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Abstract
Parallel database systems have to support the effective paral-
lelization of complex queries in multi-user mode, i.e. in com-
bination with inter-query/inter-transaction parallelism. For
this purpose, dynamic scheduling and load balancing strate-
gies are necessary that consider the current system state for
determining the degree of intra-query parallelism and for se-
lecting the processors for executing subqueries. We study
these issues for parallel hash join processing and show that
the two subproblems should be addressed in an integrated
way. Even more importantly, however, is the use of a multi-
resource load balancing approach that considers all potential
bottleneck resources, in particular memory, disk and CPU.
We discuss basic performance tradeoffs to consider and eval-
uate the performance of several load balancing strategies by
means of a detailed simulation model. Simulation results will
be analyzed for multi-user configurations with both homoge-
neous and heterogeneous (query/OLTP) workloads.

1 Introduction
A significant trend in the commercial database field is the in-
creasing support for parallel database processing [6, 31]. This
trend is both technology-driven and application-driven.
Technology supports large amounts of inexpensive process-
ing capacity by providing "super servers" [11] consisting of
tens to hundreds of fast standard microprocessors intercon-
nected by a scalable high-speed interconnection network.
The aggregate memory is in the order of tens to hundreds of
gigabytes, while databases of multiple terabytes are kept on-
line within a parallel disk subsystem. New application areas
requiring parallel database systems for processing massive
amounts of data and complex queries include data mining,
digital libraries, new multimedia services like video on de-
mand, geographic information systems, etc.. Even traditional

DBMS applications increasingly face the need of parallel
query processing due to growing database sizes and query
complexity. In addition, high transaction rates must be sup-
ported for standard OLTP applications.
The effective use of super-servers for database processing
poses many implementation challenges that are largely un-
solved in current products [28, 11]. One key problem is the
effective use of intra-query parallelism in multi-user mode,
i.e., when complex queries are executed concurrently with
OLTP transactions and other complex queries. Multi-user
mode (inter-transaction/inter-query parallelism) is mandato-
ry to achieve acceptable throughput and cost-effectiveness,
in particular for super-servers where a high number of pro-
cessors must effectively be utilized. While proposed algo-
rithms for parallel query processing also work in multi-user
mode, their performance may be substantially lower than in
single-user mode. This is because multi-user mode inevita-
bly leads to data and resource contention that can significant-
ly limit the attainable response time improvements due to
intra-query parallelism. Resource contention is particularly
critical because of the high resource demands (CPU cycles,
memory space, disk bandwidth, communication bandwidth)
of complex queries1. Furthermore, intra-query parallelism
causes increased communication overhead compared to a se-
quential query execution on one node. Hence, the effective
CPU utilization and thus (OLTP) throughput are reduced.
In order to limit and control resource contention in multi-user
mode, dynamic strategies for resource allocation (schedul-
ing) and parallel query processing become necessary. Within
a processing node, local scheduling components have to be
extended to control local resource contention, e.g., by adding
support for transaction priorities [2, 8]. To limit resource
contention in a distributed system, the workload must be al-
located among the processing nodes such that the capacity of
different processing nodes be evenly utilized (load balanc-
ing). At the same time, workload allocation should support a
compromise with respect to communication and I/O over-
head such that both intra-query parallelism and a sufficiently
high throughput can be achieved. This requires a dynamic
query processing approach where the degree of intra-query
parallelism as well as the determination of which processing

1. Data contention problems between read-only queries and update
transactions may be solved by a multiversion concurrency con-
trol scheme [4].
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nodes should process a given query are made dependent on
the current system state at query run time.
Despite the high practical relevance of such dynamic sched-
uling and load balancing strategies to effectively support in-
ter- and intra-query parallelism, very little research has been
performed in this area (see Section 6). In a previous paper,
we have begun to address these problems with respect to
CPU resource contention [26]. The study focused on parallel
join processing in parallel Shared Nothing [6] database sys-
tems. Join processing was based on a dynamic redistribution
of both input relations among multiple join processors. With
such an approach there is high potential for dynamic load
balancing since both, the degree of join parallelism as well
as the selection of join processors, constitute dynamically
adjustable parameters. In this paper, we investigate the much
more complex problem of dynamic load balancing for mul-
tiple bottleneck resources. While considering only a single
bottleneck resource is appropriate as a first step, such an ap-
proach is clearly ineffective if performance problems are
caused by other resources. Dealing with multiple bottleneck
resources is complicated by the fact that there are typically
many scheduling and load balancing alternatives per re-
source type. Hence, the total solution space increases with
the number of resource types to consider. Furthermore, in a
parallel database systems resource utilization often varies
largely at different nodes. As a result, the current bottleneck
may constantly change and multiple bottlenecks may exist at
the same time complicating dynamic scheduling and load
balancing.
The present study primarily deals with memory and CPU as
bottleneck resources and focuses on parallel hash join pro-
cessing in Shared Nothing (SN) systems. Disks constitute
another critical bottleneck resource, in particular because
CPUs are becoming faster at a high pace while disk access
times improve only slowly [24]. Unfortunately, the potential
to dynamically influence disk contention is limited. This is
because disk access frequencies to permanent data are pri-
marily determined by the chosen database allocation2. How-
ever, the database allocation on disk is largely static and can-
not be changed for individual queries or based on temporary
overload situations. On the positive side, our load balancing
schemes are able to limit disk contention for temporary files
by optimizing usage of the available memory.
The remainder of this paper is organized as follows. The next
section discusses some basic performance tradeoffs to moti-
vate the choice of our dynamic multi-resource load balanc-
ing schemes. The various load balancing approaches that
have been implemented within a detailed simulation model
of a SN database system are described in Section 3. Section
4 contains an overview of our simulation model and hash
join implementation. In Section 5 we present and analyze

2. In SN systems the database allocation further reduces the poten-
tial for workload allocation since it prescribes at which proces-
sors scan operations have to be processed. Fortunately, dynamic
load balancing is feasible for operations (e.g., joins) on interme-
diate results that can dynamically be redistributed.

simulation experiments for various database and workload
configurations. In particular, we are studying multi-user ex-
periments with homogeneous workloads (concurrent join que-
ries) and heterogeneous (query/OLTP) workloads. Finally, we
discuss related studies (Section 6) and summarize the major
findings of this investigation.

2 Basic Performance Tradeoffs
We study the load balancing problem for parallel hash join
processing and the most general case where both input rela-
tions are distributed among several join processors [10]. In a
first phase (building phase), a parallel scan is performed on the
smaller (inner) relation at thedata processors owning frag-
ments of this relation. The scan output is dynamically distrib-
uted among severaljoin processors according to a partitioning
function (range or hash) on the join attribute. The join proces-
sors maintain a memory-resident hash table for the inner rela-
tion and support an overflow mechanism (leading to
temporary I/O on local disks) if not all tuples of the inner re-
lation fit into memory (see Section 4). In the second phase
(probing phase), the outer relation is read in parallel at its data
processors an distributed among the join processors. By using
the same partitioning function for both join inputs, it is guar-
anteed that all matching tuples arrive at the same join proces-
sor. At the join processors, arriving tuples from the outer
relation are probed against the hash table to find matching tu-
ples from the inner relation.
The performance of such a join method is influenced by many
factors like the chosen database allocation (number of data
processors, fragmentation, etc.), relation sizes, selectivity of
scan operations, number of join processors, memory sizes,
CPU speed, communication bandwidth, disk characteristics
etc. Given a fixed database allocation and hardware configu-
ration however, the optimal join strategy that minimizes the
response time for a given join query is mainly determined by
the number of join processors p and selection of these p join
processors from the set of eligible processors3. In single-user
mode, i.e., when there is only one join query in the system, the
optimal number of join processors can be determined fairly
easily by means of an analytical model. As outlined in [34,
17], this can be achieved by developing an analytic formula
for calculating the average join response time for a given num-
ber of join processors. The typical response time curve is
shown in Fig. 1a indicating that response time can only be im-
proved until a certain degree of parallelism. This is because
the actual work per processor decreases, while the communi-
cation overhead for starting the subqueries, redistributing the
scan output, merging the results and for termination (commit)
increases with a higher number of join processors. The opti-
mal degree of join parallelism in single-user mode, psu-opt, is
obtained by setting the derivative of the response time formula
to zero. For selecting the join processors, simple strategies like
random or round-robin are sufficient since all processors are
lightly loaded in single-user mode.

3. We assume that any processor may act as join processor.



The study [26] showed however, that this changes signifi-
cantly in multi-user mode. It was found that under high CPU
utilization the optimal number of join processors is lower
than in single-user mode (Fig. 1b) and that it is generally the
lower the higher the system is utilized. This is because the
communication overhead associated with a high degree of
intra-query parallelism is less affordable when processors
are highly utilized. Furthermore, the least utilized CPUs
should be selected for join processing.
In [26] we used sort-merge as the local join method and did
not consider memory utilization for load balancing. Howev-
er, for hash joins optimizing memory usage is likely to be
more significant than CPU load balancing in many cases and
must therefore be considered for dynamic load balancing in
multi-user mode. As our simulation results will show it is of
high importance for hash joins to avoid overflow I/O as
much as possible, i.e. to keep as much as possible of the inner
relation memory-resident. Hence, the optimal degree of join
parallelism in single-user mode is at least as high as required
to avoid temporary file I/O. If the aggregate memory of all n
processors is too small for keeping the inner relation memo-
ry-resident, then n constitutes the single-user optimum. Mul-
ti-user mode leads to memory contention so that only a
subset of a node’s memory may be available for join pro-
cessing. Hence, the optimal number of join processors is ex-
pected to be the higher the less memory is available. As a
result, under high memory (disk) utilization the optimal de-
gree of join parallelism is typically higher than in single-user
mode (Fig. 1c).
The discussion illustrates some basic tradeoffs to consider
for memory and CPU load balancing (Fig. 2). On one hand,
the degree of join parallelism must be high enough to limit
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Fig. 2: Dynamic load balancing with multiple bottlenecks
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memory and disk contention. On the other hand, it should be
low enough to limit CPU contention. Hence, the degree of join
parallelism must be chosen dynamically based on the current
memory, disk and CPU utilization. As with all dynamic multi-
resource scheduling strategies there is a certain danger of in-
stability because removal of bottleneck 1 may create bottle-
neck 2 and vice versa (Fig. 2).

3 Load Balancing Strategies
The previous discussion showed that effective support for
multi-user mode requires dynamic strategies for determining
the degree of join parallelism as well as for selecting the join
processors that consider both CPU and memory/disk bottle-
necks. For CPU bottlenecks, the approaches proposed in [26]
can be used that reduce the degree of join parallelism accord-
ing to the average CPU utilization and select the least utilized
processors for join processing. Determining the optimal num-
ber of join processors under memory bottlenecks is more in-
volved since it requires consideration of the available memory
at the individual processors. For instance, is it better to allo-
cate a join to 5 processors with at least 30 MB unused memory
per processor or to 10 processors with a minimum of 10 MB
available memory? In the former case, the aggregate memory
size is higher thus reducing the number of I/Os to temporary
files. The latter case, on the other hand, allows a higher degree
of I/O and processing parallelism that may outweigh the in-
creased number of I/Os. Dynamic load balancing is most com-
plex for situations with both CPUand memory bottlenecks
and if almost all processors are affected (global overload). For
partial overload situations when only some processors suffer
from bottlenecks, load balancing strategies that select the less
utilized processors for join processing are likely to be very ef-
fective.
In the following we describe the load balancing strategies that
have been implemented in our simulation system (Section 4)
and that will be used in the performance evaluation (Section
5). We consider static and dynamic strategies as well as iso-
lated and integrated policies.Isolated strategiesoperate in
two consecutive steps. In a first step the number of join pro-
cesses (degree of join parallelism) is determined. In a second
step these join processes are allocated to processing nodes
based on some criterion.Integrated strategies, on the other
hand, determine both the number of join processes and their
allocation in a single step. The dynamic policies base their de-

Fig.1: Parallel join processing in single-and multi-user mode: basic response time development and optimal number of join processors
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cisions on the current CPU utilization and memory availabil-
ity. For this purpose we assume that a designated control node
is periodically informed by the processors about their current
utilization. During the execution of a query, information on
the current CPU and memory utilization is requested from the
control node to support dynamic load balancing.
We first describe the substrategies used in the isolated control
approaches for determining the degree of join parallelism and
for selecting the join processors. Afterwards, the integrated
policies are presented.

3.1 Determining the number of join processors
We consider two static schemes that determine the number of
join processors at query compile time and one dynamic ap-
proach.
Static degree of join parallelism
In the first policy, we simply choose the optimal number of
join processors in single-user modepsu-opt as the degree of
join parallelism. However, since according to [26] such a high
number of join processors may cause performance problems
if the system is CPU-bottlenecked we additionally study an al-
ternative with a smaller number of join processors. In this ap-
proach, we use the number of join processorspsu-noIO
avoiding temporary I/O in single-user mode (if at all feasible
with the given memory sizes). This number of join processors
can be determined as follows:

 (3.1) psu-noIO = MIN (n, (bi*F) / m) )
In this formula, n represents the total number of processors, bi
the number of pages of the inner relation, F the overhead for
the hash table ("fudge factor") and m the memory size (in pag-
es) per processor. Temporary file I/O is avoided if the aggre-
gate memory size of the psu-noIOprocessors exceeds the size
of the smaller join input relation and if this relation is equally
distributed among the join processors (no or only little redis-
tribution skew).
Dynamic degree of join parallelism
We use the dynamic strategy already presented in [26]. It de-
termines the degree of parallelism for multi-user modepmu-

cpu by reducing the single-user optimum psu-opt according to
the current CPU utilization:

(3.2) pmu-cpu = psu-opt (1 - ucpu
3).

Here, ucpu denotes the current average CPU utilization of all
processors obtained from the control node. With this formula,
a reduction takes place primarily for higher utilization levels
(ucpu > 0.5) when a high communication overhead for paral-
lelization is not acceptable.

3.2 Selection of join processors
We support three strategies (RANDOM, LUC, LUM) that
may be combined with any of the three approaches above for
determining the degree of join parallelism.
RANDOM
This strategy selects the join processors at random. RAN-
DOM is expected to spread the workload equally across all
available nodes. Since RANDOM does not consider informa-

tion about the current system state, it represents a static ap-
proach.
LeastUtilizedCPUs (LUC)
In this approach, we select the processors with the lowest CPU
utilization as join processors. For this purpose, the adaptive
variation suggested in [26] is used that artificially increases the
CPU utilization of a processor selected for join processing at
the control node. This avoids that subsequent join queries are
assigned to the same processors due to the delayed updating of
information on CPU utilization.
LeastUtilizedMemory (LUM)
Join processes are assigned to the nodes with the most avail-
able main memory. Again, the control node’s information is
directly adapted for newly selected join processors.

3.3 Integrated strategies
Simulation results will be provided for three integrated and dy-
namic load balancing strategies. We have investigated several
additional approaches; however, since they turned out to be
less effective and due to space constraints we omit them from
further consideration. The integrated schemes primarily use
the control node’s information on the current memory avail-
ability to determine the number of join processors and to select
them according to the LUM strategy. For this purpose, we as-
sume that the control node maintains the following data struc-
ture: AVAIL-MEMORY [1..n] of (node-ID, free).
This array indicates for each of the n processing nodes the
available memory (free) and is sorted on the amount of free
memory, i.e. AVAIL-MEMORY [1] refers to the processor
with the most free memory, etc.
All strategies try to avoid temporary file I/O by selecting pmu
join processors with a minimum of b pages so that pmu*b ex-
ceeds the size of the smaller join input4. Note that from the pmu
selected processors the one with the minimum amount of
available memory is critical since it is likely to cause the high-
est I/O delays from all subqueries. Hence, it is the one that de-
termines response times under memory or disk bottlenecks. As
a result, it is desirable to find a processor selection so that tem-
porary file I/O can be avoided even at the processor with the
least available memory. The three strategies differ when there
are several selections avoiding temporary I/O and in how CPU
utilization is additionally considered.
MIN-IO
This strategy tries to find the minimal number k of join proces-
sors that avoids temporary file I/O. More formally, pmu is de-
termined such that
(3.3) pmu = MIN (k | AVAIL-MEMORY [k].free *k > bi*F)

k = 1, 2, ..., n
If the available memory does not allow avoidance of all tem-
porary file I/Os, the number of join processors is selected so
that the amount of overflow I/O is minimized5. Join processing

4. Assigning large amounts of memory to complex hash joins as-
sumes a memory allocation strategy that gives priority to OLTP
transactions. For this purpose, we have implemented a memory-
adaptive hash join approach (Section 4).



takes place on the processors specified in the first pmu posi-
tions of AVAIL-MEMORY (LUM policy). MIN-IO does not
consider the current CPU utilization.
MIN-IO-SUOPT
This strategy is different from MIN-IO only if there are mul-
tiple selections that avoid temporary file I/O. MIN-IO selects
the minimal number of PE in this case, which limits the CPU
overhead for parallel processing but may also unnecessarily
restrict the degree of parallelism. To avoid this potential prob-
lem MIN-IO-SUOPT selects the number of processors closest
to psu-opt for which temporary file I/O is avoided.
OPT-IO-CPU
This strategy is an extension of the previous ones that explic-
itly considers the current CPU utilization. MIN-IO and MIN-
IO-SUOPT can select high degrees of join parallelism under
high memory utilization which can lead to significant CPU
contention. To avoid this problem, OPT-IO-CPU restricts the
number of join processors to at most pmu-cpu,based on the cur-
rent CPU utilization (formula 3.2). Within this range, the max-
imal number of processors avoiding (or minimizing)
temporary I/O is selected. Such an approach is likely to be ef-
fective under higher CPU utilization. It also supports a low
number of temporary file I/Os under light CPU load where the
number of processors is only restricted by psu-opt.

4 Simulation model
For the present study, we have extended our SN simulation
system already used in [26] by adding implementations for
parallel hash join processing and for the various load balanc-
ing schemes. The gross structure of this simulation system is
depicted in Fig. 3. In the following, we briefly describe the
used database and workload models, the processing model as
well as our hash join implementation. The simulation system
is highly parameterized. In Section 5.1, we will provide an
overview of the major parameters and their settings used in
this study.

Database and workload model
The database is modeled as a set of partitions. A partition may
be used to represent a relation, a relation fragment or an index
structure. It consists of a number of database pages which in
turn consist of a specific number of objects (tuples, index en-
tries). The number of objects per page is determined by a
blocking factor which can be specified on a per-partition ba-
sis. Each relation can have associated clustered or unclustered
B+-tree indices. Relations and indices can be horizontally de-
clustered across an arbitrary number of disks and processors.
We support heterogeneous (multi-class) workloads consisting
of several query and transaction types. Queries correspond to
transactions with a single database operation (e.g., SQL state-
ment). Currently we support the following query types: rela-

5. Note that this does not necessarily imply a join processing on all n
processors. For example, assume a storage requirement of 10 MB
for the hash table, n=4, and a current memory availability of 8, 1,
0, and 0 MB. MIN-IO selects pmu=1 and chooses the processor
with 8 MB available memory for join processing. This is because
in this case we can limit overflow I/O to 2 MB compared to at least
2.5 MB per processor with other choices (pmu=4).

tion scan, clustered index scan, non-clustered index scan, two-
way join queries, multi-way join queries, and update state-
ments (both with and without index support). We also support
the debit-credit benchmark workload (TPC-B) and the use of
real-life database traces [18]. The simulation system is an
open queuing model and allows definition of an individual ar-
rival rate for each transaction and query type.
Workload allocation takes place at two levels. First, each in-
coming transaction or query is assigned to one processor act-
ing as the coordinator for the transaction/query. For this
placement we support different strategies, in particular ran-
dom allocation. The second form of workload allocation deals
with the assignment of suboperations to processors during
query processing and depends on the operators to be executed.
For scan operators, the processor allocation is always based
on a relation’s data allocation. For join processing, we support
several static and dynamic strategies for determining the de-
gree of join parallelism and for allocating the join processes
to processors as described in the previous section.

Workload processing
Each processor or processor element (PE) of the SN system is
represented by a transaction manager, a query processing sys-
tem, CPU servers, a communication manager, a concurrency
control component and a buffer manager (Fig. 3). The trans-
action manager controls the (distributed) execution of trans-
actions. The maximal number of concurrent transactions
(inter-transaction parallelism) per PE is controlled by a mul-
tiprogramming level. Newly arriving transactions must wait
in an input queue when this maximal degree of inter-transac-
tion parallelism is already reached. The query processing sys-
tem models basic relational operators (sort, scan, join) as well
as a parallelization meta-operator (PAROP) that is used for
dynamically redistributing data among processors and for
merging multiple inputs. Different parallel execution strate-
gies have been implemented for the various operators, in par-
ticular parallel hash joins (see below).
The number of CPUs per PE and their capacity (in MIPS) are
provided as simulation parameters. The average number of in-
structions per request can be defined separately for every re-
quest type. To accurately model the cost of query processing,
CPU service is requested for all major steps, in particular for
transaction initialization (BOT), object accesses in main
memory (value comparisons, operations on hash tables, etc.),
I/O overhead, communication overhead, and commit process-
ing. The communication network models transmission of
message packets of fixed size. Messages exceeding the packet
size (e.g., large sets of result tuples) are disassembled into the
required number of packets.
For concurrency control, we employ distributed strict two-
phase locking (long read and write locks). Global deadlocks
are resolved by a central deadlock detection scheme. Distrib-
uted two-phase commit is supported and involves all proces-
sors that have participated during execution of the respective
transaction/query. We support the read-only optimization
where only one distributed commit phase is required for read-
only sub-transactions (to release the read locks).



Fig. 3: Gross structure of the simulation system

PE 1

database disks

PE n
...

concurrency
control

communication
manager

communication network

buffer
manager

CPU

transaction manager

oltpscan

join PAROP

Query Processing System

workload
generation and

allocation

log disk

Database partitions can be kept memory-resident (to simulate
main memory databases) or they can be allocated to a number
of disks. Disks and disk controllers have explicitly been mod-
elled as servers to capture potential I/O bottlenecks. Further-
more, disk controllers can have a LRU disk cache. The disk
controllers also provide a prefetching mechanism to support
sequential access patterns. If prefetching is selected, a disk
cache miss causes multiple succeeding pages to be read from
disk and allocated into the disk cache. Sequentially reading
multiple pages is only slightly slower than reading a single
page, but avoids the disk accesses for the prefetched pages
when they are referenced later on. The number of pages to be
read per prefetch I/O is specified by a simulation parameter.
The database buffer in main memory consists of a global buff-
er for all transactions/queries as well as private working spac-
es used for query processing (e.g., hash tables for hash joins).
The global buffer is managed according to a LRU replacement
strategy and a no-force update strategy with asynchronous
disk writes. Private working spaces are dynamically assigned
by reserving a certain number of pages for processing a given
(sub)query.

Hash join processing
For parallel hash join processing, the input relations can be
distributed among an arbitrary number of join processors6. Se-
lection of the join processors depends on the respective ap-
proach for load balancing. For local join processing, we have
implemented amemory-adaptive hash join algorithm, called
Partially Preemptible Hash Join (PPHJ), that was shown to
outperform traditional join methods like GRACE and hybrid
hash join for mixed query/OLTP workloads [23]. This is be-
cause it adapts the memory assignment for a join query ac-
cording to the memory requirements of higher-priority OLTP
transactions. The PPHJ algorithm partitions both join inputs
into p partitions with p =  where F ist the fudge factor
and bi the number of pages for the inner relation A. To make
sure that each A partition can be held in memory, a minimum
of p pages must be available for join processing.
The algorithm tries to keep as many A partitions as possible in
memory to allow a direct join processing with the outer rela-
tion. In the case that memory has to be taken away from the
join due to higher-priority transactions, one or more memory-

6. If the input relations are already declustered on the join attributes,
join processing may also take place at the data processors. This re-
duces the communication overhead but offers little potential for
dynamic load balancing.

F bi×

resident A partition are written to disk. If more memory be-
comes available for join processing, one or more disk-resi-
dent A partition are brought into memory to support a direct
join processing. Arriving tuples from the outer relation B can
only be processed directly if the corresponding A partition is
in memory. Otherwise, the B tuple is inserted into a tempo-
rary B partition that is written to disk. For disk-resident par-
titions the actual join processing is deferred until all tuples
from the outer relation have been received. The delayed join
processing starts with reading in the respective A partition
and storing it in a hash table. Afterwards the associated B
partition is read and probed against the hash table.
A join query is only started at a node if the minimal space re-
quirements of p pages are available. Otherwise, the join que-
ry is forced to wait in a memory queue that is managed
according to a FCFS (first come, first served) scheduling pol-
icy. Similarly, executing hash joins are suspended if memory
frames are stolen by higher-priority transactions and fewer
than the minimal number of pages remain for join process-
ing. Since all hash join queries are assumed to have equal pri-
ority, the memory allocation of a running query is not
changed due to newly arriving joins.

5 Performance Analysis
Our experiments concentrate on the performance of parallel
join processing in multi-user mode. The focus of the study is
to compare the effectiveness of the various static and dynam-
ic load balancing alternatives introduced in Section 3 for de-
termining the degree of join parallelism and for selection of
the join processors. Two types of multi-user load profiles are
considered: a homogeneous workload consisting of join que-
ries only as well as a heterogeneous (mixed) workload with
both short OLTP transactions and join queries.
In the next subsection, we provide an overview of the param-
eter settings used in these experiments. Multi-user experi-
ments for the homogeneous and heterogeneous workloads
are analyzed in 5.2 and 5.3, respectively. Many additional
experiments have been conducted but cannot be described
due to space restrictions. However, these experiments con-
firm the main findings of the selected experiments.

5.1 Simulation Parameter Settings
Fig. 4 shows the major database, query and configuration pa-
rameters with their settings. Most parameters are self-ex-
planatory, some will be discussed when presenting the



simulation results. The join queries used in our experiments
perform two scans (selections) on the input relationsA andB
and join the corresponding results. TheA relation contains
250.000 tuples, theB relation 1 million tuples7. The selections
on A andB reduce the size of the input relations according to
the selection predicate’s selectivity (percentage of input tuples
matching the predicate). Both selections employ clustered in-
dices. The join result has the same size as the scan output onA.
Both relations are uniformly declustered across disjoint sets of
PE. To support a static load balancing for scan operations, each
PE is assigned the same number of tuples. As a result the larger
relationB is declustered across 80% of the PE, while the re-
maining 20% of the PE hold tuples of relationA. The number
of processing nodes is varied between 10 and 80.
The relation and query sizes had to be chosen small for most
experiments to limit simulation cost. As a consequence, we
had to use unrealistically small memory sizes (0.4 MB per PE)
to generate a reasonably high memory utilization. However,
the impact of larger query sizes on the effectiveness of the var-
ious strategies will be studied in a separate experiment.
The duration of an I/O operation is composed of the controller
service time, disk access time and transmission time. For all
sequential I/Os, in particular relation scans, clustered index
scans and scans on temporary files (partitions), prefetching is
utilized by the disk controllers to improve I/O performance.
The disk access time for prefetching consists of a base access
time per I/O (15 ms) plus an additional delay per page (1 ms).
For a prefetching of 4 pages, the average disk access time is 19
ms. The parameter settings for the communication network
have been chosen according to the EDS prototype [29].

7. As pointed out in [9], most decision support queries are joins be-
tween a larger and a smaller relation.

Our OLTP workload is similar to the one of the debit-credit
(TPC-B) benchmark. In particular, each OLTP transaction per-
forms four non-clustered index selects on arbitrary input rela-
tions and updates the corresponding tuples.

5.2 Homogeneous workloads
The homogeneous workload consists of a single (join) query
type. Inter-query parallelism is used to execute multiple queries
at a time. Since we want to support not only short response
times but also good throughput, we increase the query arrival
rate proportionally with the number of PE. We first present
multi-user results for isolated load balancing strategies using a
static degree of intra-query parallelism. Afterwards we analyze
the effectiveness of isolated and integrated strategies that dy-
namically determine the number of join processors. Next, an
experiment with a pronounced disk and memory bottleneck is
described. Finally, we study the influence of the join complex-
ity on the effectiveness of dynamic load balancing.

Isolated strategies with static degree of join parallelism
Fig. 5 shows the multi-user response times for static degrees of
parallelism and three different allocation strategies. For com-
parison purposes, the single-user results obtained with psu-opt
join processors are also shown. For the assumed join query, 3
join processors are sufficient in single-user mode to avoid tem-
porary file I/O, i.e., psu-noIO = 3. The single-user optimum is
substantially higher (psu-opt = 30). The system size is varied be-
tween 10 and 80 PE; the arrival rate is 0.25 queries per second
(QPS) per PE.
For this workload, for up to 40 PE the system is only lightly
loaded. Hence, using psu-opt join processors provides the best
multi-user performance with response times not much higher
than in single-user mode. In this range, restricting join process-

Configuration settings Database/Queries settings

number of PE (#PE, n)
CPU speed per PE
avg. no. of instructions:
initiate a query/transaction
terminate a query/transaction
I/O
send message
receive message
copy 8 KB message
read a tuple from memory page
hash a tuple
insert a tuple into hash table
write a tuple into output buffer
probe hash table

buffer manager:
page size
buffer size

disk devices:
number of disk servers per PE
controller service time
transmission time per page
avg. disk access time
prefetching delay per page
disk cache
prefetching size

10, 20, 40, 60, 80
20 MIPS

25000
25000
3000
5000
10000
5000
500
500
100
100
200

8 KB
50 pages (0.4 MB)
(varied)

10 (varied)
1 ms (per page)
0.4 ms
15 ms
1 ms
200 pages
4 pages

relations A:
#tuples
tuple size
blocking factor
index type
storage allocation
alloaction to PE

relations B:
#tuples
tuple size
blocking factor
index type
storage allocation
allocation to PE

join queries:
access method
scan selectivity
no. of result tuples
fudge factor hash table
arrival rate
query placement
join parallelism
selection of join processors

(100 MB)
250.000
400 B
20
clustered B+-tree
disk
partial declustering (20% of #PE)

(400 MB)
1.000.000
400 B
20
clustered B+-tree
disk
partial declustering (80% of #PE)

via clustered index
varied
100 % of the inner relation
1.05
single-user, multi-user (varied)
random (uniformly over all PE)
static / dynamic
random / dynamic

Fig. 4: System configuration, database and query profile



Dynamic degree of parallelism
As the discussed results have shown, statically determining
the degree of join parallelism is not appropriate for multi-user
mode due to changing levels of resource utilization. Therefore,
we focus now on the results obtained for a dynamic calculation
of the number of join processors (Fig. 6). We consider two iso-
lated approaches based on a dynamic determination of the de-
gree of join parallelism according to the current CPU
utilization (pmu-cpu) and using a RANDOM- or LUM-based
selection of join processors. In addition, results for the three
integrated approaches from Section 3.3 are shown.
Interestingly, the worst performance is achieved for the two
integrated load balancing strategies MIN-IO and MIN-IO-
SUOPT, in particular for a higher number of processors (Fig.
6). This was because both strategies do not consider the cur-
rent CPU utilization but merely try to avoid temporary file I/O.
However, for this purpose an increasing number of join pro-
cessors became necessary for larger system sizes leading to an
even higher CPU contention (>85% CPU utilization) than with
a static degree of psu-opt join processors. For instance, more
than 40 join processors were necessary for a system of 80 PE
to avoid temporary I/O. MIN-IO is superior to MIN-IO-
SUOPT for larger configurations since the latter strategy gen-
erally chooses a higher number of join processors. For smaller
configurations (lower CPU utilization), on the other hand, se-
lecting the minimal number of join processors avoiding tem-
porary file I/O (MIN-IO) is slightly less efficient since CPU
parallelism is not fully utilized.
Most efficient were the strategies pmu-cpu and OPT-IO-CPU
that reduce the degree of join parallelism under high CPU
load. They apply at most psu-opt join processors and reduce the
degree of join parallelism with increasing CPU utilization.
Therefore, even for 80 PE CPU utilization could be kept below
65% still permitting acceptable response time. While the use
of a RANDOM selection of join processors is again worse
than a LUM-based selection of pmu-cpu join processors, such
an approach was still better than the two integrated schemes
MIN-IO and MIN-IO-SUOPT. This shows that under high
CPU load reducing the degree of join parallelism is more im-
portant than minimizing the amount of temporary I/O.
The two best strategies pmu-cpu + LUM and OPT-IO-CPU
showed very similar performance characteristics for this ex-
periment. For the heterogeneous workloads, the differences
between these approaches will become more apparent.

Fig. 6: Dynamic degree of join parallelism
(multi-user join 0.25 QPS/PE; 1% scan selectivity)
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ing to psu-noIO processors achieves suboptimal performance
since CPU parallelism is not fully exploited. Furthermore,
choosing only psu-noIO join processors is not sufficient to
avoid temporary file I/O in multi-user mode because the
available memory per processor is smaller than in single-
user mode.
With a growing number of processors, performance is in-
creasingly dominated by CPU bottlenecks due to higher ar-
rival rates and increased overhead for the dynamic
redistribution of both join inputs8. The redistribution over-
head is particularly high for the strategies employing psu-opt
(30) join processors causing substantial response time dete-
riorations due to CPU contention (more than 80% CPU uti-
lization on an 80 PE system). On the other hand, using psu-

noIO join processors results in a significantly lower CPU uti-
lization (approx. 50% for 80 PE). However, this is achieved
at the expense of increased I/O delays and higher disk utili-
zation since 3 join processors are not sufficient any more to
avoid temporary file I/O. Still, the best static strategy using
psu-noIO processors (in combination with LUM) outperforms
the strategies using psu-opt processors for more than 60 PE.
The load balancing strategy for selecting the join processors
also has a profound impact on the response time results, in
particular for higher utilization levels (number of PE). RAN-
DOM exhibits the worst performance in all cases despite the
fact that a homogeneous workload is relatively favorable for
such a strategy. Still, the CPU and memory utilization of the
individual processors varied substantially, in particular with
only 3 (psu-noIO) join processors per query. Since this strate-
gy suffered from memory and I/O bottlenecks for a higher
number of PE, the LUM policy was much more efficient
than the LUC alternative for selecting the join processors. In
case of psu-opt join processors memory contention was not a
problem. Instead, CPU was the bottleneck for a higher num-
ber of PE. Therefore, the LUC policy was (slightly) more ef-
ficient than LUM for the case of 30 (psu-opt) join processors.
However, there is no significant difference between the
LUM and the LUC policy, since CPU utilization and mem-
ory utilization were closely correlated for the homogeneous
workload and 30 join processors per query.

8. The redistribution overhead per query increases with the number
of nodes since the two relations are declustered across 80% and
20% of all processors, respectively.

Fig. 5: Static degree of parallelism
(multi-user join 0.25 QPS/PE; 1% scan selectivity)
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Memory/disk bottleneck
In the previous experiment that was largely influenced by
CPU contention for larger system sizes, the strategies reduc-
ing the degree of parallelism according to the current CPU
utilization were most effective. We now focus on a memory-
bound environment by reducing the memory size per proces-
sor by a factor of 10 and reducing the query arrival rate. Fur-
thermore, we assume only 1 disk per PE for temporary file
I/O (instead of 10 disks). For this experiment, we only com-
pare one of the worst strategies of the previous experiment
(MIN-IO-SUOPT) with one of the best strategies (pmu-cpu +
LUM) for both single-user and multi-user mode (Fig. 7).

The assumed workload resulted in a low CPU utilization of
under 20%, but caused a high buffer utilization (> 90%).
Since there was no CPU bottleneck, pmu-cpu was always the
same as psu-opt. However, this degree of join parallelism was
not sufficient in multi-user mode to minimize the number of
overflow I/Os causing an increasing degree of memory and
disk utilization (>60%) for growing system sizes. The same
effect would have occurred for the OPT-IO-CPU strategy.
The MIN-IO-SUOPT approach, on the other hand, was able
to minimize the amount of overflow I/O by increasing the
number of join processors with the system size. As indicated
in Fig. 7, the average degree of join parallelism in multi-user
mode was increased to up to 42 for 80 PE as opposed to 33
in single-user mode and 30 for pmu-cpu. The corresponding
savings in the number of I/Os and the reduced disk conten-
tion allowed drastically improved response times compared
to using pmu-cpu join processors.
These experiments illustrate that there is no single policy
that performs best under all conditions, but that the load bal-
ancing strategy itself should be selected according to the cur-
rent load and resource situation.

Influence of join complexity
To study the influence of the join complexity on the effec-
tiveness of dynamic load balancing we vary the size of the
join input by using different scan selectivities. This experi-
ment was performed for a constant system size of 60 PE.

Fig. 7: Memory-bound environment (1% scan selectivity)
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Scan selectivity was varied between 0.1 and 5% for both input
relations. For each join complexity, the arrival rate was deter-
mined individually, so that at least one of the physical resourc-
es (CPU, memory or disk) was highly loaded (>75%). Fig. 8
shows the relative response time improvement using dynamic
strategies compared to a static degree of join parallelism
(MIN(n, psu-opt)) and random selection of join processors.

We observe that the dynamic load balancing schemes outper-
form the static approach in all cases, but that the relative per-
formance improvements shrink with increasing join complex-
ity. This is largely because we use a constant system size while
increasing the join size leading to an increase in the optimal
number of join processors. In single-user mode, the optimum
psu-opt increases from 10 for a scan selectivity of 0.1% to 70 (>
n) for a selectivity of 5%; the minimal number of nodes needed
to avoid overhead I/O, psu-noIO,grows from 1 to 14. In multi-
user mode, larger joins also require higher degrees of parallel-
ism not only to reduce the amount of temporary I/O but also to
reduce the amount of processing per join processor.
For small joins (scan selectivity 0.1%) avoiding temporary I/O
is no problem so that performance is primarily limited by the
CPU contention associated with higher degrees of join paral-
lelism (unfavorable ratio between startup/termination cost and
actual work). Hence, the best performance is achieved for the
strategies using few join processors (psu-noIO + LUM and
MIN-IO), while the schemes using psu-opt join processors
(MIN-IO-SUOPT) achieve the lowest response time improve-
ments. For larger joins (5%), on the other hand, startup and ter-
mination costs become less relevant and higher degrees of join
parallelism are needed to limit temporary I/O and to fully ex-
ploit CPU parallelism. The strategy psu-noIO+ LUM achieves
the worst performance since it utilizes only 14 processors
which is not sufficient to avoid temporary I/O in multi-user
mode. MIN-IO avoids memory/disk bottlenecks, but also se-
lects too few join processors so that no sufficient level of CPU
parallelism is achieved. For large joins, the best performance
is provided by the strategies pmu-cpu+ LUM, OPT-IO-CPU
and MIN-IO-SUOPT as they employ almost all processors for
join processing. Still they are able to improve response times
(by about 18%) compared to the static scheme psu-opt+ RAN-
DOM (which uses all processors) because the dynamic strate-
gies avoid join processing at temporarily overloaded nodes.
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Fig. 8: Influence of join complexity
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The experiment confirms the expectation that the potential for
dynamic load balancing becomes small as soon as the optimal
number of join processors approaches the total number of pro-
cessors. In addition, the use of a homogeneous workload can
be considered as a worst-case assumption for complex queries
as it results in a relatively uniform resource allocation even for
random selection of the join processors. (Furthermore, the
chosen database allocation allowed an equal distribution of
the scan work.) In real systems, the workload is expected to
consist of transaction and query types with largely different
resource requirements thus improving the load balancing po-
tential. Such heterogenous workloads will be considered in
the next experiment. Furthermore, the potential for dynamic
load balancing increases with the total number of processors,
i.e., such schemes are essential for super-servers.

5.3 Heterogeneous workloads
We now study the effectiveness of dynamic load balancing for
the case of heterogeneous workloads consisting of OLTP
transactions and join queries. For OLTP processing, we as-
sume a simple transaction type with 4 tuple accesses per trans-
action and that an affinity-based routing [25] can achieve a
largely local processing (similar to debit-credit). To avoid
lock conflicts with join querys, OLTP transactions access dif-
ferent relations than A and B. For the concurrent execution of
join queries, we study multi-user join processing.
Fig. 9 shows the average join response times for two mixed
workloads differing in whether the OLTP transaction type is
only running on the A nodes holding fragments of relation A
(Fig. 9a) or on the B nodes (Fig. 9b). In both cases we use an
OLTP transaction rate of 100 TPS (transactions per second)
per A(B) node. The OLTP workload causes per A (B) node a
CPU, disk, and memory utilization of about 50%, 60%, and
45%, respectively. Join queries arrive at a rate of 0.075 QPS
per PE. We consider two static load balancing schemes for
join processing with a fixed degree of join parallelism of psu-

opt or psu-noIO processors that are randomly selected. For psu-

noIO processors we additionally investigate the LUM alloca-
tion strategy. Moreover, the two dynamic load balancing
strategies pmu-cpu + LUM and OPT-IO-CPU are examined.

a) OLTP on 20% of nodes b) OLTP on 80% of nodes

Fig. 9: Static vs. dynamic load balancing for mixed workloads
(multi-user join 0.075 QPS/PE; 5 disks per PE)
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The results indicate that for mixed workloads dynamic load
balancing is indeed even more effective (and needed) than
for homogeneous workloads. The differences between static
and dynamic approaches are particularly pronounced in the
case when the OLTP load is processed on B nodes (Fig. 9b).
This is because we have the four-fold OLTP throughput
compared to the other configuration resulting in a higher sys-
tem utilization and longer response times. Static schemes
based on RANDOM selection of join processors are particu-
larly unsuited in such a situation as they frequently assign
join work on nodes that are highly utilized due to OLTP pro-
cessing. Using a small static degree of join parallelism (psu-

noIO) in combination with a LUM-based selection of join pro-
cessors is already much better since it largely avoids join pro-
cessing on nodes with high memory utilization. Still, such
semi-static approaches are insufficient since they cause ei-
ther an unnecessarily high I/O overhead (psu-noIO) or CPU
contention (psu-opt).
The dynamic approaches could largely avoid these deficien-
cies and provided much better performance than the static
schemes. In particular, response times could be kept very low
for larger system sizes despite the growing query and trans-
action throughput. This is particularly the case for the inte-
grated policy OPT-IO-CPU. The isolated strategy pmu-cpu +
LUM, however, suffered from performance problems with a
lower number of processors, in particular with OLTP pro-
cessing on the A nodes (Fig. 9a). The problem comes from
the fact that this strategy only considers CPU utilization for
determining the number of join processors pmu, while mem-
ory utilization is solely used for selecting the join processors.
For smaller system sizes of up to 30 PE when theaverage
CPU utilization is comparatively low, pmu-cpu is not lower
than psu-opt so that join processing takes place on all PE.
Hence, joins are also processed on the processors that are
highly utilized due to OLTP processing causing substantial
performance degradations. OPT-IO-CPU, on the other hand,
uses the current CPU utilization only to determine the maxi-
mal number of join processors but selects a smaller degree of
parallelism if this allows for reduced I/O requirements ac-
cording to the current memory utilization. In this way, this
strategy was able to avoid join processing on the OLTP
nodes permitting substantially better response times. This
demonstrates the importance of determining the number of
join processors and selecting the processing nodes in an in-
tegrated way.

6 Related Work
Dynamic scheduling and workload allocation strategies for
database processing have found considerable interest recent-
ly, but most studies concentrated on centralized DBMS. Fur-
thermore, most studies only dealt with a single bottleneck
resource. For instance, several researchers looked at the
problem of controlling lock contention by dynamically ad-
justing the multiprogramming level [3, 30, 33]. Other studies
coped with dynamic memory allocation strategies for multi-
class workloads consisting of complex queries and OLTP



transactions [15, 36, 23, 1, 5]. [19] addressed the scheduling
problem when multiple hash join queries are to be processed at
the same time. Different alternatives to allocate memory to join
queries were considered, but the memory allocation was left
unchanged during query execution.
The problem of dynamic load balancing in parallel database
systems has mainly been considered for parallel Shared Every-
thing (multiprocessor) DBMS so far [12, 22, 13, 16]. In these
systems, dynamic load balancing is easier to achieve since the
operating system can automatically assign the next ready pro-
cess/subquery to the next free CPU. Furthermore, the shared
memory supports very efficient interprocess communication so
that the overhead for starting/terminating subqueries is much
lower than for SN. Also, the memory load balancing problem
does not exist for Shared Everything because there is no private
main memory per processor. On the other hand, the number of
processors is typically small for Shared Everything (≤ 30) thus
restricting the degree of inter-/intra-query parallelism and the
potential for dynamic load balancing.
For SN dynamic forms of load balancing have been proposed
for join processing in order to deal with data skew [32, 35, 7,
14]. However, all these studies assumed single-user mode cor-
responding to a best-case situation with little or no resource
contention. Hence, only intra-query load balancing is supported
and the effectiveness of the proposals in multi-user mode must
be questioned.
Most closely related to our work is a recent study by Mehta and
DeWitt [20]. As we have done in [26] and here, they concen-
trate on dynamically determining the degree of join processors
as well as selecting the join processors for SN. The main con-
tribution is a new algorithm called RateMatch for determining
the number of join processors. This scheme is based on the ob-
servation that the size of the join input is less significant for
finding the optimal number of join processors than the rate at
which the scan processors generate the join input. Thus the
scheme tries to determine the number of join processors such
that their aggregate join processing rate matches the rate at
which the join input is provided by the scan processors. How-
ever, there are several limitations both in the algorithm as well
as in the accompanying simulation study. First, RateMatch is
an isolated scheme that uses an independent algorithm for se-
lecting the join processors. Moreover, the algorithm is based on
a simplistic model for taking into account the effect of resource
contention on the scan and join processing rates. In particular,
the current memory availability is not considered at all and only
the average CPU utilization and average disk access times are
used to estimate the processing rates in multi-user mode. This
ignores the fact that there may be large differences in the utili-
zation of individual nodes (which are considered by integrated
schemes). Furthermore, the communication overhead associat-
ed with a selected degree of join parallelism is not taken into
account. One consequence of this simplification is that the al-
gorithm increases the degree of join parallelism as CPU utili-
zation increases in order to compensate the reduced processing
rate per join processor! This may be acceptable for low utiliza-
tion levels, but can lead to severe performance problems for a
higher CPU utilization (> 50%) as our results have shown. A

main limitation of the simulation study is that only completely
homogeneous hash-join workloads are considered favoring
an even system utilization. As a result, the differences be-
tween different approaches to select the join processors have
been very small. The best performance was observed for our
LUC scheme (originally proposed in [26]) although it only
considers the current CPU utilization.
In [27], we investigate the potential of Shared Disk database
systems for dynamic load balancing. This architecture offers
a higher flexibility than SN because even for scan operations
the degree of intra-query parallelism can dynamically be cho-
sen. Furthermore, the scan processors are freely eligible since
each processor can access any disk.

7 Conclusions
We have investigated the problem of dynamic load balancing
for parallel Shared Nothing database systems. Such a load
balancing is a critical prerequisite for effective utilization of
"super servers", in particular to support effective intra-query
parallelism in multi-user mode, i.e., in combination with in-
ter-query and inter-transaction parallelism. The major control
decisions to draw dynamically include determining the de-
gree of intra-query parallelism and selecting the processors
for executing subqueries. We found that these two subprob-
lems should be solved in an integrated way and that the cur-
rent system state with respect to multiple resources, in
particular CPU, memory and disk, needs to be considered.
We have studied these issues for parallel hash join processing
based on a dynamic redistribution of both join inputs among
several join processors. While in single-user mode minimiz-
ing the amount of I/O to temporary files (due to hash table
overflow) is of prime importance, the performance in multi-
user mode may be dominated by other factors like the degree
of CPU and disk contention. In particular, we observed a basic
performance tradeoff with respect to the optimal degree of
join parallelism in multi-user mode. Under high CPU utiliza-
tion we found it necessary to reduce the degree of join paral-
lelism in order to limit CPU contention (communication
overhead for startup/termination and data redistribution). Un-
der disk and memory bottlenecks, on the other hand, the de-
gree of join parallelism should be increased in order to reduce
the memory and I/O requirements per subquery.
We have investigated the performance of several single- and
multi-resource load balancing strategies for homogeneous
and heterogeneous (query/OLTP) workloads by means of a
detailed simulation model. We considered static and dynamic
as well as isolated and integrated policies. Isolated policies
determine the degree of join parallelism independently from
the policy used for selecting the join processors, while inte-
grated strategy try to address both scheduling problems to-
gether. We found that dynamic load balancing schemes
clearly outperform static approaches, in particular for hetero-
geneous workloads when the load situation at different pro-
cessors may vary significantly. However, simple integrated
policies considering only the current utilization of a single re-
source (e.g., memory) are not always better than isolated
schemes considering multiple resources. This underlines the
need to have a dynamic, integrated and multi-resource load



balancing approach. As our results suggest, such an approach
should be realized by a family of load balancing strategies so
that the most appropriate policy can be selected according to
the current system state. For instance, if the system suffers pri-
marily from memory and disk bottlenecks an integrated policy
like MIN-IO-SUOPT should be chosen that minimizes the
amount of I/O based on the current memory availability. For
situations with high CPU contention or with both CPU and
memory bottlenecks, an integrated policy like OPT-IO-CPU
has proven to be very effective.
While our study focussed on parallel hash join processing, we
believe the principles behind our strategies are equally valid
for other relational operators that use a dynamic redistribution
of their input for parallel execution (e.g., sort). Furthermore,
we believe that the proposed strategies are not limited to Sha-
red Nothing but can equally be applied in Shared Disk data-
base systems. Currently, we are studying the performance of
different approaches to deal with data skew (in particular, re-
distribution skew) in multi-user mode. Preliminary results in-
dicate that the overhead of proposed skew handling techniques
is a significant problem in multi-user mode. On the other hand,
the skew problem may be reduced by dynamic load balancing
strategies that do not try to generate equally-sized subjoins but
select the join processors dependent on the size of the subjoins
(by assigning larger subjoins to less loaded nodes, etc.).
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