
Proc. 5th European Congr. on Intell. Techn. and Soft Comp. (EUFIT'97), p.804-808, 1997.

HIERARCHICAL MODEL PARTITIONING FOR PARALLEL

VLSI{SIMULATION USING EVOLUTIONARY ALGORITHMS

IMPROVED BY SUPERPOSITIONS OF PARTITIONS

R. Haupty, K. Heringy, U. Petriy and Th. Villmannz

UniversitÄat Leipzig
yInstitut fÄur Informatik, Augustusplatz 10/11, 04109 Leipzig, Germany

zKlinik fÄur Psychotherapie und psychosomatische Medizin
Karl{Tauchnitz{Str. 25, 04107 Leipzig, Germany
Phone +49 341 - 9732284, Fax +49 341 - 9739348

email: fhaupt,hering,petri,villmanng@informatik.uni-leipzig.de

ABSTRACT: Parallelization of VLSI-simulation exploiting model-inherent parallelism is a promising way

to accelerate veri¯cation processes for whole processor designs. Thereby partitioning of hardware models

in°uences the e±ciency of following parallel simulations essentially. Based on a formal model of Parallel Cycle

Simulation we introduce partition valuation combining communication and load balancing aspects.

We choose a 2-level hierarchical partitioning scheme providing a framework for a mixture of experts strategy.

Considering a complete model of a PowerPC 604 processor, we demonstrate that Evolutionary Algorithms can

be applied successfully to our model partitioning problem on the second hierarchy level, supposing a reduced

problem complexity after fast pre-partitioning on the ¯rst level. For the ¯rst time, we apply superpositions dur-

ing execution of Evolutionary Algorithms, resulting in a faster decreasing ¯tness function and an acceleration

of population handling.

1 MODEL PARTITIONING FOR VLSI{SIMULATION

We consider parallel logic simulation processes where several simulator instances co-operate over a loosely-

coupled processor system. Each instance simulates a part of a complex hardware model. The corresponding

model partitioning problem can be formulated as a combinational optimization problem. In this context

partitions are characterized by costs (here: run-time of a corresponding parallel simulation). We take a formal

model of parallel cycle simulation as basis of partition valuation.

1.1 MODEL CONSTRUCTION

A framework of concepts for the formal description of parallel cycle simulation combining structural and

behavioural aspects is developed in [Her96]. At ¯rst a Structural Hardware Model (SHM) is introduced as

bipartite graph M = (MB ;MS ;MR) where nodes (boxes) of MB = ME [MI [MO [ML represent design

components as, for instance, logical gates (ME), input and output pins (MI [MO) and latches (ML). The

elements ofMS stand for wires. For SHM s sequences of not closer speci¯ed actions bound to nodes ofMB are

de¯ned as behaviour. They are called Sequential Cycle Simulation (SCS). With respect to partition valuation

actions are considered as sources of simulation expense.

Our partitioning approach outlined in [HHV96] takes cones (subsets of MB) as fundamental building blocks

for partitions. Usually, cones can overlap each other. For each modelM a cone set Co(M) is given. Partitions

of M are introduced as partitions of Co(M) in mathematical sense. A Parallel Structural Hardware Model

(PSHM) Mª (with respect to a partition ª of a SHM M) embodies a set of SHM s MC

ª
=

¡
MC

B ;M
C

S ;M
C

R

¢
,

each element determined by a cone set C 2 ª. Special sets MC

I;L µ MC

I and MC

O;L µ MC

O are devoted

to communication between PSHM components which is restricted to cycle boundaries. Extended Sequential

Cycle Simulation (ESCS) is introduced as PSHM component behaviour. Each ESCS consists of a leading

sub-sequence of cycle-internal actions followed by a sub-sequence of communication related actions. The latter

are split into three parts representing communication pre-processing, true communication and communication

post-processing.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226138235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Finally, Parallel Cycle Simulation (PCS) is de¯ned as behaviour of a whole PSHM on the basis of a model

of parallel computation called Communicating Processors (CP). A PCS embodies a sequence of action sets

which can be interpreted as combination of ESCSs belonging to the components of the corresponding PSHM.

1.2 PARTITION VALUATION

Our objective of model partitioning is to minimize the partition-dependent run-time tª for a corresponding

parallel simulation1. The run-time tª is estimated by the sum of several terms which belong to sequences of

actions related to the time consumption for parallel simulation. According to our model of PCS, we distinguish

three kinds of actions which in°uence tª:

1. Box evaluation and latch update actions are included for a partition component C 2 ª by:

t
C

B = t
M
B ¢

¯̄
M
C

E [M
C

L

¯̄
(1.1)

depending on the SHM M with an averaged time consumption tMB per single box.

2. For a partition component C 2 ª the amount

t
C

comm = t
C

pre comm + t
C

post comm = t
M
comm ¢

¯̄
M
C

O;L

¯̄
+ t

M
comm ¢

¯̄
M
C

I;L

¯̄
(1.2)

has to be taken into account concerning pre-processing and post-processing actions related to the box

sets MC

O;L and MC

I;L, respectively, whereby t
M
comm is a constant.

3. The CP model is substantiated with the strong synchronizing mpc index command belonging to the

Message Passing Library of the AIX Parallel Environment. This command initiates collective com-

munication between the corresponding processors. The time consumption depends on the number of

processors (number of partition components jªj) and the maximum number of values which have to

be transferred between any pair of processors: max
C1;C22ª

¯̄
¯MC1!C2

I;L

¯̄
¯. In this context the mpc index

command requires the time

t
ª
mpc index = max

C1;C22ª

¯̄
¯MC1!C2

I;L

¯̄
¯ ¢ (ta + tb ¢ jªj) (1.3)

with MC2

I;L =
S
C12ª

M
C1!C2

I;L and ta and tb as system-dependent constants.

Using (1.1), (1.2), and (1.3), the run-time tª is given by

t
ª = t

ª
mpc index +max

C2ª

¡
t
C

B + t
C

comm

¢
. (1.4)

The strong synchronization of the mpc index command implies that the run-time tª is determined by the

processor which consumes the biggest amount of time for box evaluation and latch updating together with the

pre- and post-processing of the communication.

2 PARTITIONING STRATEGY

2.1 HIERARCHICAL PARTITIONING USING SUPERPOSITIONS OF PARTITIONS

Before presenting a description of our hierarchical partioning approach we have to introduce the concepts of

partitioning and partition. In the following, we always assume that both U and V are non-empty sets.

De¯nition 1 1.) A partitioning of U with respect to V is a unique map © : U ! V assigning each element

u 2 U to an element v 2 V .

2.) A partition ª© of U related to the partitioning © : U ! V is given by ª© =
©
©¡1 (v) j v 2 cod ©

ª
,

where cod © is the range of ©.

1In the following, simulation time is generally related to one clock-cycle in the parallel simulation.

2

An element v 2 cod © represents the partition component ©¡1 (v) containing all elements u 2 U which are

mapped onto v. Here we identify U with the set of cones Co (M) and V with the set B of mb blocks each of

them assigned to a single processor for parallel simulation. Then our task is to ¯nd a partitioning

©opt : Co (M) ! B (2.1)

with minimum run-time tª©opt according to (1.4).

One important aspect of partitioning in the context of VLSI{simulation is the extremely large number of

objects which have to be mapped. Hence, a non-trivial one{step partitioning is often not feasible because of

the extensive computation time and memory allocation costs. Therefore, we focus on a hierarchical partitioning

strategy [HHV96].

In this approach we split the general partitioning scheme (2.1) into a q{level one [HHV96], which reduces the

complexity in each level. Here, we use a 2{level scheme:

©H : Co (M)
©1¡! S

©2¡! B (2.2)

with ©H = ©2 ± ©1. Thereby, S is a set of elements Sl, the pre{images sl = ©¡1
1

(Sl) of which are called

super{cones. Of course, in general ©H is only an approximation of ©opt in (2.1). However, one can handle

each sub{partitioning ©j (j = 1;2) separately. This allows the application of various partitioning algorithms

for each ©j. Yet, an a priori optimal choice of ©j often is impossible. To overcome this di±culty we prefer

a strategy introduced in neurodynamics by Jordan et al. [JJ94], the so{called mixture of experts approach,

which we have applied to the hierarchical partitioning strategy [HHV96]. In the scheme (2.2) we consider

several partitioning algorithms Aj

i
, i = 1 : : :mj corresponding to maps ©

j

i
in one hierarchical step j working

independently. The several heuristics of the Aj

i
in°uence the structure of the resulting partitions ª

A
j

i

. To mix

the di®erent properties (expert knowledge) of the ª
A
j

i

we build a superposition of them. In general we de¯ne:

De¯nition 2 Let ¦ = fª1; : : : ;ªkg be a system of partitions of the set U . The elements of ªi are denoted

by sj
i
, j = 1 : : : ni. ~ª¦ = f~s1; : : : ; ~smg is called a superposition of ¦ if and only if:

1. ~ª¦ is a partition of U

2. ~ª¦ is a generating system for each ªi 2 ¦, i.e., for each sj
i
2 ªi (i = 1 : : : k, j = 1 : : : ni) exist

~sl1 ; : : : ; ~slr 2
~ª¦ such that sj

i
= ~sl1 [: : : [~slr .

Def. 1 yields ; =2 ~ª¦. We consider the following special construction of superpositions:

Theorem 3 Let ¦ = fª1; : : : ;ªkg be a system of partitions of the set U . The elements of ªi are denoted by

sj
i
, j = 1 : : : ni. Furthermore, let ª¤

¦
be given as

ª¤

¦
=

½
s¤
j1:::jk

j s¤
j1:::jk

= \
i=1:::k

sji
i

¾
n f;g (2.3)

with ji = 1 : : : ni. Then ª¤

¦
is a superposition of ¦. Furthermore, for all superpositions ª̂ of ¦ with ª̂ 6= ª¤

¦

the relation

¯̄̄
ª̂
¯̄̄
> jª¤

¦
j is valid, i.e. ª¤

¦
has the maximum granularity.

Proof: The proof of the theorem is shown in [HHV96].

The so-called maximum superposition ª¤
¦
of ¦ takes the di®erent properties of the ªi into account. Keeping

together two elements of U within one component of ª¤
¦
is to be interpreted as "collective decision" of all

algorithms involved; the "individual decision" of one algorithm placing two elements of U into di®erent partition

components yields an assignment of these elements to di®erent components of ª¤
¦
, too. Due to Def.2 ª¤

¦
is a

generating system for all ªi. These aspects are the reasons for integrating the maximum superposition into

our hierarchical strategy.

In our 2{level scheme (2.2), the superposition is built after the ¯rst partitioning level. If we assume that we

have various algorithms A1

i
realizing the di®erent maps ©1

i
: Co (M) ! Si we obtain ªi =

¡
©1
i

¢
¡1

(Si) in

agreement with Def. 1. Now we specify ¦ as the set of all ªi and ª¤
¦
as its superposition according to (2.3).

In analogy to the maps ©1
i
, we introduce the abstract map

©¤
1
: Co (M) ! S¤ (2.4)

where S¤ is representing the set of super{cones s¤
l
2 ª¤

¦
and ª¤

¦
= (©¤

1
)
¡1

(S¤). Then the set S¤ can be taken

as a new system of basic units for partitioning in the second level.

3

2.2 EVOLUTIONARY ALGORITHMS IN THE CONTEXT OF HIERARCHICAL PARTI-

TIONING

In this chapter we extend the simple mixture approach introduced in section 2.1 using Evolutionary Algorithms

(EAs). Thereby, condition 2 of Def. 2 becomes important.

In EAs populations of individuals (parents) produce new individuals (children) in a manner which is inspired

by biological evolution and reproduction. The individuals are strings describing a set of parameters which are

to be optimized.2 Applying EAs to graph partitioning we consider a partitioning map © : U ! V . One has

to optimize © regarding to a certain quality function (¯tness function) which is chosen here as run-time

tª (1.4). In this context an individual i represents a certain partition, determined by a map ©i. The l-th

component of the string is associated with the l{th element of U containing the mapping goal which is an

element of V . Several authors have applied EAs to graph partitioning, for instance [MGSK88].

We involve this approach into the second level of the above described hierarchical strategy (2.2) taking S¤

from (2.4) as the set of basic units.3 The initial population is built by several partitioning algorithms A2

i
.

Here, in addition to the usual scheme (2.2), in the second level we insert for certain time steps tk 2 T the

possibility of further superpositions of the actual partitions (described by the individuals). Then all individuals

are expressed in terms of the new basic units and the next EA{period takes place. This approach induces a

further reduction of the search space and a lower time amount for producing new populations.

As evolution strategy we prefer a new so{called [¹ ¤ ¸]{scheme, explained in [HHV96], which balances both

the [¹;¸]{ and the [¹+ ¸]{strategy (in the notation of [Sch81]).

3 APPLICATION TO MODELS OF REAL PROCESSORS

Here, we give an example of applying our 2-level hierarchical partitioning strategy to a model representing a

PowerPC 604 processor. This processor model is characterized by jMB j = 330 031 boxes. The set which has

to be partitioned consists of jCo(M)j = 46 998 elements. For run-time prediction we assume the following

constants: tM
B

= 111ns, tM
comm

= 204 ns, ta = 6 ns, and tb = 6 ns, respectively. Sequential simulation requires

a run-time per cycle of t = 36:63 ms.

0 500 1000 1500 2000

generations

14.0

14.5

15.0

15.5

16.0

16.5

17.0

r
u

n
-
ti
m

e

in

 m
s

0 100 200 300 400 500

generations

(a) (b)

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Figure 1: Predicted run-time tª corresponding to the best partition: (a) without (full line) and with (dashed

line) superposition at the beginning of the EAs; (b) same as in (a), and additionally, with superposition only

after each 25 generations (short-dashed line) and with superposition at the beginning of the EAs and after

each 200 generations (dashed-dotted line).

For the ¯rst level in the hierarchical strategy we use the simple but in this case proper STEP partitioning

algorithm4. Thus, we have a partitioning that maps the cone set to a set of 2000 super-cones which is taken as

S¤ from (2.4) for the second level. The previously developed MOCC partitioning algorithms [HHV96] yield a

2For a more detailed introduction see for instance [Mic96].
3In general, EAs may be used in each hierarchical level. Yet, the large number jCo (M)j would require too extensive computation

time and memory allocation costs.
4STEP breaks the cone list into pieces of equal length using the interior order of cone indices.

4

set ¦ of initial partitions (with jBj = 4 in (2.2)), which forms the initial population of the following EAs. The

individuals of the initial population are already of rather good quality concerning their ¯tness function. On

the other hand, all initial partitions are mutually di®erent. These two features are important for a successful

application of the superposition to the usual EAs.

In Fig.1 di®erent strategies of applying the concept of superposition to the EAs are compared. If one has initial

partitions produced by the MOCC algorithms, as in the example described here, a reduction of the search space

for the genetic operations after an immediate superposition for T = T0 = f0g occurs (see section 2.2). This

leads to a remarkable improvement of the best partitions and an acceleration of the EAs (Fig.1(a)). These are

two essential qualities which make EAs applicable for VLSI-partitioning with such a complex ¯tness function

tª (1.4). Of course, due to search space reduction the global minimum of the ¯tness function tª can be lost.

But, usually one wants to get a good but not a perfect partition in short time for parallel VLSI-simulation. To

achieve this aim, it can be useful to apply further superpositions after time steps T̂ = ft1; t2;:::g with ti > 0.

In Fig.1(b), it is shown that an additional acceleration of the decrease of the run-time can be achieved by

applying superpositions with respect to T = T̂ [T0 or T = T̂ . Especially, the superpositions at time steps

from T̂ essentially reduce the time consumption for the EAs but also further restrict the search space and,

hence, possibly the quality of the ¯nal best partition.

4 CONCLUDING REMARKS

The strategy of hierarchical partitioning enables a succesful application of EAs to the problem of model

partitioning for parallel VLSI-simulation. We have incorporated the concept of superposition of partitions into

the EA approach. It was shown that for su±cient good initial partitions which are mutually di®erent from

each other, a superposition of them reduces the search space in such a way that the decrease of the ¯tness is

accelerated. Furthermore, the EAs itself work faster because of the reduced number of elements which are to

be mapped and the simpli¯ed calculation of the run-time (¯tness function). On the other hand, the global

optimum of the ¯tness function may be excluded from the search space, but this is already possible due to the

introduction of the hierarchical partitioning scheme. Superpositions can be applied for the initial population

but also during the evolution strategy.

Generally, the concept of superposition can be used for EAs with a complex ¯tness function, where good initial

individuals exist and a fast sub{optimal solution of the problem is required.

Acknowledgement

This work was supported by Deutsche Forschungsgemeinschaft (DFG) under the grant SP

487/1-2. The authors would like to thank D. DÄohler, H. Hennnings, R. Reilein and Th.

Siedschlag for grateful support during the test phase and programming work.

REFERENCES

[Her96] K. Hering. Parallel cycle simulation. Technical Report 13, University of Leipzig / Inst. of Infor-

matics, Germany, 1996.

[HHV96] K. Hering, R. Haupt, and Th. Villmann. Hierarchical Strategy of Model Partitioning for VLSI{

Design Using an Improved Mixture of Experts Approach. In Proc. Of the Conference on Parallel

and Distribute Simulation (PADS), pages 106{113. IEEE Computer Society Press, Los Alamitos,

1996.

[JJ94] M. I. Jordan and R. A. Jacobs. Hierarchical Mixture of Experts and the EM Algorithm. In

P. Morasso, editor, Proc. ICANN'94, pages 479{486. Springer, 1994.

[Mic96] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer{Verlag

Berlin Heidelberg New York, third, revised and extended edition, 1996.

[MGSK88] H. MÄuhlenbein, M. Gorges-Schleuter, and O. KrÄamer. Evolution Algorithm in Combinatorial

Optimization. Parallel Computing, (7):65{88, 1988.

[Sch81] H.-P. Schwefel. Numerical Optimization of Computer Models. Whiley and Sons, 1981.

5

