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Visualization of Barrier Tree Sequences

Christian Heine, Gerik Scheuermann, Christoph Flamm, Ivo L. Hofacker, and Peter F. Stadler

Abstract—Dynamical models that explain the formation of spatial structures of RNA molecules have reached a complexity that
requires novel visualization methods that help to analyze the validity of these models. Here, we focus on the visualization of so-called
folding landscapes of a growing RNA molecule. Folding landscapes describe the energy of a molecule as a function of its spatial
configuration; thus they are huge and high dimensional. Their most salient features, however, are encapsulated by their so-called
barrier tree that reflects the local minima and their connecting saddle points. For each length of the growing RNA chain there exists a
folding landscape. We visualize the sequence of folding landscapes by an animation of the corresponding barrier trees. To generate
the animation, we adapt the foresight layout with tolerance algorithm for general dynamic graph layout problems. Since it is very
general, we give a detailed description of each phase: constructing a supergraph for the trees, layout of that supergraph using a
modified DOT algorithm, and presentation techniques for the final animation.

Index Terms—Graph drawing, dynamic graph, RNA folding, energy landscape, fitness landscape, barrier tree

1 INTRODUCTION
1.1 Biological Background

Ribonucleic acid (RNA) is a linear biopolymer, i.e. a chain of cova-
lently connected units (nucleotides) of which there are four types: ade-
nine (A), guanine (G), cytosine (C), and uracil (U). RNA molecules
play an important role in many biological contexts, e.g. protein syn-
thesis. The biological function of an RNA molecule is determined pre-
dominantly by its spatial structure which in turn is determined by the
sequence of nucleotides. When an RNA molecule is produced in the
cell, it folds back to form double helical regions consisting of paired
nucleotides. The list of helices or (equivalently) of base pairs is known
as the secondary structure of the RNA molecule. Since helices stabi-
lize the structure while the intervening unpaired loops are destabiliz-
ing, each secondary structure can be assigned a free energy equivalent
to the energy released when the molecule folds. To a large extent, the
secondary structure already determines the function of RNA.

Various methods have been proposed to explain and predict the
structures of RNA molecules. Typically, one considers the structure
with the lowest free energy, i.e. the one for which the folding process
that starts from the completely unfolded state releases the maximum
amount of energy. This structure is the most stable one, and according
to the laws of statistical mechanics, the one that is most frequently at-
tained in thermodynamic equilibrium. The folding process itself can,
however, take a long time so that the equilibrium state that will be
reached after an infinite waiting time may not be biologically relevant.
Instead, the folding process may pause in metastable structures from
which it is hard to escape due to high energy barriers. The folding
process of an RNA molecule can be modeled as a Markov process
whose states are the individual secondary structures [3]. Transitions
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are allowed only between “neighboring configurations”, i.e. those that
differ by only one base pair [9], and transition rates are proportional to
exp(AE /RT), where AE is the difference in energy, T is the ambient
temperature, and R is a constant. In practice, however, the transition
matrix is much too large to solve the resulting master equation directly.
A refined model transforms the configuration space into a large
graph, whose vertices are secondary structures and whose edges con-
nect neighboring structures. The neighbor graph along with the energy
specific to each configuration can be imagined as a discrete energy
landscape. A folding or refolding process can then be described by
a path in the graph or a walk in the energy landscape. For each such
path there exists one structure of maximal free energy, the maximum of
the path. The barrier between two configurations is the smallest maxi-
mum of all paths between the two configurations. If a structure refolds,
it has to overcome at least this energy barrier. These barriers partition
the graph into “basins” that are centered around local energy minima
(secondary structures of which all neighbors are less stable). An ap-
proximate model is now obtained by considering the basins as effective
states of the RNA molecules. Transition rates between basins can be
derived from the more detailed model under the assumption that the
folding process is nearly equilibrated locally within each basin [25].

Fig. 1. A very simple landscape and barrier tree
In contrast to normal trees, each vertex of a barrier is drawn at a height that
reflects the free energy of the folding configuration it represents. To determine
the energy barrier between two local minima, one has to find the barrier tree
vertex that has both leaves representing the local minima as descendants and
the greatest topological distance to the root of the tree.

The relevant information can now be stored in the so-called barrier
tree T of the landscape. The leaves of T' correspond to the local min-
ima of the energy landscape together with their basins of attraction,
while inner vertices represent the barriers (also called saddle-points)
between the basins. Fig. 1 shows an example of a barrier tree for a
very simple landscape. This example is just for illustrative purposes;
we consider mainly landscapes where individual points do have a high
and varying number of neighbors, making the landscape a high dimen-
sional object. Barrier trees are constructed by successively “flooding”
the basins of the landscape. A barrier is found at the point where the
lakes of two basins would join. The two joined basins are considered
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to be one, and the “flooding” is continued. See Flamm et al. [10] for a
detailed description.

In reality, however, RNA molecules are not “born” as a whole.
Rather, they are “transcribed” nucleotide by nucleotide from their
DNA template, so that the molecule is still growing while it already
starts to fold [19]. The structures that are formed are thus dependent
upon the relative rates of folding and transcription. Similar effects are
observed when an RNA molecule travels through a narrow pore, where
it must unfold on one side and refolding on the other [15]. Again the
kinetics of folding is coupled to the speed with which the molecule
is pulled through the pore. Instead of single static energy landscape,
we thus have to deal with a situation where the energy landscape, and
hence the rules of folding, changes with each step of the second dy-
namical process. Since the latter proceeds in small steps, it only causes
moderate changes in the energy landscape. Thus there is a natural cor-
respondence between a local energy minimum x before and a (unique)
local minimum X after a step of the second dynamics: Structure x is
modified to some structure x* i.e. by appending a single unpaired nu-
cleotide. Then x* relaxes to the local minimum x’ to whose basin it
belongs to. Note that multiple local minima can map to the same local
minimum in the next step, and that local minima might arise that are
not mapped from any local minimum of the previous step.

From the biophysical point of view, the problem is thus to under-
stand the dynamics of folding combined with another process such as
transcription of pore traversal. As in the static case, this can be done by
approximating the folding energy landscape at each step by its barrier
tree. The second dynamics is then represented by transitions between
corresponding local minima. While the folding process in the static
case is relatively easily interpreted as a movement on the barrier tree,
we now have to consider a movement on a series of barrier trees whose
vertices are connected in a specific way.

In numerical simulations, one observes, that for some RNAs the
fraction of folding trajectories that reach the ground state of a certain
fully grown chain depends in a non-trivial way on the relative speed
of transcription. Both for very slow and very fast transcription the
molecule reaches the ground state quickly, while in an intermediate
regime most of the trajectories become trapped in a metastable, very
different, secondary structure. In order to understand this phenomenon
it is necessary to compare the trajectories in the barrier tree series and
to pinpoint the step(s) in which escape from local minima occurs at
the same time scales as chain elongation. The same type of questions
naturally arise in other settings where the folding energy changes, i.e.,
whenever the temperature or salt concentration changes.

1.2 Visualization Problem

Without an appropriate visualization tool it is virtually impossible to
find the time-steps and transition at which time-scale difference have a
drastic effect, as there is little or no a priori coherence between the lay-
outs of the individual barrier trees in a series. It is thus very tedious to
actually follow a trajectory through a series and to determine the likely
transitions. The mapping of local minima, however provides informa-
tion that, as we shall see, can be utilized to enhance the coherence of
adjacent trees in a series.

The barrier trees thus share common information that should be
presented accordingly, i.e. it should not attract more attention than the
parts that differ. Instead of visualizing a sequence of barrier trees that
have some redundancy, one can also say that there is just one barrier
tree that changes with time in a way that the barrier trees of the se-
quence are snapshots of the dynamic tree at certain points of time. In
this work, we will thus view this problem as a dynamic graph drawing
problem. As an abstraction, we define the problem as follows: Given a
sequence of barrier trees and leaf mappings, where leaves of one tree
are mapped on leaves of the following tree, determine the layout of all
trees such that in a presentation the mental map is retained.

2 RELATED WORK

Drawing a graph is the process of transforming topological properties
of the graph to geometric objects in a graphical representation. This
process is mostly determined by the generation of a layout for that

graph, that places vertices in a vector space and routes edges to con-
nect the vertices. The layout of a graph has properties that can be mea-
sured with certain cost functions, e.g., area of the layout, number of
edge crossings, distribution of vertices and edges, congruency of iso-
morphic structures, etc. To make visually pleasing drawings, esthetic
criteria have been defined. Such criteria often demand maximizing or
minimizing one of the cost functions. As not all esthetic criteria can
be obeyed simultaneously, a layout algorithm generally makes a trade-
off between them. The field of static graph layout creation has been
intensively studied in the past decades. There exist good overviews for
this topic ([4, 17, 24]).

The first attempts towards dynamic graph drawing were very spe-
cific. Moen [21] presented an algorithm that shows a part of an ordered
tree. Although the tree itself stays the same, the selected subset may
change through replacement of subtrees by leaves and vice versa. Co-
hen et al. [2] gave detailed algorithms and data structures for a number
of dynamic graph classes. These allow visualizing data structures like
AVL- Trees and adjusting the layout of a graph, if it is being edited or
browsed. Both approaches share a motivation: they reduce the com-
putation time of the layout by reusing information about the previous
layout. This has the side effect of making the layout of the changed
graph similar to the unchanged, but accumulation of many elementary
changes can result in an esthetically unpleasing drawing.

North [22] measures the quality of an algorithm to make good dy-
namic drawings based on incremental or dynamic stability, i.e. , the
property of an algorithm to produce very similar layouts for graphs
that differ only slightly. He applies his concepts to the drawing of dy-
namic directed acyclic graphs. Misue et al. [20] introduce the concept
of mental distance. It formally describes the difference of two lay-
outs and can be used to measure the perceived stability of a dynamic
graph layout. They define the esthetic criterion “preservation the men-
tal map” for any dynamic graph drawing problem, and refine it to three
models. In the orthogonal ordering the left-to-right, and up-down or-
der of vertices stays the same. Proximity relations are preserved, if the
relative distances of vertices and edges do not change. The topology is
preserved, if vertices and groups of vertices of one region stay in that
region. The mental distance of two layouts is the number of times or
the amount by which a rule is broken. Frishman and Tal [12] present
an algorithm that draws dynamic clustered general graphs using an in-
cremental force directed method. Their algorithm generally preserves
the mental map by reusing the earlier layout, but improves the layout
slightly, if a static graph drawing esthetic criteria is not met anymore.

If the layout process cannot be formulated to minimize the men-
tal distance between successive layouts, a local transition or morphing
of the layouts has to take place. Friedrich and Eades [11] describe a
method to make sure that the transition preserves the mental map. To
do that, an affine transformation that registers both layouts is deter-
mined and performed. Using a force-directed approach, vertices are
moved to their final positions while avoiding occlusions and other vi-
sual artifacts linear interpolation would bring forth. Fortunately, our
algorithm produces layouts that are stable enough not to require these
forms of transition.

Erten er al. [7] describe a method to layout general dynamic graphs
using a force-directed method. Vertices of the evolving graph that are
equivalent are connected by virtual springs that contract in the force-
directed method. As a result, vertices referring to the same instance
at different times are positioned closely together. This ensures a good
stability of the dynamic layout. We do not use this general approach,
because we feel, that the final animation should at least resemble the
look and feel of barrier trees.

Diehl and Gorg [5] propose a general scheme to layout dynamic
graphs when all graphs of the sequence are known prior to layout cre-
ation. This scheme is independent of the class of the graphs and the
layout algorithm used. Their Foresight Layout with Tolerance algo-
rithm makes a trade-off between static and dynamic graph drawing
esthetic criteria based on a tolerance parameter. In a first phase a su-
pergraph is constructed that contains all graphs of the sequence as sub-
graphs. Then the layout of this (static) supergraph is determined and
used as a blueprint for the layout of the subgraphs. The layout of the
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subgraphs can be further improved with respect to static graph draw-
ing esthetic criteria, but its mental distance may not differ by more than
the tolerance parameter from the blueprint layout. Presentation of the
sequence is done using morphing geometry information between the
single subgraphs. Gorg er al. [16] further improve the scheme with
the notion of the importance of a vertex or edge. This importance is
a measure for the number of times a vertex or edge is present in the
graph sequence and is used to improve the visual quality of the layouts.

A similar idea is presented by Gaertler and Wagner [13]. Instead
of an animation, a Z%D visualization, i.e. a 3D view of a stack of
static 2D layouts—each showing the graph at a certain point of time—is
generated. Brandes er al. [1] also use Z%D visualization to show a set
of similar metabolic pathways. They create the layouts of the acyclic
directed graphs representing the pathways using a layout of an union
of all graphs, and also determine the optimal ordering of layouts. Both
approaches share the notion of the supergraph, local adjustments like
in the Foresight Layout with Tolerance algorithm are not performed.
Dwyer and Schreiber [6] also use Z%D to visualize a set of similar
phylogenetic trees. Phylogenetic trees are very similar in structure
to barrier trees. In contrast to the other two approaches instead of a
supergraph only a minimal leaf ordering is determined. This neglects
the identification of equivalent inner vertices, which we consider an
important part of our trees.

In this work we adapted the Foresight Layout with Tolerance algo-
rithm. Since it is very general, we optimized each of the phases to
fit our dynamic barrier tree application. The supergraph we construct
from the barrier tree sequence will be a directed acyclic graph (DAG).
For the layout of this supergraph we implemented and modified the
DOT algorithm by Gansner et al. [14].

The layouts of the subgraphs that is generated from the supergraph
layout can also be used in a Z%D visualization. However, we found
this to be inappropriate, because the barrier tree sequences under con-
sideration were highly dynamic. In our datasets we observed, that the
tree at time ¢ does not have much in common with the tree at time # + 5.
A Z%D visualization would therefore exhibit much visual clutter. Also
the energy of a vertex, and thus its vertical position, can change be-
tween subgraphs. In a 2%D visualization one would have to indicate
such events with edges between slices, we found it more natural to in-
dicate that in an animation with a movement of the vertex. In general
we think that the animation of transitions between subgraph layouts
can be efficiently used to communicate the changes the barrier tree
topology to the user.

3 CONSTRUCTING THE SUPERGRAPH

Definitions In the following, G = (V, E) denotes a directed graph,
V the vertices and E C V x V the edges of G. In the edge e = (u,v)
the vertex v is called the head and u is called the tail of e. A directed
path in a graph G is a list of edges of G, where the head of each edge
in this list is the tail of the edge that follows in the list. If the tail
of the first edge equals the head of the last edge, the directed path is
called a directed circle. A directed acyclic graph (DAG) is a directed
graph that does not contain directed circles. pathg(u,v) shall be true,
if and only if there exists a directed path in G starting at « and ending
at v. odegg(v) denotes the number of edges of G, whose tail is v.
T; = (V;,E;) is a rooted tree and also a directed acyclic graph, where
all edges are oriented to point away from the root toward the leaves.
Note that each leaf v satisfies odegr;(v) = 0. L; denotes the set of
leaves of the tree 7; and F; an arbitrary subset of L;. Lg(v) is the set
of all vertices w that satisfy both pathg(v,w) and odegg(w) = 0. In
a tree, these vertices are leaves, in a directed acyclic graph, they are
sinks. Thus Lg(v) assigns the set of leaves/ sinks that can be reached
from v to each vertex v. 2M denotes the set of all subsets of M.

3.1 Problem Definition

The problem of the supergraph of a sequence of trees with leaf map-
pings is: given a sequence of rooted trees Ty, ..., T, with

VO<ij<n:(i#j—VinV;=0)

and
VO <i<n:¥veV;:odeg(v) # 1

and a sequence of leaf mappings fi,...,f, with f; : F;_; — L;, find
the smallest graph G = (V, E) and a global mapping of tree vertices on
supergraph vertices k = U/ ki, ki : Vi — V, k; injective, such that

1. G contains all trees:
VO <i<n:(ki(Vi) CGAV(u,v) € E;: pathg(ki(u),ki(v)))

and each path from u to v does not visit vertices from k;(V;) ex-
cept u and v.

2. G conforms to the leaf mapping:
VI<i<n:Vu,veViy:(filw) # fi(v) = ki(fi(w) # ki(fi(v)))
3. G conforms to the topological properties of all trees:

V0 <i<n:Vu,veV;:pathy(u,v) — —pathg(ki(u),ki(v))

3.2 Motivations

The first step of the Foresight Layout with Tolerance algorithm [5] is to
construct a supergraph of all the graphs in a sequence. The supergraph
is the smallest graph that contains all graphs of the sequence as sub-
graphs. To accomplish this, it is necessary to know which vertices of
the graphs should be considered equivalent. Leaf mappings between
successive trees are used as a base for this process, however, this can
only be applied directly to some of the leaves of the trees. The identifi-
cation of equivalent inner vertices and leaves that result from merging
leaves in the previous tree is non trivial. We did not motivate this iden-
tification by graph theoretic minimization, but decided that the super-
graph should reflect properties of the corresponding landscapes. This
has the advantage, that the supergraph may be used as an alternative
and static representation of the barrier tree sequence.

A barrier tree not only stores energy barriers between local minima,
it also gives a rough and abstract view on the topology of a landscape.
The shape of the barrier tree illustrates the order of the unification
of basins. This unification order will be used to identify equivalent
inner vertices. If, for instance, an inner vertex u has two leaves as
its children that are mapped to two different leaves of the following
tree having the same parent v, the inner vertex u and the parent v can
be seen as topologically equivalent. If the leaf mapping is extended
by this new information, further parts of the trees can be processed
to further identify inner vertices as equivalent, and to quickly identify
isomorphic structures between the barrier trees that conform to the leaf
mapping. This takes only the topology of the barrier tree into account.
The energy information about each vertex is neglected.

This procedure ends abruptly, as soon as there is the slightest topo-
logical difference in a barrier tree. In practice, this strict behavior re-
sults in a large number of vertices that are not considered to be equiva-
lent. This can be avoided by identifying equivalent inner vertices based
on the set of local minima that can be reached from the correspond-
ing barrier by descending in the landscape. In Fig. 2a, vertex e and j
are considered to be equivalent, because the sets of leaves that can be
reached from them are equal considering the leaf mapping. Vertices d
and i are not considered to be equivalent because the set of leaves that
can be reached from them, {a,b} and {g,h} respectively, are not equal
considering the leaf mapping. Such cases are very common and are
generated mostly, when the the height of barriers between successive
trees change. The supergraph is in that case no longer a tree, but a
directed acyclic graph (DAG). This is unavoidable, but the supergraph
will always be at most a DAG.

Imagine, that the barrier swap from Fig. 2a is reverted at time ¢ + 2.
The tree at time 7 + 2 conveys exactly the same information as the
tree at time 7 4+ 0. It contains an inner vertex that is not equivalent
to any vertex of tree 7 + 1, but equivalent to vertex d. This vertex
should not be inserted in the supergraph, as it does not represent “new”
information. But this fact cannot be concluded by looking at tree 7 +



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

, i,
J’@? f%/é‘

(@ (b)

1‘4‘ hh,

{*

+0 3

@ €

(@)

Fig. 2. Examples of elementary landscape and barrier tree changes
Each figure shows, how the energy landscape changes, illustrates the barrier
trees (only the topology is shown) and the leaf mappings and shows, how the

supergraph should look like in the cases: barrier swap (a), leaf merging (b),
leaf vanishing (c), leaf creation (d).

1 alone. Considering all past trees can get quite complicated, it is
much easier to just look into the supergraph for the past trees. The
supergraph can and will be used as a data structure to quickly identify
equivalent inner vertices of the barrier trees. It is efficient to construct
the supergraph iteratively. To determine the supergraph for the trees 7
to T,,+1, we use the supergraph of the trees Ty to T}, for identification
of equal vertices and add any new information we gain from tree 7, 1.

Fig. 2b shows another common case of change in the energy land-
scape. Often barriers disappear, and local minima get merged. Obvi-
ously our “set of leaves” approach fails in that case, the vertices ¢ and
d would not be considered equivalent ({a,b} vs. {d}). The solution
is to temporarily add the mirror vertices @’ and b’ as children to d and
modify the leaf mapping. This methodology is a must, if more than
two leaves merge or the merging leaves do not share the same parent.
Merged leaves must be marked as inactive in the supergraph, so they
will not be considered for the “set of leaves” of other inner vertices.

In Fig. 2¢ a leaf vanishes, i.e. it is not part of the leaf mapping.
This may happen, because the number of leaves is usually reduced to
the most relevant ones, and a relevant leaf may have a non relevant
successor. In such a case the leaf (d) is marked as inactive and is not
considered for the set of leaves. This leaves us with the problem, that
the vertices ¢ and e of tree £ 40 have the same set of leaves ({a,b}), and
thus vertex j is considered equivalent to both vertices. In that case, the
vertex farthest from the root (c) is selected. What becomes apparent
now is, that the tree 7 + 1 is not really a subgraph of the supergraph,
because it lacks an edge from g,i to ¢, j. The supergraph is still an
expansion of tree # + 1.

In Fig. 2d a leaf is added to the tree. This is the inverse of the
previous case. The edge from e to ¢ is replaced by a path (i, j,/) and
the new leaf is added at the appropriate location. Again the supergraph
is an expansion of tree 4+ 0. The removal of transitive edges has little
to no effect on the quality of the final presentation, but reduces the
size of the supergraph and greatly improves the performance, when
the layout of the supergraph is determined.

These four operations are considered elementary and are the only
operations we observed in our datasets. However, it is expected that
multiple elementary operations take place between successive trees of
the sequence. Because creation, deletion, and merging cannot hap-
pen to the same leaf of a tree simultaneously, these operations and the
supergraph modifications they imply do not affect each other. Also
creation, deletion, and merging happen at or near the leaves, while
barrier swaps only add inner vertices. So these operations also do not
affect each other and can be done separately.

3.3 Construction

For each directed graph G = (V,E) define the function markg as:

markG:ZV - 2

< U toto

M — { v|Lg(v)
ueM

The operation of this function may be described as this: Starting from
the vertices of M, all incoming edges are marked. If all outgoing edges
of a vertex get marked in that process, that vertex is added to M and the
process continues. The process ends, if no more vertices can be added
to M. Fig. 3 illustrates this. Obviously M C markg(M) and M = 0, if
and only if markg (M) = 0. Unlike the example, M does not have to
contain leaves/ sinks only.

(&) () (&)

/A /N /b\
A

N A T T T
@@@@@@@@@@@@

£ A% 4k 4k

ONONONO, @@@@@

Fig. 3. Example for the markg function
The result is illustrated by vertices with thick circles.
top left to right: markg(0), markg({1}), markg({2}), markg({3}).
bottom left to right: markg({1,2}), markg({1,3}), markg({2,3}),
markg({1,2,3}).

(&)
/N

The function matchg reduces a mark to the topmost layer:

matchG:ZV - 2V
M — markg(M)N{v|V(u,v) €E :u ¢ markg(M)}

For the example in Figure 3: matchg(0) = 0, matchg({1}) = {1},
matchg({3}) = {5}, marchg({1,2}) = {4}, matchs({2,3}) = {2,5},
matchg({1,2,3}) ={6}.

Construct G iteratively: Gy = Ty, Vv € V) : ko(v) = v. Construct
Gi= (V’ El)andk;: V; — V! from G;_y = (V/_{,E!_), ki_1 : Vi1 —
V! . Ti = (V;,E;) and f; as follows:

Determme the active part of the Supergraph G;_1, this is much eas-
ier than tracking inactive (deleted or merged) parts of the supergraph:

G; = (Ai,K;)
A= {v|v eV/ Al eL;:pathg_ (v,k,-,l(l))}

K; = ElL] NA; X A;
For each vertex of the tree 7; determine the set of leaves of 7; that
can be reached from that vertex:
M;:V; — 2k
u — {v|lveLiApathy(u,v)}
For each vertex of the tree determine its leaf set, i.e. the set of vertices
of the active part of the supergraph, that map on a leaf in M; because
of the leaf mapping:
Bi:Vi — 2%
v — k1w filw) e M;(v)}

Using the matchg function find vertices of the active part of the super-
graph with the most similar set of leaves:
li(v) = i(v))

matchg; (B
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Determine all children of a tree vertex that have an empty leaf set.
These children are vertices that are created in the current barrier tree.
Note that, if all children of a tree vertex have an empty leaf set, that
vertex will also have an empty leaf set also and is thus a newly created
inner vertex of the barrier tree.

ni(v) =

Barrier tree vertices can now be categorized:

{w|(v,w) € E;AB;(w) =0}

o fresh(v), iff [;(v) = 0. v is a new vertex in the current barrier
tree.

e matching(v), iff |[;(v)| = 1 An;(v) = 0. In that case an equivalent
vertex has been found in the supergraph. This vertex is the one
element of /;(v) and no child of v is fresh.

o matchfresh(v), iff |[;(v)] = 1 An;(v) # 0. An equivalent vertex
has been found in the supergraph. At least one child of v is fresh.

e recomb(v), iff |l;(v)] > 1. An equivalent vertex could not be
found. /;(v) contains the most similar vertices.

Each vertex of the tree must be inserted in the supergraph, unless
an equivalent vertex had been found.

V{ =V, u{v|v € V; A -matching(v)}
oy Jou Lv)={u}Ani(v)=0
ki(v) = { v L) = {u} Ami(v) £ 0
The inserted edges are:
{ (u,v)
{(mw)
{ (ki(v)
{ (ki(w),

ki(u

E!'=E!_, |v € V;A(u,w) € E{_; Amatchfresh(v) }
veVinL(v) = {w}An;(v) # 0}
,w)|v € V; Aw € I(v) A —matching(v)}

ki(v))| (u,v) € Ei}

Transitive edges may be removed:

v

c C C C

Ef = { ()] (u,v) € Ef A=3pathyy g (,w) # () }

The final supergraph G is equal to the supergraph G, i.e. the su-
pergraph after inserting each tree of the sequence. Additional material
to this article may be found on the accompanying DVD. It includes
some algorithms that illustrate implementation details for the opera-
tions needed for this supergraph construction.

3.4 Example

A
AR
A

/Q‘Q)

(N
A AR R
o K 8o

® @@@R
(’@@\
TAYAY
oRoRO)

R@

Fig. 4. Example construction of the supergraph of two trees
left to right: the supergraph G;, the tree T;, the tree Tiy, and the supergraph
Gijy1. Arrows between 7; and 7;; indicate the leaf mapping. The dashed lines
in Gy indicate edges that can be replaced by a path. The exact description,
how the trees are embedded in the supergraph and how the supergraph is
modified in this iteration, are found in the main text.

Fig. 4 shows a nontrivial example for one iteration of the supergraph
construction process. It has been chosen to show all four elementary

operations that can modify barrier trees. k;, mapping the vertices of 7;
to vertices of G; is:

ki ={(a,1),(b,2),(c,3),(d,4),(¢,5),(f,6),(,8),(h,7), (i,10)}

T; is thus very similar to G;, only the edge (i,h) of the tree is rep-
resented by the path (10,9,7) in G;. The vertex f does not occur in
the leaf mapping, i.e. , it is deleted. The active part of G; is thus:
Aiv1 ={1,2,3,4,5,7,8,9,10}. Because of the leaf mapping the leaf
sets of the vertices of T;; | are:

Biy1 = {(j7®)> (k,0),(1, {1})7 (m, {274})7 (n, {7})}
U {(0,0),(p,{1,2,4}).(q.{7}), (n{1.2,4,7})}

After mark,,,, k,.,) and match,
and n; 1 result to:

i11,Ki) have been determined, /)

livi = {0,0),(k0),(1,{1}),(m,{2,4}), (n,{9}) }
U {(0,0),(p,{5}): (¢, {9}), (n{10})}

nivi = {0,0),(k0),(1,0),(m,0)}
U {(n,0),(0,{j:k}),(p,0),(q,{0}), (r,0)}

The vertices of T;1 are categorized as follows:

fresh(j), fresh(k), match(l), recomb(m), match(n),

fresh(o), matching(p), matchfresh(q), matching(r).

Therefore the following vertices have to be added to the supergraph,
and k; 1 results to:

Vi+1 :ViU{j7k7m707q}

kiyr = {0, 1): (k. k), (1,1), (m,m), (n,9), (0,0), (P,5),(4,9), (1, 10)}

Insertion of the edges is left as an exercise to the reader. Some transi-
tive edges may be removed.

3.5 Post-processing

Unfortunately, the use of the supergraph as a data structure to find sim-
ilar leaf sets often requires the insertion of edges that are not needed
for the final solution. Some edges are inserted to ensure correct re-
sults for the match and mark functions, but are not required for the
supergraph to be an expansion of all trees. Removal of these edges de-
creases both the possibility of edge crossings in and the running time
of the layout process.

These edges are identified as a side product in a post-processing
phase. In this phase each edge of the supergraph is annotated with the
set of all trees it occurs in. The motivation for this will be explained
in the next section. Usually a tree edge corresponds to a path in the
supergraph. Therefore, each edge of the path is annotated with the tree.
Quite frequently, there are multiple possible paths for one tree edge.
In such cases only the edges of the longest path are annotated. After
annotation, there will be many edges which do not belong to any tree.
These can be removed safely. Choosing the longest path is a simple
and quick heuristic that favors edges with a high probability of reuse.
In practice this removes 5-20 percent of all edges of the supergraph
plus any transitive edge. However, a proper problem definition for
this phase would be: find the largest set of edges that can be removed
without violating the constraint, that the supergraph is an expansion to
each tree.

4 LAvourt
4.1 Supergraph Layout

The second step of the Foresight Layout with Tolerance algorithm cre-
ates the layout of the supergraph. In general, the supergraph will be a
DAG. Sugiyama et al. [23] proposed to split the task in three phases. In
the first phase, the ranking, vertices are grouped in successive layers,
such that the edges are oriented in one direction, usually from top to
bottom. In the second phase, the ordering, an order of vertices in each
layer is determined that minimizes edge crossings. In the final phase,
the positioning, coordinates are assigned to each vertex, preserving
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the order inside the layers, but minimizing the overall edge length by
shifting vertices inside the layers. In this work we used the heuristics
presented Gansner et al. [14] — also known as the DOT algorithm —
to lay out the supergraph and made slight modification.

The main esthetic goal for DAG layout is the removal of edge cross-
ings. In practice, the supergraph contains a large number of edge
crossings that do not matter, because these crossing edges are never
be shown simultaneously. The annotation of the postprocessing phase
allows us to weight the importance of an edge crossing. In the DOT
algorithm, graphs are laid out respecting edge weights. Edges with a
high weight are kept short and crossing free. in. In the ordering phase,
the weight of an edge is replaced by the weight of an edge crossing.
This weight is generated from the number of trees, that both edges
actually cross.

In the original algorithm, crossing reduction is done by repeatedly
iterating over and through all layers, switching the order of two suc-
cessive vertices, if that locally improves the number of edge crossings.
Sometimes, such a switch does neither improve nor deteriorate the
number of edge crossings, but the switch may lead to further improve-
ments. Gansner et al. [14] suggest performing such switches only ev-
ery other global iteration. In our case, many crossing weights will be
zero and switches seldom improve the number of edge crossings im-
mediately. As a result, the original formulation leads to long running
times of the algorithm and changes periodically from one extreme to
the other.

In our implementation, we perform the switch randomly in a sim-
ulated annealing process. Improvement is always and deterioration
never accepted. A temperature, initially 1, is used as the probability
of performing a switch that does not change the number of weighted
edge crossings. Each global iteration the system cools down, the tem-
perature decreases exponentially. The process terminates, if no more
switches are performed. In practice this resulted in a higher number of
edge crossings, but reduced the running time drastically.

The routing of edges is not relevant for the layout of the supergraph.
The edges will be routed only in the subgraphs.

4.2 Tree Layout

Until now, the energy of a vertex has been ignored. Since a vertex of
the supergraph may represent multiple vertices of the tree sequence
and each of these vertices may have a different energy, a supergraph
vertex may not have a single energy value. Because we want one of
the coordinates to indicate the energy, it is not possible to do the third
phase of the DAG- layout, the positioning, for the whole supergraph.
Coordinate assignment is done for each tree separately, respecting the
order generated in the ordering phase. This constraint preserves the
mental map, specifically the orthogonal ordering. Positioning each
tree separately allows us to locally improve the layout of the sub-
graphs. This corresponds to the third phase of the Foresight Layout
with Tolerance algorithm.

The DOT algorithm may give two vertices the same horizontal po-
sition, if they are in different layers. If we assign these vertices their
energy value as the vertical position it is possible, that they overlap.
By assigning each vertex of the supergraph an unique horizontal posi-
tion we can avoid this. However, if the layout is created in that way,
the vertices of the subgraphs can be very unevenly distributed. We
found it visually more appealing, if only sinks of the supergraph have
an unique horizontal position. This can be achieved trivially, if all
sinks are positioned in the same layer prior to the ordering phase.

After the vertices have been positioned, edges must be routed. For
simplicity each tree edges consist just of one horizontal and one verti-
cal line segment that directly connect the two adjacent vertices. Edges
are routed independently of the supergraph, where an edge might have
been replaced by a path. Because of the problem definition, vertices
on that path would not be a part of the current tree and thus layout in-
formation of these vertices is not valid for this tree. In general, it is not
always possible to draw the subgraphs without edge crossings, we sac-
rificed this property for the preservation of the mental map. Drawing
the edges as orthogonal line segments conforms to the style, barrier
trees are drawn usually. We also found, that a straight line drawing

does not reduce the number of edge crossings and makes tracing the
edges even harder than an orthogonal drawing.

5 ANIMATION

Now that the layout for each tree has been generated, the single trees
could be presented using the generated layout. In practice, there can
be quite a number of changes between consecutive trees. Vertices and
edges may appear or disappear, and whole subtrees can change the
energy of their vertices. We created methods to make the transition
smooth and to indicate the type of change. Vertices that experience
a change of energy are moved accordingly in the drawing area using
linear interpolation of the coordinates. Barriers that appear or disap-
pear are presented using blending. Edges are modified based on the
changes of their adjacent vertices. Subtrees that are created or merged
“grow” out of or into the vertices, where they are created or merged
into, again using linear interpolation of the coordinates.

Usually the huge number of changes would require each change to
be visualized separately. In our proof-of-concept implementation, all
changes are shown simultaneously using the following scheme: Each
transition is given a time interval [f;,#; + Ar). Vertices that change their
energy are moved during [f; + %At,zi + %At). Subtrees that grow into
a vertex because of merging are scaled during [f; + %At, ti+ %At), sub-
trees that grow out of a vertex, do so during [t; + %At,ti + %At). Fading
out of barriers is done during [t; + 2At,1; + $At) and fading in takes

place during [f; + %At,t,- + %At). The segments overlap intentionally,
as we observed many changes to interior vertices. The remaining in-
terval [t;,1; + %AI) is used for a static presentation of tree 7;.

6 RESULTS

To create and evaluate our algorithm we had three datasets at our dis-
posal. The ATT dataset consists of 20 barrier trees, with at most 25
leaves per tree and a total of 894 vertices in all trees. It represents a
small RNA molecule, with sequence length growing from 40 to 74 nu-
cleotides with varying step size. This example was used to design and
test the algorithm. Fig. 5 shows the keyframes for this dataset, as well
as some explanations from experts. The full animation can be found
on the DVD proceedings. The LEPTO dataset consists of 47 barrier
trees, with a maximum of 50 leaves per tree and a total of 3727 ver-
tices in all trees. The sequence length of the molecule increases from
10 to 56 nucleotides. The largest example, the HOK dataset, consists
of 65 trees with a maximum of 100 leaves and a total of 8635 vertices.
The sequence length grows from 10 to 74 nucleotides. The inner ver-
tices of all trees of these datasets satisfy odeg(v) = 2, i.e. , all inner
vertices have exactly two children. All datasets present rather short
RNA molecules.

One way to determine the quality of the algorithm is to look at prop-
erties of the supergraph. The number of vertices in the supergraph of
the ATT, LEPTO, and HOK datasets are 392, 1874 and 4594 respec-
tively. This means that only about half of the vertices of the trees were
identified as redundant. This results from a property of the sequences
that we have not yet mentioned. In each new tree of a sequence, leaves
get deleted, merged, and added. The average number of leaves that are
added is 5.00, 7.20 and 16.16 respectively. That means that up to 20
percent of each tree changes on average. It can be shown, however,
that a graph-theoretic minimum supergraph would not be smaller than
approximately half to one third of the size of our supergraphs.

More critical to the perceived quality of the layout is the number
of edges. If this number is near the number of vertices, the super-
graph is very similar to a tree and can thus be drawn with few edge
crossings and (horizontally) short edges. Horizontally long edges in
the supergraph layout are undesirable, because each edge is shown at
least once. The amount of edges divided by the amount of vertices
for the three datasets are 1.52, 1.69, and 1.61 respectively. Although
these numbers seem to be close, the LEPTO and HOK datasets have a
significantly larger number of edge crossings and long edges than the
ATT dataset. This is because the edges are unevenly distributed among
the layers of the supergraph layout. The animation suffers from long
edges that are close together and are notoriously difficult to track.
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Two preprocessing methods have been tested to determine, if a sub-
set of the data still results in bad layouts. Surely, we do not want to
reduce the number of trees, since we want to visualize the whole pro-
cess.There are a number of barriers that are connected by an edge in
the barrier tree, and whose energy differs only slightly. Such barriers
are merged in a preprocessing step. This process reduces the probabil-
ity of barrier swaps and the supergraph will have less vertices. In the
LEPTO and HOK datasets, the merging of barriers that differ by 0.5 or
less (which is approximately two percent of the overall energy range)
reduced the total number of tree vertices to 2419 and 5863 respectively
and the number of supergraph vertices to 853 and 2493 respectively.
This means, that now nearly two third of the vertices were identified as
redundant. Unfortunately this method does not reduce the number of
edges as much as the number of vertices, thus the supergraph suffers
from a huge number of edge crossings and long horizontal edges. Af-
ter applying this method, the supergraph span less layers and the edges
got distributed more equal over the layers. In the final animation long
edges are still visible, but they are no longer close together, so it is
easier to track them.

The second method is the reduction of leaves in the barrier trees.
Local minima with a low energy are generally more stable and have a
high probability of being present in the next barrier tree. They are also
more interesting than local minima of higher energy. For each leaf
that is removed, the one barrier connecting it to the rest of the tree is
removed as well. By reducing the number of leaves in the LEPTO and
HOK datasets to a maximum of 31 and 66 leaves per tree, the total num-
ber of tree vertices was reduced to 2409 and 5875 respectively. The
number of supergraph vertices was reduced to 732 and 2528, so again
almost two third of the tree vertices have been identified as redun-
dant. This preprocessing method removed substantially more edges
than vertices, and in the LEPTO and HOK datasets the number of edges
divided by the number of vertices decreased to 1.50 and 1.44 respec-
tively, which greatly improved the supergraph layout. There were a lot
less edge crossings and only a few long edges. This directly resulted
in a better layout of the barrier trees.

7 CONCLUSION AND FUTURE WORK

We showed that it is possible to generate readable layouts for se-
quences of barrier trees using the Foresight Layout with Tolerance al-
gorithm. For larger datasets, preprocessing may have to be applied to
the sequence. While reducing barriers decreases the height of the su-
pergraph layout, a reduction of leaves decreases the width and greatly
improves the perceived quality of the layout.

From the viewpoint of folding landscapes, often only a small num-
ber of leaves are of interest. These leaves and their history can be
highlighted using colors. The layout of the single trees may be com-
bined with additional information. The simulation of the folding pro-
cess during the growing of the molecule under various temperatures
and growing rates results in distribution functions for local minima.
Because the animation of the barrier trees preserves the orthogonal
ordering, annotating the barrier tree leaves with the density of the cor-
responding structure configurations preserves the mental map for the
annotations. The change in the densities can be additionally indicated
by a flow of liquid along the tree edges. Methods that combine tree
layout and additional information are currently investigated.

The current methods to generate the animation leave room for fur-
ther improvements. Different strategies for edge removal during the
postprocessing of the supergraph construction can result in an im-
proved layout, because fewer edges generally result in fewer edge
crossings. Rather than overgenerating the edges of the supergraph and
reducing it afterwards, a more constructive method could be proposed.
In this article we did not pay much attention to local improvement of
the subgraph layout. Especially in larger datasets this would be ben-
eficial, because each subgraph only uses a small part of the drawing
area and requires high resolution. A local improvement strategy based
on a force-directed strategy is currently being implemented.

The constructed supergraph is a static visualization of the whole
sequence, and presentation forms other than an animation, may be in-
vestigated. One idea is synthesizing a 2D landscape from all barrier

trees, where the folding process is visualized as a walk.
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Fig. 5. The 20 subgraph layouts of the ATT sequence.

Terminator/anti-terminators are small RNA structure elements occurring in bacterial messenger RNAs (mRNAs) that modulate the translation
of mRNA into a protein. They are switch-like elements that can form alternative structures with drastically different physiological function.
In one state, the mRNA is translated and protein is produced, while the alternative RNA conformation suppresses this process. The speed of
transcription determined, which of these two states in reached. The barrier-tree sequence of the growing RNA element can be used to understand
the molecular mechanism for this behavior.

The above panels show the leader sequence of the pheS-pheP operon of E. coli [8]. In the first stages, i.e., when only the 5° (left) part of the
molecule has been transcribed, the folding landscape is dominated by a single conformation (visible as the lowest-energy subtree in panels 5 and
6. As the molecule grows, an alternative basin of attraction (left subtree in rows 3 to 5) appears. In the first stages, this class of conformation
is less stable than the r.h.s. sub-tree, which is initially populated as it corresponds to the stable conformations in the first folding stages. In the
full-size element, however, a different conformation class is thermodynamically favored, which appears as the 1.h.s. subtree in the last 7 panels.
The important observation is that this class of conformations is reachable only by transversing a sizable energy barrier; hence the transition into
this conformation is slow. The speed of translation thus determines, whether the growing chain has sufficient time to switch into the optimal
subtree (approximately in panels 13-15), or whether it remains trapped in the r.h.s. subtree, as the barrier height (and hence the necessary
transition time) increases with the chain length (panels 17-19).



