
Reducing the complexity of process-based
integration using model-driven technologies

Stefan Kühne

Business Information Systems, Universität Leipzig
Johannisgasse 26, 04103 Leipzig, Germany

kuehne@informatik.uni-leipzig.de

1 The complexity of process-based integration of
application systems

Integration engineering [1] is a sub discipline of software engineering which aims
at the development and management of integrated business information systems.
This includes the development of integratable sub systems as well as the devel-
opment of integration solutions, e.g. by composing existing systems. One specific
focus is the process-based integration of application systems expressed by work-
flow languages such as WS-BPEL or YAWL [2]. A common starting point for this
type of integration are high-level process descriptions, e.g. based on languages
such as EPC or UML AD, from that executable process models are derived.

Even comparatively simple business processes lead to complex workflow mod-
els. They are repetitive according to concerns such as error handling, logging and
event signaling. The complexity of integration process models decreases their
maintainability and adaptability.

2 Application of model-driven approaches and techniques

Model-driven approaches, such as MDE [3], MDSD [4] and GSD [5], are promis-
ing in tackling the complexity and inflexibility of current process-based integra-
tion. They propose formal problem descriptions in terms of (domain-specific)
models and the usage of model operations that operate on these models to auto-
mate common development tasks. The application of a model-driven approach in
a specific domain requires the definition of a domain architecture which includes
modeling languages, generators, transformators and platform specifications.

Aim of our work is to develop a domain architecture to support and to au-
tomate common development tasks in the area of process-based integration of
application systems. This architecture applies abstraction mechanisms to ex-
ecutable process languages according to aspects (e.g. error-handling, logging,
monitoring) and patterns (e.g. workflow patterns, distributed communication
patterns, data-flow patterns) expressed in domain-specific modeling languages.
Furthermore it provides transformational mappings to workflow engines and
model operations such as comparison, evolution, metrication and validation.

The development of such an architecture arises several questions according to
modeling aspects and model operations that require domain-specific solutions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226138251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


– How can complexity reduction mechanisms, such as abstraction or separa-
tion of concerns, be applied to develop domain-specific process modeling
languages?

– What methods and techniques can be applied to map high-level business pro-
cess models to executable workflow models? Which refinement and weaving
approaches should be applied? What kinds of model-to-model and model-
to-text transformations have to be combined?

– What mechanisms can be applied to manage manual refinements of integra-
tion process models in incremental and iterative development cycles?

– How should dynamic aspects in models be validated across different abstrac-
tion layers? How should model evolutions be organized in this area? How
can delta models of process models be exploited?

– How should the project-spanning domain engineering process and its inter-
connections to integration projects be organized?

To be applicable in different business domains the architecture is delivered as
a framework, i.e. its artifacts are defined in an extendable manner. The usability
(including its extensibility) of the domain architecture should be evaluated in two
different business domains (e-government, e-commerce) and should be compared
to other approaches provided by generic BPM tools, e.g. the ARIS SOA Architect
[6].

This work represents work in progress. Some results are available in [7, 8].

References

1. Rautenstrauch, C.: Integration Engineering: Konzeption, Entwicklung und Einsatz
integrierter Softwaresysteme. 1. edn. Addison-Wesley, Bonn ; Paris (1993)

2. Aalst, W., Hofstede, A.: YAWL: Yet Another Workflow Language. Information
Systems 30(4) (2005) 245–275

3. Favre, J.M., Nguyen, T.: Towards a Megamodel to Model Software Evolution
Through Transformations. Electronic Notes in Theoretical Computer Science 127(3)
(2005) 59–74

4. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. John Wiley & Sons (2006)

5. Czarnecki, K.: Overview of Generative Software Development. In Banâtre, J.P.,
ed.: Unconventional Programming Paradigms (UPP) 2004. LNCS 3566, Mont Saint-
Michel, France (2004) 313–328

6. IDS: ARIS Business Architect – Web-based Enterprise Architecture and Busi-
ness Process Management. http://www.ids-scheer.com/international/english/
products/aris_design_platform/50277, Saarbrücken (2007)

7. Kühne, S., Thränert, M., Rotzoll, W., Lehmann, J.: Model-Driven Integration En-
gineering in der E-Government-Domäne Meldewesen. In Oberweis, A., Weinhardt,
C., Gimpel, H., Koschmider, A., Pankratius, V., Schnizler, B., eds.: eOrganisation:
Service-, Prozess-, Market-Engineering – 8. Internationale Tagung Wirtschaftsinfor-
matik. Number 1, Karlsruhe, Germany, Universitätsverlag Karlsruhe (2007) 109–126

8. Kühne, S.: Modellgetriebene Entwicklung im Kontext des Integration Engineering.
In Steffens, U., Addicks, J.S., Streekmann, N., eds.: MDD, SOA und IT-Management
(MSI 2007), Workshop, Oldenburg, April 2007. (2007) 47–57


