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Abstract.

Much of the information about the multi-valley structure of disordered spin systems

can be convened in a simple tree structure – a barrier tree – the leaves and internal

nodes of which represent, respectively, the local minima and the lowest energy saddles

connecting those minima. Here we apply several statistics used in the study of

phylogenetic trees to barrier trees that result from the energy landscapes of p-spin

models. These statistics give information about the shape of these barrier trees, in

particular about balance and symmetry. We then ask if they can be used to classify

different types of landscapes, compare them with results obtained from random trees,

and investigate the structure of subtrees of the barrier trees. We conclude that at least

one of the used statistics is capable of distinguishing different types of landscapes, that

the barrier trees from p-spin energy landscapes are quite different from random trees,

and that subtrees of barrier trees do not reflect the overall tree structure, but their

structure is correlated with their “depth” in the tree.
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1. Introduction

The notion of energy (fitness) landscapes has played a crucial role in the development

of many areas of physics and biology such as disordered systems, neural networks,

combinatorial optimization problems [1], RNA folding [2], and evolutionary change

[3, 4], to mention only a few. In particular, considerable effort has been devoted to

the study of the interplay between the geometry of the landscape and the nature of

the relaxation dynamics, searching heuristic or evolutionary process unfolding on the

landscape. However, the inherent high-dimensionality of these landscapes poses a serious

hindrance to the characterization of their topology. In fact, most of the studies have

focused on the statistical characterization of a few local properties of the landscape by

looking at, e.g., the auto-correlation function of unbiased walks over the configuration

space [5] or the energy distribution of local minima [6, 7], while a satisfactory description

of a landscape should address also the (relative) energy differences of the local minima,

the height of the barriers between these minima, as well as the distribution of saddle-

points [8, 9].

The idea of condensing all the landscape information into a tree structure, termed

barrier tree, was introduced in the context of RNA and protein folding [10, 11, 12, 13],

and spin-glass models [8, 14, 15, 16]. The advantage of barrier trees, whose leaves

represent the local minima and the internal nodes the lowest-energy saddles connecting

those minima, is that they are both visually appealing (much information can be

obtained from just looking at them, see figure 1), as well as mathematically well-

defined, lending themselves to rigorous analysis [17]. However, a general quantitative

measure to characterize unambiguously different kinds of barrier trees (and hence energy

landscapes) remains to be obtained. For instance, the size-frequency distribution of low

energy saddles ψ(w) ∼ w−D, where w = w(s) is the fraction of minima that can be

connected through saddle s, does not provide a good measure because D ∼ 2 regardless

of whether the barrier tree results from a spin-glass landscape or whether it is generated

randomly [16].

The situation seems to be similar in the analysis of phylogenetic trees, where it is

also believed that the shape of the tree contains valuable clues about the evolutionary

process [18, 19], but so far no single satisfactory measure of tree-shape has been

constructed [20, 21, 22, 23, 24]. In this contribution we apply five measures of tree

shape that were originally used to study phylogenetic trees (see, e.g., [22]) to barrier trees

resulting from the Ising p-spin model. These measures provide statistical information

about the shape of the barrier tree, mainly its symmetry or balance, but ignore the

branching lengths, i.e. the height of the barriers between minima. While the extreme

statistics of these heights provide useful information on the performance of local search

algorithms such as simulated annealing [15], a measure based solely on the shape of the

barrier tree seems more adequate to classification purposes since the shape is probably

insensitive to variations in minor details of the underlying energy landscape. Tree

shapes are important in the biological context also because many methods of phylogeny
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estimation, including parsimony, do not produce branch lengths. We find that all five

measures can be used to tell random from spin-glass trees, but only one measure can

distinguish between different spin-glass trees.

In the next section, a brief overview of the Ising p-spin model and energy landscapes

is given. Section 3 then reviews the notion of barrier trees. In section 4, phylogenetic

trees and several tree shape statistics used to study them are discussed. In particular,

we point out that the subtree that connects two leaves in a barrier tree corresponds

to the evolutionary path of minimum fitness cost, in contrast with the traditional

phylogenetic trees for which the subtrees are determined by the similarity between the

leaves, regardless of the barrier height between them. The results of applying these

measures to barrier trees of p-spin energy landscapes are presented in section 5. The

main conclusions are then summarized in the final section of the paper.

2. Energy landscapes of p-spin models

Consider a system of N Ising spins s = (s1, . . . , sN) where s ∈ {−1,+1}, with the

following energy function

Hp(s) = −
∑

1≤i1<i2...<ip≤N

Ji1i2...ipsi1si2 . . . sip. (1)

Here, 1 ≤ p ≤ N and the Ji1i2...ip are i.i.d. random variables from a Gaussian distribution

with mean 0 and variance p!/(2N p−1). Thus, each of the 2N possible spin configurations

is assigned an energy value that is completely specified by the (magnetic) interactions

within all possible subsets of p spins. This spin glass is known as the p-spin model

[25]. The limit p → ∞ reduces to the random energy model (REM) where each spin

configuration s gets an independent random energy value from a Gaussian distribution

of mean 0 and variance N [25]. Another important limiting case is p = 2, which

corresponds to the Sherrington-Kirkpatrick (SK) model [26].

We call two spin configurations s and t neighbors if they differ in only one of the

N spins, i.e., when
∑N

i=1 |si − ti| = 2. In other words, neighboring configurations can

be turned into each other by a single spin flip. When p is small, neighboring spin

configurations will have highly correlated energy values, since the one spin si that is

different between the two configurations only influences a small number of the possible

subsets of p spins. When p increases, the energy values of neighboring spin configurations

will become less correlated, becoming completely uncorrelated in the limit p→ ∞.

The energy landscape of a p-spin model consists of the configuration space V of the

2N possible spin configurations, with the single spin flip neighborhood relation imposed

on it, and where the energy value Hp(s) of each spin configuration s is considered to

be its “height”. This gives rise to the intuitive image of a more or less mountainous

landscape with peaks, valleys, and saddle points. A “walk” on this landscape consists of

moving from one neighboring spin configuration to another, climbing up a peak or going

down a valley, or perhaps just moving around randomly. A local search algorithm such

as simulated annealing can be seen as performing such a walk, in search of the lowest
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Figure 1. Barrier tree for N = 10 and p = 2. The local minima are labeled 1 to 10,

and the height of the barriers is shown along the branches. The actual energy values

can be read from the scale on the left.

valley. In addition, p-spin landscapes have been used to model evolutionary processes

(see, e.g., [27, 28, 29]) since they form a class of tunably rugged landscapes similar to

Kauffman’s Nk-model [3]. In this context, evolution is described as an “adaptive” walk

on the energy landscape.

3. Barrier trees

A local minimum in a p-spin energy landscape is simply a spin configuration s that has

a lower energy than all of its neighbors. A path ~pst between two configurations s and t is

a sequence of neighboring configurations, starting at s and ending at t. In other words,

it represents a series of single spin flips that transforms configuration s into t. Note

that there exist multiple paths between any pair of configurations s and t. A saddle

point between two local minima s and t is then defined as the minimum from the set

of maximum energy values along each possible path ~pst between s and t; see e.g. [8, 9].

So, the energy value E[s, t] of this saddle point is

E[s, t] = min
~pst

{

max
z∈~pst

{Hp(z)}

}

. (2)

The barrier B(s) of a local minimum s is defined as the height of the lowest saddle point

that connects s with a local minimum t of lower energy,

B(s) = min
t

{E[s, t] −Hp(s)|Hp(t) < Hp(s)} . (3)

The information about the energy values of a landscape’s local minima and the barriers

that connect these local minima can be represented by a barrier tree. In such a tree,
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the leaves of the tree represent the local minima, and the internal nodes represent the

barriers, with branches between local minima and the barriers that connect them. Figure

1 shows an example of a barrier tree for an N = 10 and p = 2 p-spin landscape. There

are 10 local minima in this landscape (labeled 1 to 10 in the tree), with 9 saddle points

(the internal nodes). The length of each branch in the tree indicates the height of the

corresponding barrier (this value is shown along the branch).

The algorithm for constructing these barrier trees is presented in [13, 17]. It is

implemented in the barriers program‖, which constructs the tree from a sorted list

of energy values of all spin configurations in the landscape. The program barriers is

used here to generate barrier trees of p-spin landscapes, see also [15, 16] for applications

to spin glass problems.

4. Phylogenetic trees

Phylogenetic trees are often used to study the historical relations within or between

groups of biological species; see e.g. [19]. The currently existing species (or subspecies)

form the leaves of the tree, and two related species are linked through their last common

ancestor, which forms an internal node in the tree. The length of the branch between a

species and its ancestor indicates how long ago the speciation event occurred that led to

the current species. “Dead-ends” in this tree represent extinction events. So, the shape

of a phylogenetic tree contains information about patterns of speciation and extinction

(and possibly about the rates of these occurrences), and thus tells us something about

the evolution of different species.

The traditional approaches to reconstruct or infer a phylogenetic tree given the

extant species (i.e., the leaves) are based on sequence similarity, i.e., configurational

overlap only, which can be justified by the (usually implicit) assumptions of a flat

fitness landscape and a diffusive behavior in sequence space [19]. However, it seems

intuitive that, regardless of the similarity between two sequences, if the fitness costs of

all possible evolutionary paths connecting them are high, they must be put far apart in

the phylogenetic tree. In the barrier tree approach both similarity and fitness cost are

taken into account to yield the evolutionary path of minimum fitness cost connecting

two species. Thus it may be viewed as a generalization of the maximum parsimony

principle to rugged fitness landscapes. We recall that maximum parsimony chooses the

tree (or trees) that require the fewest evolutionary changes (spin flips, in the present

context). In figure 2 we give an example in which the distance-based tree and barrier

tree have different topologies.

Various methods have been proposed to analyze phylogenetic trees. Here, we

consider five statistics that were used in [22] to measure tree symmetry and balance.

The trees are assumed to be binary trees with n leaves (or species) and thus n − 1

internal nodes, with the root being the last common ancestor of all n species. Let d(i, j)

be the graph-theoretical distance between two nodes of the tree, i.e., the number of

‖ The source code is available at http://www.tbi.univie.ac.at/∼ivo/RNA/Barriers/.
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Figure 2. The tree obtained from the minimum fitness paths, shown by thin lines

with the saddle points indicated by black dots and the leaves by white dots, does not

necessarily coincide with the trees obtained from clustering methods that are based on

sequence similarity, shown here with thick lines. The darker regions indicate higher

fitness configurations.

edges along the path that connects them. Furthermore, we denote the root of the tree

by ∅. The height of a leaf l is hl = d(∅, l). Equivalently, hl is the number of internal

nodes between leaf l and the root ∅ (inclusive). For each interior node i we have two

subtrees with ri and si leaves, respectively. We assume ri ≥ si. The subtree-height of

an interior node i is mi = maxl∈Ti
d(i, l) where the maximum is taken over all leaves l

in the subtree Ti below i, i.e., the subtree of which i is the root.

With this notation we may define the following five characteristic values for the

shape of a binary rooted tree:

(i) H = 1
n

∑n

l=1 hl is the average height of a leaf in the tree¶.

(ii) σH =
√

1
n

∑n

l=1 (hl −H)2, is the standard deviation of the leaf height.

(iii) C = 2
n(n−3)+2

∑n−1
i=1 (ri − si) is a measure for the imbalance of the tree. Up to

normalization it is the same as Colless’s imbalance measure [20]. A closely related

measure of this type, which we will not use here, essentially amounts to averaging

(ri − si)/(ri + si) instead, see e.g. [23, 24].

(iv) B1 =
∑

i6=∅
1/mi is the average inverse subtree height, where the sum is taken over

all n− 2 internal nodes i excluding the root ∅.

(v) B2 =
∑n

l=1 2−hlhl is an alternatively weighted average leaf-height.

In [22] the variance σ2
H was considered, but here we will use the standard deviation.

Both H and σH have larger values for more asymmetric trees. In [22] it is shown that

¶ In [22] this quantity is denoted by N̄ .
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the expected value of 〈H〉 = 2
∑n

k=2 1/k for random trees with n leaves. Values of H

larger than this indicate trees more asymmetric than a random tree. For a completely

symmetric tree, σH = 0, while it has a maximum value for a completely asymmetric

tree.

The imbalance measure C examines the internal nodes of a tree. It “weighs” the

subtrees branching out from each internal node by counting and comparing the number

of leaves in each subtree. These weight differences are then averaged and normalized

over all internal nodes of the tree. The value of C increases from 0 for a completely

symmetric tree to 1 for a completely asymmetric tree. The quantity B1 looks at the

longest possible path mi from each internal node i to any of the leaves in its subtree.

The statistic B2 is based on an index of information content. For highly asymmetric

trees B2 will quickly converge to a value of 2. For a completely symmetric tree, is will

be equal to log2(n), where n is the number of leaves in the tree. Both B1 and B2 have

smaller values for increasingly asymmetric trees.

5. Results

Here, we apply the statistics presented in the previous section to barrier trees that result

from p-spin energy landscapes. The parameter values used are N = 10, 12, 15, 18, 20,

and 22, and p = 2, 3, and ∞ (REM). For each combination of N and p, 100 independent

landscapes were generated randomly, and the barrier trees for each of these landscapes

were constructed. The tree statistics reported here are the averages of the 100 trees for

each parameter combination.

Three of the statistics (H, σH , and B1) are exponential in N , the number of spins.

For example, the relation between H and N is H = 0.43 exp(0.20N) for p = 2. The

data for H (symbols) and the exponential fits (solid lines) are shown in a semi-log plot

in figure 3a for the different values of p. The data for σH and B1 (not shown) are

similar, but with different slopes. It turns out that the average number of leaves, n, in

the barrier trees is also exponential in the number of spins N , with the same slope as

for H. Analytical values for this exponent, defined as limN→∞ lnn/N , for the p-spin

models are derived e.g. in [6] (see also [30]). The numerical values from the simulations

reported here are compiled in table 1.

The imbalance C is sub-linear in N , as shown in figure 3b, and eventually converges

to 1 for large N (so the logarithm fitting cannot remain valid for all N). However, the

value of B2 very quickly converges to 2 with increasing N , as shown in Figure 3c, and

thus it does not seem to be a very useful measure to distinguish the trees. It should be

noted at this point that the number n of leaves, i.e., local minima, depends not only on

N but also on the type of the landscape. We will therefore consider tree measures as a

function of n rather than N below. In fact, n is the natural parameter in the analysis

of phylogenetic trees, obtained by simply counting the number of leaves in the tree.

The data presented so far explicitly assumed that we already know the values of

N and p of the energy landscapes. Suppose we do not know these values, but all we
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Figure 3. Size dependence of tree statistics as a function of the number of spins N

for three classes of landscapes: p-spin models with p = 2 (•) and p = 3 (�), and the

REM (�). Each data point is an average over 100 independent landscapes. The solid

line is an exponential fit to the data for the average leaf height H in (a). The solid

lines in (b) are fits to C = a+ b lnN . We do not have a justification for this particular

functional form. The values of B2 quickly converge to the asymptotic value of 2 in (c),

where the solid lines are simply guides to the eye.

have are several instances (say, 100) of barrier trees that were derived from some p-spin

landscape. Is it possible to say something about the underlying landscape from just the

barrier tree? (The problem faced by the phylogeneticists is even harder since they have

access to a single tree of arbitrary size only [22].)

In figure 4a, the values of H of all landscapes are lumped together and plotted

against n, the (average) number of leaves in the tree, in a log-log plot. This results in a

straight line, indicating a power-law behavior. In fact, the slope in this case is 1, since

the slopes of H and n when plotted against N are equal (see table 1). The plots for σH

and B1 (not shown) are similar, but with slopes slightly larger and slightly smaller than

1, respectively.

In this case, it is not possible to distinguish the trees that result from, e.g., the

p = 2 p = 3 REM

H 0.1999 0.3157 0.6340

σH 0.2485 0.3381 0.6374

B1 0.1070 0.1832 0.6040

n 0.1951 0.2945 0.6306

Table 1. The slopes of the exponential fits for the statistics H , σH , B1, and n, for

each value of p.
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Figure 4. (a) The values of H and (b) the values of C plotted against n, the average

number of leaves in the tree. We find that H does not depend on the p for different

p-spin models. On the other hand, the values of C show a significant dependence on

the details of the landscape. The fit shown is C = a + b ln ln n and the convention is

• p = 2, � p = 3, and � REM.

p = 2 and the p = 3 landscapes: they all fall on the same line. Since B2 converges

to a fixed value for larger trees, it is not very useful for distinguishing different trees

either. However, when the imbalance statistic C is plotted against n, there is a clear

distinction, as can be seen in figure 4b. Plotting C against ln lnn (n is on a double

logarithmic scale), the data can be fitted by straight lines with different slopes for the

different values of p. So, C clearly can be used as a statistic to distinguish and classify

different barrier trees, and thus their underlying landscapes.

Next we address the question: How different are barrier trees of p-spin landscapes

from random trees? To answer it, we generated random binary trees with n = 10i leaves

for i = 1, 2, 3, 4, and 5. For each value of i, 100 random trees were generated and the

same five statistics were calculated. The random trees were generated as follows. First,

create n nodes (the leaves) and put them in a set A. Next, remove two random nodes

x and y from A, create a new node z and make x and y its two children, and put z in

the set A. Repeat this procedure until there is only one node left in A, which will be

the root of the tree.

Figure 5a shows the data for H against n (the number of leaves) in a semi-log plot

for random trees. Clearly, H depends logarithmically on n. The results for σH and

B2 (not shown) are similar, but with different slopes. Figure 5b shows the data for C

against n on a log-log plot. The fit to the data is a power law with exponent −0.81.

The results for B1 (not shown) are similar but with a (positive) exponent very close to

1.
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Figure 5. Average leaf-height H and imbalance measure C as a function of tree-size

n for random trees.

The results for random trees are quite different from those for the barriers trees of

p-spin landscapes. In the p-spin case, H and σH depend exponentially on n, whereas for

random trees this dependence is logarithmic. For C, the reverse is true. Moreover, for

random trees, C decreases with increasing n, while it increases for p-spin barrier trees.

For B1, in both cases the dependence is exponential, but with different exponents.

Finally, for B2 both cases are completely different, with a (downward) convergence to

the value B2 = 2 for p-spin trees, and a logarithmic increase for random trees. Clearly,

barrier trees from p-spin landscapes are much more asymmetric than random trees. A

similar, though qualitative, conclusion was reached by considering the size-distribution

of minima connected through a high-energy (i.e., closer to the root) saddle-point [16].

Finally, we investigate the structure of subtrees of barrier trees. Instead of

calculating the tree statistics on the entire tree, they are calculated on subtrees starting

at some internal node of the tree. This way, it can be determined whether the tree has a

self-similar structure or not (i.e., whether subtrees look similar to the tree as a whole).

Three different instances of an N = 20, p = 3 p-spin landscape were taken and their

barrier trees were constructed. Next, the five statistics were calculated on the subtrees

starting from each of the n− 1 internal nodes of these trees (a binary tree with n leaves

has n − 1 internal nodes). Each internal node in a barrier tree represents a saddle

point in the underlying energy landscape, and the internal nodes are characterized by

the energy values of their corresponding saddle points. Obviously, nodes higher up in

the tree (closer to the root) will have higher energy values than nodes lower down (or

deeper) in the tree (closer to the leaves).

Figure 6a shows the results for H. The statistics for the subtrees are plotted against
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Figure 6. (a) H and (b) C against the energy of the internal node (saddle point) for

three different landscapes for N = 20 and p = 3.

the energy value of the internal node that forms the root of the subtree. The data for

the three different landscapes can be distinguished from the slightly different range in

energy values, but the overall shape is the same for all three. Clearly, the values for H

depend strongly on the energy value of the root of the subtree. The results for σH and

B1 (not shown) are similar. Figure 6b shows the results for the statistic C. We find that

subtrees with a high-energy root are extremely unbalanced. The same is true for the

subtrees with very few leaves that we find near the global optimum. In the intermediate

regime we find nodes with very balanced subtrees. For B2, the values vary much more

widely, but with most of the points falling on or near the B2 = 2 line. The overall

results for p = 2 and for the REM are very similar.

¿From these plots it is clear that the structure of subtrees does not reflect the

structure of the tree as a whole. Instead, there is a rather well-defined dependence

on the structure of a subtree and its depth in the tree, i.e., the energy value of the

internal node that forms its root. The landscape structure around local minima and

saddle points with a relatively high energy value is therefore significantly different from

the structure around local minima and saddle points with a low energy. Since this

structure is correlated with the energy value of the local minima and saddle points, this

information could possibly be used to guide local search algorithms.

6. Conclusions

One of the main outcomes of the mean-field (replica) theory of spin glasses was the

prediction that in the low temperature phase, the phase space is broken into infinitely

many pure states or valleys sa [1]. Searching for universal, in the sense of model
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independent, features of the distribution of valleys is one of the main goals of the theory

[31, 32]. However, the replica theory provides a characterization of the valley structure

for nonzero temperature only: at T = 0 the overlap between any two pure states,

say sa and sb, become unity and all fine details of the hierarchy of valleys are lost.

To investigate the valley structure in this regime one has then to resort either to the

annealed estimates of the correlations between local minima in the thermodynamic limit

[6, 7] or to the exact numerical calculation of the barrier trees for relatively small system

sizes [8, 9, 16]. As pointed out before, the latter seems a more convenient approach for

the purpose of classifying families of landscapes or spin-glass models. Furthermore, the

barrier tree also contains information about the structure of subspaces in the landscape

around local minima and saddle points, since the structure and symmetry of the subtrees

are clearly correlated with their depth in the tree (or the energy level of the node that

forms the root of the subtree). This information can probably be used to guide local

search algorithms such as simulated annealing in their search for the lowest (or global)

minimum.

In searching for efficient measures to characterize landscapes, it was recently shown

that the size-frequency distribution of the number of leaves w connected by a saddle-

point s is too robust to be a useful measure, as it yields the same power-law ψ(w) ∼ w−2

for both p-spin barrier trees and random trees [16]. In this contribution, we improve

considerably the landscape systematics by considering five measures proposed originally

to characterize the shape of phylogenetic trees [22]. Three of the measures used, namely,

H, σH and B1 were proved independent of the underlying spin-glass landscape when

plotted against the number of leaves n, as evidenced by the “data collapse” illustrated

in figure 4a. Only one of the measures, the imbalance C, can be used to differentiate

between, e.g., p = 2-type and p = 3-type energy landscapes. It is remarkable, however,

that all five measures yield completely different results for random trees, owing to a

different scaling with n. In particular, barrier trees generated from energy landscapes

of p-spin models appear to be much more asymmetric than random trees, and the

asymmetry increases with increasing N (the number of spins) or n (the number of

leaves). It remains a challenge to find (if it exists) a disordered spin system whose

associated barrier trees exhibit balance and symmetry properties akin to those of the

random trees or, perhaps an easier task, that violate the scaling law shown in figure 4a.
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