
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig
Abstract

Process patterns allow the modular modelling and adap-
table application of business processes. Present descripti-
ons of process patterns show defects like non-uniform and 
unequivocal description forms and missing relationship 
definitions. These defects disadvantageously affect the 
effective usage of process patterns. In this work we intro-
duce the language PROPEL (Process Pattern Description 
Language), which provides concepts for the semiformal 
description of process patterns and relationships between 
process patterns. With the help of PROPEL single process 
patterns can be modelled and, by definition of relati-
onships, be composed to more complicated processes. 
With the representation of different views of a process pat-
tern catalog the process patterns and their relationships 
can be shown clearly. An example illustrates how a pro-
cess pattern catalog and the contained process patterns 
are modelled. It is shown that in applying PROPEL the 
complexity of a process model can be reduced and incon-
sistencies of processes be eliminated.

1. Introduction

A process pattern represents a proven process which 
solves an frequently recurring problem in a patternlike 
way (cf. [3] for an introduction to patterns). The problem 
embodies a concrete situation which may emerge e.g. 
during the software development. The process describes a 
set of activities, which can be executed to solve the pro-
blem. Process patterns offer the documentation of proven 
knowledge by abstracting from details and facilitate the 
communication [5]. Process patterns especially enable a 
flexible process support since one can select and apply a 
suitable process pattern according to the present situation. 
For this reason process patterns are considered as an alter-
native to complex and heavyweight process models like 
Rational’s Unified Process [9], the German Process 
Model [13], Objectory Process [8] etc., since process pat-
terns can be used to adapt the software process to the 
respective project situation [1].

Although the concept of process patterns is very pro-
mising, it has not matured yet [7]. Current research focu-
ses rather on the identification of new process patterns, 
neglecting the identification of a suitable presentation. 
Process patterns are not described in a precise way, nor 
are process pattern relationships sufficiently described.

Up to now patterns were described in an informal way 
by natural language. This is on the one hand an advantage, 
since no knowledge about notation, syntax and semantics 
is necessary for understanding a pattern. On the other 
hand, natural language produces ambiguous and inexact 
expressions (e.g., the relationships „is prerequisite of“ and 
„may contain“ in [12]). In addition to the informal 
description of relationships the descriptions of the proces-
ses themselves are surprisingly informal. A step wise 
description of the process is often missing, and there are 
even process patterns which contain no process as a solu-
tion (e.g. in [2]). 

Moreover, process patterns can unfold their full 
strength only in the combination with other process pat-
terns [3]. Unfortunately, present descriptions of pattern 
relationships are not formally specified and give no infor-
mation about their syntactic or semantic meaning (e.g., 
„pattern X uses pattern Y“ or „pattern A can be combined 
with pattern B“). In considering the patterns’ relation-
ships, more complicated process patterns (processes) 
could be modelled therefore in combining single process 
patterns (processes). This information about possible 
combinations of patterns must be provided by an explicit 
description of the patterns’ relationships. 

In section 2. we outline our approach. Section 3. then 
deals with the PROPEL metamodel und illustrates it with 
some examples. Section 4. presents a process pattern cata-
log consisting of a set of process patterns and relation-
ships. In section 5. we finally summarize and evaluate our 
statements and give some perspectives of our work.

Process Patterns - a Means to Describe Processes in a Flexible Way

Mariele Hagen, Volker Gruhn
Chair of Applied Telematics / e-Business

Department of Computer Science
University of Leipzig

{hagen, gruhn}@ebus.informatik.uni-leipzig.de

https://core.ac.uk/display/226138186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. Approach

Because of the aforementioned reasons we have deve-
loped the language PROPEL (Process Pattern Description 
Language) for the description of process patterns (cf. [6]
for a detailed overview). This language is an extension of 
the Unified Modeling Language (UML) [11]. Hence, 
many proven and widespread modelling concepts of the 
„Lingua Franca“ of the software engineering domain can 
be reused. The UML already offers concepts like activity 
diagrams for modelling processes which we make use of 
for modelling the process element of a process pattern. 
PROPEL suggests a uniform description schema for pro-
cess patterns and defines relationships between process 
patterns. Herewith PROPEL allows to describe process 
patterns and their relationships in a semiformal way.

3. The PROPEL Metamodel

In the following, we present the metamodel of PRO-
PEL through class diagrams. A detailed description of the 
metamodel can be found in [6], an overview over the OCL 
constraints in [4]. Furthermore, we give some examples to 
clarify the purpose of the PROPEL concepts. Figure 1
lists the notational elements specified within PROPEL 
and used in the examples.

Figure 1: Notational elements of PROPEL

Figure 2 presents the parts of PROPEL that deal with 
modeling a single process pattern. Figure 3 shows how 
these concepts are used for modeling purposes. A process 
pattern consists of a process, which solves a problem 
which has recurred in a certain context. 

Figure 2: PROPEL syntax - part 1

A problem can be grouped thematically via its aspect. 
The association solves expresses that there can be an arbi-
trary set of solutions (i.e. process patterns) for a problem. 
The detailed textual description of the problem is 
expressed by the attribute description.

The context of a process pattern defines the conditions 
which must be fulfilled before and after application of the 
process pattern. A context is a part of a process pattern. It 
is either consumed (s. association consumer) or produced 
(s. association producer) by the process pattern. A context 
is a set of objects and and events (states). An object is rep-
resented by the metaclass ObjectFlowState, whose type of 
classifier is an artifact. An event is likewise represented 
by the stereotype <<SignalFlowState>>, the type of the 
classifier is then a signal.

In our example (figure 3) the process pattern "Capture 
a Common Vocabulary" solves the problem "How can a 
Glossary be defined?", which recurs in the initial context 
consisting of the object "Requirements Documents" and 
in the resulting context consisting of the object 
"Glossary". That means that the context specifies objects 
and events which emerge before and after the execution of 
the ProcessPattern. 

Figure 3: Example problem and process pattern

We use the UML metaclass "ActivityGraph" to model 
a process (cf. figure 4). A process is a set of activities 
(metaclass "ActionState"). It describes the control flow of 
and the object flow between its activities. A process can 
be an element of an arbitrary set of process patterns. If a 
process is an element of more than one process patterns, 
we speak of processvariant process patterns (cf. relation-
ship processvariance). 

Furthermore, roles can be assigned to activities and 
processes. This may be irritating, since the UML specifi-
cation contains the similar metaclass "Actor". However, 
the association of actors to model elements is limited to 
the system which is to be developed, i.e. only associations 
to uses cases, subsystems and classes are permitted. 
However, for the modelling of software development pro-
cesses we need a broader term and therefore we introduce 
the metaclass Role. The activities and tasks of a Role are 
described in detail within a profile (not shown here).

A role (e.g. "System Analyst") describes experiences, 
knowledge and abilities, which are necessary in order to 
carry out activities. A tool (e.g. "Requisite Pro") supports 
the execution of an activity and appear often as a software 
system. Different goals are linked with the usage of a tool, 
these goals can differ from activity to activity.

Process
Pattern

object / event

object
flow

sequence
relationship

use
relationship

process-
variance

relationship

refinement
relationship

aaaactivity

role tool

control
flow

start
state

end
state

RM aspect

Pro-
blem

solves
relationship

-description
Problem

0..*

1

-description
Process

Context

-proposes 0..*

-process

1

-version
-synoyms
-discussion
-example
-phase

ProcessPattern

ObjectFlowState
0..1 -states

1..*

initial

resulting

consumer

producer

input
output

UML class

PROPEL class

problem

solves

0..*

1

0..*

1

0..*

1

0..*

1

RM

Capture a
Common

Vocabulary

How can a
Glossary

be
produced? RM

Glossary

Requirements
Documents



Figure 4: PROPEL syntax - part 2

The process part of the process pattern specifies steps 
which are necessary to solve the problem. It must there-
fore fulfil the conditions specified by the initial and resul-
ting context. In our example, figure 5 presents the process 
of process pattern "Capture a Common Vocabulary". Note 
that the process takes exactly these objects as input and 
ouput that correspond to the context specified by the pro-
blem. That means that the process is encapsulated by the 
process pattern. The problem and its solving process pat-
terns are a sufficient information for a pattern user to 
select a process pattern according to his needs.

The hierarchical composition of a process is establis-
hed by the mapping of problems onto activities. 

Figure 5: Example process

Figure 6 presents the parts of PROPEL that deal with 
modeling relationships between process patterns. The fol-
lowing figures 6 to 10 show how these concepts are used 
for modeling purposes.

Figure 6: PROPEL syntax - part 3

The sequence relationship connects one or more 
preceding patterns and one succeeding pattern. Such a 
relationship exists between several process patterns, if the 
preceding process patterns alltogether produce all objects 
and events, which the following process pattern needs for 
its application. 

In our example (figure 7), the two process patterns 
"Define Review Criteria" and "Develop Software Compo-
nent" together produce all objects ("Review Criteria", 
"Review Request" and "Software Component") the pro-
cess pattern "Review" needs. The three process patterns 
therefore are connected via a sequence relationship.

Figure 7: Example sequence relationship 

The use relationship associates a component pattern 
and a composite pattern. Such a relationship exists, if the 
component pattern describes a subprocess of the compo-
site patterns, i.e. a part of the solution. In our example 
(figure 8), the process pattern "Review" uses three other 

-description
Process

ActivityGraph

StateMachine

State

-isConcurrent : Boolean
-isSequential : boolean

CompositeState

StateVertex

Transition

-initial : boolean
SimpleState

ActionState-profile
Role

Tool

ActivityProblemMapping

Problem

ModelElement

*

mapping

PROPEL class

UML class1
subproblem

*activity

1

subactivity

*

1

*

tool

*activity
1..*

role
*

activity
role

process

1..*

*

1

container

* subvertex

1..* target

*

incoming

*

transitions

* outgoing

1..*
source

1

top1

1

FinalState

Find Common Terms

Evaluate Your Results

System Analyst

Common Terms

Glossary

Requisite
Pro

Requirements
Documents

ProcessPatternRelationship

-version
-phase : String
-synoyms
-discussion
-example

ProcessPattern

-recursive : Boolean
Use

Sequence*

Refinement

Processvariance

0..*

1..*

0..* component

0..*
1

composite

0..*

1
subPattern

0..*

1

super-
Pattern

0..*

1
variant1

0..*

1

variant2

ProcessPatternCatalog

Problem

0..*

1
super-

Problem

0..*

1 subProblem

RefineProblem

Aspect

Package ObjectFlowState

0..*
1successor

1

predecessor

PROPEL class

UML class

* pattern

1 aspect

1 aspect

* ofs

* aspect

1aspect

*
catalog

*
aspect

*relations

1

catalog

1

Develop Software
Component

Review

Define Review
Criteria

Notation...

Develop Software
Component

Review

Define Review
Criteria

Review
Criteria

Review
Request

Software
Component

... and its
meaning



process patterns, namely "Introductional Session", 
"Review Session" and "Release". The process of pattern 
"Review" contains the activity "Perform Review-Ses-
sion", which needs to be described more detailed. This 
can be done in specifying a problem (e.g. "How can a 
Review be performed?") representing the activity. Then, 
for this problem can be found another solving process pat-
tern, e.g. "Review Session".

Figure 8: Example use relationship

Problems, which adress a certain activity, can be assig-
ned to an "ActionState" (via the association subactivity). 
These problems are therefore subproblems of the problem 
of the superior process pattern. Hence, there may be pro-
cess patterns which solve a partial step of the superior pro-
cess pattern. The existence of an one or more 
"ActivityProblemMappings" is therefore a condition for 
the hierachical composition of process patterns.

Figure 9: Example processvariance relationship

The processvariance relationship associates two vari-
ant process patterns. Such a relationship exists, if the vari-
ant patterns solve the same problem but with different 
solutions. In our example (figure 9), the two process pat-
terns "Capture&Replay" and "Program Test" are variant 
process patterns, since they both fulfill the same context.

The refinement relationship associates a superpattern 
and a subpattern. Such a refinement relationship exists, if 
the context and process of the superpattern have been refi-
ned by the subpattern. This means in addition, that the 
problems of these two patterns are connected by a refine-
ment relationship. In our example (figure 10), the process 
pattern "Manual QA" is refined by the process pattern 
"Review". The initial context of "Review" not only con-
tains the "Review Object", but also "Review Criteria" and 
"Review Request".

Figure 10: Example refinement relationship

The last two concepts defined in this section are the 
process pattern catalog and the aspect. 

A process pattern catalog represents a set of process 
patterns and relationships, which tie process patterns toge-
ther. Process patterns and problems are always assigned to 
a process pattern catalog (cf. association catalog). 

Finally, process patterns and problems can be grouped 
thematically via their aspect. The aspect is a subclass of 
the metaclass package and bundles a set of process pat-
terns, problems and objects (via "ObjectFlowState", not 
shown here). The aspect informs about the subject of 
these elements (e.g.: project acquisition, management pro-
ject, risk management etc.).

ReleaseReview-SessionIntroductional
Session

Review

Review-Session

Individual
Defect / CR

List

Review Log

Individual
Defect / CR

List

Review Log

Notation...

... and its
meaning

How can a
Review be
performed

?

activity of process
pattern Review-Session"

problem adressing this
activity

process pattern solving
this problem

Perform
Review-Session

Capture &
Replay Program Test

Test
Case

Tool Tool
Guidelines

Test Script Test Skript

Capture &
Replay Program TestNotation...

... and its
meaning

Test
Case

Tool Tool
Guidelines

ReviewManual QA

ReviewManual QA

Review
Object

Released
Object

Review
Criteria

Review
Object

Released
Object

Review
Request

Notation...

... and its
meaning



4. Example

For validating the concepts of PROPEL we developed 
the process pattern catalog CADS (Catalog for the Deve-
lopment of Software), which illustrates the use of PRO-
PEL. We derived the catalog from the Rational Unified 
Process (RUP) [9]. Thus we were able to use already pro-
ven, widespread processes and concentrate on the form of 
the description. 

The representation of the process patterns specified in 
this section is limited to process patterns, which belong to 
the discipline (RUP) or the aspect (PROPEL) "Require-
ments Management". Process patterns, which belong to 
other aspects (e.g. „Business Modeling“), carry a special 
symbol (e.g. „BM“ for „Business Modeling“, cf. process 
pattern „Find Business Actors and Use Cases“ in 
figure 12).

Considering the aspect "Requirements Management" 
we identified 31 problems and 44 process patterns. The 
difference between the number of problems and process 
patterns is based on the existence of variant process pat-
terns which belong to the same problem. The modeling 
effort was a couple of days. The greatest part of this 
modeling effort was to identify and eliminate inconsisten-
cies of the RUP processes. But with help of the PROPEL 
relationship definitions we could decide if two processes 
are consistent, and if not, how this consistency may be 
established. The effort was reasonable beause of two 
reasons: We gained consistent process descriptions and 
could reduce the process model‘s complexity.

4.1. Views of the Process Pattern Catalog

In the following we show a selected part of the process 
pattern catalog with help of different views. Each view 
represents an overview of the relationships of a certain 
type. We could also merge all views into one single view 
(to represent the catalog as a whole), but this would 
endanger clarity and understanding.

Figure 11 presents part of the hierarchical view of the 
catalog CADS with help of the use relationship. This hier-
archical structure was taken over as far as possible from 
the RUP (for the RUP is already hierarchically structured 
by disciplines (e.g. „Requirements Management“), work-
flow details (e.g. „Refine the Problem“) and activities 
(„Develop Requirements Management Plan“). Looking at 
this view it becomes clear that some process patterns are 
used several times, e.g. the process pattern "Develop 
vision". The process pattern „Review requirements“ uses 
itself and is therefore associated with itself via a recursive 
use relationship. The RUP is lacking such a hierarchical 
overview. 

Figure 11: Catalog Diagram - View „Use“

Figure 12 presents a selection of the existing sequence 
relationships (because for lack of space not all relation-
ships instances could be presented here). The sequence 
relationship signifies that one ore more process patterns 
provide the (initial) context for another process pattern. It 
therefore signifies a sequential flow of process patterns. 
The pattern user is thus informed, which process patterns 
he can use directly before or after a certain process pat-
tern. If a pattern user would like to use e.g. the pattern 
"Capture a Common Vocabulary", then he knows that the 
necessary context can be provided by applying a set of 
process patterns like „Find Business Workers and Enti-
ties“, „Find Actors and Use Cases“ etc. This information 
is only implicitly present in the RUP.

Figure 12: Catalog Diagram - View „Sequence“

The number of sequence relationships with one single 
predecessor pattern is rather small in this example. The 
reason is that the RUP is divided into nine different disci-
plines, but processes (i.e. workflowdetails or activities) of 
several disciplines cooperate, in order to produce an 
object or an event. Because of this close linkage of the 
processes the number of sequence relationships with more 
than one predecessor pattern is much higher than 
Sequence relationships with only one predecessor pattern. 

Reanalyse
the

Require-
ments

Refine the
Problem

Understand
Stake-
holders
Needs

Define the
System

Manage the
Scope of

the System

Develop
Req. Mgmt.

Plan

Capture a
Common

Vocabulary

Find Actors
and Use
Cases

Develop
Vision

Elicit Stake-
holder

Requests

Prioritize
Use Cases

Describe
How Act. a.
Use Cases

interact

Package
Use-Cases
and Actors

...

Find Actors
and Use-

Cases

Elicit
Stakeholder
Requests

Find
Business
Actors a.

Use-Cases

Find
Business

Workers a.
Entities

Develop
Vision

Develop
Business

Case

Maintain
Business

Rules

Capture a
Common

Vocabulary
PM

BM

BM

BM

Describe
How Actors

a. Use Cases
Interact

Package Use
Cases and

Actors

Develop
Vision Develop

Requirements
Management

PlanFind Actors
and Use
Cases



The representation of the Sequence relationship is an 
advantage compared to the RUP, in which the input and 
the output artifacts of a workflow detail or an activity are 
indicated, but possible sequences of processes are not 
described. Since the RUP activities, workflowdetails and 
disciplines are closely interlocked, this information is hel-
pful for the user. 

The refinement relationship represents a relationship 
between a more abstract and more detailed process pat-
tern. For example, there exist two refinements of the pro-
cess pattern „Capture a Common Vocabulary“ exist, 
namely the refining process patterns „Vocabulary cen-
trally“ and „Vocabulary participatorily“. These two pro-
cess patterns describe in a more detailed way than the 
abstract process pattern, how a project glossary can be 
provided. The additional information comes along with 
the refined context and process of the refining process pat-
terns. The user can therefore decide, how much support 
(abstract pattern - less support, detailed pattern - more 
support) he needs to solve the problem. The RUP offers 
no concepts to describe such process refinements.

Figure 13: Catalog Diagram - View „Refinement“

Figure 13 presents some occurrences of the refinement 
relationship. Two refinements of the process pattern 
„Capture A Common Vocabulary“ exist, namely the refi-
ning process patterns „Capture Vocabulary centrally“ and 
„Capture Vocabulary participatorily“. These two process 
patterns describe in a more detailed way than the abstract 
process pattern, how a project glossary can be provided. 
The additional information comes along with the refined 
context and process of the refining process patterns. (cf. in 
figure 16 object "Requirements Documents", which is 
refined by the input of the subproblem; the object 
"Glossary" is not refined, and is thus existent both in the 
superproblem and in the subproblem). The user can there-
fore decide, how much support (superpattern - less sup-
port, subpattern - more support) he needs to solve the 
problem. The RUP offers no concepts to describe such 
process refinements.

The processvariance relationship signifies that pro-
cessvariant process patterns solve the same problem with 
a different solution (i.e. the process). Figure 14 presents 
some occurrences of this relationship. The three process 
patterns "Review requirements", "Walkthrough Require-

ments" and "Inspect Requirements" are processvariant 
patterns. These three process patterns explain, how a 
manual quality assurance can be done in different ways. 

The user can therefore decide, how he would like to 
solve the problem. The RUP does not deal with the 
description of variant processes. This is a disadvantage, 
since the user is always tied to a certain process. Moreo-
ver, if a user is aware of a variant process, this variant pro-
cess cannot be added to the RUP.

Figure 14: Catalog Diagram - View „Processvariance“

4.2. Detailed View of Problem and Process 
Pattern

We now present an explanatory detailed view of pro-
cess patterns and problems in the catalog CADS.

Within a project a project vocabulary is to be develo-
ped, in order to improve communication between the pro-
ject workers and to achieve a clear and unambigious 
terminology in the documents. This situation is represen-
ted by the problem "How can a Glossary be produced?". 
Figure 15 shows on the left the problem to be solved and 
its initial ("Requirements Documents") and resulting con-
text ("Glossary"). On the right side the solving process 
patterns are presented. The problem is solved by the pro-
cess pattern "Capture A Common Vocabulary". There are 
two refining process patterns of this pattern, namely pro-
cess pattern "Capture Vocabulary centrally" and process 
pattern "Capture Vocabulary participatorily". These two 
process patterns provide a more detailed process and con-
text as the refined process pattern.

Figure 15: Problem Diagram

Figure 16 shows a refinement of the superproblem 
"How can a Glossary be produced?". We see on the right 
side that the context of the superproblem is refined by the 
context of the subproblem in inheriting all elements of the 
context and adding further elements if needed. Note that 
the resulting contexts of both the super- and the subprob-
lem are identical, i.e. the object "Glossary" is their sole 
element.

Reanalyse
the Require-

ments

Capture a
Common

Vocabulary

Capture
Vocabulary
participa-

torily

Capture
Vocabulary

centrally

Analyse the
Requirements

Specify the
Require-
ments

Review
RequirementsCapture

Vocabulary
participa-

torily

Capture
Vocabulary

centrally

Walkthrough
Requirements

Inspect
Requirements

Capture a
Common

Vocabulary

Capture
Vocabulary
participa-

torily

Capture
Vocabulary

centrally

Problem Solving Process
Patterns

How can a
Glossary

be
produced?

RM

Glossary

Requirements
Documents



Figure 16: Refinement of Problem

Finally, in figure 17 we present the condensed descrip-
tion of the process pattern "Capture A Common Vocabu-
lary" with the concepts introduced before. This view is 
also called the process pattern diagram. First, the problem 
to be solved is named (above). Then, all process patterns 
the process pattern is connected with via a relationship are 
presented (middle). Finally, the process of the process pat-
terns is presented (bottom). 

Figure 17: Process Pattern Diagram

As we have seen, the process pattern diagram presents 
all necessary information of a process pattern as well as 
the problem diagram presents all necessary information of 
a problem. In practice, this type of presentation is an 
advantage since it uses the principle of information 
hiding. 

If a user faces a certain problem, he can first search an 
appropriate problem. Via the problem diagram, (maybe) 
several process patterns are indicated that solve this pro-
blem. In a second step, the user can examine and select 

one of these process patterns. From this point of view, he 
can then see via the relationship diagram, which other 
process patterns he can possibly apply before or after this 
process pattern, or which variants or refinements are avai-
lable. If the pattern user has carried out e.g. the process 
pattern "Develop vision", it is clear that afterwards the 
process pattern "Develop requirements management plan" 
can be used.

By this example it becomes clear that a complex pro-
cess model like RUP can be described by PROPEL pro-
cess patterns. Furthermore, the complexity of the process 
model can be reduced and disentangled by identifying 
process patterns and their relationships. 

5. Conclusion

The Process Pattern Description Language PROPEL 
introduced in this paper offers all necessary means in 
order to describe process patterns in a uniform way. PRO-
PEL encloses the description of problems, contexts, 
objects and events, roles and tools. Particularly the possi-
bility of describing relationships between process patterns 
and thus between processes has to be emphasized. Most 
process models do not offer the representation of process 
relationships. The semiformal representation of processes 
increases the accuracy of the description. It permits to set 
up rules for the hierarchical structure of process patterns 
and therefore for defining the use relationship between 
process patterns. Furthermore, rules for specifing 
sequences, refinements and variants of process patterns 
are given.

With the means of PROPEL we described a process 
pattern catalog based on processes of the RUP. The cata-
log presents both the process patterns and the relation-
ships between process patterns with the help of different 
views. We showed that with PROPEL a complex proces 
model like the RUP can be simplified in modularizing the 
processes, identifying formerly hidden relationships and 
eliminating inconsistencies.

To enhance the accuracy of process pattern descripti-
ons we presently work on the formalization of the seman-
tics of PROPEL. We accomplish this by defining a 
semantic mapping of PROPEL’s abstract syntax onto the 
semantic domain of petri nets. With petri nets we can 
define the dynamic conditions of process pattern relation-
ships (i.e. not only the structural conditions). For a impro-
ved management of process patterns we develop the 
Process Pattern Workbench, a platform for the documen-
tation and administration of process patterns. Details 
about the prototype are available in [10]. A further 
research question is to log the application of process pat-
tern, on the one hand to inform the project workers about 
which patterns should be and have already been applied, 
and on the other hand to log statistically which process 
pattern combinations are more frequently used than 
others. Furthermore, we develop the process pattern 
management methodology, in order to identify, document, 
select and use process patterns in a systematic way.

Glossary

initial context

How can a
Glossary

be
produced?

How can a
Glossary be

produced
(detailed)?

Requirements
Documents

Vision

Use-Case
Model

Business
Models

Stakeholder
Requests

Business
Case

Business
Rules

resulting contextProblem
refinement

Find Common Terms

Evaluate Your Results

System
Analyst

How can a
Glossary

be
produced?

Relationship
Diagram

Process
Diagram

Common Terms

Glossary

Capture a
Common

Vocabulary

Problem
Diagram

Analyze the
Problem

Capture
Vocabulary
participa-

torily

Capture
Vocabulary

centrally

Define the
System

Understand
Stakeholders

Needs

Requisite
Pro

Review
Requirements

Requirements
Documents

Elicit
Stakeholder
Requests

Find
Business
Actors a.

Use-Cases

Develop
Vision

Maintain
Business

Rules
BM

BM

Inspect
Requirements

Walkthrough
Requirements

Find Actors
and Use-

Cases

Find
Business

Workers a.
Entities

Develop
Business

Case
PM

BM



6. References

[1] Bergner, K.; Rausch, A.; Sihling, M.: A Component 
Methodology based on Process Patterns. TUM-I9823, 
University Munich, 1998.

[2] Coplien, J.: A Development Process Generative Pattern 
Language. In: Proceedings of PLoP 94, 1994.

[3] Coplien, J.: Software Patterns. SIGS Book & Multimedia, 
1996.

[4] Dittmann, T.: PPDL - A Description Language for Pro-
cess Patterns (in German), Diploma Thesis, University 
Dortmund, 2002.

[5] Dittmann, T., Gruhn, V., Hagen, M.: Improved Support 
for the definition and usage of process patterns. 1st Work-
shop on Process Patterns, OOPSLA 2002, Seattle, 2002.

[6] Hagen, M.; Gruhn V.: PROPEL - A Language for the 
Description of Process Patterns (in German). In: Proc. of 
Modellierung 2004, LNI, Vol. P-45, Köllen, 2004, 
pp.203-218.

[7] Hagen, M.: Support for the definition and usage of pro-
cess patterns. Position Paper, EuroPloP 2002, http://
www.haase-consulting.com/workshops/FgEuroplop02/
position_papers.html.

[8] Jacobson, I.: Object-Oriented Software Engineering: A 
Use Case Driven Approach. Addison Wesley Publishing 
Company, 1992.

[9] Kruchten, P.: The Rational Unified Process, Addison-
Wesley Professional, 2000.

[10] Schröder, J.: The Process Pattern Workbench, Thesis (in 
German), University Dortmund, 2003.

[11] Object Management Group: OMG Unified Modeling 
Language Specification, March 2003, Version 1.5, formal/
03-03-01. http://www.omg.org/docs/formal/03-03-01.pdf.

[12] Störrle, H.: Models of Software Architecture. Design and 
Analysis with UML. Dissertation, University Munich, 
2000.

[13] V-Modell ’97: Entwicklungsstandard für IT-Systeme des 
Bundes. BWB IT 15, 1997.


	1. Introduction
	2. Approach
	3. The PROPEL Metamodel
	4. Example
	4.1. Views of the Process Pattern Catalog
	4.2. Detailed View of Problem and Process Pattern

	5. Conclusion
	6. References

