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Abstract: Q-learning as well as other learning paradigms depend strongly on the representa-

tion of the underlying state space. As a special case of the hidden state problem we investigate

the e�ect of a self-organizing discretization of the state space in a simple control problem.

We apply the neural gas algorithm with adaptation of learning rate and neighborhood range

to a simulated cart-pole problem. The learning parameters are determined by the ambiguity

of successful actions inside each cell.

1 Introduction

Q-learning [1] is an algorithm for dynamic programming that represents an e�cient imple-

mentation of the reinforcement learning paradigm. It is based on an estimation of future

reinforcement conditioned on the previously acquired policy of assigning actions to the states

of a controlled system. One may distinguish two ways of implementing Q-learning, either by

means of a state-action look-up table or by approximating the Q-function, e.g. using multi-

layered neural nets [2]. For continuous state spaces the look-up table refers to a quantization

of the states of the system given by either prior knowledge or an adaptive algorithm. Our

paper is concerned with the latter approach and tries to reveal and to resolve some of its

pitfalls. These are caused by the interference of two types of learning: The adaptation of the

partitioner and the reinforcement learning of the controller. The situation is schematically

represented in Fig. 1. The determination of quantized states, which are internal states in the

full control problem, represents an instance of the hidden state problem (cf. [3]). The rein-

forcement learning in turn relies on the hidden states that comprise cells of the state space

partition.

For discrete actions an ideal partition of the (continuous) state space consists of domains

with each having a unique optimal action for all states belonging to that domain. Hence, an

optimal partition is de�ned by means of the policy function assigning states to actions. If the

partitioning is done by means of a learning vector quantizer, cells are de�ned by reference

vectors in the input space together with a nearest neighbor assignment of input states to

reference vectors. The learned distribution of the reference vectors, however, is determined

usually by statistical properties of the inputs to the vector quantizer [4], the density of which

corresponds to the frequency by which the states of the system are encountered. In particular,

one obtains a high resolution (�ne grained partitions) around the stable states of the controlled

system. In general, the partition obtained in this way will seldom be optimal in the above

sense, cf. Fig. 2. The present paper is devoted to introducing a convenient algorithm which

is able of on-line self-learning the optimal partitions.

Here, the learning rule for the vector quantizer is based on the neural gas algorithm [5]

which allows for cooperativity between the neurons (categories) so that it shares the noise
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�ltering properties of Kohonen's self-organizing feature maps without relying on a prespec-

i�ed topology. This algorithm appeared to be well suited for representing data from high

dimensional input spaces. The reinforcement learning for the policy function of the controller

is implemented by the standard Q-learning algorithm introduced by Watkins [1]. The two

learning rules are introduced in the next section, the modi�cation leading to optimized par-

titioning being given in section 3. The fourth section is devoted to a numerical study of the

controller, where for reasons of comparability we have chosen the pole-and-cart problem with

the standard set of parameters (cf. e.g. [6]). Several further improvements of partitioner-

controller systems, in particular avoiding the problem of destabilizing feed-back loops will be

discussed briey in the �nal section.

Figure 1: Scheme of the learning problem combining controller and partitioner learning

2 Controller and partitioner learning

Q-learning: We consider a general control task of the following type. Suppose, a system is

characterized by the state vector x 2 X. Using an appropriate discretization of the generally

continuous X the states can be represented by a �nite number of categories j(t). x is to be

controlled towards and stabilized inside a target region using a sequence of control actions

fa(t)g, t = 0; 1; . . .. The set of possible actions is assumed to be �nite. The Q-learning

algorithms determines optimal action sequences fa(t)g in correspondence to the categories

fj(t)g based on reinforcement signals r(t). Optimal actions a(t) are chosen according to

a(t) = argmax Q(j(t); a(t)) (1)

which together wit the mapping implicitly de�nes the policy function a = �(x). Q(j(t); a(t))

which measures the value of a state-action pair is adjusted according to

�Q (j(t); a(t)) = � (r(t+ 1) + V (j(t + 1))�Q(j(t); a(t))) (2)

where

V (j(t + 1)) = max
a
Q(j(t + 1); a) (3)

The reinforcement signal r(t) assumes, e.g. an elevated value if the state has reached the target.

It is possible to reward states that are close to the target or to use negative reinforcement when

the system has reached a `failure' state. The example in section 4 relies solely on negative

reinforcement.



Adaptive partitioning: Both the control algorithm and the representation of the system's

state should be adaptive if (i) the environment changes in time, (ii) no su�cient prior knowl-

edge is available, or (iii) the distribution of state depends intrinsically on the behavior of the

system itself. It appears, hence, to be natural to learn the partitions for the Q-algorithm.

Unsupervised learning algorithms known from neural networks are well suited for this pur-

pose, where the units (neurons) of the net are associated with the categories. In order to

avoid drawbacks of a prescribed topology of reference units we favored the neural gas algo-

rithm [5] rather than a feature map [7]. Whereas the latter is de�nitely faster in learning the

number of units per dimension has to be speci�ed in advance A particularly useful property

consists in the determination of the neighborhood by the order of the distances from a given

input datum such that correlations among neural units can be controlled speci�cally in a

dimension-independent manner. The basic update rule [5] for category vectors wj represent-

ing a prototype state of category j reads

�wj = ��h (kj(x;w)) (wj � x): (4)

Topological relations between an input datum and the set of reference vectorsw is introduced

by the function h depending on the rank k of the distance between wj and x among all such

distances.

h� (kj(x;w)) = exp(�kj(x;w)=�j): (5)

In particular, for � ! 0 only the unit closest to x will be inuenced by the update, whereas

for larger � other neurons, too, are attracted towards x. In our formulation � may vary across

units. The resulting asymmetry of interaction allows to transport neurons to regions which

are only poorly represented.

Figure 2: Illustrative example of a three-cell partition. First, optimized with respect to

reconstruction error being common in self-organizing maps or, next, optimized with respect

to disambiguity of the partition.

3 Partitioning adapted to Q-learning

The maximal value of the Q-function at a given unit decides which action is to be executed

at the next time step. In the ideal partitioning de�ned in the introduction, there is only one

optimal action in each domain so that in the converged state the Q-function is stationary

under the learning rule 2. Hence, the uctuations of Q in each partition of the state space

may serve as an indicator for the reliability of this partition. When monitoring Q-values it

becomes obvious which domains having already decided for an action. Otherwise, the unit



`requests for assistance' to its neighbors by means of an increased �-value (cf. Eq. 5). In the

case of two possible actions denoted by a(t) = �1 we de�ne the �rmness f 2 f0; 1g of a unit

i as

fi = kha(t)it;j(t)=ik (6)

The average h. . .i is a moving average over those time steps where unit i was activated and

acting by the greedy strategy (cf. below). Other de�nitions of the �rmness are possible. In

particular, in the case of more than two actions instead of (6) entropy measures based on

the probability of success for each action are suggestive. The choice (6, 7) on the other

hand is not only distinguished by its simplicity, but has also the advantage of allowing for

small deviations from maximal �rmness which are unavoidable when using a nearest neighbor

classi�er to approximate the smooth boundaries in the control problem. This is due to a

vanishing derivative of � with respect to f at f = 1.

A neuron cannot be �rm for the `wrong' action as this is de�ned in terms of theQ-function.

On the other hand, the maximum of the Q-function at unit j will approach the appropriate

value as soon as the domain of j is such that a unique correct action exists. For the problem

of rarely visited units that may not have achieved a �rm state cf. Discussion on controlling

the resolution properties of a partitioner. Now, � can be de�ned using the length of the mean

action vector, in the present case simply

�i / (1� fi)
2 (7)

such that �rm units will not disturb their neighbors whereas non�rm units will e�ectively

attract �rm units such that their domain shrinks and reliable control becomes possible.

4 The cart-pole example

The principles described above have been exempli�ed by the standard task of balancing a

pole. (cf. [6]. Details of the problem are given in the Appendix. (For consistency we will call

here the set of values of the four degrees of freedom of the system a state space rather than a

phase space). Upon receiving a four dimensional input vector the partitioner returns the best-

matching unit as the category to which the input vector belongs. The category is submitted

to the Q-learning controller together with a reinforcement signal r(t) as the only information

the controller receives for advice. r = �1 if a failure occurred and r = 0 otherwise. The

number of categories (units) was 162 (compare [6]), two di�erent actions have been allowed.

We want to remark that by exploiting symmetries of the model a solution could be found

with much less neurons.

The Q-learning of control actions contains a simple form of explorational behavior by

choosing actions according to (1) with probability c and randomly otherwise. c is linearly in-

creased reaching unity at the end of the learning phase of length Tlearn. During the subsequent

test period (Ttest = 0:5Tlearn) only the greedy policy, i.e. c = 1, is used, but changes in the

Q-function are still allowed. The controller is required to achieve control within a maximal

time range T = Tlearn + Ttest A trial of T time steps counts as a successful one if during at

least 10000 time steps in series no failure occurred.

Results are presented in the �gures. Fig. 3 demonstrates the speed up of the learning

time by a factor of more than 2 due to an appropriate assignment of domains. Because of the

success-independent exploration strategy used in all simulations also higher learning times

(T � 500000) did not yield success in each trial. The maximal success rates were 0.68 and 0.8

for the �xed partition and the adaptive partition controller, resp. The �rmness depicted in

Fig. 4 reects the mean value with respect to active units. The failure of a trial may, however,

be caused by the existence undecided units which are rarely visited and, hence, do not have

much inuence on the average of the �rmness.
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Figure 3: Number of successes in 100 trails at di�erent values of the total learning time for

the adaptive partitioner (full line) and a �xed box partition (dashed line).
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Figure 4: Time course of the �rmness averaged over all units for a typical learning trial.

5 Discussion

The proposed learning algorithm for optimized partitioning of the state space of a controlled

system rests on tuning the neighborhood width of a neural gas partitioner according to the

diversity of the actions proposed by the Q-learner. Also the learning rate of the adaptive

partioner has been modi�ed such that it deceases when the partition improves. The computer

simulations of the generic cart-pole problem clearly demonstrate that this new algorithm

encreases both accuracy and speed of learning of the controller.

The resulting partition deviates from the box partition by a better adaptation to the

dynamics of the problem: If position and momentum have opposite signs actually no control

action is necessary. Thus, either of the two available actions is critical. This is taken into

account by the adaptive partition by a �ner resolution in the diagonal region of the state

space.

Finally, it should be mentioned that the feedback of output informations to the learning

dynamics of the partitioner may well lead to instabilities in early learning. However, these can

be avoided by compensating the shift of the reference vectors by conveniently reevaluating

the values of the Q-function a�ected. An appropriate algorithm has shown in preliminary

computer simulations to not only avoid the instabilities but also to further increase the speed

of Q-learning. Detailed results will for lack of space be presented elsewhere.
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Appendix: Details of the cart-pole problem

The task (compare [6]) consists in balancing a pole (inverted pendulum) hinged to a cart by

applying a binary force F = �10N to the cart. The motion of the cart is con�ned to a �xed

length track such that the task is successfully solved if both the pole remains upright and

the cart avoids the ends of the track. The pole is described by the deviation from its vertical

position � and the angular momentum _�. The cart position and velocity is denoted by x and

_x, resp. The vector v = (x; _x; �; _�) serves as input to the partitioner. The four dimensional

system is governed by the following equations:

�� =
mg sin ��cos �(F+mpl _�

2 sin �)

(4=3)ml�mpl cos2 �
; �x = 1

m

�
F +mpl( _� sin � � �� cos �)

�

Parameter values are: length of track �2:4m < x < 2:4m, maximal deviation �0:21 < � <

0:21, mass of cart plus pole m = 1:1kg, mass of pole mp = 0:1kg, gravitational acceleration

g = 9:81m=s2, e�ective length of pole l = 0:5m. The equations of motion were integrated

using the Euler method with time step �t = 0:02s.


