Metadata, citation and similar papers at core.ac.uk

Provided by Qucosa - Publikationsserver der Universitat Leipzig

Dynamic Multi-Resource Load Balancing
in Parallel Database Systems

Erhard Rahm Robert Marek
University of Leipzig, Germany University of Kaiserslautern, Germany
E-mail: rahm@informatik.uni-leipzig.de E-mail: marek@informatik.uni-kl.de

Abstract

Parallel database systems have to support the effective peDBMS applications increasingly face the need of parallel
lelization of complex queries in multi-user mode, i.e. in conquery processing due to growing database sizes and query
bination with inter-query/inter-transaction parallelism. Fccomplexity. In addition, high transaction rates must be sup-
this purpose, dynamic scheduling and load balancing streported for standard OLTP applications.

gies are necessary that consider the current system stateThe effective use of super-servers for database processing
determining the degree of intra-query parallelism and for sposes many implementation challenges that are largely un-
lecting the processors for executing subqueries. We sttsolved in current products [28, 11]. One key problem is the
these issues for parallel hash join processing and show leffective use of intra-query parallelism in multi-user mode,
the two subproblems should be addressed in an integréj.e., when complex queries are executed concurrently with
way. Even more importantly, however, is the use of a mulQLTP transactions and other complex queries. Multi-user
resource load balancing approach that considers all potermode (inter-transaction/inter-query parallelism) is mandato-
bottleneck resources, in particular memory, disk and CPry to achieve acceptable throughput and cost-effectiveness,
We discuss basic performance tradeoffs to consider and ein particular for super-servers where a high number of pro-

uate the performance of several load balancing strategiescessors must effectively be utilized. While proposed algo-
means of a detailed simulation model. Simulation results Writhms for para||e| guery processing also work in multi-user

be analyzed for multi-user configurations with both homogmode, their performance may be substantially lower than in

neous and heterogeneous (query/OLTP) workloads. single-user mode. This is because multi-user mode inevita-
_ bly leads to data and resource contention that can significant-
1 Introduction ly limit the attainable response time improvements due to

A significant trend in the commercial database field is the iintra-query parallelism. Resource contention is particularly
creasing support for parallel database processing [6, 31]. Tcritical because of the high resource demands (CPU cycles,
trend is both technology-driven and application-drivermemory space, disk bandwidth, communication bandwidth)
Technology supports large amounts of inexpensive proceof complex querigs Furthermore, intra-query parallelism
ing capacity by providing "super servers" [11] consisting causes increased communication overhead compared to a se-
tens to hundreds of fast standard microprocessors intercquential query execution on one node. Hence, the effective
nected by a scalable high-speed interconnection netwcCPU utilization and thus (OLTP) throughput are reduced.
The aggregate memory is in the order of tens to hundredsin order to limit and control resource contention in multi-user
gigabytes, while databases of multiple terabytes are kept mode, dynamic strategies for resource allocation (schedul-
line within a parallel disk subsystem. New application areing) and parallel query processing become necessary. Within
requiring parallel database systems for processing massa processing node, local scheduling components have to be
amounts of data and complex queries include data minitextended to control local resource contention, e.g., by adding
digital libraries, new multimedia services like video on desupport for transaction priorities [2, 8]. To limit resource
mand, geographic information systems, etc.. Even traditiorcontention in a distributed system, the workload must be al-
located among the processing nodes such that the capacity of
o . _ .. different processing nodes be evenly utilized (load balanc-
Permission to copy without fee all or part of this material is ;, 0y ‘At the same time, workload allocation should support a
granted provided that the copies are not made or distributed for . . L
direct commercial advantage, the VLDB copyright notice and theCOMPromise with respect to communication and 1/O over-
title of the publication and its date appear, and notice is given thathead such that both intra-query parallelism and a sufficiently
the copying is by permission of the Very Large Data Basehigh throughput can be achieved. This requires a dynamic
Endowment. To copy otherwise, or to republish, requires a feEquery processing approach where the degree of intra-query
and/or special permission from the Endowment. parallelism as well as the determination of which processing

Proceedings of the 21th VLDB Conference 1. Data contention problems between read-only queries and update
ich. Switzerland. 199 ' transactions may be solved by a multiversion concurrency con-
Zurich, Switzerland, 1995 trol scheme [4].

https://core.ac.uk/display/226138313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

nodes should process a given query are made dependeisimulation experiments for various database and workload
the current system state at query run time. configurations. In particular, we are studying multi-user ex-

Despite the high practical relevance of such dynamic schPeriments with homogeneous workloads (concurrent join que-
uling and load balancing strategies to effectively support Iies) and heterogeneous (query/OLTP) workloads. Finally, we
ter- and intra-query parallelism, very little research has bediscuss related studies (Section 6) and summarize the major
performed in this area (see Section 6). In a previous pajfindings of this investigation.

we have begun to address these problems with respec .
CPU resource contention [26]. The study focused on para2 Basic Performance Tradeoffs o
join processing in parallel Shared Nothing [6] database s'We study the load balancing problem for parallel hash join
tems. Join processing was based on a dynamic redistribuProcessing and the most general case where both input rela-
of both input relations among multiple join processors. Wilions are distributed among several join processors [10]. In a
such an approach there is high potential for dynamic 1ofirst pha;e (building phase), a parallel scanis per_formed onthe
balancing since both, the degree of join parallelism as wSmaller (inner) relation at theéata processorewning frag-

as the selection of join processors, constitute dynamicements of this relat!o_n. The scan output is dynamlca_ll_y d_|str|b-
adjustable parameters. In this paper, we investigate the mtt€d among severglin processorsccording to a partitioning

more complex problem of dynamic load balancing for mdfunction (range or hash) on the join attribute. The join proces-
tiple bottleneck resources. While considering only a sincS°rs maintain a memory-resident hash table for the inner rela-

bottleneck resource is appropriate as a first step, such antion and support an overflow mechanism (leading to
proach is clearly ineffective if performance problems atémporary I/O on local disks) if not all tuples of the inner re-
caused by other resources. Dealing with multiple bottlenel@tion fit into memory (see Section 4). In the second phase
resources is complicated by the fact that there are typicz(problng phase), the outer relation is read in parallel at its data
many scheduling and load balancing alternatives per Processors an distributed among the join processors. By using
source type. Hence, the total solution space increases \the same partitioning function for both join inputs, it is guar-
the number of resource types to consider. Furthermore, anteed that all' matching tuples arrive at the same join proces-
parallel database systems resource utilization often vaiSOT- At the join processors, arriving tuples from the outer
largely at different nodes. As a result, the current bottlene'€lation are probed against the hash table to find matching tu-
may constantly change and multiple bottlenecks may exisP!€s from the inner relatlon._ _ o

the same time complicating dynamic scheduling and loThe performance of such a join method is influenced by many
balancing. factors like the chosen database allocation (number of data
The present study primarily deals with memory and CPU Processors, fragmentation, etc.), relation sizes, selectivity of

bottleneck resources and focuses on parallel hash join (SC@n operations, number of join processors, memory sizes,
cessing in Shared Nothing (SN) systems. Disks constit©PU speed, communication bandwidth, disk characteristics

another critical bottleneck resource, in particular becal€tc- Given a fixed database allocation and hardware configu-

CPUs are becoming faster at a high pace while disk accration however, the o'ptimgl 'join strategy t.hat minimi;es the
times improve only slowly [24]. Unfortunately, the potentie®SPonse time fO_f a given join query is mamly determined _bY
to dynamically influence disk contention is limited. This ith® number of join processors p and selection of these p join
because disk access frequencies to permanent data areProcessors from the set of eligible proces%dn_’ssmgle—user
marily determined by the chosen database allocatitmw- mode, i.e., when thgrg is only one join query in the s'ystem,'the
ever, the database allocation on disk is largely static and cOptl_mal number of join processors can be deter_mlneql fairly
not be changed for individual queries or based on tempor€aSily by means of an analytical model. As outlined in [34,
overload situations. On the positive side, our load balanciL 7] this can be achieved by developing an analytic formula
schemes are able to limit disk contention for temporary filfor calculating the average join response time for a given num-
by optimizing usage of the available memory. ber of join processors. The typical response time curve is
The remainder of this paper is organized as follows. The nshown n F'.g' 1a |nd!cat|ng that response time can iny be im-
section discusses some basic performance tradeoffs to nproved until a certain degree of parallelism. Th|s IS becausq
vate the choice of our dynamic multi-resource load balarthe. actual work per processor decreaseg, while .the' communi-
ing schemes. The various load balancing approaches cation overhead for starting the subqueries, redistributing the

have been implemented within a detailed simulation moccan output, merging the results and for termination (commit)

of a SN database system are described in Section 3. Se('r';;rle da:erse(\elvg?'gi:Iggrearllgiji?rr??r: g #O;Q_S;ze;zg;' Thi: opti-
4 contains an overview of our simulation model and haobtainegd b seitin Ft)he derivative of tgll‘le response ti;r?%tformula
join implementation. In Section 5 we present and analy Y 9 i P o
to zero. For selecting the join processors, simple strategies like
2.1n SN systems the database allocation further reduces the pcrandom or round-robin are sufficient since all processors are
tial for workload allocation since it prescribes at which Procelightly loaded in single-user mode
sors scan operations have to be processed. Fortunately, dyni)
load balancing is feasible for operations (e.g., joins) on intern:.
diate results that can dynamically be redistributed. 3. We assume that any processor may act as join processor.

o a) single-user mode < b) CPU-bottleneck o ¢) memory/disk-bottleneck
£ N £ N in multi-user mode £ in multi-user mode
() () [} .
2 _ _ 2 | optimal number 2 %i)r!,' ”Q%C”e”s@é’g of
S | single-user optimum g | Join processors]
¥ AR 4
\ P
.—// /
number - number number
of join B of join T P> of join
SU-OPT pr(J)cessors SU-OPT prcj)cessors SU-OPT prtj)cessors

Fig.1: Parallel join processing in single-and multi-user mode: basic response time development and optimal number of join processors

memory and disk contention. On the other hand, it should be
low enough to limit CPU contention. Hence, the degree of join
parallelism must be chosen dynamically based on the current
memory, disk and CPU utilization. As with all dynamic multi-
resource scheduling strategies there is a certain danger of in-
stability because removal of bottleneck 1 may create bottle-
neck 2 and vice versa (Fig. 2).

The study [26] showed however, that this changes signi
cantly in multi-user mode. It was found that under high CP
utilization the optimal number of join processors is lowe
than in single-user mode (Fig. 1b) and that it is generally t
lower the higher the system is utilized. This is because 1
communication overhead associated with a high degree
intra-query parallelism is less affordable when processc
are highly utilized. Furthermore, the least utilized CPL3 Load Balancing Strategies

should be selected for join processing. The previous discussion showed that effective support for
In [26] we used sort-merge as the local join method and (multi-user mode requires dynamic strategies for determining
not consider memory utilization for load balancing. Howethe degree of join parallelism as well as for selecting the join
er, for hash joins optimizing memory usage is likely to kprocessors that consider both CPU and memory/disk bottle-
more significant than CPU load balancing in many cases énecks. For CPU bottlenecks, the approaches proposed in [26]
must therefore be considered for dynamic load balancingcan be used that reduce the degree of join parallelism accord-
multi-user mode. As our simulation results will show it is cing to the average CPU utilization and select the least utilized
high importance for hash joins to avoid overflow I/O aprocessors for join processing. Determining the optimal num-
much as possible, i.e. to keep as much as possible of the itber of join processors under memory bottlenecks is more in-
relation memory-resident. Hence, the optimal degree of jcvolved since it requires consideration of the available memory
parallelism in single-user mode is at least as high as requiat the individual processors. For instance, is it better to allo-
to avoid temporary file 1/O. If the aggregate memory of all cate a join to 5 processors with at least 30 MB unused memory
processors is too small for keeping the inner relation menper processor or to 10 processors with a minimum of 10 MB
ry-resident, then n constitutes the single-user optimum. Mavailable memory? In the former case, the aggregate memory
ti-user mode leads to memory contention so that onlysize is higher thus reducing the number of 1/0s to temporary
subset of a node’s memory may be available for join prf”eS. The latter case, on the other hand, allows a higher degree
cessing. Hence, the optimal number of join processors is Of /O and processing parallelism that may outweigh the in-
pected to be the higher the less memory is available. Acreased number of I/Os. Dynamic load balancing is most com-
result, under high memory (disk) utilization the optimal dePlex for situations with both CP&nd memory bottlenecks

gree of join parallelism is typically higher than in single-us@nd if almost all processors are affected (global overload). For
mode (Fig. 1c). partial overload situations when only some processors suffer

from bottlenecks, load balancing strategies that select the less
utilized processors for join processing are likely to be very ef-
fective.

In the following we describe the load balancing strategies that
have been implemented in our simulation system (Section 4)

The discussion illustrates some basic tradeoffs to consi
for memory and CPU load balancing (Fig. 2). On one har
the degree of join parallelism must be high enough to lin

CPU bottleneck memory (disk) bottleneck ang that will be used in the performance evaluation (Section
5). We consider static and dynamic strategies as well as iso-
\/ lated and integrated policiesolated strategie®perate in
JS%‘#ﬁSn‘%Sg{icf,%ﬂ N red‘#ecgu??gmgrﬂ S(I/ 0) two consecutive steps. In a first step the number of join pro-
startup & termination ,~ - per subquery cesses (degree of join parallelism) is determined. In a second
/ \ step these join processes are allocated to processing nodes
. q based on some criteriontegrated strategieson the other
intgg%llfgr)g% reedlem of intra-quory paralielism| hand, determine both the number of join processes and their

, : - : : allocation in a single step. The dynamic policies base their de-
Fig. 2: Dynamic load balancing with multiple bottlenecks

cisions on the current CPU utilization and memory availabtion about the current system state, it represents a static ap-
ity. For this purpose we assume that a designated control nproach.

is periodically informed by the processors about their curre| eastUtilized CPUs (LUC)

utilization. During the execution of a query, information oin this approach, we select the processors with the lowest CPU
the current CPU and memory utilization is requested from tyilization as join processors. For this purpose, the adaptive
control node to support dynamic load balancing. variation suggested in [26] is used that artificially increases the
We first describe the substrategies used in the isolated conCPU utilization of a processor selected for join processing at
approaches for determining the degree of join parallelism gthe control node. This avoids that subsequent join queries are
for selecting the join processors. Afterwards, the integratassigned to the same processors due to the delayed updating of
policies are presented. information on CPU utilization.

3.1 Determining the number of join processors %g_c’:rl]st%lgzedeMe;?gg/ (ITUnI\Qj 10 the nodes with the most avail
We consider two static schemes that determine the numbe inp SS€S SSIg S Wi st avall-

join processors at query compile time and one dynamic za_ble main memory. Again, the cont_rql nade’s information is
directly adapted for newly selected join processors.

proach.
Static degree of join parallelism 3.3 Integrated strategies
In the first policy, we simply choose the optimal number (Simulation results will be provided for three integrated and dy-
join processors in single-user moplg,.opt@s the degree of namic load balancing strategies. We have investigated several
join parallelism. However, since according to [26] such a hi@dditional approaches; however, since they turned out to be
number of join processors may cause performance probleless effective and due to space constraints we omit them from
if the system is CPU-bottlenecked we additionally study an further consideration. The integrated schemes primarily use
ternative with a smaller number of join processors. In this ethe control node’s information on the current memory avail-
proach, we use the number of join processmygnoio ability to determine the number of join processors and to select
avoiding temporary 1/O in single-user mode (if at all feasibthem according to the LUM strategy. For this purpose, we as-
with the given memory sizes). This number of join processcsume that the control node maintains the following data struc-
can be determined as follows: ture: AVAIL-MEMORY [1..n] of (node-ID, free).
(3.1) Bu-noio= MIN (n, ib*F) / m)0) This array indicates for each of the n processing nodes the

In this formula, n represents the total number of processorsavailable memoryf(ee) and is sorted on the amount of free
the number of pages of the inner relation, F the overhead memory, i.e. AVAIL-MEMORY [1] refers to the processor
the hash table (“fudge factor") and m the memory size (in pavith the most free memory, etc.

es) per processor. Temporary file 1/O is avoided if the agg/All strategies try to avoid temporary file 1/O by selecting,p
gate memory size of the pnooProcessors exceeds the sizjoin processors with a minimum of b pages so thatip ex-

of the smaller join input relation and if this relation is equaliceeds the size of the smaller join irfbidtote that from the g,

distributed among the join processors (no or only little rediselected processors the one with the minimum amount of
tribution skew). available memory is critical since it is likely to cause the high-

Dynamic degree of join parallelism est I/0 delays from all subqueries. Hence, it is the one that de-
We use the dynamic strategy already presented in [26]. It termines response times under memory or disk bottlenecks. As
termines the degree of parallelism for multi-user mage aresult, it is desirable to find a processor selection so that tem-

¢pu by reducing the single-user optimurg, pyaccording to porary filt_e I/O can be avoided even at th@T processor with the
the current CPU utilization: least available memory. The three strategies differ when there

are several selections avoiding temporary I/O and in how CPU
(3.2) Bnu-cpu= Psu-opt(1 - Ucpus)- d porary

o utilization is additionally considered.
Here, ¢, denotes the current average CPU utilization of &

processors obtained from the control node. With this formuMlN'IO . . - -
. Lo . A This strategy tries to find the minimal number k of join proces-
a reduction takes place primarily for higher utilization leve|

(Ugpu > 0.5) when a high communication overhead for IoarEsors that avoids temporary file 1/0. More formally, ps de-

pu” termined such that
lelization is not acceptable.
(3.3) gy = MIN (k | AVAIL-MEMORY [K].free *k > b;*F)

3.2 Selection of join processors k=1,2,..,n

We support three strategies (RANDOM, LUC, LUM) thaif the available memory does not allow avoidance of all tem-
may be combined with any of the three approaches aboveporary file 1/0s, the number of join processors is selected so
determining the degree of join parallelism. that the amount of overflow 1/O is minimiz2doin processing
RANDOM

This strategy selects the join processors at random. RAg assigning large amounts of memory to complex hash joins as-
DOM is expected to spread the workload equally across sumes a memory allocation strategy that gives priority to OLTP

available nodes. Since RANDOM does not consider inform transactions. For this purpose, we have implemented a memory-
adaptive hash join approach (Section 4).

takes place on the processors specified in the fifgppsi- tion scan, clustered index scan, non-clustered index scan, two-
tions of AVAIL-MEMORY (LUM policy). MIN-IO does not way join queries, multi-way join queries, and update state-
consider the current CPU utilization. ments (both with and without index support). We also support
MIN-IO-SUOPT the debit-credit benchmark workload (TPC-B) and the use of
This strategy is different from MIN-IO only if there are mulreal-life database traces [18]. The simulation system is an
tiple selections that avoid temporary file 1/0. MIN-IO selecopen queuing model and allows definition of an individual ar-
the minimal number of PE in this case, which limits the CFrival rate for each transaction and query type.

overhead for parallel processing but may also unnecesséWorkload allocation takes place at two levels. First, each in-
restrict the degree of parallelism. To avoid this potential prccoming transaction or query is assigned to one processor act-
lem MIN-IO-SUOPT selects the number of processors closing as the coordinator for the transaction/query. For this
to psy-optfor which temporary file 1/0 is avoided. placement we support different strategies, in particular ran-
OPT-10-CPU dom allocation. The second form of workload allocation deals

This strategy is an extension of the previous ones that exgWith the assignment of suboperations to processors during
itly considers the current CPU utilization. MIN-10 and MIN:uery processing and depends on the operators to be executed.
IO-SUOPT can select high degrees of join parallelism und=0r scan operators, the processor allocation is always based
high memory utilization which can lead to significant CPion arelation’s data allocation. For join processing, we support
contention. To avoid this problem, OPT-I0-CPU restricts tiS€veral static and dynamic strategies for determining the de-
number of join processors to at mogf,Rp, based on the cur- 9€€ of join parallelism and for allocating the join processes
rent CPU utilization (formula 3.2). Within this range, the ma0 Processors as described in the previous section.

imal number of processors avoiding (or minimizingworkload processing

temporary I/O is selected. Such an approach is likely to beEach processor or processor element (PE) of the SN system is
fective under higher CPU ut|||zat|0n.. It also supports a Iorepresented by a transaction manager, a query processing sys-
number of temporary file I/Os under light CPU load where them, CPU servers, a communication manager, a concurrency
number of processors is only restricted By g control component and a buffer manager (Fig. 3). The trans-
4 Simulation model action manager controls the (distributed) execution of trans-

) actions. The maximal number of concurrent transactions
For the present study, we have extended our SN simulajinter_transaction parallelism) per PE is controlled by a mul-

system already used in [26] by adding implementations 5 ogramming level. Newly arriving transactions must wait
parallel hash join processing and for the various load balajy 4 input queue when this maximal degree of inter-transac-
ing §chemes._The gross structure of this s‘|mulat|on Systeriion parallelism is already reached. The query processing sys-
depicted in Fig. 3. In the following, we briefly describe thiem models basic relational operators (sort, scan, join) as well
used database and workload models, the processing modys g parallelization meta-operator (PAROP) that is used for
well as our hash join implementation. The simulation systégynamically redistributing data among processors and for
is highly parameterized. In Section 5.1, we will provide énerging multiple inputs. Different parallel execution strate-
overview of the major parameters and their settings Use(gjes have been implemented for the various operators, in par-
this study. ticular parallel hash joins (see below).

Database and workload model The number of CPUs per PE and their capacity (in MIPS) are
The database is modeled as a set of partitions. A partition rprovided as simulation parameters. The average number of in-
be used to represent a relation, a relation fragment or an instructions per request can be defined separately for every re-
structure. It consists of a number of database pages whicquest type. To accurately model the cost of query processing,
turn consist of a specific number of objects (tuples, index ¢«CPU service is requested for all major steps, in particular for
tries). The number of objects per page is determined btransaction initialization (BOT), object accesses in main
blocking factor which can be specified on a per-partition kmemory (value comparisons, operations on hash tables, etc.),
sis. Each relation can have associated clustered or unclustl/O overhead, communication overhead, and commit process-
B*-tree indices. Relations and indices can be horizontally ing. The communication network models transmission of
clustered across an arbitrary number of disks and processmessage packets of fixed size. Messages exceeding the packet

We support heterogeneous (multi-class) workloads consistSize _(e.g., large sets of result tuples) are disassembled into the
of several query and transaction types. Queries corresponr@quired number of packets.

transactions with a single database operation (e.g., SQL stFor concurrency control, we employ distributed strict two-
ment). Currently we support the following query types: relphase locking (long read and write locks). Global deadlocks
are resolved by a central deadlock detection scheme. Distrib-
5. Note that this does not necessarily imply a join processing on euted two-phase commit is supported and involves all proces-

processors. For example, assume a storage requirement of 1C P ; i i
for the hash table. n=4, and a current memory availability of 8’sors that have participated during execution of the respective

0, and 0 MB. MIN-IO selects p=1 and chooses the processctransaction/query. We support the read-only optimization
with 8 MB available memory for join processing. This is becauwhere only one distributed commit phase is required for read-

in this case we can limit overflow I/O to 2 MB compared to at legonly sub-transactions (to release the read locks).
2.5 MB per processor with other choiceg,(p4).

workload <->| communication network |
generation and | : PE N

allocation [
transaction managﬁ <II > 5 PE1
Query Processing System cpPy o
- - - CONCUrrenc 0g ais
join PAROP control Y [t e
scan oltp buffer
= manager
database disks

Fig. 3: Gross structure of the simulation system

Database partitions can be kept memory-resident (to simulresident A partition are written to disk. If more memory be-

main memory databases) or they can be allocated to a nuncomes available for join processing, one or more disk-resi-
of disks. Disks and disk controllers have explicitly been modent A partition are brought into memory to support a direct
elled as servers to capture potential /O bottlenecks. Furthjoin processing. Arriving tuples from the outer relation B can

more, disk controllers can have a LRU disk cache. The dionly be processed directly if the corresponding A partition is

controllers also provide a prefetching mechanism to suppin memory. Otherwise, the B tuple is inserted into a tempo-
sequential access patterns. If prefetching is selected, a «rary B partition that is written to disk. For disk-resident par-

cache miss causes multiple succeeding pages to be read ttitions the actual join processing is deferred until all tuples

disk and allocated into the disk cache. Sequentially readifrom the outer relation have been received. The delayed join
multiple pages is only slightly slower than reading a singprocessing starts with reading in the respective A partition
page, but avoids the disk accesses for the prefetched pzand storing it in a hash table. Afterwards the associated B
when they are referenced later on. The number of pages t(partition is read and probed against the hash table.

read per prefetch 1/O is specified by a simulation parameteA join query is only started at a node if the minimal space re-

The database buffer in main memory consists of a global biguirements of p pages are available. Otherwise, the join que-
er for all transactions/queries as well as private working sp&'y is forced to wait in a memory queue that is managed
es used for query processing (e.g., hash tables for hash joiaccording to a FCFS (first come, first served) scheduling pol-
The global buffer is managed according to a LRU replacemédcy. Similarly, executing hash joins are suspended if memory
strategy and a no-force update strategy with asynchrondrames are stolen by higher-priority transactions and fewer
disk writes. Private working spaces are dynamically assignthan the minimal number of pages remain for join process-

by reserving a certain number of pages for processing a giing. Since all hash join queries are assumed to have equal pri-
(sub)query. ority, the memory allocation of a running query is not

Hash join processing changed due to newly arriving joins.

For parallel hash join processing, the input relations can 5 Performance Analysis
distributed among an arbitrary number of join proceSsges Our experiments concentrate on the performance of parallel

lection of the join processors depends on the respeciive join processing in multi-user mode. The focus of the study is

ﬁ;o?gr?];%i‘le%a:nt::%r;clg%'aﬁ;gaciJ%'inn p;?%iﬁi'%g’c\gﬁezato compare the effectiveness of the various static and dynam-
P y P J 9 ' ic load balancing alternatives introduced in Section 3 for de-

Partially Preemptible Hash Joi(PPHJ), that was shown tc.)termining the degree of join parallelism and for selection of

outperform traditional join methods like GRACE and hybrii,_ " . : :
- . - .77 "the join processors. Two types of multi-user load profiles are
hash join for mixed query/OLTP workloads [23]. This is beconsidered: a homogeneous workload consisting of join que-

cause It adapts the memory assignment for a J0In qUety jeg only as well as a heterogeneous (mixed) workload with
cording to the memory requirements of higher-priority OLT both short OLTP transactions and join queries.

transactions. The PPHJ algorithm partitions both join inpL . i :
#xbi where F ist the fudge factolN the next subsection, we provide an overview of the param-

into p partitions with p i : . ; .)

and bthe number of pages for the inner relation A. To mal€ter settings used in these experiments. Multi-user experi-

sure that each A partition can be held in memory, a minim/Ments for the homogeneous and heterogeneous workloads
are analyzed in 5.2 and 5.3, respectively. Many additional

of p pages must be available for join processing. , i
The algorithm tries to keep as many A partitions as pOSSib|€exper|ments have been conducted but cannot be described

memory to allow a direct join processing with the outer reldue {0 space restrictions. However, these experiments con-
tion. In the case that memory has to be taken away from fir™ the main findings of the selected experiments.

join due to higher-priority transactions, one or more memors 1 Sjmulation Parameter Settings

6. If the input relations are already declustered on the join attributFig. 4 shows the major database, query and configuration pa-
join processing may also take place at the data processors. Thirameters with their settings. Most parameters are self-ex-

duces the communication overhead but offers little potential fplanatory some will be discussed when presenting the
dynamic load balancing. ’

Configuration settings Database/Queries settings

number of PE (#PE, n) 10, 20, 40, 60, 80 ||relations A: (100 MB)
CPU speed per PE 20 MIPS #tuples 250.000
avg. no. of instructions: tuple size 400 B

initiate a query/transaction | 25000 blocking factor 20

terminate a query/transaction 25000 index type clustered B-tree

I/O 3000 storage allocation disk

send message 5000 alloaction to PE partial declustering (20% of #PHE
receive message 10000

copy 8 KB message 5000 relations B: (400 MB)

read a tuple from memory pagg&00 #tuples 1.000.000

hash a tuple 500 tuple size 400 B

insert a tuple into hash table | 100 blocking factor 20

write a tuple into OUtpUt buffer 100 index type clustered B-tree

probe hash table 200 storage allocation disk
buffer manager: allocation to PE partial declustering (80% of #PH
page size 8 KB

buffer size 50 p_ages (0.4 MB) join queries:

. i (varied) access method via clustered index
disk devices:

number of disk servers per P
controller service time
transmission time per page

F10 (varied)
1 ms (per page)
0.4 ms

scan selectivity
no. of result tuples
fudge factor hash table

arrival rate

varied
100 % of the inner relation
1.05

~

~

avg. disk access time 15 ms single-user, multi-user (varied)
prefetching delay per page |1 ms query placement random (uniformly over all PE)
disk cache 200 pages join parallelism static / dynamic

prefetching size 4 pages selection of join processofsandom / dynamic

Fig. 4: System configuration, database and query profile

simulation results. The join queries used in our experimeiOur OLTP workload is similar to the one of the debit-credit
perform two scans (selections) on the input relatasdB (TPC-B) benchmark. In particular, each OLTP transaction per-
and join the corresponding results. TAgelation contains forms four non-clustered index selects on arbitrary input rela-
250.000 tuples, thB relation 1 million tupleé The selections tions and updates the corresponding tuples.
on A andB reduce the size of the input relations according
the selection predicate’s selectivity (percentage of input tup5'2 Homogeneous workloads) . .
matching the predicate). Both selections employ clustered 1€ homogeneous workload consists of a single (join) query
dices. The join result has the same size as the scan outhut otype. [nter-qgery parallelism is used to execute multiple queries
Both relations are uniformly declustered across disjoint setsdt @ time. Since we want to support not only short response
PE. To support a static load balancing for scan operations, etlmes but al_so good t.hroughput, we increase the query arrival
PE is assigned the same number of tuples. As a result the Iarate_proportlonally W'.th the number of P.E' We f|rs't present
relationB is declustered across 80% of the PE, while the 'mulp-user result.s for isolated load palancmg strategies using a
maining 20% of the PE hold tuples of relatd@nThe number static degree of |ntra-'query parallgllsm. Afterwards we analyze
of processing nodes is varied between 10 and 80. the e_:ffectlveness_of isolated and mtgg_rated strategies that dy-
The relation and query sizes had to be chosen small for rrnampally detgrmme the numbe(of join processors. Next, an
experiment with a pronounced disk and memory bottleneck is

experiments to limit simulation cost. As a consequence, \yescrined. Finally, we study the influence of the join complex-
had to use unrealistically sm_all memory sizes (O_.4 MB per Pity on the effectiveness of dynamic load balancing.
to generate a reasonably high memory utilization. Howev:

the impact of larger query sizes on the effectiveness of the \ISolated strategies with static degree of join parallelism

ious strategies will be studied in a separate experiment. ~ Fig. 5 shows the multi-user response times for static degrees of
The duration of an I/O operation is composed of the Contm”pargllehsm and three d|fferent allocation stratggles. F_or com-
service time, disk access time and transmission time. ForP2rison purposes, the single-user results obtained yithp
sequential 1/Os, in particular relation scans, clustered ing®in Processors are also shown. For the assumed join query, 3
scans and scans on temporary files (partitions), prefetchind®in Processors are sufficient in smgle?user mode to _av0|d 'Fem—
utilized by the disk controllers to improve 1/O performancéPorary file 1/O, i.e., gy.noi0= 3. The single-user optimum is
The disk access time for prefetching consists of a base acSubstantially higher @y o= 30). The system size is varied be-
time per 1/0 (15 ms) plus an additional delay per page (1 mtween 10 and 80 PE; the arrival rate is 0.25 queries per second
For a prefetching of 4 pages, the average disk access time i(QPS) per PE.

ms. The parameter settings for the communication netwcFor this workload, for up to 40 PE the system is only lightly
have been chosen according to the EDS prototype [29]. loaded. Hence, usingpopjoin processors provides the best
multi-user performance with response times not much higher
than in single-user mode. In this range, restricting join process-

7. As pointed out in [9], most decision support queries are joins t
tween a larger and a smaller relation.

1500, —— _~MIN-IO-SUOPT
Psu- t— 30) 3
= 2500 pS” o 3 £ 1250 — Pmu-cpir RANDOM
£ oo £ 1000 OPT-I0-CPU
2 2000 Puoprt RANDOM e f o
= - E +
2 1504 Psunoio* LUC Psuoptt LUC - 5 Pmu-cpu
5 b Psu-optt LUM & 500 .]
& 1000 Psu-nolot LUM o 250 single-user mode(, op)
g > E
500k > R 1 QI_ e
; g 0 20 40 60 80 #PE
single-user mode £p. :
. ,g. o .g[,} 0,’)), system size Fig. 6: Dynamic degree of join parallelism
10 20 40 60 gg #PE) (multi-user join 0.25 QPS/PE; 1% scan selectivity)
Fig. 5: Static degree of parallelism Dynamic degree of parallelism

(multi-user join 0.25 QPS/PE; 1% scan selectivity) As the discussed results have shown, statically determining

ing to py,.noloProcessors achieves suboptimal performandBe degree of join parallelism is not appropriate for multi-user
since CPU parallelism is not fully exploited. Furthermorenode due to changing levels of resource utilization. Therefore,
choosing only p,.no10j0iN processors is not sufficient to We focus now on the results obtained for a dynamic calculation
avoid temporary file 1/0 in multi-user mode because th@f the number of join processors (Fig. 6). We consider two iso-
available memory per processor is smaller than in singléted approaches based on a dynamic determination of the de-
user mode. gree of join parallelism according to the current CPU
With a growing number of processors, performance is ittilization (gny.cpd and using a RANDOM- or LUM-based
creasingly dominated by CPU bottlenecks due to higher gelection of join processors. In addition, results for the three
rival rates and increased overhead for the dynamiietegrated approaches from Section 3.3 are shown.
redistribution of both join inpufs The redistribution over- Interestingly, the worst performance is achieved for the two
head is particularly high for the strategies employiggag; integrated load balancing strategies MIN-IO and MIN-IO-
(30) join processors causing substantial response time d&&&}OPT, in particular for a higher number of processors (Fig.
riorations due to CPU contention (more than 80% CPU u®). This was because both strategies do not consider the cur-
lization on an 80 PE system). On the other hand, using prent CPU utilization but merely try to avoid temporary file I/O.
nolo J0iN processors results in a significantly lower CPU utiHowever, for this purpose an increasing number of join pro-
lization (approx. 50% for 80 PE). However, this is achieveckssors became necessary for larger system sizes leading to an
at the expense of increased I/O delays and higher disk utédiven higher CPU contention (>85% CPU utilization) than with
zation since 3 join processors are not sufficient any moredostatic degree ofsp.ptjoin processors. For instance, more
avoid temporary file I/O. Still, the best static strategy usintipan 40 join processors were necessary for a system of 80 PE
Psu-noloProcessors (in combination with LUM) outperformgo avoid temporary /0. MIN-IO is superior to MIN-IO-

the strategies using,popiprocessors for more than 60 PE. SUOPT for larger configurations since the latter strategy gen-

The load balancing strategy for selecting the join processdéti@lly chooses a higher number of join processors. For smaller
also has a profound impact on the response time resultsc@figurations (lower CPU utilization), on the other hand, se-
particular for higher utilization levels (number of PE). RANJecting the minimal number of join processors avoiding tem-
DOM exhibits the worst performance in all cases despite tRerary file /0 (MIN-10) is slightly less efficient since CPU
fact that a homogeneous workload is relatively favorable f@@arallelism is not fully utilized.

such a strategy. Still, the CPU and memory utilization of tHdost efficient were the strategieg,pco,and OPT-I0-CPU
individual processors varied substantially, in particular witthat reduce the degree of join paraﬁelism under high CPU
only 3 (Ryy-noi0 join processors per query. Since this stratdead. They apply at mostpqpjoin processors and reduce the
gy suffered from memory and I/O bottlenecks for a highaetegree of join parallelism with increasing CPU utilization.
number of PE, the LUM policy was much more efficienfherefore, even for 80 PE CPU utilization could be kept below
than the LUC alternative for selecting the join processors. 5% still permitting acceptable response time. While the use
case of g.optjOin processors memory contention was not af a RANDOM selection of join processors is again worse
problem. Instead, CPU was the bottleneck for a higher nutitan a LUM-based selection of,p.cpyjoin processors, such
ber of PE. Therefore, the LUC policy was (slightly) more efan approach was still better than the two integrated schemes
ficient than LUM for the case of 304pop) join processors. MIN-IO and MIN-IO-SUOPT. This shows that under high
However, there is no significant dif{)erence between th8PU load reducing the degree of join parallelism is more im-
LUM and the LUC policy, since CPU utilization and memyportant than minimizing the amount of temporary 1/O.

ory utilization were closely correlated for the homogeneoushe two best StfategieSnQ-cpu + LUM and OPT-IO-CPU
workload and 30 join processors per query. showed very similar performance characteristics for this ex-
8. The redistribution overhead per query increases with the numi&fiment. For the heterogeneous workloads, the differences

of nodes since the two relations are declustered across 80% beiween these approaches will become more apparent.
20% of all processors, respectively.

Memory/disk bottleneck Scan selectivity was varied between 0.1 and 5% for both input
In the previous experiment that was largely influenced Irelations. For each join complexity, the arrival rate was deter-
CPU contention for larger system sizes, the strategies recmined individually, so that at least one of the physical resourc-
ing the degree of parallelism according to the current Cles (CPU, memory or disk) was highly loaded (>75%). Fig. 8

utilization were most effective. We now focus on a memorshows the relative response time improvement using dynamic
bound environment by reducing the memory size per procstrategies compared to a static degree of join parallelism
sor by a factor of 10 and reducing the query arrival rate. F(MEN(n, psy_op)) and random selection of join processors.

thermore, we assume only 1 disk per PE for temporary 1 2
I/O (instead of 10 disks). For this experiment, we only cor EJ 60 T T Prmu-cput LUM
pare one of the worst strategies of the previous experim £ 50l =—aMIN-IO-SUOPT
(MIN-IO-SUOPT) with one of the best strategieg,(Rput £ (23 +—MIN-I0
LUM) for both single-user and multi-user mode (Fig. 7). 2 S 40 OPT-10-CPU
multi-user join (0.05 QPS/PE): Sirs 30
2D cput LUM e—e MIN-IO-SUOPT 274 =
multi-user join (0.025 QPS/PE): g ¢ 20f
~ —o Pmy-put LUM +—+ MIN-IO-SUOPT 4 K 1ol
single-user join: o Psu-nolot LUM
—0 Pmu-cput LUM z—a MIN-IO-SUOPT -% ,,,,,,,,, Su-nolo © == L L
20) ° 0L 1 2 scan selectivity [%] >
o 5000
£, Fig. 8: Influence of join complexity
E 4000 We observe that the dynamic load balancing schemes outper-
é 3000 form the static approach in all cases, but that the relative per-
S] X formance improvements shrink with increasing join complex-
g 2000 ity. This is largely because we use a constant system size while
g 1000 > increasing the join size leading to an increase in the optimal
number of join processors. In single-user mode, the optimum
. Psu-optincreases from 10 for a scan selectivity of 0.1% to 70 (>

20 30 40 60 4pe 80 n)foraselectivity of 5%; the minimal number of nodes needed
Fig. 7: Memory-bound environment (1% scan selectivity) t0 avoid overhead 1/0,sf.noj0 grows from 1 to 14. In multi-
user mode, larger joins also require higher degrees of parallel-
The assumed workload resulted in a low CPU utilization jsm not only to reduce the amount of temporary 1/0 but also to
under 20%, but caused a high buffer utilization (> 90%educe the amount of processing per join processor.
Since there was no CPU bottlenecl,Rp,was always the For small joins (scan selectivity 0.1%) avoiding temporary /0
same asg,.op; However, this degree of join parallelism wajs no problem so that performance is primarily limited by the
not sufficient in multi-user mode to minimize the number (cpy contention associated with higher degrees of join paral-
overflow 1/Os causing an increasing degree of memory &jg|ism (unfavorable ratio between startup/termination cost and
disk utilization (>60%) for growing system sizes. The sanactual work). Hence, the best performance is achieved for the
effect would have occurred for the OPT-10-CPU strategstrategies using few join processors,(po+ LUM and
The MIN-10-SUOPT approach, on the other hand, was aly|N-|0), while the schemes usinggpop join processors
to minimize the amount of overflow 1/O by increasing thN-10-SUOPT) achieve the lowest response time improve-
number of join processors with the system size. As indicaiments. For larger joins (5%), on the other hand, startup and ter-
inFig. 7, the average degree of join parallelism in multi-usmination costs become less relevant and higher degrees of join
mode was increased to up to 42 for 80 PE as opposed tipara|lelism are needed to limit temporary 1/0 and to fully ex-
in single-user mode and 30 fof,pcpy The corresponding piojt CPU parallelism. The strategy oo+ LUM achieves
savings in the number of I/Os and the reduced disk contihe worst performance since it utilizes only 14 processors
tion allowed drastically improved response times comparyhich is not sufficient to avoid temporary /0 in multi-user
10 usINg fhy-cpulOIN Processors. _ _ mode. MIN-IO avoids memory/disk bottlenecks, but also se-
These experiments illustrate that there is no single poljects too few join processors so that no sufficient level of CPU
that performs best under all conditions, but that the load Eparallelism is achieved. For large joins, the best performance
ancing strategy itself should be selected according to the s provided by the strategieg,Repu* LUM, OPT-I0-CPU
rent load and resource situation. and MIN-IO-SUOPT as they employ almost all processors for
Influence of join complexity join processing. Still they are able to improve response times
To study the influence of the join complexity on the effe(Py about 18%) compared to the static schegigp+ RAN-
tiveness of dynamic load balancing we vary the size of {POM (which uses all processors) because the dynamic strate-
join input by using different scan selectivities. This expei9i€s avoid join processing at temporarily overloaded nodes.

ment was performed for a constant system size of 60 |

The experiment confirms the expectation that the potential The results indicate that for mixed workloads dynamic load
dynamic load balancing becomes small as soon as the optibalancing is indeed even more effective (and needed) than
number of join processors approaches the total number of gfor homogeneous workloads. The differences between static
cessors. In addition, the use of a homogeneous workload and dynamic approaches are particularly pronounced in the
be considered as a worst-case assumption for complex quecase when the OLTP load is processed on B nodes (Fig. 9b).
asitresultsin a relatively uniform resource allocation even fThis is because we have the four-fold OLTP throughput
random selection of the join processors. (Furthermore, tcompared to the other configuration resulting in a higher sys-
chosen database allocation allowed an equal distributiontem utilization and longer response times. Static schemes
the scan work.) In real systems, the workload is expectedbased on RANDOM selection of join processors are particu-
consist of transaction and query types with largely differelarly unsuited in such a situation as they frequently assign
resource requirements thus improving the load balancing jjoin work on nodes that are highly utilized due to OLTP pro-
tential. Such heterogenous workloads will be considered cessing. Using a small static degree of join parallelisg (p
the next experiment. Furthermore, the potential for dynarn,,,o) in combination with a LUM-based selection of join pro-
load balancing increases with the total number of processccessors is already much better since it largely avoids join pro-
i.e., such schemes are essential for super-servers. cessing on nodes with high memory utilization. Still, such
53 H Kload semi-static approaches are insufficient since they cause ei-
: eterogeneous vyor oads) _ ther an unnecessarily high 1/O overheag, (R0 or CPU
We now study the effectiveness of dynamic load balancing icontention (Bu-op-
the case of heterogeneous workloads consisting of OLhg gynamic approaches could largely avoid these deficien-
transactions and join queries. For OLTP processing, We cjes and provided much better performance than the static
sume a simple transaction type with 4 tuple accesses per trigchemes. In particular, response times could be kept very low
action and that an affinity-based routing [25] can achieveg,, |arger system sizes despite the growing query and trans-
largely local processing (similar to debit-credit). To avoiction throughput. This is particularly the case for the inte-
lock conflicts with join querys, OLTP transactions access d‘grated policy OPT-IO-CPU. The isolated strategy, By, +
ferent relations than A and B. For the concurrent executionLUM, however, suffered from performance probler-nsuwith a
join queries, we study multi-user join processing. _lower number of processors, in particular with OLTP pro-
Fig. 9 shows the average join response times for two MiXcessing on the A nodes (Fig. 9a). The problem comes from
workloads differing in whether the OLTP transaction type tne fact that this strategy only considers CPU utilization for
on_Iy running on the A nodes holdlng fragments of relation determining the number of join processogg,pvhile mem-
(Fig. 9a) or on the B nodes (Fig. 9b). In both cases we usegry ytilization is solely used for selecting the join processors.
OLTP transaction rate of 100 TPS (transactions per seCOggr smaller system sizes of up to 30 PE wheratheage
per A(B) node. The OLTP workload causes perOA (B)OnOdGCPU utilization is comparatively 10w, cp,is not lower
45%, respectively. Join queries arrive at a rate of 0.075 QHence, joins are also processed on the processors that are
per PE. We consider two static load balancing schemes pighly utilized due to OLTP processing causing substantial
join processing with a fixed degree of join parallelismQf p performance degradations. OPT-IO-CPU, on the other hand,
opt OF Psu-noloProcessors that are randomly selected. EQr pyses the current CPU utilization only to determine the maxi-
nolo Processors we additionally investigate the LUM allocema| number of join processors but selects a smaller degree of
tion strategy. Moreover, the two dynamic load balancirparajielism if this allows for reduced I/O requirements ac-
strategies p.cpu* LUM and OPT-I0-CPU are examined. cording to the current memory utilization. In this way, this

D T RANDOM strategy was able to avoid join processing on the OLTP
piﬂiﬁﬁfo + RANDOM =9 Pmy-cpu* LUM nodes permitting substantially better response times. This
+—+ Psynolot LUM 5—~a OPT-I0-CPU demonstrates the importance of determining the number of

join processors and selecting the processing nodes in an in-

a) OLTP on 20% of nodes b) OLTP on 80% of nodes tegrated way.
(A nodes) (B nodes)

6 Related Work

Dynamic scheduling and workload allocation strategies for
database processing have found considerable interest recent-
ly, but most studies concentrated on centralized DBMS. Fur-
thermore, most studies only dealt with a single bottleneck
resource. For instance, several researchers looked at the
L L problem of controlling lock contention by dynamically ad-
1020 40 60 8010 20 40 60 80 justing the multiprogramming level [3, 30, 33]. Other studies
#PE #PE coped with dynamic memory allocation strategies for multi-

Fig. 9: Static vs. dynamic load balancing for mixed workloadclass workloads consisting of complex queries and OLTP
(multi-user join 0.075 QPS/PE; 5 disks per PE)

response time [s]

= N W b~ Ol

transactions [15, 36, 23, 1, 5]. [19] addressed the scheduimain limitation of the simulation study is that only completely
problem when multiple hash join queries are to be processehomogeneous hash-join workloads are considered favoring
the same time. Different alternatives to allocate memory to j@n even system utilization. As a result, the differences be-
queries were considered, but the memory allocation was tween different approaches to select the join processors have
unchanged during query execution. been very small. The best performance was observed for our
The problem of dynamic load balancing in parallel databe-UC scheme (originally proposed in [26]) although it only
systems has mainly been considered for parallel Shared Evconsiders the current CPU utilization. _

thing (multiprocessor) DBMS so far [12, 22, 13, 16]. In thedn [27], we mvestlggte the potentl_al of Shared D|sk database
systems, dynamic load balancing is easier to achieve sincesSystems for _dyr_1am|c load balancing. This architecture offers
operating system can automatically assign the next ready la higher erX|b_|I|ty than SN becaqse even for scan operations
cess/subquery to the next free CPU. Furthermore, the shzthe degree of intra-query parallelism can dynamically be cho-

memory supports very efficient interprocess communicationSen'h':urthermore’ the scan procz;slt()rs are freely eligible since
that the overhead for starting/terminating subqueries is m®AC Processor can access any disk.
lower than for SN. Also, the memory load balancing proble7 Conclusions

doe_s not exist for Shared Everything because there is no priyye have investigated the problem of dynamic load balancing
main memory per processor. On the other hand, the numbgo; parallel Shared Nothing database systems. Such a load
processors is typically small for Shared EverythingQ) thus pajancing is a critical prerequisite for effective utilization of
restricting the degree of inter-/intra-query parallelism and t'syper servers", in particular to support effective intra-query
potential for dynamic load balancing. parallelism in multi-user mode, i.e., in combination with in-
For SN dynamic forms of load balancing have been propoder-query and inter-transaction parallelism. The major control
for join processing in order to deal with data skew [32, 35,decisions to draw dynamically include determining the de-
14]. However, all these studies assumed single-user mode gree of intra-query parallelism and selecting the processors
responding to a best-case situation with little or no resoufor executing subqueries. We found that these two subprob-
contention. Hence, only intra-query load balancing is supporlems should be solved in an integrated way and that the cur-
and the effectiveness of the proposals in multi-user mode nrent system state with respect to multiple resources, in
be questioned. particular CPU, memory and disk, needs to be considered.
Most closely related to our work is a recent study by Mehta éWe have studied these issues for parallel hash join processing
DeWitt [20]. As we have done in [26] and here, they concebased on a dynamic redistribution of both join inputs among
trate on dynamically determining the degree of join processseveral join processors. While in single-user mode minimiz-
as well as selecting the join processors for SN. The main cing the amount of I/O to temporary files (due to hash table
tribution is a new algorithm called RateMatch for determiniroverflow) is of prime importance, the performance in multi-
the number of join processors. This scheme is based on theuser mode may be dominated by other factors like the degree
servation that the size of the join input is less significant fof CPU and disk contention. In particular, we observed a basic
finding the optimal number of join processors than the rateperformance tradeoff with respect to the optimal degree of
which the scan processors generate the join input. Thus join parallelism in multi-user mode. Under high CPU utiliza-
scheme tries to determine the number of join processors stion we found it necessary to reduce the degree of join paral-
that their aggregate join processing rate matches the ratlelism in order to limit CPU contention (communication
which the join input is provided by the scan processors. Hooverhead for startup/termination and data redistribution). Un-
ever, there are several limitations both in the algorithm as wder disk and memory bottlenecks, on the other hand, the de-
as in the accompanying simulation study. First, RateMatctgree of join parallelism should be increased in order to reduce
an isolated scheme that uses an independent algorithm foithe memory and 1/O requirements per subquery.

lecting the join processors. Moreover, the algorithm is basedWe have investigated the performance of several single- and
a simplistic model for taking into account the effect of resourmulti-resource load balancing strategies for homogeneous
contention on the scan and join processing rates. In particand heterogeneous (query/OLTP) workloads by means of a
the current memory availability is not considered at all and ordetailed simulation model. We considered static and dynamic
the average CPU utilization and average disk access timesas well as isolated and integrated policies. Isolated policies
used to estimate the processing rates in multi-user mode. “determine the degree of join parallelism independently from
ignores the fact that there may be large differences in the uthe policy used for selecting the join processors, while inte-
zation of individual nodes (which are considered by integraigrated strategy try to address both scheduling problems to-
schemes). Furthermore, the communication overhead assogether. We found that dynamic load balancing schemes
ed with a selected degree of join parallelism is not taken iiclearly outperform static approaches, in particular for hetero-
account. One consequence of this simplification is that the geneous workloads when the load situation at different pro-
gorithm increases the degree of join parallelism as CPU uicessors may vary significantly. However, simple integrated
zation increases in order to compensate the reduced procespolicies considering only the current utilization of a single re-
rate per join processor! This may be acceptable for low utilizsource (e.g., memory) are not always better than isolated
tion levels, but can lead to severe performance problems fischemes considering multiple resources. This underlines the
higher CPU utilization (> 50%) as our results have shown.need to have a dynamic, integrated and multi-resource load

balancing approach. As our results suggest, such an apprt
should be realized by a family of load balancing strategies
that the most appropriate policy can be selected accordiny
the current system state. For instance, if the system suffers
marily from memory and disk bottlenecks an integrated poli
like MIN-IO-SUOPT should be chosen that minimizes tr
amount of I/O based on the current memory availability. F
situations with high CPU contention or with both CPU ar
memory bottlenecks, an integrated policy like OPT-10-CP
has proven to be very effective.

While our study focussed on parallel hash join processing,
believe the principles behind our strategies are equally ve
for other relational operators that use a dynamic redistribut
of their input for parallel execution (e.g., sort). Furthermor
we believe that the proposed strategies are not limited to <
red Nothing but can equally be applied in Shared Disk da
base systems. Currently, we are studying the performanci
different approaches to deal with data skew (in particular,
distribution skew) in multi-user mode. Preliminary results it
dicate that the overhead of proposed skew handling technig
is a significant problem in multi-user mode. On the other hat
the skew problem may be reduced by dynamic load balanc
strategies that do not try to generate equally-sized subjoins
select the join processors dependent on the size of the subj
(by assigning larger subjoins to less loaded nodes, etc.).

-

8 References

[1] Brown, K.P.; Mehta, M.; Carey, M.J.; Livny, Ml:owards Au-

tomated Performance Tuning for Complex Workload

Proc. 20th VLDB Conf.72-84, 1994

Carey, M.J., Jauhari, R., Livhy, MBriority in DBMS Re-

source Scheduling?roc. 15th VLDB Conf397-410, 1989

Carey, M.J., Krishnamurthi, S., Livny, MLoad Control for

Locking: The 'Half-and-Half’ ApproachProc. 9th ACM

Symp. on Principles of Database Syster2s84, 1990

Carey, M.J., Muhanna, W.AT.he Performance of Multiver-

sion Concurrency Control AlgorithmsACM Trans. on

Computer Systen#s(4), 338-378, 1986

Davison, D.L.; Graefe, GMemory-Contention Responsive

Hash JoinsProc. 20th VLDB Conf.379-390, 1994

DeWitt, D.J., Gray, J.Parallel Database Systems: The F

ture of High Performance Database Syste@mnmm. ACM

35 (6), 85-98, 1992

DeWitt, D.J., Naughton, J.F., Schneider, D.A., Seshadri,

Practical Skew Handling in Parallel JoinBroc. 18th

VLDB Conf.1992

Englert, S.Load Balancing Batch and Interactive Querie

in a Highly Parallel Environmen®roc. IEEE Spring Comp

Con Conf, 110-112, 1991

[9] Englert, S.NonStop SQL: Scalability and Availability for
Decision SupportProc. ACM SIGMOD Conf491, 1994

[10] Graefe, G.Query Evaluation Techniques for Large Dat
bases ACM Comput. Surveyas (2), 73-170, 1993

[11] Gray, J.:Super-Servers: Commodity Computer Cluster
Pose a Software ChallengRroc. German Database Conf.
BTW, March 1995

[12] Hirano, Y., Satoh, T., Inoue, U., Teranaka,lkoad Balancing
Algorithms for Parallel Database Processing on Shar:
Memory MultiprocessorsProc. 1st Int. Conf. on Parallel
and Distributed Information Systen&l0-217, 1991

[13] Hong, W.: Exploiting Inter-Operation Parallelism
XPRS.Proc. ACM SIGMOD Conf19-28, 1992

<

(2]
(3]

(4]

(5]
(6]

u

«
.

[7]

(8]

a

in

[14] Hua, K.A., Su, J.X.W.Dynamic Load Balancing in
Very Large Shared-Nothing Hybercube Database
Computers.IEEE Trans. on Computerd2 (12), 1425-
1439, 1993

[15] Jauhari, R., Carey, M.J., Livny, MPriority-Hints: An
Algorithm for Priority-Based Buffer Management.
Proc. 16th VLDB Conf.708-721, 1990

[16] Lu, H., Tan, K.Dynamic and Load-Balanced Task-Ori-
ented Database Query Processing in Parallel Systems.
Proc. EDBT LNCS 580, 357-372, 1992

[17] Marek, R.: ACost Model for Parallel Query Processing
in Shared Nothing DB%in German)Proc. German Da-
tabase Conf. BTVWMarch 1995

[18] Marek, R., Rahm, EPerformance Evaluation of Paral-

lel Transaction Processing in Shared Nothing Data-

base SystemdProc. 4th Int. PARLE ConfLNCS 605,

295-310, 1992

Mehta, M., DeWitt, D.J.: Dynamic Memory Allocation for

Multiple-Query WorkloadsProc 19th VLDB Conf 354-

367, 1993

[20] Mehta, M., DeWitt, D.J.: Managing Intra-operator Parallel-

ism in Parallel Database SysterRsoc 21st VLDB Conf

1995

Murphy, M.; Shan, M.Execution Plan Balancingproc.

1st Int. Conf. on Parallel and Distributed Information Sys-

tems 1991

[22] Omiecinski, E.:Performance Analysis of a Load-Bal-
ancing Hash-Join Algorithm for a Shared-Memory
MultiprocessorProc 17th VLDB Conf 375-385,1991

[23] Pang, H., Carey, M.J., Livny, MPartially Preemptible
Hash JoinsProc. ACM SIGMOD Conf59-68, 1993

[24] Patterson, D.A., Gibson, G., Katz, R.HA Case for Re-
dundant Arrays of Inexpensive Disks (RAIDProc.
ACM SIGMOD Conf. 109-116, 1988

[25] Rahm, E.: AFramework for Workload Allocation in
Distributed Transaction Processing Systedsurnal
of Systems and Softwat8, 171-190, 1992

[26] Rahm, E., Marek, RAnalysis of Dynamic Load Bal-
ancing Strategies for Parallel Shared Nothing Data-
base SystemdRroc 19th VLDB Conf 182-193, 1993

[27] Rahm, E., Stéhr, TAnalysis of Parallel Scan Process-
ing in Shared Disk Database SysterRsoc. EURO-
PAR LNCS, Springer-Verlag, Stockholm, Aug. 1995

[28] Selinger, P.Predictions and Challenges for Database
Systems in the Year 200Broc 19th VLDB Conf 667-
675, 1993

[29] Skelton, C.J. et alEDS: A Parallel Computer System
for Advanced Information Processingroc. 4th Int.
PARLE Conf.Springer-Verlag, LNCS 605, 3-18, 1992

[30] Thomasian, A.: Thrashing in Two-Phase Locking Revisited.
Proc. 8th IEEE Data Engineering Con518-526, 1992

[31] Valduriez, P.:Parallel Database Systems: Open Prob-
lems and New IssueBistr. and Parallel Databasek (2),
137-165, 1993

[32] Walton, C.B; Dale A.G.; Jenevein, R.M..; Paxonomy and
Performance Model of Data Skew Effects in Parallel
Joins.Proc. 17th VLDB Conf537-548,1991

[33] Weikum, G.; Hasse, C.; Mdnkeberg, A.; Zabback, P.: The
COMFORT Automatic Tuning Projectlinformation
Systemd9(5), 381-432, 1994

[34] Wilschut, A.; Flokstra, J.; Apers, P.: Parallelism in a Main-
Memory DBMS: The performance of PRISMA/DBroc.
18th Int. Conf. on Very Large Data Bas621-532, 1992

[35] Wolf, J.L., Dias, D.M., Yu, P.S., Turek, J.: Affective
Algorithm for Parallelizing Hash Joins in the Pres-
ence of Data SkewProc. 7th IEEE Data Engineering
Conf, 200-209, 1991

[36] Zeller, H., Gray, J.: ArAdaptive Hash Join Algorithm
for Multiuser EnvironmentsProc. 16th VLDB Conf.
186-197, 1990

(19]

(21]

