.98 

(n = 5) 

13.0 ± 1.78 

(n = 4) 

11.4± 1.54 

(n = 5) 

10.5 ± 0.62 

(n = 6) 

CL Diameter (mm) at Day 8 
2.5 ± 0.21 

(n = 5) 

2.7 ± 0.13 

(n = 4) 

2.6 ± 0.14 

(n = 5) 

2.5 ± 0.17 

(n = 6) 

*No significant differences among groups for any endpoint 

 

4.4.2. Experiment 2 

The mean number of follicles ≥ 1.8 mm at the time of treatment did not differ among 

groups (P = 0.98). As shown in Table 4.2, ovulation occurred only in the group treated by 

intramuscular administration of GnRH.  

The interval from treatment to ovulation was not determined in this study. Ovulation was 

confirmed by the observation of corpora lutea, which were first detected on Day 1.8± 0.20.  
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Table 4.2. Number and diameter (mean±SEM) of follicles and corpora lutea (CL) in rabbits 

treated with saline, GnRH, or seminal plasma of llamas or rabbits (Day 0 = day of treatment). 

Ovarian structures were assessed in vivo by transcutaneous ultrasound biomicroscopy in rabbits 

that underwent surgical translocation of the ovaries (n= rabbits per group; Experiment 2).  

 

Endpoint 

Saline 

(n = 5) 

GnRH 

(n = 5) 

Llama SP 

(n = 6) 

Rabbit SP 

(n = 7) 

Number of follicles ≥ 1.5 mm at 

Day 0* 
12.2 ± 2.06 10.7 ± 0.84 13.0 ± 2.76 11.2 ± 1.32 

Number of follicles ≥ 1.8 mm at 

Day 0* 
9.0 ± 2.00 8.2 ± 0.70 9.3 ± 2.68 8.7 ± 1.15 

Proportion of rabbits that ovulated 0/5
a
 5/5

 b
 0/6

 a
 0/7

 a
 

Number of CL on Day 8 ---- 7.0 ± 0.50 ---- ---- 

CL Diameter (mm) on Day 8 ---- 2.6 ± 0.05 ---- ---- 

* No significant differences among groups 

a,b 
Proportions differed among groups (P <0.05) 

 

During the 6-hour period following treatment, plasma LH concentration increased in the 

GnRH group (positive control), but not in any other group, where LH remained at basal levels 

(treatment-by-time interaction, P<0.01). Plasma LH concentrations in the GnRH group were 

maximal at 1 h after treatment, began to decrease at 3 h, and were basal at 6 h after treatment 

(Fig. 4.1). 

Plasma progesterone concentrations increased only in the GnRH group and remained 

basal in the other groups (treatment-by-day interaction, P<0.001). In GnRH group, progesterone 

concentrations were elevated by Day 2 and increased linearly to the last day of sampling (Day 8; 

Fig. 4.2). 
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Figure 4.1. Plasma LH concentrations (mean ± SEM) in female rabbits after intramuscular 

treatment with saline, GnRH, or seminal plasma of llamas or rabbits. 
ab 

On a given hour, values 

with no common superscript are different (P < 0.05). 

 

Figure 4.2. Plasma progesterone concentrations (mean ± SEM) in female rabbits after 

intramuscular treatment with saline, GnRH, or seminal plasma of llamas or rabbits. 
ab 

On a given 

day, values with no common superscript are different (P < 0.05). 
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4.5. Discussion 

The existence of an ovulation-inducing factor (OIF) in seminal plasma of llamas and the 

biological effects of OIF (i.e. ovulation) have been well documented using the female llama and 

alpaca as animal models (Adams et al., 2005; Ratto et al. 2005; 2006b). Presence of OIF has 

recently been found in seminal plasma of rabbits (Silva et al., 2010), but its effects on female 

rabbits have not been reported. The present study was conducted to determine the effect of OIF 

in seminal plasma of llama and rabbit on release of LH and ovulation in female rabbits. The 

administration of seminal plasma as a single intramuscular dose was chosen based on results 

reported in alpacas (Ratto et al. 2005). Our results did not provide evidence to support the 

hypothesis that seminal plasma elicits a surge of LH release and stimulates ovulation in rabbits. 

These findings were not consistent with those documented in llamas and alpacas (Adams et al., 

2005; Ratto et al. 2005; 2006b). 

In order to test our hypothesis, we conducted two experiments in this study. The results 

obtained from both experiments using similar doses of seminal plasma were contradictory, but 

may be attributed to differences in housing of the rabbits during the study. The data in 

Experiment 1, suggested that ovulation-inducing effects of seminal plasma were confounded by 

the group housing arrangement because ovulation also was detected in the saline group (negative 

control). This unexpected result may be attributed to behavioral stimuli since the occurrence of 

ovulation was also observed in previous studies when female rabbits were repeatedly mounted 

by other females while caged in pairs (Staples, 1967). In a later study, however, 

pseudopregnancy occurred in rabbits group-housed, even when only occasional matings were 
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observed (Rommers et al., 2006). In ewes (i.e., spontaneous ovulators) and musk shrews (i.e., 

induced ovulators) observations suggested that olfactory cues (pheromones) participate in 

hypothalamic control of pituitary secretions and ovulation (Knight et al., 1980; Rissman and Li, 

2000). Whether pheromones play a role in induction of ovulation in rabbits remains unclear. 

Previous evidence has supported the notion that ovarian follicular size at the time of 

treatment is an important determinant of the ovarian response in induced ovulators, such as 

llamas (Bravo et al., 1991), and must be taken into account in studies involving ovulatory 

response (Bravo et al., 1992; Adams et al., 2005; Ratto et al. 2005, 2006a, 2006b, 2011; Tanco 

et al., 2011; Bogle et al., 2011). In this sense, ultrasonography was used in the present study to 

detect the presence of large follicles in similar numbers in all the rabbits at the moment of 

treatment. Follicle diameter was detected in vivo by transabdominal ultrasonography (12 MHz) 

in Experiment 1 (≥ 1.5mm) but without the clarity and the precision achieved by transcutaneous 

UBM (25 MHz) in Experiment 2 (≥ 1.8mm). Transcutaneous UBM was used in rabbits that 

underwent translocation of the ovaries to a subcutaneous position, as described previously 

(Chapter 3). Ovarian response (i.e., ovulation) was evaluated by UBM in both experiments due 

to the ineffectiveness of transabdominal ultrasonography for that purpose. In Experiment 1, 

numbers and size of CL were examined in excised ovaries by UBM ex situ, limiting the results to 

one time examination of the ovaries. In Experiment 2, ovarian response was evaluated in live 

rabbits by transcutaneous UBM, permitting to perform follow-up examinations (data not shown). 

One explanation of the failure of seminal plasma to induce ovulation in rabbits may be 

that the required dose was not reached in the present study, considering that OIF effects in other 

species have been reported to be dose dependent (Tanco et al., 2011). In addition, the ovulatory 
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effect could probably be affected by the route of administration chosen, considering that only the 

intramuscular route was evaluated in this study. It could be speculated that seminal plasma at the 

dose or route administrated was insufficient to produce a preovulatory peak of LH, and therefore 

failed to induce ovulation in rabbits.  Ovulation occurred only in the GnRH group, where a 

preovulatory peak of LH was elicited. In this regard, ovulation failure in our study appears to be 

due to an insufficient stimulation to provoke the LH surge rather than to a lack of mature 

follicles in the ovaries, as stated by others (Hulot et al., 1988). Whether OIF in seminal plasma 

of rabbits has an effect on ovulation similar to that documented in seminal plasma of llamas and 

alpacas remain unclear. In addition, there is a possibility that OIF in seminal plasma of rabbits 

represents a smaller proportion of the total protein than OIF in the seminal plasma of llamas and 

alpacas. Likewise, another possibility is that OIF in the seminal plasma of other species does not 

have an effect on ovulation in rabbits. In summary, data from the present study do not support 

the hypothesis that llama or rabbit seminal plasma induces a preovulatory surge of LH or 

ovulation in rabbits. It will be interesting in further studies to determine whether there is a 

minimum effective dose of seminal plasma and/or purified OIF to stimulate ovulation in rabbits, 

or if this factor acts in rabbits differently than in llamas and alpacas.  
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5.0. GENERAL DISCUSSION  

Ovulation inducing-factor (OIF) is a protein present in the seminal plasma which is 

thought to be conserved among species (Ratto et al., 2005; Bogle et al., 2011). The effects of 

OIF have been well documented using the female llama and alpaca as in vivo animal models - 

induced ovulating species in which ovarian dynamics and ovulation have been well 

characterized, and in which detection of ovulation can be performed by ultrasonography (Adams 

et al., 1989, 1990, 1991; Vaughan et al., 2003; Ratto et al., 2003, 2005, 2006a). In particular, 

OIF stimulates a preovulatory LH surge and elicits ovulation (Chen et al., 1985; Zhao et al., 

2001; Adams et al., 2005; Ratto et al., 2006b, 2011). South American Camelids have been used 

frequently as animal models in most of the studies of OIF since they are induced ovulators, but 

several aspects of OIF, such as the mechanism of action and biological pathways are still 

unknown. We proposed the use of the rabbit as a new animal model for the study of OIF. Rabbits 

are also induced ovulators, which makes them particularly suitable models for the study of 

ovulation that occurs normally only after stimulation (Fee and Parkes, 1929; Hill and Parkes, 

1931; Brambell and Parkes, 1932; Spies et al., 1997). As animal models, rabbits are small, 

readily accessible, easy to handle, and easy to maintain (Manning et al., 1994). 

Reproductive physiology and ovarian function in rabbits have been studied for many 

years (Heape et al., 1905; Parkes, 1931; Hunzicker-Dunn et al., 1979; Dharmarajan et al., 1989; 

Spies et al., 1997; Rashwan et al., 2003; Boumahdi-Merad et al., 2011). These studies were done 

using invasive methods which in most of cases require the sacrifice of the animal and the 

observation of response to treatments ex vivo. These methods limit the possibility to obtain serial 
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observations of ovaries in a single rabbit and require a large number of animals to obtain the 

desired information.  

With the constant development of imaging technologies such as ultrasonography, 

noninvasive in vivo evaluation of ovaries has been shown to be a powerful tool for understanding 

reproductive physiology in different species. Conventional ultrasonography (5-7.5MHz) has also 

been used successfully in large animals (e.g., cattle) to study ovarian function (Adams and 

Pierson, 1995). However, the use of this technique for imaging ovarian function in rabbits has 

not been reported. Recently, a new method for evaluating ovarian physiology has been described 

in live mice by using ultrasound biomicroscopy (20-25MHz; Jaiswal et al., 2009). This 

technology enables imaging of the same animal repetitively, thus permitting detection of 

dynamic processes and decreasing the required number of animals per experiment. With this in 

mind, we proposed the use of ultrasound biomicroscopy to examine ovarian structures in rabbits 

as used in mice. 

Our general objective was to determine whether rabbit can be a new model for the study 

of ovulation-inducing factor (OIF) as South American camelids are. To achieve this goal, we 

conducted two studies in the present thesis. The first study was developed to validate the use of 

ultrasound biomicroscopy as a tool for assessing ovarian follicles and corpora lutea in rabbits 

(Chapter 3, Experiment 1) and to determine if surgical translocation of the ovaries to a 

subcutaneous position would permit serial in vivo transcutaneous imaging of the ovaries (Chapter 

3, Experiment 2). In the second study (Chapter 4), two experiments were conducted to test the 

hypothesis that llama and rabbit seminal plasma induces a surge of LH and elicits ovulation in 

rabbits. 
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5.1. Surgical translocation and ultrasound biomicroscopy of the ovaries in rabbits 

In rabbits, ovarian function has typically been studied ex vivo after histological 

examination of the ovaries (Deanesly, 1930; Armstrong et al., 1978; Kranzfelder et al., 1989; 

Agrawal and Jose, 2011) or by direct observation of the ovaries by laparatomy (Marshall and 

Verney, 1939; Kauffman et al., 1998; Agrawal and Jose, 2011) or laparoscopy (Blasco et al., 

1994; Argente et al., 2010). Experiment 1 (Chapter 3) was the first report of the use of 

ultrasound biomicroscopy in rabbits, and showed that this technique provides reliable 

information of structures of the ovaries (e.g., follicles and corpora lutea) ex situ. The 

identification of ovarian follicles and corpora lutea were easily achieved in the ovaries ex situ. 

Subsequently, the strong correlations between UBM and histology to compare the number and 

size of follicles and corpora lutea has shown that UBM is a highly feasible technique for 

assessing ovarian structures in rabbits (Chapter 3). Our results are in agreement with those 

reported in mice (Pallares and Gonzalez-Bulnes, 2008; Mircea et al., 2009) as well as in humans 

(Baerwald et al., 2009) where UBM was found to be a valuable tool for examination of ovarian 

structures.  

An initial attempt to use UBM in vivo was done in Experiment 1 to evaluate ovarian 

structures transabdominally. However, we were unable to obtain ovarian images by this 

transabdominal approach. Explanations for this failure include the low penetration of the high-

frequency sound waves through tissue and the high impedance of the rabbit’s body wall, as 

reported previously in rats (Jaiswal et al., 2009). For this reason we decided to seek another 

approach to assess ovarian structures in vivo using UBM in rabbits (Chapter 3, Experiment 2). 
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Until now, histological examination has been the only way to evaluate accurately ovarian 

structures in small animals (e.g., rabbits). The use of UBM has been found to be an effective tool 

to identify ovarian structures in rabbit ovaries ex situ (Chapter 3, Experiment 1). To be used in 

live rabbits, a novel approach needed to be developed to allow the visualization of the ovaries by 

UBM, because the ovaries are located deep within the body. Therefore, the translocation of 

ovaries to a more superficial position (the abdominal wall) was performed to facilitate the 

penetration of high-frequency waves and enable the imaging of rabbit ovaries by transcutaneous 

UBM (Chapter 3, Experiment 2). The surgical translocation performed without altering blood 

supply was feasible and without major complications. The time course of follicular growth 

observed in live rabbits (Chapter 3, table 3.2) may indicate that there was no apparent effect of 

the surgical procedure on ovarian function (i.e., necrosis, atrophy, lack of ovarian structures). In 

our study (Chapter 3), after the surgical procedure and after complete postsurgical recovery, 

there was evidence that the vasculature remained relatively intact, because the ovaries did not 

shrink in size, and ovarian structures remained visible throughout the observational period. In 

previous studies, investigators working in other species reported the preservation of ovarian 

function after relocation of the ovary to the vagina in sheep (Dierschke and Williams, 1970); or 

after the transposition of the ovary from the pelvis into the vaginal fornix in monkeys (Iffy et al., 

1978). Studies in which the procedures were performed taking care not to interrupt the ovarian 

blood supply as in our study.   

In general, UBM in rabbits is safe, and enables the acquisition of good quality images of 

the ovaries within two months after surgical translocation of ovaries. Although surgical 

translocation was required to image the ovaries in rabbits, an advantage of the use of a rabbit 

model compared to mice (Jaiswal et al., 2009), is that transcutaneous UBM in rabbits does not 
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require anesthesia or sedation during the ultrasound procedure. However, UBM is very sensitive 

to mechanical interference from surface hair and air, thus the area to be scanned must be shaved 

thoroughly and coupling gel used generously. Transcutaneous UBM allowed the detection of 

changes in follicle size and number within rabbits over time, and permitted detection of 

ovulation - an important factor in determining ovarian response to any treatment. Importantly 

also, because follicles of determined sizes have to be present at time of mating or treatment for 

ovulation to occur in other species (e.g., camelids; Adams et al., 1990; Bravo et al., 1991a). 

The use of in vivo imaging in small animal is a very promising tool in different areas of 

research such as developmental biology, ocular development and ovarian dynamics (Turnbull 

and Foster, 2002; Brown et al., 2005; Jaiswal et al., 2009; Pallares et al., 2009). There is a great 

potential for future studies involving UBM imaging of rabbit ovaries in vivo, considering that 

histology is more complicated, time consuming and can provide only a single observation in 

time. Although we have developed an efficient method for examination of ovaries in rabbits by 

using transcutaneous UBM, still need to be determined whether ovarian responses following 

different ovulatory treatments can be distinguished using UBM. This will help to ultimately 

determine UBM usefulness in investigating the success of particular treatments in further studies 

associated with ovulation induction in rabbits. Future improvements of UBM technology will 

allow for better resolution and penetration of UBM waves and, hopefully, obviate the necessity 

of surgical ovarian translocation in rabbits. 
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5.2. Effect of seminal plasma on ovulation in rabbits  

In this study, female rabbits were used as a model to study the effects of llama and rabbit 

seminal plasma on LH release and ovulation (Chapter 4). In induced ovulators (i.e., rabbit, 

camelids), a preovulatory LH surge normally occurs after mating. This surge of the LH is 

released from the pituitary (Hilliard et al., 1974; Jones et al., 1976; Meunier et al., 1983; Spies et 

al., 1997 (Xu et al., 1985; Bravo et al., 1992; Aba et al., 1995). South American camelids have 

been used intensively as an animal model for the study of ovulation-inducing factor (OIF) in the 

seminal plasma for several years (Adams et al., 2005; Bogle, 2009; Ratto et al., 2005, 2010, 

2011; Tanco et al., 2011; Bogle et al., 2011). Although the camelid model has been the basis for 

the discovery of several aspects of OIF, there is still much to be learned about the OIF 

mechanism of action and biological pathways. Data from the present study shows that a small 

animal model, like the rabbit, may provide some advantages for the study of ovarian function 

and mechanism of action and pathways of factors that control or alter ovarian function. As has 

been shown to be the case when mice and rats were the animal models for the study of the effects 

of chemical substances (e.g., ethyl-methane sulfonate), pharmaceuticals and hormonal agents 

(e.g., diethylstilbestrol) (Deodhar et al., 1968; Elger and Hasan, 1985; Nef, 2001; Henley and 

Korach, 2010).  

To develop our rabbit model, we studied the effects of llama and rabbit seminal plasma 

on ovulation in female rabbits grouped together (Chapter 4, Experiment 1) and in females rabbits 

caged individually (Chapter 4, Experiment 2). Ovarian follicular size was evaluated prior to 

treatment in all rabbits by using conventional ultrasonography (125 MHz) or ultrasound 

biomicroscopy (25 MHz), respectively, to determine the presence of largest follicles in the 
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ovaries of all rabbits prior to treatment. Importantly, as in other species (i.e., camelids) where 

follicles of determined sizes (≥ 6 mm) have to be present at time of treatment (e.g. mating) in 

order for ovulation to occur (e.g., camelids; Adams et al., 1990; Bravo et al., 1991a). 

Presence of large follicles ≥ 1.5mm was detected by conventional ultrasonography 

(Chapter 4, Experiment 1), but not as clearly as the presence of large follicles ≥ 1.5mm and ≥ 

1.8mm detected by ultrasound biomicroscopy (Chapter 4, Experiment 2). Based on existing 

literature (Marongiu and Gulinati, 2008) and observations from our first study (Chapter 3), 

treatment was given when a similar number of large follicles were present in the rabbits at the 

time of treatment. In our second study (Chapter 4), rabbits were treated intramuscularly with 

saline, GnRH, or llama or rabbit seminal plasma. We hypothesized that llama and rabbit seminal 

plasma would elicit a surge of LH release and would be responsible for inducing ovulation in 

rabbits (Chapter 4). The hypothesis was based on the effects of seminal plasma in other induced 

ovulators, such as camelids (Chen et al., 1985; Zhao et al., 2001; Adams et al., 2005; Ratto et 

al., 2006b, 2011) and koalas (Johnston et al., 2004).  

In Experiment 1 (Chapter 4), rabbits were maintained together in a room for the duration 

of the experiment (about 60 days), and we found that animals in all treatment groups ovulated. 

No differences in proportion of animals that ovulated, or the number and size of corpora lutea, 

were found among groups (Chapter 4, table 4.1). Our results showed that ovulation occurred 

regardless of treatment. The unexpected results, in particular the occurrence of ovulation in the 

negative control group (saline), suggested that the experimental outcome may have been 

confounded by direct rabbit-to-rabbit contact in group housing. Although group-housing has 

been shown to be an appropriate method of maintaining rabbits for use in research (Fuentes and 

Newgren, 2008), factors related to the housing system may play a role in ovulation in rabbits. In 
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an earlier study (Staples, 1967), ovulation was reported when females were repeatedly mounted 

by other females while caged in pairs. However, the causes of ovulation in group-housed rabbits 

still are no clear (Rommers et al., 2006). Even, pheromones can be involved. In Experiment 1 

(Chapter 4), mounting and mating behaviour among females were occasionally observed, but 

because the study was not designed to test this behaviour, no further notation of the frequency or 

the identification of the individuals involved were recorded. The animals were sacrificed 8 days 

after treatment to evaluate ovarian response by UBM ex situ. Therefore further interpretation of 

our results was limited to a one time examination of the ovaries at that time. 

In Experiment 2 (Chapter 4), animals were caged individually for the duration of the 

experiment (about 90 days), and after treatment, ovulation was observed only in the positive 

control group (GnRH). No ovulation was observed in rabbits treated with rabbit or llama seminal 

plasma, or in the negative control group (saline) (Chapter 4, table 4.2). This result may be 

interpreted to mean that seminal plasma does not induce ovulation in rabbits, or that the dose of 

seminal plasma and/or route of administration were insufficient to induce ovulation. The effects 

of OIF in llamas have been reported to be dose-dependent (Tanco et al., 2011). There is also 

evidence that route of administration contributes to the variation in the response. In South 

American camelids, the ovulation rate was significantly higher after intramuscular administration 

of camelid seminal plasma than after intrauterine administration (Ratto et al., 2005). In gilts, 

deposition of boar seminal plasma near the utero-tubal junction has been observed to advance the 

time of ovulation, but no effect was found when it was deposited in the middle of the uterine 

horn between two ligatures (Wabersky et al., 1999). Some others have reported that ovulation in 

rabbits may be induced by absorption of GnRH analogues through the vaginal mucosa when 

added to the insemination dose, and with similar (Viudes de Castro et al., 2007; Ondruška et al., 
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2008) or better results (Quintela et al., 2008) as those obtained when GnRH is given 

intramuscularly.  

In summary, we have developed a model that will allow us to examine OIF and other 

factors influencing ovulation in the rabbit in vivo and in a serial manner by using the 

transcutaneous UBM. Seminal plasma administered intramuscularly to females rabbits caged 

individually did not induce LH release, as in the negative control group (saline). Ovulation 

occurred only in the positive control group (GnRH), where a preovulatory peak of LH was 

observed within 1 h after GnRH administration. In our study, only one dose and a route of 

administration of seminal plasma were evaluated. The discrepancy in ovulation rates between 

our two experiments (Chapter 4) warrants re-examination of the effects of seminal plasma. The 

use of different doses and routes of administration, to further test the hypothesis that OIF 

stimulates LH release and induces ovulation in mature rabbits is required. 
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6.0. GENERAL CONCLUSIONS 

In general, results of the studies presented herein do not support our broad hypothesis that 

OIF in seminal plasma induces ovulation in the rabbit. However, the data obtained from a single 

dose and route of administration of seminal plasma may be insufficient to determine the effects 

of OIF in rabbits. Based on our experimental results thus far, we conclude that: 

 Ultrasound biomicroscopy (UBM) ex situ is as a valuable tool to estimate the number and 

size of follicles ≥ 0.6 mm and corpora lutea on the ovaries of rabbits.  

 In vivo UBM evaluation of rabbit ovaries is made possible by surgical translocation of the 

ovaries to a subcutaneous position, and is useful for evaluating ovarian follicular size 

prior to treatment and the ovarian response to treatment. 

 Group housing of female rabbits is associated with a high incidence of ovulation and 

confounded the detection of an ovulation-inducing effect of seminal plasma. 

 No ovulation-inducing effect of seminal plasma (rabbit or llama) was observed in female 

rabbits caged individually. 

 LH secretion is essential for the occurrence of ovulation in rabbits. 

 The rabbit appears to be a useful animal model for the study of OIF but further studies 

should be carried out test the hypothesis that OIF stimulates LH release and induces 

ovulation in mature rabbits. 
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7.0. FUTURE STUDIES 

Further research is needed to investigate the effects of seminal plasma or purified OIF in 

rabbits and to determine whether these effects are similar to those observed in other species. The 

following issues need to be addressed: 

 The influence of different doses of OIF on circulating LH concentrations and ovarian 

response in rabbits. 

 The influence of different routes of administration of OIF on the LH surge and ovarian 

response in rabbits. 

 The effect of administration of seminal plasma of other species on ovulation in rabbits 

and vice versa. 

In addition, the use of UBM in vivo in rabbits provides enormous potential to carry out 

subsequent studies on the reproductive physiology, such as: 

 The characterization of ovarian follicular dynamics in rabbits 

 The characterization of luteal dynamics in rabbits 

 Response to superstimultory and ovulatory treatments in rabbits 
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