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Abstract

The partitioning of complex processor models on the

gate and register-transfer level for parallel functional

simulation based on the clock-cycle algorithm is

considered. We introduce a hierarchical partitioning

scheme combining various partitioning algorithms in

the frame of a competing strategy. Melting together

di®erent partitioning results within one level using

superpositions we crossover to a mixture of experts

one. This approach is improved applying genetic algo-

rithms. In addition we present two new partitioning

algorithms both of them taking cones as fundamental

units for building partitions.

1 Introduction

Logic design for whole microprocessor structures is ac-
companied with time-extensive simulation processes.

Within the design strategy outlined in [14] the veri¯-
cation of functional (logical) behavior is strictly sepa-

rated from the analysis of timing aspects. In this con-

text the background of the present paper is given by
simulation processes for functional design veri¯cation

on gate and register-transfer level (logic simulation)

where sequences of machine instructions or microcode
are taken as test cases and underlying models com-

prise complex parts of processor structures. Under
these assumptions the usage of cycle-based simulators

is to be preferred. TEXSIM1 is a high performance

simulator for logic simulation of synchronous designs

1copyright by IBM

using the clock-cycle algorithm. To achieve a signi¯-
cant reduction of running time for simulations the task

is to parallelize them. Thereby a parallel TEXSIM

simulation consists of several co-operating TEXSIM

instances running on loosely coupled RS/6000 pro-

cessors (system SP2 of IBM) over parts of the whole
model. As a basic assumption, the process of the eval-

uation of combinational logic during the parallel sim-

ulation of a cycle has to be left unchanged. Therefore
special fan-in cones are chosen as building blocks for

model partitioning. A partition is directly related to

certain workloads of the processors involved in later
parallel simulation and communication overhead be-

tween co-operating TEXSIM instances and, hence,
to the speed-up possible due to parallelization. The

amount of time acceptable for partitioning depends on

the expected total duration of all simulation runs to be
performed regarding to a corresponding model. Simu-

lation processes we are dealing with are characterized

by a large number of time-extensive runs concerning
a given model.

2 De¯nitions

First, we de¯ne a structural model for the logic design

on gate and register-transfer level. The underlying

hardware is supposed to be synchronous. Basic com-
ponents are given by the sets MI ;MO;ME ;ML;MS

(global inputs, global outputs, logical elements, stor-

ing elements, signals). ME includes all elements which
represent combinational logic within the hardware to

be simulated. Signals of MS are interpreted as wires.
The elements of the set ML possess storing function

and are cycle limiting in the sense of the clock-cycle

algorithm. We concentrate the elements of all pairwise
disjoint setsMI , MO, ME andML to the set of boxes

MB =MI[MO[ME[ML. On the basis of these sets
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the hardware model can be considered as a directed
bipartite graph. Therefore, we introduce the relation
MR µ (MB £MS) [ (MS £MB) describing the con-
nections between boxes and signals. Using the sets
of successors N+

G
(x) = fyj(x; y) 2 Rg and predeces-

sors N¡
G
(x) = fyj(y; x) 2 Rg for any directed graph

G = (X;R) and x 2 X we de¯ne:

De¯nition 2.1 Let MI , MO, ME, ML, and MS be

pairwise disjoint and nonempty sets. MB and MR are

de¯ned as above. M = (MI ; MO; ME ; ML; MS ; MR)
is called hardware model if the corresponding di-

rected bipartite graph G(M) = (MB; MS ; MR) [5, 13]
satis¯es the following conditions:

1.
n
xjx 2MB [ MS ^N

¡
G(M)

(x) = ;
o
=MI ;

2.
n
xjx 2MB [ MS ^N

+
G(M)

(x) = ;
o
=MO;

3. any directed cycle in G(M) includes at least one

element of ML.

MI and MO are the sets of all sources and sinks of
G(M), respectively. Condition 3 ensures the absence
of directed cycles only including elements ofME[MS .
This corresponds to the exclusion of asynchronous
combinational feedbacks.

Due to our parallelization approach, cutting signals of
MS during a partitioning of M is only permitted at
cycle-boundaries related to the clock-cycle algorithm.
Therefore, we are forced to de¯ne basic units for par-
titioning which are known as cones [12, 6, 7] with re-
spect to an arbitrarily chosen hardware model M :

De¯nition 2.2 The fan-in cone coI(x) of an ele-

ment x 2MO [ME [ML is recursively de¯ned by:

1. x 2 coI(x);

2. y 2 ME ^ N
+
G(M)

(N+
G(M)

(y)) \ coI(x) 6= ; ! y 2

coI(x):

The fan-out cone coO(x) of x 2 MI [ME [ML is

analogously de¯ned using the sets of predecessors.

Let us take a cone co(x) as a special fan-in cone the
head element x of which satis¯es x 2 MO [ ML.
All the cones form the set Co (M) as the set of ba-
sic units for the partitioning of M . An example il-
lustrating the introduced sets MI ; MO; ME ; ML and
cones for a simple hardware model is depicted in
Fig. 1. The number of cones belonging to Co(M) is
mc = jCo(M)j = jMLj+ jMOj. A box b 2ME (logical

Figure 1 { hardware model with cones (shaded)

element), from which directed paths (with all inter-
mediate boxes being elements of ME) to the heads of
di®erent cones ĉi 2 Co(M), i = 1; : : : ;m exist, belongs
to all of the m di®erent cones ĉi: b 2 \m

i=1ĉi. These
cones ĉi are called to be overlapping. Considering all
cones ci of the model we get:

mcX
i=1

jcij ¸

¯̄̄
¯̄mc[
i=1

ci

¯̄̄
¯̄ = jCo(M)j+ jME j . (2.1)

If overlapping cones are distributed to di®erent proces-
sors one has to take into account the multiple evalua-
tion of boxes in parallel simulations.2 In the following,
C always denotes nonempty subsets of Co(M).

De¯nition 2.3 1.) The box-related cone over-

lap degree u : ME ! IN is de¯ned by u(b) =
jfc jc 2 Co(M) ^ b 2 cgj, giving the number of cones

which contain the box b 2ME.

2.) The overlap region ovr(C) of a set of cones C

is the set of boxes belonging to these and only these

cones c 2 C:

ovr(C) =

Ã\
c2C

c

!
n

0
@ [
c02Co(M)nC

c0

1
A : (2.2)

All elements of the set ME [ML [MO are uniquely
distributable into overlap regions ovr(C). Using P ¤ =
2Co(M) n f;g we get:X

C2P¤

jovr(C)j = jCo(M)j+ jME j . (2.3)

2On the other hand, communication between the processors

is reduced to communication at the clock-cycle boundaries. Of

course, replication in the evaluation of boxes is an additional

restricting factor and has to be minimized.
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In general, most of the overlap regions ovr(C) are

empty sets. The set of boxes of a cone c is uniquely
decomposable into overlap regions ovr(C) with c =S
(C2P¤^c2C) ovr(C) and jcj =

P
(C2P¤^c2C) jovr(C)j.

The set of all overlap regions ovr(C) allows the con-

struction of an equivalent weighted overlap hyper-
graphGU identifying the nodes with cones and the hy-

peredges with cone sets C corresponding to nonempty
overlap regions ovr(C) with jCj > 1 [6].

Next, we introduce the terms partitioning and parti-

tion by means of two nonempty sets U and V .

De¯nition 2.4 1.) A partitioning of U with respect

to V is a unique map © : U ! V assigning each ele-

ment u 2 U to an element v 2 V .

2.) A partition ª© of U related to the partitioning

© : U ! V is given by ª© =
©
©¡1 (v) j v 2 cod ©

ª
,

where cod © is the range of ©.

An element v 2 cod © represents the partition com-
ponent ©¡1 (v) containing all elements u 2 U which

are mapped onto v. Here, we identify U with the set

of cones Co (M) and V with the set B of mb blocks
representing processors. If not speci¯ed otherwise we

consider surjective partitionings.

The task is to ¯nd a partitioning ©opt : Co (M) ! B
for the given sets Co (M) and B, which leads to a

signi¯cant lower running time Tpar for parallel simula-
tion of a clock-cycle in comparison with Tseq in the se-

quential case. To achieve this goal we consider quality

functions taking into account several aspects such as
interprocessor communication, workload balance and

replication rate in°uencing Tpar. Then, for a certain

quality function  one has to determine a partitioning
©
opt which optimizes . Currently we consider

 = max
B2B

(W (B)) (2.4)

as to be minimized where

W (B) =

¯̄
¯̄
¯̄

[

c2©¡1(B)

c

¯̄
¯̄
¯̄ : (2.5)

W (B) can be interpreted as workload of block B un-

der the assumption of an unique time unit ¿ = 1

for the evaluation of each box. W (B) can be also
expressed in terms of overlap regions: W (B) =P

(C2P¤^C\©¡1(B) 6=;) jovr(C)j. For sequential simula-

tion we have with (2.3) the sequential workload as

Wseq = jCo(M)j+ jME j (2.6)

which is equal to the sum of boxes to be evaluated.

3 Hierarchical Partitioning

3.1 Hierarchical Strategy and the Mix-
ture of Experts Approach

In the applications considered here the ratio between

mc as the number of cones and mb as the number of

blocks may be up to the range of 105 ¡ 106. There-
fore, we focus onto a hierarchical strategy [1] which

has been successfully applied to data extensive prob-

lems as, for instance, non-linear principle component
analysis (PCA) and robotics [10]. To gradually re-

duce the range of the problem we introduce a general
q{level partitioning scheme according to Def. 2.4:

De¯nition 3.1 A q-level partitioning of U with re-

spect to V is de¯ned by ©H : U ! V with ©H =

©q ±©q¡1± : : :±©1 where ©j : Vj ! Vj+1 and V1 = U ,

Vq+1 = V and furthermore jV1j ¸ jV2j ¸ : : : ¸ jVq+1j.

Clearly, in general ©H is only an approximation of

©opt. In our applicationwe use a 2{level scheme ©H =

g±f , i.e. V1 = U = Co (M), V2 = S and V3 = V = B:

©H : Co (M)
f
¡! S

g
¡! B : (3.1)

Thereby, S is a set of elements Sl, the pre{images

sl = f¡1 (Sl) of which are called super{cones. We re-
mark that super{cones are collections of usual cones.3

In contrast to the determination of the cones the re-

alizations of g and f are free. This allows an optimal
adaptation. However, often an a priori optimal choice

is not possible [5]. To overcome this di±culty we pre-

fer in each level of the hierarchical scheme a strategy
introduced in neurodynamics by Jordan et al. [2]

which is called mixture of experts.

For a q{level scheme we consider several partitioning
algorithms Aj

i , i = 1 : : :mj corresponding to maps ©j
i

and working in a parallel way in one hierarchical step

j representing various partitioning heuristics. The re-
sulting partitions ª

A
j

i

are compared with respect to a

quality measure and the ¯j best of them will form the

basis for the algorithms Aj+1
l of the next level which

generate partitions ª
A

j

i
;A

j+1

l

. Thereby, the images of

the super{cones of a partition ª
A

j

i

given by ©j
i are

taken as the new basic units. The ¯nal result of a q{

level scheme is a partition ªA1
i1
;A2

i2
;:::;A

q

iq

the quality

3On the other hand, the cones themselves are sets of boxes

which are elements of M = ME [ML [MO. Therefore, we

can regard the concentration of these as an initial 'partitioning'

©0 :M! Co (M). In this way we obtain ©¤

H
= g ±f ±©0 as an

extended 2{level scheme. The de¯nition of the cones uniquely

determines the map ©0. Yet, ©0 is not a partitioning in the

sense of Def. 2.4.
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measure of which is the best in the last level. How-

ever, as yet this describes only a simple strategy of
competing experts.

By introducing superpositions ~ª of a set ¦ =
fª1; : : : ;ªkg of partitions within a certain level we

next extend the competing approach to a mixture one.

In this context ~ª plays the role of a generating sys-
tem, i.e. each super{cone of a partition ªi 2 ¦ is

expressible in terms of super{cones ~sl 2 ~ª:

De¯nition 3.2 Let ¦ = fª1; : : : ;ªkg be a system

of partitions of the set U . The elements of ªi are

denoted by s
j
i , j = 1 : : : ni. ~ª = f~s1; : : : ; ~smg is called

a superposition of ¦ if and only if:

1. ~ª is a partition of U

2. ~ª is a generating system for each ªi 2 ¦, i.e.,

for each s
j
i 2 ªi (i = 1 : : : k, j = 1 : : : ni) exist

~sl1 ; : : : ; ~slr 2
~ª such that s

j
i = ~sl1 [ : : : [ ~slr .

Def. 2.4 yields ; =2 ~ª. The elements of U taken as

single sets form a superposition ~U of ¦. However,
we want to have a superposition the granularity of

which is rougher than the granularity of ~U , i.e., j ~U j >

j~ªj. Therefore we consider a special construction of
superpositions:

Theorem 3.3 Let ¦ = fª1; : : : ;ªkg be a system of

partitions of the set U . The elements of ªi are denoted

by s
j
i , j = 1 : : : ni. Furthermore, let ª¤ be given as

ª¤ =

½
s¤j1:::jk j s

¤

j1:::jk
= \

i=1:::k
s
ji
i

¾
n f;g (3.2)

with ji = 1 : : : ni. Then ª¤ is a superposition of ¦.

Furthermore, for all superpositions ª̂ of ¦ with ª̂ 6=
ª¤ the relation jª̂j > jª¤j is valid, i.e. ª¤ has the

maximum granularity.

Proof: The proof of the theorem is shown in the Ap-

pendix.

Following the theorem we are able to determine a su-

perposition ª¤ of maximum granularity by k{times in-
tersections according to (3.2). Yet, in general we only

have j ~U j ¸ jª¤j. The structure of ª¤ depends on the

properties of the partitions ªi 2 ¦ which represent
the di®erent partitioning heuristics (realized by the

corresponding algorithms). Hence, all used strategies
in°uence the superposition, i.e., the expert knowledge

of the algorithms is mixed in ª¤. We add a superpo-

sition according to Theorem 3.3 as a special partition
to the ¯j best of one hierarchical level j so that it may

be used in the next level, too.

Returning to our 2{level scheme, the use of a superpo-

sition is suitable after the ¯rst partitioning level. If we
assume that we have various algorithms A1

i realizing

the maps fi : Co (M) ! Si we obtain ªi = f¡1i (Si)

according to Def. 2.4. Si are sets of the mappings of
the super{cones determined by the partitions ªi, re-

spectively. In analogy, we introduce the abstract map
f¤ : Co (M) ! S¤ where S¤ is representing the set

of super{cones s¤l 2 ª¤ and ª¤ = (f¤)
¡1

(S¤). Then
each element of the set system §f = fS1; : : : ;S¯1 ;S

¤g

can be taken as a new system of basic units for parti-

tioning in the second level.

However, the above mixture strategy is a very simple

one. In the next section we will improve this strategy
using genetic algorithms. Thereby, condition 2 of Def.

3.2 becomes important.

3.2 Improved Mixture of Experts Ap-
proach Using Genetic Algorithms

In this part we extend the mixture approach intro-

duced in section 3.1 using genetic algorithms (GAs)
[1]. In GAs, populations of individuals (parents) pro-

duce new individuals (children) in a manner which

is inspired by biological evolution and reproduction.
The individuals are strings describing a set of param-

eters which are to be optimized.4 For applying GAs

to graph partitioning let us consider a partitioning
map © : U ! V . Furthermore, one has to optimize

© regarding to a certain quality function  (¯tness
function). In this context an individual j represents a

certain partition, determined by a map ©j . The i-th

component of the string is associated with the i{th
element of U containing the mapping goal which is an

element of V . Several authors have applied GAs to

graph partitioning, for instance [8].

However, we will involve this approach into the above

described hierarchical strategy. Here we focus onto the
2{level scheme (3.1). In general, GAs may be used

in each hierarchical level. Yet, because of the large
number of cones in Co (M) the string of an individual

representing a partition of Co (M) is often too long

for mastering. On the other hand, if applying GAs in
the second level of the hierarchical scheme, they re-

quire a uniform set of basic elements. To serve this

assumption the use of the superposition ª¤ speci¯ed
in (3.2) of Theorem 3.3 is appropriate because of its

property as a generating system. In this context the
initial population for the GA is based on the set of all

partitions determined in the ¯rst level which now are

described in terms of the elements of S¤. We empha-
size again that the several algorithms represent various

4For a more detailed introduction see for instance [4].
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partitioning strategies the best of which a priori is un-

known. Still more, in general a merging strategy will

improve the result signi¯cantly. We can realize such

a strategy using the recombination by crossing over

in GAs to join di®erent properties of two individuals

(partitions) into new ones. The crossing over scheme

may be interpreted as a more general exchanging than

the simpler one in the algorithm of Kernighan and

Lin [3]. However, we have to take into account a sec-

ond argument, how much of the old individuals get

the chance to be allowed for the competing step (se-

lection) to build the new population. Let us suppose

that ¹ parent individuals produce ¸ children. Two

contrary methods are well known: 1) the ¹ best of

the ¸ children only form the new population with

¹ < ¸; 2) all ¹+ ¸ individuals are allowed for the se-

lection process.5 In the second case the best solution

is preserved. Yet, it tends to a stagnation into a local

minimum. In the ¯rst scheme this property is weak-

ened. On the other hand, good solutions may get lost

here. Therefore, we introduce a new so{called [¹ ¤ ¸]{
scheme which balances both strategies: at a time t now

¹t+ ¸ individuals have to be taken into consideration

with ¹t = int [(¹¡ ¹®) ¢ ¾ (t)] + ¹®. Thereby, int [x]

stands for the integer value of x. The function ¾ (t)

is of decreasing sigmoid type with 0 · ¾ (t) · 1. ¹®
describes the ¯nal survival probability for the parent

individuals. We have ¹0 = ¹ and lim
t!1

¹t = ¹®.

The whole procedure, which includes the generation of

a superposition and following GA, ¯nally leads to the

complete scheme of the improved hierarchical mixture

strategy depicted in Tab. 3.2.

3.3 Special Experts

Our mixture of experts approach is a framework for

applying several partitioning algorithms as experts. A

survey of algorithms suitable for parallel logic simula-

tion is given in [13]. We distinguish direct and itera-

tive partitioning algorithms which construct a single

partition resulting from basic units without building

intermediate partitions or require an initial partition

which is gradually improved according to a quality

function, respectively.

We have developed two new direct algorithms on the

basis of cones aiming at balanced workload and min-

imum replication, the Backward-Cone-Concentration

algorithm (n-BCC) and the Minimum-Overlap Cone-

Cluster algorithm (MOCC ).

The basic idea of n-BCC consists in iteratively as-

signing sets of cones to blocks with preferred choice of

5These correspond to the [¹;¸]{ and [¹+ ¸]{scheme in the

notions of Rechenberg and Schwefel, respectively [9, 11].

cones ci

+

algorithms A1
j

+

fj : Co (M)! Sj

+

f¤ : Co (M)! S¤

ª¤ = (f¤)
¡1

(S¤)¡ superposition

+

§f = fS1; : : : ;S¯1 ;S
¤g

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

f

+

gi;k : S
¤ ¡!

Si

Bk

+

§g = fB1; : : : ;B¯2g

+

Genetic Algorithm

+

§+

g+
=
n
B+
1
; : : : ;B+¯2

o

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

g

+

g2

½
g+j :S

¤!B+j j 
¡
B+j
¢
=min

l

£

¡
B+l
¢¤¾

f = f¤

+

©H = g ± f

Tab. 3.2. : Scheme of the improved mixture of

experts strategy using genetic algorithms

n cones overlapping each other using the box-related

cone overlap degree u of Def. 2.3:

1. Fix a value n¤ with smallest distance to n in the

range of u; all boxes in ME are assumed to be

unmarked.

2. Choose a box e within all unmarked boxes out of

u¡1(n¤) and search its fan-out cone coO(e) (see

Def. 2.2) to ¯nd the head elements of the n¤

cones covering e. These n¤ cones are assigned

to a block possessing the lowest number of cones

for the moment and all boxes of the selected cones

become marked. If there is a remaining unmarked

box e 2 u¡1(n¤), then step 2 is repeated.

3. If there exists n0 2 cod u with u¡1(n0) contain-

ing an unmarked box, then such a n0 is taken as

5



the new n¤ and one has to continue with step 2.

Otherwise, the algorithm terminates.

Contrary to MOCC explained below, n-BCC does

not explicitly use knowledge concerning the number

of boxes in overlap regions or cones. First of all, n-

BCC has been designed for application at the ¯rst

level of our hierarchical strategy.

MOCC successively constructs a partition using the

speci¯cs of the weighted overlap hypergraph GU cor-

responding to the hardware model M . With this al-

gorithm the objective is to achieve partitions with

blocks containing hypergraph nodes (cones) connected

among one another with high-weighted hyperedges:

1. Initially, mb cones of Co (M) are assigned to the

mb blocks.

2. Taking block Bi 2 B with the lowest num-

ber of boxes, we are looking for that over-

lap region ovr(C¤) of Bi with C
¤
\ ©¡1(Bi) 6=

; which maximizes the product jovr(C¤)j ¢¯
¯
¯C¤ n

S
j=1:::mb

©¡1(Bj)
¯
¯
¯.

3. Assign the set of these up to now not considered

cones C¤ n
S
j=1:::mb

©¡1(Bj) concerning the se-

lected overlap region ovr(C¤) to the block Bi.

4. If free cones exist yet, proceed with step 2. Other-

wise the partition is complete and the algorithm

stops.

MOCC aims at a minimum of multiple evaluation of

boxes on di®erent processors keeping a balanced work-

load corresponding to the resulting partition. If two-

stage partitioning is necessary the complex structure

of GU implies preferably applying MOCC to the sec-

ond level of the hierarchical partitioning scheme.

4 Experimental Results { Conclusions
Finally, we present a special application of the im-

proved mixture of experts strategy (Tab. 3.2) for a

speci¯c hardware model M representing a processor

structure with jME j = 16398 boxes.6

For the initial hierarchical level we use a set of n-BCC

algorithms A1
k with varying parameters n and num-

bers of super-cones ms. The crossing to the second

level requires the production of an initial population

§g for the genetic algorithm to be applied. Gener-

ally, each Si resulting from the ¯rst level allows the

production of many individuals Bk in the second level

gi:k : S
¤
¡!
Si

Bk , using the elements of S¤ as new basic

6provided by IBM

units and keeping such units together in one block of

Bk which correspond to one and the same super-cone

belonging to Si. Here, we restrict the number of cre-

ated initial individuals Bk to one for each Si. For the

evaluation of individuals within the genetic algorithm

and for choosing the ¯nal partition described by ©H ,

the quality function  =
(2.4)

max
B2B

(W (B)) (maximum

workload) is taken.

Figure 2 { Quality function  (maximum workload)

for partitions resulting from the n-BCC for various

numbers of super{cones and values of parameters n.

In Fig. 2 the quality function , applied to the par-

titioning results of the ¯rst hierarchical level of n{

BCC for various ms = 2 : : : 50 with the parameters

n = 1 : : : 100, is shown.

In our exemplary application of the hierarchical

scheme we investigate 3 cases for application of GAs

di®ering in the initial population which is randomly

chosen out of corresponding partitioning results of the

¯rst hierarchical level. In all tests the maximum num-

ber of blocks is limited to mb = 32.

First, we build the initial population only from parti-

tions consisting of 32 super{cones, i.e. ms = 32. The

evaluation in time (number of generations) of the ¯t-

ness according to the best individual (partition) of the

population is shown in Fig. 3 (short dashed line). The

{value of the ¯ttest individual decreases from 2250

to 1899 with mb = 32. In the second example all ini-

tial partitions are formed over ms = 16 super{cones.

Starting with a best individual of start = 2896 the

¯nal solution gives a partition with end = 1985 and

mb = 32 (straight line in Fig. 3). Yet, this is bet-

ter than the start value in the ¯rst case but its ¯nal

value is not reached. Nevertheless, the di®erence be-

tween start and end in the second example is more

than 900 because there is a high variability in crossing

6



from 16 super{cones up to 32 blocks in a partition.

Therefore, in the last experiment we merge individu-

als of varying parameter n of the n{BCC algorithm on

the one hand side and individuals with di®erent num-

bers ms on the other hand in the initial population.

In fact, this leads to a better performance, i.e. the

¯nal value of the ¯ttest individual now is end = 1803

with mb = 32 again (long dashed line in Fig. 3).

Figure 3 { Maximum workload of the best partition

generated by a GA for ms1 = 16 (short dashed),

ms2 = 32 (straight line) and for a mixed initial popu-

lation (long dashed line) with respect to time (number

of generations), see text.

These ¯rst results show that a mixture of the a priori

chosen strategies represented by the various n{BCC

instances leads to improved partitions. The successful

application of the GAs to the mixture strategy of par-

titioning algorithms was demonstrated using the idea

of superposition of partitions.
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5 Appendix

Proof of Theorem 3.3:

(I) ª¤ is a generating system:

Let s
j
i 2 ªi be arbitrarily chosen. We construct

the sets Sl with l 6= i according to the following

rule: if s
j
i \ s

j0

l = ~s
j0

l with s
j0

l 2 ªl and ~s
j0

l 6= ;

holds then ~s
j0

l 2 Sl. Then for each l the relation

[
j0

~s
j0

l = s
j
i is valid. We consider the set ¥¤ =

8<
:s¤

j0
1
:::j0

k

j s¤j0
1
:::j0

k

= \
l=1:::k
l 6=i

~s
j0l
l ; ~s

j0l
l 2 Sl

9=
; n f;g. Be-

cause of the de¯nition of the ~s
j0l
l as intersections with

s
j
i 2 ªi we have s¤

j0
1
:::j0

k

2 ª¤ for s¤
j0
1
:::j0

k

6= ; and,

furthermore, [
s¤
j0
1
:::j0

k

2¥¤

s¤
j0
1
:::j0

k

µ s
j
i . It still remains

to show [
s¤
j0
1
:::j0

k

2¥¤

s¤
j0
1
:::j0

k

¶ s
j
i : We take an arbitrary

but ¯xed u 2 s
j
i . For each set Sl one and only one

~s
j¤l
l exists such that u 2 ~s

j¤l
l , i.e., u 2 \

l=1:::k
l 6=i

~s
j¤l
l with

\
l=1:::k
l 6=i

~s
j¤l
l 2 ¥¤.

(II) ª¤ is a partition of U :

Lemma 5.1 For s¤i 2 ª¤ and s¤j 2 ª¤ with i 6= j

holds: s¤i \s
¤
j = ;, i.e. the elements of ª¤ are pairwise

disjoint.

According to (I) ª¤ is a generating system for the

s
j
i 2 ªi. Furthermore, it is assumed, that all ªi are

partitions of U themselves. Then one can ¯nd for

each element u 2 U a super{cone s¤j¤ 2 ª¤ such that

u 2 s¤j¤ . Lemma 5.1, the proof of which is shown

below, ensures that the elements of ª¤ are pairwise

disjoint.

(III) ª¤ has the maximum granularity:

Lemma 5.2 Let ¦ , ª̂ and ª¤ be de¯ned as in The-

orem 3.3. Then, for each super{cone ŝ 2 ª̂ a super{

cone s¤ 2 ª¤ exists such that ŝ µ s¤ is valid.

For arbitrary elements u 2 U and partitions ª of U let

uª denote the uniquely determined super{cone s 2 ª

for which u 2 s is satis¯ed. We choose a set R of el-

ements u1; u2; : : : ; ujª¤j with uj 2 U , j = 1 : : : jª¤j in

such a way that for the setR¤ =
©
uª

¤

j j j = 1 : : : jª¤j
ª

the relation R¤ = ª¤ holds. Using this construction

and Lemma 5.2 we have for each of the considered uj

the relation uª̂j µ uª
¤

j with uª̂j 2 ª̂ and uª
¤

j 2 ª¤.

The sets uª̂j form the set
^

R=
n
uª̂j j j = 1 : : : jª¤j

o
.

Since ª¤ is a partition it follows that uª
¤

i \ uª
¤

j = ;

for i 6= j and therefore we get uª̂i \uª̂j = ;. This leads

to the inequality
¯̄
¯ª̂
¯̄
¯ ¸

¯̄
¯̄^R
¯̄
¯̄ = jR¤j.

Next we derive the corresponding strong inequality.

Because of the assumption ª¤ 6= ª̂ at least one index

j0 exists with uª̂j0 ½ uª
¤

j0 . Consider an element û 2

uª
¤

j0 n uª̂j0 . Using Lemma 5.2 and û 2 uª
¤

j0 we get

ûª̂ µ uª
¤

j0 .
7 Hence, for each i = 1 : : : jª¤j one has

7Moreover, we remark that uª̂
j0
6= ; yields because ª̂ being

a partition and, hence, ûª̂ ½ u
ª
¤

j0
is valid.
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uª̂i \ ûª̂ = ;. This leads to the inequality

¯̄
¯ª̂
¯̄
¯ ¸

¯̄
¯̄^R [

n
ûª̂

o¯̄¯̄ =
¯̄
¯̄^R

¯̄
¯̄+ 1 > jª¤j (5.1)

which completes the proof of Theorem 3.3.2
It remains to show that the Lemmata 5.1 and 5.2 hold:
Proof of Lemma 5.1:

Let s¤i1:::ik 2 ª¤ and s¤j1:::jk 2 ª¤ be given with
(i1; : : : ; ik) 6= (j1; : : : ; jk). Then an index l exists such
that il 6= jl. Further we have s¤i1:::ik = s

i1
1 \ : : : \ s

il
l \

: : :\s
ik
k and s¤j1:::jk = s

j1
1 \ : : :\s

jl
l \ : : :\s

jk
k . Then we

obtain for the intersection s¤i1:::ik \ s¤j1:::jk the relation

s¤i1:::ik \s¤j1:::jk = si11 \s
j1
1 \ : : :\s

il
l
\s

jl
l
\ : : :\s

jk
k
\s

jk
k
.

The de¯nition of ª¤ in (3.2) yields s
il
l 2 ªl and

s
jl
l 2 ªl. Because ªl is a partition of U , sill \ s

jl
l = ;

is valid.2
Proof of Lemma 5.2:

For the proof of the lemma we show that the following
assumption leads to a contradiction:
assumption: There exists a super{cone ŝ 2 ª̂ such
that it could not be found a super{cone s¤ 2 ª¤ with
ŝ µ s¤.
Consider a super{cone ŝ 2 ª̂ satisfying the above as-
sumption. Because ª¤ is a partition jŝj ¸ 2 follows.
In particular, there exist 2 elements u1, u2 2 ŝ with
1) u1 2 s¤1 and s¤1 2 ª¤ and 2) u2 2 s¤2 and s¤2 2

ª¤such that s¤1 6= s¤2 is valid. Let these be given as
s¤1 = \

i=1:::k
s
ji
i = s¤j1:::jk and s¤2 = \

i=1:::k
s
hi

i = s¤h1:::hk
.

Since s¤1 6= s¤2 one can ¯nd an index l 2 f1; : : : ; kg
for which jl 6= hl holds. For the corresponding super{
cones sjll and s

hl

l we have: sjll ; s
hl

l 2 ªl and, hence, we
get

s
jl
l \ s

hl

l = ; : (5.2)

Furthermore, ª̂ is a superposition of ¦, i.e., one can
describe the super{cone s

jl
l in terms of the elements

of ª̂. First, we remark that the relations u1 2 ŝ \ s¤1,
u2 2 ŝ \ s¤2, s

¤

1 µ s
jl
l and s¤2 µ s

hl

l lead to

ŝ \ s
jl
l 6= ; and ŝ \ s

hl

l 6= ; : (5.3)

Hence, there exists a decomposition of the super{cone
s
jl
l into super{cones ŝr 2 ª̂:

s
jl
l = [

r=1:::t
ŝr (5.4)

and we get ŝ \ s
jl
l =

Eq.(5.4)
ŝ \

³
[

r=1:::t
ŝr

´
= [

r=1:::t

(ŝ \ ŝr) 6=
Eq.(5.3)

;. Then an index r¤ exists with

ŝ = ŝr¤ , i.e.

s
jl
l = ŝ1 [ : : : [ ŝ [ : : : [ ŝt : (5.5)

On the other hand, from (5.3) it follows that one can
¯nd an element ~u 2 ŝ \ s

hl

l which implies ~u 2 ŝ and

therefore with (5.5) ~u 2 s
jl
l . Yet, this is a contradic-

tion to (5.2) and the lemma is shown.2
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