
Visualization of Barrier Tree Sequences

Revisited

Christian Heine1, Gerik Scheuermann1, Christoph Flamm2, Ivo L.
Hofacker2, and Peter F. Stadler3

1 Image and Signal Processing Group, Department of Computer Science,
University of Leipzig, {heine,scheuermann}@informatik.uni-leipzig.de

2 Department of Theoretical Chemistry and Structural Biology, University of
Vienna, {xtof,ivo}@tbi.univie.ac.at

3 Bioinformatics Group, Department of Computer Science, University of Leipzig,
studla@bioinf.uni-leipzig.de

Summary. The increasing complexity of models for prediction of the native spatial
structure of RNA molecules requires visualization methods that help to analyze and
understand the models and their predictions. This paper improves the visualization
method for sequences of barrier trees previously published by the authors. The
barrier trees of these sequences are rough topological simplifications of changing
folding landscapes – energy landscapes in which kinetic folding takes place. The
folding landscapes themselves are generated for RNA molecules where the number
of nucleotides increases. Successive landscapes are thus correlated and so are the
corresponding barrier trees. The landscape sequence is visualized by an animation
of a barrier tree that changes with time.

The animation is created by an adaption of the foresight layout with tolerance
algorithm for dynamic graph layout problems. Since it is very general, the main ideas
for the adaption are presented: construction and layout of a supergraph, and how
to build the final animation from its layout. Our previous suggestions for heuristics
lead to visually unpleasing results for some datasets and, generally, suffered from
a poor usage of available screen space. We will present some new heuristics that
improve the readability of the final animation.

1 Introduction

1.1 Biological Background

Ribonucleic acid (RNA) is a linear biopolymer, i.e. a chain of covalently con-
nected units (nucleotides) of which there are four types: adenine (A), guanine
(G), cytosine (C), and uracil (U). RNA molecules play an important role in
many biological contexts, e.g. protein synthesis. The biological function of an
RNA molecule is determined predominantly by its spatial structure which in
turn is determined by the sequence of nucleotides. When an RNA molecule

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226138248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Heine, Scheuermann, Flamm, Hofacker, and Stadler

is produced in the cell, it folds back to form double helical regions consist-
ing of paired nucleotides. The list of helices or (equivalently) of base pairs is
known as the secondary structure of the RNA molecule. Since helices stabi-
lize the structure while the intervening unpaired loops are destabilizing, each
secondary structure can be assigned a free energy equivalent to the energy
released when the molecule folds. To a large extent, the secondary structure
already determines the function of RNA.

Various methods have been proposed to explain and predict the structures
of RNA molecules. Typically, one considers the structure with the lowest free
energy, i.e. the one for which the folding process that starts from the com-
pletely unfolded state releases the maximum amount of energy. This structure
is the most stable one, and according to the laws of statistical mechanics, the
one that is most frequently attained in thermodynamic equilibrium. The fold-
ing process itself can, however, take a long time so that the equilibrium state
that will be reached after an infinite waiting time may not be biologically rel-
evant. Instead, the folding process may pause in metastable structures from
which it is hard to escape due to high energy barriers. The folding process
of an RNA molecule can be modeled as a Markov process whose states are
the individual secondary structures [CHS96]. Transitions are allowed only be-
tween “neighboring configurations”, i.e. those that differ by only one base pair
[FFHS00], and transition rates are proportional to exp(∆E/RT), where ∆E
is the difference in energy, T is the ambient temperature, and R is a con-
stant. In practice, however, the transition matrix is much too large to solve
the resulting master equation directly.

A refined model transforms the configuration space into a large graph,
whose vertices are secondary structures and whose edges connect neighboring
structures. The neighbor graph along with the energy specific to each config-
uration can be imagined as a discrete energy landscape. A folding or refolding
process can then be described by a path in the graph or a walk in the en-
ergy landscape. For each such path there exists one structure of maximal free
energy, the maximum of the path. The barrier between two configurations
is the smallest maximum of all paths between the two configurations. If a
structure refolds, it has to overcome at least this energy barrier. These bar-
riers partition the graph into “basins” that are centered around local energy
minima (secondary structures of which all neighbors are less stable). An ap-
proximate model is now obtained by considering the basins as effective states
of the RNA molecules. Transition rates between basins can be derived from
the more detailed model under the assumption that the folding process is
nearly equilibrated locally within each basin [WSSF+04].

The relevant information can now be stored in the so-called barrier tree

T of the landscape. The leaves of T correspond to the local minima of the
energy landscape together with their basins of attraction, while inner vertices
represent the barriers (also called saddle-points) between the basins. Figure 1
shows an example of a barrier tree for a very simple landscape. This example is
just for illustrative purposes; we consider mainly landscapes where individual

Visualization of Barrier Tree Sequences Revisited 3

a

b

c

d

e

E

c

e

b

a

d

Fig. 1. A very simple landscape and barrier tree
In contrast to normal trees, each vertex of a barrier is drawn at a height that

reflects the free energy of the folding configuration it represents. To determine the
energy barrier between two local minima, one has to find the barrier tree vertex

that has both leaves representing the local minima as descendants and the greatest
topological distance to the root of the tree.

points do have a high and varying number of neighbors, making the land-
scape a high dimensional object. Barrier trees are constructed by successively
“flooding” the basins of the landscape. A barrier is found at the point where
the lakes of two basins would join. These two joined basins are considered to
be one when the “flooding” is continued. See Flamm et al. [FHSW02] for a
detailed description.

In reality, however, RNA molecules are not “born” as a whole. Rather, they
are “transcribed” nucleotide by nucleotide from their DNA template, so that
the molecule is still growing while it already starts to fold [MM04]. The struc-
tures that are formed are thus dependent upon the relative rates of folding
and transcription. Similar effects are observed when an RNA molecule travels
through a narrow pore, where it must unfold on one side and refolding on
the other [GBH04]. Again the kinetics of folding is coupled to the speed with
which the molecule is pulled through the pore. Instead of single static energy
landscape, we thus have to deal with a situation where the energy landscape,
and hence the rules of folding, changes with each step of the second dynami-
cal process. Since the latter proceeds in small steps, it only causes moderate
changes in the energy landscape. Thus, there is a natural correspondence be-
tween a local energy minimum x before and a (unique) local minimum x′ after
a step of the second dynamics: Structure x is modified to some structure x∗

i.e. by appending a single unpaired nucleotide. Then x∗ relaxes to the local
minimum x′ to whose basin it belongs to. Note that multiple local minima
can map to the same local minimum in the next step, and that local minima
might arise that are not mapped from any local minimum of the previous step.

From the biophysical point of view, the problem is thus to understand the
dynamics of folding combined with another process such as transcription or
pore traversal. As in the static case, this can be done by approximating the
folding energy landscape at each step by its barrier tree. The second dynamics
is then represented by transitions between corresponding local minima. While

4 Heine, Scheuermann, Flamm, Hofacker, and Stadler

the folding process in the static case is relatively easily interpreted as a move-
ment on the barrier tree, we now have to consider a movement on a series of
barrier trees whose vertices are connected in a specific way.

In numerical simulations, one observes, that for some RNAs the fraction
of folding trajectories that reach the ground state of a certain fully grown
chain depends in a non-trivial way on the relative speed of transcription.
Both for very slow and very fast transcription the molecule reaches the ground
state quickly, while in an intermediate regime most of the trajectories become
trapped in a metastable, very different, secondary structure. In order to un-
derstand this phenomenon it is necessary to compare the trajectories in the
barrier tree series and to pinpoint the step(s) in which escape from local min-
ima occurs at the same time scales as chain elongation. The same type of
questions naturally arise in other settings where the folding energy changes,
i.e., whenever the temperature or salt concentration changes.

1.2 Visualization Problem

Without an appropriate visualization tool it is virtually impossible to find the
time-steps and transition at which time-scale difference have a drastic effect,
as there is little or no a priori coherence between the layouts of the individual
barrier trees in a series. It is thus very tedious to actually follow a trajectory
through a series and to determine the likely transitions. The mapping of local
minima, however provides information that, as we shall see, can be utilized to
enhance the coherence of adjacent trees in a series.

The barrier trees thus share common information that should be presented
accordingly, i.e. it should not attract more attention than the parts that differ.
Instead of visualizing a sequence of barrier trees that have some redundancy,
one can also say that there is just one barrier tree that changes with time
in a way that the barrier trees of the sequence are snapshots of the dynamic
tree at certain points of time. In this work, we will thus view this problem as
a dynamic graph drawing problem. As an abstraction, we define the problem
as follows: Given a sequence of barrier trees and leaf mappings, where leaves

of one tree are mapped on leaves of the following tree, determine the layout of

all trees such that in a presentation the mental map is retained.

1.3 Algorithm Outline

To solve the visualization problem, our algorithm is split in several parts,
which we will decribe in sections 3 to 5. Given the barrier trees Ti =
(Vi, Ei, ei), (ei : Vi → R is a function that gives the energy of each vertex) and
the leaf mappings fi : Vi−1 → Vi between them, we first find equivalent ver-
tices. These vertices are then arranged in an order that minimizes an objective
function which is mainly determined by the number of visible edge crossings
for the whole sequence at presentation time. We use simulated annealing to
determine this order. Given this order, we directly derive the layout of the

Visualization of Barrier Tree Sequences Revisited 5

single trees that make up the barrier tree sequence and present them in an
animation with transitions that help to communicate the changes.

2 Related Work

Drawing a graph is the process of transforming topological properties of
the graph to geometric objects in a graphical representation. This process
is mostly determined by the generation of a layout for that graph, that places

vertices in a vector space and routes edges to connect the vertices. The layout
of a graph has properties that can be measured with certain cost functions,
e.g., area of the layout, number of edge crossings, distribution of vertices
and edges, congruency of isomorphic structures, etc. To make visually pleas-
ing drawings, esthetic criteria have been defined. Such criteria often demand
maximizing or minimizing one of the cost functions. As not all esthetic cri-
teria can be obeyed simultaneously, a layout algorithm generally makes a
trade-off between them. The field of static graph layout creation has been
intensively studied in the past decades. There exist good overviews for this
topic ([dBETT94, HMM00, Tam99]).

The first attempts toward dynamic graph drawing were very specific.
Moen [Moe90] presents an algorithm that shows a part of an ordered tree. Al-
though the tree itself stays the same, the selected subset may change through
replacement of subtrees by leaves and vice versa. Cohen et al. [CdBT+92]
gives detailed algorithms and data structures for a number of dynamic graph
classes. These allow visualizing popular data structures, e.g. AVL- Trees, and
adjusting the layout of a graph, if it is being edited or browsed. Both ap-
proaches share a common motivation: they reduce the computation time of
the layout by reusing information about the previous layout. This has the side
effect of making the layout of the changed graph similar to the unchanged,
but accumulation of many elementary changes can result in an esthetically
unpleasing drawing.

North [Nor95] measures the quality of an algorithm to make good dynamic
drawings based on incremental or dynamic stability, i.e. the property of an
algorithm to produce very similar layouts for graphs that differ only slightly.
He applies his concepts to the drawing of dynamic directed acyclic graphs.
Misue et al. [MELS95] introduce the concept of mental distance. It formally
describes the difference of two layouts and can be used to measure the per-
ceived stability of a dynamic graph layout. They define the esthetic criterion
“preserving the mental map” for any dynamic graph drawing problem, and
refine it to three models. In the orthogonal ordering the left-to-right, and up-
down order of vertices stays the same. Proximity relations are preserved, if
the relative distances of vertices and edges do not change. The topology is
preserved, if vertices and groups of vertices of one region stay in that region.
The mental distance of two layouts is the number of times or the amount by
which a rule is broken. Frishman and Tal [FT04] present an algorithm that

6 Heine, Scheuermann, Flamm, Hofacker, and Stadler

draws dynamic clustered general graphs using an incremental force directed
method. Their algorithm generally preserves the mental map by reusing the
earlier layout, but improves the layout slightly, if a static graph drawing es-
thetic criteria is not met any more. They recently generalized their method
to unclustered graphs ([FT07]).

If the layout process cannot be formulated to minimize the mental distance
between successive layouts, a local transition or morphing of the layouts has
to take place. Friedrich and Eades [FE02] describe a method to make sure
that the transition preserves the mental map. To do that, an affine trans-
formation that registers both layouts is determined and performed. Using
a force-directed approach, vertices are moved to their final positions while
avoiding occlusions and other visual artifacts linear interpolation would bring
forth. Fortunately, our algorithm produces layouts that are stable enough not
to require these forms of transition.

Erten et al. [EHK+03] describe a method to layout general dynamic graphs
using a force-directed method. Vertices of the evolving graph that are equiv-
alent are connected by virtual springs that contract in the force-directed
method. As a result, vertices referring to the same instance at different times
are positioned closely together. This ensures a good stability of the dynamic
layout. We do not use this general approach, because we feel that the final
animation should at least resemble the look and feel of barrier trees.

Diehl and Görg [DG02] propose a general scheme to layout dynamic graphs
when all graphs of the sequence are known prior to layout creation. This
scheme is independent of the class of the graphs and the layout algorithm
used. Their Foresight Layout with Tolerance algorithm makes a trade-off be-
tween static and dynamic graph drawing esthetic criteria based on a tolerance
parameter. In a first phase a supergraph is constructed that contains all graphs
of the sequence as subgraphs. Then the layout of this (static) supergraph is
determined and used as a blueprint for the layout of the subgraphs. The lay-
out of the subgraphs can be further improved with respect to static graph
drawing esthetic criteria, but its mental distance may not differ by more than
the tolerance parameter from the blueprint layout. Presentation of the se-
quence can be done using morphing geometry information between the single
subgraphs. Görg et al. [GBPD04] further improve the scheme with the notion
of the importance of a vertex or edge. This importance is a measure for the
number of times a vertex or edge is present in the graph sequence and is used
to improve the visual quality of the layouts.

A similar idea is presented by Gaertler and Wagner [GW05]. Instead of
an animation, a 21

2
D visualization, i.e. a 3D view of a stack of static 2D

layouts–each showing the graph at a certain point of time–is generated. Bran-
des et al. [BDS03] also use 2 1

2
D visualization to show a set of similar metabolic

pathways. They create the layouts of the acyclic directed graphs representing
the pathways using a layout of an union of all graphs, and also determine the
optimal ordering of layouts. Both approaches share the notion of the super-
graph, local adjustments like in the Foresight Layout with Tolerance algorithm

Visualization of Barrier Tree Sequences Revisited 7

are not performed. Dwyer and Schreiber [DS04] also use 21

2
D to visualize a set

of similar phylogenetic trees. Phylogenetic trees are very similar in structure to
barrier trees. In contrast to the other two approaches instead of a supergraph
only a minimal leaf ordering is determined. This neglects the identification
of equivalent inner vertices, which becomes necessary, if transitions are to be
shown between keyframes. It also requires each inner vertex to have exactly
two children, a property which barrier trees do not have in general.

In this work we adapted the Foresight Layout with Tolerance algorithm.
Since it is very general, we optimized each of the phases to fit our dynamic
barrier tree application.

The layouts of the subgraphs that is generated from the supergraph layout
can also be used in a 2 1

2
D visualization. However, we found this to be inap-

propriate, because the barrier tree sequences under consideration were highly
dynamic. In our datasets we observed that almost any tree at time t has nearly
nothing in common with the tree at time t + 5. A 2 1

2
D visualization would

therefore exhibit much visual clutter. Also, the energy of a vertex, and thus
its vertical position, can change between subgraphs. In a 21

2
D visualization

one would have to indicate such events with edges between slices, we found
it more natural to indicate that in an animation with a movement of the ver-
tex. In general, we think that the animation of transitions between subgraph
layouts can be efficiently used to communicate the changes the barrier tree
topology to the user.

3 Constructing the Equivalence Classes

The first step in the Foresight Layout with Tolerance Algorithm is to construct
a supergraph. In the general case, this would be the union of all graphs of the
sequence. Unfortunately, this works well only if the supergraph contains all
the information of the subgraphs afterward. But barrier trees have additional
information per vertex that is used for layout, i.e. their energy. Since a vertex
of the supergraph may represent multiple vertices of the tree sequence and
each of these vertices may have a different energy, a supergraph vertex may
not have a single energy value. We found no useful solution to incorporate
this information into the supergraph, so in earlier work [HSF+06] we simply
ignored this information and constructed the supergraph nonetheless. While it
can be shown that this may lead to suboptimal results, especially during edge
crossing minimization, we found that hardly ever a problem for the datasets
we considered, and used preprocessing to minimize the errors.

When we considered larger datasets, we observed that using too much
preprocessing on them deleted much information, but construction and lay-
out of the supergraph for the unprocessed data gave esthetically unpleasing
results. For this work, we decided to take an alternative approach and do not
use all of the output of the supergraph construction but put all barrier tree
information directly into the layout process. The identification of equivalent

8 Heine, Scheuermann, Flamm, Hofacker, and Stadler

barriers, however, is still required and to that end the supergraph algorithm
in [HSF+06] can be used. For brevity we will not repeat the rather lengthy
algorithm here, instead we refer to its original publication. From the output
of the algorithm we ignore the structure, i.e. , we ignore the edges of the su-
pergraph G. The vertices of G are our equivalence classes and the function k,
which maps from each barrier tree vertex to a supergraph vertex, becomes a
function which maps each barrier tree vertex to its equivalence class.

4 Layout

4.1 Supergraph Layout

We use the barrier trees directly as an input for the supergraph layout. We
try to find an order σ of the equivalence classes such that the sum of all edge
crossings in all trees is minimized, if the barrier tree vertices were drawn using
this order as the horizontal order.

σ = argmin
O

N
∑

i=1

(α · crossings(Ti, OVi
) + β · localorder(Ti, OVi

))

where

• Ti = (Vi, Ei, ei) is the i-th tree in the sequence,
• G = (V,E) is the supergraph of the tree sequence according to [HSF+06],
• V is the set of equivalence classes,
• k :

⋃N

i=1
Vi → V maps each tree vertex to its equivalence class,

• O ⊂ V × V is an ordering relation,
• OVi

is that ordering relation restricted to Vi and satisfies (u, v) ∈ OVi
, if

and only if (k(u), k(v)) ∈ O for all u, v ∈ Vi,
• crossings(Ti, OVi

) denotes the number of edge crossings if the tree Ti was
drawn with the horizontal order of the vertices given by OVi

,
• localorder(Ti, OVi

) names approximately the number of times a parent
vertex is not drawn between its children, and

• α, β constants, which we set to 1 and 5 respectively.

At first we minimzed the above function only considering minimizing the
number of edge crossings and used simulated annealing [KGV83] to that end.
We were surprised that it is possible to draw the simplest sequence (att)
with a total of 27 edge crossings for the whole sequence. We were quickly
disappointed by the images themselves, as it was apparent that we neglected
to encourage the father of two vertices to be drawn between them. Because
of that, the use of our orthogonal drawing style resulted in hardly readable
images. So we added the second term to our objective function to avoid this
particular effect. It accumulates the difference of the number of vertices that
are drawn to the left of their parent and the number of vertices that are drawn

Visualization of Barrier Tree Sequences Revisited 9

to the right of their parent for each vertex. If each vertex is always between
its two successors, the contribution of this term to the objective function is
always zero. We experimentally determined α = 1 and β = 5 to give good
final layouts. It roughly means that we rather allow 5 edge crossings than one
parent that is not between its children.

There are multiple possibilities to implement the simulated annealing
strategy for this particular objective function. We tested several of them,
and found the following to behave the best. We start with a random order of
equivalence classes and iteratively improve this order. At each iteration, we
pick a random equivalence class and insert it at a random position between
two other equivalence classes. Then we re-evaluate the objective function for
all trees and compare it to the old value. If we improved, we keep the new
order, otherwise we only keep it with the probability

p =
1

1 + exp(∆C T−1
t)

Tt =
nt − t

t

with ∆C being the cost increase and Tt being a temperature which decreases
linearly with each iteration t. We stop the process after a fixed number of
iterations nt.

Instead of recalculating the total number of edge crossings, we just calcu-
late ∆C by considering only adjacent and incident edges on all vertices v with
h(v) being the equivalence class currently moved. We can do this similarly for
the localorder term of the objective function. This greatly decreases the time
per iteration and makes the process very fast.

In our previous work we computed the layout of the supergraph using the
dot algorithm by Gansner et al. [GKNV93]. In this algorithm most of the
time is spend minimizing edge crossings in a repeated heuristic two layer edge
crossing minimization which had a time complexity of O(N4), where N is the
maximum number of vertices on one layer. Although the algorithm seldom
runs in that order for real world examples, it takes a very long time to find
the minimal number of edge crossings for our barrier tree sequences. Not only
because we observed that there was at least one layer where one eighth of all
supergraph vertices resided in, but also because the swapping of vertices often
did not change the number of edge crossings directly, but a few iterations later
might have allowed improvements.

Our new method has much faster iterations because the number of oper-
ations per iteration is in the order of

O

∑

i∈{1,...,N}

deg(Ti)|Ei|

 = O

∑

i∈{1,...,N}

deg(Ti)|Vi|

where deg(T) is the degree of T , i.e. the maximum number of incident and
adjacent edges on any vertex v of T . So one iteration roughly scales linearly
with the total number of vertices of the whole sequence, as the degree of our

10 Heine, Scheuermann, Flamm, Hofacker, and Stadler

trees is 2 or 3 in almost all cases, i.e. a very small constant. So one iteration
lies in O(N), but we require many more iterations to achieve the same quality
improvement of one iteration of the dot algorithm.

4.2 Tree Layout

Coordinate assignment of tree vertices is done for each tree separately, re-
specting the ordering relation generated in the layout phase. This constraint
preserves the mental map, specifically the orthogonal ordering. Initially the
horizontal position of a tree vertex v is directly gained from the number of
equivalence classes smaller than h(v) with respect to the global ordering re-
lation O. The vertical position of v directly reflects its energy.

After the vertices have been positioned, edges must be routed. For simplic-
ity each tree edges consist of just one horizontal and one vertical line segment
that directly connect the two adjacent vertices. In general, it is not always
possible to draw the trees without edge crossings. We sacrificed this prop-
erty for the preservation of the mental map. Drawing the edges as orthogonal
line segments conforms to the style, barrier trees are usually drawn. We also
found that a straight line drawing does not necessarily reduce the number of
edge crossings and additionally makes tracing the edges harder than in an
orthogonal drawing.

Positioning each tree separately allows us to locally improve the layout of
the subgraphs. This corresponds to the third phase of the Foresight Layout

with Tolerance algorithm. It is trivially possible to generate the horizontal
position of a Tree vertex v from the number of vertices of the same tree
that are smaller than v with respect to OVi

. This would make a better visual
impression, if the keyframes were studied by themselves, but it destroys a lot
of the mental map, so we do not use this possibility for our animations.

5 Animation

After the layout for each tree has been generated, the single trees could be
presented using the generated layout. In practice, there can be quite a num-
ber of changes between consecutive trees. Vertices and edges may appear or
disappear, and whole subtrees can change the energy of their vertices. We
created methods to make the transition smooth and to indicate the type of
change. Vertices that experience a change of energy are moved accordingly in
the drawing area using linear interpolation of the coordinates. Barriers that
appear or disappear are presented using blending. Edges are modified based
on the changes of their adjacent vertices. Subtrees that are created or merged
“grow” out of or into the vertices, where they are created or merged into,
again using linear interpolation of their coordinates.

Usually the huge number of changes would require each change to be
visualized separately. In our proof-of-concept implementation, all changes are

Visualization of Barrier Tree Sequences Revisited 11

shown simultaneously using the following scheme: Each transition is given a
time interval [ti, ti + ∆t). Vertices that change their energy are moved during
[ti + 3

8
∆t, ti + 7

8
∆t). Subtrees that grow into a vertex because of merging are

scaled during [ti + 2

8
∆t, ti + 5

8
∆t), subtrees that grow out of a vertex, do so

during [ti +
5

8
∆t, ti +

8

8
∆t). Fading out of barriers is done during [ti +

2

8
∆t, ti +

6

8
∆t) and fading in takes place during [ti + 4

8
∆t, ti + 8

8
∆t). The remaining

interval [ti, ti + 2

8
∆t) is used for a static presentation of tree Ti. The segments

overlap intentionally. In the dataset we observed we found that using non-
overlapping sections resulted in large parts of the tree simply disappear and
appear and destroy the mental map of the user.

6 Highlighting

One common question for a domain expert that analyzes the barrier tree
sequence is “which of two given structures is the winner”, i.e., which one is
more probable to be found in nature. It is typically found when the folding
process starts in one part of the energy landscape and, later on, a new part
of the energy landscape is created which is separated by a very high barrier
from the rest. Regardless of how optimal the local minima of the new part of
the landscape are, it is unlikely that the molecule will fold into one of them,
because the barrier is too high and the probability that it will be overcome is
very low on the timescale for folding reactions.

Using a simple technique, some elements of the animation can be high-
lighted to emphasize such observations. We split the last tree at the root and
look for the leaf of lowest energy in the left subtree and the leaf of lowest en-
ergy in the right subtree. The first one is marked blue and the later one red.
When the animation is shown, predecessors of these two leaves will be drawn
with the appropriate color. The predecessors are given by the leaf mapping,
i.e., they are local minima that will refold into the two final configurations
during the process. We also found that drawing the path from the root to
the actual leaf with the highlight color is visually more attracting that just
coloring the leaf and its one adjacent edge.

7 Results

We evaluated our improved algorithm on three datasets. The att dataset
consists of 20 barrier trees, with at most 25 leaves per tree and a total of 894
vertices in all trees. It represents a small RNA molecule, with sequence length
growing from 40 to 74 nucleotides with varying step size. Figure 2 shows the
keyframes for this dataset. The lepto dataset consists of 47 barrier trees,
with a maximum of 50 leaves per tree and a total of 3727 vertices in all trees.
The sequence length of the molecule increases from 10 to 56 nucleotides. The
largest example, the hok dataset, consists of 65 trees with a maximum of 100

12 Heine, Scheuermann, Flamm, Hofacker, and Stadler

leaves and a total of 8635 vertices. The sequence length grows from 10 to 74
nucleotides. The inner vertices of all trees of these datasets satisfy odeg(v) = 2,
i.e., all inner vertices have exactly two children. All datasets present rather
short RNA molecules.

We found our new supergraph layout, which effectively only determines
an optimal vertex order for the supergraph vertices, to perform very well.
We feared that most of the random permutations do not improve the tree
layout at all or only slowly. Indeed, we require a greater number of iterations
until the images produced were readable. Whereas the old algorithm used
1000 layer sweep iterations the new algorithm uses at least 100.000 iterations
to generate readable animations. But because each iteration requires much
less time, the new implementation is still faster. On an AMD Opteron with
2.0GHz, the old algorithm with 1000 iterations required approximately 37,
3462, and 16790 seconds for the att, lepto, and hok dataset with 381, 1531,
and 3793 equivalence classes respectively. The new method using 1.000.000
iterations required approximately 27, 79, and 182 seconds respectively.

The visual output of the two radically different methods is not directly
comparable. There is one thing directly observable for all datasets. The new
algorithm distributes vertices more evenly across the drawing area. But this is
rather a nice side effect of the method and was not originally intended. While
the att sequence does not improve much visually if compared to the old
method, it benefits from the reduced computation time. The visual quality
of the lepto and hok sequences improved greatly, because now all edge
crossings are accounted for.

8 Conclusion and Future Work

We have shown that it is possible to generate readable layouts for sequences
of barrier trees using the Foresight Layout with Tolerance algorithm. We also
showed, that construction of a supergraph may sometimes lead to subopti-
mal results if the supergraph does not use all information from the graphs
it is constructed for. Our näıve implementation of a combination of super-
graph construction and layout clearly outperformed the version where these
two were separate, both quality and runtime-complexity wise. The number
of iterations needed for a given dataset seems to scale with its size, but we
are yet uncertain exactly how. We are currently looking for methods that
automatically determine the optimal number of iterations.

The layout of the single trees may be combined with additional informa-
tion. The simulation of the folding process during the growing of the molecule
under various temperatures and growing rates results in distribution func-
tions for local minima. Because the animation of the barrier trees preserves
the orthogonal ordering, annotating the barrier tree leaves with the density
of the corresponding structure configurations preserves the mental map for
the annotations. The change in the densities can be additionally indicated by

Visualization of Barrier Tree Sequences Revisited 13

a flow of liquid along the tree edges. Methods that combine tree layout and
additional information are currently investigated.

As a transition from one tree to the next consists of many elementary
operations, instead of showing them simultaneously, it might be better to
break the leaf mappings in elementary operations and show them in sequence.

The constructed supergraph is a static visualization of the whole sequence,
and presentation forms other than an animation, may be investigated. One
idea is synthesizing a 2D landscape from all barrier trees, where the folding
process is visualized as a walk.

9 Acknowledgements

We would like to thank the anonymous reviewers for their in-depth comments
on our work. This work was supported in part by the EMBIO project in FP-6
(http://www-embio.ch.cam.ac.uk/).

References

[BDS03] Ulrik Brandes, Tim Dwyer, and Falk Schreiber. Visualizing related
metabolic pathways in two and a half dimensions. In Liotta [Lio04],
pages 111–122.

[CdBT+92] Robert F. Cohen, Giuseppe di Battista, Roberto Tamassia, Ioannis G.
Tollis, and Paola Bertolazzi. A framework for dynamic graph drawing.
In Symposium on Computational Geometry, pages 261–270, 1992.

[CHS96] Jan Cupal, Ivo L. Hofacker, and Peter F. Stadler. Dynamic program-
ming algorithm for the density of states of RNA secondary structures. In
R. Hofstädt, T. Lengauer, M. Löffler, and D. Schomburg, editors, Com-
puter Science and Biology 96 (Proceedings of the German Conference
on Bioinformatics), pages 184–186. Universität Leipzig, 1996.

[dBETT94] G. di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
drawing graphs: An annotated bibliography. Computational Geometry:
Theory and Applications, 4(5):235–282, 1994.

[DBL04] 10th IEEE Symposium on Information Visualization (InfoVis 2004),
10-12 October 2004, Austin, TX, USA. IEEE Computer Society, 2004.

[DG02] Stephan Diehl and Carsten Görg. Graphs, they are changing. In
Stephen G. Kobourov and Michael T. Goodrich, editors, Graph Draw-
ing, volume 2528 of Lecture Notes in Computer Science, pages 23–30.
Springer, 2002.

[DS04] Tim Dwyer and Falk Schreiber. Optimal leaf ordering for two and a half
dimensional phylogenetic tree visualisation. In Neville Churcher and
Clare Churcher, editors, InVis.au, volume 35 of CRPIT, pages 109–115.
Australian Computer Society, 2004.

[EHK+03] Cesim Erten, Philip J. Harding, Stephen G. Kobourov, Kevin Wampler,
and Gary V. Yee. Graphael: Graph animations with evolving layouts.
In Liotta [Lio04], pages 98–110.

14 Heine, Scheuermann, Flamm, Hofacker, and Stadler

[FE02] Carsten Friedrich and Peter Eades. Graph drawing in motion. J. Graph
Algorithms Appl., 6(3):353–370, 2002.

[FFHS00] Christoph Flamm, Walter Fontana, Ivo L. Hofacker, and Peter Schuster.
RNA folding at elementary step resolution. RNA, 6:325–338, 2000.

[FHSW02] Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, and Michael T.
Wolfinger. Barrier trees of degenerate landscapes. Z. Phys. Chem.,
216:1–19, 2002.

[FT04] Yaniv Frishman and Ayellet Tal. Dynamic drawing of clustered graphs.
In INFOVIS [DBL04], pages 191–198.

[FT07] Yaniv Frishman and Ayellet Tal. Online dynamic graph drawing. In
EUROVIS [DBL04], pages 191–198.

[GBH04] Ulrich Gerland, Ralf Bundschuh, and Terence Hwa. Translocation of
structured polynucleotides through nanopores. Phys. Biology, 1(1-2):19–
26, 2004.

[GBPD04] Carsten Görg, Peter Birke, Mathias Pohl, and Stephan Diehl. Dynamic
graph drawing of sequences of orthogonal and hierarchical graphs. In
János Pach, editor, Graph Drawing, volume 3383 of Lecture Notes in
Computer Science, pages 228–238. Springer, 2004.

[GKNV93] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-Phong Vo. A technique for drawing directed graphs. IEEE Trans.
Software Eng., 19(3):214–230, 1993.

[GW05] Marco Gaertler and Dorothea Wagner. A hybrid model for drawing
dynamic and evolving graphs. In Patrick Healy and Nikola S. Nikolov,
editors, Graph Drawing, volume 3843 of Lecture Notes in Computer Sci-
ence, pages 189–200. Springer, 2005.

[HMM00] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visualiza-
tion and navigation in information visualization: A survey. IEEE Trans-
actions on Visualization and Computer Graphics, 06(1):24–43, 2000.

[HSF+06] Christian Heine, Gerik Scheuermann, Christoph Flamm, Ivo L. Ho-
facker, and Peter F. Stadler. Visualization of barrier tree se-
quences. IEEE Transactions on Visualization and Computer Graphics,
12(5):781–788, 2006.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by sim-
ulated annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–
680, 1983.

[Lio04] Giuseppe Liotta, editor. Graph Drawing, 11th International Sympo-
sium, GD 2003, Perugia, Italy, September 21-24, 2003, Revised Papers,
volume 2912 of Lecture Notes in Computer Science. Springer, 2004.

[MELS95] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and
the mental map. J. Visual Languages and Computing, 6(2):183–210,
1995.

[MM04] Irmtraud M. Meyer and Istvan Miklos. Co-transcriptional folding is
encoded within RNA genes. BMC Molecular Biology, 5(10), 2004.

[Moe90] Sven Moen. Drawing dynamic trees. IEEE Software, 7(4):21–28, July
1990.

[Nor95] Stephen C. North. Incremental layout in dynadag. In Graph Drawing,
pages 409–418, 1995.

[Tam99] Roberto Tamassia. Advances in the theory and practice of graph draw-
ing. Theoretical Computer Science, 217(2):235–254, 1999.

Visualization of Barrier Tree Sequences Revisited 15

[WSSF+04] Michael T. Wolfinger, W. Andreas Svrcek-Seiler, Christoph Flamm,
Ivo L. Hofacker, and Peter F. Stadler. Exact folding dynamics of RNA
secondary structures. J. Phys. A: Math. Gen., 37:4731–4741, 2004.

16 Heine, Scheuermann, Flamm, Hofacker, and Stadler

Fig. 2. The first 18 subgraph layouts of the att sequence.

